Sample records for identify potential deficiencies

  1. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.

    PubMed

    Tang, Yew Chung; Ho, Szu-Chi; Tan, Elisabeth; Ng, Alvin Wei Tian; McPherson, John R; Goh, Germaine Yen Lin; Teh, Bin Tean; Bard, Frederic; Rozen, Steven G

    2018-03-22

    Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Six genes showed PTEN

  2. A method for identifying color vision deficiency malingering.

    PubMed

    Pouw, Andrew; Karanjia, Rustum; Sadun, Alfredo

    2017-03-01

    To propose a new test to identify color vision deficiency malingering. An online survey was distributed to 130 truly color vision deficient participants and 160 participants willing to simulate color vision deficiency. The survey contained three sets of six color-adjusted versions of the standard Ishihara color plates each, as well as one set of six control plates. The plates that best discriminated both participant groups were selected for a "balanced" test emphasizing both sensitivity and specificity. A "specific" test that prioritized high specificity was also created by selecting from these plates. Statistical measures of the test (sensitivity, specificity, and Youden index) were assessed at each possible cut-off threshold, and a receiver operating characteristic (ROC) function with its area under the curve (AUC) charted. The redshift plate set was identified as having the highest difference of means between groups (-58%, CI: -64 to -52%), as well as the widest gap between group modes. Statistical measures of the "balanced" test show an optimal cut-off of at least two incorrectly identified plates to suggest malingering (Youden index: 0.773, sensitivity: 83.3%, specificity: 94.0%, AUC of ROC 0.918). The "specific" test was able to identify color vision deficiency simulators with a specificity of 100% when using a cut-off of at least two incorrectly identified plates (Youden index 0.599, sensitivity 59.9%, specificity 100%, AUC of ROC 0.881). Our proposed test for identifying color vision deficiency malingering demonstrates a high degree of reliability with AUCs of 0.918 and 0.881 for the "balanced" and "specific" tests, respectively. A cut-off threshold of at least two missed plates on the "specific" test was able to identify color vision deficiency simulators with 100% specificity.

  3. [A neonate with anaemia of prematurity: zinc protoporphyrin identifies iron deficiency anaemia without iron deficiency].

    PubMed

    van der Feen, Diederik E; van Hillegersberg, Jacqueline L A M; Schippers, Johannes A

    2015-01-01

    Anaemia is a common problem in premature infants and is generally easy to treat with iron supplementation. If the anaemia persists despite appropriate correction of deficiencies, more extensive evaluation is required. We describe a case of a premature male infant with a production-deficient anaemia without metabolic deficiencies, eventually identified as anaemia of prematurity. This type of anaemia is commonly diagnosed but its highly variable and complex aetiology and phenotype are often poorly understood. A probable explanation for the anaemia of prematurity in this case was a transient iron incorporation defect, identifiable by high levels of zinc protoporphyrin.

  4. Projected future distribution of date palm and its potential use in alleviating micronutrient deficiency.

    PubMed

    Shabani, Farzin; Kumar, Lalit; Nojoumian, Amir Hadi; Esmaeili, Atefeh; Toghyani, Mehdi

    2016-03-15

    Micronutrient deficiency develops when nutrient intake does not match nutritional requirements for maintaining healthy tissue and organ functions which may have long-ranging effects on health, learning ability and productivity. Inadequacy of iron, zinc and vitamin A are the most important micronutrient deficiencies. Consumption of a 100 g portion of date flesh from date palm (Phoenix dactylifera L.) has been reported to meet approximately half the daily dietary recommended intake of these micronutrients. This study investigated the potential distribution of P. dactylifera under future climates to address its potential long-term use as a food commodity to tackle micronutrient deficiencies in some developing countries. Modelling outputs indicated large shifts in areas conducive to date palm cultivation, based on global-scale alteration over the next 60 years. Most of the regions suffering from micronutrient deficiencies were projected to become highly conducive for date palm cultivation. These results could inform strategic planning by government and agricultural organizations by identifying areas to cultivate this nutritionally important crop in the future to support the alleviation of micronutrient deficiencies. © 2015 Society of Chemical Industry.

  5. Identifying areas with vitamin A deficiency: the validity of a semiquantitative food frequency method.

    PubMed

    Sloan, N L; Rosen, D; de la Paz, T; Arita, M; Temalilwa, C; Solomons, N W

    1997-02-01

    The prevalence of vitamin A deficiency has traditionally been assessed through xerophthalmia or biochemical surveys. The cost and complexity of implementing these methods limits the ability of nonresearch organizations to identify vitamin A deficiency. This study examined the validity of a simple, inexpensive food frequency method to identify areas with a high prevalence of vitamin A deficiency. The validity of the method was tested in 15 communities, 5 each from the Philippines, Guatemala, and Tanzania. Serum retinol concentrations of less than 20 micrograms/dL defined vitamin A deficiency. Weighted measures of vitamin A intake six or fewer times per week and unweighted measures of consumption of animal sources of vitamin A four or fewer times per week correctly classified seven of eight communities as having a high prevalence of vitamin A deficiency (i.e., 15% or more preschool-aged children in the community had the deficiency) (sensitivity = 87.5%) and four of seven communities as having a low prevalence (specificity = 57.1%). This method correctly classified the vitamin A deficiency status of 73.3% of the communities but demonstrated a high false-positive rate (42.9%).

  6. Determination of optimal cutoff value to accurately identify glucose-6-phosphate dehydrogenase-deficient heterozygous female neonates.

    PubMed

    Miao, Jing-Kun; Chen, Qi-Xiong; Bao, Li-Ming; Huang, Yi; Zhang, Juan; Wan, Ke-Xing; Yi, Jing; Wang, Shi-Yi; Zou, Lin; Li, Ting-Yu

    2013-09-23

    Conventional screening tests to assess G6PD deficiency use a low cutoff value of 2.10 U/gHb which may not be adequate for detecting females with heterozygous deficiency. The aim of present study was to determine an appropriate cutoff value with increased sensitivity in identifying G6PD-deficient heterozygous females. G6PD activity analysis was performed on 51,747 neonates using semi-quantitative fluorescent spot test. Neonates suspected with G6PD deficiency were further analyzed using quantitatively enzymatic assay and for common G6PD mutations. The cutoff values of G6PD activity were estimated using the receiver operating characteristic curve. Our results demonstrated that using 2.10 U/g Hb as a cutoff, the sensitivity of the assay to detect female neonates with G6PD heterozygous deficiency was 83.3%, as compared with 97.6% using 2.55 U/g Hb as a cutoff. The high cutoff identified 21% (8/38) of the female neonates with partial G6PD deficiency which were not detected with 2.10 U/g Hb. Our study found that high cutoffs, 2.35 and 2.55 U/g Hb, would increase assay's sensitivity to identify male and female G6PD deficiency neonates, respectively. We established a reliable cutoff value of G6PD activity with increased sensitivity in identifying female newborns with partial G6PD deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers

    PubMed Central

    Hocke, Sandra; Guo, Yang; Job, Albert; Orth, Michael; Ziesch, Andreas; Lauber, Kirsten; De Toni, Enrico N; Gress, Thomas M.; Herbst, Andreas; Göke, Burkhard; Gallmeier, Eike

    2016-01-01

    The phosphoinositide 3-kinase-related kinase ATR represents a central checkpoint regulator and mediator of DNA-repair. Its inhibition selectively eliminates certain subsets of cancer cells in various tumor types, but the underlying genetic determinants remain enigmatic. Here, we applied a synthetic lethal screen directed against 288 DNA-repair genes using the well-defined ATR knock-in model of DLD1 colorectal cancer cells to identify potential DNA-repair defects mediating these effects. We identified a set of DNA-repair proteins, whose knockdown selectively killed ATR-deficient cancer cells. From this set, we further investigated the profound synthetic lethal interaction between ATR and POLD1. ATR-dependent POLD1 knockdown-induced cell killing was reproducible pharmacologically in POLD1-depleted DLD1 cells and a panel of other colorectal cancer cell lines by using chemical inhibitors of ATR or its major effector kinase CHK1. Mechanistically, POLD1 depletion in ATR-deficient cells caused caspase-dependent apoptosis without preceding cell cycle arrest and increased DNA-damage along with impaired DNA-repair. Our data could have clinical implications regarding tumor genotype-based cancer therapy, as inactivating POLD1 mutations have recently been identified in small subsets of colorectal and endometrial cancers. POLD1 deficiency might thus represent a predictive marker for treatment response towards ATR- or CHK1-inhibitors that are currently tested in clinical trials. PMID:26755646

  8. 40 CFR 141.723 - Requirements to respond to significant deficiencies identified in sanitary surveys performed by EPA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... deficiencies identified in sanitary surveys performed by EPA. 141.723 Section 141.723 Protection of Environment... REGULATIONS Enhanced Treatment for Cryptosporidium Requirements for Sanitary Surveys Performed by Epa § 141.723 Requirements to respond to significant deficiencies identified in sanitary surveys performed by...

  9. 40 CFR 141.723 - Requirements to respond to significant deficiencies identified in sanitary surveys performed by EPA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... deficiencies identified in sanitary surveys performed by EPA. 141.723 Section 141.723 Protection of Environment... REGULATIONS Enhanced Treatment for Cryptosporidium Requirements for Sanitary Surveys Performed by Epa § 141.723 Requirements to respond to significant deficiencies identified in sanitary surveys performed by...

  10. 40 CFR 141.723 - Requirements to respond to significant deficiencies identified in sanitary surveys performed by EPA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... deficiencies identified in sanitary surveys performed by EPA. 141.723 Section 141.723 Protection of Environment... REGULATIONS Enhanced Treatment for Cryptosporidium Requirements for Sanitary Surveys Performed by Epa § 141.723 Requirements to respond to significant deficiencies identified in sanitary surveys performed by...

  11. 40 CFR 141.723 - Requirements to respond to significant deficiencies identified in sanitary surveys performed by EPA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... deficiencies identified in sanitary surveys performed by EPA. 141.723 Section 141.723 Protection of Environment... REGULATIONS Enhanced Treatment for Cryptosporidium Requirements for Sanitary Surveys Performed by Epa § 141.723 Requirements to respond to significant deficiencies identified in sanitary surveys performed by...

  12. 40 CFR 141.723 - Requirements to respond to significant deficiencies identified in sanitary surveys performed by EPA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deficiencies identified in sanitary surveys performed by EPA. 141.723 Section 141.723 Protection of Environment... REGULATIONS Enhanced Treatment for Cryptosporidium Requirements for Sanitary Surveys Performed by Epa § 141.723 Requirements to respond to significant deficiencies identified in sanitary surveys performed by...

  13. [Impedance characteristics of ear acupoints in identifying excess or deficiency syndrome of stroke].

    PubMed

    Wang, Pin; Yang, Hua-Yuan; Wang, Yi-Qin

    2010-06-01

    To explore the impedance characteristics of ear acupoints in stroke patients with excess or deficiency syndrome, and to provide basis data for objective study of the syndromes of stroke. The data of electrical characteristics of ear acupoints in stroke patients and healthy people were collected, and excess syndrome and deficiency syndrome of stroke were identified by quantifying the syndromes of stroke using scales. The differences in impedance characteristics of ear acupoints between stroke patients and healthy people were analyzed, and the differences in impedance characteristics of ear acupoints between stroke patients with excess syndrome and stroke patients with deficiency syndrome were analyzed too. The correlation among impedance characteristics of ear acupoints, stroke and the syndromes was also analyzed. There were significant differences in impedance characteristics of ear acupoints between stroke patients and healthy people (P<0.05,P<0.01). The ear acupoints CO12 (Gan) and CO13 (Pi) had a significant role in diagnosing stroke as compared with CO18 (Neifenmi), AT3.4.AH12i (Naogan), CO10 (Shen), TG2p (Shenshangxian), AH6a (Jiaogan), AT4 (Pizhixia), and CO15 (Xin). There were significant differences in impedance characteristics of ear acupoints between stroke patients with excess syndrome and stroke patients with deficiency syndrome (P<0.05, P<0.01). The ear acupoints AH6a (Jiaogan) and CO10 (Shen) played an important role in differentiation diagnosis of excess syndrome and deficiency syndrome of stroke, followed by CO18 (Neifenmi), TF4 (Shenmen) and TG2p (Shenshangxian). Some ear acupoints with diagnostic value for stroke may provide basis of objective research for stroke diagnosis as well as identifying excess syndrome and deficiency syndrome of stroke.

  14. Successful outcomes of older adolescents and adults with profound biotinidase deficiency identified by newborn screening.

    PubMed

    Wolf, Barry

    2017-04-01

    We began screening newborns for biotinidase deficiency disorder in 1984, and now all states in the United States and many countries perform this screening. The purpose of this study was to determine the outcomes of older adolescent and adult individuals with the disorder identified by newborn screening. We located and surveyed, by questionnaire and telephone interviews, 44 individuals with profound biotinidase deficiency identified by newborn screening with a mean age of 23.1 years. All individuals had successfully completed high school, and many were attending or had completed college or graduate school. Compliance in using biotin has been excellent. Several individuals developed a variety of symptoms when they discontinued biotin for days or weeks. These features readily resolved when biotin was resumed. In addition, five treated women had nine uneventful pregnancies and deliveries. Newborn screening for profound biotinidase deficiency and early treatment with biotin result in excellent outcomes for older adolescents and adults with the disorder. In addition, mothers with profound biotinidase deficiency who were treated with biotin had pregnancies with good outcomes. These outcome results indicate that newborn screening for biotinidase deficiency is one of the most successful newborn screening programs.Genet Med 19 4, 396-402.

  15. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies

    PubMed Central

    2014-01-01

    Background Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. Results We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. Conclusion Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required. PMID:24484525

  16. Demarcation of potentially mineral-deficient areas in central and northern Namibia by means of natural classification systems.

    PubMed

    Grant, C C; Biggs, H C; Meissner, H H

    1996-06-01

    Mineral deficiencies that lead to production losses often occur concurrently with climatic and management changes. To diagnose these deficiencies in time to prevent production losses, long-term monitoring of mineral status is advisable. Different classification systems were examined to determine whether areas of possible mineral deficiencies could be identified, so that those which were promising could then be selected for further monitoring purposes. The classification systems addressed differences in soil, vegetation and geology, and were used to define the cattle-ranching areas in the central and northern districts of Namibia. Copper (Cu), Iron (Fe), zinc (Zn), manganese (Mn) and cobalt (Co) concentrations were determined in cattle livers collected at abattoirs. Pooled faecal grab samples and milk samples were collected by farmers, and used to determine phosphorus (P) and calcium (Ca), and iodine (I) status, respectively. Areas of low P concentrations could be identified by all classification systems. The lowest P concentrations were recorded in samples from the Kalahari-sand area, whereas faecal samples collected from cattle on farms in the more arid areas, where the harder soils are mostly found, rarely showed low P concentrations. In the north of the country, low iodine levels were found in milk samples collected from cows grazing on farms in the northern Kalahari broad-leaved woodland. Areas supporting animals with marginal Cu status, could be effectively identified by the detailed soil-classification system of irrigation potential. Copper concentrations were lowest in areas of arid soils, but no indication of Co, Fe, Zn, or Mn deficiencies were found. For most minerals, the geological classification was the best single indicator of areas of lower concentrations. Significant monthly variation for all minerals could also be detected within the classification system. It is concluded that specific classification systems can be useful as indicators of areas with

  17. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency.

    PubMed

    Farhan, Sali M K; Wang, Jian; Robinson, John F; Lahiry, Piya; Siu, Victoria M; Prasad, Chitra; Kronick, Jonathan B; Ramsay, David A; Rupar, C Anthony; Hegele, Robert A

    2014-01-01

    Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology.

  18. A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of α1-antitrypsin deficiency.

    PubMed

    O'Reilly, Linda P; Long, Olivia S; Cobanoglu, Murat C; Benson, Joshua A; Luke, Cliff J; Miedel, Mark T; Hale, Pamela; Perlmutter, David H; Bahar, Ivet; Silverman, Gary A; Pak, Stephen C

    2014-10-01

    α1-Antitrypsin deficiency (ATD) is a common genetic disorder that can lead to end-stage liver and lung disease. Although liver transplantation remains the only therapy currently available, manipulation of the proteostasis network (PN) by small molecule therapeutics offers great promise. To accelerate the drug-discovery process for this disease, we first developed a semi-automated high-throughput/content-genome-wide RNAi screen to identify PN modifiers affecting the accumulation of the α1-antitrypsin Z mutant (ATZ) in a Caenorhabditis elegans model of ATD. We identified 104 PN modifiers, and these genes were used in a computational strategy to identify human ortholog-ligand pairs. Based on rigorous selection criteria, we identified four FDA-approved drugs directed against four different PN targets that decreased the accumulation of ATZ in C. elegans. We also tested one of the compounds in a mammalian cell line with similar results. This methodology also proved useful in confirming drug targets in vivo, and predicting the success of combination therapy. We propose that small animal models of genetic disorders combined with genome-wide RNAi screening and computational methods can be used to rapidly, economically and strategically prime the preclinical discovery pipeline for rare and neglected diseases with limited therapeutic options. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Visual and brainstem auditory evoked potentials in infants with severe vitamin B12 deficiency.

    PubMed

    Demir, Nihat; Koç, Ahmet; Abuhandan, Mahmut; Calik, Mustafa; Işcan, Akin

    2015-01-01

    Vitamin B12 plays an important role in the development of mental, motor, cognitive, and social functions via its role in DNA synthesis and nerve myelination. Its deficiency in infants might cause neuromotor retardation as well as megaloblastic anemia. The objective of this study was to investigate the effects of infantile vitamin B12 deficiency on evoked brain potentials and determine whether improvement could be obtained with vitamin B12 replacement at appropriate dosages. Thirty patients with vitamin B12 deficiency and 30 age-matched healthy controls were included in the study. Hematological parameters, visual evoked potentials, and brainstem auditory evoked potentials tests were performed prior to treatment, 1 week after treatment, and 3 months after treatment. Visual evoked potentials (VEPs) and brainstem auditory evoked potentials (BAEPs) were found to be prolonged in 16 (53.3%) and 15 (50%) patients, respectively. Statistically significant improvements in VEP and BAEP examinations were determined 3 months after treatment. Three months after treatment, VEP and BAEP examinations returned to normal in 81.3% and 53.3% of subjects with prolonged VEPs and BAEPs, respectively. These results demonstrate that vitamin B12 deficiency in infants causes significant impairment in the auditory and visual functioning tests of the brain, such as VEP and BAEP.

  20. Identifying Model-Based Reconfiguration Goals through Functional Deficiencies

    NASA Technical Reports Server (NTRS)

    Benazera, Emmanuel; Trave-Massuyes, Louise

    2004-01-01

    Model-based diagnosis is now advanced to the point autonomous systems face some uncertain and faulty situations with success. The next step toward more autonomy is to have the system recovering itself after faults occur, a process known as model-based reconfiguration. After faults occur, given a prediction of the nominal behavior of the system and the result of the diagnosis operation, this paper details how to automatically determine the functional deficiencies of the system. These deficiencies are characterized in the case of uncertain state estimates. A methodology is then presented to determine the reconfiguration goals based on the deficiencies. Finally, a recovery process interleaves planning and model predictive control to restore the functionalities in prioritized order.

  1. Serum Hepcidin Concentrations Decline during Pregnancy and May Identify Iron Deficiency: Analysis of a Longitudinal Pregnancy Cohort in The Gambia.

    PubMed

    Bah, Amat; Pasricha, Sant-Rayn; Jallow, Momodou W; Sise, Ebrima A; Wegmuller, Rita; Armitage, Andrew E; Drakesmith, Hal; Moore, Sophie E; Prentice, Andrew M

    2017-06-01

    Background: Antenatal anemia is a risk factor for adverse maternal and fetal outcomes and is prevalent in sub-Saharan Africa. Less than half of antenatal anemia is considered responsive to iron; identifying women in need of iron may help target interventions. Iron absorption is governed by the iron-regulatory hormone hepcidin. Objective: We sought to characterize changes in hepcidin and its associations with indexes of iron stores, erythropoiesis, and inflammation at weeks 14, 20, and 30 of gestation and to assess hepcidin's diagnostic potential as an index of iron deficiency. Methods: We measured hemoglobin and serum hepcidin, ferritin, soluble transferrin receptor (sTfR), and C-reactive protein (CRP) at 14, 20, and 30 wk of gestation in a cohort of 395 Gambian women recruited to a randomized controlled trial. Associations with hepcidin were measured by using linear regression, and hepcidin's diagnostic test accuracy [area under the receiver operating characteristic curve (AUC ROC ), sensitivity, specificity, cutoffs] for iron deficiency at each time point was analyzed. Results: The prevalence of anemia increased from 34.6% at 14 wk of gestation to 50.0% at 20 wk. Hepcidin concentrations declined between study enrollment and 20 wk, whereas ferritin declined between 20 and 30 wk of gestation. The variations in hepcidin explained by ferritin, sTfR, and CRP declined over pregnancy. The AUC ROC values for hepcidin to detect iron deficiency (defined as ferritin <15 μg/L) were 0.86, 0.83, and 0.84 at 14, 20, and 30 wk, respectively. Hepcidin was superior to hemoglobin and sTfR as an indicator of iron deficiency. Conclusions: In Gambian pregnant women, hepcidin appears to be a useful diagnostic test for iron deficiency and may enable the identification of cases for whom iron would be beneficial. Hepcidin suppression in the second trimester suggests a window for optimal timing for antenatal iron interventions. Hemoglobin does not effectively identify iron deficiency in

  2. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    PubMed

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  3. Calcium-deficiency assessment and biomarker identification by an integrated urinary metabonomics analysis

    PubMed Central

    2013-01-01

    Background Calcium deficiency is a global public-health problem. Although the initial stage of calcium deficiency can lead to metabolic alterations or potential pathological changes, calcium deficiency is difficult to diagnose accurately. Moreover, the details of the molecular mechanism of calcium deficiency remain somewhat elusive. To accurately assess and provide appropriate nutritional intervention, we carried out a global analysis of metabolic alterations in response to calcium deficiency. Methods The metabolic alterations associated with calcium deficiency were first investigated in a rat model, using urinary metabonomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis. Correlations between dietary calcium intake and the biomarkers identified from the rat model were further analyzed to confirm the potential application of these biomarkers in humans. Results Urinary metabolic-profiling analysis could preliminarily distinguish between calcium-deficient and non-deficient rats after a 2-week low-calcium diet. We established an integrated metabonomics strategy for identifying reliable biomarkers of calcium deficiency using a time-course analysis of discriminating metabolites in a low-calcium diet experiment, repeating the low-calcium diet experiment and performing a calcium-supplement experiment. In total, 27 biomarkers were identified, including glycine, oxoglutaric acid, pyrophosphoric acid, sebacic acid, pseudouridine, indoxyl sulfate, taurine, and phenylacetylglycine. The integrated urinary metabonomics analysis, which combined biomarkers with regular trends of change (types A, B, and C), could accurately assess calcium-deficient rats at different stages and clarify the dynamic pathophysiological changes and molecular mechanism of calcium deficiency in detail. Significant correlations between calcium intake and two biomarkers, pseudouridine (Pearson

  4. Assessing urban potential flooding risk and identifying effective risk-reduction measures.

    PubMed

    Cherqui, Frédéric; Belmeziti, Ali; Granger, Damien; Sourdril, Antoine; Le Gauffre, Pascal

    2015-05-01

    Flood protection is one of the traditional functions of any drainage system, and it remains a major issue in many cities because of economic and health impact. Heavy rain flooding has been well studied and existing simulation software can be used to predict and improve level of protection. However, simulating minor flooding remains highly complex, due to the numerous possible causes related to operational deficiencies or negligent behaviour. According to the literature, causes of blockages vary widely from one case to another: it is impossible to provide utility managers with effective recommendations on how to improve the level of protection. It is therefore vital to analyse each context in order to define an appropriate strategy. Here we propose a method to represent and assess the flooding risk, using GIS and data gathered during operation and maintenance. Our method also identifies potential management responses. The approach proposed aims to provide decision makers with clear and comprehensible information. Our method has been successfully applied to the Urban Community of Bordeaux (France) on 4895 interventions related to flooding recorded during the 2009-2011 period. Results have shown the relative importance of different issues, such as human behaviour (grease, etc.) or operational deficiencies (roots, etc.), and lead to identify corrective and proactive. This study also confirms that blockages are not always directly due to the network itself and its deterioration. Many causes depend on environmental and operating conditions on the network and often require collaboration between municipal departments in charge of roads, green spaces, etc. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Anemia and Iron Deficiency in Children With Potential Celiac Disease.

    PubMed

    Repo, Marleena; Lindfors, Katri; Mäki, Markku; Huhtala, Heini; Laurila, Kaija; Lähdeaho, Marja-Leena; Saavalainen, Päivi; Kaukinen, Katri; Kurppa, Kalle

    2017-01-01

    Active screening for celiac disease frequently detects seropositive children with normal villous morphology (potential celiac disease). It remains unclear whether these subjects should be treated. We here investigated the prevalence of anemia and iron deficiency in children with potential and mucosal atrophy celiac disease. The prospective study involved 19 children with potential disease, 67 with partial or subtotal villous atrophy (P/SVA), and 16 with total villous atrophy (TVA). Twenty-three healthy children comprised the control group. The groups were compared for various clinical, histological, and laboratory parameters and hepcidin. The prevalence of abnormal parameters was as follows (controls, potential celiac disease, P/SVA, and TVA, respectively): anemia 0%, 15%, 22%, and 63%; low iron 5%, 0%, 14%, and 50%; increased transferrin receptor 1 5%, 16%, 20%, and 47%; low ferritin 0%, 21%, 35%, and 87%; and low transferrin saturation 10%, 11%, 41%, and 71%. One subject had low folate and none had low vitamin B12. The median values for hemoglobin, total iron, ferritin, and transferrin saturation were significantly lower and transferrin receptor 1 values higher in TVA group compared with other groups. After a median of 7 months on a gluten-free diet hemoglobin, total iron, ferritin, and albumin in children with P/SVA exceeded the baseline values in the potential celiac disease group. The development of anemia and iron deficiency in celiac disease is a continuum and may already be present in children with normal villous morphology, advocating an early diagnosis and possible dietary treatment of these patients.

  6. Vital Signs: Deficiencies in Environmental Control Identified in Outbreaks of Legionnaires' Disease - North America, 2000-2014.

    PubMed

    Garrison, Laurel E; Kunz, Jasen M; Cooley, Laura A; Moore, Matthew R; Lucas, Claressa; Schrag, Stephanie; Sarisky, John; Whitney, Cynthia G

    2016-06-10

    The number of reported cases of Legionnaires' disease, a severe pneumonia caused by the bacterium Legionella, is increasing in the United States. During 2000-2014, the rate of reported legionellosis cases increased from 0.42 to 1.62 per 100,000 persons; 4% of reported cases were outbreak-associated. Legionella is transmitted through aerosolization of contaminated water. A new industry standard for prevention of Legionella growth and transmission in water systems in buildings was published in 2015. CDC investigated outbreaks of Legionnaires' disease to identify gaps in building water system maintenance and guide prevention efforts. Information from summaries of CDC Legionnaires' disease outbreak investigations during 2000-2014 was systematically abstracted, and water system maintenance deficiencies from land-based investigations were categorized as process failures, human errors, equipment failures, or unmanaged external changes. During 2000-2014, CDC participated in 38 field investigations of Legionnaires' disease. Among 27 land-based outbreaks, the median number of cases was 10 (range = 3-82) and median outbreak case fatality rate was 7% (range = 0%-80%). Sufficient information to evaluate maintenance deficiencies was available for 23 (85%) investigations. Of these, all had at least one deficiency; 11 (48%) had deficiencies in ≥2 categories. Fifteen cases (65%) were linked to process failures, 12 (52%) to human errors, eight (35%) to equipment failures, and eight (35%) to unmanaged external changes. Multiple common preventable maintenance deficiencies were identified in association with disease outbreaks, highlighting the importance of comprehensive water management programs for water systems in buildings. Properly implemented programs, as described in the new industry standard, could reduce Legionella growth and transmission, preventing Legionnaires' disease outbreaks and reducing disease.

  7. 25 CFR 170.463 - What should the Secretary do if a design deficiency is identified?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What should the Secretary do if a design deficiency is identified? 170.463 Section 170.463 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Planning, Design, and Construction of Indian Reservation Roads...

  8. Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum.

    PubMed

    Granado, Noelia; Lastres-Becker, Isabel; Ares-Santos, Sara; Oliva, Idaira; Martin, Eduardo; Cuadrado, Antonio; Moratalla, Rosario

    2011-12-01

    Oxidative stress that correlates with damage to nigrostriatal dopaminergic neurons and reactive gliosis in the basal ganglia is a hallmark of methamphetamine (METH) toxicity. In this study, we analyzed the protective role of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2), a master regulator of redox homeostasis, in METH-induced neurotoxicity. We found that Nrf2 deficiency exacerbated METH-induced damage to dopamine neurons, shown by an increase in loss of tyrosine hydroxylase (TH)- and dopamine transporter (DAT)-containing fibers in striatum. Consistent with these effects, Nrf2 deficiency potentiated glial activation, indicated by increased striatal expression of markers for microglia (Mac-1 and Iba-1) and astroglia (GFAP) one day after METH administration. At the same time, Nrf2 inactivation dramatically potentiated the increase in TNFα mRNA and IL-15 protein expression in GFAP+ cells in the striatum. In sharp contrast to the potentiation of striatal damage, Nrf2 deficiency did not affect METH-induced dopaminergic neuron death or expression of glial markers or proinflammatory molecules in the substantia nigra. This study uncovers a new role for Nrf2 in protection against METH-induced inflammatory and oxidative stress and striatal degeneration. Copyright © 2011 Wiley‐Liss, Inc.

  9. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    PubMed

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.

  10. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines

    PubMed Central

    Yamamoto, Kimiyo N.; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P.; Witt, Kristine L.; Tice, Raymond R.

    2012-01-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the U.S. Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in 7 isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. PMID:21538559

  11. Newborn screening of glucose-6-phosphate dehydrogenase deficiency in Guangxi, China: determination of optimal cutoff value to identify heterozygous female neonates.

    PubMed

    Fu, Chunyun; Luo, Shiyu; Li, Qifei; Xie, Bobo; Yang, Qi; Geng, Guoxing; Lin, Caijuan; Su, Jiasun; Zhang, Yue; Wang, Jin; Qin, Zailong; Luo, Jingsi; Chen, Shaoke; Fan, Xin

    2018-01-16

    The aim of this study is to assess the disease incidence and mutation spectrum of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Guangxi, China, and to determine an optimal cutoff value to identify heterozygous female neonates. A total of 130, 635 neonates were screened from the year of 2013 to 2017. Neonates suspected for G6PD deficiency were further analyzed by quantitatively enzymatic assay and G6PD mutation analysis. The overall incidence of G6PD deficiency was 7.28%. A total of 14 G6PD mutations were identified, and different mutations lead to varying levels of G6PD enzymatic activities. The best cut-off value of G6PD activity in male subjects is 2.2 U/g Hb, same as conventional setting. In female population, however, the cut-off value is found to be 2.8 U/g Hb (sensitivity: 97.5%, specificity: 87.7%, AUC: 0.964) to best discriminate between normal and heterozygotes, and 1.6 U/g Hb (sensitivity: 82.2%, specificity: 85.9%, AUC: 0.871) between heterozygotes and deficient subjects. In conclusion, we have conducted a comprehensive newborn screening of G6PD deficiency in a large cohort of population from Guangxi, China, and first established a reliable cut-off value of G6PD activity to distinguish heterozygous females from either normal or deficient subjects.

  12. Deficient aversive-potentiated startle and the triarchic model of psychopathy: The role of boldness.

    PubMed

    Esteller, Àngels; Poy, Rosario; Moltó, Javier

    2016-05-01

    This study examined the contribution of the phenotypic domains of boldness, meanness, and disinhibition of the triarchic conceptualization of psychopathy (Patrick, Fowles, & Krueger, 2009) to deficient aversive-potentiated startle in a mixed-gender sample of 180 undergraduates. Eyeblink responses to noise probes were recorded during a passive picture-viewing task (erotica, neutral, threat, and mutilation). Deficient threat vs. neutral potentiation was uniquely related to increased boldness scores, thus suggesting that the diminished defensive reaction to aversive stimulation is specifically linked to the charm, social potency and venturesomeness features of psychopathy (boldness), but not to features such as callousness, coldheartedness and cruelty traits (meanness), even though both phenotypes theoretically share the same underlying low-fear disposition. Our findings provide further evidence of the differential association between distinct psychopathy components and deficits in defensive reactivity and strongly support the validity of the triarchic model of psychopathy in disentangling the etiology of this personality disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Antibody deficiency in patients with frequent exacerbations of Chronic Obstructive Pulmonary Disease (COPD).

    PubMed

    McCullagh, Brian N; Comellas, Alejandro P; Ballas, Zuhair K; Newell, John D; Zimmerman, M Bridget; Azar, Antoine E

    2017-01-01

    Chronic Obstructive Pulmonary Disease is the third leading cause of death in the US, and is associated with periodic exacerbations, which account for the largest proportion of health care utilization, and lead to significant morbidity, mortality, and worsening lung function. A subset of patients with COPD have frequent exacerbations, occurring 2 or more times per year. Despite many interventions to reduce COPD exacerbations, there is a significant lack of knowledge in regards to their mechanisms and predisposing factors. We describe here an important observation that defines antibody deficiency as a potential risk factor for frequent COPD exacerbations. We report a case series of patients who have frequent COPD exacerbations, and who were found to have an underlying primary antibody deficiency syndrome. We also report on the outcome of COPD exacerbations following treatment in a subset with of these patients with antibody deficiency. We identified patients with COPD who had 2 or more moderate to severe exacerbations per year; immune evaluation including serum immunoglobulin levels and pneumococcal IgG titers was performed. Patients diagnosed with an antibody deficiency syndrome were treated with either immunoglobulin replacement therapy or prophylactic antibiotics, and their COPD exacerbations were monitored over time. A total of 42 patients were identified who had 2 or more moderate to severe COPD exacerbations per year. Twenty-nine patients had an underlying antibody deficiency syndrome: common variable immunodeficiency (8), specific antibody deficiency (20), and selective IgA deficiency (1). Twenty-two patients had a follow-up for at least 1 year after treatment of their antibody deficiency, which resulted in a significant reduction of COPD exacerbations, courses of oral corticosteroid use and cumulative annual dose of oral corticosteroid use, rescue antibiotic use, and hospitalizations for COPD exacerbations. This case series identifies antibody deficiency as a

  14. Antibody deficiency in patients with frequent exacerbations of Chronic Obstructive Pulmonary Disease (COPD)

    PubMed Central

    McCullagh, Brian N.; Comellas, Alejandro P.; Ballas, Zuhair K.; Newell, John D.; Zimmerman, M. Bridget

    2017-01-01

    Chronic Obstructive Pulmonary Disease is the third leading cause of death in the US, and is associated with periodic exacerbations, which account for the largest proportion of health care utilization, and lead to significant morbidity, mortality, and worsening lung function. A subset of patients with COPD have frequent exacerbations, occurring 2 or more times per year. Despite many interventions to reduce COPD exacerbations, there is a significant lack of knowledge in regards to their mechanisms and predisposing factors. We describe here an important observation that defines antibody deficiency as a potential risk factor for frequent COPD exacerbations. We report a case series of patients who have frequent COPD exacerbations, and who were found to have an underlying primary antibody deficiency syndrome. We also report on the outcome of COPD exacerbations following treatment in a subset with of these patients with antibody deficiency. We identified patients with COPD who had 2 or more moderate to severe exacerbations per year; immune evaluation including serum immunoglobulin levels and pneumococcal IgG titers was performed. Patients diagnosed with an antibody deficiency syndrome were treated with either immunoglobulin replacement therapy or prophylactic antibiotics, and their COPD exacerbations were monitored over time. A total of 42 patients were identified who had 2 or more moderate to severe COPD exacerbations per year. Twenty-nine patients had an underlying antibody deficiency syndrome: common variable immunodeficiency (8), specific antibody deficiency (20), and selective IgA deficiency (1). Twenty-two patients had a follow-up for at least 1 year after treatment of their antibody deficiency, which resulted in a significant reduction of COPD exacerbations, courses of oral corticosteroid use and cumulative annual dose of oral corticosteroid use, rescue antibiotic use, and hospitalizations for COPD exacerbations. This case series identifies antibody deficiency as a

  15. Deficient expression of bactericidal/permeability-increasing protein in immunocompromised hosts: translational potential of replacement therapy.

    PubMed

    Palmer, Christine D; Guinan, Eva C; Levy, Ofer

    2011-08-01

    BPI (bactericidal/permeability-increasing protein) is a 55 kDa anti-infective molecule expressed in neutrophil and eosinophil granules and on some epithelial cells. BPI's high affinity for the lipid A region of endotoxin targets its opsonizing, microbicidal and endotoxin-neutralizing activities towards Gram-negative bacteria. Several immunocompromised patient populations demonstrate BPI deficiency, including newborns, those with anti-neutrophil cytoplasmic antibodies (as in cystic fibrosis and HIV infection) and those exposed to radiochemotherapy. BPI may be replenished by administering agents that induce its expression or by administration of recombinant BPI congeners, potentially shielding BPI-deficient individuals against Gram-negative bacterial infection, endotoxemia and its toxic sequelae.

  16. A sulphur deficiency-induced gene, sdi1, involved in the utilization of stored sulphate pools under sulphur-limiting conditions has potential as a diagnostic indicator of sulphur nutritional status.

    PubMed

    Howarth, Jonathan R; Parmar, Saroj; Barraclough, Peter B; Hawkesford, Malcolm J

    2009-02-01

    A sulphate deficiency-induced gene, sdi1, has been identified by cDNA-amplified fragment length polymorphism (AFLP) analysis utilizing field-grown, nutrient-deficient wheat (Triticum aestivum var. Hereward). The expression of sdi1 was specifically induced in leaf and root tissues in response to sulphate deficiency, but was not induced by nitrogen, phosphorus, potassium or magnesium deficiency. Expression was also shown to increase in plant tissues as the external sulphate concentration in hydroponically grown plants was reduced from 1.0 to 0.0 mm. On this basis, sdi1 gene expression has potential as a sensitive indicator of sulphur nutritional status in wheat. Genome-walking techniques were used to clone the 2.7-kb region upstream of sdi1 from genomic DNA, revealing several cis-element motifs previously identified as being associated with sulphur responses in plants. The Arabidopsis thaliana gene most highly homologous to sdi1 is At5g48850, which was also demonstrated to be induced by sulphur deficiency, an observation confirmed by the analysis of microarray data available in the public domain. The expression of Atsdi1 was induced more rapidly than previously characterized sulphur-responsive genes in the period immediately following the transfer of plants to sulphur-deficient medium. Atsdi1 T-DNA 'knockout' mutants were shown to maintain higher tissue sulphate concentrations than wild-type plants under sulphur-limiting conditions, indicating a role in the utilization of stored sulphate under sulphur-deficient conditions. The structural features of the sdi1 gene and its application in the genetic determination of the sulphur nutritional status of wheat crops are discussed.

  17. Remedial early numeracy education: can children identified as having a language deficiency benefit?

    PubMed

    Van Luit, Johannes E H; Toll, Sylke W M

    2015-01-01

    Growing attention has been paid to the possibility of supporting early numeracy in at-risk kindergartners. Furthermore, it is assumed that language proficiency is an important prerequisite in early maths skills. To examine whether remedial early numeracy education in kindergarten, which has been proven to be effective in general, is also beneficial for children with a language deficiency. Based on intensive selection, four different conditions were included: two groups received remedial education, one consisting of children being language proficient (N = 86) and one of children with a language deficiency (N = 26), and two groups followed the regular curriculum, one consisting of children being language proficient (N = 51) and one of children with a language deficiency (N = 24). Remedial education was for 1.5 school years (90 sessions, 30 min per session, twice per week), following the programme 'The Road to Mathematics'. During this period, the children receiving remedial education did not attend the regular maths lessons in the classroom, which were offered for at least 1 h per week. Effects were assessed for early numeracy and mathematical skills (operationalized as basic calculation fluency) in kindergarten and first grade. Three analyses of covariance (ANCOVAs) revealed that, when accounting for achievement at pre-test, children with a language deficiency who received remedial numeracy education performed better on early numeracy skills in kindergarten and first grade than kindergartners with a language deficiency that followed the regular curriculum. Furthermore, they were able to catch up with their language proficient peers in early numeracy. However, children with a language deficiency who received remedial numeracy education did not differ from children who followed the regular curriculum on mathematical skills, suggesting that benefits for numeracy did not generalize to more advanced skills of addition and subtraction. Since, in general, it can be

  18. MEN1 mutations and potentially MEN1-targeting miRNAs are responsible for menin deficiency in sporadic and MEN1 syndrome-associated primary hyperparathyroidism.

    PubMed

    Grolmusz, Vince Kornél; Borka, Katalin; Kövesdi, Annamária; Németh, Kinga; Balogh, Katalin; Dékány, Csaba; Kiss, András; Szentpéteri, Anna; Sármán, Beatrix; Somogyi, Anikó; Csajbók, Éva; Valkusz, Zsuzsanna; Tóth, Miklós; Igaz, Péter; Rácz, Károly; Patócs, Attila

    2017-09-01

    Inherited, germline mutations of menin-coding MEN1 gene cause multiple endocrine neoplasia type 1 (MEN1), while somatic MEN1 mutations are the sole main driver mutations in sporadic primary hyperparathyroidism (PHPT), suggesting that menin deficiency has a central role in the pathogenesis of PHPT. MiRNAs are small, noncoding RNAs posttranscriptionally regulating gene expression. Our aim was to investigate both the role of MEN1 mutations and potentially MEN1-targeting miRNAs as the underlying cause of menin deficiency in MEN1-associated and sporadic PHPT tissues. Fifty six PHPT tissues, including 16 MEN1-associated tissues, were evaluated. Diagnosis of MEN1 syndrome was based on identification of germline MEN1 mutations. In silico target prediction was used to identify miRNAs potentially targeting MEN1. Menin expression was determined by immunohistochemistry while expression of miRNAs was analyzed by quantitative real-time PCR. Sporadic PHPT tissues were subjected to somatic MEN1 mutation analysis as well. Lack of nuclear menin was identified in all MEN1-associated and in 28% of sporadic PHPT tissues. Somatic MEN1 mutations were found in 25% of sporadic PHPTs. The sensitivity and specificity of menin immunohistochemistry to detect a MEN1 mutation were 86 and 87%, respectively. Expression levels of hsa-miR-24 and hsa-miR-28 were higher in sporadic compared to MEN1-associated PHPT tissues; however, no difference in miRNA levels occurred between menin-positive and menin-negative PHPT tissues. Menin deficiency is the consequence of a MEN1 mutation in most menin-negative PHPT tissues. Elevated expression of hsa-miR-24 and hsa-miR-28 mark the first epigenetic changes observed between sporadic and MEN1-associated PHPT.

  19. Dietary phytate, zinc and hidden zinc deficiency.

    PubMed

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. ATM-deficiency increases genomic instability and metastatic potential in a mouse model of pancreatic cancer.

    PubMed

    Drosos, Yiannis; Escobar, David; Chiang, Ming-Yi; Roys, Kathryn; Valentine, Virginia; Valentine, Marc B; Rehg, Jerold E; Sahai, Vaibhav; Begley, Lesa A; Ye, Jianming; Paul, Leena; McKinnon, Peter J; Sosa-Pineda, Beatriz

    2017-09-11

    Germline mutations in ATM (encoding the DNA-damage signaling kinase, ataxia-telangiectasia-mutated) increase Familial Pancreatic Cancer (FPC) susceptibility, and ATM somatic mutations have been identified in resected human pancreatic tumors. Here we investigated how Atm contributes to pancreatic cancer by deleting this gene in a murine model of the disease expressing oncogenic Kras (Kras G12D ). We show that partial or total ATM deficiency cooperates with Kras G12D to promote highly metastatic pancreatic cancer. We also reveal that ATM is activated in pancreatic precancerous lesions in the context of DNA damage and cell proliferation, and demonstrate that ATM deficiency leads to persistent DNA damage in both precancerous lesions and primary tumors. Using low passage cultures from primary tumors and liver metastases we show that ATM loss accelerates Kras-induced carcinogenesis without conferring a specific phenotype to pancreatic tumors or changing the status of the tumor suppressors p53, p16 Ink4a and p19 Arf . However, ATM deficiency markedly increases the proportion of chromosomal alterations in pancreatic primary tumors and liver metastases. More importantly, ATM deficiency also renders murine pancreatic tumors highly sensitive to radiation. These and other findings in our study conclusively establish that ATM activity poses a major barrier to oncogenic transformation in the pancreas via maintaining genomic stability.

  1. Peripheral kynurenine-3-monooxygenase deficiency as a potential risk factor for metabolic syndrome in schizophrenia patients.

    PubMed

    Oxenkrug, Gregory; van der Hart, Marieke; Roeser, Julien; Summergrad, Paul

    2017-01-01

    Increased predisposition of schizophrenia patients (SP) to development of obesity and insulin resistance suggested common signaling pathway between metabolic syndrome (MetS) and schizophrenia. Deficiency of kynurenine-3-monooxygenase (KMO), enzyme catalyzing formation of 3-hydroxykynurenine (3-HK) from kynurenine (Kyn), a tryptophan (Trp) metabolite, might contribute to development of MetS as suggested by non-expression of KMO genes in human fat tissue and elevated serum concentrations of Kyn and its metabolites, kynurenic (KYNA) and anthranilic (ANA) acids, in diabetic patients and Zucker fatty rats (ZFR). Markers of KMO deficiency: decreased 3-HK and elevated Kyn, KYNA and ANA, were observed in brains and spinal fluids of SP, and in brains and serum of experimental animals with genetically- or pharmacologically-induced KMO deficiency. However, elevated concentrations of ANA and decreased 3-HK were reported in serum of SP without concurrent increase of Kyn and KYNA. Present study aimed to re-assess serum Kyn metabolites (HPLC-MS) in a sub-group of SP with elevated KYNA. We found increased Kyn concentrations (by 30%) and Kyn:Trp ratio (by 20%) in serum of SP with elevated KYNA concentrations (by 40%). Obtained results and our previous data suggest that peripheral KMO deficiency might be manifested by, at least, two different patterns: elevated ANA with decreased 3-HK; and elevated KYNA and KYN. The latter pattern was previously described in type 2 diabetes patients and might underline increased predisposition of SP to development of MetS. Assessment of peripheral KMO deficiency might identify SP predisposed to MetS. Attenuation of the consequences of peripheral KMO deficiency might be a new target for prevention/treatment of obesity and diabetes in SP.

  2. Glycoprotein G deficient infectious laryngotracheitis virus is a candidate attenuated vaccine.

    PubMed

    Devlin, Joanne M; Browning, Glenn F; Hartley, Carol A; Gilkerson, James R

    2007-05-04

    Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes respiratory disease in chickens and is currently controlled by vaccination with conventionally attenuated virus strains. These vaccines have limitations because of residual pathogenicity and reversion to virulence, suggesting that a novel vaccine strain that lacks virulence gene(s) may enhance disease control. Glycoprotein G (gG) has recently been identified as a virulence factor in ILTV. In this study the immunogenicity and relative pathogenicity of gG deficient ILTV was investigated in SPF chickens. Birds vaccinated with gG deficient ILTV were protected against clinical signs of disease following challenge with virulent ILTV and gG deficient ILTV was also shown to be less pathogenic than currently available commercial vaccine strains. Thus gG deficient ILTV appears to have potential as a vaccine candidate.

  3. Confirmation of Pig-a mutation in flow cytometry-identified CD48-deficient T-lymphocytes from F344 rats.

    PubMed

    Revollo, Javier; Pearce, Mason G; Petibone, Dayton M; Mittelstaedt, Roberta A; Dobrovolsky, Vasily N

    2015-05-01

    The Pig-a assay is used for monitoring somatic cell mutation in laboratory animals and humans. The assay detects haematopoietic cells deficient in glycosylphosphatidylinositol (GPI)-anchored protein surface markers using flow cytometry. However, given that synthesis of the protein markers (and the expression of their genes) is independent of the expression of the X-linked Pig-a gene and the function of its enzyme product, the deficiency of markers at the surface of the cells may be caused by a number of events (e.g. by mutation or epigenetic silencing in the marker gene itself or in any of about two dozen autosomal genes involved in the synthesis of GPI). Here we provide direct evidence that the deficiency of the GPI-anchored surface marker CD48 in rat T-cells is accompanied by mutation in the endogenous X-linked Pig-a gene. We treated male F344 rats with N-ethyl-N-nitrosourea (ENU), and established colonies from flow cytometry-identified and sorted CD48-deficient spleen T-lymphocytes. Molecular analysis confirmed that the expanded sorted cells have mutations in the Pig-a gene. The spectrum of Pig-a mutation in our model was consistent with the spectrum of ENU-induced mutation determined in other in vivo models, mostly base-pair substitutions at A:T with the mutated T on the non-transcribed strand of Pig-a genomic DNA. We also used next generation sequencing to derive a similar mutational spectrum from a pool of 64 clones developed from flow-sorted CD48-deficient lymphocytes. Our findings confirm that Pig-a assays detect what they are designed to detect-gene mutation in the Pig-a gene. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Tandem mass spectrometry, but not T-cell receptor excision circle analysis, identifies newborns with late-onset adenosine deaminase deficiency.

    PubMed

    la Marca, Giancarlo; Canessa, Clementina; Giocaliere, Elisa; Romano, Francesca; Duse, Marzia; Malvagia, Sabrina; Lippi, Francesca; Funghini, Silvia; Bianchi, Leila; Della Bona, Maria Luisa; Valleriani, Claudia; Ombrone, Daniela; Moriondo, Maria; Villanelli, Fabio; Speckmann, Carsten; Adams, Stuart; Gaspar, Bobby H; Hershfield, Michael; Santisteban, Ines; Fairbanks, Lynette; Ragusa, Giovanni; Resti, Massimo; de Martino, Maurizio; Guerrini, Renzo; Azzari, Chiara

    2013-06-01

    Adenosine deaminase (ADA)-severe combined immunodeficiency (SCID) is caused by genetic variants that disrupt the function of ADA. In its early-onset form, it is rapidly fatal to infants. Delayed or late-onset ADA-SCID is characterized by insidious progressive immunodeficiency that leads to permanent organ damage or death. Quantification of T-cell receptor excision circles (TRECs) or tandem mass spectrometry (tandem-MS) analysis of dried blood spots (DBSs) collected at birth can identify newborns with early-onset ADA-SCID and are used in screening programs. However, it is not clear whether these analyses can identify newborns who will have delayed or late-onset ADA-SCID before symptoms appear. We performed a retrospective study to evaluate whether tandem-MS and quantitative TREC analyses of DBSs could identify newborns who had delayed-onset ADA-SCID later in life. We tested stored DBSs collected at birth from 3 patients with delayed-onset ADA-SCID using tandem-MS (PCT EP2010/070517) to evaluate levels of adenosine and 2'-deoxyadenosine and real-time PCR to quantify TREC levels. We also analyzed DBSs from 3 newborns with early-onset ADA-SCID and 2 healthy newborn carriers of ADA deficiency. The DBSs taken at birth from the 3 patients with delayed-onset ADA-SCID had adenosine levels of 10, 25, and 19 μmol/L (normal value, <1.5 μmol/L) and 2'-deoxyadenosine levels of 0.7, 2.7, and 2.4 μmol/L (normal value, <0.07 μmol/L); the mean levels of adenosine and 2'-deoxyadenosine were respectively 12.0- and 27.6-fold higher than normal values. DBSs taken at birth from all 3 patients with delayed-onset ADA deficiency had normal TREC levels, but TRECs were undetectable in blood samples taken from the same patients at the time of diagnosis. Tandem-MS but not TREC quantification identifies newborns with delayed- or late-onset ADA deficiency. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  5. Methods of identifying potential vanpool riders.

    DOT National Transportation Integrated Search

    1977-01-01

    Identifying potential vanpool riders and matching them to form pools are fundamental tasks in the initiation of a vanpool program. The manner in which these tasks are done will determine the costs and benefits of the program. This report presents the...

  6. A Synthetic Interaction Screen Identifies Factors Selectively Required for Proliferation and TERT Transcription in p53-Deficient Human Cancer Cells

    PubMed Central

    Park, Sung Mi; Zhu, Lihua J.; Debily, Marie-anne; Kittler, Ellen L. W.; Zapp, Maria L.; Lapointe, David; Gobeil, Stephane; Virbasius, Ching-Man; Green, Michael R.

    2012-01-01

    Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi)–based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53−) human cancer cells. We find that compared to p53-competent (p53+) human cancer cell lines, diverse p53− human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR. In p53− cells, RNAi–mediated knockdown of ETV1 or ATR results in decreased expression of the telomerase catalytic subunit TERT leading to growth arrest, which can be reversed by ectopic TERT expression. Chromatin immunoprecipitation analysis reveals that ETV1 binds to a region downstream of the TERT transcriptional start-site in p53− but not p53+ cells. We find that the role of ATR is to phosphorylate and thereby stabilize ETV1. Our collective results identify a regulatory pathway involving ETV1, ATR, and TERT that is preferentially important for proliferation of diverse p53− cancer cells. PMID:23284306

  7. [Maternal and neonatal vitamin B12 deficiency detected by expanded newborn screening].

    PubMed

    Papp, Ferenc; Rácz, Gábor; Lénárt, István; Kóbor, Jenő; Bereczki, Csaba; Karg, Eszter; Baráth, Ákos

    2017-12-01

    Infant vitamin B 12 deficiency can manifest as a severe neurodegenerative disorder and is usually caused by maternal deficiency due to vegetarian diet or pernicious anaemia. Its early recognition and treatment can prevent potentially serious and irreversible neurologic damage. Biochemically, vitamin B 12 deficiency leads to an accumulation of methylmalonic acid, homocysteine, and propionylcarnitine. Expanded newborn screening using tandem mass spectrometry may identify neonatal and maternal vitamin B 12 deficiency by measurement of propionylcarnitine and other metabolites in the dried blood spot sample of newborns. To summarize our experiences gained by screening for vitamin B 12 deficiency. Clinical and laboratory data of vitamin B 12 -deficient infants diagnosed in Szeged Screening Centre were retrospectively analysed. In Hungary, expanded newborn screening was introduced in 2007. Since then approximately 395 000 newborns were screened in our centre and among them, we identified four newborns with vitamin B 12 deficiency based on their screening results. In three cases an elevated propionylcarnitine level and in the fourth one a low methionine level were indicative of vitamin B 12 deficiency. We also detected an additional vitamin B 12 -deficient infant with neurological symptoms at 4 months of age, after a normal newborn screening, because of elevated urinary methylmalonic acid concentration. Vitamin B 12 deficiency was secondary to maternal autoimmune pernicious anaemia in all the five infants. As a result of the recognized cases the incidence of infant vitamin B 12 deficiency in the East-Hungarian region was 1.26/100 000 births, but the real frequency may be higher. Conslusions: Optimizing the cut off values of current screening parameters and measuring of methylmalonic acid and/or homocysteine in the dried blood spot, as a second tier test, can improve recognition rate of vitamin B 12 deficiency. Orv Hetil. 2017; 158(48): 1909-1918.

  8. The Nature of Foot Ray Deficiency in Congenital Fibular Deficiency.

    PubMed

    Reyes, Bryan A; Birch, John G; Hootnick, David R; Cherkashin, Alex M; Samchukov, Mikhail L

    Absent lateral osseous structures in congenital fibular deficiency, including the distal femur and fibula, have led some authors to refer to the nature of foot ray deficiency as "lateral" as well. Others have suggested that the ray deficiency is in the central portion of the midfoot and forefoot.We sought to determine whether cuboid preservation and/or cuneiform deficiency in the feet of patients with congenital fibular deficiency implied that the ray deficiency is central rather than lateral in patients with congenital fibular deficiency. We identified all patients with a clinical morphologic diagnosis of congenital fibular deficiency at our institution over a 15-year period. We reviewed the records and radiographs of patients who had radiographs of the feet to allow determination of the number of metatarsals, the presence or absence of a cuboid or calcaneocuboid fusion, the number of cuneiforms present (if possible), and any other osseous abnormalities of the foot. We excluded patients with 5-rayed feet, those who had not had radiographs of the feet, or whose radiographs were not adequate to allow accurate assessment of these radiographic features. We defined the characteristic "lateral (fifth) ray present" if there was a well-developed cuboid or calcaneocuboid coalition with which the lateral-most preserved metatarsal articulated. Twenty-six patients with 28 affected feet met radiographic criteria for inclusion in the study. All affected feet had a well-developed cuboid or calcaneocuboid coalition. The lateral-most ray of 25 patients with 26 affected feet articulated with the cuboid or calcaneocuboid coalition. One patient with bilateral fibular deficiency had bilateral partially deficient cuboids, and the lateral-most metatarsal articulated with the medial remnant of the deformed cuboids. Twenty-one of 28 feet with visible cuneiforms had 2 or 1 cuneiform. Although the embryology and pathogenesis of congenital fibular deficiency remain unknown, based on the

  9. Identifying clinical criteria to predict Type 1 diabetes, as defined by absolute insulin deficiency: a systematic review protocol.

    PubMed

    Shields, Beverley M; Peters, Jaime L; Cooper, Chris; Powell, Roy J; Knight, Bridget A; Hyde, Christopher; Hattersley, Andrew T

    2012-01-01

    Management of a patient's diabetes is entirely dependent upon the type of diabetes they are deemed to have. Patients with Type 1 diabetes are insulin deficient so require multiple daily insulin injections, whereas patients with Type 2 diabetes still have some endogenous insulin production so insulin treatment is only required when diet and tablets do not establish good glycaemic control. Despite the importance of a correct diagnosis, classification of diabetes is based on aetiology and relies on clinical judgement. There are no clinical guidelines on how to determine whether a patient has Type 1 or Type 2 diabetes. We aim to systematically review the literature to derive evidence-based clinical criteria for the classification of the major subtypes of diabetes. We will perform a systematic review of diagnostic accuracy studies to establish clinical criteria that predict the subsequent development of absolute insulin deficiency seen in Type 1 diabetes. Insulin deficiency will be determined by reference standard C-peptide concentrations. Synthesis of criteria identified will be undertaken using hierarchical summary receiver operating characteristic curves. As this is a systematic review, there will be no ethical issues. We will disseminate results by writing up the final systematic review and synthesis for publication in a peer-reviewed journal and will present at national and international diabetes-related meetings.

  10. Defiant: (DMRs: easy, fast, identification and ANnoTation) identifies differentially Methylated regions from iron-deficient rat hippocampus.

    PubMed

    Condon, David E; Tran, Phu V; Lien, Yu-Chin; Schug, Jonathan; Georgieff, Michael K; Simmons, Rebecca A; Won, Kyoung-Jae

    2018-02-05

    Identification of differentially methylated regions (DMRs) is the initial step towards the study of DNA methylation-mediated gene regulation. Previous approaches to call DMRs suffer from false prediction, use extreme resources, and/or require library installation and input conversion. We developed a new approach called Defiant to identify DMRs. Employing Weighted Welch Expansion (WWE), Defiant showed superior performance to other predictors in the series of benchmarking tests on artificial and real data. Defiant was subsequently used to investigate DNA methylation changes in iron-deficient rat hippocampus. Defiant identified DMRs close to genes associated with neuronal development and plasticity, which were not identified by its competitor. Importantly, Defiant runs between 5 to 479 times faster than currently available software packages. Also, Defiant accepts 10 different input formats widely used for DNA methylation data. Defiant effectively identifies DMRs for whole-genome bisulfite sequencing (WGBS), reduced-representation bisulfite sequencing (RRBS), Tet-assisted bisulfite sequencing (TAB-seq), and HpaII tiny fragment enrichment by ligation-mediated PCR-tag (HELP) assays.

  11. Unknown Pseudocholinesterase Deficiency in a Patient Undergoing TIVA with Planned Motor Evoked Potential Monitoring: A Case Report.

    PubMed

    Binkley, Candace

    2016-06-01

    Pseudocholinesterase abnormalities are a genetic cause of aberrant metabolism of the depolarizing muscle relaxant succinylcholine. This article examines a case where succinylcholine was chosen to facilitate intubation due to its ultra short duration and the request of the surgeon to monitor motor evoked potentials. Following succinylcholine administration the neurophysiologist was unable to obtain motor evoked potentials. This case study highlights the intraoperative and postoperative management of an elderly patient with an unknown pseudocholinesterase deficiency.

  12. Repurposing of Proton Pump Inhibitors as first identified small molecule inhibitors of endo-β-N-acetylglucosaminidase (ENGase) for the treatment of NGLY1 deficiency, a rare genetic disease.

    PubMed

    Bi, Yiling; Might, Matthew; Vankayalapati, Hariprasad; Kuberan, Balagurunathan

    2017-07-01

    N-Glycanase deficiency, or NGLY1 deficiency, is an extremely rare human genetic disease. N-Glycanase, encoded by the gene NGLY1, is an important enzyme involved in protein deglycosylation of misfolded proteins. Deglycosylation of misfolded proteins precedes the endoplasmic reticulum (ER)-associated degradation (ERAD) process. NGLY1 patients produce little or no N-glycanase (Ngly1), and the symptoms include global developmental delay, frequent seizures, complex hyperkinetic movement disorder, difficulty in swallowing/aspiration, liver dysfunction, and a lack of tears. Unfortunately, there has not been any therapeutic option available for this rare disease so far. Recently, a proposed molecular mechanism for NGLY1 deficiency suggested that endo-β-N-acetylglucosaminidase (ENGase) inhibitors may be promising therapeutics for NGLY1 patients. Herein, we performed structure-based virtual screening utilizing FDA-approved drug database on this ENGase target to enable repurposing of existing drugs. Several Proton Pump Inhibitors (PPIs), a series of substituted 1H-benzo [d] imidazole, and 1H-imidazo [4,5-b] pyridines, among other scaffolds, have been identified as potent ENGase inhibitors. An electrophoretic mobility shift assay was employed to assess the inhibition of ENGase activity by these PPIs. Our efforts led to the discovery of Rabeprazole Sodium as the most promising hit with an IC 50 of 4.47±0.44μM. This is the first report that describes the discovery of small molecule ENGase inhibitors, which can potentially be used for the treatment of human NGLY1 deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dysfunctional immunometabolic effects of vitamin D deficiency, increased cardiometabolic risk. Potential epidemiological alert in America?

    PubMed

    Rosas-Peralta, Martin; Holick, Michael F; Borrayo-Sánchez, Gabriela; Madrid-Miller, Alejandra; Ramírez-Árias, Erick; Arizmendi-Uribe, Efrain

    2017-03-01

    Vitamin D deficiency is a serious public health problem worldwide that affects not only skeletal health, but also a wide range of acute and chronic diseases. However, there is still skepticism because of the lack of randomized, controlled trials to support association studies on the benefits of vitamin D for non-skeletal health. This review was based on articles published during the 1980-2015 obtained from the Cochrane Central Register of controlled trials, MEDLINE and PubMed, and focuses on recent challenges with regard to the definition of vitamin D deficiency and how to achieve optimal serum 25-hydroxyvitamin D levels from dietary sources, supplements, and sun exposure. The effect of vitamin D on epigenetic fetal programming and regulation of genes that may potentially explain why vitamin D could have such lifelong comprehensive health benefits is reviewed. Optimization of vitamin D levels in children and adults around the world has potential benefits to improve skeletal health and to reduce the risk of chronic diseases, including some types of cancer, autoimmune diseases, infectious diseases, type 2 diabetes mellitus, and severe cardiovascular disorders such as atherothrombosis, neurocognitive disorders, and mortality. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Potential role of gender specific effect of leptin receptor deficiency in an extended consanguineous family with severe early-onset obesity.

    PubMed

    Dehghani, Mohammad Reza; Mehrjardi, Mohammad Yahya Vahidi; Dilaver, Nafi; Tajamolian, Masoud; Enayati, Samaneh; Ebrahimi, Pirooz; Amoli, Mahsa M; Farooqi, Sadaf; Maroofian, Reza

    2018-03-12

    Congenital Leptin receptor (LEPR) deficiency is a rare genetic cause of early-onset morbid obesity characterised by severe early onset obesity, major hyperphagia, hypogonadotropic hypogonadism and immune and neuroendocrine/metabolic dysfunction. We identified a homozygous loss-of-function mutation, NM_002303.5:c.464 T > G; p.(Tyr155*), in the LEPR in an extended consanguineous family with multiple individuals affected by early-onset severe obesity and hyperphagia. Interestingly, the LEPR-deficient adult females have extremely high body mass index (BMI) with hypogonadal infertility, the BMI of the affected males began to decline around the onset of puberty (13-15 years) with fertility being preserved. These findings lead to the speculation that LEPR deficiency may have a gender-specific effect on the regulation of body weight. In order to elucidate gender-specific effects of LEPR deficiency on reproduction further investigations are needed. The limitations of this study are that our conclusion is based on observations of two males and two females. Further LEPR deficient males and females are required for comparison in order to support this finding more confidently. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency.

    PubMed

    Scheffler, Immo E

    2015-05-01

    Mitochondrial diseases due to a reduced capacity for oxidative phosphorylation were first identified more than 20 years ago, and their incidence is now recognized to be quite significant. In a large proportion of cases the problem can be traced to a complex I (NADH-CoQ oxidoreductase) deficiency (Phenotype MIM #252010). Because the complex consists of 44 subunits, there are many potential targets for pathogenic mutations, both on the nuclear and mitochondrial genomes. Surprisingly, however, almost half of the complex I deficiencies are due to defects in as yet unidentified genes that encode proteins other than the structural proteins of the complex. This review attempts to summarize what we know about the molecular basis of complex I deficiencies: mutations in the known structural genes, and mutations in an increasing number of genes encoding "assembly factors", that is, proteins required for the biogenesis of a functional complex I that are not found in the final complex I. More such genes must be identified before definitive genetic counselling can be applied in all cases of affected families.

  16. Iron deficiency and cognitive functions.

    PubMed

    Jáuregui-Lobera, Ignacio

    2014-01-01

    Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%-6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups.

  17. [Detection and application of PIS genetic deficiency gene in dairy goat].

    PubMed

    Yang, Bo; Jia, Li-Li; Zhao, De-Chao; Meng, Li-Yun; Liu, Xue-Feng; Zhang, Yan-Jun; Zhang, Wen-Guang; Li, Jin-Quan

    2012-07-01

    The purpose of this study was to develop a molecular method for detecting polled intersex syndrome (PIS) genetic deficiency gene in dairy goat. Three pairs of primers, PIS-, PIS+, and NEI were designed based on PIS gene sequence (AF404302) to identify the PIS genetic deficiency genotype. For the normal phenotype, the fragments of 141 and 300 bp were obtained for the genotype PIS-PIS-, and 141, 449, and 300 bp for the genotype PIS-PIS+. For the PIS goat with the genotype PIS+PIS+, 449 and 300 bp were obtained. Two hundred and twenty-four dairy goats in one population were tested based on this method. The results showed that there were 150 PIS-PIS+, 70 PIS -PIS-, and 4 PIS+PIS+. The genotype frequency of PIS-PIS+ was 66.9%, and the gene frequency of PIS+ was 35.3% in the population. Therefore, the frequency of PIS offspring was over 12%. This study developed a method to detect PIS genetic deficiency dairy goat. The method could identify buck genotype accurately to avoid the occurrence of PIS genetic deficiency. The ease and accuracy show a strong potential of the method for use in marker assisted selection of dairy goats and healthy development of dairy goat industry.

  18. Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots

    PubMed Central

    Stein, Ricardo J.; Waters, Brian M.

    2012-01-01

    Iron (Fe) is an essential mineral micronutrient for plants and animals. Plants respond to Fe deficiency by increasing root uptake capacity. Identification of gene networks for Fe uptake and homeostasis could result in improved crop growth and nutritional value. Previous studies have used microarrays to identify a large number of genes regulated by Fe deficiency in roots of three Arabidopsis ecotypes. However, a large proportion of these genes may be involved in secondary or genotype-influenced responses rather than in a universal role in Fe uptake or homeostasis. Here we show that a small percentage of the Fe deficiency transcriptome of two contrasting ecotypes, Kas-1 and Tsu-1, was shared with other ecotypes. Kas-1 and Tsu-1 had different timing and magnitude of ferric reductase activity upon Fe withdrawal, and different categories of overrepresented Fe-regulated genes. To gain insights into universal responses of Arabidopsis to Fe deficiency, the Kas-1 and Tsu-1 transcriptomes were compared with those of Col-0, Ler, and C24. In early Fe deficiency (24–48 h), no Fe-downregulated genes and only 10 upregulated genes were found in all ecotypes, and only 20 Fe-downregulated and 58 upregulated genes were found in at least three of the five ecotypes. Supernode gene networks were constructed to visualize conserved Fe homeostasis responses. Contrasting gene expression highlighted different responses to Fe deficiency between ecotypes. This study demonstrates the use of natural variation to identify central Fe-deficiency-regulated genes in plants, and identified genes with potential new roles in signalling during Fe deficiency. PMID:22039296

  19. Diagnosing oceanic nutrient deficiency

    PubMed Central

    2016-01-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical–chemical–biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035255

  20. Diagnosing oceanic nutrient deficiency

    NASA Astrophysics Data System (ADS)

    Moore, C. Mark

    2016-11-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  1. Relationship between vitamin D deficiency and visually evoked potentials in multiple sclerosis.

    PubMed

    López-Méndez, P; Sosa-Henríquez, M; Ruiz-Pérez, Á

    2016-05-01

    To evaluate the possible relationship between serum 25-OH vitamin D levels and visually evoked potentials (VEP) in patients with multiple sclerosis (MS), residents in the south zone of Gran Canaria. The study included 49 patients with MS, on whom 25-OH-vitamin D was determined, along with VEP, and a neurological examination to determine incapacity. Clinical variables, such as a history of optic neuritis were recorded. The mean value of 25-OH-vitamin D of the patients was 28.1±9.5ng/ml. The VEP latency was 119.1±23.2ms and the amplitude, 8.5±4.4 μV. Patients with a higher 25-OH-vitamin D had a greater number of outbreaks in the year prior to the study (P=.049), and those with vitamin D deficiency and previous optic neuritis showed no reduction in the amplitude of the VEP (P=.006). Patients with vitamin D deficiency have lower clinical activity of the MS and show no axonal involvement in VEP after having suffered optic neuritis. These relationships, although statistically significant, do not seem clinically plausible, thus new studies are needed to try and confirm this possible relationship. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Deficiencies of product labeling directions for the preparation of radiopharmaceuticals.

    PubMed

    Hung, Joseph C; Ponto, James A; Gadient, Katie R; Frie, Julia A; Aksamit, Carolyn M; Enquist, Cassandra L; Carrels, Katie E

    2004-01-01

    To identify potential deficiencies in product labeling (package insert) instructions for the preparation of radiopharmaceuticals. Preparation instructions, which include both reconstitution and quality control (QC) directions, as stated in the package inserts were evaluated for all commercially available reconstituted radiopharmaceuticals. Reviews of the package inserts were initially performed by each author, and then all identified deficiencies were compiled and evaluated by all authors. The preparation scenario for each package insert evaluated was based on a centralized nuclear pharmacy operation assuming typical support personnel, standard operating equipment, and workload. The instructions as stated in each package insert for the preparation (including QC) were rated as inadequate if a satisfactory preparation could not be prepared by a nuclear pharmacist or physician when instructions were followed exactly. Identified deficiencies in package insert instructions for the preparation of radiopharmaceuticals fell into the following five categories: (1) absent or incomplete directions (especially with regard to QC procedures); (2) restrictive directions (e.g., specific requirement to use designated needles, chromatography solvents, counting devices), (3) inconsistent directions (e.g., different reconstituted volumes for the same final drug product, unworkable expiration times); (4) impractical directions (e.g., unrealistically low reconstituted activity limits, dangerously high number of radiolabeled particles); and (5) vague directions (e.g., use of the words "should," "may," "recommend"). Manufacturers' directions for the preparation of radiopharmaceuticals often contain deficiencies and should be viewed as standard guidance rather than as requirements. Just as physicians are permitted to use U.S. Food and Drug Administration (FDA)-approved drugs for off-label indications, nuclear pharmacists should be allowed to use alternative methods for preparing

  3. Application of wide selected-ion monitoring data-independent acquisition to identify tomato fruit proteins regulated by the CUTIN DEFICIENT2 transcription factor

    USDA-ARS?s Scientific Manuscript database

    We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral l...

  4. Riboflavin transporter deficiency mimicking mitochondrial myopathy caused by complex II deficiency.

    PubMed

    Nimmo, Graeme A M; Ejaz, Resham; Cordeiro, Dawn; Kannu, Peter; Mercimek-Andrews, Saadet

    2018-02-01

    Biallelic likely pathogenic variants in SLC52A2 and SLC52A3 cause riboflavin transporter deficiency. It is characterized by muscle weakness, ataxia, progressive ponto-bulbar palsy, amyotrophy, and sensorineural hearing loss. Oral riboflavin halts disease progression and may reverse symptoms. We report two new patients whose clinical and biochemical features were mimicking mitochondrial myopathy. Patient 1 is an 8-year-old male with global developmental delay, axial and appendicular hypotonia, ataxia, and sensorineural hearing loss. His muscle biopsy showed complex II deficiency and ragged red fibers consistent with mitochondrial myopathy. Whole exome sequencing revealed a homozygous likely pathogenic variant in SLC52A2 (c.917G>A; p.Gly306Glu). Patient 2 is a 14-month-old boy with global developmental delay, respiratory insufficiency requiring ventilator support within the first year of life. His muscle biopsy revealed combined complex II + III deficiency and ragged red fibers consistent with mitochondrial myopathy. Whole exome sequencing identified a homozygous likely pathogenic variant in SCL52A3 (c.1223G>A; p.Gly408Asp). We report two new patients with riboflavin transporter deficiency, caused by mutations in two different riboflavin transporter genes. Both patients presented with complex II deficiency. This treatable neurometabolic disorder can mimic mitochondrial myopathy. In patients with complex II deficiency, riboflavin transporter deficiency should be included in the differential diagnosis to allow early treatment and improve neurodevelopmental outcome. © 2017 Wiley Periodicals, Inc.

  5. Mice deficient in LMAN1 exhibit FV and FVIII deficiencies and liver accumulation of α1-antitrypsin

    PubMed Central

    Zheng, Chunlei; Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Baines, Andrea; Kim, Jinoh; Schekman, Randy; Kaufman, Randal J.; Ginsburg, David

    2011-01-01

    The type 1-transmembrane protein LMAN1 (ERGIC-53) forms a complex with the soluble protein MCFD2 and cycles between the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Mutations in either LMAN1 or MCFD2 cause the combined deficiency of factor V (FV) and factor VIII (FVIII; F5F8D), suggesting an ER-to-Golgi cargo receptor function for the LMAN1-MCFD2 complex. Here we report the analysis of LMAN1-deficient mice. Levels of plasma FV and FVIII, and platelet FV, are all reduced to ∼ 50% of wild-type in Lman1−/− mice, compared with the 5%-30% levels typically observed in human F5F8D patients. Despite previous reports identifying cathepsin C, cathepsin Z, and α1-antitrypsin as additional potential cargoes for LMAN1, no differences were observed between wild-type and Lman1−/− mice in the levels of cathepsin C and cathepsin Z in liver lysates or α1-antitrypsin levels in plasma. LMAN1 deficiency had no apparent effect on COPII-coated vesicle formation in an in vitro assay. However, the ER in Lman1−/− hepatocytes is slightly distended, with significant accumulation of α1-antitrypsin and GRP78. An unexpected, partially penetrant, perinatal lethality was observed for Lman1−/− mice, dependent on the specific inbred strain genetic background, suggesting a potential role for other, as yet unidentified LMAN1-dependent cargo proteins. PMID:21795745

  6. Phonological abilities in literacy-impaired children: Brain potentials reveal deficient phoneme discrimination, but intact prosodic processing.

    PubMed

    Männel, Claudia; Schaadt, Gesa; Illner, Franziska K; van der Meer, Elke; Friederici, Angela D

    2017-02-01

    Intact phonological processing is crucial for successful literacy acquisition. While individuals with difficulties in reading and spelling (i.e., developmental dyslexia) are known to experience deficient phoneme discrimination (i.e., segmental phonology), findings concerning their prosodic processing (i.e., suprasegmental phonology) are controversial. Because there are no behavior-independent studies on the underlying neural correlates of prosodic processing in dyslexia, these controversial findings might be explained by different task demands. To provide an objective behavior-independent picture of segmental and suprasegmental phonological processing in impaired literacy acquisition, we investigated event-related brain potentials during passive listening in typically and poor-spelling German school children. For segmental phonology, we analyzed the Mismatch Negativity (MMN) during vowel length discrimination, capturing automatic auditory deviancy detection in repetitive contexts. For suprasegmental phonology, we analyzed the Closure Positive Shift (CPS) that automatically occurs in response to prosodic boundaries. Our results revealed spelling group differences for the MMN, but not for the CPS, indicating deficient segmental, but intact suprasegmental phonological processing in poor spellers. The present findings point towards a differential role of segmental and suprasegmental phonology in literacy disorders and call for interventions that invigorate impaired literacy by utilizing intact prosody in addition to training deficient phonemic awareness. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Toward reassessing data-deficient species.

    PubMed

    Bland, Lucie M; Bielby, Jon; Kearney, Stephen; Orme, C David L; Watson, James E M; Collen, Ben

    2017-06-01

    One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data-deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data-deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data-deficient assessments. To develop this, we reviewed 2879 data-deficient assessments in 6 animal groups and identified 8 main justifications for assigning data-deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data-deficient species slipping unnoticed toward extinction. © 2016 Society for Conservation Biology.

  8. Neonatal isolated ACTH deficiency (IAD): a potentially life-threatening but treatable cause of neonatal cholestasis.

    PubMed

    Alsaleem, Mahdi; Saadeh, Lina; Misra, Amrit; Madani, Shailender

    2016-08-17

    Isolated ACTH deficiency (IAD) is a rare cause of neonatal cholestasis and hypoglycaemia. This diagnosis has a 20% mortality potential if unrecognised. We describe a case of an infant presenting with cholestatic jaundice and hypoglycaemia. The patient had laboratory findings suggestive of IAD, which was later confirmed with molecular genetic testing. One of the mutations this patient had is a new finding. The patient was started on glucocorticoid replacement therapy after which his bilirubin and glucose levels normalised. 2016 BMJ Publishing Group Ltd.

  9. Newly identified invertebrate-type lysozyme (Splys-i) in mud crab (Scylla paramamosain) exhibiting muramidase-deficient antimicrobial activity.

    PubMed

    Zhou, Jian; Zhao, Shu; Fang, Wen-Hong; Zhou, Jun-Fang; Zhang, Jing-Xiao; Ma, Hongyu; Lan, Jiang-Feng; Li, Xin-Cang

    2017-09-01

    Lysozymes are widely distributed immune effectors exerting muramidase activity against the peptidoglycan of the bacterial cell wall to trigger cell lysis. However, some invertebrate-type (i-type) lysozymes deficient of muramidase activity still exhibit antimicrobial activity. To date, the mechanism underlying the antimicrobial effect of muramidase-deficient i-type lysozymes remains unclear. Accordingly, this study characterized a novel i-type lysozyme, Splys-i, in the mud crab Scylla paramamosain. Splys-i shared the highest identity with the Litopenaeus vannamei i-type lysozyme (Lvlys-i2, 54% identity) at the amino acid level. Alignment analysis and 3D structure comparison show that Splys-i may be a muramidase-deficient i-type lysozyme because it lacks the two conserved catalytic residues (Glu and Asp) that are necessary for muramidase activity. Splys-i is mainly distributed in the intestine, stomach, gills, hepatopancreas, and hemocytes, and it is upregulated by Vibrio harveyi or Staphylococcus aureus challenge. Recombinant Splys-i protein (rSplys-i) can inhibit the growth of Gram-negative bacteria (V. harveyi, Vibrio alginolyticus, Vibrio parahemolyticus, and Escherichia coli), Gram-positive bacteria (S. aureus, Bacillus subtilis, and Bacillus megaterium), and the fungus Candida albicans to varying degrees. In this study, two binding assays and a bacterial agglutination assay were conducted to elucidate the potential antimicrobial mechanisms of Splys-i. Results demonstrated that rSplys-i could bind to all nine aforementioned microorganisms. It also exhibited a strong binding activity to lipopolysaccharide from E. coli and lipoteichoic acid and peptidoglycan (PGN) from S. aureus but a weak binding activity to PGN from B. subtilis and β-glucan from fungi. Moreover, rSplys-i could agglutinate these nine types of microorganisms in the presence of Ca 2+ at different protein concentrations. These results suggest that the binding activity and its triggered

  10. G6PD/PK ratio: a reliable parameter to identify glucose-6-phosphate dehydrogenase deficiency associated with microcytic anemia in heterozygous subjects.

    PubMed

    Tagarelli, Antonio; Piro, Anna; Tagarelli, Giuseppe; Bastone, Loredana; Paleari, Renata; Mosca, Andrea

    2004-10-01

    To determine if measuring the ratio of glucose-6-phosphate dehydrogenase (G6PD) to pyruvate kinase (PK) is more reliable than only measuring G6PD activity to identify heterozygous G6PD- individuals with associated microcytic anemia in the Calabrian population, which shows high frequencies of both the thalassaemia (thal) trait and G6PD deficiency. Measurement of G6PD and PK activities was carried out on 205 samples of whole blood from Calabrian subjects of both sexes (age range 10-50 years) using a double starter differential pH-metry technique. The G6PD/PK ratio is able to differentiate G6PD- heterozygous individuals from the normal population. G6PD/PK values also allowed us to easily identify the G6PD- heterozygous subjects with microcytic anaemia. Student's t test shows that G6PD/PK ratio is more reliable in both sample groups, relative to G6PD activity in normal subjects. G6PD/PK ratio is a reliable diagnostic parameter for mass screening for G6PD deficiency.

  11. Aniracetam attenuates H2O2-induced deficiency of neuron viability, mitochondria potential and hippocampal long-term potentiation of mice in vitro.

    PubMed

    Wang, Yong-Fu; Li, Chao-Cui; Cai, Jing-Xia

    2006-09-01

    Objective It is known that free radicals are involved in neurodegeneration and cognitive dysfunction, as seen in Alzheimer' s disease (AD) and aging. The present study examines the protective effects of aniracetam against H2O2-induced toxicity to neuron viability, mitochondria potential and hippocampal long-term potentiation (LTP). Methods Tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was used to detect neuronal viability. MitoTracker Red (CMX Ros), a fluorescent stain for mitochondria, was used to measure mitochondria potential. Electrophysiological technique was carried out to record hippocampal LTP. Results H2O2 exposure impaired the viability of neurons, reduced mitochondria potential, and decreased LTP in the CA1 region of hippocampus. These deficient effects were significantly rescued by pre-treatment with aniracetam (10-100 mu mol/L). Conclusion These results indicate that aniracetam has a strong neuroprotective effect against H2O2-induced toxicity, which could partly explain the mechanism of its clinical application in neurodegenerative diseases.

  12. Identifying deficiencies in national and foreign medical team responses through expert opinion surveys: implications for education and training.

    PubMed

    Djalali, Ahmadreza; Ingrassia, Pier Luigi; Corte, Francesco Della; Foletti, Marco; Gallardo, Alba Ripoll; Ragazzoni, Luca; Kaptan, Kubilay; Lupescu, Olivera; Arculeo, Chris; von Arnim, Gotz; Friedl, Tom; Ashkenazi, Michael; Heselmann, Deike; Hreckovski, Boris; Khorram-Manesh, Amir; Khorrram-Manesh, Amir; Komadina, Radko; Lechner, Kostanze; Patru, Cristina; Burkle, Frederick M; Fisher, Philipp

    2014-08-01

    Unacceptable practices in the delivery of international medical assistance are reported after every major international disaster; this raises concerns about the clinical competence and practice of some foreign medical teams (FMTs). The aim of this study is to explore and analyze the opinions of disaster management experts about potential deficiencies in the art and science of national and FMTs during disasters and the impact these opinions might have on competency-based education and training. This qualitative study was performed in 2013. A questionnaire-based evaluation of experts' opinions and experiences in responding to disasters was conducted. The selection of the experts was done using the purposeful sampling method, and the sample size was considered by data saturation. Content analysis was used to explore the implications of the data. This study shows that there is a lack of competency-based training for disaster responders. Developing and performing standardized training courses is influenced by shortcomings in budget, expertise, and standards. There is a lack of both coordination and integration among teams and their activities during disasters. The participants of this study emphasized problems concerning access to relevant resources during disasters. The major findings of this study suggest that teams often are not competent during the response phase because of education and training deficiencies. Foreign medical teams and medically related nongovernmental organizations (NGOs) do not always provide expected capabilities and services. Failures in leadership and in coordination among teams are also a problem. All deficiencies need to be applied to competency-based curricula.

  13. Prevalence and Risk Factors for Iron Deficiency Anemia and Iron Depletion During Pregnancy: A Prospective Study.

    PubMed

    Gomes da Costa, Ana; Vargas, Sara; Clode, Nuno; M Graça, Luís

    2016-09-01

    Anemia and iron deficiency during pregnancy are a worldwide concern and are more frequent among women of reproductive age, pregnant women, and young children. The aim of this study was to assess the prevalence of iron deficiency anemia and the risk factors for iron depletion during the first half of pregnancy, in a Portuguese population. A prospective study was conducted at a tertiary hospital and included pregnant women, until the 20th week of gestation. Data was collected regarding demographic and pregnancy features and hemoglobin and serum ferritin concentrations were determined. A multivariate logistic regression was performed to identify potential risk factors for iron deficiency. Two hundred and one women were included, from which five (2.49%) presented anemia. Additionally, 77 (38.3%) exhibited iron deficiency and 22 (10.9%) revealed severe iron depletion. Maternal age was the only risk factor identified. The odds ratio (OR) was equal to 12.99 (95% CI 2.41 - 70.0) for women under twenty years of age and 2.09 (95% CI 1.05 - 4.14) for women older than thirty years of age. The prevalence of maternal anemia in the first half of pregnancy was lower than in other studies. However, more than one-third of the women exhibited iron deficiency. With the exception of maternal age, no other risk factors were identified.

  14. Vitamin A deficiency, iron deficiency, and anemia among preschool children in the Republic of the Marshall Islands.

    PubMed

    Palafox, Neal A; Gamble, Mary V; Dancheck, Barbara; Ricks, Michelle O; Briand, Kennar; Semba, Richard D

    2003-05-01

    We investigated the co-occurrence of vitamin A deficiency, iron deficiency, and anemia among young children in the Republic of the Marshall Islands. Hemoglobin, serum retinol, and serum ferritin were assessed in the Republic of the Marshall Islands Vitamin A Deficiency Study, a community-based survey that involved 919 children ages 1 to 5 y. The proportion of children with vitamin A deficiency (serum retinol concentrations < 0.70 microM/L) was 59.9%. The prevalences of anemia (hemoglobin < 110 g/L), iron deficiency (serum ferritin < 12 microg/L), and iron deficiency anemia (iron deficiency and anemia) were 36.4%, 53.5%, and 23.8%, respectively. The proportion of children who had co-occurrence of vitamin A and iron deficiencies was 33.2%. The mean ages of children with and without vitamin A deficiency were 3.2 +/- 1.4 and 2.9 +/- 1.5 y, respectively (P = 0.01), and the mean ages of those with and without iron deficiency were 2.7 +/- 1.3 and 3.5 +/- 1.4 y, respectively (P < 0.0001). Children in the Republic of the Marshall Islands, ages 1 to 5 y, are at high risk of anemia, vitamin A deficiency, and iron deficiency, and one-third of these children had the co-occurrence of vitamin A and iron deficiencies. Further investigation is needed to identify risk factors and evaluate interventions to address vitamin A and iron deficiencies among children.

  15. NAD Deficiency, Congenital Malformations, and Niacin Supplementation.

    PubMed

    Shi, Hongjun; Enriquez, Annabelle; Rapadas, Melissa; Martin, Ella M M A; Wang, Roni; Moreau, Julie; Lim, Chai K; Szot, Justin O; Ip, Eddie; Hughes, James N; Sugimoto, Kotaro; Humphreys, David T; McInerney-Leo, Aideen M; Leo, Paul J; Maghzal, Ghassan J; Halliday, Jake; Smith, Janine; Colley, Alison; Mark, Paul R; Collins, Felicity; Sillence, David O; Winlaw, David S; Ho, Joshua W K; Guillemin, Gilles J; Brown, Matthew A; Kikuchi, Kazu; Thomas, Paul Q; Stocker, Roland; Giannoulatou, Eleni; Chapman, Gavin; Duncan, Emma L; Sparrow, Duncan B; Dunwoodie, Sally L

    2017-08-10

    Congenital malformations can be manifested as combinations of phenotypes that co-occur more often than expected by chance. In many such cases, it has proved difficult to identify a genetic cause. We sought the genetic cause of cardiac, vertebral, and renal defects, among others, in unrelated patients. We used genomic sequencing to identify potentially pathogenic gene variants in families in which a person had multiple congenital malformations. We tested the function of the variant by using assays of in vitro enzyme activity and by quantifying metabolites in patient plasma. We engineered mouse models with similar variants using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system. Variants were identified in two genes that encode enzymes of the kynurenine pathway, 3-hydroxyanthranilic acid 3,4-dioxygenase (HAAO) and kynureninase (KYNU). Three patients carried homozygous variants predicting loss-of-function changes in the HAAO or KYNU proteins (HAAO p.D162*, HAAO p.W186*, or KYNU p.V57Efs*21). Another patient carried heterozygous KYNU variants (p.Y156* and p.F349Kfs*4). The mutant enzymes had greatly reduced activity in vitro. Nicotinamide adenine dinucleotide (NAD) is synthesized de novo from tryptophan through the kynurenine pathway. The patients had reduced levels of circulating NAD. Defects similar to those in the patients developed in the embryos of Haao-null or Kynu-null mice owing to NAD deficiency. In null mice, the prevention of NAD deficiency during gestation averted defects. Disruption of NAD synthesis caused a deficiency of NAD and congenital malformations in humans and mice. Niacin supplementation during gestation prevented the malformations in mice. (Funded by the National Health and Medical Research Council of Australia and others.).

  16. Mutations in Nicotinamide Nucleotide Transhydrogenase (NNT) cause familial glucocorticoid deficiency

    PubMed Central

    Meimaridou, Eirini; Kowalczyk, Julia; Guasti, Leonardo; Hughes, Claire R.; Wagner, Florian; Frommolt, Peter; Nürnberg, Peter; Mann, Nicholas P.; Banerjee, Ritwik; Saka, H. Nurcin; Chapple, J. Paul; King, Peter J.; Clark, Adrian J.L.; Metherell, Louise A.

    2012-01-01

    Using targeted exome sequencing we identified mutations in NNT, an antioxidant defence gene, in patients with familial glucocorticoid deficiency. In mice with Nnt loss, higher levels of adrenocortical cell apoptosis and impaired glucocorticoid production were observed. NNT knockdown in a human adrenocortical cell line resulted in impaired redox potential and increased ROS levels. Our results suggest that NNT may have a role in ROS detoxification in human adrenal glands. PMID:22634753

  17. Robust global identifiability theory using potentials--Application to compartmental models.

    PubMed

    Wongvanich, N; Hann, C E; Sirisena, H R

    2015-04-01

    This paper presents a global practical identifiability theory for analyzing and identifying linear and nonlinear compartmental models. The compartmental system is prolonged onto the potential jet space to formulate a set of input-output equations that are integrals in terms of the measured data, which allows for robust identification of parameters without requiring any simulation of the model differential equations. Two classes of linear and non-linear compartmental models are considered. The theory is first applied to analyze the linear nitrous oxide (N2O) uptake model. The fitting accuracy of the identified models from differential jet space and potential jet space identifiability theories is compared with a realistic noise level of 3% which is derived from sensor noise data in the literature. The potential jet space approach gave a match that was well within the coefficient of variation. The differential jet space formulation was unstable and not suitable for parameter identification. The proposed theory is then applied to a nonlinear immunological model for mastitis in cows. In addition, the model formulation is extended to include an iterative method which allows initial conditions to be accurately identified. With up to 10% noise, the potential jet space theory predicts the normalized population concentration infected with pathogens, to within 9% of the true curve. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Prevalence of vitamin D deficiency and its associated factors in three regions of Saudi Arabia

    PubMed Central

    Kaddam, Ibrahim M.; Al-Shaikh, Adnan M.; Abaalkhail, Bahaa A.; Asseri, Khalid S.; Al-Saleh, Yousef M.; Al-Qarni, Ali A.; Al-Shuaibi, Ahmed M.; Tamimi, Waleed G.; Mukhtar, Abdelmoneim M.

    2017-01-01

    Objectives: To measure prevalence of vitamin D deficiency in Saudi Arabia, unveil the life style, nutritional habits and status, as well as identify the potential risk factors. Method: A school-based survey targeting Saudi school students and employees was conducted during the period from 2013 to 2014 using multistage cluster random sample in Central, Western and Eastern regions. The prevalence of vitamin D deficiency and difference between various population subgroups were calculated. Logistic regression analysis was used to determine the predictors of potential risk factors. Results: Prevalence of vitamin D deficiency was 49.5% in students and 44% in employees. Life style was not adequate to protect against vitamin D depletion. Unhealthy nutritional habits were widespread, some manifested in childhood while others manifested later in life. Living in the Eastern region, females, 16-19 years of age, low economic class, obese and lack of omega 3 supplements were risk factors in students. Employees living in the Eastern region, females, middle-income class, carbonated soft drink consumers, and lack of multivitamin supplements were at higher risk. Conclusion: There is a need for a health awareness program using evidence-based recommendations. Screening for early detection and correction of the condition should be proposed to be part of the national health strategy. There is need for identifying the burden of vitamin D deficiency on other diseases to control and improve the prognosis of these conditions. PMID:28397944

  19. The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats.

    PubMed

    Ozsoy, Ozlem; Aras, Sinem; Ozkan, Ayse; Parlak, Hande; Aslan, Mutay; Yargicoglu, Piraye; Agar, Aysel

    2016-07-01

    Sulfite, commonly used as a preservative in foods, beverages, and pharmaceuticals, is a very reactive and potentially toxic molecule which is detoxified by sulfite oxidase (SOX). Changes induced by aging may be exacerbated by exogenous chemicals like sulfite. The aim of this study was to investigate the effects of ingested sulfite on visual evoked potentials (VEPs) and brain antioxidant statuses by measuring superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Brain lipid oxidation status was also determined via thiobarbituric acid reactive substances (TBARS) in normal- and SOX-deficient aged rats. Rats do not mimic the sulfite responses seen in humans because of their relatively high SOX activity level. Therefore this study used SOX-deficient rats since they are more appropriate models for studying sulfite toxicity. Forty male Wistar rats aged 24 months were randomly assigned to four groups: control (C), sulfite (S), SOX-deficient (D) and SOX-deficient + sulfite (DS). SOX deficiency was established by feeding rats with low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg kg(-1) day(-1)) was given by gavage. Treatment continued for 6 weeks. At the end of the experimental period, flash VEPs were recorded. Hepatic SOX activity was measured to confirm SOX deficiency. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with the normal rats. The activity of SOX in deficient rats was thus in the range of humans. There was no significant difference between control and treated groups in either latence or amplitude of VEP components. Brain SOD, CAT, and GPx activities and brain TBARS levels were similar in all experimental groups compared with the control group. Our results indicate that exogenous administration of sulfite does not affect VEP components and the antioxidant/oxidant status of aged rat brains. © The Author

  20. Identifying potential academic leaders

    PubMed Central

    White, David; Krueger, Paul; Meaney, Christopher; Antao, Viola; Kim, Florence; Kwong, Jeffrey C.

    2016-01-01

    Objective To identify variables associated with willingness to undertake leadership roles among academic family medicine faculty. Design Web-based survey. Bivariate and multivariable analyses (logistic regression) were used to identify variables associated with willingness to undertake leadership roles. Setting Department of Family and Community Medicine at the University of Toronto in Ontario. Participants A total of 687 faculty members. Main outcome measures Variables related to respondents’ willingness to take on various academic leadership roles. Results Of all 1029 faculty members invited to participate in the survey, 687 (66.8%) members responded. Of the respondents, 596 (86.8%) indicated their level of willingness to take on various academic leadership roles. Multivariable analysis revealed that the predictors associated with willingness to take on leadership roles were as follows: pursuit of professional development opportunities (odds ratio [OR] 3.79, 95% CI 2.29 to 6.27); currently holding at least 1 leadership role (OR 5.37, 95% CI 3.38 to 8.53); a history of leadership training (OR 1.86, 95% CI 1.25 to 2.78); the perception that mentorship is important for one’s current role (OR 2.25, 95% CI 1.40 to 3.60); and younger age (OR 0.97, 95% CI 0.95 to 0.99). Conclusion Willingness to undertake new or additional leadership roles was associated with 2 variables related to leadership experiences, 2 variables related to perceptions of mentorship and professional development, and 1 demographic variable (younger age). Interventions that support opportunities in these areas might expand the pool and strengthen the academic leadership potential of faculty members. PMID:27331226

  1. Genetic Screening Identifies Cyanogenesis-Deficient Mutants of Lotus japonicus and Reveals Enzymatic Specificity in Hydroxynitrile Glucoside Metabolism[W][OA

    PubMed Central

    Takos, Adam; Lai, Daniela; Mikkelsen, Lisbeth; Abou Hachem, Maher; Shelton, Dale; Motawia, Mohammed Saddik; Olsen, Carl Erik; Wang, Trevor L.; Martin, Cathie; Rook, Fred

    2010-01-01

    Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid–derived cyanogenic glucosides (α-hydroxynitrile glucosides) by specific β-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores. We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled. Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the β-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related β-glucosidase, BGD4, were identified. This indicated that BGD4 plays no role in cyanogenesis in L. japonicus in vivo. Biochemical analysis confirmed that BGD4 cannot hydrolyze linamarin or lotaustralin and in L. japonicus is specific for breakdown of related hydroxynitrile glucosides, such as rhodiocyanoside A. By contrast, BGD2 can hydrolyze both cyanogenic glucosides and rhodiocyanosides. Our genetic analysis demonstrated specificity in the catabolic pathways for hydroxynitrile glucosides and implied specificity in their biosynthetic pathways as well. In addition, it has provided important tools for elucidating and potentially modifying cyanogenesis pathways in plants. PMID:20453117

  2. Should blood donors be routinely screened for glucose-6-phosphate dehydrogenase deficiency? A systematic review of clinical studies focusing on patients transfused with glucose-6-phosphate dehydrogenase-deficient red cells.

    PubMed

    Renzaho, Andre M N; Husser, Eliette; Polonsky, Michael

    2014-01-01

    The risk factors associated with the use of glucose-6-phosphate dehydrogenase (G6PD)-deficient blood in transfusion have not yet been well established. Therefore, the aim of this review was to evaluate whether whole blood from healthy G6PD-deficient donors is safe to use for transfusion. The study undertook a systematic review of English articles indexed in COCHRANE, MEDLINE, EMBASE, and CINHAL, with no date restriction up to March 2013, as well as those included in articles' reference lists and those included in Google Scholar. Inclusion criteria required that studies be randomized controlled trials, case controls, case reports, or prospective clinical series. Data were extracted following the Preferred Reporting Items for Systematic Reviews using a previously piloted form, which included fields for study design, population under study, sample size, study results, limitations, conclusions, and recommendations. The initial search identified 663 potentially relevant articles, of which only 13 studies met the inclusion criteria. The reported effects of G6PD-deficient transfused blood on neonates and children appear to be more deleterious than effects reported on adult patients. In most cases, the rise of total serum bilirubin was abnormal in infants transfused with G6PD-deficient blood from 6 hours up to 60 hours after transfusion. All studies on neonates and children, except one, recommended a routine screening for G6PD deficiency for this at-risk subpopulation because their immature hepatic function potentially makes them less able to handle any excess bilirubin load. It is difficult to make firm clinical conclusions and recommendations given the equivocal results, the lack of standardized evaluation methods to categorize red blood cell units as G6PD deficient (some of which are questionable), and the limited methodological quality and low quality of evidence. Notwithstanding these limitations, based on our review of the available literature, there is little to

  3. Identifying Protein-Calorie Malnutrition Workshop.

    ERIC Educational Resources Information Center

    Walker, Susan S.; Barker, Ellen M.

    Instructional materials are provided for a workshop to enable participants to assist in identifying patients at risk with protein-calorie malnutrition and in corrrecting this nutritional deficiency. Representative topics are nutrients; protein, mineral, and vitamin sources, functions, and deficiency symptoms; malnutrition; nutritional deficiency…

  4. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    PubMed

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    evidence that coexisting carnitine deficiency masks some indicators of biotin deficiency and support the potential importance of the ratios of acylcarnitines arising from the acyl-CoA substrates and products for biotin-dependent carboxylases in detecting the biotin deficiency that is masked by coexisting carnitine deficiency. © 2015 American Society for Nutrition.

  5. Diagnosing human blood clotting deficiency.

    PubMed

    Ong, Chong Cheen; Gopinath, Subash C B; Rebecca, Leong Wei Xian; Perumal, Veeradasan; Lakshmipriya, Thangavel; Saheed, Mohamed Shuaib Mohamed

    2018-05-15

    There are different clotting factors present in blood, carries the clotting cascade and excessive bleeding may cause a deficiency in the clotting Diagnosis of this deficiency in clotting drastically reduces the potential fatality. For enabling a sensor to detect the clotting factors, suitable probes such as antibody and aptamer have been used to capture these targets on the sensing surface. Two major clotting factors were widely studied for the diagnosis of clotting deficiency, which includes factor IX and thrombin. In addition, factor IX is considered as the substitute for heparin and the prothrombotic associated with the increased thrombin generation are taking into account their prevalence. The biosensors, surface plasmon resonance, evanescent-field-coupled waveguide-mode sensor, metal-enhanced PicoGreen fluorescence and electrochemical aptasensor were well-documented and improvements have been made for high-performance sensing. We overviewed detecting factor IX and thrombin using these biosensors, for the potential application in medical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Circadian clock-deficient mice as a tool for exploring disease etiology.

    PubMed

    Doi, Masao

    2012-01-01

    One of the most significant conceptual changes brought about by the analysis of circadian clock-deficient mice is that abnormalities in the circadian clock are linked not only to sleep arousal disorder but also to a wide variety of common diseases, including hypertension, diabetes, obesity, and cancer. It has recently been shown that the disruption of the two cryptochrome genes Cry1 and Cry2-core elements of the circadian clock-induces salt-dependent hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. This adrenal disorder occurs as a result of increased expression of Hsd3b6, a newly identified steroidogenic enzyme that regulates aldosterone production within the adrenal zona glomerular cells. Importantly, this enzyme is functionally conserved in humans, and the pathophysiologic condition of human idiopathic hyperaldosteronism resembles that of Cry1/2-deficient mice. This review highlights the potential utility of circadian clock-deficient mice as a tool for exploring hitherto unknown disease etiology linked to the circadian clock.

  7. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency.

    PubMed

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-08

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer's disease and Parkinson's disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  8. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    NASA Astrophysics Data System (ADS)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  9. Academic Deficiency: Student Experiences of Institutional Labeling

    ERIC Educational Resources Information Center

    Barouch-Gilbert, Abraham

    2015-01-01

    Limited existing research examines how undergraduate students in the United States experience the process of being identified as deficient due to their academic performance. The purpose of this phenomenological study was to explore the lived experiences of college students on academic probation who were labeled academically deficient. Students…

  10. Potassium, magnesium, and calcium deficiency symptoms

    Treesearch

    Edward I. Sucoff

    1961-01-01

    A loblolly pine or Virginia pine tree that shows visible symptoms of nutrient deficiency is sick. This means that the life processes of the tree are malfunctioning and that, among other things, the growth rate is probably less than normal, and the life of the tree may be threatened. However, if the deficiency can be identified, treatment with the proper fertilizer may...

  11. How prevalent is vitamin B(12) deficiency among vegetarians?

    PubMed

    Pawlak, Roman; Parrott, Scott James; Raj, Sudha; Cullum-Dugan, Diana; Lucus, Debbie

    2013-02-01

    Vegetarians are at risk for vitamin B(12) (B12) deficiency due to suboptimal intake. The goal of the present literature review was to assess the rate of B12 depletion and deficiency among vegetarians and vegans. Using a PubMed search to identify relevant publications, 18 articles were found that reported B12 deficiency rates from studies that identified deficiency by measuring methylmalonic acid, holo-transcobalamin II, or both. The deficiency rates reported for specific populations were as follows: 62% among pregnant women, between 25% and almost 86% among children, 21-41% among adolescents, and 11-90% among the elderly. Higher rates of deficiency were reported among vegans compared with vegetarians and among individuals who had adhered to a vegetarian diet since birth compared with those who had adopted such a diet later in life. The main finding of this review is that vegetarians develop B12 depletion or deficiency regardless of demographic characteristics, place of residency, age, or type of vegetarian diet. Vegetarians should thus take preventive measures to ensure adequate intake of this vitamin, including regular consumption of supplements containing B12. © 2012 International Life Sciences Institute.

  12. Secondary neurotransmitter deficiencies in epilepsy caused by voltage-gated sodium channelopathies: A potential treatment target?

    PubMed

    Horvath, Gabriella A; Demos, Michelle; Shyr, Casper; Matthews, Allison; Zhang, Linhua; Race, Simone; Stockler-Ipsiroglu, Sylvia; Van Allen, Margot I; Mancarci, Ogan; Toker, Lilah; Pavlidis, Paul; Ross, Colin J; Wasserman, Wyeth W; Trump, Natalie; Heales, Simon; Pope, Simon; Cross, J Helen; van Karnebeek, Clara D M

    2016-01-01

    We describe neurotransmitter abnormalities in two patients with drug-resistant epilepsy resulting from deleterious de novo mutations in sodium channel genes. Whole exome sequencing identified a de novo SCN2A splice-site mutation (c.2379+1G>A, p.Glu717Gly.fs*30) resulting in deletion of exon 14, in a 10-year old male with early onset global developmental delay, intermittent ataxia, autism, hypotonia, epileptic encephalopathy and cerebral/cerebellar atrophy. In the cerebrospinal fluid both homovanillic acid and 5-hydroxyindoleacetic acid were significantly decreased; extensive biochemical and genetic investigations ruled out primary neurotransmitter deficiencies and other known inborn errors of metabolism. In an 8-year old female with an early onset intractable epileptic encephalopathy, developmental regression, and progressive cerebellar atrophy, a previously unreported de novo missense mutation was identified in SCN8A (c.5615G>A; p.Arg1872Gln), affecting a highly conserved residue located in the C-terminal of the Nav1.6 protein. Aside from decreased homovanillic acid and 5-hydroxyindoleacetic acid, 5-methyltetrahydrofolate was also found to be low. We hypothesize that these channelopathies cause abnormal synaptic mono-amine metabolite secretion/uptake via impaired vesicular release and imbalance in electrochemical ion gradients, which in turn aggravate the seizures. Treatment with oral 5-hydroxytryptophan, l-Dopa/Carbidopa, and a dopa agonist resulted in mild improvement of seizure control in the male case, most likely via dopamine and serotonin receptor activated signal transduction and modulation of glutamatergic, GABA-ergic and glycinergic neurotransmission. Neurotransmitter analysis in other sodium channelopathy patients will help validate our findings, potentially yielding novel treatment opportunities. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. GC-TOF/MS-based metabolomic profiling of estrogen deficiency-induced obesity in ovariectomized rats

    PubMed Central

    Ma, Bo; Zhang, Qi; Wang, Guang-ji; A, Ji-ye; Wu, Di; Liu, Ying; Cao, Bei; Liu, Lin-sheng; Hu, Ying-ying; Wang, Yong-lu; Zheng, Ya-ya

    2011-01-01

    Aim: To explore the alteration of endogenous metabolites and identify potential biomarkers using metabolomic profiling with gas chromatography coupled a time-of-flight mass analyzer (GC/TOF-MS) in a rat model of estrogen-deficiency-induced obesity. Methods: Twelve female Sprague-Dawley rats six month of age were either sham-operated or ovariectomized (OVX). Rat blood was collected, and serum was analyzed for biomarkers using standard colorimetric methods with commercial assay kits and a metabolomic approach with GC/TOF-MS. The data were analyzed using multivariate statistical techniques. Results: A high body weight and body mass index inversely correlated with serum estradiol (E2) in the OVX rats compared to the sham rats. Estrogen deficiency also significantly increased serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol. Utilizing GC/TOF-MS-based metabolomic analysis and the partial least-squares discriminant analysis, the OVX samples were discriminated from the shams. Elevated levels of cholesterol, glycerol, glucose, arachidonic acid, glutamic acid, glycine, and cystine and reduced alanine levels were observed. Serum glucose metabolism, energy metabolism, lipid metabolism, and amino acid metabolism were involved in estrogen-deficiency-induced obesity in OVX rats. Conclusion: The series of potential biomarkers identified in the present study provided fingerprints of rat metabolomic changes during obesity and an overview of multiple metabolic pathways during the progression of obesity involving glucose metabolism, lipid metabolism, and amino acid metabolism. PMID:21293480

  14. Isolated sulfite oxidase deficiency.

    PubMed

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  15. The Evidence-Based Evaluation of Iron Deficiency Anemia.

    PubMed

    Hempel, Eliana V; Bollard, Edward R

    2016-09-01

    Anemia is a prevalent disease with multiple possible etiologies and resultant complications. Iron deficiency anemia is a common cause of anemia and is typically due to insufficient intake, poor absorption, or overt or occult blood loss. Distinguishing iron deficiency from other causes of anemia is integral to initiating the appropriate treatment. In addition, identifying the underlying cause of iron deficiency is also necessary to help guide management of these patients. We review the key components to an evidence-based, cost-conscious evaluation of suspected iron deficiency anemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. ASSOCIATION OF POTENTIAL CELIAC DISEASE AND REFRACTORY IRON DEFICIENCY ANEMIA IN CHILDREN AND ADOLESCENTS.

    PubMed

    Shahriari, Mahdi; Honar, Naser; Yousefi, Ali; Javaherizadeh, Hazhir

    2018-01-01

    Celiac disease is an enteropathy caused by dietary gluten. The combination of serologic, genetic and histologic data has led to description of other categories of this disease. There are a number of patients with iron deficiency anemia (IDA) that do not respond to iron treatment and may be repeated for many times, Therefore, we aimed to investigate celiac disease in this group. In this cross sectional transverse prospective study from August 2011 to February 2013, in a Pediatric care clinic affiliated to Shiraz University of Medical Sciences, 184 children including 92 IDA patients who responded to treatment using iron supplement, 45 non-responding iron deficient patients, and 47 healthy individuals, with the maximum age of 18 years, with written consent from their parents, participated in serologic screening (with Anti-TTG antibody and anti-Endomysial antibody) for celiac disease. Patients with at least one positive serology test underwent multiple mucosal biopsy from bulb and duodenum. Among 184 participants, 19 (10.3%) subjects had positive serologic test for celiac disease, including 13 (28.9%) patients in the group with refractory IDA, 5 (5.4%) patients in the group with treated IDA, and 1 patient in the healthy group. The frequency of positive serologic test in the group with IDA resistant to treatment was prominently higher than the other two groups (P<0.001). Among the patients with positive serologic celiac test who underwent endoscopy and biopsy, no histologic evidence of celiac disease was seen. They were diagnosed as potential celiac disease. Frequency of potential celiac disease in patients with refractory IDA was higher than control the subjects. Therefore, we recommend serologic screening for early detection and minimizing the complications of celiac disease and repeated iron therapy for this group.

  17. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    PubMed Central

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    by >8-fold. Conclusions: Our findings provide strong evidence that coexisting carnitine deficiency masks some indicators of biotin deficiency and support the potential importance of the ratios of acylcarnitines arising from the acyl-CoA substrates and products for biotin-dependent carboxylases in detecting the biotin deficiency that is masked by coexisting carnitine deficiency. PMID:25527659

  18. The underestimated problem of using serum magnesium measurements to exclude magnesium deficiency in adults; a health warning is needed for "normal" results.

    PubMed

    Ismail, Yasmin; Ismail, Abbas A; Ismail, Adel A A

    2010-03-01

    A major use of serum magnesium measurements in clinical practice is to identify patients with deficiency. However, numerous studies have shown that magnesium deficiency is common and may be present in over 10% of hospitalized patients, as well as in the general population. An important cause for under diagnosis of deficiency is that serum magnesium, the most commonly used test, can be normal despite negative body stores. This article focuses on the limitations of "normal" magnesium results and highlights the importance of lifestyle or "modus vivendi" as a pragmatic means of identifying those individuals potentially at risk for negative body magnesium stores. Researched peer reviewed articles on magnesium published between 1990 and 2008 in MEDLINE and EMBASE, using database keywords "magnesium, deficiency, diagnosis, treatment and hypomagnesaemia". Bibliographies of retrieved articles have been searched and followed. We have also performed a manual search of each individual issue in which most of these reports have appeared. In 183 peer reviewed studies published from 1990 to 2008, magnesium deficiency was associated with increased prevalence and risk in 11 major conditions. Similarly, in 68 studies performed over the same period, magnesium deficiency was found to predict adverse events and a decreased risk of pathology was noted when supplementation or treatment was instituted. The perception that "normal" serum magnesium excludes deficiency is common among clinicians. This perception is probably enforced by the common laboratory practice of highlighting only abnormal results. A health warning is therefore warranted regarding potential misuse of "normal" serum magnesium because restoration of magnesium stores in deficient patients is simple, tolerable, inexpensive and can be clinically beneficial.

  19. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    PubMed Central

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-01-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states. PMID:26154191

  20. Effects of Vitamin B6 Deficiency on the Composition and Functional Potential of T Cell Populations.

    PubMed

    Qian, Bingjun; Shen, Shanqi; Zhang, Jianhua; Jing, Pu

    2017-01-01

    The immune system is critical in preventing infection and cancer, and malnutrition can weaken different aspects of the immune system to undermine immunity. Previous studies suggested that vitamin B6 deficiency could decrease serum antibody production with concomitant increase in IL4 expression. However, evidence on whether vitamin B6 deficiency would impair immune cell differentiation, cytokines secretion, and signal molecule expression involved in JAK/STAT signaling pathway to regulate immune response remains largely unknown. The aim of this study is to investigate the effects of vitamin B6 deficiency on the immune system through analysis of T lymphocyte differentiation, IL-2, IL-4, and INF- γ secretion, and SOCS-1 and T-bet gene transcription. We generated a vitamin B6-deficient mouse model via vitamin B6-depletion diet. The results showed that vitamin B6 deficiency retards growth, inhibits lymphocyte proliferation, and interferes with its differentiation. After ConA stimulation, vitamin B6 deficiency led to decrease in IL-2 and increase in IL-4 but had no influence on IFN- γ . Real-time PCR analysis showed that vitamin B6 deficiency downregulated T-bet and upregulated SOCS-1 transcription. This study suggested that vitamin B6 deficiency influenced the immunity in organisms. Meanwhile, the appropriate supplement of vitamin B6 could benefit immunity of the organism.

  1. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency

    PubMed Central

    2012-01-01

    Background Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. Results A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. Conclusions The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency. PMID:22433273

  2. Identifying Potential Kidney Donors Using Social Networking Websites

    PubMed Central

    Chang, Alexander; Anderson, Emily E.; Turner, Hang T.; Shoham, David; Hou, Susan H.; Grams, Morgan

    2013-01-01

    Social networking sites like Facebook may be a powerful tool for increasing rates of live kidney donation. They allow for wide dissemination of information and discussion, and could lessen anxiety associated with a face-to-face request for donation. However, sparse data exist on the use of social media for this purpose. We searched Facebook, the most popular social networking site, for publicly available English-language pages seeking kidney donors for a specific individual, abstracting information on the potential recipient, characteristics of the page itself, and whether potential donors were tested. In the 91 pages meeting inclusion criteria, the mean age of potential recipients was 37 (range: 2–69); 88% were U.S. residents. Other posted information included the individual’s photograph (76%), blood type (64%), cause of kidney disease (43%), and location (71%). Thirty-two percent of pages reported having potential donors tested, and 10% reported receiving a live donor kidney transplant. Those reporting donor testing shared more potential recipient characteristics, provided more information about transplantation, and had higher page traffic. Facebook is already being used to identify potential kidney donors. Future studies should focus on how to safely, ethically, and effectively use social networking sites to inform potential donors and potentially expand live kidney donation. PMID:23600791

  3. Homologous recombination mediates S-phase-dependent radioresistance in cells deficient in DNA polymerase eta.

    PubMed

    Nicolay, Nils H; Carter, Rebecca; Hatch, Stephanie B; Schultz, Niklas; Prevo, Remko; McKenna, W Gillies; Helleday, Thomas; Sharma, Ricky A

    2012-11-01

    DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt's lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control.

  4. Glucose-6-phosphate dehydrogenase deficiency and antimalarial drug development.

    PubMed

    Beutler, Ernest; Duparc, Stephan

    2007-10-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is relatively common in populations exposed to malaria. This deficiency appears to provide some protection from this infection, but it can also cause hemolysis after administration of some antimalarial drugs, especially primaquine. The risk of drug-induced G6PD deficiency-related hemolysis depends on a number of factors including the G6PD variant, the drug and drug dosage schedule, patient status, and disease factors. Although a great deal is known about the molecular biology of G6PD, determining the potential for drug-induced hemolysis in the clinical setting is still challenging. This report discusses the potential strategies for assessing drug-induced G6PD deficiency-related hemolytic risk preclinically and in early clinical trials. Additionally, the issues important for conducting larger clinical trials in populations in which G6PD deficiency is prevalent are examined, with a particular focus on antimalarial drug development.

  5. Thiamin deficiency in people with obesity.

    PubMed

    Kerns, Jennifer C; Arundel, Cherinne; Chawla, Lakhmir S

    2015-03-01

    Although obesity has been viewed traditionally as a disease of excess nutrition, evidence suggests that it may also be a disease of malnutrition. Specifically, thiamin deficiency was found in 15.5-29% of obese patients seeking bariatric surgery. It can present with vague signs and symptoms and is often overlooked in patients without alcohol use disorders. This review explores the relatively new discovery of high rates of thiamin deficiency in certain populations of people with obesity, including the effects of thiamin deficiency and potential underlying mechanisms of deficiency in people with obesity. The 2 observational studies that examined the prevalence in preoperative bariatric surgery patients and gaps in our current knowledge (including the prevalence of thiamin deficiency in the general obese population and whether the current RDA for thiamin meets the metabolic needs of overweight or obese adults) are reviewed. Suggestions for future areas of research are included. © 2015 American Society for Nutrition.

  6. Nutrition Deficiencies in Children With Intestinal Failure Receiving Chronic Parenteral Nutrition.

    PubMed

    Namjoshi, Shweta S; Muradian, Sarah; Bechtold, Hannah; Reyen, Laurie; Venick, Robert S; Marcus, Elizabeth A; Vargas, Jorge H; Wozniak, Laura J

    2017-02-01

    Home parenteral nutrition (PN) is a lifesaving therapy for children with intestinal failure (IF). Our aims were to describe the prevalence of micronutrient deficiencies (vitamin D, zinc, copper, iron, selenium) in a diverse population of children with IF receiving PN and to identify and characterize risk factors associated with micronutrient deficiencies, including hematologic abnormalities. Data were collected on 60 eligible patients through retrospective chart review between May 2012 and February 2015. Descriptive statistics included frequencies, medians, interquartile ranges (IQRs), and odds ratios (ORs). Statistical analyses included χ 2 , Fisher's exact, t tests, and logistic, univariate, and multivariate regressions. Patients were primarily young (median age, 3.3 years; IQR, 0.7-8.4), Latino (62%), and male (56%), with short bowel syndrome (70%). Of 60 study patients, 88% had ≥1 deficiency and 90% were anemic for age. Of 51 patients who had all 5 markers checked, 59% had multiple deficiencies (defined as ≥3). Multivariate analysis shows multiple deficiencies were associated with nonwhite race (OR, 9.4; P = .012) and higher body mass index z score (OR, 2.2; P = .016). Children with severe anemia (hemoglobin <8.5 g/dL) made up 50% of the cohort. Nonwhite race (OR, 6.6; P = .037) and zinc deficiency (OR, 11; P = .003) were multivariate predictors of severe anemia. Micronutrient deficiency and anemia are overwhelmingly prevalent in children with IF using chronic PN. This emphasizes the importance of universal surveillance and supplementation to potentially improve quality of life and developmental outcomes. Future research should investigate how racial disparities might contribute to nutrition outcomes for children using chronic PN.

  7. Vitamin D deficiency and pregnancy rates in women undergoing single embryo, blastocyst stage, transfer (SET) for IVF/ICSI.

    PubMed

    Polyzos, Nikolaos P; Anckaert, Ellen; Guzman, Luis; Schiettecatte, Johan; Van Landuyt, Lisbet; Camus, Michel; Smitz, Johan; Tournaye, Herman

    2014-09-01

    What is the influence of vitamin D deficiency on pregnancy rates among women undergoing IVF/ICSI and Day 5 (blastocyst stage) single embryo transfer (SET)? Vitamin D deficiency results in significantly lower pregnancy rates in women undergoing single blastocyst transfer. Preliminary experiments have identified the presence of vitamin D receptors in the female reproductive system. However, results regarding the effect of vitamin D deficiency on clinical outcomes are conflicting. None of the previous studies adopted a SET strategy. Serum vitamin D concentration was measured retrospectively in patients who underwent SET on Day 5. Overall 368 consecutive infertile women treated within a period of 15 months were included in the study. All patients underwent ovarian stimulation for IVF/ICSI and Day 5 SET. Serum samples were obtained 7 days prior to embryo transfer and stored frozen at -20°C. Samples were collectively analyzed for their 25-OH vitamin D content. Vitamin D deficiency was defined as serum 25-OH vitamin D levels <20 ng/ml in accordance with the Institute of Medicine and the Endocrine Society clinical practice guidelines. Clinical pregnancy rates were significantly lower in women with vitamin D deficiency compared with those with higher vitamin D values (41 versus 54%, P = 0.015).Logistic regression analysis was performed to identify whether vitamin D deficiency is independently associated with clinical pregnancy rates after controlling for 16 potential confounding factors. According to our results vitamin D deficiency was independently associated with lower clinical pregnancy rates, odds ratios [ORs (95% confidence interval (CI) 0.61 (0.39-0.95)] for vitamin D deficiency (deficient versus non-deficient women), P = 0.030. Finally, even when restricting our analysis to women undergoing elective SET (274 patients), vitamin D deficiency was again independently associated with pregnancy rates [OR (95% CI) 0.56 (0.33-0.93), P = 0.024]. Our results refer only to

  8. Truncating mutations of HIBCH tend to cause severe phenotypes in cases with HIBCH deficiency: a case report and brief literature review.

    PubMed

    Tan, Hu; Chen, Xin; Lv, Weigang; Linpeng, Siyuan; Liang, Desheng; Wu, Lingqian

    2018-04-27

    3-hydroxyisobutryl-CoA hydrolase (HIBCH) deficiency is a rare inborn error of valine metabolism characterized by neurodegenerative symptoms and caused by recessive mutations in the HIBCH gene. In this study, utilizing whole exome sequencing, we identified two novel splicing mutations of HIBCH (c.304+3A>G; c.1010_1011+3delTGGTA) in a Chinese patient with characterized neurodegenerative features of HIBCH deficiency and bilateral syndactyly which was not reported in previous studies. Functional tests showed that both of these two mutations destroyed the normal splicing and reduced the expression of HIBCH protein. Through a literature review, a potential phenotype-genotype correlation was found that patients carrying truncating mutations tended to have more severe phenotypes compared with those with missense mutations. Our findings would widen the mutation spectrum of HIBCH causing HIBCH deficiency and the phenotypic spectrum of the disease. The potential genotype-phenotype correlation would be profitable for the treatment and management of patients with HIBCH deficiency.

  9. Common Filing Deficiencies in Abbreviated New Drug Applications Containing Clinical Endpoint Studies.

    PubMed

    Fermaglich, Lewis J; Chen, Ru; Kim, Carol Y; Chuh, Eunjung Esther; Thomas, Teena; Shetty, Daiva; Lee, Julia; Young, Johnny; Fan, Ying

    2018-01-01

    The objective of this report is to summarize common deficiencies identified in the filing reviews of abbreviated new drug applications (ANDAs) with clinical endpoint bioequivalence studies and skin irritation, sensitization, and adhesion (I/S/A) studies received by the US Food and Drug Administration (FDA) between 2007 and 2017, to help applicants avoid common deficiencies, minimize "refuse-to-receive" (RTR) actions, "information requests," and ANDA approval delays. Multiple internal FDA databases were searched to evaluate and summarize common deficiencies identified in ANDA submissions containing clinical endpoint studies and skin I/S/A studies that required review by the Division of Clinical Review. A total of 275 ANDA submissions with filing reviews from January 2007 to June 2017 were analyzed in this report. Two hundred eighteen (79.3%) filing reviews contained one or more deficiencies. Seventy-nine (28.7%) ANDAs were issued RTR letters because of major clinical deficiencies, specifically bioequivalence and clinical deficiencies, accounting for 9% of overall identified deficiencies. Twenty-two other categories of deficiencies are summarized into 4 main categories: missing information related to the clinical studies other than data sets (38%), missing data sets (35%), formulation issues (12%), and organization/format issues (6%). The most common deficiency in the "missing information related to the clinical studies other than data sets" category was "missing clarification of information" (22%). We also noted that the Division of Filing Review has identified these same types of deficiencies since assuming responsibility of the filing assessment for ANDAs with clinical endpoint BE studies and skin I/S/A studies. In conclusion, to minimize "refuse-to-receive" actions, "information requests," and approval of ANDA delays for generic drug products, applicants should submit full clinical study reports, including all data sets for drug products recommending clinical

  10. Iodine Deficiency in Australia: Be Alarmed. Opinions & Perspectives

    ERIC Educational Resources Information Center

    McElduff, Aidan; Beange, Helen

    2004-01-01

    Iodine deficiency, the leading preventable cause of intellectual impairment in the world (World Health Organization, 1999), has reappeared in Australia. Recently, we identified the re-emergence of iodine deficiency in Sydney (Gunton, Hams, Fiegert & McElduff, 1999). This has been confirmed locally (Li, Ma, Boyages & Eastman, 2001) and…

  11. Release of genetically engineered insects: a framework to identify potential ecological effects

    PubMed Central

    David, Aaron S; Kaser, Joe M; Morey, Amy C; Roth, Alexander M; Andow, David A

    2013-01-01

    Genetically engineered (GE) insects have the potential to radically change pest management worldwide. With recent approvals of GE insect releases, there is a need for a synthesized framework to evaluate their potential ecological and evolutionary effects. The effects may occur in two phases: a transitory phase when the focal population changes in density, and a steady state phase when it reaches a new, constant density. We review potential effects of a rapid change in insect density related to population outbreaks, biological control, invasive species, and other GE organisms to identify a comprehensive list of potential ecological and evolutionary effects of GE insect releases. We apply this framework to the Anopheles gambiae mosquito – a malaria vector being engineered to suppress the wild mosquito population – to identify effects that may occur during the transitory and steady state phases after release. Our methodology reveals many potential effects in each phase, perhaps most notably those dealing with immunity in the transitory phase, and with pathogen and vector evolution in the steady state phase. Importantly, this framework identifies knowledge gaps in mosquito ecology. Identifying effects in the transitory and steady state phases allows more rigorous identification of the potential ecological effects of GE insect release. PMID:24198955

  12. Hypopituitarism: growth hormone and corticotropin deficiency.

    PubMed

    Capatina, Cristina; Wass, John A H

    2015-03-01

    This article presents an overview of adult growth hormone deficiency (AGHD) and corticotropin deficiency (central adrenal failure, CAI). Both conditions can result from various ailments affecting the hypothalamus or pituitary gland (most frequently a tumor in the area or its treatment). Clinical manifestations are subtle in AGHD but potentially life-threatening in CAI. The diagnosis needs dynamic testing in most cases. Treatment of AGHD is recommended in patients with documented severe deficiency, and treatment of CAI is mandatory in all cases. Despite significant progress in replacement hormonal therapy, more physiologic treatments and more reliable indicators of treatment adequacy are still needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Glucose-6-Phosphate Dehydrogenase-Deficiency in Transfusion Medicine: The Unknown Risks

    PubMed Central

    Francis, Richard O.; Jhang, Jeffrey S.; Pham, Huy P.; Hod, Eldad A.; Zimring, James C.; Spitalnik, Steven L.

    2013-01-01

    The hallmark of glucose-6-phosphate dehydrogenase (G6PD) deficiency is red blood cell (RBC) destruction in response to oxidative stress. Patients requiring RBC transfusions may simultaneously receive oxidative medications or have concurrent infections, both of which can induce hemolysis in G6PD-deficient RBCs. Although it is not routine practice to screen healthy blood donors for G6PD deficiency, case reports identified transfusion of G6PD-deficient RBCs as causing hemolysis and other adverse events. In addition, some patient populations may be more at risk for complications associated with transfusions of G6PD-deficient RBCs because they receive RBCs from donors who are more likely to have G6PD deficiency. This review discusses G6PD deficiency, its importance in transfusion medicine, changes in the RBC antioxidant system (of which G6PD is essential) during refrigerated storage, and mechanisms of hemolysis. In addition, as yet unanswered questions that could be addressed by translational and clinical studies are identified and discussed. PMID:23815264

  14. Glucose-6-phosphate dehydrogenase deficiency in transfusion medicine: the unknown risks.

    PubMed

    Francis, R O; Jhang, J S; Pham, H P; Hod, E A; Zimring, J C; Spitalnik, S L

    2013-11-01

    The hallmark of glucose-6-phosphate dehydrogenase (G6PD) deficiency is red blood cell (RBC) destruction in response to oxidative stress. Patients requiring RBC transfusions may simultaneously receive oxidative medications or have concurrent infections, both of which can induce haemolysis in G6PD-deficient RBCs. Although it is not routine practice to screen healthy blood donors for G6PD deficiency, case reports identified transfusion of G6PD-deficient RBCs as causing haemolysis and other adverse events. In addition, some patient populations may be more at risk for complications associated with transfusions of G6PD-deficient RBCs because they receive RBCs from donors who are more likely to have G6PD deficiency. This review discusses G6PD deficiency, its importance in transfusion medicine, changes in the RBC antioxidant system (of which G6PD is essential) during refrigerated storage and mechanisms of haemolysis. In addition, as yet unanswered questions that could be addressed by translational and clinical studies are identified and discussed. © 2013 International Society of Blood Transfusion.

  15. Clinical significance of enzymatic deficiencies in the gastrointestinal tract with particular reference to lactase deficiency.

    PubMed

    Rossi, E; Lentze, M J

    1984-12-01

    The study of deficiencies of small intestinal brush-border hydrolases increased our knowledge about the specific functions of hydrolases in the digestion of smaller molecules on the microvillus surface of the absorptive cells. The sucrase-isomaltase (SI) complex has been shown to be synthesized as a precursor (pro-sucrase-isomaltase) which is then incorporated into the membrane. The hydrophobic N-terminal end of the molecule is anchored in the lipid bilayer. In SI deficiency the molecular base of the disease is still not clear. Absence of SI activity could be due to complete lack of precursor synthesis or to structural changes within the N-terminal end of the SI-complex. Deficiencies of peptide hydrolases have not been reported with the exception of enteropeptidase (EP). Here a congenital deficiency of the enzyme was observed as the primary defect in enzyme synthesis within the enterocytes and as a secondary defect due to exocrine pancreatic insufficiency. In contrast to the primary EP deficiency, the activity of EP can be restored in the cases of exocrine pancreatic insufficiency by treatment with pancreatic extracts. Primary lactase deficiency exists in various forms. Besides congenital lactase deficiency, the late onset or adult type of lactase deficiency has been observed. The latter occurs in many different ethnic groups around the world. Here, using gel electrophoresis and immunoelectrophoresis, the lack of enzyme activity could be shown to be a primary defect in enzyme protein synthesis. In man and in the rat, two different lactases have been identified. In contrast to adult lactase, fetal lactase contains sialic acid at the end of carbohydrate side chains.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Nutrient deficiencies associated with nutrition-focused physical findings of the oral cavity.

    PubMed

    Radler, Diane Rigassio; Lister, Tracy

    2013-12-01

    Conducting nutrition-focused physical examinations and reporting the findings from the perspective of nutrition status strengthen the practitioner's assessments, interventions, and monitoring. The nutrition-focused physical examination of the oral cavity is particularly useful to identify nutrient deficiencies early and with accuracy as the tissues in the oral mucosa have a turnover rate of <1 week. As biomarkers may not always be reliable for identifying micronutrient deficiencies, these physical examinations are important for providing comprehensive nutrition care. The purpose of this article is to discuss the methods of conducting a nutrition-focused oral screening examination and compile and document the evidence regarding the effects of micronutrient deficiencies on the oral mucosa. The information is formatted into a table that can be used as a tool when conducting an oral screening by identifying possible deficiencies based on the observations and other relevant findings. The tool will also guide the practitioner in confirming the physical findings, suggesting interventions to treat the deficiency and how to monitor the outcomes.

  17. Towards a general framework for predicting threat status of data-deficient species from phylogenetic, spatial and environmental information.

    PubMed

    Jetz, Walter; Freckleton, Robert P

    2015-02-19

    In taxon-wide assessments of threat status many species remain not included owing to lack of data. Here, we present a novel spatial-phylogenetic statistical framework that uses a small set of readily available or derivable characteristics, including phylogenetically imputed body mass and remotely sensed human encroachment, to provide initial baseline predictions of threat status for data-deficient species. Applied to assessed mammal species worldwide, the approach effectively identifies threatened species and predicts the geographical variation in threat. For the 483 data-deficient species, the models predict highly elevated threat, with 69% 'at-risk' species in this set, compared with 22% among assessed species. This results in 331 additional potentially threatened mammals, with elevated conservation importance in rodents, bats and shrews, and countries like Colombia, Sulawesi and the Philippines. These findings demonstrate the future potential for combining phylogenies and remotely sensed data with species distributions to identify species and regions of conservation concern. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Factor VII deficiency: a novel missense variant and genotype-phenotype correlation in patients from Southern Italy.

    PubMed

    Tiscia, Giovanni; Favuzzi, Giovanni; Chinni, Elena; Colaizzo, Donatella; Fischetti, Lucia; Intrieri, Mariano; Margaglione, Maurizio; Grandone, Elvira

    2017-01-01

    This study aimed at attempting to correlate genotype and phenotype in factor VII deficiency. Here, we present molecular and clinical findings of 10 patients with factor VII deficiency. From 2013 to 2016, 10 subjects were referred to our center because of a prolonged prothrombin time identified during routine or presurgery examinations or after a laboratory assessment of a bleeding episode. Mutation characterization was performed using the bioinformatics applications PROMO, SIFT, and Polyphen-2. Structural changes in the factor VII protein were analyzed using the SPDB viewer tool. Of the 10 variants we identified, 1 was responsible for a novel missense change (c.1199G>C, p.Cys400Ser); in 2 cases we identified the c.-54G>A and c.509G>A (p.Arg170His) polymorphic variants in the 5'-upstream region of the factor VII gene and exon 6, respectively. To our knowledge, neither of these polymorphic variants has been described previously in factor VII-deficient patients. In silico predictions showed differences in binding sites for transcription factors caused by the c.-54G>A variant and a probable damaging effect of the p.Cys400Ser missense change on factor VII active conformation, leading to breaking of the Cys400-Cys428 disulfide bridge. Our findings further suggest that, independently of factor VII levels and of variants potentially affecting factor VII levels, environmental factors, e.g., trauma, could heavily influence the clinical phenotype of factor VII-deficient patients.

  19. Vitamin Excess and Deficiency.

    PubMed

    Diab, Liliane; Krebs, Nancy F

    2018-04-01

    The published literature supports the high prevalence of supplement use in children and adolescents in the United States. Pediatricians today are faced with questions from parents and patients about the benefits, safety, efficacy, and correct dose of vitamins and minerals. In this article, we review 7 vitamins with the most clinical relevance as judged by abundance in food, risks and symptoms of deficiency, and potential for toxicity. Specifically, we focus on possible clinical scenarios that can be indicative of nutritional deficiency. We synthesize and summarize guidelines from nutrition experts, various medical societies, the World Health Organization, and the American Academy of Pediatrics. © American Academy of Pediatrics, 2018. All rights reserved.

  20. ENU Mutagenesis in Mice Identifies Candidate Genes For Hypogonadism

    PubMed Central

    Weiss, Jeffrey; Hurley, Lisa A.; Harris, Rebecca M.; Finlayson, Courtney; Tong, Minghan; Fisher, Lisa A.; Moran, Jennifer L.; Beier, David R.; Mason, Christopher; Jameson, J. Larry

    2012-01-01

    Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low density genome-wide SNP arrays. Ten of the fifteen lines were pursued further using higher resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility. PMID:22258617

  1. Short stature before puberty: which children should be screened for SHOX deficiency?

    PubMed

    Wolters, Barbara; Lass, Nina; Wunsch, Rainer; Böckmann, Beatrix; Austrup, Frank; Reinehr, Thomas

    2013-01-01

    We studied the prevalence of deficiency in the short stature homeobox containing gene (SHOX) in prepubertal short-statured children and analyzed the clinical and radiological signs. Screening for SHOX deficiency was performed in 449 prepubertal short-statured children (54% females, aged 4-10 years) by direct sequencing and multiplex ligation probe-dependent amplification. Children with SHOX deficiency were compared to 1:2 age- and gender-matched prepubertal children without SHOX deficiency with respect to left-hand radiographs and anthropometrics including different ratios to height and proposed scores. We identified 22 (4.9%) patients with SHOX deficiency (64% point mutations). Children with SHOX deficiency demonstrated a mesomelic shortening of extremities. Lower leg lengths but not forearm length was reduced in children <8 years with SHOX deficiency. 36% of all children and none of the children <8 years with SHOX deficiency demonstrated any typical radiologic sign. Increased sitting height-to-height ratio and decreased extremities-to-trunk ratio demonstrated the best positive and negative predictive values to identify SHOX deficiency. Screening for SHOX deficiency seems rational, especially in children with increased sitting height-to-height ratio or decreased extremities-to-trunk ratio. These criteria were also valid in young children. © 2013 S. Karger AG, Basel.

  2. Homologous recombination mediates S-phase-dependent radioresistance in cells deficient in DNA polymerase eta

    PubMed Central

    Sharma, Ricky A.

    2012-01-01

    DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt’s lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control. PMID:22822095

  3. Coenzyme Q10 deficiencies in neuromuscular diseases.

    PubMed

    Artuch, Rafael; Salviati, Leonardo; Jackson, Sandra; Hirano, Michio; Navas, Plácido

    2009-01-01

    Coenzyme Q (CoQ) is an essential component of the respiratory chain but also participates in other mitochondrial functions such as regulation of the transition pore and uncoupling proteins. Furthermore, this compound is a specific substrate for enzymes of the fatty acids beta-oxidation pathway and pyrimidine nucleotide biosynthesis. Furthermore, CoQ is an antioxidant that acts in all cellular membranes and lipoproteins. A complex of at least ten nuclear (COQ) genes encoded proteins synthesizes CoQ but its regulation is unknown. Since 1989, a growing number of patients with multisystemic mitochondrial disorders and neuromuscular disorders showing deficiencies of CoQ have been identified. CoQ deficiency caused by mutation(s) in any of the COQ genes is designated primary deficiency. Other patients have displayed other genetic defects independent on the CoQ biosynthesis pathway, and are considered to have secondary deficiencies. This review updates the clinical and molecular aspects of both types of CoQ deficiencies and proposes new approaches to understanding their molecular bases.

  4. Use of Event-Related Potentials to Identify Language and Reading Skills

    ERIC Educational Resources Information Center

    Molfese, Victoria J.; Molfese, Dennis L.; Beswick, Jennifer L.; Jacobi-Vessels, Jill; Molfese, Peter J.; Molnar, Andrew E.; Wagner, Mary C.; Haines, Brittany L.

    2008-01-01

    The extent to which oral language and emergent literacy skills are influenced by event-related potential measures of phonological processing was examined. Results revealed that event-related potential responses identify differences in letter naming but not receptive language skills.

  5. Three major glucose-6-phosphate dehydrogenase-deficient polymorphic variants identified in Mazandaran state of Iran.

    PubMed

    Mesbah-Namin, Seyed A; Sanati, Mohammad H; Mowjoodi, Alireza; Mason, Philip J; Vulliamy, Tom J; Noori-Daloii, Mohammad R

    2002-06-01

    We report the first investigation of glucose- 6-phosphate dehydrogenase (G6PD) deficiency among the Mazandaranians in the north of Iran. We analysed the G6PD gene in 74 unrelated G6PD-deficient men with a history of favism. Molecular analysis revealed three major different polymorphic variants: G6PD Mediterranean 66.2% (49 out of 74), G6PD Chatham 27% (20 out of 74), G6PD Cosenza 6.75% (5 out of 74). These findings indicated a higher prevalence of G6PD Chatham in this Iranian population than anywhere else in the world. In addition, the distribution of these G6PD variants is more similar to that found in an Italian population than in other Middle Eastern countries.

  6. TDRP deficiency contributes to low sperm motility and is a potential risk factor for male infertility.

    PubMed

    Mao, Shanhua; Wu, Fei; Cao, Xinyi; He, Min; Liu, Naijia; Wu, Huihui; Yang, Zhihong; Ding, Qiang; Wang, Xuanchun

    2016-01-01

    TDRP (Testis Development-Related Protein), a nuclear factor, might play an important role in spermatogenesis. However, the molecular mechanisms of TDRP underlying these fundamental processes remain elusive. In this study, a Tdrp-deficient mouse model was generated. Fertility tests and semen analysis were performed. Tdrp-deficient mice were not significantly different from wild-type littermates in development of testes, genitourinary tract, or sperm count. Morphologically, spermatozoa of the Tdrp-deficient mice was not significantly different from the wild type. Several sperm motility indexes, i.e. the average path velocity (VAP), the straight line velocity (VSL) and the curvilinear velocity (VCL) were significantly decreased in Tdrp-deficient mice (p<0.05). The proportion of slow velocity sperm also increased significantly in the mutant mice (p<0.05). However, fertility tests showed that no significant difference inaverage offspring amount (AOA), frequency of copulatory plug (FCP), and frequency of conception (FC). Furthermore, TDRP1 could interact with PRM2, which might be the molecular mechanism of its nuclear function in spermatozoa. In conclusion, these data collectively demonstrated that Tdrp deficiency impaired the sperm motility, but Tdrp deficiency alone was not sufficient to cause male infertility in mice. Additionally, TDRP1 might participate in spermatogenes is through interaction with PRM2.

  7. Vitamin B6 deficiency: a potential cause of refractory seizures in adults.

    PubMed

    Gerlach, Anthony T; Thomas, Sheela; Stawicki, Stanislaw P; Whitmill, Melissa L; Steinberg, Steven M; Cook, Charles H

    2011-03-01

    In children, vitamin B(6) (pyridoxine) deficiency has been described as a cause of seizures that are refractory to conventional antiepileptic medications. We describe the clinical presentation of 3 adults with refractory seizures (later diagnosed with vitamin B(6) deficiency) that resolved after pyridoxine treatment. Case series. Tertiary care surgical intensive care unit. In the first case, a 54-year-old male with history of alcoholic cirrhosis developed new-onset seizures refractory to phenytoin and levetiracetam 8 days after liver transplantation. In the second case, a 59-year-old male with hepatitis C infection developed intracranial hemorrhage and new-onset seizures refractory to phenytoin, levetiracetam, and pentobarbital. The third patient is a 78-year-old male with a history of alcohol dependence who was admitted for an intraventricular bleed and developed new onset of refractory seizures. Intravenous pyridoxine followed by oral pyridoxine. In all 3 cases, seizures persisted despite escalation of conventional antiepileptic medications but resolved within 2 days of pyridoxine supplementation. In each case, low serum pyridoxal 5'-phosphate concentrations normalized with pyroxidine administration. Although refractory seizures caused by vitamin B(6) deficiency are rare in adults, it should be considered in critically ill adult patients with refractory seizures.

  8. Monocarboxylate transporter 1 deficiency and ketone utilization.

    PubMed

    van Hasselt, Peter M; Ferdinandusse, Sacha; Monroe, Glen R; Ruiter, Jos P N; Turkenburg, Marjolein; Geerlings, Maartje J; Duran, Karen; Harakalova, Magdalena; van der Zwaag, Bert; Monavari, Ardeshir A; Okur, Ilyas; Sharrard, Mark J; Cleary, Maureen; O'Connell, Nuala; Walker, Valerie; Rubio-Gozalbo, M Estela; de Vries, Maaike C; Visser, Gepke; Houwen, Roderick H J; van der Smagt, Jasper J; Verhoeven-Duif, Nanda M; Wanders, Ronald J A; van Haaften, Gijs

    2014-11-13

    Ketoacidosis is a potentially lethal condition caused by the imbalance between hepatic production and extrahepatic utilization of ketone bodies. We performed exome sequencing in a patient with recurrent, severe ketoacidosis and identified a homozygous frameshift mutation in the gene encoding monocarboxylate transporter 1 (SLC16A1, also called MCT1). Genetic analysis in 96 patients suspected of having ketolytic defects yielded seven additional inactivating mutations in MCT1, both homozygous and heterozygous. Mutational status was found to be correlated with ketoacidosis severity, MCT1 protein levels, and transport capacity. Thus, MCT1 deficiency is a novel cause of profound ketoacidosis; the present work suggests that MCT1-mediated ketone-body transport is needed to maintain acid-base balance.

  9. Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean

    USDA-ARS?s Scientific Manuscript database

    Iron deficiency chlorosis (IDC) is a significant yield-limiting problem in some of the major soybean production regions in the United States. Soybean plants display a variety of symptoms, ranging from slight yellowing of the leaves to interveinal chlorosis and sometimes it is followed by stunted gr...

  10. Glucose-6-Phosphate Dehydrogenase Deficiency Genetic Variants in Malaria Patients in Southwestern Ethiopia.

    PubMed

    Carter, Tamar E; Mekonnen, Seleshi Kebede; Lopez, Karen; Bonnell, Victoria; Damodaran, Lambodhar; Aseffa, Abraham; Janies, Daniel A

    2018-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked erythrocyte enzyme disorder with relevance to malaria treatment policy. Treatment with the antimalarial primaquine can result in hemolytic anemia in G6PD-deficient patients. With increased interest in primaquine use, it is important to identify G6PD variants in Ethiopia to inform malaria treatment policy. In the present study, mutations in the G6PD gene are identified in a sample of patients with malaria in Jimma town in southwest Ethiopia. Plasmodium species of infection were confirmed using polymerase chain reaction (PCR) and gel electrophoresis. PCR and Sanger sequencing were performed to observe a portion of the G6PD gene where the common G6PD mutations (A376G, G202A, and C563T) are found. Molecular analysis revealed that most of the samples were single Plasmodium vivax infections (83.7%). For G6PD genotyping, A376G was detected in 23.26% of individuals, whereas G202A and C563T were absent. Three other uncommon mutations were identified: rs782669677 (535G→A), rs370658483, (485 + 37 G→T), and a new mutation at chrX:154535443(C→T). Bioinformatic analysis of these mutations' potential functional impact suggests minimal effect on protein function. The discovery of both common and uncommon G6PD mutations contributes to the discussion on G6PD deficiency and appropriate primaquine treatment in Ethiopia.

  11. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet.

    PubMed

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D; Elsea, Sarah H

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation.

  12. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet

    PubMed Central

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D.

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation. PMID:28961260

  13. Sociodemographic and cultural determinants of sleep deficiency: implications for cardiometabolic disease risk.

    PubMed

    Knutson, Kristen L

    2013-02-01

    Sleep is a biological imperative associated with cardiometabolic disease risk. As such, a thorough discussion of the sociocultural and demographic determinants of sleep is warranted, if not overdue. This paper begins with a brief review of the laboratory and epidemiologic evidence linking sleep deficiency, which includes insufficient sleep and poor sleep quality, with increased risk of chronic cardiometabolic diseases such as obesity, diabetes and hypertension. Identification of the determinants of sleep deficiency is the critical next step to understanding the role sleep plays in human variation in health and disease. Therefore, the majority of this paper describes the different biopsychosocial determinants of sleep, including age, gender, psychosocial factors (depression, stress and loneliness), socioeconomic position and race/ethnicity. In addition, because sleep duration is partly determined by behavior, it will be shaped by cultural values, beliefs and practices. Therefore, possible cultural differences that may impact sleep are discussed. If certain cultural, ethnic or social groups are more likely to experience sleep deficiency, then these differences in sleep could increase their risk of cardiometabolic diseases. Furthermore, if the mechanisms underlying the increased risk of sleep deficiency in certain populations can be identified, interventions could be developed to target these mechanisms, reduce sleep differences and potentially reduce cardiometabolic disease risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Congenital deficiency of alpha feto-protein.

    PubMed

    Sharony, Reuven; Zadik, Idit; Parvari, Ruti

    2004-10-01

    Alpha-fetoprotein (AFP) is the main fetus serum glycoprotein with a very low concentration in the adult. AFP deficiency is a rare phenomenon. We studied two families with congenital AFP deficiency and searched for mutations in the AFP gene. We identified one mutation of 2 base deletion in exon 8, in both families, that leads to the congenital deficiency of AFP. The mutation nt930-931delCT (T294fs25X) creates a frameshift after codon 294 that leads to a stop codon after 24 amino acids, thus truncating the normal length of AFP of 609 amino acids. All the affected children were found to be homozygous for the mutation as was one of the fathers. The affected individuals were asymptomatic and presented normal development. This first identification of a mutation in the AFP gene demonstrates for the first time that deficiency of AFP is compatible with human normal fetal development and further reproduction in males.

  15. Iron deficiency and iron-deficiency anemia in the first two years of life: strategies to prevent loss of developmental potential.

    PubMed

    Black, Maureen M; Quigg, Anna M; Hurley, Kristen M; Pepper, Margery Reese

    2011-11-01

    This article examines the association of iron deficiency (ID) and iron deficiency anemia (IDA) with children's development and behavior, with the goal of providing recommendations to prevent the developmental loss associated with these conditions. Children's risk for ID and IDA is particularly high during the second 6 months of life when prenatal stores are depleted. Longitudinal studies from infancy through adolescence and early adulthood suggest that socioemotional development is uniquely vulnerable to ID and IDA, perhaps being associated with shared neural pathways, and the effects of early iron deficiencies may be irreversible. In addition to direct effects on brain function, ID and IDA may also affect child development indirectly through non-responsive mother-child interactions. Maternal ID is a global problem that may contribute to high rates of maternal depression and non-responsive caregiving. Intervention trials illustrate that children benefit from both nutritional intervention and early learning interventions that promote responsive mother-child interactions. Recommendations to reduce the developmental loss associated with ID and IDA are to reduce the incidence of these conditions by efforts to prevent premature birth, delay cord clamping, ensure adequate maternal iron status, provide iron-rich complementary foods, and ensure access to postnatal interventions that promote responsive mother-infant interaction patterns and early learning opportunities for infants. © 2011 International Life Sciences Institute.

  16. Therapeutics: Gene Therapy for Alpha-1 Antitrypsin Deficiency.

    PubMed

    Gruntman, Alisha M; Flotte, Terence R

    2017-01-01

    This review seeks to give an overview of alpha-1 antitrypsin deficiency, including the different disease phenotypes that it encompasses. We then describe the different therapeutic endeavors that have been undertaken to address these different phenotypes. Lastly we discuss future potential therapeutics, such as genome editing, and how they may play a role in treating alpha-1 antitrypsin deficiency.

  17. Clinical, physiological and pathological characterisation of the sensory predominant peripheral neuropathy in copper deficiency.

    PubMed

    Taylor, Sean W; Laughlin, Ruple S; Kumar, Neeraj; Goodman, Brent; Klein, Christopher J; Dyck, Peter J; Dyck, P James B

    2017-10-01

    Myelopathy is considered the most common neurological complication of copper deficiency. Concurrent peripheral neuropathy has been recognised in association with copper deficiency but has not been well characterised. To characterise the clinical, physiological and pathological features of copper-deficient peripheral neuropathy. Patients with simultaneous copper deficiency (<0.78 μg/mL) and peripheral neuropathy seen at the Mayo Clinic from 1985 to 2005 were identified. 34 patients were identified (median age 55 years, range 36-78) including 24 women and 10 men. Myelopathy was found in 21 patients. Median serum copper level was 0.11 μg/mL (range 0-0.58). The most frequent clinical and electrophysiological pattern of neuropathy was a sensory predominant length-dependent peripheral neuropathy (71%). Somatosensory evoked potentials demonstrated central slowing supporting myelopathy (96%). Quantitative sensory testing demonstrated both small and large fibre involvement (100%). Autonomic reflex screens (77%) and thermoregulatory sweat test (67%) confirmed sudomotor dysfunction. 14 cutaneous nerve biopsies revealed loss of myelinated nerve fibres (86%), increased regenerative clusters (50%), increased rates of axonal degeneration (91%) and increased numbers of empty nerve strands (73%). 71% of biopsies demonstrated epineurial perivascular inflammation. An axonal, length-dependent sensory predominant peripheral neuropathy causing sensory ataxia is characteristic of copper deficiency usually co-occurring with myelopathy. Neurophysiological testing confirms involvement of large, greater than small fibres. The pathological findings suggest axonal degeneration and repair. Inflammatory infiltrates are common but are small and of doubtful pathological significance. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves.

    PubMed

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Guo, Peng; Li, Yan; Chen, Li-Song

    2015-11-04

    MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Most research, however, has focused on nitrogen (N), phosphorus (P), sulfur (S), copper (Cu) and iron (Fe) deficiencies, limited data are available on the differential expression of miRNAs and their target genes in response to deficiencies of other nutrient elements. In this study, we identified the known and novel miRNAs as well as the boron (B)-deficiency-responsive miRNAs from citrus leaves in order to obtain the potential miRNAs related to the tolerance of citrus to B-deficiency. Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were supplied every other day with B-deficient (0 μM H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. Thereafter, we sequenced two small RNA libraries from B-deficient and -sufficient (control) citrus leaves, respectively, using Illumina sequencing. Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) down-regulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing

  19. Identifying potential kidney donors using social networking web sites.

    PubMed

    Chang, Alexander; Anderson, Emily E; Turner, Hang T; Shoham, David; Hou, Susan H; Grams, Morgan

    2013-01-01

    Social networking sites like Facebook may be a powerful tool for increasing rates of live kidney donation. They allow for wide dissemination of information and discussion and could lessen anxiety associated with a face-to-face request for donation. However, sparse data exist on the use of social media for this purpose. We searched Facebook, the most popular social networking site, for publicly available English-language pages seeking kidney donors for a specific individual, abstracting information on the potential recipient, characteristics of the page itself, and whether potential donors were tested. In the 91 pages meeting inclusion criteria, the mean age of potential recipients was 37 (range: 2-69); 88% were US residents. Other posted information included the individual's photograph (76%), blood type (64%), cause of kidney disease (43%), and location (71%). Thirty-two percent of pages reported having potential donors tested, and 10% reported receiving a live-donor kidney transplant. Those reporting donor testing shared more potential recipient characteristics, provided more information about transplantation, and had higher page traffic. Facebook is already being used to identify potential kidney donors. Future studies should focus on how to safely, ethically, and effectively use social networking sites to inform potential donors and potentially expand live kidney donation. © 2013 John Wiley & Sons A/S.

  20. Low RMRratio as a Surrogate Marker for Energy Deficiency, the Choice of Predictive Equation Vital for Correctly Identifying Male and Female Ballet Dancers at Risk.

    PubMed

    Staal, Sarah; Sjödin, Anders; Fahrenholtz, Ida; Bonnesen, Karen; Melin, Anna Katarina

    2018-06-22

    Ballet dancers are reported to have an increased risk for energy deficiency with or without disordered eating behavior. A low ratio between measured ( m ) and predicted ( p ) resting metabolic rate (RMR ratio  < 0.90) is a recognized surrogate marker for energy deficiency. We aimed to evaluate the prevalence of suppressed RMR using different methods to calculate p RMR and to explore associations with additional markers of energy deficiency. Female (n = 20) and male (n = 20) professional ballet dancers, 19-35 years of age, were enrolled. m RMR was assessed by respiratory calorimetry (ventilated open hood). p RMR was determined using the Cunningham and Harris-Benedict equations, and different tissue compartments derived from whole-body dual-energy X-ray absorptiometry assessment. The protocol further included assessment of body composition and bone mineral density, blood pressure, disordered eating (Eating Disorder Inventory-3), and for females, the Low Energy Availability in Females Questionnaire. The prevalence of suppressed RMR was generally high but also clearly dependent on the method used to calculate p RMR, ranging from 25% to 80% in males and 35% to 100% in females. Five percent had low bone mineral density, whereas 10% had disordered eating and 25% had hypotension. Forty percent of females had elevated Low Energy Availability in Females Questionnaire score and 50% were underweight. Suppressed RMR was associated with elevated Low Energy Availability in Females Questionnaire score in females and with higher training volume in males. In conclusion, professional ballet dancers are at risk for energy deficiency. The number of identified dancers at risk varies greatly depending on the method used to predict RMR when using RMR ratio as a marker for energy deficiency.

  1. Reticulocyte hemoglobin equivalent as a potential marker for diagnosis of iron deficiency.

    PubMed

    Toki, Yasumichi; Ikuta, Katsuya; Kawahara, Yoshie; Niizeki, Noriyasu; Kon, Masayuki; Enomoto, Motoki; Tada, Yuko; Hatayama, Mayumi; Yamamoto, Masayo; Ito, Satoshi; Shindo, Motohiro; Kikuchi, Yoko; Inoue, Mitsutaka; Sato, Kazuya; Fujiya, Mikihiro; Okumura, Toshikatsu

    2017-07-01

    Evaluation of parameters relating to serum ferritin and iron is critically important in the diagnosis of iron deficiency anemia (IDA). The recent development of automated systems for hematology analysis has made it possible to measure reticulocyte hemoglobin equivalent (RET-He), which is thought to reflect iron content in reticulocytes, in the same sample used for complete blood count tests. If RET-He is, indeed, capable of evaluating iron deficiency (ID), it would be useful for immediate diagnosis of IDA. In the present study, we examined the usefulness of RET-He for diagnosis of ID. Blood samples were obtained from 211 patients. Anemia was defined as hemoglobin (Hb) level of <12 g/dL. Iron deficiency was defined as serum ferritin level of <12 ng/mL. Patients were classified into four groups: IDA, ID, control, and non-ID with anemia. Patients in the IDA group had significantly lower RET-He levels than those in the control group. RET-He correlated with serum ferritin in the IDA and ID groups. The area under the curve for RET-He was 0.902, indicating that RET-He facilitates the diagnosis of ID with high accuracy. RET-He changed in parallel with changes in Hb during iron administration for 21 IDA patients. Our results indicate that RET-He may be a clinically useful marker for determining ID in the general population.

  2. Primary and secondary CoQ(10) deficiencies in humans.

    PubMed

    Quinzii, Catarina M; Hirano, Michio

    2011-01-01

    CoQ(10) deficiencies are clinically and genetically heterogeneous. This syndrome has been associated with five major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) cerebellar ataxia, (4) isolated myopathy, and (5) nephrotic syndrome. In a few patients, pathogenic mutations have been identified in genes involved in the biosynthesis of CoQ(10) (primary CoQ(10) deficiencies) or in genes not directly related to CoQ(10) biosynthesis (secondary CoQ(10) deficiencies). Respiratory chain defects, ROS production, and apoptosis variably contribute to the pathogenesis of primary CoQ(10) deficiencies. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  3. Addressing Perceived Skill Deficiencies in Student Affairs Graduate Preparation Programs

    ERIC Educational Resources Information Center

    Cooper, Jay; Mitchell, Donald, Jr.; Eckerle, Kayle; Martin, Kyle

    2016-01-01

    This article explores existing literature on perceived skill deficiencies among entry-level student affairs practitioners. Through a review of recent literature, seven perceived skill deficiencies were identified, including budgeting and financial management, strategic planning, research and assessment, legal knowledge and standards, supervision,…

  4. Serum vitamin D concentration and potential risk factors for its deficiency in HIV positive individuals.

    PubMed

    Etminani-Esfahani, Maryam; Khalili, Hossein; Soleimani, Nahid; Jafari, Sirous; Abdollahi, Alireza; Khazaeipour, Zahra; Gholami, Kheirollah

    2012-03-01

    Human immunodeficiency virus (HIV) infected individuals are prone to malnutrition, and deficiencies of some minerals and vitamins. The aim of this study is to evaluate the frequency of vitamin D deficiency and determine the possible risk factors associated with this problem in HIV-infected individuals. This cross-sectional study was performed on 98 adult patients referred to the Emam Khomeini Hospital Complex, Tehran, Iran. The patients' serum vitamin D concentration was determined using radioimmunoassay method. The possible correlations between demographic and clinical data with the level of vitamin D were evaluated. Vitamin D levels less than 35 nmol/l were considered as deficient in this study. Eighty-five (86.7%) of the patients had serum vitamin D deficiency (concentrations less than 35 nmol/l) in this study. Coinfection with hepatitis C virus (HCV) was present in 54 (55.1%) of the patients. Only daily intake of vitamin D (r = 0.304, p = 0.002), duration of sun exposure (r = 0.268, p = 0.009), the level of PTH (r = -0.459, p < 0.001), daily intake of calcium (r = 0.239, p = 0.018) and GFR of more than 90 ml/min (OR = 1.208, CI 95% = 1.080-1.350, p = 0.033) had a correlation with serum vitamin D concentration. Being female (OR = 7.224, CI 95% = 3.640-14.335, p < 0.001), unemployed (OR = 1.627, CI 95%= 1.209-2.190, p < 0.001) and infected with HCV (OR = 1.811, CI 95% = 1.331-2.465, p < 0.001) were related to the severe serum vitamin D deficiency. Vitamin D deficiency is a common problem in Iranian HIV-infected patients and with concern of this vitamin's important role in health issues, early evaluation of its status and providing appropriate nutritional support seems to be important.

  5. Iron deficiency and new insights into therapy.

    PubMed

    Low, Michael Sy; Grigoriadis, George

    2017-07-17

    Iron deficiency and iron deficiency anaemia remain prevalent in Australia. The groups at highest risk are pre-menopausal women, socially disadvantaged people and those of Indigenous background. Diagnosing iron deficiency using a full blood examination and iron studies can be difficult and can be further complicated by concomitant inflammation. Results of iron studies should always be interpreted as an overall picture rather than focusing on individual parameters. In difficult clinical scenarios, soluble transferrin receptor assays can be useful. Management of iron deficiency involves identification and treatment of the cause of iron deficiency, as well as effective iron replacement. Clinicians should always take a detailed history and perform a comprehensive physical examination of a patient with iron deficiency. Patients should be monitored even if a likely cause of iron deficiency is identified. Patients who fail to respond to iron replacement or maintain iron status should be referred for further investigation, including endoscopy to exclude internal bleeding. Both enteral and parenteral iron are effective at replacing iron. For most adult patients, we recommend trialling daily oral iron (30-100 mg of elemental iron) as the first-line therapy. Safety and efficacy of intravenous iron infusions have improved with the availability of a newer formulation, ferric carboxymaltose. Patients who fail to respond to oral iron replacement can be safely managed with intravenous iron. Blood transfusion for iron deficiency anaemia should be reserved for life-threatening situations and should always be followed by appropriate iron replacement.

  6. Long-Lasting Neural and Behavioral Effects of Iron Deficiency in Infancy

    PubMed Central

    Lozoff, Betsy; Beard, John; Connor, James; Felt, Barbara; Georgieff, Michael; Schallert, Timothy

    2006-01-01

    Infants are at high risk for iron deficiency and iron-deficiency anemia. This review summarizes evidence of long-term effects of iron deficiency in infancy. Follow-up studies from preschool age to adolescence report poorer cognitive, motor, and social-emotional function, as well as persisting neurophysiologic differences. Research in animal models points to mechanisms for such long-lasting effects. Potential mechanisms relate to effects of iron deficiency during brain development on neurometabolism, myelination, and neurotransmitter function. PMID:16770951

  7. A deficiency screen of the major autosomes identifies a gene (matrimony) that is haplo-insufficient for achiasmate segregation in Drosophila oocytes.

    PubMed Central

    Harris, David; Orme, Charisse; Kramer, Joseph; Namba, Luria; Champion, Mia; Palladino, Michael J; Natzle, Jeanette; Hawley, R Scott

    2003-01-01

    In Drosophila oocytes, euchromatic homolog-homolog associations are released at the end of pachytene, while heterochromatic pairings persist until metaphase I. A screen of 123 autosomal deficiencies for dominant effects on achiasmate chromosome segregation has identified a single gene that is haplo-insufficient for homologous achiasmate segregation and whose product may be required for the maintenance of such heterochromatic pairings. Of the deficiencies tested, only one exhibited a strong dominant effect on achiasmate segregation, inducing both X and fourth chromosome nondisjunction in FM7/X females. Five overlapping deficiencies showed a similar dominant effect on achiasmate chromosome disjunction and mapped the haplo-insufficient meiotic gene to a small interval within 66C7-12. A P-element insertion mutation in this interval exhibits a similar dominant effect on achiasmate segregation, inducing both high levels of X and fourth chromosome nondisjunction in FM7/X females and high levels of fourth chromosome nondisjunction in X/X females. The insertion site for this P element lies immediately upstream of CG18543, and germline expression of a UAS-CG18543 cDNA construct driven by nanos-GAL4 fully rescues the dominant meiotic defect. We conclude that CG18543 is the haplo-insufficient gene and have renamed this gene matrimony (mtrm). Cytological studies of prometaphase and metaphase I in mtrm hemizygotes demonstrate that achiasmate chromosomes are not properly positioned with respect to their homolog on the meiotic spindle. One possible, albeit speculative, interpretation of these data is that the presence of only a single copy of mtrm disrupts the function of whatever "glue" holds heterochromatically paired homologs together from the end of pachytene until metaphase I. PMID:14573476

  8. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma.

    PubMed

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-03-03

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.

  9. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma

    PubMed Central

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-01-01

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies. PMID:28256603

  10. Vitamin B12 deficiency is associated with geographical latitude and solar radiation in the older population.

    PubMed

    Cabrera, Sebastián; Benavente, David; Alvo, Miriam; de Pablo, Paola; Ferro, Charles J

    2014-11-01

    Vitamin B12 and folic acid deficiency are common in the older and are associated with several conditions including anaemia, cardiovascular disease, cognitive impairment and cancer. Evidence from in vitro studies suggests that solar radiation can degrade both vitamins in the skin. Chile is the longest country in the world running perfectly North-South making it an ideal place to study potential associations of latitude and solar radiation on vitamin B12 and folic acid deficiency. The objective was to examine the association between vitamin B12 and folic acid deficiencies and latitude. Plasma samples were collected from Chileans aged 65+ years (n=1013) living across the whole country and assayed for vitamin B12 and folic acid concentrations as part of the Chilean Health Survey 2009-2010, which is a national representative sample study. Overall, the prevalence of vitamin B12 deficiency was 11.3%, with the prevalence in the North of the country being significantly greater than in the Central and South zones (19.1%,10.5%, and 5.7%, respectively; P<0.001). The prevalence of folic acid deficiency in the whole cohort was 0.7% with no difference between the 3 geographical zones. Using logistic regression analyses, vitamin B12 deficiency was significantly associated with geographical latitude (OR 0.910 [95% confidence intervals 0.890-0.940], P<0.001) and solar radiation (OR 1.203 [95% confidence intervals 1.119-1.294], P<0.001). These associations persisted after adjustments for confounders (OR 0.930, P<0.001 and 1.198, P=0.002, respectively). In the Chilean population of 65+, the prevalence of vitamin B12 deficiency is associated with living closer to the Equator and solar radiation. Although degradation by solar radiation might explain this observation, further work is required to establish the potential mechanisms. In countries that routinely fortify food with folic acid, efforts to identify vitamin B12 deficiency might be more cost-efficiently targeted in areas closest

  11. Arginase-1 deficiency.

    PubMed

    Sin, Yuan Yan; Baron, Garrett; Schulze, Andreas; Funk, Colin D

    2015-12-01

    Arginase-1 (ARG1) deficiency is a rare autosomal recessive disorder that affects the liver-based urea cycle, leading to impaired ureagenesis. This genetic disorder is caused by 40+ mutations found fairly uniformly spread throughout the ARG1 gene, resulting in partial or complete loss of enzyme function, which catalyzes the hydrolysis of arginine to ornithine and urea. ARG1-deficient patients exhibit hyperargininemia with spastic paraparesis, progressive neurological and intellectual impairment, persistent growth retardation, and infrequent episodes of hyperammonemia, a clinical pattern that differs strikingly from other urea cycle disorders. This review briefly highlights the current understanding of the etiology and pathophysiology of ARG1 deficiency derived from clinical case reports and therapeutic strategies stretching over several decades and reports on several exciting new developments regarding the pathophysiology of the disorder using ARG1 global and inducible knockout mouse models. Gene transfer studies in these mice are revealing potential therapeutic options that can be exploited in the future. However, caution is advised in extrapolating results since the lethal disease phenotype in mice is much more severe than in humans indicating that the mouse models may not precisely recapitulate human disease etiology. Finally, some of the functions and implications of ARG1 in non-urea cycle activities are considered. Lingering questions and future areas to be addressed relating to the clinical manifestations of ARG1 deficiency in liver and brain are also presented. Hopefully, this review will spark invigorated research efforts that lead to treatments with better clinical outcomes.

  12. Serum Protein KNG1, APOC3, and PON1 as Potential Biomarkers for Yin-Deficiency-Heat Syndrome.

    PubMed

    Liu, Changming; Mao, Liangen; Ping, Zepeng; Jiang, Tingting; Wang, Chong; Chen, Zhongliang; Li, Zhongjie; Li, Jicheng

    2016-01-01

    Yin-deficiency-heat (YDH) syndrome is a concept in Traditional Chinese Medicine (TCM) for describing subhealth status. However, there are few efficient diagnostic methods available for confirming YDH syndrome. To explore the novel method for diagnosing YDH syndrome, we applied iTRAQ to observe the serum protein profiles in YDH syndrome rats and confirmed protein levels by ELISA. A total of 92 differentially expressed proteins (63 upregulated proteins and 29 downregulated proteins), which were mainly involved in complement and coagulation cascades and glucose metabolism pathway, were identified by the proteomic experiments. Kininogen 1 (KNG1) was significantly increased ( p < 0.0001), while apolipoprotein C-III (APOC3, p < 0.005) and paraoxonase 1 (PON1, p < 0.001) were significantly decreased in the serum of YDH syndrome rats. The combination of KNG1, APOC3, and PON1 constituted a diagnostic model with 100.0% sensitivity and 85.0% specificity. The results indicated that KNG1, APOC3, and PON1 may act as potential biomarkers for diagnosing YDH syndrome. KNG1 may regulate cytokines and chemokines release in YDH syndrome, and the low levels of PON1 and APOC3 may increase oxidative stress and lipolysis in YDH syndrome, respectively. Our work provides a novel method for YDH syndrome diagnosis and also provides valuable experimental basis to understand the molecular mechanism of YDH syndrome.

  13. Comparison of soil and foliar zinc application for enhancing grain zinc content of wheat when grown on potentially zinc-deficient calcareous soils.

    PubMed

    Zhao, Ai-qing; Tian, Xiao-hong; Cao, Yu-xian; Lu, Xin-chun; Liu, Ting

    2014-08-01

    The concentration of Zn and phytic acid in wheat grain has important implications for human health. We conducted field and greenhouse experiments to compare the efficacy of soil and foliar Zn fertilisation in improving grain Zn concentration and bioavailability in wheat (Triticum aestivum L.) grain grown on potentially Zn-deficient calcareous soil. Results from the 2-year field experiment indicated that soil Zn application increased soil DTPA-Zn by an average of 174%, but had no significant effect on grain Zn concentration. In contrast, foliar Zn application increased grain Zn concentration by an average of 61%, and Zn bioavailability by an average of 36%. Soil DTPA-Zn concentrations varied depending on wheat cultivars. There were also significant differences in grain phytic acid concentration among the cultivars. A laboratory experiment indicated that Zn (from ZnSO4 ) had a low diffusion coefficient in this calcareous soil. Compared to soil Zn application, foliar Zn application is more effective in improving grain Zn content of wheat grown in potentially Zn-deficient calcareous soils. © 2013 Society of Chemical Industry.

  14. Arrhythmogenic right ventricular cardiomyopathy in Boxer dogs is associated with calstabin2 deficiency

    PubMed Central

    Oyama, Mark A.; Reiken, Steve; Lehnart, Stephan E.; Chittur, Sridar V.; Meurs, Kathryn M.; Stern, Joshua; Marks, Andrew R.

    2010-01-01

    Objective To examine the presence and effect of calstabin2-deficiency in Boxer dogs with arrhythmogenic right ventricular cardiomyopathy (ARVC). Animals Thirteen Boxer dogs with ARVC. Materials and methods Tissue samples were collected for histopathology, oligonucleotide microarray, PCR, immunoelectrophoresis, ryanodine channel immunoprecipitation and single-channel recordings, and calstabin2 DNA sequencing. Results In cardiomyopathic Boxer dogs, myocardial calstabin2 mRNA and protein were significantly decreased as compared to healthy control dogs (calstabin2 protein normalized to tetrameric cardiac ryanodine receptor (RyR2) complex: affected, 0.51 ± 0.04; control, 3.81 ± 0.22; P < 0.0001). Calstabin2 deficiency in diseased dog hearts was associated with a significantly increased open probability of single RyR2 channels indicating intracellular Ca2+ leak. PCR-based sequencing of the promoter, exonic and splice site regions of the canine calstabin2 gene did not identify any causative mutations. Conclusions Calstabin2 deficiency is a potential mechanism of Ca2+ leak-induced ventricular arrhythmias and heart disease in Boxer dogs with ARVC. PMID:18515204

  15. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1.

    PubMed

    Hinrichsen, Inga; Ernst, Benjamin Philipp; Nuber, Franziska; Passmann, Sandra; Schäfer, Dieter; Steinke, Verena; Friedrichs, Nicolaus; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-24

    Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.

  16. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1

    PubMed Central

    2014-01-01

    Introduction Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Methods Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. Results MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. Conclusions These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be

  17. MCPIP1 Deficiency in Mice Results in Severe Anemia Related to Autoimmune Mechanisms

    PubMed Central

    Zhou, Zhou; Miao, Ruidong; Huang, Shengping; Elder, Brandon; Quinn, Tim; Papasian, Christopher J.; Zhang, Jifeng; Fan, Daping; Chen, Y. Eugene; Fu, Mingui

    2013-01-01

    Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1-/- developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1-/- bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12) deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1-/- mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1-/- mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1-/- mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease. PMID:24324805

  18. Using a watershed-centric approach to identify potentially impacted beaches

    EPA Science Inventory

    Beaches can be affected by a variety of contaminants. Of particular concern are beaches impacted by human fecal contamination and urban runoff. This poster demonstrates a methodology to identify potentially impacted beaches using Geographic Information Systems (GIS). Since h...

  19. Genotype-Phenotype Correlation in Primary Carnitine Deficiency

    PubMed Central

    Rose, Emily Cornforth; di San Filippo, Cristina Amat; Ndukwe Erlingsson, Uzochi C.; Ardon, Orly; Pasquali, Marzia; Longo, Nicola

    2011-01-01

    Primary carnitine deficiency is caused by defective OCTN2 carnitine transporters encoded by the SLC22A5 gene. Lack of carnitine impairs fatty acid oxidation resulting in hypoketotic hypoglycemia, hepatic encephalopathy, skeletal and cardiac myopathy. Recently, asymptomatic mothers with primary carnitine deficiency were identified by low carnitine levels in their infant by newborn screening. Here we evaluate mutations in the SLC22A5 gene and carnitine transport in fibroblasts from symptomatic patients and asymptomatic women. Carnitine transport was significantly reduced in fibroblasts obtained from all patients with primary carnitine deficiency, but was significantly higher in the asymptomatic women’s than in the symptomatic patients’ fibroblasts (p<0.01). By contrast, ergothioneine transport (a selective substrate of the OCTN1 transporter, tested here as a control) was similar in cells from controls and patients with carnitine deficiency. DNA sequencing indicated an increased frequency of nonsense mutations in symptomatic patients (p<0.001). Expression of the missense mutations in CHO cells indicated that many mutations retained residual carnitine transport activity, with no difference in the average activity of missense mutations identified in symptomatic versus asymptomatic patients. These results indicate that cells from asymptomatic women have on average higher levels of residual carnitine transport activity as compared to that of symptomatic patients due to the presence of at least one missense mutation. PMID:21922592

  20. The prevalence of glucose-6-phosphate dehydrogenase deficiency in Gambian school children.

    PubMed

    Okebe, Joseph; Amambua-Ngwa, Alfred; Parr, Jason; Nishimura, Sei; Daswani, Melissa; Takem, Ebako N; Affara, Muna; Ceesay, Serign J; Nwakanma, Davis; D'Alessandro, Umberto

    2014-04-17

    Primaquine, the only available drug effective against Plasmodium falciparum sexual stages, induces also a dose-dependent haemolysis, especially in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals. Therefore, it is important to determine the prevalence of this deficiency in areas that would potentially benefit from its use. The prevalence of G6PD deficiency by genotype and enzyme activity was determined in healthy school children in The Gambia. Blood samples from primary school children collected during a dry season malaria survey were screened for G6PDd and malaria infection. Genotypes for allele mutations reported in the country; 376, 202A-, 968A- and 542 were analysed while enzyme activity (phenotype) was assayed using a semi-quantitative commercial test kit. Enzyme activity values were fitted in a finite mixture model to determine the distribution and calculate a cut-off for deficiency. The association between genotype and phenotype for boys and girls as well as the association between mutant genotype and deficient phenotype was analysed. Samples from 1,437 children; 51% boys were analysed. The prevalence of P. falciparum malaria infection was 14%. The prevalence of the 202A-, 968 and 542 mutations was 1.8%, 2.1% and 1.0%, respectively, and higher in boys than in girls. The prevalence of G6PDd phenotype was 6.4% (92/1,437), 7.8% (57/728) in boys and 4.9% (35/709) in girls with significantly higher odds in the former (OR 1.64, 95% CI 1.05, 2.53, p = 0.026). The deficient phenotype was associated with reduced odds of malaria infection (OR 0.77, 95% CI 0.36, 1.62, p = 0.49). There is a weak association between genotype and phenotype estimates of G6PDd prevalence. The phenotype expression of deficiency represents combinations of mutant alleles rather than specific mutations. Genotype studies in individuals with a deficient phenotype would help identify alleles responsible for haemolysis.

  1. Transcriptome profiling of equine vitamin E deficient neuroaxonal dystrophy identifies upregulation of liver X receptor target genes

    PubMed Central

    Finno, Carrie J.; Bordbari, Matthew H.; Valberg, Stephanie J.; Lee, David; Herron, Josi; Hines, Kelly; Monsour, Tamer; Scott, Erica; Bannasch, Danika L.; Mickelson, James; Xu, Libin

    2016-01-01

    Specific spontaneous heritable neurodegenerative diseases have been associated with lower serum and cerebrospinal fluid α-tocopherol (α-TOH) concentrations. Equine neuroaxonal dystrophy (eNAD) has similar histologic lesions to human ataxia with vitamin E deficiency caused by mutations in the α-TOH transfer protein gene (TTPA). Mutations in TTPA are not present with eNAD and the molecular basis remains unknown. Given the neuropathologic phenotypic similarity of the conditions, we assessed the molecular basis of eNAD by global transcriptome sequencing of the cervical spinal cord. Differential gene expression analysis identified 157 significantly (FDR<0.05) dysregulated transcripts within the spinal cord of eNAD-affected horses. Statistical enrichment analysis identified significant downregulation of the ionotropic and metabotropic group III glutamate receptor, synaptic vesicle trafficking and cholesterol biosynthesis pathways. Gene co-expression analysis identified one module of upregulated genes significantly associated with the eNAD phenotype that included the liver X receptor (LXR) targets CYP7A1, APOE, PLTP and ABCA1. Validation of CYP7A1 and APOE dysregulation was performed in an independent biologic group and CYP7A1 was found to be additionally upregulated in the medulla oblongata of eNAD horses. Evidence of LXR activation supports a role for modulation of oxysterol-dependent LXR transcription factor activity by tocopherols. We hypothesize that the protective role of α-TOH in eNAD may reside in its ability to prevent oxysterol accumulation and subsequent activation of the LXR in order to decrease lipid peroxidation associated neurodegeneration. PMID:27751910

  2. Identification, Prevention and Treatment of Iron Deficiency during the First 1000 Days

    PubMed Central

    Burke, Rachel M.; Leon, Juan S.; Suchdev, Parminder S.

    2014-01-01

    Iron deficiency is a global problem across the life course, but infants and their mothers are especially vulnerable to both the development and the consequences of iron deficiency. Maternal iron deficiency during pregnancy can predispose offspring to the development of iron deficiency during infancy, with potentially lifelong sequelae. This review explores iron status throughout these “first 1000 days” from pregnancy through two years of age, covering the role of iron and the epidemiology of iron deficiency, as well as its consequences, identification, interventions and remaining research gaps. PMID:25310252

  3. Maternal micronutrient deficiency leads to alteration in the kidney proteome in rat pups.

    PubMed

    Ahmad, Shadab; Basak, Trayambak; Anand Kumar, K; Bhardwaj, Gourav; Lalitha, A; Yadav, Dilip K; Chandak, Giriraj Ratan; Raghunath, Manchala; Sengupta, Shantanu

    2015-09-08

    Maternal nutritional deficiency significantly perturbs the offspring's physiology predisposing them to metabolic diseases during adulthood. Vitamin B12 and folate are two such micronutrients, whose deficiency leads to elevated homocysteine levels. We earlier generated B12 and/or folate deficient rat models and using high-throughput proteomic approach, showed that maternal vitamin B12 deficiency modulates carbohydrate and lipid metabolism in the liver of pups through regulation of PPAR signaling pathway. In this study, using similar approach, we identified 26 differentially expressed proteins in the kidney of pups born to mothers fed with vitamin B12 deficient diet while only four proteins were identified in the folate deficient group. Importantly, proteins like calreticulin, cofilin 1 and nucleoside diphosphate kinase B that are involved in the functioning of the kidney were upregulated in B12 deficient group. Our results hint towards a larger effect of vitamin B12 deficiency compared to that of folate presumably due to greater elevation of homocysteine in vitamin B12 deficient group. In view of widespread vitamin B12 and folate deficiency and its association with several diseases like anemia, cardiovascular and renal diseases, our results may have large implications for kidney diseases in populations deficient in vitamin B12 especially in vegetarians and the elderly people.This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Office ergonomics: deficiencies in computer workstation design.

    PubMed

    Shikdar, Ashraf A; Al-Kindi, Mahmoud A

    2007-01-01

    The objective of this research was to study and identify ergonomic deficiencies in computer workstation design in typical offices. Physical measurements and a questionnaire were used to study 40 workstations. Major ergonomic deficiencies were found in physical design and layout of the workstations, employee postures, work practices, and training. The consequences in terms of user health and other problems were significant. Forty-five percent of the employees used nonadjustable chairs, 48% of computers faced windows, 90% of the employees used computers more than 4 hrs/day, 45% of the employees adopted bent and unsupported back postures, and 20% used office tables for computers. Major problems reported were eyestrain (58%), shoulder pain (45%), back pain (43%), arm pain (35%), wrist pain (30%), and neck pain (30%). These results indicated serious ergonomic deficiencies in office computer workstation design, layout, and usage. Strategies to reduce or eliminate ergonomic deficiencies in computer workstation design were suggested.

  5. Screening for iron deficiency and iron deficiency anaemia in pregnancy: a structured review and gap analysis against UK national screening criteria.

    PubMed

    Rukuni, Ruramayi; Knight, Marian; Murphy, Michael F; Roberts, David; Stanworth, Simon J

    2015-10-20

    Iron deficiency anaemia is a common problem in pregnancy despite national recommendations and guidelines for treatment. The aim of this study was to appraise the evidence against the UK National Screening Committee (UKNSC) criteria as to whether a national screening programme could reduce the prevalence of iron deficiency anaemia and/or iron deficiency in pregnancy and improve maternal and fetal outcomes. Search strategies were developed for the Cochrane library, Medline and Embase to identify evidence relevant to UK National Screening Committee (UKNSC) appraisal criteria which cover the natural history of iron deficiency and iron deficiency anaemia, the tests for screening, clinical management and evidence of cost effectiveness. Many studies evaluated haematological outcomes of anaemia, but few analysed clinical consequences. Haemoglobin and ferritin appeared the most suitable screening tests, although future options may follow recent advances in understanding iron homeostasis. The clinical consequences of iron deficiency without anaemia are unknown. Oral and intravenous iron are effective in improving haemoglobin and iron parameters. There have been no trials or economic evaluations of a national screening programme for iron deficiency anaemia in pregnancy. Iron deficiency in pregnancy remains an important problem although effective tests and treatment exist. A national screening programme could be of value for early detection and intervention. However, high quality studies are required to confirm whether this would reduce maternal and infant morbidity and be cost effective.

  6. Defense Logistics Agency Can Improve Its Product Quality Deficiency Report Processing

    DTIC Science & Technology

    2015-07-01

    Contracts for M2 Machine Gun Spare Parts in Support of Operations in Southwest Asia,” January 11, 2010 Appendixes DODIG-2015-140 │ 29 Appendix B...personnel are adequately processing product quality deficiency reports and identifying the root cause for defective spare parts . This is the first...quality deficiency report program and prevents meaningful analysis of the primary causes of spare- part quality deficiencies. In addition, the

  7. [Hereditary heterozygous factor VII deficiency in patients undergoing surgery : Clinical relevance].

    PubMed

    Woehrle, D; Martinez, M; Bolliger, D

    2016-10-01

    A hereditary deficiency in coagulation factor VII (FVII) may affect the international normalized ratio (INR) value. However, FVII deficiency is occasionally associated with a tendency to bleed spontaneously. We hypothesized that perioperative substitution with coagulation factor concentrates might not be indicated in most patients. In this retrospective data analysis, we included all patients with hereditary heterozygous FVII deficiency who underwent surgical procedures at the University Hospital Basel between December 2010 and November 2015. In addition, by searching the literature, we identified publications reporting patients with FVII deficiency undergoing surgical procedures without perioperative substitution. We identified 22 patients undergoing 46 surgical procedures, resulting in a prevalence of 1:1500-2000. Coagulation factor concentrates were administered during the perioperative period in 15 procedures (33 %), whereas in the other 31 procedures (66 %), FVII deficiency was not substituted. No postoperative bleeding or thromboembolic events were reported. In addition, we found no differences in pre- and postoperative hemoglobin and coagulation parameters, with the exception of an improved postoperative INR value in the substituted group. In the literature review, we identified five publications, including 125 patients with FVII deficiency, undergoing 213 surgical procedures with no perioperative substitution. Preoperative substitution using coagulation factor concentrates does not seem to be mandatory in patients with an FVII level ≥15 %. For decision-making on preoperative substitution, patient history of an increased tendency to bleed may be more important than the FVII level or increased INR value.

  8. Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage[W][OA

    PubMed Central

    Urzica, Eugen I.; Casero, David; Yamasaki, Hiroaki; Hsieh, Scott I.; Adler, Lital N.; Karpowicz, Steven J.; Blaby-Haas, Crysten E.; Clarke, Steven G.; Loo, Joseph A.; Pellegrini, Matteo; Merchant, Sabeeha S.

    2012-01-01

    We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, VITAMIN C 2 (VTC2), MONODEHYDROASCORBATE REDUCTASE 1 (MDAR1), and CONSERVED IN THE GREEN LINEAGE AND DIATOMS 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron. PMID:23043051

  9. Iodine Deficiency

    MedlinePlus

    ... public health problem globally. Approximately 40% of the world’s population remains at risk for iodine deficiency. Iodine Deficiency ... common preventable cause of intellectual disabilities in the world. Even mild iodine ... deficiency is seen in an entire population, it is best managed by ensuring that common ...

  10. Newborn screening for citrin deficiency and carnitine uptake defect using second-tier molecular tests.

    PubMed

    Wang, Li-Yun; Chen, Nien-I; Chen, Pin-Wen; Chiang, Shu-Chuan; Hwu, Wuh-Liang; Lee, Ni-Chung; Chien, Yin-Hsiu

    2013-02-10

    Tandem mass spectrometry (MS/MS) analysis is a powerful tool for newborn screening, and many rare inborn errors of metabolism are currently screened using MS/MS. However, the sensitivity of MS/MS screening for several inborn errors, including citrin deficiency (screened by citrulline level) and carnitine uptake defect (CUD, screened by free carnitine level), is not satisfactory. This study was conducted to determine whether a second-tier molecular test could improve the sensitivity of citrin deficiency and CUD detection without increasing the false-positive rate. Three mutations in the SLC25A13 gene (for citrin deficiency) and one mutation in the SLC22A5 gene (for CUD) were analyzed in newborns who demonstrated an inconclusive primary screening result (with levels between the screening and diagnostic cutoffs). The results revealed that 314 of 46 699 newborns received a second-tier test for citrin deficiency, and two patients were identified; 206 of 30 237 newborns received a second-tier testing for CUD, and one patient was identified. No patients were identified using the diagnostic cutoffs. Although the incidences for citrin deficiency (1:23 350) and CUD (1:30 000) detected by screening are still lower than the incidences calculated from the mutation carrier rates, the second-tier molecular test increases the sensitivity of newborn screening for citrin deficiency and CUD without increasing the false-positive rate. Utilizing a molecular second-tier test for citrin deficiency and carnitine transporter deficiency is feasible.

  11. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome.

    PubMed

    Pai, Rish K; Dudley, Beth; Karloski, Eve; Brand, Randall E; O'Callaghan, Neil; Rosty, Christophe; Buchanan, Daniel D; Jenkins, Mark A; Thibodeau, Stephen N; French, Amy J; Lindor, Noralane M; Pai, Reetesh K

    2018-06-08

    Lynch syndrome is the most common form of hereditary colorectal carcinoma. However, establishing the diagnosis of Lynch syndrome is challenging, and ancillary studies that distinguish between sporadic DNA mismatch repair (MMR) protein deficiency and Lynch syndrome are needed, particularly when germline mutation studies are inconclusive. The aim of this study was to determine if MMR protein-deficient non-neoplastic intestinal crypts can help distinguish between patients with and without Lynch syndrome. We evaluated the expression of MMR proteins in non-neoplastic intestinal mucosa obtained from colorectal surgical resection specimens from patients with Lynch syndrome-associated colorectal carcinoma (n = 52) and patients with colorectal carcinoma without evidence of Lynch syndrome (n = 70), including sporadic MMR protein-deficient colorectal carcinoma (n = 30), MMR protein proficient colorectal carcinoma (n = 30), and "Lynch-like" syndrome (n = 10). MMR protein-deficient non-neoplastic colonic crypts were identified in 19 of 122 (16%) patients. MMR protein-deficient colonic crypts were identified in 18 of 52 (35%) patients with Lynch syndrome compared to only 1 of 70 (1%) patients without Lynch syndrome (p < 0.001). This one patient had "Lynch-like" syndrome and harbored two MSH2-deficient non-neoplastic colonic crypts. MMR protein-deficient non-neoplastic colonic crypts were not identified in patients with sporadic MMR protein-deficient or MMR protein proficient colorectal carcinoma. Our findings suggest that MMR protein-deficient colonic crypts are a novel indicator of Lynch syndrome, and evaluation for MMR protein-deficient crypts may be a helpful addition to Lynch syndrome diagnostics.

  12. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo.

    PubMed

    Vendetti, Frank P; Lau, Alan; Schamus, Sandra; Conrads, Thomas P; O'Connor, Mark J; Bakkenist, Christopher J

    2015-12-29

    ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts.

  13. Molecular characterization of G6PD deficiency in Cyprus.

    PubMed

    Drousiotou, Anthi; Touma, Elias H; Andreou, Nicoletta; Loiselet, Jacques; Angastiniotis, Michalis; Verrelli, Brian C; Tishkoff, Sarah A

    2004-01-01

    In the present study, we determined the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Cyprus using two different procedures in two separate adult population groups: a semiquantitative fluorescence test on blood spotted on filter paper and a quantitative spectrophotometric test on liquid blood. The frequency of G6PD deficiency among healthy adult males was found to be 5.1% using the semiquantitative procedure and 6.4% using the quantitative procedure. Neither method was able to detect all the expected female heterozygotes (5.3% and 47.1% of the expected number, respectively). A total of 21 male hemizygotes, 1 female homozygote and 9 female heterozygotes that tested positive for G6PD deficiency were studied at the molecular level. All 32 chromosomes were genotyped and five different mutations were identified. The Mediterranean mutation in exon 6 (563C-->T) (Ser188Phe) was found to be the most common variant in the Cypriot population, accounting for 52.6% of the deficient alleles. In the remaining chromosomes, four different mutations were identified: three known mutations, Kaiping 1388G-->A (Arg463His), Chatham 1003G-->A (Ala335Thr) and Acrokorinthos 463C-->G (His155Asp), and one previously undescribed mutation in exon 3, 148C-->T (Pro50Ser), which we called G6PD Kambos. We conclude that the frequency of G6PD deficiency in Cypriot males is 6.4%, and that this deficiency is the result of several different mutations. Although all the individuals carrying the Mediterranean variant can be detected using a semiquantitative screening method, a quantitative enzyme measurement is required to detect the G6PD variants with less severe enzyme deficiencies, while the most appropriate method for heterozygote detection is DNA analysis.

  14. Correcting Systemic Deficiencies in Our Scientific Infrastructure

    PubMed Central

    Doss, Mohan

    2014-01-01

    Scientific method is inherently self-correcting. When different hypotheses are proposed, their study would result in the rejection of the invalid ones. If the study of a competing hypothesis is prevented because of the faith in an unverified one, scientific progress is stalled. This has happened in the study of low dose radiation. Though radiation hormesis was hypothesized to reduce cancers in 1980, it could not be studied in humans because of the faith in the unverified linear no-threshold model hypothesis, likely resulting in over 15 million preventable cancer deaths worldwide during the past two decades, since evidence has accumulated supporting the validity of the phenomenon of radiation hormesis. Since our society has been guided by scientific advisory committees that ostensibly follow the scientific method, the long duration of such large casualties is indicative of systemic deficiencies in the infrastructure that has evolved in our society for the application of science. Some of these deficiencies have been identified in a few elements of the scientific infrastructure, and remedial steps suggested. Identifying and correcting such deficiencies may prevent similar tolls in the future. PMID:24910580

  15. Prevalence and Factors Associated with Vitamin D Deficiency and Hyperparathyroidism in HIV-Infected Patients Treated in Barcelona.

    PubMed

    Lerma, Elisabet; Molas, M Ema; Montero, M Milagro; Guelar, Ana; González, Alicia; Villar, Judith; Diez, Adolf; Knobel, Hernando

    2012-01-01

    Vitamin D deficiency is an important problem in patients with chronic conditions including those with human immunodeficiency virus (HIV) infection. The aim of this cross-sectional study was to identify the prevalence and factors associated with vitamin D deficiency and hyperparathyroidism in HIV patients attended in Barcelona. Cholecalciferol (25OH vitamin D3) and PTH levels were measured. Vitamin D insufficiency was defined as 25(OH) D < 20 ng/mL and deficiency as <12 ng/mL. Hyperparathyroidism was defined as PTH levels >65 pg/mL. Cases with chronic kidney failure, liver disease, treatments or conditions potentially affecting bone metabolism were excluded. Among the 566 patients included, 56.4% were exposed to tenofovir. Vitamin D insufficiency was found in 71.2% and 39.6% of those had deficiency. PTH was measured in 228 subjects, and 86 of them (37.7%) showed high levels. Adjusted predictors of vitamin D deficiency were nonwhite race and psychiatric comorbidity, while lipoatrophy was a protective factor. Independent risk factors of hyperparathyroidism were vitamin D < 12 ng/mL (OR: 2.14, CI 95%: 1.19-3.82, P: 0.01) and tenofovir exposure (OR: 3.55, CI 95%: 1.62-7.7, P: 0.002). High prevalence of vitamin deficiency and hyperparathyroidism was found in an area with high annual solar exposure.

  16. Prevalence and Factors Associated with Vitamin D Deficiency and Hyperparathyroidism in HIV-Infected Patients Treated in Barcelona

    PubMed Central

    Lerma, Elisabet; Molas, M. Ema; Montero, M. Milagro; Guelar, Ana; González, Alicia; Villar, Judith; Diez, Adolf; Knobel, Hernando

    2012-01-01

    Vitamin D deficiency is an important problem in patients with chronic conditions including those with human immunodeficiency virus (HIV) infection. The aim of this cross-sectional study was to identify the prevalence and factors associated with vitamin D deficiency and hyperparathyroidism in HIV patients attended in Barcelona. Cholecalciferol (25OH vitamin D3) and PTH levels were measured. Vitamin D insufficiency was defined as 25(OH) D < 20 ng/mL and deficiency as <12 ng/mL. Hyperparathyroidism was defined as PTH levels >65 pg/mL. Cases with chronic kidney failure, liver disease, treatments or conditions potentially affecting bone metabolism were excluded. Among the 566 patients included, 56.4% were exposed to tenofovir. Vitamin D insufficiency was found in 71.2% and 39.6% of those had deficiency. PTH was measured in 228 subjects, and 86 of them (37.7%) showed high levels. Adjusted predictors of vitamin D deficiency were nonwhite race and psychiatric comorbidity, while lipoatrophy was a protective factor. Independent risk factors of hyperparathyroidism were vitamin D < 12 ng/mL (OR: 2.14, CI 95%: 1.19–3.82, P: 0.01) and tenofovir exposure (OR: 3.55, CI 95%: 1.62–7.7, P: 0.002). High prevalence of vitamin deficiency and hyperparathyroidism was found in an area with high annual solar exposure. PMID:24052874

  17. Neurofibromin Deficiency-Associated Transcriptional Dysregulation Suggests a Novel Therapy for Tibial Pseudoarthrosis in NF1

    PubMed Central

    Paria, Nandina; Cho, Tae-Joon; Choi, In Ho; Kamiya, Nobuhiro; Kayembe, Kay; Mao, Rong; Margraf, Rebecca L.; Obermosser, Gerlinde; Oxendine, Ila; Sant, David W.; Song, Mi Hyun; Stevenson, David A.; Viskochil, David H.; Wise, Carol A.; Kim, Harry K.W.; Rios, Jonathan J

    2014-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in NF1. Among the earliest manifestations is tibial pseudoarthrosis and persistent nonunion after fracture. To further understand the pathogenesis of pseudoarthrosis and the underlying bone remodeling defect, pseudoarthrosis tissue and cells cultured from surgically resected pseudoarthrosis tissue from NF1 individuals were analyzed using whole-exome and whole-transcriptome sequencing as well as genomewide microarray analysis. Genomewide analysis identified multiple genetic mechanisms resulting in somatic bi-allelic NF1 inactivation; no other genes with recurring somatic mutations were identified. Gene expression profiling identified dysregulated pathways associated with neurofibromin deficiency, including phosphoinosital-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Unlike aggressive NF1-associated malignancies, tibial pseudoarthrosis tissue does not harbor a high frequency of somatic mutations in oncogenes or other tumor-suppressor genes, such as p53. However, gene expression profiling indicates pseudoarthrosis tissue has a tumor-promoting transcriptional pattern, despite lacking tumorigenic somatic mutations. Significant over-expression of specific cancer-associated genes in pseudoarthrosis highlights a potential for receptor tyrosine kinase inhibitors to target neurofibromin-deficient pseudoarthrosis and promote proper bone remodeling and fracture healing. PMID:24932921

  18. ACL deficient potential copers and non-copers reveal different isokinetic quadriceps strength profiles in the early stage after injury

    PubMed Central

    Eitzen, I; Eitzen, TJ; Holm, I; Snyder-Mackler, L; Risberg, MA

    2011-01-01

    Background Isokinetic muscle strength tests using the peak torque value is the most frequently included quadriceps muscle strength measurement for anterior cruciate ligament (ACL) injured subjects. Aims The purpose of this study was to investigate quadriceps muscle performance during the whole isokinetic curve in ACL deficient subjects classified as potential copers or non-copers, and investigate whether these curve profiles were associated with single-leg hop performance. We hypothesized that quadriceps muscle torque at other knee flexion angles than peak torque would give more information about quadriceps muscle strength deficits. Furthermore, we hypothesized that there would be significant torque differences between potential copers and non-copers, and a significant relationship between angle specific torque values and single-leg hop performance. Study Design Cross-sectional study; Level of evidence, 2 Methods Seventy-six individuals with a complete unilateral ACL rupture within the last 3 months were included. The subjects were classified into potential copers and non-copers according to the criteria from Fitzgerald et al12. Isokinetic quadriceps muscle tests were performed at 60°/sec (Biodex 6000). Mean torque values were calculated for peak torque as well as for specific knee flexion angles. The one-leg hop and the 6 meter timed hop tests were included and symmetry indices were used. Results The peak torque value did not identify the largest quadriceps muscle strength deficit. Rather, these were established at knee flexion angles of less than 40°. There were significant differences in angle specific torque values between potential copers and non-copers (p<0.05). Moderate to strong associations were disclosed between angle specific torque values and single-leg hop performance, but only for non-copers (r≥0.32– 0.58). Conclusions Angle specific quadriceps muscle torque values of less than 40° of knee flexion provide more information on the quadriceps

  19. Increased red cell turnover in a line of CD22-deficient mice is caused by Gpi1c: a model for hereditary haemolytic anaemia.

    PubMed

    Walker, Jennifer A; Hall, Andrew M; Kotsopoulou, Ekaterini; Espeli, Marion; Nitschke, Lars; Barker, Robert N; Lyons, Paul A; Smith, Kenneth G C

    2012-12-01

    CD22, an inhibitory co-receptor of the BCR, has been identified as a potential candidate gene for the development of autoimmune haemolytic anaemia in mice. In this study, we have examined Cd22(tm1Msn) CD22-deficient mice and identified an increase in RBC turnover and stress erythropoiesis, which might be consistent with haemolysis. We then, however, eliminated CD22 deficiency as the cause of accelerated RBC turnover and established that enhanced RBC turnover occurs independently of B cells and anti-RBC autoanti-bodies. Accelerated RBC turnover in this particular strain of CD22-deficient mice is red cell intrinsic and appears to be the consequence of a defective allele of glucose phosphate isomerase, Gpi1(c). This form of Gpi1 was originally derived from wild mice and results in a substantial reduction in enzyme activity. We have identified the polymorphism that causes impaired catalytic activity in the Gpi1(c) allele, and biochemically confirmed an approximate 75% reduction of GPI1 activity in Cd22(-/-) RBCs. The Cd22(-/-).Gpi1(c) congenic mouse provides a novel animal model of GPI1-deficiency, which is one of the most common causes of chronic non-spherocytic haemolytic anaemia in humans. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Expression profiling in progressive stages of fumarate-hydratase deficiency: the contribution of metabolic changes to tumorigenesis.

    PubMed

    Ashrafian, Houman; O'Flaherty, Linda; Adam, Julie; Steeples, Violetta; Chung, Yuen-Li; East, Phil; Vanharanta, Sakari; Lehtonen, Heli; Nye, Emma; Hatipoglu, Emine; Miranda, Melroy; Howarth, Kimberley; Shukla, Deepa; Troy, Helen; Griffiths, John; Spencer-Dene, Bradley; Yusuf, Mohammed; Volpi, Emanuela; Maxwell, Patrick H; Stamp, Gordon; Poulsom, Richard; Pugh, Christopher W; Costa, Barbara; Bardella, Chiara; Di Renzo, Maria Flavia; Kotlikoff, Michael I; Launonen, Virpi; Aaltonen, Lauri; El-Bahrawy, Mona; Tomlinson, Ian; Pollard, Patrick J

    2010-11-15

    Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is caused by mutations in the Krebs cycle enzyme fumarate hydratase (FH). It has been proposed that "pseudohypoxic" stabilization of hypoxia-inducible factor-α (HIF-α) by fumarate accumulation contributes to tumorigenesis in HLRCC. We hypothesized that an additional direct consequence of FH deficiency is the establishment of a biosynthetic milieu. To investigate this hypothesis, we isolated primary mouse embryonic fibroblast (MEF) lines from Fh1-deficient mice. As predicted, these MEFs upregulated Hif-1α and HIF target genes directly as a result of FH deficiency. In addition, detailed metabolic assessment of these MEFs confirmed their dependence on glycolysis, and an elevated rate of lactate efflux, associated with the upregulation of glycolytic enzymes known to be associated with tumorigenesis. Correspondingly, Fh1-deficient benign murine renal cysts and an advanced human HLRCC-related renal cell carcinoma manifested a prominent and progressive increase in the expression of HIF-α target genes and in genes known to be relevant to tumorigenesis and metastasis. In accord with our hypothesis, in a variety of different FH-deficient tissues, including a novel murine model of Fh1-deficient smooth muscle, we show a striking and progressive upregulation of a tumorigenic metabolic profile, as manifested by increased PKM2 and LDHA protein. Based on the models assessed herein, we infer that that FH deficiency compels cells to adopt an early, reversible, and progressive protumorigenic metabolic milieu that is reminiscent of that driving the Warburg effect. Targets identified in these novel and diverse FH-deficient models represent excellent potential candidates for further mechanistic investigation and therapeutic metabolic manipulation in tumors. Copyright © 2010 AACR.

  1. GC-MS analysis of headspace and liquid extracts for metabolomic differentiation of citrus Huanglongbing and zinc deficiency in leaves of 'Valencia' sweet orange from commercial groves.

    PubMed

    Cevallos-Cevallos, Juan Manuel; García-Torres, Rosalía; Etxeberria, Edgardo; Reyes-De-Corcuera, José Ignacio

    2011-01-01

    Citrus Huanglongbing (HLB) is considered the most destructive citrus disease worldwide. Symptoms-based detection of HLB is difficult due to similarities with zinc deficiency. To find metabolic differences between leaves from HLB-infected, zinc-deficient, and healthy 'Valencia' orange trees by using GC-MS based metabolomics. Analysis based on GC-MS methods for untargeted metabolite analysis of citrus leaves was developed and optimized. Sample extracts from healthy, zinc deficient, or HLB-infected sweet orange leaves were submitted to headspace solid phase micro-extraction (SPME) and derivatization treatments prior to GC-MS analysis. Principal components analysis achieved correct classification of all the derivatized liquid extracts. Analysis of variance revealed 6 possible biomarkers for HLB, of which 5 were identified as proline, β-elemene, (-)trans- caryophyllene, and α-humulene. Significant (P < 0.05) differences in oxo-butanedioic acid, arabitol, and neo-inositol were exclusively detected in samples from plants with zinc deficiency. Levels of isocaryophyllen, α-selinene, β-selinene, and fructose were significantly (P < 0.05) different in healthy leaves only. Results suggest the potential of using identified HLB biomarkers for rapid differentiation of HLB from zinc deficiency. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Luteal phase deficiency. An underdiagnosed and overtreated reproductive endocrine disorder.

    PubMed

    Soules, M R

    1987-12-01

    Although luteal phase deficiency is rather time consuming, expensive, and sometimes painful to diagnose and treat, this disease entity is associated with a high degree of treatment success. Physicians are encouraged to become more aware of luteal phase deficiency as a potential diagnosis in the infertile woman. If the recommendations are followed in the diagnosis and treatment of luteal phase deficiency, a high degree of success can be achieved in infertile couples who otherwise would be diagnosed as having idiopathic infertility (and be ineffectively treated).

  3. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Lu, Yi-Bin; Guo, Peng; Sang, Wen; Feng, Hui; Zhang, Hong-Xing; Chen, Li-Song

    2013-11-20

    Seedlings of Citrus sinensis were fertilized with boron (B)-deficient (0μM H3BO3) or -sufficient (10μM H3BO3) nutrient solution for 15weeks. Thereafter, iTRAQ analysis was employed to compare the abundances of proteins from B-deficient and -sufficient roots. In B-deficient roots, 164 up-regulated and 225 down-regulated proteins were identified. These proteins were grouped into the following functional categories: protein metabolism, nucleic acid metabolism, stress responses, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, biological regulation and signal transduction, and lipid metabolism. The adaptive responses of roots to B-deficiency might include following several aspects: (a) decreasing root respiration; (b) improving the total ability to scavenge reactive oxygen species (ROS); and (c) enhancing cell transport. The differentially expressed proteins identified by iTRAQ are much larger than those detected using 2D gel electrophoresis, and many novel B-deficiency-responsive proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes were identified in this work. Our results indicate remarkable metabolic flexibility of citrus roots, which may contribute to the survival of B-deficient plants. This represents the most comprehensive analysis of protein profiles in response to B-deficiency. In this study, we identified many new proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with root B-deficiency responses. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in response to B-deficiency and provides new information about the plant response to B-deficiency. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Vitamin D deficiency in Saudi Arabians: A reality or simply hype: A meta-analysis (2008-2015).

    PubMed

    Al-Alyani, Haneen; Al-Turki, Haifa A; Al-Essa, Omar N; Alani, Fawaz M; Sadat-Ali, Mir

    2018-01-01

    The objective of this systematic review was to determine from published data the prevalence of Vitamin D deficiency in the Saudi population. An extensive and meticulous search was conducted for studies published in MEDLINE, EMBASE the Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews (2008-2015), and the Science Citation Index published data from the Annals of Saudi Medicine and Saudi Medical Journal with the key words: Vitamin D deficiency, insufficiency, and Saudi Arabians. The inclusion criterion was studies published during 2008 to 2015, and studies involving healthy individuals between the age of 18 and 80 years. Binary random- effect model was used to estimate pooled Vitamin D deficiency. Prevalence rates along with overall estimate were presented by forest plot. Heterogeneity test was used to assess the significance of heterogeneity among studies. The authors identified 26 potentially relevant articles, 16 of which met the inclusion criteria. A total of 20,787 patients were analyzed. Sixty-two percent (12,959) were females, and the rest were males. The overall Vitamin D deficiency was 63.5% (95% CI: 53.3, 73.7). The currently available literature on the Saudi Arabian population suggests that the Vitamin D deficiency is around 60% and not 100% as indicated in some studies. The relatively small number of studies on the population and the different modes of diagnostic methodology used make the issue of correct figures of Vitamin D deficiency contentious.

  5. Reduced risk for placental malaria in iron deficient women

    PubMed Central

    2011-01-01

    Background Nutritional iron deficiency may limit iron availability to the malaria parasite reducing infection risk, and/or impair host immunity thereby increasing this risk. In pregnant women, there is evidence of an adverse effect with iron supplementation, but the few reported studies are strongly confounded. Methods A case control study in pregnant Malawian women was undertaken in Chikhwawa southern Malawi in order to describe iron status in relation to placental malaria controlling for several confounding factors. Pregnancy characteristics were obtained and a blood sample at delivery. A full blood count was performed and serum ferritin and transferrin receptor quantified by enzyme-linked immunoassay. DNA analysis was used to identify genetic polymorphisms for ABO phenotype, hemoglobin HbS, and glucose -6 phosphate dehydrogenase deficiency. Placental tissue was obtained and malaria histology classified as active, past or no malaria infection. Results 112 cases with placental malaria were identified and 110 women with no evidence of placental infection. Iron deficiency was less frequent in women with placental Plasmodium falciparum infection. In those with acute, chronic or past placental infections the odds ratio for iron deficiency was 0.4, 95% CI 0.2-0.8, p = 0.01; for acute and chronic infections 0.4, 0.2-0.8, p = 0.006; for acute infection 0.3, 0.1-0.7, p = 0.001. The association was greater in multigravidae. Conclusion Women with either acute, or acute and chronic placental malaria were less likely to have iron deficiency than women without placental malaria infection There is a priority to establish if reversing iron deficiency through iron supplementation programs either prior to or during pregnancy enhances malaria risk. PMID:21345193

  6. Mutation screening of 75 candidate genes in 152 complex I deficiency cases identifies pathogenic variants in 16 genes including NDUFB9.

    PubMed

    Haack, Tobias B; Madignier, Florence; Herzer, Martina; Lamantea, Eleonora; Danhauser, Katharina; Invernizzi, Federica; Koch, Johannes; Freitag, Martin; Drost, Rene; Hillier, Ingo; Haberberger, Birgit; Mayr, Johannes A; Ahting, Uwe; Tiranti, Valeria; Rötig, Agnes; Iuso, Arcangela; Horvath, Rita; Tesarova, Marketa; Baric, Ivo; Uziel, Graziella; Rolinski, Boris; Sperl, Wolfgang; Meitinger, Thomas; Zeviani, Massimo; Freisinger, Peter; Prokisch, Holger

    2012-02-01

    Mitochondrial complex I deficiency is the most common cause of mitochondrial disease in childhood. Identification of the molecular basis is difficult given the clinical and genetic heterogeneity. Most patients lack a molecular definition in routine diagnostics. A large-scale mutation screen of 75 candidate genes in 152 patients with complex I deficiency was performed by high-resolution melting curve analysis and Sanger sequencing. The causal role of a new disease allele was confirmed by functional complementation assays. The clinical phenotype of patients carrying mutations was documented using a standardised questionnaire. Causative mutations were detected in 16 genes, 15 of which had previously been associated with complex I deficiency: three mitochondrial DNA genes encoding complex I subunits, two mitochondrial tRNA genes and nuclear DNA genes encoding six complex I subunits and four assembly factors. For the first time, a causal mutation is described in NDUFB9, coding for a complex I subunit, resulting in reduction in NDUFB9 protein and both amount and activity of complex I. These features were rescued by expression of wild-type NDUFB9 in patient-derived fibroblasts. Mutant NDUFB9 is a new cause of complex I deficiency. A molecular diagnosis related to complex I deficiency was established in 18% of patients. However, most patients are likely to carry mutations in genes so far not associated with complex I function. The authors conclude that the high degree of genetic heterogeneity in complex I disorders warrants the implementation of unbiased genome-wide strategies for the complete molecular dissection of mitochondrial complex I deficiency.

  7. Cerebral creatine deficiencies: a group of treatable intellectual developmental disorders.

    PubMed

    Stockler-Ipsiroglu, Sylvia; van Karnebeek, Clara D M

    2014-07-01

    Currently there are 91 treatable inborn errors of metabolism that cause intellectual developmental disorders. Cerebral creatine deficiencies (CDD) comprise three of these: arginine: glycine amidinotransferase [AGAT], guanidinoacetate methyltransferase [GAMT], and X-linked creatine transporter deficiency [SLC6A8]. Intellectual developmental disorder and cerebral creatine deficiency are the hallmarks of CDD. Additional clinical features include prominent speech delay, autism, epilepsy, extrapyramidal movement disorders, and signal changes in the globus pallidus. Patients with GAMT deficiency exhibit the most severe clinical spectrum. Myopathy is a distinct feature in AGAT deficiency. Guanidinoacetate (GAA) is the immediate product in the creatine biosynthetic pathway. Low GAA concentrations in urine, plasma, and cerebrospinal fluid are characteristic diagnostic markers for AGAT deficiency, while high GAA concentrations are characteristic markers for GAMT deficiency. An elevated ratio of urinary creatine /creatinine excretion serves as a diagnostic marker in males with SLC6A8 deficiency. Treatment strategies include oral supplementation of high-dose creatine-monohydrate for all three CDD. Guanidinoacetate-reducing strategies (high-dose ornithine, arginine-restricted diet) are additionally employed in GAMT deficiency. Supplementation of substrates for intracerebral creatine synthesis (arginine, glycine) has been used additionally to treat SLC6A8 deficiency. Early recognition and treatment improves outcomes. Normal outcomes in neonatally ascertained siblings from index families with AGAT and GAMT deficiency suggest a potential benefit of newborn screening for these disorders. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance.

    PubMed

    Saunus, Jodi M; Quinn, Michael C J; Patch, Ann-Marie; Pearson, John V; Bailey, Peter J; Nones, Katia; McCart Reed, Amy E; Miller, David; Wilson, Peter J; Al-Ejeh, Fares; Mariasegaram, Mythily; Lau, Queenie; Withers, Teresa; Jeffree, Rosalind L; Reid, Lynne E; Da Silva, Leonard; Matsika, Admire; Niland, Colleen M; Cummings, Margaret C; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Kassahn, Karin S; Narayanan, Vairavan; Taib, Nur Aishah; Teo, Soo-Hwang; Chow, Yock Ping; kConFab; Jat, Parmjit S; Brandner, Sebastian; Flanagan, Adrienne M; Khanna, Kum Kum; Chenevix-Trench, Georgia; Grimmond, Sean M; Simpson, Peter T; Waddell, Nicola; Lakhani, Sunil R

    2015-11-01

    Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2)  = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting

  9. Discovering Potential Pathogens among Fungi Identified as Nonsporulating Molds▿

    PubMed Central

    Pounder, June I.; Simmon, Keith E.; Barton, Claudia A.; Hohmann, Sheri L.; Brandt, Mary E.; Petti, Cathy A.

    2007-01-01

    Fungal infections are increasing, particularly among immunocompromised hosts, and a rapid diagnosis is essential to initiate antifungal therapy. Often fungi cannot be identified by conventional methods and are classified as nonsporulating molds (NSM).We sequenced internal transcribed spacer regions from 50 cultures of NSM and found 16 potential pathogens that can be associated with clinical disease. In selected clinical settings, identification of NSM could prove valuable and have an immediate impact on patient management. PMID:17135442

  10. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus.

    PubMed

    Tran, Phu V; Kennedy, Bruce C; Lien, Yu-Chin; Simmons, Rebecca A; Georgieff, Michael K

    2015-02-15

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. Copyright © 2015 the American Physiological Society.

  11. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus

    PubMed Central

    Kennedy, Bruce C.; Lien, Yu-Chin; Simmons, Rebecca A.; Georgieff, Michael K.

    2014-01-01

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. PMID:25519736

  12. Iron Deficiency Anemia: A Common and Curable Disease

    PubMed Central

    Miller, Jeffery L.

    2013-01-01

    Iron deficiency anemia arises when the balance of iron intake, iron stores, and the body's loss of iron are insufficient to fully support production of erythrocytes. Iron deficiency anemia rarely causes death, but the impact on human health is significant. In the developed world, this disease is easily identified and treated, but frequently overlooked by physicians. In contrast, it is a health problem that affects major portions of the population in underdeveloped countries. Overall, the prevention and successful treatment for iron deficiency anemia remains woefully insufficient worldwide, especially among underprivileged women and children. Here, clinical and laboratory features of the disease are discussed, and then focus is placed on relevant economic, environmental, infectious, and genetic factors that converge among global populations. PMID:23613366

  13. Micronutrient deficiencies and gender: social and economic costs.

    PubMed

    Darnton-Hill, Ian; Webb, Patrick; Harvey, Philip W J; Hunt, Joseph M; Dalmiya, Nita; Chopra, Mickey; Ball, Madeleine J; Bloem, Martin W; de Benoist, Bruno

    2005-05-01

    Vitamin and mineral deficiencies adversely affect a third of the world's people. Consequently, a series of global goals and a serious amount of donor and national resources have been directed at such micronutrient deficiencies. Drawing on the extensive experience of the authors in a variety of institutional settings, the article used a computer search of the published scientific literature of the topic, supplemented by reports and published and unpublished work from the various agencies. In examining the effect of sex on the economic and social costs of micronutrient deficiencies, the paper found that: (1) micronutrient deficiencies affect global health outcomes; (2) micronutrient deficiencies incur substantial economic costs; (3) health and nutrition outcomes are affected by sex; (4) micronutrient deficiencies are affected by sex, but this is often culturally specific; and finally, (5) the social and economic costs of micronutrient deficiencies, with particular reference to women and female adolescents and children, are likely to be considerable but are not well quantified. Given the potential impact on reducing infant and child mortality, reducing maternal mortality, and enhancing neuro-intellectual development and growth, the right of women and children to adequate food and nutrition should more explicitly reflect their special requirements in terms of micronutrients. The positive impact of alleviating micronutrient malnutrition on physical activity, education and productivity, and hence on national economies suggests that there is also an urgent need for increased effort to demonstrate the cost of these deficiencies, as well as the benefits of addressing them, especially compared with other health and nutrition interventions.

  14. Proteomics-based approach identified differentially expressed proteins with potential roles in endometrial carcinoma.

    PubMed

    Li, Zhengyu; Min, Wenjiao; Huang, Canhua; Bai, Shujun; Tang, Minghai; Zhao, Xia

    2010-01-01

    We used proteomic approaches to identify altered expressed proteins in endometrial carcinoma, with the aim of discovering potential biomarkers or therapeutic targets for endometrial carcinoma. The global proteins extracted from endometrial carcinoma and normal endometrial tissues were separated by 2-dimensional electrophoresis and analyzed with PDQuest (Bio-Rad, Hercules, Calif) software. The differentially expressed spots were identified by mass spectrometry and searched against NCBInr protein database. Those proteins with potential roles were confirmed by Western blotting and immunohistochemical assays. Ninety-nine proteins were identified by mass spectrometry, and a cluster diagram analysis indicated that these proteins were involved in metabolism, cell transformation, protein folding, translation and modification, proliferation and apoptosis, signal transduction, cytoskeleton, and so on. In confirmatory immunoblotting and immunohistochemical analyses, overexpressions of epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A were also observed in endometrial carcinoma tissues, which were consistent with the proteomic results. Our results suggested that these identified proteins, including epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A, might be of potential values in the studies of endometrial carcinogenesis or investigations of diagnostic biomarkers or treatment targets for endometrial carcinoma.

  15. Long-term prophylaxis in severe factor VII deficiency.

    PubMed

    Siboni, S M; Biguzzi, E; Mistretta, C; Garagiola, I; Peyvandi, F

    2015-11-01

    The spectrum of bleeding problems in FVII deficiency is highly variable and FVII levels and causative genetic mutations correlate poorly with the bleeding risk. Long-term prophylaxis is generally initiated in order to prevent subsequent CNS bleeding after a first event or in patients with other major/ life threatening/ frequent bleeding symptoms as gastrointestinal bleeding or hemarthrosis. However few data are available in the literature regarding FVII prophylaxis and clinical decisions cannot be based on evidence. We report the data available in the literature on FVII prophylaxis and our personal experience regarding three patients affected by severe FVII deficiency. Specific papers on long-term prophylaxis in severe FVII deficiency were identified using the database, PUBMED. The most frequent indications for long-term prophylaxis were CNS bleeding (58%), hemartrosis (15%) and GI bleeding (9%). Patients were treated with various dosages and frequency. Prophylactic treatment with 10-30U/kg (pdFVII) or 20-30mcg/kg (rFVIIa) twice or three times/weeks was described to be effective. In the literature and in our experience, prophylaxis can be considered in patients with severe FVII deficiency and severe bleeding phenotype. A dose of 10-30U/kg (pdFVII) or 20-30 microg/kg (rFVIIa) twice or three times/week is usually administrated, but dose and frequency can be tailored based on the clinical follow-up of the patients. Since hemarthrosis is a frequent manifestation, a suggestion to improve the outcomes of patients with severe FVII deficiency is to monitor joint condition in order to identify early arthropathy that could be another indication to start secondary prophylaxis. © 2015 John Wiley & Sons Ltd.

  16. Exome sequencing of a large family identifies potential candidate genes contributing risk to bipolar disorder.

    PubMed

    Zhang, Tianxiao; Hou, Liping; Chen, David T; McMahon, Francis J; Wang, Jen-Chyong; Rice, John P

    2018-03-01

    Bipolar disorder is a mental illness with lifetime prevalence of about 1%. Previous genetic studies have identified multiple chromosomal linkage regions and candidate genes that might be associated with bipolar disorder. The present study aimed to identify potential susceptibility variants for bipolar disorder using 6 related case samples from a four-generation family. A combination of exome sequencing and linkage analysis was performed to identify potential susceptibility variants for bipolar disorder. Our study identified a list of five potential candidate genes for bipolar disorder. Among these five genes, GRID1(Glutamate Receptor Delta-1 Subunit), which was previously reported to be associated with several psychiatric disorders and brain related traits, is particularly interesting. Variants with functional significance in this gene were identified from two cousins in our bipolar disorder pedigree. Our findings suggest a potential role for these genes and the related rare variants in the onset and development of bipolar disorder in this one family. Additional research is needed to replicate these findings and evaluate their patho-biological significance. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Vitamin Deficiency Anemia

    MedlinePlus

    ... are unique to specific vitamin deficiencies. Folate-deficiency anemia risk factors include: Undergoing hemodialysis for kidney failure. ... the metabolism of folate. Vitamin B-12 deficiency anemia risk factors include: Lack of intrinsic factor. Most ...

  18. An automated technique to identify potential inappropriate traditional Chinese medicine (TCM) prescriptions.

    PubMed

    Yang, Hsuan-Chia; Iqbal, Usman; Nguyen, Phung Anh; Lin, Shen-Hsien; Huang, Chih-Wei; Jian, Wen-Shan; Li, Yu-Chuan

    2016-04-01

    Medication errors such as potential inappropriate prescriptions would induce serious adverse drug events to patients. Information technology has the ability to prevent medication errors; however, the pharmacology of traditional Chinese medicine (TCM) is not as clear as in western medicine. The aim of this study was to apply the appropriateness of prescription (AOP) model to identify potential inappropriate TCM prescriptions. We used the association rule of mining techniques to analyze 14.5 million prescriptions from the Taiwan National Health Insurance Research Database. The disease and TCM (DTCM) and traditional Chinese medicine-traditional Chinese medicine (TCMM) associations are computed by their co-occurrence, and the associations' strength was measured as Q-values, which often referred to as interestingness or life values. By considering the number of Q-values, the AOP model was applied to identify the inappropriate prescriptions. Afterwards, three traditional Chinese physicians evaluated 1920 prescriptions and validated the detected outcomes from the AOP model. Out of 1920 prescriptions, 97.1% of positive predictive value and 19.5% of negative predictive value were shown by the system as compared with those by experts. The sensitivity analysis indicated that the negative predictive value could improve up to 27.5% when the model's threshold changed to 0.4. We successfully applied the AOP model to automatically identify potential inappropriate TCM prescriptions. This model could be a potential TCM clinical decision support system in order to improve drug safety and quality of care. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Hot spot analysis applied to identify ecosystem services potential in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Depellegrin, Daniel; Misiune, Ieva

    2016-04-01

    Hot spot analysis are very useful to identify areas with similar characteristics. This is important for a sustainable use of the territory, since we can identify areas that need to be protected, or restored. This is a great advantage in terms of land use planning and management, since we can allocate resources, reduce the economical costs and do a better intervention in the landscape. Ecosystem services (ES) are different according land use. Since landscape is very heterogeneous, it is of major importance understand their spatial pattern and where are located the areas that provide better ES and the others that provide less services. The objective of this work is to use hot-spot analysis to identify areas with the most valuable ES in Lithuania. CORINE land-cover (CLC) of 2006 was used as the main spatial information. This classification uses a grid of 100 m resolution and extracted a total of 31 land use types. ES ranking was carried out based on expert knowledge. They were asked to evaluate the ES potential of each different CLC from 0 (no potential) to 5 (very high potential). Hot spot analysis were evaluated using the Getis-ord test, which identifies cluster analysis available in ArcGIS toolbox. This tool identifies areas with significantly high low values and significant high values at a p level of 0.05. In this work we used hot spot analysis to assess the distribution of providing, regulating cultural and total (sum of the previous 3) ES. The Z value calculated from Getis-ord was used to statistical analysis to access the clusters of providing, regulating cultural and total ES. ES with high Z value show that they have a high number of cluster areas with high potential of ES. The results showed that the Z-score was significantly different among services (Kruskal Wallis ANOVA =834. 607, p<0.001). The Z score of providing services (0.096±2.239) were significantly higher than the total (0.093±2.045), cultural (0.080±1.979) and regulating (0.076±1.961). These

  20. [Biological diagnosis of iron deficiency in children].

    PubMed

    Thuret, I

    2017-05-01

    Measurement of serum ferritin (SF) is currently the laboratory test recommended for diagnosing iron deficiency. In the absence of an associated disease, a low SF value is an early and highly specific indicator of iron deficiency. The WHO criteria proposed to define depleted storage iron are 12μg/L for children under 5 years and 15μg/L for those over 5 years. A higher threshold of 30μg/L is used in the presence of infection or inflammation. Iron deficiency anemia, with typical low mean corpuscular volume and mean corpuscular hemoglobin, is only present at the end stage of iron deficiency. Other diagnostic tests for iron deficiency including iron parameters (low serum iron, increased total iron-binding capacity, low transferrin saturation) and erythrocyte traits (low mean corpuscular volume, increased zinc protoporphyrin) provide little additional diagnostic value over SF. In children, serum soluble transferrin receptor (sTfR) has been reported to be a sensitive indicator of iron deficiency and is relatively unaffected by inflammation. On the other hand, sTfR is directly related to extent of erythroid activity and not commonly used in clinical practice. In population surveys, approaches based on combinations of markers have been explored to improve the specificity and sensitivity of diagnostic. In addition to Hb value determination, a combination of parameters (among transferrin saturation, zinc protoporphyrin, mean corpuscular volume or serum ferritin) was generally used to assess iron deficiency. More recently sTfR/ ferritin index were evaluated, sTfR in conjunction with SF allowing to better distinguishing iron deficiency from inflammatory anemia. Also, hepcidin measurements appeared an interesting marker for diagnosing iron deficiency and identifying individuals in need of iron supplementation in populations where inflammatory or infectious diseases are frequently encountered. Reticulocyte Hb content (CHr) determination is an early parameter of iron deficiency

  1. Strategies for Correcting Very Long Chain Acyl-CoA Dehydrogenase Deficiency*

    PubMed Central

    Tenopoulou, Margarita; Chen, Jie; Bastin, Jean; Bennett, Michael J.; Ischiropoulos, Harry; Doulias, Paschalis-Thomas

    2015-01-01

    Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237. Cysteine 237 S-nitrosylation was associated with an 8–17-fold increase in VLCAD-specific activity and concomitant correction of acylcarnitine profile and β-oxidation capacity, two hallmarks of the disorder. Overall, this study provides biochemical evidence for a potential therapeutic modality to correct β-oxidation deficiencies. PMID:25737446

  2. What Are Rare Clotting Factor Deficiencies?

    MedlinePlus

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  3. TOND1 confers tolerance to nitrogen deficiency in rice

    PubMed Central

    Zhang, Yangjun; Tan, Lubin; Zhu, Zuofeng; Yuan, Lixing; Xie, Daoxin; Sun, Chuanqing

    2015-01-01

    Nitrogen (N), the most important mineral nutrient for plants, is critical to agricultural production systems. N deficiency severely affects rice growth and decreases rice yields. However, excessive use of N fertilizer has caused severe pollution to agricultural and ecological environments. The necessity of breeding of crops that require lower input of N fertilizer has been recognized. Here we identified a major quantitative trait locus on chromosome 12, Tolerance Of Nitrogen Deficiency 1 (TOND1), that confers tolerance to N deficiency in the indica cultivar Teqing. Sequence verification of 75 indica and 75 japonica cultivars from 18 countries and regions demonstrated that only 27.3% of cultivars (41 indica cultivars) contain TOND1, whereas 72.7% of cultivars, including the remaining 34 indica cultivars and all 75 japonica cultivars, do not harbor the TOND1 allele. Over-expression of TOND1 increased the tolerance to N deficiency in the TOND1-deficient rice cultivars. The identification of TOND1 provides a molecular basis for breeding rice varieties with improved grain yield despite decreased input of N fertilizers. PMID:25439309

  4. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    PubMed

    Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei

    2017-11-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  5. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes

    PubMed Central

    Tran, Thai Q.; Ishak Gabra, Mari B.; Lowman, Xazmin H.; Yang, Ying; Reid, Michael A.; Pan, Min; O’Connor, Timothy R.

    2017-01-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer. PMID:29107960

  6. Identifying potential dropouts from college physics classes

    NASA Astrophysics Data System (ADS)

    Wollman, Warren; Lawrenz, Frances

    Hudson and Rottman (1981) established that mathematics ability is probably a secondary factor influencing dropout from college physics courses. Other factors remain to be found for predicting who will drop out or at least have difficulty with the course. When mathematics ability is coupled with general indicators of performance (total GPA and ACT natural science), prediction of performance for those who complete the course is substantially improved. Moreover, discriminant analyses reveal who will have at least some difficulty, but not who will drop out. The problem of isolating specific weaknesses of students who have difficulty persists. Physics achievement appears to depend on mathematics ability only to the extent that students possess the ability to utilize mathematics knowledge for solving physics problems. Identification of the specific aspects of this ability as well as the specific deficiencies leading to dropout should be the object of future research. For the present, interviews might be more revealing than group testing methods.

  7. Identifying potential impact of lead contamination using a geographic information system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocco, G.; Sanchez, R.

    1997-01-01

    The main objective of this research was to identify the potential hazards associated with lead contamination from fixed sources in the city of Tijuana. An exploratory model is presented that describes the potential polluting sources as well as the exposed universe. The results of the analysis provide a clear picture of the geographic distribution of hazards areas for potential lead pollution in Tijuana. The findings are indicative of the dramatic consequences of rapid industrialization and urbanization in a city where there have not been significant planning efforts to mitigate the negative effects of this growth. The approach followed helps tomore » narrow the universe of potential pollution sources, which can help to direct attention, research priorities, and resources to the most critical areas. 16 refs.« less

  8. Glucose-6-phosphate dehydrogenase deficiency in Tunisia: molecular data and phenotype-genotype association.

    PubMed

    Laouini, N; Bibi, A; Ammar, H; Kazdaghli, K; Ouali, F; Othmani, R; Amdouni, S; Haloui, S; Sahli, C A; Jouini, L; Hadj Fredj, S; Siala, H; Ben Romdhane, N; Toumi, N E; Fattoum, S; Messsaoud, T

    2013-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect. In this study, we aimed to perform a molecular investigation of G6PD deficiency in Tunisia and to associate clinical manifestations and the degree of deficiency with the genotype. A total of 161 Tunisian subjects of both sexes were screened by spectrophotometric assay for enzyme activity. Out of these, 54 unrelated subjects were selected for screening of the most frequent mutations in Tunisia by PCR/RFLP, followed by size-based separation of double-stranded fragments under non-denaturing conditions on a denaturing high performance liquid chromatography system. Of the 56 altered chromosomes examined, 75 % had the GdA(-) mutation, 14.28 % showed the GdB(-) mutation and no mutations were identified in 10.72 % of cases. Hemizygous males with GdA(-) mutation were mostly of class III, while those with GdB(-) mutation were mainly of class II. The principal clinical manifestation encountered was favism. Acute hemolytic crises induced by drugs or infections and neonatal jaundice were also noted. Less severe clinical features such as low back pain were present in heterozygous females and in one homozygous female. Asymptomatic individuals were in majority heterozygote females and strangely one hemizygous male. The spectrum of mutations seems to be homogeneous and similar to that of Mediterranean countries; nevertheless 10.72 % of cases remain with undetermined mutation thus suggesting a potential heterogeneity of the deficiency at the molecular level. On the other hand, we note a better association of the molecular defects with the severity of the deficiency than with clinical manifestations.

  9. Recovering from iron deficiency chlorosis in near-isogenic soybeans: a microarray study.

    PubMed

    O'Rourke, Jamie A; Graham, Michelle A; Vodkin, Lila; Gonzalez, Delkin Orlando; Cianzio, Silvia R; Shoemaker, Randy C

    2007-05-01

    Iron deficiency chlorosis (IDC) in soybeans has proven to be a perennial problem in the calcareous soils of the U.S. upper Midwest. A historically difficult trait to study in fields, the use of hydroponics in a controlled greenhouse environment has provided a mechanism to study genetic variation while limiting environmental complications. IDC susceptible plants growing in calcareous soils and in iron-controlled hydroponic experiments often exhibit a characteristic chlorotic phenotype early in the growing season but are able to re-green later in the season. To examine the changes in gene expression of these plants, near-isogenic lines, iron efficient PI548553 (Clark) and iron inefficient PI547430 (IsoClark), developed for their response to iron deficiency stress [USDA, ARS, National Genetic Resources Program, Germplasm Resources Information Network - GRIN. (Online Database) National Germplasm Resources Laboratory, Beltsville, MD, 2004. Available: http://www.ars.grin.gov/cgi-bin/npgs/html/acc_search.pl?accid=PI+547430. [22] were grown in iron-deficient hydroponic conditions for one week, then transferred to iron sufficient conditions for another week. This induced a phenotypic response mimicking the growth of the plants in the field; initial chlorosis followed by re-greening. RNA was isolated from root tissue and transcript profiles were examined between the two near-isogenic lines using publicly available cDNA microarrays. By alleviating the iron deficiency stress our expectation was that plants would return to baseline expression levels. However, the microarray comparison identified four cDNAs that were under-expressed by a two-fold or greater difference in the iron inefficient plant compared to the iron efficient plant. This differential expression was re-examined and confirmed by real time PCR experimentation. Control experiments showed that these genes are not differentially expressed in plants grown continually under iron rich hydroponic conditions. The

  10. Colour vision deficiency.

    PubMed

    Simunovic, M P

    2010-05-01

    Colour vision deficiency is one of the commonest disorders of vision and can be divided into congenital and acquired forms. Congenital colour vision deficiency affects as many as 8% of males and 0.5% of females--the difference in prevalence reflects the fact that the commonest forms of congenital colour vision deficiency are inherited in an X-linked recessive manner. Until relatively recently, our understanding of the pathophysiological basis of colour vision deficiency largely rested on behavioural data; however, modern molecular genetic techniques have helped to elucidate its mechanisms. The current management of congenital colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may be of benefit to those with colour vision deficiency when performing certain tasks, the evidence suggests that they do not enable wearers to obtain normal colour discrimination. In the future, gene therapy remains a possibility, with animal models demonstrating amelioration following treatment.

  11. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing

    PubMed Central

    2014-01-01

    Background Boron (B)-deficiency is a widespread problem in many crops, including Citrus. MicroRNAs (miRNAs) play important roles in nutrient deficiencies. However, little is known on B-deficiency-responsive miRNAs in plants. In this study, we first identified miRNAs and their expression pattern in B-deficient Citrus sinensis roots by Illumina sequencing in order to identify miRNAs that might be involved in the tolerance of plants to B-deficiency. Results We isolated 52 (40 known and 12 novel) up-regulated and 82 (72 known and 10 novel) down-regulated miRNAs from B-deficient roots, demonstrating remarkable metabolic flexibility of roots, which might contribute to the tolerance of plants to B-deficiency. A model for the possible roles of miRNAs in the tolerance of roots to B-deficiency was proposed. miRNAs might regulate the adaptations of roots to B-deficiency through following several aspects: (a) inactivating reactive oxygen species (ROS) signaling and scavenging through up-regulating miR474 and down-regulating miR782 and miR843; (b) increasing lateral root number by lowering miR5023 expression and maintaining a certain phenotype favorable for B-deficiency-tolerance by increasing miR394 expression; (c) enhancing cell transport by decreasing the transcripts of miR830, miR5266 and miR3465; (d) improving osmoprotection (miR474) and regulating other metabolic reactions (miR5023 and miR821). Other miRNAs such as miR472 and miR2118 in roots increased in response to B-deficiency, thus decreasing the expression of their target genes, which are involved in disease resistance, and hence, the disease resistance of roots. Conclusions Our work demonstrates the possible roles of miRNAs and related mechanisms in the response of plant roots to B-deficiency. PMID:24885979

  12. Spontaneous swallowing frequency has potential to identify dysphagia in acute stroke.

    PubMed

    Crary, Michael A; Carnaby, Giselle D; Sia, Isaac; Khanna, Anna; Waters, Michael F

    2013-12-01

    Spontaneous swallowing frequency has been described as an index of dysphagia in various health conditions. This study evaluated the potential of spontaneous swallow frequency analysis as a screening protocol for dysphagia in acute stroke. In a cohort of 63 acute stroke cases, swallow frequency rates (swallows per minute [SPM]) were compared with stroke and swallow severity indices, age, time from stroke to assessment, and consciousness level. Mean differences in SPM were compared between patients with versus without clinically significant dysphagia. Receiver operating characteristic curve analysis was used to identify the optimal threshold in SPM, which was compared with a validated clinical dysphagia examination for identification of dysphagia cases. Time series analysis was used to identify the minimally adequate time period to complete spontaneous swallow frequency analysis. SPM correlated significantly with stroke and swallow severity indices but not with age, time from stroke onset, or consciousness level. Patients with dysphagia demonstrated significantly lower SPM rates. SPM differed by dysphagia severity. Receiver operating characteristic curve analysis yielded a threshold of SPM≤0.40 that identified dysphagia (per the criterion referent) with 0.96 sensitivity, 0.68 specificity, and 0.96 negative predictive value. Time series analysis indicated that a 5- to 10-minute sampling window was sufficient to calculate spontaneous swallow frequency to identify dysphagia cases in acute stroke. Spontaneous swallowing frequency presents high potential to screen for dysphagia in acute stroke without the need for trained, available personnel.

  13. Spontaneous Swallowing Frequency [Has Potential to] Identify Dysphagia in Acute Stroke

    PubMed Central

    Carnaby, Giselle D; Sia, Isaac; Khanna, Anna; Waters, Michael

    2014-01-01

    Background and Purpose Spontaneous swallowing frequency has been described as an index of dysphagia in various health conditions. This study evaluated the potential of spontaneous swallow frequency analysis as a screening protocol for dysphagia in acute stroke. Methods In a cohort of 63 acute stroke cases swallow frequency rates (swallows per minute: SPM) were compared to stroke and swallow severity indices, age, time from stroke to assessment, and consciousness level. Mean differences in SPM were compared between patients with vs. without clinically significant dysphagia. ROC analysis was used to identify the optimal threshold in SPM which was compared to a validated clinical dysphagia examination for identification of dysphagia cases. Time series analysis was employed to identify the minimally adequate time period to complete spontaneous swallow frequency analysis. Results SPM correlated significantly with stroke and swallow severity indices but not with age, time from stroke onset, or consciousness level. Patients with dysphagia demonstrated significantly lower SPM rates. SPM differed by dysphagia severity. ROC analysis yielded a threshold of SPM ≤ 0.40 which identified dysphagia (per the criterion referent) with 0.96 sensitivity, 0.68 specificity, and 0.96 negative predictive value. Time series analysis indicated that a 5 to 10 minute sampling window was sufficient to calculate spontaneous swallow frequency to identify dysphagia cases in acute stroke. Conclusions Spontaneous swallowing frequency presents high potential to screen for dysphagia in acute stroke without the need for trained, available personnel. PMID:24149008

  14. Enhanced Venous Thrombus Resolution in Plasminogen Activator Inhibitor Type-2 Deficient Mice

    PubMed Central

    Siefert, Suzanne A; Chabasse, Christine; Mukhopadhyay, Subhradip; Hoofnagle, Mark H; Strickland, Dudley K; Sarkar, Rajabrata; Antalis, Toni M

    2014-01-01

    Background The resolution of deep vein thrombosis (DVT) requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. PAI-2 is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. Objective To investigate the role of PAI-2 in venous thrombus formation and resolution. Methods Venous thrombus resolution was compared in wild type C57BL/6, PAI-2 -/- and PAI-1 -/- mice using the stasis model of DVT. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA, and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. Results We found that absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2 -/- mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2 deficient thrombi had increased levels of the neutrophil chemoattractant, CXCL2, which was associated with early enhanced neutrophil recruitment. Conclusions These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. PMID:25041188

  15. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    PubMed

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  16. Identifying Potential Norovirus Epidemics in China via Internet Surveillance

    PubMed Central

    Chen, Bin; Jiang, Tao; Cai, Gaofeng; Jiang, Zhenggang; Chen, Yongdi; Wang, Zhengting; Gu, Hua; Chai, Chengliang

    2017-01-01

    Background Norovirus is a common virus that causes acute gastroenteritis worldwide, but a monitoring system for norovirus is unavailable in China. Objective We aimed to identify norovirus epidemics through Internet surveillance and construct an appropriate model to predict potential norovirus infections. Methods The norovirus-related data of a selected outbreak in Jiaxing Municipality, Zhejiang Province of China, in 2014 were collected from immediate epidemiological investigation, and the Internet search volume, as indicated by the Baidu Index, was acquired from the Baidu search engine. All correlated search keywords in relation to norovirus were captured, screened, and composited to establish the composite Baidu Index at different time lags by Spearman rank correlation. The optimal model was chosen and possibly predicted maps in Zhejiang Province were presented by ArcGIS software. Results The combination of two vital keywords at a time lag of 1 day was ultimately identified as optimal (ρ=.924, P<.001). The exponential curve model was constructed to fit the trend of this epidemic, suggesting that a one-unit increase in the mean composite Baidu Index contributed to an increase of norovirus infections by 2.15 times during the outbreak. In addition to Jiaxing Municipality, Hangzhou Municipality might have had some potential epidemics in the study time from the predicted model. Conclusions Although there are limitations with early warning and unavoidable biases, Internet surveillance may be still useful for the monitoring of norovirus epidemics when a monitoring system is unavailable. PMID:28790023

  17. A link between premenopausal iron deficiency and breast cancer malignancy

    PubMed Central

    2013-01-01

    Background Young breast cancer (BC) patients less than 45 years old are at higher risk of dying from the disease when compared to their older counterparts. However, specific risk factors leading to this poorer outcome have not been identified. Methods One candidate is iron deficiency, as this is common in young women and a clinical feature of young age. In the present study, we used immuno-competent and immuno-deficient mouse xenograft models as well as hemoglobin as a marker of iron status in young BC patients to demonstrate whether host iron deficiency plays a pro-metastatic role. Results We showed that mice fed an iron-deficient diet had significantly higher tumor volumes and lung metastasis compared to those fed normal iron diets. Iron deficiency mainly altered Notch but not TGF-β and Wnt signaling in the primary tumor, leading to the activation of epithelial mesenchymal transition (EMT). This was revealed by increased expression of Snai1 and decreased expression of E-cadherin. Importantly, correcting iron deficiency by iron therapy reduced primary tumor volume, lung metastasis, and reversed EMT markers in mice. Furthermore, we found that mild iron deficiency was significantly associated with lymph node invasion in young BC patients (p<0.002). Conclusions Together, our finding indicates that host iron deficiency could be a contributor of poor prognosis in young BC patients. PMID:23800380

  18. Transmitter release in the neuromuscular synapse of the protein kinase C theta-deficient adult mouse.

    PubMed

    Besalduch, Núria; Santafé, Manel M; Garcia, Neus; Gonzalez, Carmen; Tomás, Marta; Tomás, Josep; Lanuza, Maria A

    2011-04-01

    We studied structural and functional features of the neuromuscular junction in adult mice (P30) genetically deficient in the protein kinase C (PKC) theta isoform. Confocal and electron microscopy shows that there are no differences in the general morphology of the endplates between PKC theta-deficient and wild-type (WT) mice. Specifically, there is no difference in the density of the synaptic vesicles. However, the myelin sheath is not as thick in the intramuscular nerve fibers of the PKC theta-deficient mice. We found a significant reduction in the size of evoked endplate potentials and in the frequency of spontaneous, asynchronous, miniature endplate potentials in the PKC theta-deficient neuromuscular preparations in comparison with the WT, but the mean amplitude of the spontaneous potentials is not different. These changes indicate that PKC theta has a presynaptic role in the function of adult neuromuscular synapses. Copyright © 2010 Wiley-Liss, Inc.

  19. Impact of Fetal-Neonatal Iron Deficiency on Recognition Memory at 2 Months of Age.

    PubMed

    Geng, Fengji; Mai, Xiaoqin; Zhan, Jianying; Xu, Lin; Zhao, Zhengyan; Georgieff, Michael; Shao, Jie; Lozoff, Betsy

    2015-12-01

    To assess the effects of fetal-neonatal iron deficiency on recognition memory in early infancy. Perinatal iron deficiency delays or disrupts hippocampal development in animal models and thus may impair related neural functions in human infants, such as recognition memory. Event-related potentials were used in an auditory recognition memory task to compare 2-month-old Chinese infants with iron sufficiency or deficiency at birth. Fetal-neonatal iron deficiency was defined 2 ways: high zinc protoporphyrin/heme ratio (ZPP/H > 118 μmol/mol) or low serum ferritin (<75 μg/L) in cord blood. Late slow wave was used to measure infant recognition of mother's voice. Event related potentials patterns differed significantly for fetal-neonatal iron deficiency as defined by high cord ZPP/H but not low ferritin. Comparing 35 infants with iron deficiency (ZPP/H > 118 μmol/mol) to 92 with lower ZPP/H (iron-sufficient), only infants with iron sufficiency showed larger late slow wave amplitude for stranger's voice than mother's voice in frontal-central and parietal-occipital locations, indicating the recognition of mother's voice. Infants with iron sufficiency showed electrophysiological evidence of recognizing their mother's voice, whereas infants with fetal-neonatal iron deficiency did not. Their poorer auditory recognition memory at 2 months of age is consistent with effects of fetal-neonatal iron deficiency on the developing hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies.

    PubMed

    Davidoff, Candice; Neitz, Maureen; Neitz, Jay

    2016-09-01

    The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red-green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects.

  1. Prevalence of thalassaemia, iron-deficiency anaemia and glucose-6-phosphate dehydrogenase deficiency among Arab migrating nomad children, southern Islamic Republic of Iran.

    PubMed

    Pasalar, M; Mehrabani, D; Afrasiabi, A; Mehravar, Z; Reyhani, I; Hamidi, R; Karimi, M

    2014-12-17

    This study investigated the prevalence of iron-deficiency anaemia, glucose-6-phosphate dehydrogenase (G6PD) deficiency and β-thalassaemia trait among Arab migrating nomad children in southern Islamic Republic of Iran. Blood samples were analysed from 134 schoolchildren aged < 18 years (51 males, 83 females). Low serum ferritin (< 12 ng/dL) was present in 17.9% of children (21.7% in females and 11.8% in males). Low haemoglobin (Hb) correlated significantly with a low serum ferritin. Only 1 child had G6PD deficiency. A total of 9.7% of children had HbA2 ≥ 3.5 g/dL, indicating β-thalassaemia trait (10.8% in females and 7.8% in males). Mean serum iron, serum ferritin and total iron binding capacity were similar in males and females. Serum ferritin index was as accurate as Hb index in the diagnosis of iron-deficiency anaemia. A high prevalence of β-thalassaemia trait was the major potential risk factor in this population.

  2. Combined pituitary hormone deficiency: current and future status.

    PubMed

    Castinetti, F; Reynaud, R; Quentien, M-H; Jullien, N; Marquant, E; Rochette, C; Herman, J-P; Saveanu, A; Barlier, A; Enjalbert, A; Brue, T

    2015-01-01

    Over the last two decades, the understanding of the mechanisms involved in pituitary ontogenesis has largely increased. Since the first description of POU1F1 human mutations responsible for a well-defined phenotype without extra-pituitary malformation, several other genetic defects of transcription factors have been reported with variable degrees of phenotype-genotype correlations. However, to date, despite the identification of an increased number of genetic causes of isolated or multiple pituitary deficiencies, the etiology of most (80-90 %) congenital cases of hypopituitarism remains unsolved. Identifying new etiologies is of importance as a post-natal diagnosis to better diagnose and treat the patients (delayed pituitary deficiencies, differential diagnosis of a pituitary mass on MRI, etc.), and as a prenatal diagnosis to decrease the risk of early death (undiagnosed corticotroph deficiency for instance). The aim of this review is to summarize the main etiologies and phenotypes of combined pituitary hormone deficiencies, associated or not with extra-pituitary anomalies, and to suggest how the identification of such etiologies could be improved in the near future.

  3. Glucose-6-Phosphate Dehydrogenase Deficiency in Nigerian Children

    PubMed Central

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C.

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females) aged 1 month to 15 years. The mean age was 7.4±3.2 years. Children of Yoruba ethnicity made up the largest group (77.5%) followed by those Igbo descent (10.6%) and those of Igede (10.2%) and Tiv (1.8%) ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females). Yoruba children had a higher prevalence (16.9%) than Igede (10.5%), Igbo (10.1%) and Tiv (5.0%) children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p = 0.0500). The odds for Igede and Tiv children were not significantly different from Yoruba children (p = 0.7528 and 0.9789 respectively). Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p = 0.0351). In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection. PMID:23874768

  4. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    PubMed

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females) aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5%) followed by those Igbo descent (10.6%) and those of Igede (10.2%) and Tiv (1.8%) ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females). Yoruba children had a higher prevalence (16.9%) than Igede (10.5%), Igbo (10.1%) and Tiv (5.0%) children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500). The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively). Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351). In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  5. 25-hydroxy vitamin D deficiency following pediatric hematopoietic stem cell transplant.

    PubMed

    Duncan, Christine N; Vrooman, Lynda; Apfelbaum, Erin M; Whitley, Katherine; Bechard, Lori; Lehmann, Leslie E

    2011-05-01

    Children may be at increased risk for vitamin D deficiency following HSCT because of lack of sun exposure, the recommended use of sunscreen, dietary insufficiency, malabsorption, and the use of certain medications. We prospectively assessed the prevalence of and risk factors for 25-hydroxy (25-OH) vitamin D deficiency in 67 patients transplanted at our institution. 25-OH vitamin D levels were checked during 3 separate 4-week periods in the spring, autumn, and winter. Subjects were <2 years following transplant and/or being treated for chronic graft-versus-host disease (cGVHD). Levels less than 20 ng/mL were considered deficient, and those less than 30 ng/mL were considered insufficient. The mean 25-OH vitamin D level was 22.8 ng/mL (range: 7-46.2). A total of 80.6% (confidence interval [CI] 69.1%-89.3%) of patients had a level less than the lower limit of the institutional normal range. The deficiency rate was 37.3% (CI 25.8%-50%). The mean parathyroid hormone (PTH) level was 77.5 (SD = 80.5). There was no correlation between 25-OH vitamin D and PTH levels. We evaluated potential risk factors for 25-OH vitamin D deficiency including age, season of testing, sun exposure, sunscreen use, use of steroid or calcineurin inhibitor, race, and dairy intake. In multivariate logistic regression, only older age was found to be a risk factor for deficiency (P = .004). Patients with deficient levels were treated with 50,000 IU of ergocalciferol once weekly for 6 weeks. A postrepletion 25-OH level was available for 22 patients. The majority of repleted patients had a normal posttreatment level (63.6%). The postsupplementation level corrected into the insufficient range for 31.8% of patients and 4.6% remained deficient. Vitamin D insufficiency and deficiency are common following HSCT. Further investigation into potential risk factors and the appropriate supplementation for these patients is warranted. Copyright © 2011 American Society for Blood and Marrow Transplantation

  6. Reconstitution of the NF1 GAP-related domain in NF1-deficient human Schwann cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Stacey L.; Neuroscience Program, Loyola University Medical Center, Maywood, IL; Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL

    Schwann cells derived from peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are deficient for the protein neurofibromin, which contains a GAP-related domain (NF1-GRD). Neurofibromin-deficient Schwann cells have increased Ras activation, increased proliferation in response to certain growth stimuli, increased angiogenic potential, and altered cell morphology. This study examined whether expression of functional NF1-GRD can reverse the transformed phenotype of neurofibromin-deficient Schwann cells from both benign and malignant peripheral nerve sheath tumors. We reconstituted the NF1-GRD using retroviral transduction and examined the effects on cell morphology, growth potential, and angiogenic potential. NF1-GRD reconstitution resulted in morphologic changes,more » a 16-33% reduction in Ras activation, and a 53% decrease in proliferation in neurofibromin-deficient Schwann cells. However, NF1-GRD reconstitution was not sufficient to decrease the in vitro angiogenic potential of the cells. This study demonstrates that reconstitution of the NF1-GRD can at least partially reverse the transformation of human NF1 tumor-derived Schwann cells.« less

  7. Porin Deficiency in Carbapenem-Resistant Enterobacter aerogenes Strains.

    PubMed

    Hao, Min; Ye, Meiping; Shen, Zhen; Hu, Fupin; Yang, Yang; Wu, Shi; Xu, Xiaogang; Zhu, Sihui; Qin, Xiaohua; Wang, Minggui

    2018-03-13

    The more frequent reports of carbapenem-resistant Enterobacteriaceae have raised the alarm for public health. Apart from the production of carbapenemases, deficiency (decreased or loss of expression) of outer membrane proteins (OMPs) has been proposed as a potentially important mechanism of carbapenem resistance. The aim of the present study was to evaluate the contribution of the major OMPs to carbapenem resistance in Enterobacter aerogenes (CREA) isolates and also investigate the role of small RNAs (sRNAs) in inducing porin-associated permeability defects. The differential expression of OMPs was analyzed in four clinical CREA isolates. omp35 and omp36 genes were further investigated by whole-genome sequencing, induction of meropenem resistance, sRNA overexpression, OMP complementation assays, and reverse transcription-quantitative PCR. All four isolates examined were deficient in omp35 and omp36. Functional restoration of these two genes confirmed their contribution to carbapenem resistance. The meropenem induction assay further revealed that porin deficiency plays a role in carbapenem resistance under antibiotic selection pressure. Single-point mutations in omp36 leading to premature stop codons were detected in two of the isolates. Elevated expression levels of the sRNAs micF and micC were detected in the other two porin-deficient isolates, which were predicted to be potential porin regulators from whole-genome sequencing. Overexpression of micF and micC downregulated the expression of Omp35 and Omp36, respectively. Porin deficiency plays an important role in carbapenem resistance among clinical E. aerogenes isolates under regulation of the sRNAs micC and micF. Furthermore, overexpression of micC and micF had a minor to no impact on carbapenem minimum inhibitory concentrations, and thus, the regulatory mechanism is likely to be complex.

  8. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  9. Gene Expression Changes in Phosphorus Deficient Potato (Solanum tuberosum L.) Leaves and the Potential for Diagnostic Gene Expression Markers

    PubMed Central

    Hammond, John P.; Broadley, Martin R.; Bowen, Helen C.; Spracklen, William P.; Hayden, Rory M.; White, Philip J.

    2011-01-01

    Background There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. Results We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. Conclusions This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving

  10. Inhibition of neutral endopeptidase potentiates neutrophil activation during Mg-deficiency in the rat

    PubMed Central

    Mak, I. T.; Kramer, J. H.; Chmielinska, J. J.; Khalid, M. H.; Landgraf, K. M.; Weglicki, W. B.

    2013-01-01

    Neutral endopeptidase (NEP), which degrades substance P (SP), may regulate neutrophil activation during Mg-deficiency (MgD). Male Sprague-Dawley rats (180g) were fed MgD (~50 mg Mg/kg) or Mg-sufficient (MgS, 608 mg Mg/kg) diets for 7 days ± NEP inhibitor phosphoramidon (PR, 5 mg/kg/day, s. c.). MgD alone induced a 9-fold (vs. MgS, p <0.01) elevation in plasma SP; MgD+PR enhanced it further to 18-fold (p <0.001). Neutrophils from MgD+PR rats displayed a 3.9-fold higher (p <0.01) basal ·O2- generation, but those from MgD or PR alone were not activated. Plasma PGE2-metabolite levels rose 2.67- (p <0.01) and 1.56- (p <0.05) fold, respectively, in MgD+PR and MgD groups; the corresponding red blood cell glutathione levels were decreased 21 % (p <0.025) and 7 % (NS). MgD+PR significantly reduced neutrophil NEP activity by 48 % (p <0.02); PR or MgD alone only reduced this activity 26 % and 15 %, respectively. We conclude that NEP inhibition potentiates SP-mediated neutrophil ·O2- production and may promote other inflammatory activities during MgD. PMID:18607539

  11. Inhibition of neutral endopeptidase potentiates neutrophil activation during Mg-deficiency in the rat.

    PubMed

    Mak, I T; Kramer, J H; Chmielinska, J J; Khalid, M H; Landgraf, K M; Weglicki, W B

    2008-07-01

    Neutral endopeptidase (NEP), which degrades substance P (SP), may regulate neutrophil activation during Mg-deficiency (MgD). Male Sprague-Dawley rats (180g) were fed MgD (approximately 50 mg Mg/kg) or Mg-sufficient (MgS, 608 mg Mg/kg) diets for 7 days +/- NEP inhibitor phosphoramidon (PR, 5 mg/kg/day, s.c.). MgD alone induced a 9-fold (vs. MgS, p <0.01) elevation in plasma SP; MgD+PR enhanced it further to 18-fold (p <0.001). Neutrophils from MgD+PR rats displayed a 3.9-fold higher (p <0.01) basal .O(2-) generation, but those from MgD or PR alone were not activated. Plasma PGE2-metabolite levels rose 2.67- (p <0.01) and 1.56- (p <0.05) fold, respectively, in MgD+PR and MgD groups; the corresponding red blood cell glutathione levels were decreased 21% (p <0.025) and 7% (NS). MgD+PR significantly reduced neutrophil NEP activity by 48% (p <0.02); PR or MgD alone only reduced this activity 26% and 15%, respectively. We conclude that NEP inhibition potentiates SP-mediated neutrophil .O(2-) production and may promote other inflammatory activities during MgD.

  12. Increased autophagic sequestration in adaptor protein-3 deficient dendritic cells limits inflammasome activity and impairs antibacterial immunity

    PubMed Central

    Casson, Cierra N.; Lefkovith, Ariel J.

    2017-01-01

    Bacterial pathogens that compromise phagosomal membranes stimulate inflammasome assembly in the cytosol, but the molecular mechanisms by which membrane dynamics regulate inflammasome activity are poorly characterized. We show that in murine dendritic cells (DCs), the endosomal adaptor protein AP-3 –which optimizes toll-like receptor signaling from phagosomes–sustains inflammasome activation by particulate stimuli. AP-3 independently regulates inflammasome positioning and autophagy induction, together resulting in delayed inflammasome inactivation by autophagy in response to Salmonella Typhimurium (STm) and other particulate stimuli specifically in DCs. AP-3-deficient DCs, but not macrophages, hyposecrete IL-1β and IL-18 in response to particulate stimuli in vitro, but caspase-1 and IL-1β levels are restored by silencing autophagy. Concomitantly, AP-3-deficient mice exhibit higher mortality and produce less IL-1β, IL-18, and IL-17 than controls upon oral STm infection. Our data identify a novel link between phagocytosis, inflammasome activity and autophagy in DCs, potentially explaining impaired antibacterial immunity in AP-3-deficient patients. PMID:29253868

  13. Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins.

    PubMed

    Lapierre, Catherine; Pilate, Gilles; Pollet, Brigitte; Mila, Isabelle; Leplé, Jean-Charles; Jouanin, Lise; Kim, Hoon; Ralph, John

    2004-02-01

    A series of transgenic poplars down-regulated for cinnamyl alcohol dehydrogenase (CAD) was analyzed by thioacidolysis. Among the lignin-derived monomers, the indene compounds that were recently shown to originate from sinapaldehyde incorporated into lignins through 8-O-4-cross-coupling, were found to increase as a function of CAD deficiency level. While these syringyl markers were recovered in substantial amounts in the most severely depressed lines, the markers for coniferaldehyde incorporation were recovered in only low amounts. In conjunction with these additional sinapaldehyde units and relative to the control samples, lignins in CAD-deficient poplar lines had less conventional syringyl-units and beta-O-4-bonds and more free phenolic groups. We found that almost half of the polymers in the most deficient lines could be solubilized in alkali and at room temperature. This unusual behavior suggests that lignins in CAD-deficient poplars occur as small, alkali-leachable lignin domains. That mainly sinapaldehyde incorporates into the lignins of CAD-deficient poplars suggests that the recently identified sinapyl alcohol dehydrogenase (SAD), which is structurally distinct from the CAD enzyme targeted herein, does not play any substantial role in constitutive lignification in poplar.

  14. Is vitamin D deficiency a public health concern for low middle income countries? A systematic literature review.

    PubMed

    Cashman, Kevin D; Sheehy, Tony; O'Neill, Colette M

    2018-01-17

    Vitamin D deficiency has been receiving increasing attention as a potential public health concern in low and lower-middle income countries (LMICs), of which there are currently 83. We aimed to conduct a comprehensive systematic literature review (SLR) of available data on vitamin D status and prevalence of vitamin D deficiency in all 83 LMICs. We followed the general methodology for SLRs in the area of serum 25-hydroxyvitamin D. Highest priority was placed on identifying relevant population-based studies, followed by cross-sectional studies, and to a lesser extent case-control studies. We adopted the public health convention that a prevalence of vitamin D deficiency (serum 25-hydroxyvitamin D < 25/30 nmol/L) at > 20% in the entire population and/or at-risk population subgroups (infants, children, women of child-bearing age, pregnancy) constitutes a public health issue that may warrant intervention. Our SLR revealed that of the 83 LMICs, 65% (n = 54 countries) had no published studies with vitamin D data suitable for inclusion. Using data from the remaining third, a number of LMICs had evidence of excess burden of vitamin D deficiency in one or more population subgroup(s) using the above convention (Afghanistan, Pakistan, India, Tunisia and Mongolia) as well as possibly other LMICs, albeit with much more limited data. Several LMICs had no evidence of excess burden. Vitamin D deficiency is a public health issue in some, but certainly not all, LMICs. There is a clear need for targeting public health strategies for prevention of vitamin D deficiency in those LMICs with excess burden.

  15. Vitamin D deficiency is common among adults in Wallonia (Belgium, 51°30' North): findings from the Nutrition, Environment and Cardio-Vascular Health study.

    PubMed

    Hoge, Axelle; Donneau, Anne-Françoise; Streel, Sylvie; Kolh, Philippe; Chapelle, Jean-Paul; Albert, Adelin; Cavalier, Etienne; Guillaume, Michèle

    2015-08-01

    Data on the vitamin D status of the population of Wallonia (Belgium, 51°30' North) are scarce. This study was carried out to estimate vitamin D deficiency, identify potential determinants, and analyze their relationship with vitamin D supplementation. We tested the hypothesis that vitamin D deficiency is common in the general population, particularly among subjects without supplementation. Vitamin D deficiency was defined as a serum level of 25-hydroxyvitamin D (25(OH)D) concentration less than 50nmol/L. Data were analyzed from 915 participants of the Nutrition, Environment and Cardio-Vascular Health cross-sectional survey. The median (interquartile range) 25(OH)D level was 53.1 (37.8-69.9) nmol/L, and 44.7% of the subjects were vitamin D deficient. Subjects without vitamin D supplementation were more concerned by vitamin D deficiency than those with supplementation (odds ratio [OR], 3.35; P < .0001). From a multivariate standpoint, the potential determinants of vitamin D deficiency among subjects without vitamin D supplementation were season, specifically spring and winter (OR, 7.36 and 6.44, respectively), obesity (OR, 2.19), low household income (OR, 1.73), and lack of solarium use (OR, 1.79). For subjects with supplementation, the only determinant observed for vitamin D deficiency was obesity (OR, 5.00). This work evidenced the high prevalence of 25(OH)D deficiency in the general population, especially among nonsupplemented subjects with obesity, low household income, and/or lack of light. Vitamin D supplementation looks effective in our population, especially via a stabilization of vitamin D coverage throughout the seasons. The best dietary strategy to achieve optimal 25(OH)D concentrations all year round in the general population requires more research. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Using Social Media Data to Identify Potential Candidates for Drug Repurposing: A Feasibility Study.

    PubMed

    Rastegar-Mojarad, Majid; Liu, Hongfang; Nambisan, Priya

    2016-06-16

    Drug repurposing (defined as discovering new indications for existing drugs) could play a significant role in drug development, especially considering the declining success rates of developing novel drugs. Typically, new indications for existing medications are identified by accident. However, new technologies and a large number of available resources enable the development of systematic approaches to identify and validate drug-repurposing candidates. Patients today report their experiences with medications on social media and reveal side effects as well as beneficial effects of those medications. Our aim was to assess the feasibility of using patient reviews from social media to identify potential candidates for drug repurposing. We retrieved patient reviews of 180 medications from an online forum, WebMD. Using dictionary-based and machine learning approaches, we identified disease names in the reviews. Several publicly available resources were used to exclude comments containing known indications and adverse drug effects. After manually reviewing some of the remaining comments, we implemented a rule-based system to identify beneficial effects. The dictionary-based system and machine learning system identified 2178 and 6171 disease names respectively in 64,616 patient comments. We provided a list of 10 common patterns that patients used to report any beneficial effects or uses of medication. After manually reviewing the comments tagged by our rule-based system, we identified five potential drug repurposing candidates. To our knowledge, this is the first study to consider using social media data to identify drug-repurposing candidates. We found that even a rule-based system, with a limited number of rules, could identify beneficial effect mentions in patient comments. Our preliminary study shows that social media has the potential to be used in drug repurposing.

  17. Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.).

    PubMed

    Li, Zhenyi; Xu, Hongyu; Li, Yue; Wan, Xiufu; Ma, Zhao; Cao, Jing; Li, Zhensong; He, Feng; Wang, Yufei; Wan, Liqiang; Tong, Zongyong; Li, Xianglin

    2018-03-01

    The induction of miR399 and miR398 and the inhibition of miR156, miR159, miR160, miR171, miR2111, and miR2643 were observed under Pi deficiency in alfalfa. The miRNA-mediated genes involved in basic metabolic process, root and shoot development, stress response and Pi uptake. Inorganic phosphate (Pi) deficiency is known to be a limiting factor in plant development and growth. However, the underlying miRNAs associated with the Pi deficiency-responsive mechanism in alfalfa are unclear. To elucidate the molecular mechanism at the miRNA level, we constructed four small RNA (sRNA) libraries from the roots and shoots of alfalfa grown under normal or Pi-deficient conditions. In the present study, alfalfa plants showed reductions in biomass, photosynthesis, and Pi content and increases in their root-to-shoot ratio and citric, malic, and succinic acid contents under Pi limitation. Sequencing results identified 47 and 44 differentially expressed miRNAs in the roots and shoots, respectively. Furthermore, 909 potential target genes were predicted, and some targets were validated by RLM-RACE assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed prominent enrichment in signal transducer activity, binding and basic metabolic pathways for carbohydrates, fatty acids and amino acids; cellular response to hormone stimulus and response to auxin pathways were also enriched. qPCR results verified that the differentially expressed miRNA profile was consistent with sequencing results, and putative target genes exhibited opposite expression patterns. In this study, the miRNAs associated with the response to Pi limitation in alfalfa were identified. In addition, there was an enrichment of miRNA-targeted genes involved in biological regulatory processes such as basic metabolic pathways, root and shoot development, stress response, Pi transportation and citric acid secretion.

  18. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation.

    PubMed

    Jones, Robert A; Robinson, Tyler J; Liu, Jeff C; Shrestha, Mariusz; Voisin, Veronique; Ju, YoungJun; Chung, Philip E D; Pellecchia, Giovanna; Fell, Victoria L; Bae, SooIn; Muthuswamy, Lakshmi; Datti, Alessandro; Egan, Sean E; Jiang, Zhe; Leone, Gustavo; Bader, Gary D; Schimmer, Aaron; Zacksenhaus, Eldad

    2016-10-03

    Triple-negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which no specific treatment is currently available. Although the retinoblastoma tumor-suppressor gene (RB1) is frequently lost together with TP53 in TNBC, it is not directly targetable. There is thus great interest in identifying vulnerabilities downstream of RB1 that can be therapeutically exploited. Here, we determined that combined inactivation of murine Rb and p53 in diverse mammary epithelial cells induced claudin-low-like TNBC with Met, Birc2/3-Mmp13-Yap1, and Pvt1-Myc amplifications. Gene set enrichment analysis revealed that Rb/p53-deficient tumors showed elevated expression of the mitochondrial protein translation (MPT) gene pathway relative to tumors harboring p53 deletion alone. Accordingly, bioinformatic, functional, and biochemical analyses showed that RB1-E2F complexes bind to MPT gene promoters to regulate transcription and control MPT. Additionally, a screen of US Food and Drug Administration-approved (FDA-approved) drugs identified the MPT antagonist tigecycline (TIG) as a potent inhibitor of Rb/p53-deficient tumor cell proliferation. TIG preferentially suppressed RB1-deficient TNBC cell proliferation, targeted both the bulk and cancer stem cell fraction, and strongly attenuated xenograft growth. It also cooperated with sulfasalazine, an FDA-approved inhibitor of cystine xCT antiporter, in culture and xenograft assays. Our results suggest that RB1 deficiency promotes cancer cell proliferation in part by enhancing mitochondrial function and identify TIG as a clinically approved drug for RB1-deficient TNBC.

  19. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation

    PubMed Central

    Jones, Robert A.; Robinson, Tyler J.; Liu, Jeff C.; Shrestha, Mariusz; Voisin, Veronique; Ju, YoungJun; Chung, Philip E.D.; Pellecchia, Giovanna; Fell, Victoria L.; Bae, SooIn; Muthuswamy, Lakshmi; Egan, Sean E.; Jiang, Zhe; Leone, Gustavo; Bader, Gary D.; Schimmer, Aaron

    2016-01-01

    Triple-negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which no specific treatment is currently available. Although the retinoblastoma tumor-suppressor gene (RB1) is frequently lost together with TP53 in TNBC, it is not directly targetable. There is thus great interest in identifying vulnerabilities downstream of RB1 that can be therapeutically exploited. Here, we determined that combined inactivation of murine Rb and p53 in diverse mammary epithelial cells induced claudin-low–like TNBC with Met, Birc2/3-Mmp13-Yap1, and Pvt1-Myc amplifications. Gene set enrichment analysis revealed that Rb/p53-deficient tumors showed elevated expression of the mitochondrial protein translation (MPT) gene pathway relative to tumors harboring p53 deletion alone. Accordingly, bioinformatic, functional, and biochemical analyses showed that RB1-E2F complexes bind to MPT gene promoters to regulate transcription and control MPT. Additionally, a screen of US Food and Drug Administration–approved (FDA-approved) drugs identified the MPT antagonist tigecycline (TIG) as a potent inhibitor of Rb/p53-deficient tumor cell proliferation. TIG preferentially suppressed RB1-deficient TNBC cell proliferation, targeted both the bulk and cancer stem cell fraction, and strongly attenuated xenograft growth. It also cooperated with sulfasalazine, an FDA-approved inhibitor of cystine xCT antiporter, in culture and xenograft assays. Our results suggest that RB1 deficiency promotes cancer cell proliferation in part by enhancing mitochondrial function and identify TIG as a clinically approved drug for RB1-deficient TNBC. PMID:27571409

  20. Chromatic VEP in children with congenital colour vision deficiency.

    PubMed

    Tekavčič Pompe, Manca; Stirn Kranjc, Branka; Brecelj, Jelka

    2010-09-01

    Visual evoked potentials to chromatic stimulus (cVEP) are believed to selectively test the parvocellular visual pathway which is responsible for processing information about colour. The aim was to evaluate cVEP in children with red-green congenital colour vision deficiency. VEP responses of 15 colour deficient children were compared to 31 children with normal colour vision. An isoluminant red-green stimulus composed of horizontal gratings was presented in an onset-offset manner. The shape of the waveform was studied, as well as the latency and amplitude of positive (P) and negative (N) waves. cVEP response did not change much with increased age in colour deficient children, whereas normative data showed changes from a predominantly positive to a negative response with increased age. A P wave was present in 87% of colour deficient children (and in 100% of children with normal colour vision), whereas the N wave was absent in a great majority of colour deficient children and was present in 80% of children with normal colour vision. Therefore, the amplitude of the whole response (N-P) decreased linearly with age in colour deficient children, whereas in children with normal colour vision it increased linearly. P wave latency shortened with increased age in both groups. cVEP responses differ in children with congenital colour vision deficiency compared to children with normal colour vision. © 2010 The Authors, Ophthalmic and Physiological Optics © 2010 The College of Optometrists.

  1. Clinical Characteristics of Disaccharidase Deficiencies Among Children Undergoing Upper Endoscopy.

    PubMed

    Cohen, Stanley A; Oloyede, Hannah; Gold, Benjamin D; Mohammed, Aminu; Elser, Heather E

    2018-06-01

    The epidemiology and clinical significance of disaccharidase deficiencies have not been thoroughly characterized. Recent work suggests at least genetic sucrase-isomaltase deficiency is more prevalent than previously believed. Because lactase deficiency (LD) is well described, the present study focuses on the clinical characteristics of children with disaccharidase deficiencies determined by esophagogastroduodenoscopy. Endoscopic records were reviewed from patients undergoing esophagogastroduodenoscopies with biopsies assayed for disaccharidase activity performed by 13 pediatric gastroenterologists during 5 years (2010-2014). Presenting symptoms, clinical and histological diagnosis, treatment, disaccharidase results, and demographic variables were obtained from medical and endoscopic records of those with maltase and sucrase deficiency (SD). Among 963 patients undergoing intestinal disaccharidase testing, 73 (7.6%) had SD on biopsy (enzyme activity <25 μmol · min · g). Thirty-four (34/73; 47%) had normal duodenal histology and are the focus of this report. Four patients had SD without LD. Pan-disaccharidase deficiency was observed in 24 patients when maltase and palatinase assays were obtained (n = 646), and 11 had SD + LD when just those 2 enzymes were analyzed (n = 317). Those with SD without LD were younger 4.6 ± 6.1 versus 14.1 ± 3.6 years and uniformly presented with diarrhea. Patients with pan-disaccharidase deficiency or SD + LD primarily reported abdominal pain (33/35; 94%), diarrhea (16/35; 46%), nausea (14/35; 40%); and poor weight gain/weight loss (10/35; 29%); constipation, flatulence, and bloating were also noted. Maltase deficiency is less common (8/963; 0.8%), presenting with similar symptoms. Genetic sucrase-isomaltase deficiency often occurs together with lactase or pan-disaccharide deficiency. Disaccharidase deficiency should be considered a potential cause of abdominal pain and/or diarrhea in children and

  2. Peritumoral granulomatous reaction in endometrial carcinoma: association with DNA mismatch repair protein deficiency, particularly loss of PMS2 expression.

    PubMed

    Stewart, Colin J R; Pearn, Amy; Pachter, Nicholas; Tan, Adeline

    2018-04-30

    The observation of peritumoral granulomatous reactions (PGRs) in two endometrial carcinomas (ECs) with a PMS2-deficient/MLH1-intact expression pattern led us to investigate whether PGRs in EC were specifically associated with DNA mismatch repair (MMR) protein deficiency, particularly PMS2 loss. Hysterectomy specimens from 22 MMR protein-intact and 54 MMR protein-deficient ECs were reviewed with specific attention to the presence of a PGR and a tumour-associated lymphoid reaction [including tumour-infiltrating lymphocytes (TILs) and stromal lymphoid infiltrates]. The MMR protein-deficient ECs included 22 cases with combined MLH1/PMS2 loss, 11 with combined MSH2/MSH6 loss, 11 with isolated MSH6 loss, and 10 with PMS2 loss but intact MLH1 staining (including the two 'index' cases). Overall, PGRs were identified in seven of 54 (13%) MMR protein-deficient ECs, five of which showed a PMS2-deficient/MLH1-intact immunophenotype; three of these patients had germline PMS2 mutations and one additional patient had a germline MSH6 mutation. None of the MMR protein-intact tumours showed a PGR. Although five of the seven PGR-positive ECs had a high-grade histological component, six were stage I. Most ECs with PGRs also showed TILs and stromal lymphoid reactions, similarly to MMR protein-deficient ECs in general. MMR protein-deficient ECs, particularly those with PMS2 loss, occasionally show PGRs in addition to stromal lymphoid infiltrates and TILs. Therefore, PGRs could be considered to constitute a histological prompt for consideration of Lynch syndrome. The potential prognostic significance of PGRs in EC requires further study. © 2018 John Wiley & Sons Ltd.

  3. Predictors of vitamin D deficiency in inflammatory bowel disease and health: A Mississippi perspective

    PubMed Central

    Pallav, Kumar; Riche, Daniel; May, Warren L; Sanchez, Patrick; Gupta, Nitin K

    2017-01-01

    AIM To identify the predictors of vitamin D deficiency in patients with and without inflammatory bowel disease (IBD). METHODS Patients with ulcerative colitis (UC) or Crohn’s disease (CD) related diagnostic codes who received medical care at University of Mississippi Medical Center between July 2012 and 2015 were identified. After thorough chart review, we identified patients with biopsy proven IBD who had also been tested for serum 25-hydroxyvitamin D [25(OH)D] concentration. We compared these patients to a previously studied cohort of healthy controls who also had vitamin D concentration checked. Logistic regression analysis was performed to determine the association between vitamin d deficiency and UC, CD, race, age, gender and body mass index (BMI). RESULTS We identified 237 patients with confirmed IBD. Of these, only 211 had a serum 25(OH)D concentrations available in the medical record. The group of healthy controls consisted of 98 individuals with available serum 25(OH)D concentration. 43% of IBD patients were African American (AA). Patients with CD were more likely to have vitamin D concentration checked. Bivariate analysis showed that AA (51% vs 21%, P = 0.00001), subjects with BMI >30 kg/m2 (39% vs 23% P = 0.01) and CD (40% vs 26%, P = 0.04) were more likely to be vitamin D deficient than vitamin D sufficient. Those with Age > 65 were more likely to be vitamin D sufficient (46% vs 15%, P = 0.04). Multiple regression showed that only BMI > 30 kg/m2 and AA race are associated with vitamin D deficiency. CONCLUSION BMI > 30 kg/m2 and AA race are predictive of vitamin D deficiency. Gender, age and diagnosis of IBD are not predictive of vitamin D deficiency. PMID:28216970

  4. Predictors of vitamin D deficiency in inflammatory bowel disease and health: A Mississippi perspective.

    PubMed

    Pallav, Kumar; Riche, Daniel; May, Warren L; Sanchez, Patrick; Gupta, Nitin K

    2017-01-28

    To identify the predictors of vitamin D deficiency in patients with and without inflammatory bowel disease (IBD). Patients with ulcerative colitis (UC) or Crohn's disease (CD) related diagnostic codes who received medical care at University of Mississippi Medical Center between July 2012 and 2015 were identified. After thorough chart review, we identified patients with biopsy proven IBD who had also been tested for serum 25-hydroxyvitamin D [25(OH)D] concentration. We compared these patients to a previously studied cohort of healthy controls who also had vitamin D concentration checked. Logistic regression analysis was performed to determine the association between vitamin d deficiency and UC, CD, race, age, gender and body mass index (BMI). We identified 237 patients with confirmed IBD. Of these, only 211 had a serum 25(OH)D concentrations available in the medical record. The group of healthy controls consisted of 98 individuals with available serum 25(OH)D concentration. 43% of IBD patients were African American (AA). Patients with CD were more likely to have vitamin D concentration checked. Bivariate analysis showed that AA (51% vs 21%, P = 0.00001), subjects with BMI >30 kg/m 2 (39% vs 23% P = 0.01) and CD (40% vs 26%, P = 0.04) were more likely to be vitamin D deficient than vitamin D sufficient. Those with Age > 65 were more likely to be vitamin D sufficient (46% vs 15%, P = 0.04). Multiple regression showed that only BMI > 30 kg/m 2 and AA race are associated with vitamin D deficiency. BMI > 30 kg/m 2 and AA race are predictive of vitamin D deficiency. Gender, age and diagnosis of IBD are not predictive of vitamin D deficiency.

  5. Plasma Amino Acids Profiles in Children with Autism: Potential Risk of Nutritional Deficiencies.

    ERIC Educational Resources Information Center

    Arnold, Georgianne L.; Hyman, Susan L.; Mooney, Robert A.; Kirby, Russell S.

    2003-01-01

    The plasma amino acid profiles of 10 children with autism on gluten and casein restricted diets and 26 on unrestricted diets were reviewed. There was a trend for the children on restricted diets to have an increased prevalence of essential amino acid deficiencies and lower plasma levels of essential acids. (Contains references.) (Author/CR)

  6. Identifying High Academic Potential in Australian Aboriginal Children Using Dynamic Testing

    ERIC Educational Resources Information Center

    Chaffey, Graham W.; Bailey, Stan B.; Vine, Ken W.

    2015-01-01

    The primary purpose of this study was to determine the effectiveness of dynamic testing as a method for identifying high academic potential in Australian Aboriginal children. The 79 participating Aboriginal children were drawn from Years 3-5 in rural schools in northern New South Wales. The dynamic testing method used in this study involved a…

  7. Iron deficiency anemia in patients with inflammatory bowel disease

    PubMed Central

    Goldberg, Neil D

    2013-01-01

    Iron deficiency anemia is the most common form of anemia worldwide, caused by poor iron intake, chronic blood loss, or impaired absorption. Patients with inflammatory bowel disease (IBD) are increasingly likely to have iron deficiency anemia, with an estimated prevalence of 36%–76%. Detection of iron deficiency is problematic as outward signs and symptoms are not always present. Iron deficiency can have a significant impact on a patient’s quality of life, necessitating prompt management and treatment. Effective treatment includes identifying and treating the underlying cause and initiating iron replacement therapy with either oral or intravenous iron. Numerous formulations for oral iron are available, with ferrous fumarate, sulfate, and gluconate being the most commonly prescribed. Available intravenous formulations include iron dextran, iron sucrose, ferric gluconate, and ferumoxytol. Low-molecular weight iron dextran and iron sucrose have been shown to be safe, efficacious, and effective in a host of gastrointestinal disorders. Ferumoxytol is the newest US Food and Drug Administration-approved intravenous iron therapy, indicated for iron deficiency anemia in adults with chronic kidney disease. Ferumoxytol is also being investigated in Phase 3 studies for the treatment of iron deficiency anemia in patients without chronic kidney disease, including subgroups with IBD. A review of the efficacy and safety of iron replacement in IBD, therapeutic considerations, and recommendations for the practicing gastroenterologist are presented. PMID:23766655

  8. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    PubMed

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  9. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    PubMed Central

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch

    2013-01-01

    Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte subsets relevant to atherosclerosis. Methods and Results LDL receptor deficient mice that were transplanted with Sgpl1−/− bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1−/− chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. Conclusions Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution. PMID:23700419

  10. Plasticity of DNA methylation and gene expression under zinc deficiency in Arabidopsis roots.

    PubMed

    Chen, Xiaochao; Schönberger, Brigitte; Menz, Jochen; Ludewig, Uwe

    2018-05-25

    DNA methylation is a heritable chromatin modification that maintains chromosome stability, regulates transposon silencing and appears to be involved in gene expression in response to environmental conditions. Environmental stress alters DNA methylation patterns that are correlated with gene expression differences. Here, genome-wide differential DNA-methylation was identified upon prolonged Zn deficiency, leading to hypo- and hyper-methylated chromosomal regions. Preferential CpG methylation changes occurred in gene promoters and gene bodies, but did not overlap with transcriptional start sites. Methylation changes were also prominent in transposable elements. By contrast, non-CG methylation differences were exclusively found in promoters of protein coding genes and in transposable elements. Strongly Zn deficiency-induced genes and their promoters were mostly non-methylated, irrespective of Zn supply. Differential DNA methylation in the CpG and CHG, but not in the CHH context, was found close to a few up-regulated Zn-deficiency genes. However, the transcriptional Zn-deficiency response in roots appeared little correlated with associated DNA methylation changes in promoters or gene bodies. Furthermore, under Zn deficiency, developmental defects were identified in an Arabidopsis mutant lacking non-CpG methylation. The root methylome thus responds specifically to a micro-nutrient deficiency and is important for efficient Zn utilization at low availability, but the relationship of differential methylation and differentially expressed genes is surprisingly poor.

  11. Carnitine Deficiency and Pregnancy

    PubMed Central

    de Bruyn, Anouk; Jacquemyn, Yves; Kinget, Kristof; Eyskens, François

    2015-01-01

    We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, supplementation with carnitine is advised. This supplementation should be continued throughout pregnancy according to plasma concentrations. PMID:26113999

  12. Zinc Deficiency Impacts CO2 Assimilation and Disrupts Copper Homeostasis in Chlamydomonas reinhardtii*

    PubMed Central

    Malasarn, Davin; Kropat, Janette; Hsieh, Scott I.; Finazzi, Giovanni; Casero, David; Loo, Joseph A.; Pellegrini, Matteo; Wollman, Francis-André; Merchant, Sabeeha S.

    2013-01-01

    Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition-responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon-concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc deficiency, probably due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3, and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to copper limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc-deficient cells are functionally copper-deficient, although they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester copper in a biounavailable form, perhaps to prevent mismetallation of critical zinc sites. PMID:23439652

  13. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    DTIC Science & Technology

    2015-04-01

    step of the Plasmodium mammalian cycle . Inhibiting this step can block malaria at an early step. However, few anti-malarials target liver infection...points in the life cycle of malaria parasites. PLoS Biol 12: e1001806. 2. Falae A, Combe A, Amaladoss A, Carvalho T, Menard R, et al. (2010) Role of...AWARD NUMBER: W81XWH-13-1-0429 TITLE: Using "Click Chemistry" to Identify Potential Drug Targets in Plasmodium PRINCIPAL INVESTIGATOR: Dr. Purnima

  14. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    PubMed

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  15. Vitamin D deficiency: a new risk factor for type 2 diabetes?.

    PubMed

    Mezza, T; Muscogiuri, G; Sorice, G P; Prioletta, A; Salomone, E; Pontecorvi, A; Giaccari, A

    2012-01-01

    Recent compelling evidence suggests a role of vitamin D deficiency in the pathogenesis of insulin resistance and insulin secretion derangements, with a consequent possible interference with type 2 diabetes mellitus. The mechanism of this link is incompletely understood. In fact, vitamin D deficiency is usually detected in obesity in which insulin resistance is also a common finding. The coexistence of insulin resistance and vitamin D deficiency has generated several hypotheses. Some cross-sectional and prospective studies have suggested that vitamin D deficiency may play a role in worsening insulin resistance; others have identified obesity as a risk factor predisposing individuals to exhibit both vitamin D deficiency and insulin resistance. The available data from intervention studies are largely confounded, and inadequate considerations of seasonal effects on 25(OH)D concentrations are also a common design flaw in many studies. On the contrary, there is strong evidence that obesity might cause both vitamin D deficiency and insulin resistance, leaving open the possibility that vitamin D and diabetes are not related at all. Although it might seem premature to draw firm conclusions on the role of vitamin D supplementation in reducing insulin resistance and preventing type 2 diabetes, this manuscript will review the circumstances leading to vitamin D deficiency and how such a deficiency can eventually independently affect insulin sensitivity. Copyright © 2012 S. Karger AG, Basel.

  16. Real-world clinical applicability of pathogenicity predictors assessed on SERPINA1 mutations in alpha-1-antitrypsin deficiency.

    PubMed

    Giacopuzzi, Edoardo; Laffranchi, Mattia; Berardelli, Romina; Ravasio, Viola; Ferrarotti, Ilaria; Gooptu, Bibek; Borsani, Giuseppe; Fra, Annamaria

    2018-06-07

    The growth of publicly available data informing upon genetic variations, mechanisms of disease and disease sub-phenotypes offers great potential for personalised medicine. Computational approaches are likely required to assess large numbers of novel genetic variants. However, the integration of genetic, structural and pathophysiological data still represents a challenge for computational predictions and their clinical use. We addressed these issues for alpha-1-antitrypsin deficiency, a disease mediated by mutations in the SERPINA1 gene encoding alpha-1-antitrypsin. We compiled a comprehensive database of SERPINA1 coding mutations and assigned them apparent pathological relevance based upon available data. 'Benign' and 'Pathogenic' mutations were used to assess performance of 31 pathogenicity predictors. Well-performing algorithms clustered the subset of variants known to be severely pathogenic with high scores. Eight new mutations identified in the ExAC database and achieving high scores were selected for characterisation in cell models and showed secretory deficiency and polymer formation, supporting the predictive power of our computational approach. The behaviour of the pathogenic new variants and consistent outliers were rationalised by considering the protein structural context and residue conservation. These findings highlight the potential of computational methods to provide meaningful predictions of the pathogenic significance of novel mutations and identify areas for further investigation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency

    PubMed Central

    Shao, Ruixin; Xin, Longfei; Mao, Jun; Li, Leilei; Kang, Guozhang; Yang, Qinghua

    2015-01-01

    After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG)-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA) content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE) method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency. PMID:26370980

  18. Severe Neonatal Presentation of Mitochondrial Citrate Carrier (SLC25A1) Deficiency.

    PubMed

    Smith, Amanda; McBride, Skye; Marcadier, Julien L; Michaud, Jean; Al-Dirbashi, Osama Y; Schwartzentruber, Jeremy; Beaulieu, Chandree L; Katz, Sherri L; Majewski, Jacek; Bulman, Dennis E; Geraghty, Michael T; Harper, Mary-Ellen; Chakraborty, Pranesh; Lines, Matthew A

    2016-01-01

    Mutations of the mitochondrial citrate carrier (CIC) SLC25A1 cause combined D-2- and L-2-hydroxyglutaric aciduria (DL-2HGA; OMIM #615182), a neurometabolic disorder characterized by developmental delay, hypotonia, and seizures. Here, we describe the female child of consanguineous parents who presented neonatally with lactic acidosis, periventricular frontal lobe cysts, facial dysmorphism, recurrent apneic episodes, and deficient complex IV (cytochrome c oxidase) activity in skeletal muscle. Exome sequencing revealed a homozygous SLC25A1 missense mutation [NM_005984.4: c.593G>A; p.(Arg198His)] of a ubiquitously conserved arginine residue putatively situated within the substrate-binding site I of CIC. Retrospective review of the patient's organic acids confirmed the D- and L-2-hydroxyglutaric aciduria typical of DL-2HGA to be present, although this was not appreciated on initial presentation. Cultured patient skin fibroblasts showed reduced survival in culture, diminished mitochondrial spare respiratory capacity, increased glycolytic flux, and normal mitochondrial bulk, inner membrane potential, and network morphology. Neither cell survival nor cellular respiratory parameters were improved by citrate supplementation, although oral citrate supplementation did coincide with amelioration of lactic acidosis and apneic attacks in the patient. This is the fifth clinical report of CIC deficiency to date. The clinical features in our patient suggest that this disorder, which can potentially be recognized either by molecular means or based on its characteristic organic aciduria, should be considered in the differential diagnosis of pyruvate dehydrogenase deficiency and respiratory chain disorders. One-Sentence Summary A novel homozygous missense substitution in SLC25A1 was identified in a neonate presenting with lactic acidosis, intracerebral cysts, and an apparent mitochondrial complex IV defect in muscle.

  19. Nuclear magnetic resonance metabolomics of iron deficiency in soybean leaves.

    PubMed

    Lima, Marta R M; Diaz, Sílvia O; Lamego, Inês; Grusak, Michael A; Vasconcelos, Marta W; Gil, Ana M

    2014-06-06

    Iron (Fe) deficiency is an important agricultural concern that leads to lower yields and crop quality. A better understanding of the condition at the metabolome level could contribute to the design of strategies to ameliorate Fe-deficiency problems. Fe-sufficient and Fe-deficient soybean leaf extracts and whole leaves were analyzed by liquid (1)H nuclear magnetic resonance (NMR) and high-resolution magic-angle spinning NMR spectroscopy, respectively. Overall, 30 compounds were measurable and identifiable (comprising amino and organic acids, fatty acids, carbohydrates, alcohols, polyphenols, and others), along with 22 additional spin systems (still unassigned). Thus, metabolite differences between treatment conditions could be evaluated for different compound families simultaneously. Statistically relevant metabolite changes upon Fe deficiency included higher levels of alanine, asparagine/aspartate, threonine, valine, GABA, acetate, choline, ethanolamine, hypoxanthine, trigonelline, and polyphenols and lower levels of citrate, malate, ethanol, methanol, chlorogenate, and 3-methyl-2-oxovalerate. The data indicate that the main metabolic impacts of Fe deficiency in soybean include enhanced tricarboxylic acid cycle activity, enhanced activation of oxidative stress protection mechanisms and enhanced amino acid accumulation. Metabolites showing accumulation differences in Fe-starved but visually asymptomatic leaves could serve as biomarkers for early detection of Fe-deficiency stress.

  20. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network.

    PubMed

    Zhao, Wenchao; Yang, Xueyong; Yu, Hongjun; Jiang, Weijie; Sun, Na; Liu, Xiaoran; Liu, Xiaolin; Zhang, Xiaomeng; Wang, Yan; Gu, Xingfang

    2015-03-01

    Nitrogen (N) is both an important macronutrient and a signal for plant growth and development. However, the early regulatory mechanism of plants in response to N starvation is not well understood, especially in cucumber, an economically important crop that normally consumes excessive N during production. In this study, the early time-course transcriptome response of cucumber leaves under N deficiency was monitored using RNA sequencing (RNA-Seq). More than 23,000 transcripts were examined in cucumber leaves, of which 364 genes were differentially expressed in response to N deficiency. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, gene ontology (GO) and protein-protein interaction analysis, 64 signaling-related N-deficiency-responsive genes were identified. Furthermore, the potential regulatory mechanisms of anthocyanin accumulation, Chl decline and cell wall remodeling were assessed at the transcription level. Increased ascorbic acid synthesis was identified in cucumber seedlings and fruit under N-deficient conditions, and a new corresponding regulatory hypothesis has been proposed. A data cross-comparison between model plants and cucumber was made, and some common and specific N-deficient response mechanisms were found in the present study. Our study provides novel insights into the responses of cucumber to nitrogen starvation at the global transcriptome level, which are expected to be highly useful for dissecting the N response pathways in this major vegetable and for improving N fertilization practices. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Tumour testing to identify Lynch syndrome in two Australian colorectal cancer cohorts

    PubMed Central

    Eriksen, Stine V.; Walsh, Michael D.; Walters, Rhiannon J.; Thibodeau, Stephen N.; Stewart, Jenna; Preston, Susan; Win, Aung Ko; Flander, Louisa; Ouakrim, Driss Ait; Macrae, Finlay A.; Boussioutas, Alex; Winship, Ingrid M.; Giles, Graham G.; Hopper, John L.; Southey, Melissa C.

    2016-01-01

    Background and Aim Tumour testing of colorectal cancers (CRC) for mismatch repair (MMR) deficiency is an effective approach to identify carriers of germline MMR gene mutation (Lynch syndrome). The aim of this study was to identify MMR gene mutation carriers in two cohorts of population-based CRC utilising a combination of tumour and germline testing approaches. Methods CRCs from 813 patients diagnosed with CRC <60 years of age from the Australasian Colorectal Cancer Family Registry (ACCFR) and from 826 patients from the Melbourne Collaborative Cohort Study (MCCS) were tested for MMR protein expression using immunohistochemistry (IHC), microsatellite instability (MSI), BRAFV600E somatic mutation and for MLH1 methylation. MMR gene mutation testing (Sanger sequencing and MLPA) was performed on germline DNA of patients with MMR-deficient tumours and a subset of MMR-proficient CRCs. Results Of the 813 ACCFR probands, 90 probands demonstrated tumour MMR-deficiency (11.1%) and 42 had a MMR gene germline mutation (5.2%). For the MCCS, MMR-deficiency was identified in the tumours of 103 probands (12.5%) and 7 had a germline mutation (0.8%). All the mutation carriers were diagnosed prior to 70 years of age. Probands with a MMR-deficient CRC without MLH1 methylation and a gene mutation were considered Lynch-like and comprised 41.1% and 22.3% of the MMR-deficient CRCs for the ACCFR and MCCS, respectively. Conclusions Identification of MMR gene mutation carriers in Australian CRC-affected patients is optimised by IHC screening of CRC diagnosed before 70 years. A significant proportion of MMR-deficient CRCs will have unknown aetiology (Lynch-like) proving problematic for clinical management. PMID:27273229

  3. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity.

    PubMed

    Rochford, Rosemary; Ohrt, Colin; Baresel, Paul C; Campo, Brice; Sampath, Aruna; Magill, Alan J; Tekwani, Babu L; Walker, Larry A

    2013-10-22

    Individuals with glucose 6-phosphate dehydrogenase (G6PD) deficiency are at risk for the development of hemolytic anemia when given 8-aminoquinolines (8-AQs), an important class of antimalarial/antiinfective therapeutics. However, there is no suitable animal model that can predict the clinical hemolytic potential of drugs. We developed and validated a human (hu)RBC-SCID mouse model by giving nonobese diabetic/SCID mice daily transfusions of huRBCs from G6PD-deficient donors. Treatment of SCID mice engrafted with G6PD-deficient huRBCs with primaquine, an 8-AQ, resulted in a dose-dependent selective loss of huRBCs. To validate the specificity of this model, we tested known nonhemolytic antimalarial drugs: mefloquine, chloroquine, doxycycline, and pyrimethamine. No significant loss of G6PD-deficient huRBCs was observed. Treatment with drugs known to cause hemolytic toxicity (pamaquine, sitamaquine, tafenoquine, and dapsone) resulted in loss of G6PD-deficient huRBCs comparable to primaquine. This mouse model provides an important tool to test drugs for their potential to cause hemolytic toxicity in G6PD-deficient populations.

  4. Vision based nutrient deficiency classification in maize plants using multi class support vector machines

    NASA Astrophysics Data System (ADS)

    Leena, N.; Saju, K. K.

    2018-04-01

    Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.

  5. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice

    PubMed Central

    Yang, Hao; Wang, Shu Pei; Mitchell, Grant A.

    2017-01-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency. PMID:29232702

  6. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    PubMed

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  7. Data on xylem sap proteins from Mn- and Fe-deficient tomato plants obtained using shotgun proteomics.

    PubMed

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-04-01

    This article contains consolidated proteomic data obtained from xylem sap collected from tomato plants grown in Fe- and Mn-sufficient control, as well as Fe-deficient and Mn-deficient conditions. Data presented here cover proteins identified and quantified by shotgun proteomics and Progenesis LC-MS analyses: proteins identified with at least two peptides and showing changes statistically significant (ANOVA; p ≤ 0.05) and above a biologically relevant selected threshold (fold ≥ 2) between treatments are listed. The comparison between Fe-deficient, Mn-deficient and control xylem sap samples using a multivariate statistical data analysis (Principal Component Analysis, PCA) is also included. Data included in this article are discussed in depth in the research article entitled "Effects of Fe and Mn deficiencies on the protein profiles of tomato ( Solanum lycopersicum) xylem sap as revealed by shotgun analyses" [1]. This dataset is made available to support the cited study as well to extend analyses at a later stage.

  8. Lack of association between the pseudo deficiency mutation in the arylsulfatase A gene on chromosome 22 with schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, P.L.; Chetty, V.; Kasch, L.

    Arylsulfatase-A deficiency causes the neurodegenerative lysosomal storage disease metachromatic leukodystrophy. In the late-onset variant, schizophrenia-like psychosis is a frequent finding and sometimes given as the initial diagnosis. A mutant allele, pseudo-deficiency, causes deficient enzyme activity but no apparent clinical effect. It occurs at a high frequency and consists of two tightly-linked A{r_arrow}G transitions: one causing the loss of a glycosylation site (PDg); and one causing the loss of a polyadenylation signal (PDa). Since this gene was mapped to chromosome 22q13-qter, a region implicated in a potential linkage with schizophrenia, we hypothesized that this common mutation may be a predisposing geneticmore » factor for schizophrenia. We studied a random sample of schizophrenic patients for possible increase in frequency of the pseudo-deficiency mutations and in multiplex families to verify if the mutations are linked to schizophrenia. Among 50 Caucasian patients identified through out-patient and in-patient clinics, the frequencies for the three alleles PDg + PDa together, PDg or PDa alone were 11%, 5% and 0%, respectively. The corresponding frequencies among 100 Caucasian controls were 7.5%, 6% and 0%, respectively, the differences between the patients and controls being insignificant ({chi}{sup 2}tests: 0.10« less

  9. P-selectin deficiency attenuates tumor growth and metastasis

    PubMed Central

    Kim, Young J.; Borsig, Lubor; Varki, Nissi M.; Varki, Ajit

    1998-01-01

    Selectins are adhesion receptors that normally recognize certain vascular mucin-type glycoproteins bearing the carbohydrate structure sialyl-Lewisx. The clinical prognosis and metastatic progression of many epithelial carcinomas has been correlated independently with production of tumor mucins and with enhanced expression of sialyl-Lewisx. Metastasis is thought to involve the formation of tumor-platelet-leukocyte emboli and their interactions with the endothelium of distant organs. We provide a link between these observations by showing that P-selectin, which normally binds leukocyte ligands, can promote tumor growth and facilitate the metastatic seeding of a mucin-producing carcinoma. P-selectin-deficient mice showed significantly slower growth of subcutaneously implanted human colon carcinoma cells and generated fewer lung metastases from intravenously injected cells. Three potential pathophysiological mechanisms are demonstrated: first, intravenously injected tumor cells home to the lungs of P-selectin deficient mice at a lower rate; second, P-selectin-deficient mouse platelets fail to adhere to tumor cell-surface mucins; and third, tumor cells lodged in lung vasculature after intravenous injection often are decorated with platelet clumps, and these are markedly diminished in P-selectin-deficient animals. PMID:9689079

  10. Neonatal screening for biotinidase deficiency: A 30-year single center experience.

    PubMed

    Porta, Francesco; Pagliardini, Veronica; Celestino, Isabella; Pavanello, Enza; Pagliardini, Severo; Guardamagna, Ornella; Ponzone, Alberto; Spada, Marco

    2017-12-01

    We reviewed the outcome of newborn screening for biotinidase deficiency performed at our department since 1987. Among 1,097,894 newborns screened, 461 were recalled, and 18 were identified as affected by complete or partial biotinidase deficiency (incidence 1:61,000, false positive rate 0.04%). The common missense mutation Q456H was found in 80% of patients with profound biotinidase deficiency. Of them, one patient harbored the novel mutation M399I in compound heterozygosity (M399I/Q456H). The complex allele A171T/D444H in cis was found in two patients with profound biotinidase deficiency (in homozygosity and in compound heterozygosity with the R211H mutation, respectively) and in one patient with partial biotinidase deficiency (in compound heterozygosity with the protective allele D444H in trans ). All detected patients were treated and followed up at our Center until present. Biotin therapy (10-20 mg/day) allowed the full prevention of clinical symptoms in all patients with no adverse effects. These excellent outcomes confirm that newborn screening for biotinidase deficiency is a very effective secondary prevention program.

  11. Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies

    PubMed Central

    Davidoff, Candice; Neitz, Maureen; Neitz, Jay

    2016-01-01

    Purpose The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. Methods We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Results Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red–green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. Conclusions The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. Translational Relevance The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects. PMID:27622081

  12. Betaine deficiency in maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerma, C.; Rich, P.J.; Ju, G.C.

    1991-04-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency. This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positivemore » and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline {r arrow} betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde.« less

  13. Hydrogen-deficient Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  14. Iron-Deficiency Anemia (For Parents)

    MedlinePlus

    ... Videos for Educators Search English Español Iron-Deficiency Anemia KidsHealth / For Parents / Iron-Deficiency Anemia What's in ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  15. Mismatch Repair Deficiency Testing in Patients With Colorectal Cancer and Nonadherence to Testing Guidelines in Young Adults.

    PubMed

    Shaikh, Talha; Handorf, Elizabeth A; Meyer, Joshua E; Hall, Michael J; Esnaola, Nestor F

    2018-02-08

    Mismatch repair (MMR) deficiency of DNA has been observed in up to 15% of sporadic colorectal cancers (CRCs) and is a characteristic feature of Lynch syndrome, which has a higher incidence in young adults (age, <50 years) with CRC. Mismatch repair deficiency can be due to germline mutations or epigenetic inactivation, affects prognosis and response to systemic therapy, and results in unrepaired repetitive DNA sequences, which increases the risk of multiple malignant tumors. To evaluate the utilization of MMR deficiency testing in adults with CRC and analyze nonadherence to long-standing testing guidelines in younger adults using a contemporary national data set to help identify potential risk factors for nonadherence to newly implemented universal testing guidelines. Adult (age, <30 to ≥70 years) and, of these, younger adult (<30 to 49 years) patients with invasive colorectal adenocarcinoma diagnosed between 2010 and 2012 and known MMR deficiency testing status were identified using the National Cancer Database. The study was conducted from March 16, 2016, to March 1, 2017. Patient sociodemographic, facility, tumor, and treatment characteristics. The primary outcome of interest was receipt of MMR deficiency testing. Multivariable logistic regression was used to identify independent predictors of testing in adult and/or young adult patients. A total of 152 993 adults with CRC were included in the study (78 579 [51.4%] men; mean [SD] age, 66.9 [13.9] years). Of these patients, only 43 143 (28.2%) underwent MMR deficiency testing; the proportion of patients tested increased between 2010 and 2012 (22.3% vs 33.1%; P<.001). Among 17 218 younger adult patients with CRC, only 7422 (43.1%) underwent MMR deficiency testing; the proportion tested increased between 2010 and 2012 (36.1% vs 48.0%; P < .001). Irrespective of age, higher educational level (OR, 1.38; 95% CI, 1.15-1.66), later diagnosis year (OR, 1.81; 95% CI, 1.65-1.98), early stage disease (OR, 1

  16. Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle

    PubMed Central

    Winter, Lilli; Staszewska, Ilona; Mihailovska, Eva; Fischer, Irmgard; Goldmann, Wolfgang H.; Schröder, Rolf; Wiche, Gerhard

    2014-01-01

    The ubiquitously expressed multifunctional cytolinker protein plectin is essential for muscle fiber integrity and myofiber cytoarchitecture. Patients suffering from plectinopathy-associated epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) and mice lacking plectin in skeletal muscle display pathological desmin-positive protein aggregation and misalignment of Z-disks, which are hallmarks of myofibrillar myopathies (MFMs). Here, we developed immortalized murine myoblast cell lines to examine the pathogenesis of plectinopathies at the molecular and single cell level. Plectin-deficient myotubes, derived from myoblasts, were fully functional and mirrored the pathological features of EBS-MD myofibers, including the presence of desmin-positive protein aggregates and a concurrent disarrangement of the myofibrillar apparatus. Using this cell model, we demonstrated that plectin deficiency leads to increased intermediate filament network and sarcomere dynamics, marked upregulation of HSPs, and reduced myotube resilience following mechanical stretch. Currently, no specific therapy or treatment is available to improve plectin-related or other forms of MFMs; therefore, we assessed the therapeutic potential of chemical chaperones to relieve plectinopathies. Treatment with 4-phenylbutyrate resulted in remarkable amelioration of the pathological phenotypes in plectin-deficient myotubes as well as in plectin-deficient mice. Together, these data demonstrate the biological relevance of the MFM cell model and suggest that this model has potential use for the development of therapeutic approaches for EBS-MD. PMID:24487589

  17. The Syndrome of 17,20 Lyase Deficiency

    PubMed Central

    2012-01-01

    Context: Disorders of steroidogenesis have been instrumental in delineating human steroidogenic pathways. Each genetic disorder seemed to correspond to a different steroidogenic activity, helping to identify several enzymes. Beginning in 1972, several patients have been reported as having “17,20 lyase deficiency,” but there have been inconsistent genetic findings. Objective: This manuscript reviews the biochemistry, genetics, and clinical disorders of 17,20 lyase activity, which converts 21-carbon precursors of glucocorticoids to 19-carbon precursors of sex steroids. Findings: A single enzyme, cytochrome P450c17, catalyzes both 17α-hydroxylase activity and 17,20 lyase activity. The 17,20 lyase activity is especially sensitive to the activities of the accessory proteins P450 oxidoreductase and cytochrome b5. The first cases of genetically and biochemically proven 17,20 lyase deficiency were reported in 1997, in which specific P450c17 mutations were identified that lost 17,20 lyase activity but not 17α-hydroxylase activity when assayed in vitro. Subsequent work identified other P450c17 mutations and mutations in the genes encoding P450 oxidoreductase and cytochrome b5. Recently, the initially reported cases from 1972 were found to carry mutations in two aldo-keto reductases, AKR1C2 and AKR1C4. These AKR1C isozymes catalyze 3α-hydroxysteroid dehydrogenase activity in the so-called “backdoor pathway” by which the fetal testis produces dihydrotestosterone without the intermediacy of testosterone. Conclusions: 17,20 Lyase deficiency should be considered a syndrome with multiple causes, and not a single disease. Study of this very rare disorder has substantially advanced our understanding of the pathways, mechanisms, and control of androgen synthesis. Mutations in other, as-yet unidentified genes may also cause this phenotype. PMID:22072737

  18. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-06-01

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclearmore » Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been

  19. Complement deficiency predisposes for meningitis due to nongroupable meningococci and Neisseria-related bacteria.

    PubMed

    Fijen, C A; Kuijper, E J; Tjia, H G; Daha, M R; Dankert, J

    1994-05-01

    Nongroupable meningococci or bacteria related to the genus Neisseria rarely cause meningitis. Complement deficiency has been identified as a major predisposing factor for meningococcal disease. To assess whether patients with meningitis due to such strains have a complement deficiency, we studied 12 persons. Six patients had meningitis due to nongroupable strains of meningococci, and six patients had meningitis due to Moraxella species or Acinetobacter species. Inherited complement component C7 or C8 deficiency was found in two persons who had had meningitis due to nongroupable meningococci, and one C8-deficient person had had meningitis caused by Moraxella osloensis. Hypocomplementemia resulting from CSF drain-associated shunt nephritis was found in one person with meningitis due to Moraxella nonliquefaciens and in one person with meningitis due to Acinetobacter lwoffi. This rather high frequency of inherited or acquired complement deficiencies among patients with meningitis due to nongroupable meningococci, Moraxella species, and Acinetobacter species justifies the recommendation that such patients must be studied for complement deficiency.

  20. Iron deficiency anemia: diagnosis and management.

    PubMed

    Clark, Susan F

    2009-03-01

    Iron deficiency anemia (IDA) still remains universally problematic worldwide. The primary focus of this review is to critique articles published over the past 18 months that describe strategies for the diagnosis and management of this prevalent condition. The medical community continues to lack consensus when identifying the optimal approach for the diagnosis and management of IDA. Current diagnostic recommendations revolve around the validity and practicality of current biomarkers such as soluble transferrin-receptor concentrations and others, and cause-based diagnostics that potentially include endoscopy. Management of IDA is based on supplementation combined with effective etiological treatment. Advances in oral and parenteral low-molecular-weight iron preparations has expanded and improved treatment modalities for IDA. Since the introduction of low versus high-molecular-weight intravenous iron administration, there have been fewer serious adverse events associated with parenteral iron preparations. Best practice guidelines for diagnosing and managing IDA should include the design of an algorithm that is inclusive of multiple biomarkers and cause-based diagnostics, which will provide direction in managing IDA, and distinguish between IDA from the anemia of chronic disease.

  1. Prevalence of clinical thiamine deficiency in individuals with medically complicated obesity.

    PubMed

    Nath, Anand; Tran, Tung; Shope, Timothy R; Koch, Timothy R

    2017-01-01

    Thiamine is a vitamin whose deficient can result in multiorgan symptoms. We described an 18% prevalence of clinical thiamine deficiency after gastric bypass surgery. Our hypotheses are that individuals with medically complicated obesity frequently have clinical thiamine deficiency and that diabetes mellitus is a mechanism for development of clinical thiamine deficiency. This is a single institution, retrospective observational study of consecutive patients with a body mass index of at least 35 kg/m 2 who were evaluated in preoperative gastrointestinal bariatric clinic from 2013 to 2015. Each patient underwent a symptom survey. Clinical thiamine deficiency is defined by both (1) consistent clinical symptom and (2) either a low whole-blood thiamine concentration or significant improvement of or resolution of consistent clinical symptoms after receiving thiamine supplementation. After excluding 101 individuals with prior bariatric surgery or heavy alcohol consumption, 400 patients were included in the study. Sixty-six patients (16.5% of 400) fulfill a diagnosis of clinical thiamine deficiency, with 9 (14% of 66) having consistent gastrointestinal manifestations, 46 (70% of 66) having cardiac manifestations, 39 (59% of 66) having peripheral neurologic manifestations, and 3 (5% of 66) having neuropsychiatric manifestations. Diabetes mellitus is not a risk factor (P=.59). Higher body mass index is a significant risk for clinical thiamine deficiency (P=.007). Clinical thiamine deficiency is common in these individuals and a higher body mass index is an identified risk factor. Mechanisms explaining development of thiamine deficiency in obese individuals remain unclear. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The association of pagophagia with Helicobacter pylori infection in patients with iron-deficiency anemia.

    PubMed

    Asma, Suheyl; Boga, Can; Ozdogu, Hakan; Serin, Ender

    2009-07-01

    This study aimed to determine the relationship between pagophagia (compulsive ice eating) and H. pylori infection in patients with iron-deficiency anemia. We identified H. pylori infection using the (13)C-urea breath test in 45 patients with iron-deficiency anemia (group 1) and 55 patients with iron-deficiency anemia and pagophagia (group 2). Subgroups for testing oral intestinal iron absorption were randomly assigned from both groups. These subgroups consisted of (a) 10 patients with iron-deficiency anemia, (b) 10 patients with iron-deficiency anemia and pagophagia, (c) 10 patients with iron-deficiency anemia, pagophagia, and H. pylori infection before the eradication of H. pylori and (d) subgroup c after eradication therapy. There was no difference in the rate of H. pylori infection in the iron-deficiency anemia groups, with or without pagophagia. Furthermore, oral intestinal iron absorption was not influenced by pagophagia and/or H. pylori infection. Pagophagia did not increase the risk of H. pylori infection in patients with iron-deficiency anemia. Pagophagia and H. pylori infection do not synergistically affect the development of intestinal iron absorption abnormalities.

  3. Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome.

    PubMed

    Cariboni, Anna; André, Valentina; Chauvet, Sophie; Cassatella, Daniele; Davidson, Kathryn; Caramello, Alessia; Fantin, Alessandro; Bouloux, Pierre; Mann, Fanny; Ruhrberg, Christiana

    2015-06-01

    Individuals with an inherited deficiency in gonadotropin-releasing hormone (GnRH) have impaired sexual reproduction. Previous genetic linkage studies and sequencing of plausible gene candidates have identified mutations associated with inherited GnRH deficiency, but the small number of affected families and limited success in validating candidates have impeded genetic diagnoses for most patients. Using a combination of exome sequencing and computational modeling, we have identified a shared point mutation in semaphorin 3E (SEMA3E) in 2 brothers with Kallmann syndrome (KS), which causes inherited GnRH deficiency. Recombinant wild-type SEMA3E protected maturing GnRH neurons from cell death by triggering a plexin D1-dependent (PLXND1-dependent) activation of PI3K-mediated survival signaling. In contrast, recombinant SEMA3E carrying the KS-associated mutation did not protect GnRH neurons from death. In murine models, lack of either SEMA3E or PLXND1 increased apoptosis of GnRH neurons in the developing brain, reducing innervation of the adult median eminence by GnRH-positive neurites. GnRH neuron deficiency in male mice was accompanied by impaired testes growth, a characteristic feature of KS. Together, these results identify SEMA3E as an essential gene for GnRH neuron development, uncover a neurotrophic function for SEMA3E in the developing brain, and elucidate SEMA3E/PLXND1/PI3K signaling as a mechanism that prevents GnRH neuron deficiency.

  4. Structured methods for identifying and correcting potential human errors in aviation operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1997-10-01

    Human errors have been identified as the source of approximately 60% of the incidents and accidents that occur in commercial aviation. It can be assumed that a very large number of human errors occur in aviation operations, even though in most cases the redundancies and diversities built into the design of aircraft systems prevent the errors from leading to serious consequences. In addition, when it is acknowledged that many system failures have their roots in human errors that occur in the design phase, it becomes apparent that the identification and elimination of potential human errors could significantly decrease the risksmore » of aviation operations. This will become even more critical during the design of advanced automation-based aircraft systems as well as next-generation systems for air traffic management. Structured methods to identify and correct potential human errors in aviation operations have been developed and are currently undergoing testing at the Idaho National Engineering and Environmental Laboratory (INEEL).« less

  5. Methylmalonic Acid and Homocysteine as Indicators of Vitamin B-12 Deficiency in Cancer

    PubMed Central

    Vashi, Pankaj; Edwin, Persis; Popiel, Brenten; Lammersfeld, Carolyn; Gupta, Digant

    2016-01-01

    Background/Aims Normal or high serum vitamin B-12 levels can sometimes be seen in a B-12 deficient state, and can therefore be misleading. High levels of Methymalonic Acid (MMA) and Homocysteine (HC) have been identified as better indicators of B-12 deficiency than the actual serum B-12 level itself. We evaluated the prevalence of vitamin B-12 deficiency using appropriate cut-off levels of vitamin B-12, MMA and HC, and determined the relationship between serum levels of vitamin B-12, MMA and HC in cancer. Methods This is a cross-sectional study using a consecutive case series of 316 cancer patients first seen at Cancer Treatment Centers of America® (CTCA) at Midwestern Regional Medical Center between April 2014 and June 2014. All patients were evaluated at baseline for vitamin B-12 (pg/mL), MMA (nmol/L) and HC (μmol/L) levels. In accordance with previously published research, the following cut-offs were used to define vitamin B-12 deficiency: <300 pg/mL for vitamin B-12, >260 nmol/L for MMA and >12 μmol/L for HC. The relationship between B-12, MMA and HC was evaluated using Spearman's rho correlation coefficient and cross-tabulation analysis. Receiver Operating Characteristic (ROC) curves were estimated using the non-parametric method to further evaluate the diagnostic accuracy of vitamin B-12 using Fedosov quotient as the "gold standard". Results Mean age at presentation was 52.5 years. 134 (42.4%) patients were males while 182 (57.6%) were females. Median vitamin B-12, MMA and HC levels were 582.5 pg/mL, 146.5 nmol/L and 8.4 μmol/L respectively. Of 316 patients, 28 (8.9%) were vitamin B-12 deficient based on vitamin B-12 (<300pg/mL), 34 (10.8%) were deficient based on MMA (>260 nmol/L) while 55 (17.4%) were deficient based on HC (>12 μmol/L). Correlation analysis revealed a significant weak negative correlation between vitamin B-12 and MMA (rho = -0.22) as well as B-12 and HC (rho = -0.35). ROC curves suggested MMA to have the best discriminatory power in

  6. Glucose-6-phosphate dehydrogenase deficiency in northern Mexico and description of a novel mutation.

    PubMed

    García-Magallanes, N; Luque-Ortega, F; Aguilar-Medina, E M; Ramos-Payán, R; Galaviz-Hernández, C; Romero-Quintana, J G; Del Pozo-Yauner, L; Rangel-Villalobos, H; Arámbula-Meraz, E

    2014-08-01

    Glucose-6-phosphate dehydrogenase deficiency (G6PD) is the most common enzyme pathology in humans; it is X-linked inherited and causes neonatal hyperbilirubinaemia, chronic nonspherocytic haemolytic anaemia and drug-induced acute haemolytic anaemia. G6PD deficiency has scarcely been studied in the northern region of Mexico, which is important because of the genetic heterogeneity described in Mexican population. Therefore, samples from the northern Mexico were biochemically screened for G6PD deficiency, and PCR-RFLPs, and DNA sequencing used to identify mutations in positive samples. The frequency of G6PD deficiency in the population was 0.95% (n = 1993); the mutations in 86% of these samples were G6PD A(-202A/376G), G6PDA(-376G/968C) and G6PD Santamaria(376G/542T). Contrary to previous reports, we demonstrated that G6PD deficiency distribution is relatively homogenous throughout the country (P = 0.48336), and the unique exception with high frequency of G6PD deficiency does not involve a coastal population (Chihuahua: 2.4%). Analysis of eight polymorphic sites showed only 10 haplotypes. In one individual we identified a new G6PD mutation named Mexico DF(193A>G) (rs199474830), which probably results in a damaging functional effect, according to PolyPhen analysis. Proteomic impact of the mutation is also described.

  7. Vitamin D deficiency is endemic in Middle Eastern sportsmen.

    PubMed

    Hamilton, Bruce; Grantham, Justin; Racinais, Sebastien; Chalabi, Hakim

    2010-10-01

    While vitamin D deficiency is well recognized in Middle Eastern women as a result of cultural norms of remaining covered, Middle Eastern men are an under-reported group. Vitamin D is now known to have multiple effects, including an impact on muscle function, thereby increasing the relevance for sportsmen. The aim of the present study was to evaluate serum 25-hydroxyvitamin D (25(OH)D) levels in young male Middle Eastern athletes. Cross-sectional study. Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar. Ninety-three Middle Eastern men presenting to hospital for an annual screening undertook a blood test to evaluate their vitamin D status. Ninety-one per cent of athletes were found to be deficient in 25(OH)D (serum concentration <20 ng/ml). Athletes with severe deficiencies were significantly younger than those with less marked deficiency. A subset of athletes underwent bone mineral density assessment and 59 % were shown to have at least one Z-score less than -1; despite this, however, no athletes reported a stress fracture. There was no correlation between 25(OH)D concentration and sunlight exposure, skin coverage and skin colouring. The study revealed that 25(OH)D deficiency is very common among otherwise healthy Middle Eastern male athletes. Given the potentially significant long- and short-term effects of 25(OH)D deficiency, serum 25(OH)D evaluation should be part of the routine assessment in this region.

  8. Insights into the diagnosis and management of iron deficiency in inflammatory bowel disease.

    PubMed

    Bou-Fakhredin, Rayan; Halawi, Racha; Roumi, Joseph; Taher, Ali

    2017-09-01

    Iron deficiency is a frequent comorbidity of chronic diseases such as inflammatory bowel disease that can severely impact the health and quality of life of affected individuals. It can exist as a silent condition and manifest in non-specific symptoms even in the absence of anemia. Even though iron deficiency anemia is the most common complication and extra-intestinal manifestation of inflammatory bowel disease, the majority of inflammatory bowel disease patients who are diagnosed with iron deficiency anemia are not treated. Areas covered: In this review, we discuss iron deficiency and iron deficiency anemia in patients with inflammatory bowel disease, and review diagnostic and therapeutic options. Expert commentary: We invite international gastroenterological societies and associations to refine the practice guidelines and include iron deficiency as a potential morbidity associated with IBD in analogy to arthritis, uveitis or any other extra intestinal manifestations. There should a more unanimous agreement among different societies on the specific diagnostic cutoff values for C-reactive protein levels, serum ferritin, and transferrin saturation in order to differentiate iron deficiency anemia from anemia of chronic disease.

  9. CoQ(10) deficiencies and MNGIE: two treatable mitochondrial disorders.

    PubMed

    Hirano, Michio; Garone, Caterina; Quinzii, Catarina M

    2012-05-01

    Although causative mutations have been identified for numerous mitochondrial disorders, few disease-modifying treatments are available. Two examples of treatable mitochondrial disorders are coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Here, we describe clinical and molecular features of CoQ(10) deficiencies and MNGIE and explain how understanding their pathomechanisms have led to rationale therapies. Primary CoQ(10) deficiencies, due to mutations in genes required for ubiquinone biosynthesis, and secondary deficiencies, caused by genetic defects not directly related to CoQ(10) biosynthesis, often improve with CoQ(10) supplementation. In vitro and in vivo studies of CoQ(10) deficiencies have revealed biochemical alterations that may account for phenotypic differences among patients and variable responses to therapy. In contrast to the heterogeneous CoQ(10) deficiencies, MNGIE is a single autosomal recessive disease due to mutations in the TYMP gene encoding thymidine phosphorylase (TP). In MNGIE, loss of TP activity causes toxic accumulations of the nucleosides thymidine and deoxyuridine that are incorporated by the mitochondrial pyrimidine salvage pathway and cause deoxynucleoside triphosphate pool imbalances, which, in turn cause mtDNA instability. Allogeneic hematopoetic stem cell transplantation to restore TP activity and eliminate toxic metabolites is a promising therapy for MNGIE. CoQ(10) deficiencies and MNGIE demonstrate the feasibility of treating specific mitochondrial disorders through replacement of deficient metabolites or via elimination of excessive toxic molecules. Studies of CoQ(10) deficiencies and MNGIE illustrate how understanding the pathogenic mechanisms of mitochondrial diseases can lead to meaningful therapies. This article is part of a Special Issue entitled: Biochemistry of Mitochondria, Life and Intervention 2010. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. IgA deficiency in wolves.

    PubMed

    Frankowiack, Marcel; Hellman, Lars; Zhao, Yaofeng; Arnemo, Jon M; Lin, Miaoli; Tengvall, Katarina; Møller, Torsten; Lindblad-Toh, Kerstin; Hammarström, Lennart

    2013-06-01

    Low mean concentrations of serum immunoglobulin A (IgA) and an increased frequency of overt IgA deficiency (IgAD) in certain dog breeds raises the question whether it is a breeding-enriched phenomenon or a legacy from the dog's ancestor, the gray wolf (Canis lupus). The IgA concentration in 99 serum samples from 58 free-ranging and 13 captive Scandinavian wolves, was therefore measured by capture ELISA. The concentrations were markedly lower in the wolf serum samples than in the dog controls. Potential differences in the IgA molecule between dogs and wolves were addressed by sequencing the wolf IgA heavy chain constant region encoding gene (IGHA). Complete amino acid sequence homology was found. Detection of wolf and dog IgA was ascertained by showing identity using double immunodiffusion. We suggest that the vast majority of wolves, the ancestor of the dog, are IgA deficient. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Presence of immune deficiency increases the risk of hospitalization in patients with norovirus infection.

    PubMed

    Sacco, Keith A; Pongdee, Thanai; Binnicker, Matthew J; Espy, Mark; Pardi, Darrell; Khanna, Sahil; Joshi, Avni Y

    2018-04-01

    Norovirus is an emerging pathogen causing gastroenteritis. We sought to identify factors associated with clinical outcomes in a cohort of patients with laboratory-confirmed norovirus infection. We performed a retrospective chart review of patients with positive norovirus polymerase chain reaction in stool between October 1, 2015, and May 31, 2016. 128 unique patients were identified during the study period, 64 of whom had immune deficiency, of which only 3 patients had a primary immune deficiency (common variable immune deficiency), while 61 patients had a secondary immune deficiency. 50% of patients with immune deficiency were hospitalized as compared to only 30% of the non-immune-deficient cohort (odds ratio: 2.1 (1.1-4.18, P=0.04). One-third (32.8%) of the patients had a polymicrobial stool infection, and 21.1% had concurrent Clostridium difficile infection. Initial mean total leukocyte count was higher in the hospitalized group at 8.40×109/L versus 6.31×109/L in the nonhospitalized group (P=0.049). All 13 patients presenting with fever had symptomatic resolution (P=0.002). The presence of C. difficile infection was correlated with persistent symptoms (OR 2.30 [0.95-5.58], P=0.067). The overall mortality rate among our cohort was 3.13% (4 patients). All deceased patients had secondary immune deficiency, and none had C. difficile coinfection. Presence of an immune deficiency increases the risk of hospitalization with norovirus infection. Absence of fever is associated with lower resolution and possibly may contribute to a persistent infectious state. Presence of concomitant C. difficile infection is correlated with a lower overall mortality rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Eight novel F13A1 gene missense mutations in patients with mild FXIII deficiency: in silico analysis suggests changes in FXIII-A subunit structure/function.

    PubMed

    Biswas, Arijit; Ivaskevicius, Vytautas; Thomas, Anne; Varvenne, Michael; Brand, Brigitte; Rott, Hannelore; Haussels, Iris; Ruehl, Heiko; Scholz, Ute; Klamroth, Robert; Oldenburg, Johannes

    2014-10-01

    Mild FXIII deficiency is an under-diagnosed disorder because the carriers of this deficiency are often asymptomatic and reveal a phenotype only under special circumstances like surgery or induced trauma. Mutational reports from this type of deficiency have been rare. In this study, we present the phenotypic and genotypic data of nine patients showing mild FXIII-A deficiency caused by eight novel heterozygous missense mutations (Pro166Leu, Arg171Gln, His342Tyr, Gln415Arg, Leu529Pro, Gln601Lys, Arg703Gln and Arg715Gly) in the F13A1 gene. None of these variants were seen in 200 healthy controls. In silico structural analysis of the local wild-type protein structures (activated and non-activated) from X-ray crystallographic models downloaded from the protein databank identified potential structural/functional effects for the identified mutations. The missense mutations in the core domain are suggested to be directly influencing the catalytic triad. Mutations on other domains might influence other critical factors such as activation peptide cleavage or the barrel domain integrity. In vitro expression and subsequent biochemical studies in the future will be able to confirm the pathophysiological mechanisms proposed for the mutations in this article.

  13. Frequent development of combined pituitary hormone deficiency in patients initially diagnosed as isolated growth hormone deficiency: a long term follow-up of patients from a single center.

    PubMed

    Otto, Aline P; França, Marcela M; Correa, Fernanda A; Costalonga, Everlayny F; Leite, Claudia C; Mendonca, Berenice B; Arnhold, Ivo J P; Carvalho, Luciani R S; Jorge, Alexander A L

    2015-08-01

    Children initially diagnosed with isolated GH deficiency (IGHD) have a variable rate to progress to combined pituitary hormone deficiency (CPHD) during follow-up. To evaluate the development of CPHD in a group of childhood-onset IGHD followed at a single tertiary center over a long period of time. We retrospectively analyzed data from 83 patients initially diagnosed as IGHD with a mean follow-up of 15.2 years. The Kaplan-Meier method and Cox regression analysis was used to estimate the temporal progression and to identify risk factors to development of CPHD over time. From 83 patients initially with IGHD, 37 (45%) developed CPHD after a median time of follow up of 5.4 years (range from 1.2 to 21 years). LH and FSH deficiencies were the most common pituitary hormone (38%) deficiencies developed followed by TSH (31%), ACTH (12%) and ADH deficiency (5%). ADH deficiency (3.1 ± 1 years from GHD diagnosis) presented earlier and ACTH deficiency (9.3 ± 3.5 years) presented later during follow up compared to LH/FSH (8.3 ± 4 years) and TSH (7.5 ± 5.6 years) deficiencies. In a Cox regression model, pituitary stalk abnormalities was the strongest risk factor for the development of CPHD (hazard ratio of 3.28; p = 0.002). Our study indicated a high frequency of development of CPHD in patients initially diagnosed as IGHD at childhood. Half of our patients with IGHD developed the second hormone deficiency after 5 years of diagnosis, reinforcing the need for lifelong monitoring of pituitary function in these patients.

  14. Deficiency of the Chemotactic Factor Inactivator in Human Sera with α1-Antitrypsin Deficiency

    PubMed Central

    Ward, Peter A.; Talamo, Richard C.

    1973-01-01

    As revealed by appropriate fractionation procedures, human serum deficient in α1-antitrypsin (α1-AT) is also deficient in the naturally occurring chemotactic factor inactivator. These serum donors had severe pulmonary emphysema. Serum from patients with clinically similar pulmonary disease, but with presence of α1-AT in the serum, showed no such deficiency of the chemotactic factor inactivator. When normal human serum and α1-AT-deficient human sera are chemotactically activated by incubation with immune precipitates, substantially more chemotactic activity is generated in α1-AT-deficient serum. These data indicate that in α1-AT-deficient serum there is an imbalance in the generation and control of chemotactic factors. It is suggested that the theory regarding development of pulmonary emphysema in patients lacking the α1-antitrypsin in their serum should be modified to take into account a deficiency of the chemotactic factor inactivator. PMID:4683887

  15. Aβ Damages Learning and Memory in Alzheimer's Disease Rats with Kidney-Yang Deficiency

    PubMed Central

    Qi, Dongmei; Qiao, Yongfa; Zhang, Xin; Yu, Huijuan; Cheng, Bin; Qiao, Haifa

    2012-01-01

    Previous studies demonstrated that Alzheimer's disease was considered as the consequence produced by deficiency of Kidney essence. However, the mechanism underlying the symptoms also remains elusive. Here we report that spatial learning and memory, escape, and swimming capacities were damaged significantly in Kidney-yang deficiency rats. Indeed, both hippocampal Aβ 40 and 42 increases in Kidney-yang deficiency contribute to the learning and memory impairments. Specifically, damage of synaptic plasticity is involved in the learning and memory impairment of Kidney-yang deficiency rats. We determined that the learning and memory damage in Kidney-yang deficiency due to synaptic plasticity impairment and increases of Aβ 40 and 42 was not caused via NMDA receptor internalization induced by Aβ increase. β-Adrenergic receptor agonist can rescue the impaired long-term potential (LTP) in Kidney-yang rats. Taken together, our results suggest that spatial learning and memory inhibited in Kidney-yang deficiency might be induced by Aβ increase and the decrease of β 2 receptor function in glia. PMID:22645624

  16. Nicorandil, a Nitric Oxide Donor and ATP-Sensitive Potassium Channel Opener, Protects Against Dystrophin-Deficient Cardiomyopathy

    PubMed Central

    Afzal, Muhammad Z.; Reiter, Melanie; Gastonguay, Courtney; McGivern, Jered V.; Guan, Xuan; Ge, Zhi-Dong; Mack, David L.; Childers, Martin K.; Ebert, Allison D.; Strande, Jennifer L.

    2016-01-01

    Background Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. Methods and Results Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide–cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. Conclusion Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy. PMID:26940570

  17. Dietary deficiency of vitamin A among rural children: A community-based survey using a food-frequency questionnaire.

    PubMed

    Suri, Shivali; Kumar, Dinesh; Das, Ranjan

    2017-01-01

    Overt vitamin A deficiency has been controlled in most parts of India, but prevalence of subclinical deficiency may still be high, which may enhance susceptibility to infections, reduce growth potential and also lead to higher mortality. We aimed to: (i) assess the consumption pattern of vitamin A-rich foods in children 1-5 years of age in rural Jammu; and (ii) estimate the dietary deficiency of vitamin A leading to risk of subclinical vitamin A deficiency in cluster- villages of the study area. In 2011, we conducted a survey of 750 children by selecting 50 from each of the 1 5 clusters. The Helen Keller International's Food-Frequency Questionnaire (HKI-FFQ) modified to the local context was used to assess past week's intake for 28 food-items, including vitamin A-rich foods. The study revealed that plant sources such as amaranth, carrots, etc. and animal sources such as eggs and butter were the major sources of vitamin A in the study population. Consumption of amaranth (2.7 days/week) and carrots (1.7 days/week) was moderate but that of animal foods rich in vitamin A was low to negligible (1.1 day/week for eggs and 0.2 day/week for liver and fish combined). The majority (80%) of the cluster-villages manifested inadequate intake of vitamin A-rich foods, thereby making subclinical vitamin A deficiency a public health problem for the whole area. Faulty diets, improper breastfeeding practices, low coverage of vitamin A supplementation and high prevalence of undernutrition could be related to the observed subclinical deficiency. Dietary diversification by including both plant and animal sources of vitamin A in adequate amounts along with improved breastfeeding, better implementation of mega-dose vitamin A supplementation and minimizing undernutrition may help in lowering subclinical vitamin A deficiency. The HKI-FFQ may be used as a proxy indicator of vitamin A intake/status for identifying pockets at risk of subclinical vitamin A deficiency in resource

  18. Factors Associated with Vitamin D Testing, Deficiency, Intake, and Supplementation in Patients with Chronic Pain.

    PubMed

    Gaikwad, Manasi; Vanlint, Simon; Moseley, G Lorimer; Mittinty, Murthy N; Stocks, Nigel

    2017-11-02

    Vitamin D deficiency is a public health issue, with reports of six- to twenty-five-fold rise in vitamin D testing. Vitamin D deficiency has been linked to many chronic diseases such as diabetes mellitus, cardiovascular disease, depression, and chronic pain. Identifying factors associated with risk of deficiency in individuals with chronic pain will help minimize time and cost. This study aims to examine the factors associated with vitamin D testing, intake, and physician-advised supplementation in individuals with chronic pain. Using a cross-sectional design, data were collected from 465 individuals with chronic pain. These data were analyzed using penalized logistic regression with the LASSO technique. Fifty-seven percent reported being tested for vitamin D, about 40% reported being diagnosed with vitamin D deficiency, and of those who had been tested, 60% reported taking vitamin D supplementation. The findings suggest older age (OR 3.12, CI [1.02, 9.50]) and higher mean pain intensity score (OR 2.02, CI [1.13, 3.59]) increased an individual's chance of being vitamin D deficient. Unemployment or on leave due to pain (OR 1.79, [CI 1.03, 3.11]), part-time employment (OR 1.86, CI [1.02, 3.39]), and being a resident of Australia (OR 2.32, CI [1.13, 4.72]) increased chances of being tested for vitamin D. Being diagnosed with vitamin D deficiency (OR 6.67, CI [2.75, 16.19]), unemployed or on leave due to pain (OR 3.71, CI [1.25, 11.00]), and in part-time employment (OR 2.69, CI [0.86, 8.38]) were associated with physician-advised vitamin D supplementation. Our results may have practical implications, as identifying pretest risk factors may assist in identifying who is at risk of vitamin D deficiency, whom to test, and when to treat.

  19. Tumor testing to identify lynch syndrome in two Australian colorectal cancer cohorts.

    PubMed

    Buchanan, Daniel D; Clendenning, Mark; Rosty, Christophe; Eriksen, Stine V; Walsh, Michael D; Walters, Rhiannon J; Thibodeau, Stephen N; Stewart, Jenna; Preston, Susan; Win, Aung Ko; Flander, Louisa; Ouakrim, Driss Ait; Macrae, Finlay A; Boussioutas, Alex; Winship, Ingrid M; Giles, Graham G; Hopper, John L; Southey, Melissa C; English, Dallas; Jenkins, Mark A

    2017-02-01

    Tumor testing of colorectal cancers (CRC) for mismatch repair (MMR) deficiency is an effective approach to identify carriers of germline MMR gene mutation (Lynch syndrome). The aim of this study was to identify MMR gene mutation carriers in two cohorts of population-based CRC utilizing a combination of tumor and germline testing approaches. Colorectal cancers from 813 patients diagnosed with CRC < 60 years of age from the Australasian Colorectal Cancer Family Registry (ACCFR) and from 826 patients from the Melbourne Collaborative Cohort Study (MCCS) were tested for MMR protein expression using immunohistochemistry, microsatellite instability (MSI), BRAF V600E somatic mutation, and for MLH1 methylation. MMR gene mutation testing (Sanger sequencing and Multiplex Ligation Dependent Probe Amplification) was performed on germline DNA of patients with MMR-deficient tumors and a subset of MMR-proficient CRCs. Of the 813 ACCFR probands, 90 probands demonstrated tumor MMR deficiency (11.1%), and 42 had a MMR gene germline mutation (5.2%). For the MCCS, MMR deficiency was identified in the tumors of 103 probands (12.5%) and seven had a germline mutation (0.8%). All the mutation carriers were diagnosed prior to 70 years of age. Probands with a MMR-deficient CRC without MLH1 methylation and a gene mutation were considered Lynch-like and comprised 41.1% and 25.2% of the MMR-deficient CRCs for the ACCFR and MCCS, respectively. Identification of MMR gene mutation carriers in Australian CRC-affected patients is optimized by immunohistochemistry screening of CRC diagnosed before 70 years of age. A significant proportion of MMR-deficient CRCs will have unknown etiology (Lynch-like) proving problematic for clinical management. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  20. Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer.

    PubMed

    Telli, M L; Stover, D G; Loi, S; Aparicio, S; Carey, L A; Domchek, S M; Newman, L; Sledge, G W; Winer, E P

    2018-05-07

    Triple-negative breast cancer (TNBC) is associated with worse outcomes relative to other breast cancer subtypes. Chemotherapy remains the standard-of-care systemic therapy for patients with localized or metastatic disease, with few biomarkers to guide benefit. We will discuss recent advances in our understanding of two key biological processes in TNBC, homologous recombination (HR) DNA repair deficiency and host anti-tumor immunity, and their intersection. Recent advances in our understanding of homologous recombination (HR) deficiency, including FDA approval of PARP inhibitor olaparib for BRCA1 or BRCA2 mutation carriers, and host anti-tumor immunity in TNBC offer potential for new and biomarker-driven approaches to treat TNBC. Assays interrogating HR DNA repair capacity may guide treatment with agents inducing or targeting DNA damage repair. Tumor infiltrating lymphocytes (TILs) are associated with improved prognosis in TNBC and recent efforts to characterize infiltrating immune cell subsets and activate host anti-tumor immunity offer promise, yet challenges remain particularly in tumors lacking pre-existing immune infiltrates. Advances in these fields provide potential biomarkers to stratify patients with TNBC and guide therapy: induction of DNA damage in HR-deficient tumors and activation of existing or recruitment of host anti-tumor immune cells. Importantly, these advances provide an opportunity to guide use of existing therapies and development of novel therapies for TNBC. Efforts to combine therapies that exploit HR deficiency to enhance the activity of immune-directed therapies offer promise. HR deficiency remains an important biomarker target and potentially effective adjunct to enhance immunogenicity of 'immune cold' TNBCs.

  1. Regulation of yeast fatty acid desaturase in response to iron deficiency.

    PubMed

    Romero, Antonia María; Jordá, Tania; Rozès, Nicolas; Martínez-Pastor, María Teresa; Puig, Sergi

    2018-06-01

    Unsaturated fatty acids (UFA) are essential components of phospholipids that greatly contribute to the biophysical properties of cellular membranes. Biosynthesis of UFAs relies on a conserved family of iron-dependent fatty acid desaturases, whose representative in the model yeast Saccharomyces cerevisiae is Ole1. OLE1 expression is tightly regulated to adapt UFA biosynthesis and lipid bilayer properties to changes in temperature, and in UFA or oxygen availability. Despite iron deficiency being the most extended nutritional disorder worldwide, very little is known about the mechanisms and the biological relevance of fatty acid desaturases regulation in response to iron starvation. In this report, we show that endoplasmic reticulum-anchored transcription factor Mga2 activates OLE1 transcription in response to nutritional and genetic iron deficiencies. Cells lacking MGA2 display low UFA levels and do not grow under iron-limited conditions, unless UFAs are supplemented or OLE1 is overexpressed. The proteasome, E3 ubiquitin ligase Rsp5 and the Cdc48 Npl4/Ufd1 complex are required for OLE1 activation during iron depletion. Interestingly, Mga2 also activates the transcription of its own mRNA in response to iron deficiency, hypoxia, low temperature and low UFAs. MGA2 up-regulation contributes to increase OLE1 expression in these situations. These results reveal the mechanism of OLE1 regulation when iron is scarce and identify the MGA2 auto-regulation as a potential activation strategy in multiple stresses. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia).

    PubMed

    Sinniger, Frederic; Reimer, James D; Pawlowski, Jan

    2008-12-01

    The order Zoantharia is known for its chaotic taxonomy and difficult morphological identification. One method that potentially could help for examining such troublesome taxa is DNA barcoding, which identifies species using standard molecular markers. The mitochondrial cytochrome oxidase subunit I (COI) has been utilized to great success in groups such as birds and insects; however, its applicability in many other groups is controversial. Recently, some studies have suggested that barcoding is not applicable to anthozoans. Here, we examine the use of COI and mitochondrial 16S ribosomal DNA for zoanthid identification. Despite the absence of a clear barcoding gap, our results show that for most of 54 zoanthid samples, both markers could separate samples to the species, or species group, level, particularly when easily accessible ecological or distributional data were included. Additionally, we have used the short V5 region of mt 16S rDNA to identify eight old (13 to 50 years old) museum samples. We discuss advantages and disadvantages of COI and mt 16S rDNA as barcodes for Zoantharia, and recommend that either one or both of these markers be considered for zoanthid identification in the future.

  3. The phenotype of human STK4 deficiency

    PubMed Central

    Abdollahpour, Hengameh; Appaswamy, Giridharan; Kotlarz, Daniel; Diestelhorst, Jana; Beier, Rita; Schäffer, Alejandro A.; Gertz, E. Michael; Schambach, Axel; Kreipe, Hans H.; Pfeifer, Dietmar; Engelhardt, Karin R.; Rezaei, Nima; Grimbacher, Bodo; Lohrmann, Sabine; Sherkat, Roya

    2012-01-01

    We describe a novel clinical phenotype associating T- and B-cell lymphopenia, intermittent neutropenia, and atrial septal defects in 3 members of a consanguineous kindred. Their clinical histories included recurrent bacterial infections, viral infections, mucocutaneous candidiasis, cutaneous warts, and skin abscesses. Homozygosity mapping and candidate gene sequencing revealed a homozygous premature termination mutation in the gene STK4 (serine threonine kinase 4, formerly having the symbol MST1). STK4 is the human ortholog of Drosophila Hippo, the central constituent of a highly conserved pathway controlling cell growth and apoptosis. STK4-deficient lymphocytes and neutrophils exhibit enhanced loss of mitochondrial membrane potential and increased susceptibility to apoptosis. STK4 deficiency is a novel human primary immunodeficiency syndrome. PMID:22294732

  4. A national assessment of underground natural gas storage: identifying wells with designs likely vulnerable to a single-point-of-failure

    NASA Astrophysics Data System (ADS)

    Michanowicz, Drew R.; Buonocore, Jonathan J.; Rowland, Sebastian T.; Konschnik, Katherine E.; Goho, Shaun A.; Bernstein, Aaron S.

    2017-05-01

    The leak of processed natural gas (PNG) from October 2015 to February 2016 from the Aliso Canyon storage facility, near Los Angeles, California, was the largest single accidental release of greenhouse gases in US history. The Interagency Task Force on Natural Gas Storage Safety and California regulators recently recommended operators phase out single-point-of-failure (SPF) well designs. Here, we develop a national dataset of UGS well activity in the continental US to assess regulatory data availability and uncertainty, and to assess the prevalence of certain well design deficiencies including single-point-of-failure designs. We identified 14 138 active UGS wells associated with 317 active UGS facilities in 29 states using regulatory and company data. State-level wellbore datasets contained numerous reporting inconsistencies that limited data concatenation. We identified 2715 active UGS wells across 160 facilities that, like the failed well at Aliso Canyon, predated the storage facility, and therefore were not originally designed for gas storage. The majority (88%) of these repurposed wells are located in OH, MI, PA, NY, and WV. Repurposed wells have a median age of 74 years, and the 2694 repurposed wells constructed prior to 1979 are particularly likely to exhibit design-related deficiencies. An estimated 210 active repurposed wells were constructed before 1917—before cement zonal isolation methods were utilized. These wells are located in OH, PA, NY, and WV and represent the highest priority related to potential design deficiencies that could lead to containment loss. This national baseline assessment identifies regulatory data uncertainties, highlights a potentially widespread vulnerability of the natural gas supply chain, and can aid in prioritization and oversight for high-risk wells and facilities.

  5. Recognition of simulated cyanosis by color-vision-normal and color-vision-deficient subjects.

    PubMed

    Dain, Stephen J

    2014-04-01

    There are anecdotal reports that the recognition of cyanosis is difficult for some color-deficient observers. The chromaticity changes of blood with oxygenation in vitro lie close to the dichromatic confusion lines. The chromaticity changes of lips and nail beds measured in vivo are also generally aligned in the same way. Experiments involving visual assessment of cyanosis in vivo are fraught with technical and ethical difficulties A single lower face image of a healthy individual was digitally altered to produce levels of simulated cyanosis. The color change is essentially one of saturation. Some images with other color changes were also included to ensure that there was no propensity to identify those as cyanosed. The images were assessed for reality by a panel of four instructors from the NSW Ambulance Service training section. The images were displayed singly and the observer was required to identify if the person was cyanosed or not. Color normal subjects comprised 32 experienced ambulance officers and 27 new recruits. Twenty-seven color deficient subjects (non-NSW Ambulance Service) were examined. The recruits were less accurate and slower at identifying the cyanosed images and the color vision deficient were less accurate and slower still. The identification of cyanosis is a skill that improves with training and is adversely affected in color deficient observers.

  6. Omega-3 deficiency impairs honey bee learning

    PubMed Central

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania

    2015-01-01

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3–poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3–rich diets, or omega-3–rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal. PMID:26644556

  7. Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes.

    PubMed

    Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2017-03-04

    Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current I K1 , which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential I K1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that I K1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.

  8. Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator-deficient mouse strains.

    PubMed

    Szabo, R; Samson, A L; Lawrence, D A; Medcalf, R L; Bugge, T H

    2016-08-01

    Essentials C57BL/6J-tissue plasminogen activator (tPA)-deficient mice are widely used to study tPA function. Congenic C57BL/6J-tPA-deficient mice harbor large 129-derived chromosomal segments. The 129-derived chromosomal segments contain gene mutations that may confound data interpretation. Passenger mutation-free isogenic tPA-deficient mice were generated for study of tPA function. Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density single nucleotide polymorphism (SNP) analysis, bioinformatics and genome editing were used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat(-/-) mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel 'passenger mutation'-free isogenic C57BL/6J-Plat(-/-) and FVB/NJ-Plat(-/-) mouse strains by introducing

  9. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity

    PubMed Central

    Rochford, Rosemary; Ohrt, Colin; Baresel, Paul C.; Campo, Brice; Sampath, Aruna; Magill, Alan J.; Tekwani, Babu L.; Walker, Larry A.

    2013-01-01

    Individuals with glucose 6-phosphate dehydrogenase (G6PD) deficiency are at risk for the development of hemolytic anemia when given 8-aminoquinolines (8-AQs), an important class of antimalarial/antiinfective therapeutics. However, there is no suitable animal model that can predict the clinical hemolytic potential of drugs. We developed and validated a human (hu)RBC-SCID mouse model by giving nonobese diabetic/SCID mice daily transfusions of huRBCs from G6PD-deficient donors. Treatment of SCID mice engrafted with G6PD-deficient huRBCs with primaquine, an 8-AQ, resulted in a dose-dependent selective loss of huRBCs. To validate the specificity of this model, we tested known nonhemolytic antimalarial drugs: mefloquine, chloroquine, doxycycline, and pyrimethamine. No significant loss of G6PD-deficient huRBCs was observed. Treatment with drugs known to cause hemolytic toxicity (pamaquine, sitamaquine, tafenoquine, and dapsone) resulted in loss of G6PD-deficient huRBCs comparable to primaquine. This mouse model provides an important tool to test drugs for their potential to cause hemolytic toxicity in G6PD-deficient populations. PMID:24101478

  10. Does Abiotic Stress Cause Functional B Vitamin Deficiency in Plants?1[OPEN

    PubMed Central

    Beaudoin, Guillaume A.; Gregory, Jesse F.

    2016-01-01

    B vitamins are the precursors of essential metabolic cofactors but are prone to destruction under stress conditions. It is therefore a priori reasonable that stressed plants suffer B vitamin deficiencies and that certain stress symptoms are metabolic knock-on effects of these deficiencies. Given the logic of these arguments, and the existence of data to support them, it is a shock to realize that the roles of B vitamins in plant abiotic stress have had minimal attention in the literature (100-fold less than hormones) and continue to be overlooked. In this article, we therefore aim to explain the connections among B vitamins, enzyme cofactors, and stress conditions in plants. We first outline the chemistry and biochemistry of B vitamins and explore the concept of vitamin deficiency with the help of information from mammals. We then summarize classical and recent evidence for stress-induced vitamin deficiencies and for plant responses that counter these deficiencies. Lastly, we consider potential implications for agriculture. PMID:27807106

  11. DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade.

    PubMed

    Touat, Mehdi; Sourisseau, Tony; Dorvault, Nicolas; Chabanon, Roman M; Garrido, Marlène; Morel, Daphné; Krastev, Dragomir B; Bigot, Ludovic; Adam, Julien; Frankum, Jessica R; Durand, Sylvère; Pontoizeau, Clement; Souquère, Sylvie; Kuo, Mei-Shiue; Sauvaigo, Sylvie; Mardakheh, Faraz; Sarasin, Alain; Olaussen, Ken A; Friboulet, Luc; Bouillaud, Frédéric; Pierron, Gérard; Ashworth, Alan; Lombès, Anne; Lord, Christopher J; Soria, Jean-Charles; Postel-Vinay, Sophie

    2018-04-02

    Synthetic lethality is an efficient mechanism-based approach to selectively target DNA repair defects. Excision repair cross-complementation group 1 (ERCC1) deficiency is frequently found in non-small-cell lung cancer (NSCLC), making this DNA repair protein an attractive target for exploiting synthetic lethal approaches in the disease. Using unbiased proteomic and metabolic high-throughput profiling on a unique in-house-generated isogenic model of ERCC1 deficiency, we found marked metabolic rewiring of ERCC1-deficient populations, including decreased levels of the metabolite NAD+ and reduced expression of the rate-limiting NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). We also found reduced NAMPT expression in NSCLC samples with low levels of ERCC1. These metabolic alterations were a primary effect of ERCC1 deficiency, and caused selective exquisite sensitivity to small-molecule NAMPT inhibitors, both in vitro - ERCC1-deficient cells being approximately 1,000 times more sensitive than ERCC1-WT cells - and in vivo. Using transmission electronic microscopy and functional metabolic studies, we found that ERCC1-deficient cells harbor mitochondrial defects. We propose a model where NAD+ acts as a regulator of ERCC1-deficient NSCLC cell fitness. These findings open therapeutic opportunities that exploit a yet-undescribed nuclear-mitochondrial synthetic lethal relationship in NSCLC models, and highlight the potential for targeting DNA repair/metabolic crosstalks for cancer therapy.

  12. Creatine Deficiency Syndrome could be Missed Easily: A Case Report of Guanidinoacetate Methyltransferase Deficiency Presented with Neurodevelopmental Delay, Seizures, and Behavioral Changes, but Normal Structural MRI.

    PubMed

    Pacheva, Iliyana; Ivanov, Ivan; Penkov, Marin; Kancheva, Daliya; Jordanova, Albena; Ivanova, Mariya

    2016-09-01

    A case with GAMT deficiency (homozygous c.64dupG mutation) presented with neurodevelopmental delay, rare seizures, behavioral disturbances, and mild hypotonia, posing diagnostic challenges. Metabolic investigations showed low creatinine in plasma and urine (guanidinoacetate couldn't be investigated) and slightly elevated lactate. MRI was normal. Correct diagnosis was possible only after MR spectroscopy was performed at age 5½ years. A homozygous c.64dupG mutation of the GAMT gene was identified in the proband. In conclusion, every case with neurodevelopmental delay or arrest, especially when accompanied by seizures, behavioral impairment, muscle hypotonia or extrapyramidal symptoms should undergo MRI with MR spectroscopy. Normal structural MRI doesn't exclude a creatine deficiency syndrome. Biochemical investigations of guanidinoacetate, creatine, and creatinine in body fluid should be done to diagnose cerebral creatine deficiency syndromes and to specify the deficient enzyme. Thus, a treatable disease will not be missed. © 2016 by the Association of Clinical Scientists, Inc.

  13. Impact of the method of G6PD deficiency assessment on genetic association studies of malaria susceptibility.

    PubMed

    Johnson, Marla K; Clark, Tamara D; Njama-Meya, Denise; Rosenthal, Philip J; Parikh, Sunil

    2009-09-30

    Clinical association studies have yielded varied results regarding the impact of glucose-6-phosphate dehydrogenase (G6PD) deficiency upon susceptibility to malaria. Analyses have been complicated by varied methods used to diagnose G6PD deficiency. We compared the association between uncomplicated malaria incidence and G6PD deficiency in a cohort of 601 Ugandan children using two different diagnostic methods, enzyme activity and G6PD genotype (G202A, the predominant East African allele). Although roughly the same percentage of males were identified as deficient using enzyme activity (12%) and genotype (14%), nearly 30% of males who were enzymatically deficient were wild-type at G202A. The number of deficient females was three-fold higher with assessment by genotype (21%) compared to enzyme activity (7%). Heterozygous females accounted for the majority (46/54) of children with a mutant genotype but normal enzyme activity. G6PD deficiency, as determined by G6PD enzyme activity, conferred a 52% (relative risk [RR] 0.48, 95% CI 0.31-0.75) reduced risk of uncomplicated malaria in females. In contrast, when G6PD deficiency was defined based on genotype, the protective association for females was no longer seen (RR = 0.99, 95% CI 0.70-1.39). Notably, restricting the analysis to those females who were both genotypically and enzymatically deficient, the association of deficiency and protection from uncomplicated malaria was again demonstrated in females, but not in males (RR = 0.57, 95% CI 0.37-0.88 for females). This study underscores the impact that the method of identifying G6PD deficient individuals has upon association studies of G6PD deficiency and uncomplicated malaria. We found that G6PD-deficient females were significantly protected against uncomplicated malaria, but this protection was only seen when G6PD deficiency is described using enzyme activity. These observations may help to explain the discrepancy in some published association studies involving G6PD

  14. Reconciling newborn screening and a novel splice variant in BTD associated with partial biotinidase deficiency: A BabySeq Project case report.

    PubMed

    Murry, Jaclyn B; Machini, Kalotina; Ceyhan-Birsoy, Ozge; Kritzer, Amy; Krier, Joel B; Lebo, Matthew S; Fayer, Shawn; Genetti, Casie A; Vannoy, Grace E; Yu, Timothy W; Agrawal, Pankaj B; Parad, Richard B; Holm, Ingrid A; McGuire, Amy L; Green, Robert C; Beggs, Alan H; Rehm, Heidi L; Project, The BabySeq

    2018-05-04

    Here, we report a newborn female infant from the well-baby cohort of the BabySeq Project who was identified with compound heterozygous BTD gene variants. The two identified variants included a well-established pathogenic variant (c.1612C>T, p.Arg538Cys) that causes profound biotinidase deficiency (BTD) in homozygosity. In addition, a novel splice variant (c.44+1G>A, p.?) was identified in the invariant splice donor region of intron 1, potentially predictive of loss of function. The novel variant was predicted to impact splicing of exon 1; however, given the absence of any reported pathogenic variants in exon 1 and the presence of alternative splicing with exon 1 absent in most tissues in the GTEx database, we assigned an initial classification of uncertain significance. Follow-up medical record review of state mandated newborn screen (NBS) results revealed an initial out-of-range biotinidase activity level. Levels from a repeat NBS sample barely passed cut-off into the normal range. To determine whether the infant was biotinidase deficient, subsequent diagnostic enzyme activity testing was performed, confirming partial BTD, and resulted in a change of management for this patient. This led to reclassification of the novel splice variant based on these results. In conclusion, combining the genetic and NBS results together prompted clinical follow-up that confirmed partial biotinidase deficiency, and informed this novel splice site's reclassification emphasizing the importance of combining iterative genetic and phenotypic evaluations. Cold Spring Harbor Laboratory Press.

  15. Histomorphometric and microchemical characterization of maturing dental enamel in rats fed a boron-deficient diet

    USDA-ARS?s Scientific Manuscript database

    Few reports are available in the literature on enamel formation under nutritional deficiencies. Continuously erupting rodent incisors have considerable potential to serve as a model system for amelogenesis. Thus, we performed a study to determine the effects of boron (B) deficiency on the maturing d...

  16. Congenital combined deficiency of coagulation factors: a study of seven patients.

    PubMed

    Naderi, Majid; Tabibian, Shadi; Hosseini, Maryam Sadat; Alizadeh, Shaban; Hosseini, Soudabeh; Shamsizadeh, Morteza; Dorgalaleh, Akbar

    2015-01-01

    Combined deficiency of coagulation factors is considered as an extremely rare bleeding disorder (RBD) inherited in an autosomal recessive pattern. This disorder is more likely to occur in regions with a high rate of consanguineous marriages or in restricted communities. Sistan and Baluchistan, a province in southeast of Iran with a high rate of consanguinity, is a clear model of such regions with a very high prevalence of recessively inherited disorders. The aim of this study was to report the frequency of combined factor deficiency in this province. This descriptive study was conducted on 358 patients with RBD. Demographic information and medical history of each patient were recorded, and the patients were examined by a physician. Routine screening tests were carried out for all patients, and further coagulation tests including coagulation factor activity and antigen assays were subsequently performed for all suspected patients. Among 358 patients, four were found to be affected with combined factor (F)V and FVIII deficiency (F5F8D). In addition, one patient with combined deficiency of FVII-FXIII, one with combined FVII-FX and one with combined FVIII-FIX deficiency were identified. In Sistan and Baluchistan Province, coinheritance of recessively inherited disorders like combined coagulation factor deficiencies was surprisingly higher than expected.

  17. Screening and diagnosis of micronutrient deficiencies before and after bariatric surgery

    PubMed Central

    Gudzune, Kimberly A.; Huizinga, Mary M.; Chang, Hsien-Yen; Asamoah, Vivian; Gadgil, Meghana; Clark, Jeanne M.

    2013-01-01

    Introduction Micronutrient deficiencies are key concerns after bariatric surgery. We describe the prevalence of perioperative testing and diagnosis of micronutrient deficiencies among a cohort of insured bariatric surgery patients. Methods We used claims data from seven health insurers to identify bariatric surgery patients from 2002–2008. Our outcomes were perioperative claims for vitamin D, B12, folate, and iron testing and diagnosed deficiencies. We analyzed results by bariatric surgery type: Roux-en-Y gastric bypass (RYGB), restrictive, and malabsorptive. We calculated the prevalence of testing and deficiency diagnosis, and performed multivariate logistic regression to determine the association with surgery type. Results Of 21,345 eligible patients, 84% underwent RYGB. The pre-surgical testing prevalence for all micronutrients was <25%. The testing prevalence during the first 12 months after surgery varied: vitamin D (12%), vitamin B12 (60%), folate (47%) and iron (49%), and declined during 13–24 and 25–36 months. The deficiency prevalence during 0–12 months post-survey varied: vitamin D (34%), vitamin B12 (20%), folate (13%), and iron (10%). The odds of vitamin B12, folate, and iron deficiency during 0–12 months were significantly lower for restrictive as compared to RYGB, but were not different during 13–24 and 25–36 months post-surgery. The odds of vitamin D deficiency were significantly greater for malabsorptive as compared to RYGB during all post-surgical periods. Conclusion Many patients did not receive micronutrient testing pre- or post-surgery, yet deficiencies were relatively common among those tested. These results highlight the need for surgeons and primary care providers to test all bariatric surgery patients for micronutrient deficiencies. PMID:23515975

  18. Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Belfield, Kristen D; Tichy, Eric M

    2018-02-01

    The pathophysiology, diagnosis, and medication-use implications of glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzyme deficiency in humans, are reviewed. Originally identified as favism in patients who experienced hemolysis after ingestion of fava beans, G6PD deficiency results from an X-linked chromosomal mutation that leads to reduced activity of the enzyme responsible for the final step of the pentose phosphate pathway, through which reduced nicotinamide adenine dinucleotide phosphate required for protection of cells from oxidative stress is produced. G6PD deficiency affects about 400 million people worldwide. Diagnosis of G6PD can be made through detection of enzymatic activity (by spectrophotometric testing, fluorescence testing, or formazan-based spot testing) or molecular analysis to detect known mutations of the gene encoding G6PD. Most individuals with G6PD deficiency are asymptomatic throughout life. Symptoms of acute hemolysis associated with G6PD deficiency include anemia, fatigue, back or abdominal pain, jaundice, and hemoglobinuria. The most common precipitators of oxidative stress and hemolysis in G6PD deficiency include medication use and infection. G6PD deficiency should be considered in patients who experience acute hemolysis after exposure to known oxidative medications, infection, or ingestion of fava beans. A diagnosis of G6PD deficiency is most often made through enzymatic activity detection, but molecular analysis may be required in females heterozygous for the disorder. When clinically feasible, rasburicase, primaquine, dapsone, pegloticase, and methylene blue should not be used until a G6PD diagnostic test has been performed. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  19. Identifying Pre-Service Teachers' Beliefs about Teaching EFL and Their Potential Changes

    ERIC Educational Resources Information Center

    Suárez Flórez, Sergio Andrés; Basto Basto, Edwin Arley

    2017-01-01

    This study aims at identifying pre-service teachers' beliefs about teaching English as a foreign language and tracking their potential changes throughout the teaching practicum. Participants were two pre-service teachers in their fifth year of their Bachelor of Arts in Foreign Languages program in a public university in Colombia. Data were…

  20. Using color and grayscale images to teach histology to color-deficient medical students.

    PubMed

    Rubin, Lindsay R; Lackey, Wendy L; Kennedy, Frances A; Stephenson, Robert B

    2009-01-01

    Examination of histologic and histopathologic microscopic sections relies upon differential colors provided by staining techniques, such as hematoxylin and eosin, to delineate normal tissue components and to identify pathologic alterations in these components. Given the prevalence of color deficiency (commonly called "color blindness") in the general population, it is likely that this reliance upon color differentiation poses a significant obstacle for several medical students beginning a course of study that includes examination of histologic slides. In the past, first-year medical students at Michigan State University who identified themselves as color deficient were encouraged to use color transparency overlays or tinted contact lenses to filter out problematic colors. Recently, however, we have offered such students a computer monitor adjusted to grayscale for in-lab work, as well as grayscale copies of color photomicrographs for examination purposes. Grayscale images emphasize the texture of tissues and the contrasts between tissues as the students learn histologic architecture. Using this approach, color-deficient students have quickly learned to compensate for their deficiency by focusing on cell and tissue structure rather than on color variation. Based upon our experience with color-deficient students, we believe that grayscale photomicrographs may also prove instructional for students with normal (trichromatic) color vision, by encouraging them to consider structural characteristics of cells and tissues that may otherwise be overshadowed by stain colors.

  1. Comparison of vitamin D deficiency in Saudi married couples.

    PubMed

    Elshafie, D E; Al-Khashan, H I; Mishriky, A M

    2012-06-01

    Vitamin D deficiency is highly prevalent in Saudi Arabia. The study objective was to compare vitamin D deficiency in Saudi married couples. This cross-sectional study was carried out in the Royal Guard primary health care center in Riyadh, Saudi Arabia on a consecutive sample of 50 Saudi married couples attending the center without complaints related to vitamin D deficiency. Data were collected through an interview questionnaire addressing the risk factors and dietary habits. Quantitative determination of total 25-hydroxy vitamin D in blood was done by Electro-Chemical Luminescence assay. Fieldwork was carried out from December 2010 to January 2011. Men had higher sun exposure (P = 0.001), more use of light clothes at home (P = 0.002) and more intake of milk (P = 0.023) and soft drinks (P = 0.001). Vitamin D was higher in men with mean difference about 9 nmol/l (P < 0.001). The prevalence of vitamin D deficiency (<25 nmol/l) was 70% in women, compared with 40% in men (P = 0.001). Multivariate analysis identified male gender, physical activity and the intake of milk as statistically significant positive independent predictors of vitamin D level, adjusted for factors as age, sun exposure, clothing, skin color, BMI, soft drinks and animal protein intake. Vitamin D deficiency is very high among Saudi married couples, especially wives. Female gender is an independent predictor of lower vitamin D level, in addition to sedentary lifestyle and low milk consumption. There is a need to revise the levels set for the diagnosis of vitamin D deficiency or insufficiency in the study region.

  2. Prevalence and impact of bronchiectasis in alpha1-antitrypsin deficiency.

    PubMed

    Parr, David G; Guest, Peter G; Reynolds, John H; Dowson, Lee J; Stockley, Robert A

    2007-12-15

    alpha(1)-Antitrypsin (AAT) deficiency is associated with increased risk of chronic obstructive pulmonary disease (COPD), in particular emphysema, but airway disease is less well described. To assess the prevalence of airways disease in subjects with AAT deficiency and to identify the relationship between radiological airway abnormalities and clinical phenotype. We characterized the computed tomographic phenotype of 74 subjects (PiZ), using visual scoring of airway disease and densitometric assessment of emphysema. Computed tomographic measurements were related to physiology, health status (St. George's Respiratory Questionnaire), and emphysema severity, and the relative impact of airway disease and emphysema severity on health status and airflow obstruction was compared by stepwise regression. Bronchiectatic changes were seen in 70 subjects, and a subgroup with a bronchiectasis-predominant phenotype was identified. Clinically significant bronchiectasis (radiologic bronchiectasis in 4 or more bronchopulmonary segments together with symptoms of regular sputum production) occurred in 20 subjects (27%). AAT-deficient index cases had higher airway disease scores (P < 0.05), more severe emphysema (P < 0.001), and greater impairment of physiology (P < 0.001) and health status (P < 0.05) than nonindex cases. Airway disease scores correlated with health status, and bronchial wall thickening correlated with FEV(1). Regression analysis indicated that emphysema severity had the strongest associations for health status (r = 0.505, P < 0.001) and FEV(1) (r = 0.699, P < 0.001), but the addition of airway disease score improved the regression models (r = 0.596, P = 0.002 and r = 0.783, P < 0.001, respectively). Emphysema is the predominant component of COPD in AAT deficiency, but the prevalence and impact of airway disease are greater than currently recognized. Consequently, future therapeutic strategies in AAT deficiency should also target this component of COPD.

  3. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    PubMed

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  4. Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency.

    PubMed

    Kurosawa, Yuko; Degrauw, Ton J; Lindquist, Diana M; Blanco, Victor M; Pyne-Geithman, Gail J; Daikoku, Takiko; Chambers, James B; Benoit, Stephen C; Clark, Joseph F

    2012-08-01

    The second-largest cause of X-linked mental retardation is a deficiency in creatine transporter (CRT; encoded by SLC6A8), which leads to speech and language disorders with severe cognitive impairment. This syndrome, caused by the absence of creatine in the brain, is currently untreatable because CRT is required for creatine entry into brain cells. Here, we developed a brain-specific Slc6a8 knockout mouse (Slc6a8-/y) as an animal model of human CRT deficiency in order to explore potential therapies for this syndrome. The phenotype of the Slc6a8-/y mouse was comparable to that of human patients. We successfully treated the Slc6a8-/y mice with the creatine analog cyclocreatine. Brain cyclocreatine and cyclocreatine phosphate were detected after 9 weeks of cyclocreatine treatment in Slc6a8-/y mice, in contrast to the same mice treated with creatine or placebo. Cyclocreatine-treated Slc6a8-/y mice also exhibited a profound improvement in cognitive abilities, as seen with novel object recognition as well as spatial learning and memory tests. Thus, cyclocreatine appears promising as a potential therapy for CRT deficiency.

  5. Experimental Copper Deficiency, Chromium Deficiency and Additional Molybdenum Supplementation in Goats – Pathological Findings

    PubMed Central

    Aupperle, H; Schoon, HA; Frank, A

    2001-01-01

    Secondary copper (Cu) deficiency, chromium (Cr) deficiency and molybdenosis (Mo) has been suggested to cause the "mysterious" moose disease in the southwest of Sweden. The present experiment was performed on goats to investigate the clinical, chemical, and pathological alterations after 20 months feeding of a semi-synthetic diet deficient in Cu and Cr. Four groups were included in the study: control group (n = 4), Cu-deficient group (group 1, n = 4), Cr-deficient group (group 2, n = 2) and Cu+Cr-deficient group (group 3, n = 3). Group 3 was additionally supplemented with tetrathiomolybdate during the last 2 months of the experiment. Main histopathological findings in groups 1 and 3 were the lesions in the liver, characterised by a severe active fibrosis, bile duct proliferation, haemosiderosis and mild necroses. Additionally, degenerative alterations of the exocrine pancreas were prominent in groups 1 and 3. Lesions in group 3 were more pronounced than in group 1. In group 3, the skin showed an atrophic dermatosis, while in group 2 a crusty dermatitis caused by Candida spp. was observed. This study shows that liver, pancreas and skin are mainly affected by a long term deficiency of copper and the findings are complicated by molybdenum application while chromium deficiency produced no histomorphological effects in our study. PMID:11887391

  6. Zinc deficiency during growth: influence on renal function and morphology.

    PubMed

    Tomat, Analía Lorena; Costa, María Angeles; Girgulsky, Luciana Carolina; Veiras, Luciana; Weisstaub, Adriana Ruth; Inserra, Felipe; Balaszczuk, Ana María; Arranz, Cristina Teresa

    2007-03-13

    This study was designed to investigate the effects of moderate zinc deficiency during growth on renal morphology and function in adult life. Weaned male Wistar rats were divided into two groups and fed either a moderately zinc-deficient diet (zinc: 8 mg/kg, n=12) or a control diet (zinc: 30 mg/kg, n=12) for 60 days. We evaluated: renal parameters, NADPH-diaphorase and nitric oxide synthase activity in kidney, renal morphology and apoptotic cells in renal cortex. Zinc-deficient rats showed a decrease in glomerular filtration rate and no changes in sodium and potassium urinary excretion. Zinc deficiency decreased NADPH diaphorase activity in glomeruli and tubular segment of nephrons, and reduced activity of nitric oxide synthase in the renal medulla and cortex, showing that zinc plays an important role in preservation of the renal nitric oxide system. A reduction in nephron number, glomerular capillary area and number of glomerular nuclei in cortical and juxtamedullary areas was observed in zinc deficient kidneys. Sirius red staining and immunostaining for alpha-smooth muscle-actin and collagen III showed no signs of fibrosis in the renal cortex and medulla. An increase in the number of apoptotic cells in distal tubules and cortical collecting ducts neighboring glomeruli and, to a lesser extent, in the glomeruli was observed in zinc deficient rats. The major finding of our study is the emergence of moderate zinc deficiency during growth as a potential nutritional factor related to abnormalities in renal morphology and function that facilitates the development of cardiovascular and renal diseases in adult life.

  7. MRI and (1)H-MRS in adenosine kinase deficiency.

    PubMed

    Staufner, C; Blom, H J; Dionisi-Vici, C; Freisinger, P; Makhseed, N; Ballhausen, D; Kölker, S; Hoffmann, G F; Harting, I

    2016-07-01

    Adenosine kinase deficiency (ADK deficiency) is a recently described disorder of methionine and adenosine metabolism resulting in a neurological phenotype with developmental delay, muscular hypotonia, and epilepsy as well as variable systemic manifestations. The underlying neuropathology is poorly understood. We have investigated MRI and (1)H-MRS changes in ADK deficiency in order to better understand the in vivo neuropathologic changes of ADK deficiency. Systematic evaluation of 21 MRIs from eight patients (age range 9 days-14.6 years, mean 3.9 years, median 2.7 years) including diffusion-weighted imaging in six and (1)H-MRS in five patients. Brain maturation was delayed in the neonatal period and in infancy (6/6), but ultimately complete. White matter changes occurring in five of eight patients were discrete, periventricular, and unspecific (4/5), or diffuse with sparing of optic radiation, corona radiata, and pyramidal tracts (1/5). Choline was low in white matter spectra (3/3), while there was no indication of low creatine in white matter or basal ganglia (5/5), and diffusion was variably decreased or increased. Central tegmental tract hyperintensity was a common finding (6/8), as was supratentorial atrophy (6/8). MRI changes in ADK deficiency consist of delayed but ultimately completed brain maturation with later onset of mostly unspecific white matter changes and potentially transient central tegmental tract hyperintensity. Immaturity on neonatal MRI is consistent with prenatal onset of disease and reduced choline with lower membrane turnover resulting in delayed myelination and deficient myelin maintenance.

  8. Biochemical signatures mimicking multiple carboxylase deficiency in children with mutations in MT-ATP6.

    PubMed

    Larson, Austin A; Balasubramaniam, Shanti; Christodoulou, John; Burrage, Lindsay C; Marom, Ronit; Graham, Brett H; Diaz, George A; Glamuzina, Emma; Hauser, Natalie; Heese, Bryce; Horvath, Gabriella; Mattman, Andre; van Karnebeek, Clara; Lane Rutledge, S; Williamson, Amy; Estrella, Lissette; Van Hove, Johan K L; Weisfeld-Adams, James D

    2018-01-04

    Elevations of specific acylcarnitines in blood reflect carboxylase deficiencies, and have utility in newborn screening for life-threatening organic acidemias and other inherited metabolic diseases. In this report, we describe a newly-identified association of biochemical features of multiple carboxylase deficiency in individuals harboring mitochondrial DNA (mtDNA) mutations in MT-ATP6 and in whom organic acidemias and multiple carboxylase deficiencies were excluded. Using retrospective chart review, we identified eleven individuals with abnormally elevated propionylcarnitine (C3) or hydroxyisovalerylcarnitine (C5OH) with mutations in MT-ATP6, most commonly m.8993T>G in high heteroplasmy or homoplasmy. Most patients were ascertained on newborn screening; most had normal enzymatic or molecular genetic testing to exclude biotinidase and holocarboxylase synthetase deficiencies. MT-ATP6 is associated with some cases of Leigh disease; clinical outcomes in our cohort ranged from death from neurodegenerative disease in early childhood to clinically and developmentally normal after several years of follow-up. These cases expand the biochemical phenotype associated with MT-ATP6 mutations, especially m.8993T>G, to include acylcarnitine abnormalities mimicking carboxylase deficiency states. Clinicians should be aware of this association and its implications for newborn screening, and consider mtDNA sequencing in patients exhibiting similar acylcarnitine abnormalities that are biotin-unresponsive and in whom other enzymatic deficiencies have been excluded. Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  9. Glucose-6-phosphate dehydrogenase deficiency in Singapore.

    PubMed

    Quak, S H; Saha, N; Tay, J S

    1996-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) in man is an X-linked enzyme. The deficiency of this enzyme is one of the most common inherited metabolic disorders in man. In Singapore, three clinical syndromes associated with G6PD deficiency had been described: severe haemolysis in neonates with kernicterus, haemoglobinuria and "viral hepatitis"-like syndrome. The human G6PD monomer consists of 515 amino acids. Only the tetrameric or dimeric forms composed of a single type subunit are catylitically active. The complete amino acid sequence of G6PD had been elucidated in man and various other animals. The region of high homology among the enzymes of various animals is presumably functionally active. Among the Chinese in Singapore, three common molecular variants had been identified: Canton (nt 1376 G --> T), Kaiping (nt 1388 G --> A) and Mediterranean (nt 563 C --> T) in frequencies of 24%, 21% and 10% respectively. In addition, two common mutants (Gaozhou, nt 95 A --> G and Chinese 5, nt 1024 C --> T) have been detected in Singapore Chinese in low frequencies. In Malays, 6 different deficient variants are known in Singapore (3 new, 1 Mahidol, 1 Indonesian and 1 Mediterranean).

  10. Two soybean bHLH factors regulate response to iron deficiency.

    PubMed

    Li, Lin; Gao, Wenwen; Peng, Qi; Zhou, Bin; Kong, Qihui; Ying, Yinghui; Shou, Huixia

    2018-03-25

    Iron is an indispensable micronutrient for plant growth and development. Limited bioavailability of Fe in the soil leads to iron deficiency chlorosis in plants and yield loss. In this study, two soybean basic helix-loop-helix transcription factors, GmbHLH57 and GmbHLH300, were identified in response to Fe-deficiency. Both transcription factors are expressed in roots and nodules, and are induced by Fe deficiency; these patterns were confirmed in transgenic hairy roots expressing constructs of the endogenous promoters fused to a GUS reporter gene. Bimolecular fluorescence complementation, yeast two-hybrid and coimmunoprecipitation (co-IP) assays indicated a physical interaction between GmbHLH57 and GmbHLH300. Studies on transgenic soybeans overexpressing GmbHLH57 and GmbHLH300 revealed that overexpression of each transcription factor, alone, results in no change of the responses to Fe deficiency, whereas overexpression of both transcription factors upregulated the downstream Fe uptake genes and increased the Fe content in these transgenic plants. Compared to wild type, these double overexpression transgenic plants were more tolerant to Fe deficiency. Taken together, our findings establish that GmbHLH57 and GmbHLH300 are important transcription factors involved in Fe homeostasis in soybean. © 2018 Institute of Botany, Chinese Academy of Sciences.

  11. Aminoacyl-tRNA synthetase deficiencies in search of common themes.

    PubMed

    Fuchs, Sabine A; Schene, Imre F; Kok, Gautam; Jansen, Jurriaan M; Nikkels, Peter G J; van Gassen, Koen L I; Terheggen-Lagro, Suzanne W J; van der Crabben, Saskia N; Hoeks, Sanne E; Niers, Laetitia E M; Wolf, Nicole I; de Vries, Maaike C; Koolen, David A; Houwen, Roderick H J; Mulder, Margot F; van Hasselt, Peter M

    2018-06-06

    Pathogenic variations in genes encoding aminoacyl-tRNA synthetases (ARSs) are increasingly associated with human disease. Clinical features of autosomal recessive ARS deficiencies appear very diverse and without apparent logic. We searched for common clinical patterns to improve disease recognition, insight into pathophysiology, and clinical care. Symptoms were analyzed in all patients with recessive ARS deficiencies reported in literature, supplemented with unreported patients evaluated in our hospital. In literature, we identified 107 patients with AARS, DARS, GARS, HARS, IARS, KARS, LARS, MARS, RARS, SARS, VARS, YARS, and QARS deficiencies. Common symptoms (defined as present in ≥4/13 ARS deficiencies) included abnormalities of the central nervous system and/or senses (13/13), failure to thrive, gastrointestinal symptoms, dysmaturity, liver disease, and facial dysmorphisms. Deep phenotyping of 5 additional patients with unreported compound heterozygous pathogenic variations in IARS, LARS, KARS, and QARS extended the common phenotype with lung disease, hypoalbuminemia, anemia, and renal tubulopathy. We propose a common clinical phenotype for recessive ARS deficiencies, resulting from insufficient aminoacylation activity to meet translational demand in specific organs or periods of life. Assuming residual ARS activity, adequate protein/amino acid supply seems essential instead of the traditional replacement of protein by glucose in patients with metabolic diseases.

  12. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency.

    PubMed

    Cerbone, Manuela; Dattani, Mehul T

    2017-12-01

    Growth hormone deficiency (GHD) can present at any time of life from the neonatal period to adulthood, as a result of congenital or acquired insults. It can present as an isolated problem (IGHD) or in combination with other pituitary hormone deficiencies (CPHD). Pituitary deficits can evolve at any time from GHD diagnosis. The number, severity and timing of occurrence of additional endocrinopathies are highly variable. The risk of progression from IGHD to CPHD in children varies depending on the etiology (idiopathic vs organic). The highest risk is displayed by children with abnormalities in the Hypothalamo-Pituitary (H-P) region. Heterogeneous data have been reported on the type and timing of onset of additional pituitary hormone deficits, with TSH deficiency being most frequent and Diabetes Insipidus the least frequent additional deficit in the majority, but not all, of the studies. ACTH deficiency may gradually evolve at any time during follow-up in children or adults with childhood onset IGHD, particularly (but not only) in presence of H-P abnormalities and/or TSH deficiency. Hence there is a need in these patients for lifelong monitoring for ACTH deficiency. GH treatment unmasks central hypothyroidism mainly in patients with organic GHD, but all patients starting GH should have their thyroid function monitored closely. Main risk factors for development of CPHD include organic etiology, H-P abnormalities (in particular pituitary stalk abnormalities, empty sella and ectopic posterior pituitary), midline brain (corpus callosum) and optic nerves abnormalities, genetic defects and longer duration of follow-up. The current available evidence supports longstanding recommendations for the need, in all patients diagnosed with IGHD, of a careful and indefinite follow-up for additional pituitary hormone deficiencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A novel KAL1 mutation is associated with combined pituitary hormone deficiency.

    PubMed

    Takagi, Masaki; Narumi, Satoshi; Hamada, Riku; Hasegawa, Yukihiro; Hasegawa, Tomonobu

    2014-01-01

    Using a next-generation sequencing strategy, we identified a novel KAL1 missense mutation (p.His568Gln) in a patient with combined pituitary hormone deficiency, right microphthalmia, right renal aplasia and severe developmental delay. Our findings will provide additional evidence that KAL1 mutations are associated with hypopituitarism, in addition to luteinizing hormone, and follicle-stimulating hormone deficiencies, and improve our understanding of the phenotypic features and developmental course associated with KAL1 mutations.

  14. Vitamin D Deficiency in a Multiethnic Healthy Control Cohort and Altered Immune Response in Vitamin D Deficient European-American Healthy Controls

    PubMed Central

    Shah, Hemangi B.; Robertson, Julie M.; Fife, Dustin A.; Maecker, Holden T.; Du, Hongwu; Fathman, Charles G.; Chakravarty, Eliza F.; Scofield, R. Hal; Kamen, Diane L.; Guthridge, Joel M.; James, Judith A.

    2014-01-01

    Objective In recent years, vitamin D has been shown to possess a wide range of immunomodulatory effects. Although there is extensive amount of research on vitamin D, we lack a comprehensive understanding of the prevalence of vitamin D deficiency or the mechanism by which vitamin D regulates the human immune system. This study examined the prevalence and correlates of vitamin D deficiency and the relationship between vitamin D and the immune system in healthy individuals. Methods Healthy individuals (n = 774) comprised of European-Americans (EA, n = 470), African–Americans (AA, n = 125), and Native Americans (NA, n = 179) were screened for 25-hydroxyvitamin D [25(OH)D] levels by ELISA. To identify the most noticeable effects of vitamin D on the immune system, 20 EA individuals with severely deficient (<11.3 ng/mL) and sufficient (>24.8 ng/mL) vitamin D levels were matched and selected for further analysis. Serum cytokine level measurement, immune cell phenotyping, and phosphoflow cytometry were performed. Results Vitamin D sufficiency was observed in 37.5% of the study cohort. By multivariate analysis, AA, NA, and females with a high body mass index (BMI, >30) demonstrate higher rates of vitamin D deficiency (p<0.05). Individuals with vitamin D deficiency had significantly higher levels of serum GM-CSF (p = 0.04), decreased circulating activated CD4+ (p = 0.04) and CD8+ T (p = 0.04) cell frequencies than individuals with sufficient vitamin D levels. Conclusion A large portion of healthy individuals have vitamin D deficiency. These individuals have altered T and B cell responses, indicating that the absence of sufficient vitamin D levels could result in undesirable cellular and molecular alterations ultimately contributing to immune dysregulation. PMID:24727903

  15. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit.

    PubMed

    Gao, Meiling; Hu, Liangliang; Li, Yuhong; Weng, Yiqun

    2016-10-01

    The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway. The Mg-chelatase catalyzes the insertion of Mg(2+) into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.

  16. Enhancing nutritiousness of lamb meat and preventing selenium deficiency.

    USDA-ARS?s Scientific Manuscript database

    Lamb meat is a naturally flavorful and nutritious product. Our research indicates that feeding a specific wheat-milling coproduct will enhance the nutritiousness of lamb, potentially add monetary value to lamb, and prevent Se deficiency. Selenium is an essential micromineral, and Se supplementation ...

  17. Obtaining subjects' consent to publish identifying personal information: current practices and identifying potential issues.

    PubMed

    Yoshida, Akiko; Dowa, Yuri; Murakami, Hiromi; Kosugi, Shinji

    2013-11-25

    In studies publishing identifying personal information, obtaining consent is regarded as necessary, as it is impossible to ensure complete anonymity. However, current journal practices around specific points to consider when obtaining consent, the contents of consent forms and how consent forms are managed have not yet been fully examined. This study was conducted to identify potential issues surrounding consent to publish identifying personal information. Content analysis was carried out on instructions for authors and consent forms developed by academic journals in four fields (as classified by Journal Citation Reports): medicine general and internal, genetics and heredity, pediatrics, and psychiatry. An online questionnaire survey of editors working for journals that require the submission of consent forms was also conducted. Instructions for authors were reviewed for 491 academic journals (132 for medicine general and internal, 147 for genetics and heredity, 100 for pediatrics, and 112 for psychiatry). Approximately 40% (203: 74 for medicine general and internal, 31 for genetics and heredity, 58 for pediatrics, and 40 for psychiatry) stated that subject consent was necessary. The submission of consent forms was required by 30% (154) of the journals studied, and 10% (50) provided their own consent forms for authors to use. Two journals mentioned that the possible effects of publication on subjects should be considered. Many journal consent forms mentioned the difficulties in ensuring complete anonymity of subjects, but few addressed the study objective, the subjects' right to refuse consent and the withdrawal of consent. The main reason for requiring the submission of consent forms was to confirm that consent had been obtained. Approximately 40% of journals required subject consent to be obtained. However, differences were observed depending on the fields. Specific considerations were not always documented. There is a need to address issues around the study

  18. Obtaining subjects’ consent to publish identifying personal information: current practices and identifying potential issues

    PubMed Central

    2013-01-01

    Background In studies publishing identifying personal information, obtaining consent is regarded as necessary, as it is impossible to ensure complete anonymity. However, current journal practices around specific points to consider when obtaining consent, the contents of consent forms and how consent forms are managed have not yet been fully examined. This study was conducted to identify potential issues surrounding consent to publish identifying personal information. Methods Content analysis was carried out on instructions for authors and consent forms developed by academic journals in four fields (as classified by Journal Citation Reports): medicine general and internal, genetics and heredity, pediatrics, and psychiatry. An online questionnaire survey of editors working for journals that require the submission of consent forms was also conducted. Results Instructions for authors were reviewed for 491 academic journals (132 for medicine general and internal, 147 for genetics and heredity, 100 for pediatrics, and 112 for psychiatry). Approximately 40% (203: 74 for medicine general and internal, 31 for genetics and heredity, 58 for pediatrics, and 40 for psychiatry) stated that subject consent was necessary. The submission of consent forms was required by 30% (154) of the journals studied, and 10% (50) provided their own consent forms for authors to use. Two journals mentioned that the possible effects of publication on subjects should be considered. Many journal consent forms mentioned the difficulties in ensuring complete anonymity of subjects, but few addressed the study objective, the subjects’ right to refuse consent and the withdrawal of consent. The main reason for requiring the submission of consent forms was to confirm that consent had been obtained. Conclusion Approximately 40% of journals required subject consent to be obtained. However, differences were observed depending on the fields. Specific considerations were not always documented. There is a need

  19. Deficiencies in FY 1998 DOD Financial Statements and Progress Toward Improved Financial Reporting

    DTIC Science & Technology

    1999-11-26

    DEFICIENCIES IN FY 1998 DOD FINANCIAL STATEMENTS AND PROGRESS TOWARD IMPROVED FINANCIAL REPORTING Report No. D-2000-041 November 26, 1999 Office... Financial Reporting (Report No. D-2000-041) We are providing this audit report for information and use. It identifies and summarizes the major...8FI-2025.02) Deficiencies in FY 1998 DoD Financial Statements and Progress Toward Improved Financial Reporting Executive Summary Introduction

  20. [Cytochrome c oxydase-deficient Leigh syndrome with homozygous mutation in SURF1 gene].

    PubMed

    Monnot, S; Chabrol, B; Cano, A; Pellissier, J F; Collignon, P; Montfort, M F; Paquis-Flucklinger, V

    2005-05-01

    Leigh syndrome is a heterogeneous disorder, usually due to a defect in oxidative metabolism. Mutations in SURF1 gene have been identified in patients with cytochrome c oxidase deficiency. We report a homozygous splice site deletion [516-2_516-1delAG] in a young girl presenting with cytochrome c oxidase-deficient Leigh syndrome. Identification of molecular defect is indispensable for genetic counselling and prenatal diagnosis.

  1. Segregation for chlorophyll deficiencies and other phenodeviants in the x1 and x2 generations of irradiated jack pine

    Treesearch

    Thomas D. Rudolph

    1966-01-01

    Readily identifiable phenotypes, such as cotyledonary chlorophyll deficiencies, whose genetic basis can be established, would be highly useful in forest genetics research as genetic markers. In the genus Pinus mutants with severe deficiencies, such as albinos, will die shortly after seed germination while those with less severe deficiencies will not...

  2. Iron deficiency in infancy is associated with altered neural correlates of recognition memory at 10 years

    PubMed Central

    Congdon, Eliza L.; Westerlund, Alissa; Algarin, Cecilia R.; Peirano, Patricio D.; Gregas, Matthew; Lozoff, Betsy; Nelson, Charles A.

    2012-01-01

    Objective To determine the long-term effects of iron deficiency on the neural correlates of recognition memory. Study design Non-anemic control participants (n=93) and 116 otherwise healthy formerly iron-deficient anemic (FIDA) Chilean children were selected from a larger longitudinal study. Participants were identified at 6, 12, or 18 months as iron-deficient anemic or non-anemic and subsequently received oral iron treatment. This follow-up was conducted when participants were 10 years old. Behavioral measures and event-related potentials from 28 scalp electrodes were measured during an old/new word recognition memory task. Results The new/old effect of the FN400 amplitude, where new words are associated with greater amplitude than old words, was present within the control group only. The control group also showed faster FN400 latency than the FIDA group and larger mean amplitude for the P300 component. Conclusions Although overall behavioral performance is comparable between groups, the results show that group differences in cognitive function have not been resolved ten years after iron treatment. Long-lasting changes in myelination and energy metabolism, perhaps especially in the hippocampus, may account for these long-term effects on an important aspect of human cognitive development. PMID:22244466

  3. Cardiac structural changes and electrical remodeling in a thiamine-deficiency model in rats.

    PubMed

    Roman-Campos, D; Campos, A C; Gioda, C R; Campos, P P; Medeiros, M A A; Cruz, J S

    2009-06-05

    Thiamine is an important cofactor present in many biochemical reactions, and its deprivation can lead to heart dysfunction. Little is known about the influence of thiamine deprivation on the electrophysiological behavior of the isolated heart cells and information about thiamine deficiency in heart morphology is controversial. Thus, we decided to investigate the major repolarizing conductances and their influence in the action potential (AP) waveform as well as the changes in the heart structure in a set of thiamine deficiency in rats. Using the patch-clamp technique, we investigated inward (I(K1)) and outward K(+) currents (I(to)), T-type and L-type Ca(2+) currents and APs. To evaluate heart morphology we used hematoxylin and eosin in transversal heart sections. Thiamine deficiency caused a marked decrease in left ventricle thickness, cardiomyocyte number, cell length and width, and membrane capacitance. When evaluating I(to) we did not find difference in current amplitude; however an acceleration of I(to) inactivation was observed. I(K1) showed a reduction in the amplitude and slope conductance, which implicated a less negative resting membrane potential in cardiac myocytes isolated from thiamine-deficient rats. We did not find any difference in L-type Ca(2+) current density. T-type Ca(2+) current was not observed. In addition, we did not observe significant changes in AP repolarization. Based on our study we can conclude that thiamine deficiency causes heart hypotrophy and not heart hypertrophy. Moreover, we provided evidence that there is no major electrical remodeling during thiamine deficiency, a feature of heart failure models.

  4. Antimalarial NADPH-Consuming Redox-Cyclers As Superior Glucose-6-Phosphate Dehydrogenase Deficiency Copycats.

    PubMed

    Bielitza, Max; Belorgey, Didier; Ehrhardt, Katharina; Johann, Laure; Lanfranchi, Don Antoine; Gallo, Valentina; Schwarzer, Evelin; Mohring, Franziska; Jortzik, Esther; Williams, David L; Becker, Katja; Arese, Paolo; Elhabiri, Mourad; Davioud-Charvet, Elisabeth

    2015-05-20

    Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency. We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation. Structure-activity relationships evidenced that both drug metabolites and haemoglobin catabolites contribute to potentiate drug effects and inhibit parasite development. Disruption of redox homeostasis by the lead benzylmenadione was specifically induced in Plasmodium falciparum parasitized erythrocytes and not in non-infected cells, and was visualized via changes in the glutathione redox potential of living parasite cytosols. Furthermore, the redox-cycler shows additive and synergistic effects in combination with compounds affecting the NADPH flux in vivo. The lead benzylmenadione 1c is the first example of a novel redox-active agent that mimics the behavior of a falciparum parasite developing inside a G6PD-deficient red blood cell (RBC) giving rise to malaria protection, and it exerts specific additive effects that are inhibitory to parasite development, without harm for non-infected G6PD-sufficient or -deficient RBCs. This strategy offers an innovative perspective for the development of future antimalarial drugs for G6PD-sufficient and -deficient populations.

  5. Thiamin deficiency on fetal brain development with and without prenatal alcohol exposure.

    PubMed

    Kloss, Olena; Eskin, N A Michael; Suh, Miyoung

    2018-04-01

    Adequate thiamin levels are crucial for optimal health through maintenance of homeostasis and viability of metabolic enzymes, which require thiamine as a co-factor. Thiamin deficiency occurs during pregnancy when the dietary intake is inadequate or excessive alcohol is consumed. Thiamin deficiency leads to brain dysfunction because thiamin is involved in the synthesis of myelin and neurotransmitters (e.g., acetylcholine, γ-aminobutyric acid, glutamate), and its deficiency increases oxidative stress by decreasing the production of reducing agents. Thiamin deficiency also leads to neural membrane dysfunction, because thiamin is a structural component of mitochondrial and synaptosomal membranes. Similarly, in-utero exposure to alcohol leads to fetal brain dysfunction, resulting in negative effects such as fetal alcohol spectrum disorder (FASD). Thiamin deficiency and prenatal exposure to alcohol could act synergistically to produce negative effects on fetal development; however, this area of research is currently under-studied. This minireview summarizes the evidence for the potential role of thiamin deficiency in fetal brain development, with or without prenatal exposure to alcohol. Such evidence may influence the development of new nutritional strategies for preventing or mitigating the symptoms of FASD.

  6. Congenital sucrase-isomaltase deficiency: identification of a common Inuit founder mutation.

    PubMed

    Marcadier, Julien L; Boland, Margaret; Scott, C Ronald; Issa, Kheirie; Wu, Zaining; McIntyre, Adam D; Hegele, Robert A; Geraghty, Michael T; Lines, Matthew A

    2015-02-03

    Congenital sucrase-isomaltase deficiency is a rare hereditary cause of chronic diarrhea in children. People with this condition lack the intestinal brush-border enzyme required for digestion of di- and oligosaccharides, including sucrose and isomaltose, leading to malabsorption. Although the condition is known to be highly prevalent (about 5%-10%) in several Inuit populations, the genetic basis for this has not been described. We sought to identify a common mutation for congenital sucrase-isomaltase deficiency in the Inuit population. We sequenced the sucrase-isomaltase gene, SI, in a single Inuit proband with congenital sucrase-isomaltase deficiency who had severe fermentative diarrhea and failure to thrive. We then genotyped a further 128 anonymized Inuit controls from a variety of locales in the Canadian Arctic to assess for a possible founder effect. In the proband, we identified a novel, homozygous frameshift mutation, c.273_274delAG (p.Gly92Leufs*8), predicted to result in complete absence of a functional protein product. This change was very common among the Inuit controls, with an observed allele frequency of 17.2% (95% confidence interval [CI] 12.6%-21.8%). The predicted Hardy-Weinberg prevalence of congenital sucrase-isomaltase deficiency in Inuit people, based on this single founder allele, is 3.0% (95% CI 1.4%-4.5%), which is comparable with previous estimates. We found a common mutation, SI c.273_274delAG, to be responsible for the high prevalence of congenital sucrase-isomaltase deficiency among Inuit people. Targeted mutation testing for this allele should afford a simple and minimally invasive means of diagnosing this condition in Inuit patients with chronic diarrhea. © 2015 Canadian Medical Association or its licensors.

  7. Anaemia, iron deficiency and susceptibility to infections.

    PubMed

    Jonker, Femke A M; Boele van Hensbroek, Michaël

    2014-11-01

    Anaemia, iron deficiency and infections are three major causes of childhood morbidity and mortality throughout the world, although they predominantly occur in resource limited settings. As the three conditions may have the same underlying aetiologies, they often occur simultaneously and may interact. Being an essential component in erythropoiesis, iron is also essential for proper functioning of the host immune system as well as an essential nutrient for growth of various pathogens, including non-typhoid salmonella. This has resulted in a treatment dilemma in which iron is needed to treat the iron deficient anaemia and improve the immune system of the host (child), but the same treatment may also put the child at an increased, potentially fatal, infection risk. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  8. Glucose-6-phosphate dehydrogenase deficiency and malaria: cytochemical detection of heterozygous G6PD deficiency in women.

    PubMed

    Peters, Anna L; Van Noorden, Cornelis J F

    2009-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a X-chromosomally transmitted disorder of the erythrocyte that affects 400 million people worldwide. Diagnosis of heterozygously-deficient women is complicated: as a result of lyonization, these women have a normal and a G6PD-deficient population of erythrocytes. The cytochemical assay is the only reliable assay to discriminate between heterozygously-deficient women and non-deficient women or homozygously-deficient women. G6PD deficiency is mainly found in areas where malaria is or has been endemic. In these areas, malaria is treated with drugs that can cause (severe) hemolysis in G6PD-deficient individuals. A cheap and reliable test is necessary for diagnosing the deficiency to prevent hemolytic disorders when treating malaria. In this review, it is concluded that the use of two different tests for diagnosing men and women is the ideal approach to detect G6PD deficiency. The fluorescent spot test is inexpensive and easy to perform but only reliable for discriminating hemizygous G6PD-deficient men from non-deficient men. For women, the cytochemical assay is recommended. However, this assay is more expensive and difficult to perform and should be simplified into a kit for use in developing countries.

  9. Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer

    PubMed Central

    Ranzani, Marco; Cesana, Daniela; Bartholomae, Cynthia C.; Sanvito, Francesca; Pala, Mauro; Benedicenti, Fabrizio; Gallina, Pierangela; Sergi, Lucia Sergi; Merella, Stefania; Bulfone, Alessandro; Doglioni, Claudio; von Kalle, Christof; Kim, Yoon Jun; Schmidt, Manfred; Tonon, Giovanni; Naldini, Luigi; Montini, Eugenio

    2013-01-01

    Transposons and γ-retroviruses have been efficiently used as insertional mutagens in different tissues to identify molecular culprits of cancer. However, these systems are characterized by recurring integrations that accumulate in tumor cells, hampering the identification of early cancer-driving events amongst bystander and progression-related events. We developed an insertional mutagenesis platform based on lentiviral vectors (LVV) by which we could efficiently induce hepatocellular carcinoma (HCC) in 3 different mouse models. By virtue of LVV’s replication-deficient nature and broad genome-wide integration pattern, LVV-based insertional mutagenesis allowed identification of 4 new liver cancer genes from a limited number of integrations. We validated the oncogenic potential of all the identified genes in vivo, with different levels of penetrance. Our newly identified cancer genes are likely to play a role in human disease, since they are upregulated and/or amplified/deleted in human HCCs and can predict clinical outcome of patients. PMID:23314173

  10. Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement

    PubMed Central

    Ellias, Mohd Faiz; Zainal Ariffin, Shahrul Hisham; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Senafi, Shahidan; Megat Abdul Wahab, Rohaya

    2012-01-01

    Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption. PMID:22919344

  11. Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors.

    PubMed

    Shih, Kuei-Chung; Shiau, Chung-Wai; Chen, Ting-Shou; Ko, Ching-Huai; Lin, Chih-Lung; Lin, Chun-Yuan; Hwang, Chrong-Shiong; Tang, Chuan-Yi; Chen, Wan-Ru; Huang, Jui-Wen

    2011-08-01

    Chemical features based 3D pharmacophore model for REarranged during Transfection (RET) tyrosine kinase were developed by using a training set of 26 structurally diverse known RET inhibitors. The best pharmacophore hypothesis, which identified inhibitors with an associated correlation coefficient of 0.90 between their experimental and estimated anti-RET values, contained one hydrogen-bond acceptor, one hydrogen-bond donor, one hydrophobic, and one ring aromatic features. The model was further validated by a testing set, Fischer's randomization test, and goodness of hit (GH) test. We applied this pharmacophore model to screen NCI database for potential RET inhibitors. The hits were docked to RET with GOLD and CDOCKER after filtering by Lipinski's rules. Ultimately, 24 molecules were selected as potential RET inhibitors for further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Sunglasses, traffic signals, and color vision deficiencies.

    PubMed

    Dain, Stephen J; Wood, Joanne M; Atchison, David A

    2009-04-01

    To determine (a) the effect of different sunglass tint colorations on traffic signal detection and recognition for color normal and color deficient observers, and (b) the adequacy of coloration requirements in current sunglass standards. Twenty color-normals and 49 color-deficient males performed a tracking task while wearing sunglasses of different colorations (clear, gray, green, yellow-green, yellow-brown, red-brown). At random intervals, simulated traffic light signals were presented against a white background at 5 degrees to the right or left and observers were instructed to identify signal color (red/yellow/green) by pressing a response button as quickly as possible; response times and response errors were recorded. Signal color and sunglass tint had significant effects on response times and error rates (p < 0.05), with significant between-color group differences and interaction effects. Response times for color deficient people were considerably slower than color normals for both red and yellow signals for all sunglass tints, but for green signals they were only noticeably slower with the green and yellow-green lenses. For most of the color deficient groups, there were recognition errors for yellow signals combined with the yellow-green and green tints. In addition, deuteranopes had problems for red signals combined with red-brown and yellow-brown tints, and protanopes had problems for green signals combined with the green tint and for red signals combined with the red-brown tint. Many sunglass tints currently permitted for drivers and riders cause a measurable decrement in the ability of color deficient observers to detect and recognize traffic signals. In general, combinations of signals and sunglasses of similar colors are of particular concern. This is prima facie evidence of a risk in the use of these tints for driving and cautions against the relaxation of coloration limits in sunglasses beyond those represented in the study.

  13. Protein profile of Beta vulgaris leaf apoplastic fluid and changes induced by Fe deficiency and Fe resupply

    PubMed Central

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Lattanzio, Giuseppe; Vázquez, Saul; Contreras-Moreira, Bruno; Abadía, Anunciación; Abadía, Javier; López-Millán, Ana-Flor

    2015-01-01

    The fluid collected by direct leaf centrifugation has been used to study the proteome of the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient and Fe-deficient conditions, and Fe resupply was carried out with 45 μM Fe(III)-EDTA for 24 h. Protein extracts of leaf apoplastic fluid were analyzed by two-dimensional isoelectric focusing-SDS-PAGE electrophoresis. Gel image analysis revealed 203 consistent spots, and proteins in 81% of them (164) were identified by nLC-MS/MS using a custom made reference repository of beet protein sequences. When redundant UniProt entries were deleted, a non-redundant leaf apoplastic proteome consisting of 109 proteins was obtained. TargetP and SecretomeP algorithms predicted that 63% of them were secretory proteins. Functional classification of the non-redundant proteins indicated that stress and defense, protein metabolism, cell wall and C metabolism accounted for approximately 75% of the identified proteome. The effects of Fe-deficiency on the leaf apoplast proteome were limited, with only five spots (2.5%) changing in relative abundance, thus suggesting that protein homeostasis in the leaf apoplast fluid is well-maintained upon Fe shortage. The identification of three chitinase isoforms among proteins increasing in relative abundance with Fe-deficiency suggests that one of the few effects of Fe deficiency in the leaf apoplast proteome includes cell wall modifications. Iron resupply to Fe deficient plants changed the relative abundance of 16 spots when compared to either Fe-sufficient or Fe-deficient samples. Proteins identified in these spots can be broadly classified as those responding to Fe-resupply, which included defense and cell wall related proteins, and non-responsive, which are mainly protein metabolism related proteins and whose changes in relative abundance followed the same trend as with Fe-deficiency

  14. Detection of 6-demethoxyubiquinone in CoQ10 deficiency disorders: Insights into enzyme interactions and identification of potential therapeutics.

    PubMed

    Herebian, Diran; Seibt, Annette; Smits, Sander H J; Bünning, Gisela; Freyer, Christoph; Prokisch, Holger; Karall, Daniela; Wredenberg, Anna; Wedell, Anna; López, Luis C; Mayatepek, Ertan; Distelmaier, Felix

    2017-07-01

    Coenzyme Q 10 (CoQ 10 ) is an essential cofactor of the mitochondrial oxidative phosphorylation (OXPHOS) system and its deficiency has important implications for several inherited metabolic disorders of childhood. The biosynthesis of CoQ 10 is a complicated process, which involves at least 12 different enzymes. One of the metabolic intermediates that are formed during CoQ 10 biosynthesis is the molecule 6-demethoxyubiquinone (6-DMQ). This CoQ precursor is processed at the level of COQ7 and COQ9. We selected this metabolite as a marker substance for metabolic analysis of cell lines with inherited genetic defects (COQ2, COQ4, COQ7 and COQ9) or siRNA knockdown in CoQ biosynthesis enzymes using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). In COQ4, COQ7 and COQ9 deficient cell lines, we detected significantly elevated levels of 6-DMQ. This suggests a functional interplay of these proteins. However, additional siRNA studies demonstrated that elevated 6-DMQ levels are not an exclusive marker of the COQ7/COQ9 enzymatic step of CoQ 10 biosynthesis but constitute a more general phenomenon that occurs in disorders impairing the function or stability of the CoQ-synthome. To further investigate the interdependence of CoQ 10 biosynthesis enzyme expression, we performed immunoblotting in various cell lines with CoQ 10 deficiency, indicating that COQ4, COQ7 and COQ9 protein expression levels are highly regulated depending on the underlying defect. Supplementation of cell lines with synthetic CoQ precursor compounds demonstrated beneficial effects of 2,4-dihydroxybenzoic acid in COQ7 and COQ9 deficiency. Moreover, vanillic acid selectively stimulated CoQ 10 biosynthesis and improved cell viability in COQ9 deficiency. However, compounds tested in this study failed to rescue COQ4 deficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus

    PubMed Central

    English, Jane A.; Harauma, Akiko; Föcking, Melanie; Wynne, Kieran; Scaife, Caitriona; Cagney, Gerard; Moriguchi, Toru; Cotter, David R.

    2013-01-01

    Omega-3 fatty acid (n-3 FA) deficiency is an environmental risk factor for schizophrenia, yet characterization of the consequences of deficiency at the protein level in the brain is limited. We aimed to identify the protein pathways disrupted as a consequence of chronic n-3 deficiency in the hippocampus of mice. Fatty acid analysis of the hippocampus following chronic dietary deficiency revealed a 3-fold decrease (p < 0.001) in n-3 FA levels. Label free LC-MS/MS analysis identified and profiled 1008 proteins, of which 114 were observed to be differentially expressed between n-3 deficient and control groups (n = 8 per group). The cellular processes that were most implicated were neuritogenesis, endocytosis, and exocytosis, while specific protein pathways that were most significantly dysregulated were mitochondrial dysfunction and clathrin mediated endocytosis (CME). In order to characterize whether these processes and pathways are ones influenced by antipsychotic medication, we used LC-MS/MS to test the differential expression of these 114 proteins in the hippocampus of mice chronically treated with the antipsychotic agent haloperidol. We observed 23 of the 114 proteins to be differentially expressed, 17 of which were altered in the opposite direction to that observed following n-3 deficiency. Overall, our findings point to disturbed synaptic function, neuritogenesis, and mitochondrial function as a consequence of dietary deficiency in n-3 FA. This study greatly aids our understanding of the molecular mechanism by which n-3 deficiency impairs normal brain function, and provides clues as to how n-3 FA exert their therapeutic effect in early psychosis. PMID:24194745

  16. Task management skills and their deficiencies during care delivery in simulated medical emergency situation: A classification.

    PubMed

    Morineau, Thierry; Chapelain, Pascal; Quinio, Philippe

    2016-06-01

    Our objective was to develop the analysis of task management skills by proposing a framework classifying task management stages and deficiencies. Few studies of non-technical skills have detailed the components of task management skills through behavioural markers, despite their central role in care delivery. A post hoc qualitative behavioural analysis was performed of recordings made of professional training sessions based upon simulated scenarios. Four recorded sessions in a high-fidelity simulation setting were observed and recorded. Two scenarios were used (cardiac arrest and respiratory failure), and there were two training sessions per scenario. Four types of task management deficiencies were identified with regards to task constraints: constraint relaxation, unsatisfied constraints, additional constraints and constraint transgression. Both equipment and space constraints were also identified. The lack of prerequisite actions when preparing the environment, corequisite actions for equipment and protocol monitoring, or postrequisite actions to restore the environment were associated with task management deficiencies. Deficiencies in task management behaviours can be identified in simulated as well as actual medical emergency settings. This framework opens perspectives for both training caregivers and designing ergonomic work situations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Time-saving impact of an algorithm to identify potential surgical site infections.

    PubMed

    Knepper, B C; Young, H; Jenkins, T C; Price, C S

    2013-10-01

    To develop and validate a partially automated algorithm to identify surgical site infections (SSIs) using commonly available electronic data to reduce manual chart review. Retrospective cohort study of patients undergoing specific surgical procedures over a 4-year period from 2007 through 2010 (algorithm development cohort) or over a 3-month period from January 2011 through March 2011 (algorithm validation cohort). A single academic safety-net hospital in a major metropolitan area. Patients undergoing at least 1 included surgical procedure during the study period. Procedures were identified in the National Healthcare Safety Network; SSIs were identified by manual chart review. Commonly available electronic data, including microbiologic, laboratory, and administrative data, were identified via a clinical data warehouse. Algorithms using combinations of these electronic variables were constructed and assessed for their ability to identify SSIs and reduce chart review. The most efficient algorithm identified in the development cohort combined microbiologic data with postoperative procedure and diagnosis codes. This algorithm resulted in 100% sensitivity and 85% specificity. Time savings from the algorithm was almost 600 person-hours of chart review. The algorithm demonstrated similar sensitivity on application to the validation cohort. A partially automated algorithm to identify potential SSIs was highly sensitive and dramatically reduced the amount of manual chart review required of infection control personnel during SSI surveillance.

  18. Increased Amino Acid Uptake Supports Autophagy-Deficient Cell Survival upon Glutamine Deprivation.

    PubMed

    Zhang, Nan; Yang, Xin; Yuan, Fengjie; Zhang, Luyao; Wang, Yanan; Wang, Lina; Mao, Zebin; Luo, Jianyuan; Zhang, Hongquan; Zhu, Wei-Guo; Zhao, Ying

    2018-06-05

    Autophagy is a protein degradation process by which intracellular materials are recycled for energy homeostasis. However, the metabolic status and energy source of autophagy-defective tumor cells are poorly understood. Here, our data show that amino acid uptake from the extracellular environment is increased in autophagy-deficient cells upon glutamine deprivation. This elevated amino acid uptake results from activating transcription factor 4 (ATF4)-dependent upregulation of AAT (amino acid transporter) gene expression. Furthermore, we identify SIRT6, a NAD + -dependent histone deacetylase, as a corepressor of ATF4 transcriptional activity. In autophagy-deficient cells, activated NRF2 enhances ATF4 transcriptional activity by disrupting the interaction between SIRT6 and ATF4. In this way, autophagy-deficient cells exhibit increased AAT expression and show increased amino acid uptake. Notably, inhibition of amino acid uptake reduces the viability of glutamine-deprived autophagy-deficient cells, but not significantly in wild-type cells, suggesting reliance of autophagy-deficient tumor cells on extracellular amino acid uptake. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  20. Drug-induced glucose-6-phosphate dehydrogenase deficiency-related hemolysis risk assessment.

    PubMed

    Yang, Yang; Li, Zuofeng; Nan, Peng; Zhang, Xiaoyan

    2011-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme that protects human red blood cells from premature destruction caused by oxidative damage. People suffering from G6PD deficiency would be vulnerable to various oxidative substances, such as fava beans and oxidant drugs. Until now, many institutes, organizations or domain experts have compiled low-risk or high-risk drugs collection for patients with G6PD deficiency, mainly from the case report or clinical trails. Recently, we have explored a classification system to predict drug-induced hemolytic potential. In this paper, we screen the normally used over-the-counter (OTC) drugs for "high-risk" and "low-risk" ones to G6PD deficient patients by this system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome.

    PubMed

    Ortigoza-Escobar, Juan Darío; Molero-Luis, Marta; Arias, Angela; Oyarzabal, Alfonso; Darín, Niklas; Serrano, Mercedes; Garcia-Cazorla, Angels; Tondo, Mireia; Hernández, María; Garcia-Villoria, Judit; Casado, Mercedes; Gort, Laura; Mayr, Johannes A; Rodríguez-Pombo, Pilar; Ribes, Antonia; Artuch, Rafael; Pérez-Dueñas, Belén

    2016-01-01

    Thiamine transporter-2 deficiency is caused by mutations in the SLC19A3 gene. As opposed to other causes of Leigh syndrome, early administration of thiamine and biotin has a dramatic and immediate clinical effect. New biochemical markers are needed to aid in early diagnosis and timely therapeutic intervention. Thiamine derivatives were analysed by high performance liquid chromatography in 106 whole blood and 38 cerebrospinal fluid samples from paediatric controls, 16 cerebrospinal fluid samples from patients with Leigh syndrome, six of whom harboured mutations in the SLC19A3 gene, and 49 patients with other neurological disorders. Free-thiamine was remarkably reduced in the cerebrospinal fluid of five SLC19A3 patients before treatment. In contrast, free-thiamine was slightly decreased in 15.2% of patients with other neurological conditions, and above the reference range in one SLC19A3 patient on thiamine supplementation. We also observed a severe deficiency of free-thiamine and low levels of thiamine diphosphate in fibroblasts from SLC19A3 patients. Surprisingly, pyruvate dehydrogenase activity and mitochondrial substrate oxidation rates were within the control range. Thiamine derivatives normalized after the addition of thiamine to the culture medium. In conclusion, we found a profound deficiency of free-thiamine in the CSF and fibroblasts of patients with thiamine transporter-2 deficiency. Thiamine supplementation led to clinical improvement in patients early treated and restored thiamine values in fibroblasts and cerebrospinal fluid. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. 40 CFR Table 5 to Subpart Jj of... - List of VHAP of Potential Concern Identified by Industry

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false List of VHAP of Potential Concern Identified by Industry 5 Table 5 to Subpart JJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION.... 63, Subpt. JJ, Table 5 Table 5 to Subpart JJ of Part 63—List of VHAP of Potential Concern Identified...

  3. Characterization of potential mineralization in Afghanistan: four permissive areas identified using imaging spectroscopy data

    USGS Publications Warehouse

    King, Trude V.V.; Berger, Byron R.; Johnson, Michaela R.

    2014-01-01

    As part of the U.S. Geological Survey and Department of Defense Task Force for Business and Stability Operations natural resources revitalization activities in Afghanistan, four permissive areas for mineralization, Bamyan 1, Farah 1, Ghazni 1, and Ghazni 2, have been identified using imaging spectroscopy data. To support economic development, the areas of potential mineralization were selected on the occurrence of selected mineral assemblages mapped using the HyMap™ data (kaolinite, jarosite, hydrated silica, chlorite, epidote, iron-bearing carbonate, buddingtonite, dickite, and alunite) that may be indicative of past mineralization processes in areas with limited or no previous mineral resource studies. Approximately 30 sites were initially determined to be candidates for areas of potential mineralization. Additional criteria and material used to refine the selection and prioritization process included existing geologic maps, Landsat Thematic Mapper data, and published literature. The HyMapTM data were interpreted in the context of the regional geologic and tectonic setting and used the presence of alteration mineral assemblages to identify areas with the potential for undiscovered mineral resources. Further field-sampling, mapping, and supporting geochemical analyses are necessary to fully substantiate and verify the specific deposit types in the four areas of potential mineralization.

  4. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  5. Autosomal recessive PGM3 mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment

    PubMed Central

    Zhang, Yu; Yu, Xiaomin; Ichikawa, Mie; Lyons, Jonathan J.; Datta, Shrimati; Lamborn, Ian T.; Jing, Huie; Kim, Emily S.; Biancalana, Matthew; Wolfe, Lynne A.; DiMaggio, Thomas; Matthews, Helen F.; Kranick, Sarah M.; Stone, Kelly D.; Holland, Steven M.; Reich, Daniel S.; Hughes, Jason D.; Mehmet, Huseyin; McElwee, Joshua; Freeman, Alexandra F.; Freeze, Hudson H.; Su, Helen C.; Milner, Joshua D.

    2014-01-01

    Background Identifying genetic syndromes that lead to significant atopic disease can open new pathways for investigation and intervention in allergy. Objective To define a genetic syndrome of severe atopy, elevated serum IgE, immune deficiency, autoimmunity, and motor and neurocognitive impairment. Methods Eight patients from two families who had similar syndromic features were studied. Thorough clinical evaluations, including brain MRI and sensory evoked potentials, were performed. Peripheral lymphocyte flow cytometry, antibody responses, and T cell cytokine production were measured. Whole exome sequencing was performed to identify disease-causing mutations. Immunoblotting, qRT-PCR, enzymatic assays, nucleotide sugar and sugar phosphate analyses along with MALDI-TOF mass spectrometry of glycans were used to determine the molecular consequences of the mutations. Results Marked atopy and autoimmunity were associated with increased TH2 and TH17 cytokine production by CD4+ T cells. Bacterial and viral infection susceptibility were noted along with T cell lymphopenia, particularly of CD8+ T cells, and reduced memory B cells. Apparent brain hypomyelination resulted in markedly delayed evoked potentials and likely contributed to neurological abnormalities. Disease segregated with novel autosomal recessive mutations in a single gene, phosphoglucomutase 3 (PGM3). Although PGM3 protein expression was variably diminished, impaired function was demonstrated by decreased enzyme activity and reduced UDP-GlcNAc, along with decreased O- and N-linked protein glycosylation in patients’ cells. These results define a new Congenital Disorder of Glycosylation. Conclusions Autosomal recessive, hypomorphic PGM3 mutations underlie a disorder of severe atopy, immune deficiency, autoimmunity, intellectual disability and hypomyelination. PMID:24589341

  6. Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man.

    PubMed Central

    Stöckler, S.; Isbrandt, D.; Hanefeld, F.; Schmidt, B.; von Figura, K.

    1996-01-01

    In two children with an accumulation of guanidinoacetate in brain and a deficiency of creatine in blood, a severe deficiency of guanidinoacetate methyltransferase (GAMT) activity was detected in the liver. Two mutant GAMT alleles were identified that carried a single base substitution within a 5' splice site or a 13-nt insertion and gave rise to four mutant transcripts. Three of the transcripts encode truncated polypeptides that lack a residue known to be critical for catalytic activity of GAMT. Deficiency of GAMT is the first inborn error of creatine metabolism. It causes a severe developmental delay and extrapyramidal symptoms in early infancy and is treatable by oral substitution with creatine. Images Figure 2 PMID:8651275

  7. Identifying external nutrient reduction requirements and potential in the hypereutrophic Lake Taihu Basin, China.

    PubMed

    Peng, Jiao-Ting; Zhu, Xiao-Dong; Sun, Xiang; Song, Xiao-Wei

    2018-04-01

    Reducing external nutrient loads is the first step for controlling eutrophication. Here, we identified external nutrient reduction requirements and potential of strategies for achieving reductions to remediate a eutrophic water body, Lake Taihu, China. A mass balance approach based on the entire lake was used to identify nutrient reduction requirements; an empirical export coefficient approach was introduced to estimate the nutrient reduction potential of the overall program on integrated regulation of Taihu Lake Basin (hereafter referred to as the "Guideline"). Reduction requirements included external total nitrogen (TN) and total phosphorus (TP) loads, which should be reduced by 41-55 and 25-50%, respectively, to prevent nutrient accumulation in Lake Taihu and to meet the planned water quality targets. In 2010, which is the most seriously polluted calendar year during the 2008-2014 period, the nutrient reduction requirements were estimated to be 36,819 tons of N and 2442 tons of P, and the potential nutrient reduction strategies would reduce approximately 25,821 tons of N and 3024 tons of P. Since there is a net N remaining in the reduction requirements, it should be the focus and deserves more attention in identifying external nutrient reduction strategies. Moreover, abatement measures outlined in the Guideline with high P reduction potential required large monetary investments. Achieving TP reduction requirement using the cost-effective strategy costs about 80.24 million USD. The design of nutrient reduction strategies should be enacted according to regional and sectoral differences and the cost-effectiveness of abatement measures.

  8. What’s the risk? Identifying potential human pathogens within grey-headed flying foxes faeces

    PubMed Central

    Galbraith, Penelope; Coutts, Scott; Prosser, Toby; Boyce, John; McCarthy, David T.

    2018-01-01

    Pteropus poliocephalus (grey-headed flying foxes) are recognised vectors for a range of potentially fatal human pathogens. However, to date research has primarily focused on viral disease carriage, overlooking bacterial pathogens, which also represent a significant human disease risk. The current study applied 16S rRNA amplicon sequencing, community analysis and a multi-tiered database OTU picking approach to identify faecal-derived zoonotic bacteria within two colonies of P. poliocephalus from Victoria, Australia. Our data show that sequences associated with Enterobacteriaceae (62.8% ± 24.7%), Pasteurellaceae (19.9% ± 25.7%) and Moraxellaceae (9.4% ± 11.8%) dominate flying fox faeces. Further colony specific differences in bacterial faecal colonisation patterns were also identified. In total, 34 potential pathogens, representing 15 genera, were identified. However, species level definition was only possible for Clostridium perfringens, which likely represents a low infectious risk due to the low proportion observed within the faeces and high infectious dose required for transmission. In contrast, sequences associated with other pathogenic species clusters such as Haemophilus haemolyticus-H. influenzae and Salmonella bongori-S. enterica, were present at high proportions in the faeces, and due to their relatively low infectious doses and modes of transmissions, represent a greater potential human disease risk. These analyses of the microbial community composition of Pteropus poliocephalus have significantly advanced our understanding of the potential bacterial disease risk associated with flying foxes and should direct future epidemiological and quantitative microbial risk assessments to further define the health risks presented by these animals. PMID:29360880

  9. Researchers identify potential therapeutic targets for a rare childhood cancer | Center for Cancer Research

    Cancer.gov

    CCR researchers have identified the mechanism behind a rare but extremely aggressive childhood cancer called alveolar rhabdomyosarcoma (ARMS) and have pinpointed a potential drug target for its treatment. Learn more...

  10. Surveillance methods for identifying, characterizing, and monitoring tobacco products: potential reduced exposure products as an example

    PubMed Central

    O’Connor, Richard J.; Cummings, K. Michael; Rees, Vaughan W.; Connolly, Gregory N.; Norton, Kaila J.; Sweanor, David; Parascandola, Mark; Hatsukami, Dorothy K.; Shields, Peter G.

    2015-01-01

    Tobacco products are widely sold and marketed, yet integrated data systems for identifying, tracking, and characterizing products are lacking. Tobacco manufacturers recently have developed potential reduction exposure products (PREPs) with implied or explicit health claims. Currently, a systematic approach for identifying, defining, and evaluating PREPs sold at the local, state or national levels in the US has not been developed. Identifying, characterizing, and monitoring new tobacco products could be greatly enhanced with a responsive surveillance system. This paper critically reviews available surveillance data sources for identifying and tracking tobacco products, including PREPs, evaluating strengths and weaknesses of potential data sources in light of their reliability and validity. Absent regulations mandating disclosure of product-specific information, it is likely that public health officials will need to rely on a variety of imperfect data sources to help identify, characterize, and monitor tobacco products, including PREPs. PMID:19959680

  11. Adenosine Kinase Deficiency in the Brain Results in Maladaptive Synaptic Plasticity.

    PubMed

    Sandau, Ursula S; Colino-Oliveira, Mariana; Jones, Abbie; Saleumvong, Bounmy; Coffman, Shayla Q; Liu, Long; Miranda-Lourenço, Catarina; Palminha, Cátia; Batalha, Vânia L; Xu, Yiming; Huo, Yuqing; Diógenes, Maria J; Sebastião, Ana M; Boison, Detlev

    2016-11-30

    Adenosine kinase (ADK) deficiency in human patients (OMIM:614300) disrupts the methionine cycle and triggers hypermethioninemia, hepatic encephalopathy, cognitive impairment, and seizures. To identify whether this neurological phenotype is intrinsically based on ADK deficiency in the brain or if it is secondary to liver dysfunction, we generated a mouse model with a brain-wide deletion of ADK by introducing a Nestin-Cre transgene into a line of conditional ADK deficient Adk fl/fl mice. These Adk Δbrain mice developed a progressive stress-induced seizure phenotype associated with spontaneous convulsive seizures and profound deficits in hippocampus-dependent learning and memory. Pharmacological, biochemical, and electrophysiological studies suggest enhanced adenosine levels around synapses resulting in an enhanced adenosine A 1 receptor (A 1 R)-dependent protective tone despite lower expression levels of the receptor. Theta-burst-induced LTP was enhanced in the mutants and this was dependent on adenosine A 2A receptor (A 2A R) and tropomyosin-related kinase B signaling, suggesting increased activation of these receptors in synaptic plasticity phenomena. Accordingly, reducing adenosine A 2A receptor activity in Adk Δbrain mice restored normal associative learning and contextual memory and attenuated seizure risk. We conclude that ADK deficiency in the brain triggers neuronal adaptation processes that lead to dysregulated synaptic plasticity, cognitive deficits, and increased seizure risk. Therefore, ADK mutations have an intrinsic effect on brain physiology and may present a genetic risk factor for the development of seizures and learning impairments. Furthermore, our data show that blocking A 2A R activity therapeutically can attenuate neurological symptoms in ADK deficiency. A novel human genetic condition (OMIM #614300) that is based on mutations in the adenosine kinase (Adk) gene has been discovered recently. Affected patients develop hepatic encephalopathy

  12. Prevalence of anemia and micronutrient deficiencies in early pregnancy in rural Bangladesh, the MINIMat trial.

    PubMed

    Lindström, Emma; Hossain, Mohammad B; Lönnerdal, Bo; Raqib, Rubhana; El Arifeen, Shams; Ekström, Eva-Charlotte

    2011-01-01

    To describe the prevalence of anemia and micronutrient deficiencies as well as their determinants in early pregnancy. Baseline data from a population-based randomized intervention trial. The study was conducted in Matlab, a sub-district in rural Bangladesh from 1 January to 31 December 2002. Pregnant women (n= 740) were enrolled in approximately week 14 in pregnancy. Data were collected using questionnaires, physical examinations and laboratory analyses of blood samples for concentrations of hemoglobin, ferritin, zinc, folate and vitamin B-12. Covariates associated with anemia and micronutrient deficiencies in bivariate analyses were evaluated in multivariate logistic regression models adjusting for potential confounders. Anemia was present in 28% of the women, 55% were zinc deficient, 46% were vitamin B-12 deficient and 18% were folate deficient. Anemia was not associated with iron deficiency but rather with vitamin B-12 deficiency. Infestation with Ascaris was highly prevalent (67%) and associated with both folate and vitamin B-12 deficiency. Anemia and micronutrient deficiencies all varied significantly with season. The high prevalences of zinc and vitamin B-12 deficiencies in early pregnancy are a concern, as it could lead to adverse pregnancy outcomes and increased health risks for both mother and child. The prevalence of iron deficiency was low, but as this was during early pregnancy, the women might develop iron deficiency and consequently iron deficiency anemia as the pregnancy progresses. © 2010 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2010 Nordic Federation of Societies of Obstetrics and Gynecology.

  13. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    PubMed

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat

  14. Pyruvate dehydrogenase deficiency and epilepsy.

    PubMed

    Prasad, Chitra; Rupar, Tony; Prasad, Asuri N

    2011-11-01

    The pyruvate dehydrogenase complex (PDHc) is a mitochondrial matrix multienzyme complex that provides the link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the conversion of pyruvate into acetyl-CoA. PDHc deficiency is one of the commoner metabolic disorders of lactic acidosis presenting with neurological phenotypes that vary with age and gender. In this mini-review, we postulate mechanisms of epilepsy in the setting of PDHc deficiency using two illustrative cases (one with pyruvate dehydrogenase complex E1-alpha polypeptide (PDHA1) deficiency and the second one with pyruvate dehydrogenase complex E1-beta subunit (PDHB) deficiency (a rare subtype of PDHc deficiency)) and a selected review of published case series. PDHc plays a critical role in the pathway of carbohydrate metabolism and energy production. In severe deficiency states the resulting energy deficit impacts on brain development in utero resulting in structural brain anomalies and epilepsy. Milder deficiency states present with variable manifestations that include cognitive delay, ataxia, and seizures. Epileptogenesis in PDHc deficiency is linked to energy failure, development of structural brain anomalies and abnormal neurotransmitter metabolism. The use of the ketogenic diet bypasses the metabolic block, by providing a direct source of acetyl-CoA, leading to amelioration of some symptoms. Genetic counseling is essential as PDHA1 deficiency (commonest defect) is X-linked although females can be affected due to unfavorable lyonization, while PDHB and PDH phosphatase (PDP) deficiencies (much rarer defects) are of autosomal recessive inheritance. Research is in progress for looking into animal models to better understand pathogenesis and management of this challenging disorder. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. A novel KAL1 mutation is associated with combined pituitary hormone deficiency

    PubMed Central

    Takagi, Masaki; Narumi, Satoshi; Hamada, Riku; Hasegawa, Yukihiro; Hasegawa, Tomonobu

    2014-01-01

    Using a next-generation sequencing strategy, we identified a novel KAL1 missense mutation (p.His568Gln) in a patient with combined pituitary hormone deficiency, right microphthalmia, right renal aplasia and severe developmental delay. Our findings will provide additional evidence that KAL1 mutations are associated with hypopituitarism, in addition to luteinizing hormone, and follicle-stimulating hormone deficiencies, and improve our understanding of the phenotypic features and developmental course associated with KAL1 mutations. PMID:27081504

  16. Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency.

    PubMed

    Salviati, Leonardo; Trevisson, Eva; Rodriguez Hernandez, Maria Angeles; Casarin, Alberto; Pertegato, Vanessa; Doimo, Mara; Cassina, Matteo; Agosto, Caterina; Desbats, Maria Andrea; Sartori, Geppo; Sacconi, Sabrina; Memo, Luigi; Zuffardi, Orsetta; Artuch, Rafael; Quinzii, Catarina; Dimauro, Salvatore; Hirano, Michio; Santos-Ocaña, Carlos; Navas, Plácido

    2012-03-01

    COQ4 encodes a protein that organises the multienzyme complex for the synthesis of coenzyme Q(10) (CoQ(10)). A 3.9 Mb deletion of chromosome 9q34.13 was identified in a 3-year-old boy with mental retardation, encephalomyopathy and dysmorphic features. Because the deletion encompassed COQ4, the patient was screened for CoQ(10) deficiency. A complete molecular and biochemical characterisation of the patient's fibroblasts and of a yeast model were performed. The study found reduced COQ4 expression (48% of controls), CoQ(10) content and biosynthetic rate (44% and 43% of controls), and activities of respiratory chain complex II+III. Cells displayed a growth defect that was corrected by the addition of CoQ(10) to the culture medium. Knockdown of COQ4 in HeLa cells also resulted in a reduction of CoQ(10.) Diploid yeast haploinsufficient for COQ4 displayed similar CoQ deficiency. Haploinsufficency of other genes involved in CoQ(10) biosynthesis does not cause CoQ deficiency, underscoring the critical role of COQ4. Oral CoQ(10) supplementation resulted in a significant improvement of neuromuscular symptoms, which reappeared after supplementation was temporarily discontinued. Mutations of COQ4 should be searched for in patients with CoQ(10) deficiency and encephalomyopathy; patients with genomic rearrangements involving COQ4 should be screened for CoQ(10) deficiency, as they could benefit from supplementation.

  17. Betaine Deficiency in Maize 1

    PubMed Central

    Lerma, Claudia; Rich, Patrick J.; Ju, Grace C.; Yang, Wen-Ju; Hanson, Andrew D.; Rhodes, David

    1991-01-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency (D Rhodes, PJ Rich [1988] Plant Physiol 88: 102-108). This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positive and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline → betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde. PMID:16668098

  18. An update on the association of vitamin D deficiency with common infectious diseases.

    PubMed

    Watkins, Richard R; Lemonovich, Tracy L; Salata, Robert A

    2015-05-01

    Vitamin D plays an important role in modulating the immune response to infections. Deficiency of vitamin D is a common condition, affecting both the general population and patients in health care facilities. Over the last decade, an increasing body of evidence has shown an association between vitamin D deficiency and an increased risk for acquiring several infectious diseases, as well as poorer outcomes in vitamin D deficient patients with infections. This review details recent developments in understanding the role of vitamin D in immunity, the antibacterial actions of vitamin D, the association between vitamin D deficiency and common infections (like sepsis, pneumonia, influenza, methicillin-resistant Staphylococcus aureus, human immunodeficiency virus type-1 (HIV), and hepatitis C virus (HCV)), potential therapeutic implications for vitamin D replacement, and future research directions.

  19. Developmental vitamin D deficiency and autism: Putative pathogenic mechanisms.

    PubMed

    Ali, Asad; Cui, Xiaoying; Eyles, Darryl

    2018-01-01

    Autism is a neurodevelopmental disease that presents in early life. Despite a considerable amount of studies, the neurobiological mechanisms underlying autism remain obscure. Both genetic and environmental factors are involved in the development of autism. Vitamin D deficiency is emerging as a consistently reported risk factor in children. One reason for the prominence now being given to this risk factor is that it would appear to interact with several other epidemiological risk factors for autism. Vitamin D is an active neurosteroid and plays crucial neuroprotective roles in the developing brain. It has important roles in cell proliferation and differentiation, immunomodulation, regulation of neurotransmission and steroidogenesis. Animal studies have suggested that transient prenatal vitamin D deficiency is associated with altered brain development. Here we review the potential neurobiological mechanisms linking prenatal vitamin D deficiency and autism and also discuss what future research targets must now be addressed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Anemia, Iron Deficiency and Iodine Deficiency among Nepalese School Children.

    PubMed

    Khatiwada, Saroj; Lamsal, Madhab; Gelal, Basanta; Gautam, Sharad; Nepal, Ashwini Kumar; Brodie, David; Baral, Nirmal

    2016-07-01

    To assess iodine and iron nutritional status among Nepalese school children. A cross-sectional, community based study was conducted in the two districts, Ilam (hilly region) and Udayapur (plain region) of eastern Nepal. A total of 759 school children aged 6-13 y from different schools within the study areas were randomly enrolled. A total of 759 urine samples and 316 blood samples were collected. Blood hemoglobin level, serum iron, total iron binding capacity and urinary iodine concentration was measured. Percentage of transferrin saturation was calculated using serum iron and total iron binding capacity values. The mean level of hemoglobin, serum iron, total iron binding capacity, transferrin saturation and median urinary iodine excretion were 12.29 ± 1.85 g/dl, 70.45 ± 34.46 μg/dl, 386.48 ± 62.48 μg/dl, 19.94 ± 12.07 % and 274.67 μg/L respectively. Anemia, iron deficiency and iodine deficiency (urinary iodine excretion <100 μg/L) were present in 34.5 %, 43.4 % and 12.6 % children respectively. Insufficient urinary iodine excretion (urinary iodine excretion <100 μg/L) was common in anemic and iron deficient children. Iron deficiency and anemia are common in Nepalese children, whereas, iodine nutrition is more than adequate. Low urinary iodine excretion was common in iron deficiency and anemia.

  1. Lethal neonatal case and review of primary short-chain enoyl-CoA hydratase (SCEH) deficiency associated with secondary lymphocyte pyruvate dehydrogenase complex (PDC) deficiency.

    PubMed

    Bedoyan, Jirair K; Yang, Samuel P; Ferdinandusse, Sacha; Jack, Rhona M; Miron, Alexander; Grahame, George; DeBrosse, Suzanne D; Hoppel, Charles L; Kerr, Douglas S; Wanders, Ronald J A

    2017-04-01

    Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and parents. SCEH deficiency was confirmed with very low SCEH activity in fibroblasts and nearly absent immunoreactivity of SCEH. The patient had a severe neonatal course with elevated blood and cerebrospinal fluid lactate and pyruvate concentrations, high plasma alanine and slightly low plasma cystine. 2-Methyl-2,3-dihydroxybutyric acid was markedly elevated as were metabolites of the three branched-chain α-ketoacids on urine organic acids analysis. These urine metabolites notably decreased when lactic acidosis decreased in blood. Lymphocyte pyruvate dehydrogenase complex (PDC) activity was deficient, but PDC and α-ketoglutarate dehydrogenase complex activities in cultured fibroblasts were normal. Oxidative phosphorylation analysis on intact digitonin-permeabilized fibroblasts was suggestive of slightly reduced PDC activity relative to control range in mitochondria. We reviewed 16 other cases with mutations in ECHS1 where PDC activity was also assayed in order to determine how common and generalized secondary PDC deficiency is associated with primary SCEH deficiency. For reasons that remain unexplained, we find that about half of cases with primary SCEH deficiency also exhibit secondary PDC deficiency. The patient died on day-of-life 39, prior to establishing his diagnosis, highlighting the importance of early and rapid neonatal diagnosis because of possible adverse effects of certain therapeutic interventions, such as administration of ketogenic diet, in this disorder. There is a need for better understanding of the pathogenic mechanisms and phenotypic variability in this relatively recently discovered disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency.

    PubMed

    Montalbano, Antonino; Juergensen, Lonny; Roeth, Ralph; Weiss, Birgit; Fukami, Maki; Fricke-Otto, Susanne; Binder, Gerhard; Ogata, Tsutomu; Decker, Eva; Nuernberg, Gudrun; Hassel, David; Rappold, Gudrun A

    2016-12-01

    Mutations in the homeobox gene SHOX cause SHOX deficiency, a condition with clinical manifestations ranging from short stature without dysmorphic signs to severe mesomelic skeletal dysplasia. In rare cases, individuals with SHOX deficiency are asymptomatic. To elucidate the factors that modify disease severity/penetrance, we studied a three-generation family with SHOX deficiency. The variant p.Phe508Cys of the retinoic acid catabolizing enzyme CYP26C1 co-segregated with the SHOX variant p.Val161Ala in the affected individuals, while the SHOX mutant alone was present in asymptomatic individuals. Two further cases with SHOX deficiency and damaging CYP26C1 variants were identified in a cohort of 68 individuals with LWD The identified CYP26C1 variants affected its catabolic activity, leading to an increased level of retinoic acid. High levels of retinoic acid significantly decrease SHOX expression in human primary chondrocytes and zebrafish embryos. Individual morpholino knockdown of either gene shortens the pectoral fins, whereas depletion of both genes leads to a more severe phenotype. Together, our findings describe CYP26C1 as the first genetic modifier for SHOX deficiency. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in the Eastern Province of Saudi Arabia.

    PubMed

    Al-Ali, Amein K; Al-Mustafa, Zaki H; Al-Madan, Mohammed; Qaw, Foad; Al-Ateeq, Suad

    2002-08-01

    The level of activity of the enzyme glucose-6-phosphate dehydrogenase (G6PD) was determined in 154 unrelated Saudi males and females with G6PD deficiency who were residing in the Eastern Province of Saudi Arabia. DNA was extracted from blood samples and analyzed for known G6PD mutations by polymerase chain reaction (PCR) and restriction fragment length polymorphism techniques. Two different polymorphic mutations were identified which accounted for 90% of the samples analyzed. Of 114 G6PD-deficient males, 96 had G6PD Mediterranean, nine had African deficient variant G6PD A- and in nine the mutation has not been identified. Of the 40 G6PD-deficient females, 34 were homozygous for the G6PD Mediterranean mutation and six were genetic compound, G6PD Mediterranean/G6PD A-. The data indicate that the G6PD Mediterranean mutation is the most common (84%) in the Eastern Province, followed by G6PD A- (5.8%). Seventy one subjects who suffered from favism were found to carry the Mediterranean mutation.

  4. Intragenic rearrangements in X-linked intellectual deficiency: results of a-CGH in a series of 54 patients and identification of TRPC5 and KLHL15 as potential XLID genes.

    PubMed

    Mignon-Ravix, Cécile; Cacciagli, Pierre; Choucair, Nancy; Popovici, Cornel; Missirian, Chantal; Milh, Mathieu; Mégarbané, André; Busa, Tiffany; Julia, Sophie; Girard, Nadine; Badens, Catherine; Sigaudy, Sabine; Philip, Nicole; Villard, Laurent

    2014-08-01

    High-resolution array comparative genomic hybridization (a-CGH) enables the detection of intragenic rearrangements, such as single exon deletion or duplication. This approach can lead to the identification of new disease genes. We report on the analysis of 54 male patients presenting with intellectual deficiency (ID) and a family history suggesting X-linked (XL) inheritance or maternal skewed X-chromosome inactivation (XCI), using a home-made X-chromosome-specific microarray covering the whole human X-chromosome at high resolution. The majority of patients had whole genome array-CGH prior to the selection and we did not include large rearrangements such as MECP2 and FMR1 duplications. We identified four rearrangements considered as causative or potentially pathogenic, corresponding to a detection rate of 8%. Two CNVs affected known XLID genes and were therefore considered as causative (IL1RAPL1 and OPHN1 intragenic deletions). Two new CNVs were considered as potentially pathogenic as they affected interesting candidates for ID. The first CNV is a deletion of the first exon of the TRPC5 gene, encoding a cation channel implicated in dendrite growth and patterning, in a child presenting with ID and an autism spectrum disorder (ASD). The second CNV is a partial deletion of KLHL15, in a patient with severe ID, epilepsy, and anomalies of cortical development. In both cases, in spite of strong arguments for clinical relevance, we were not able at this stage to confirm pathogenicity of the mutations, and the causality of the variants identified in XLID remains to be confirmed. © 2014 Wiley Periodicals, Inc.

  5. Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency.

    PubMed

    Pearl, P L; Gibson, K M; Quezado, Z; Dustin, I; Taylor, J; Trzcinski, S; Schreiber, J; Forester, K; Reeves-Tyer, P; Liew, C; Shamim, S; Herscovitch, P; Carson, R; Butman, J; Jakobs, C; Theodore, W

    2009-08-11

    Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal recessive disorder of GABA metabolism characterized by elevated levels of GABA and gamma-hydroxybutyric acid. Clinical findings include intellectual impairment, hypotonia, hyporeflexia, hallucinations, autistic behaviors, and seizures. Autoradiographic labeling and slice electrophysiology studies in the murine model demonstrate use-dependent downregulation of GABA(A) receptors. We studied GABA(A) receptor activity in human SSADH deficiency utilizing [(11)C]-flumazenil (FMZ)-PET. FMZ binding was measured in 7 patients, 10 unaffected parents, and 8 healthy controls. Data analysis was performed using a reference region compartmental model, with time-activity curve from pons as the input function. Relative parametric binding potential (BP(ND)) was derived, with MRI-based pixel by pixel partial volume correction, in regions of interest drawn on coregistered MRI. In amygdala, hippocampus, cerebellar vermis, frontal, parietal, and occipital cortex, patients with SSADH deficiency had significant reductions in FMZ BP(ND) compared to parents and controls. Mean cortical values were 6.96 +/- 0.79 (controls), 6.89 +/- 0.71 (parents), and 4.88 +/- 0.77 (patients) (F ratio 16.1; p < 0.001). There were no differences between controls and parents in any cortical region. Succinic semialdehyde dehydrogenase (SSADH) deficient patients show widespread reduction in BZPR binding on [(11)C]-flumazenil-PET. Our results suggest that high endogenous brain GABA levels in SSADH deficiency downregulate GABA(A)-BZPR binding site availability. This finding suggests a potential mechanism for neurologic dysfunction in a serious neurodevelopmental disorder, and suggests that PET may be useful to translate studies in animal models to human disease.

  6. Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome).

    PubMed

    Buchanan, Daniel D; Rosty, Christophe; Clendenning, Mark; Spurdle, Amanda B; Win, Aung Ko

    2014-01-01

    Carriers of a germline mutation in one of the DNA mismatch repair (MMR) genes have a high risk of developing numerous different cancers, predominantly colorectal cancer and endometrial cancer (known as Lynch syndrome). MMR gene mutation carriers develop tumors with MMR deficiency identified by tumor microsatellite instability or immunohistochemical loss of MMR protein expression. Tumor MMR deficiency is used to identify individuals most likely to carry an MMR gene mutation. However, MMR deficiency can also result from somatic inactivation, most commonly methylation of the MLH1 gene promoter. As tumor MMR testing of all incident colorectal and endometrial cancers (universal screening) is becoming increasingly adopted, a growing clinical problem is emerging for individuals who have tumors that show MMR deficiency who are subsequently found not to carry an MMR gene mutation after genetic testing using the current diagnostic approaches (Sanger sequencing and multiplex ligation-dependent probe amplification) and who also show no evidence of MLH1 methylation. The inability to determine the underlying cause of tumor MMR deficiency in these "Lynch-like" or "suspected Lynch syndrome" cases has significant implications on the clinical management of these individuals and their relatives. When the data from published studies are combined, 59% (95% confidence interval [CI]: 55% to 64%) of colorectal cancers and 52% (95% CI: 41% to 62%) of endometrial cancers with MMR deficiency were identified as suspected Lynch syndrome. Recent studies estimated that colorectal cancer risk for relatives of suspected Lynch syndrome cases is lower than for relatives of those with MMR gene mutations, but higher than for relatives of those with tumor MMR deficiency resulting from methylation of the MLH1 gene promoter. The cause of tumor MMR deficiency in suspected Lynch syndrome cases is likely due to either unidentified germline MMR gene mutations, somatic cell mosaicism, or biallelic somatic

  7. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants

    PubMed Central

    2012-01-01

    Background Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L.) plants modify their nitrogen metabolism when grown under iron deficiency. Results The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1) activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.1.14) an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. Conclusions The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids) to the leaves. PMID:23057967

  8. Biochemical, molecular, and clinical diagnoses of patients with cerebral creatine deficiency syndromes.

    PubMed

    Comeaux, Matthew S; Wang, Jing; Wang, Guoli; Kleppe, Soledad; Zhang, Victor Wei; Schmitt, Eric S; Craigen, William J; Renaud, Deborah; Sun, Qin; Wong, Lee-Jun

    2013-07-01

    Cerebral creatine deficiency syndromes (CCDS) are a group of inborn errors of creatine metabolism that involve AGAT and GAMT for creatine biosynthesis disorders and SLC6A8 for creatine transporter (CT1) deficiency. Deficiencies in the three enzymes can be distinguished by intermediate metabolite levels, and a definitive diagnosis relies on the presence of deleterious mutations in the causative genes. Mutations and unclassified variants were identified in 41 unrelated patients, and 22 of these mutations were novel. Correlation of sequencing and biochemical data reveals that using plasma guanidinoacetate (GAA) as a biomarker has 100% specificity for both AGAT and GAMT deficiencies, but AGAT deficiency has decreased sensitivity in this assay. Furthermore, the urine creatine:creatinine ratio is an effective screening test with 100% specificity in males suspected of having creatine transporter deficiency. This test has a high false-positive rate due to dietary factors or dilute urine samples and lacks sensitivity in females. We conclude that biochemical screening for plasma GAA and measuring of the urine creatine:creatinine ratio should be performed for suspected CCDS patients prior to sequencing. Also, based on the results of this study, we feel that sequencing should only be considered if a patient has abnormal biochemical results on repeat testing. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Leptin deficiency: clinical implications and opportunities for therapeutic interventions.

    PubMed

    Blüher, Susan; Shah, Sunali; Mantzoros, Christos S

    2009-10-01

    The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and energy expenditure leading to a morbidly obese phenotype and a disrupted regulation in neuroendocrine and immune function and in glucose and fat metabolism. Observational and interventional studies in humans with (complete) congenital leptin deficiency caused by mutations in the leptin gene or with relative leptin deficiency as seen in states of negative energy balance such as lipoatrophy, anorexia nervosa, or exercise-induced hypothalamic and neuroendocrine dysfunction have contributed to the elucidation of the pathophysiological role of leptin in these conditions and of the clinical significance of leptin administration in these subjects. More specifically, interventional studies have demonstrated that several neuroendocrine, metabolic, or immune disturbances in these states could be restored by leptin administration. Leptin replacement therapy is currently available through a compassionate use program for congenital complete leptin deficiency and under an expanded access program to subjects with leptin deficiency associated with congenital or acquired lipoatrophy. In addition, leptin remains a potentially forthcoming treatment for several other states of energy deprivation including anorexia nervosa or milder forms of hypothalamic amenorrhea pending appropriate clinical trials.

  10. Gender Dependent Evaluation of Autism like Behavior in Mice Exposed to Prenatal Zinc Deficiency

    PubMed Central

    Grabrucker, Stefanie; Boeckers, Tobias M.; Grabrucker, Andreas M.

    2016-01-01

    Zinc deficiency has recently been linked to the etiology of autism spectrum disorders (ASD) as environmental risk factor. With an estimated 17% of the world population being at risk of zinc deficiency, especially zinc deficiency during pregnancy might be a common occurrence, also in industrialized nations. On molecular level, zinc deficiency has been shown to affect a signaling pathway at glutamatergic synapses that has previously been identified through genetic mutations in ASD patients, the Neurexin-Neuroligin-Shank pathway, via altering zinc binding Shank family members. In particular, prenatal zinc deficient but not acute zinc deficient animals have been reported to display autism like behavior in some behavioral tests. However, a full behavioral analysis of a possible autism like behavior has been lacking so far. Here, we performed an extensive behavioral phenotyping of mice born from mothers with mild zinc deficiency during all trimesters of pregnancy. Prenatal zinc deficient animals were investigated as adults and gender differences were assessed. Our results show that prenatal zinc deficient mice display increased anxiety, deficits in nest building and various social interaction paradigm, as well as mild alterations in ultrasonic vocalizations. A gender specific analysis revealed only few sex specific differences. Taken together, given that similar behavioral abnormalities as reported here are frequently observed in ASD mouse models, we conclude that prenatal zinc deficient animals even without specific genetic susceptibility for ASD, already show some features of ASD like behavior. PMID:26973485

  11. [Iron deficiency and pica].

    PubMed

    Muñoz, J A; Marcos, J; Risueño, C E; de Cos, C; López, R; Capote, F J; Martín, M V; Gil, J L

    1998-02-01

    To study the relationship between pica and iron-lack anaemia in a series of iron-deficiency patients in order to establish the pathogenesis of such relationship. Four-hundred and thirty-three patients were analysed. Pica was studied by introducing certain diet queries into the clinical history. All patients received oral iron and were periodically controlled with the usual clinico-haematological procedures. Pica was present in 23 patients (5.3%). Eight nourishing (namely, coffee grains, almonds, chocolate, ice, lettuce, carrots, sunflower seeds and bread) and 2 non-nourishing (clay and paper) substances were involved. A second episode of pica appeared in 9 cases upon relapsing of iron deficiency. Both anaemia and pica were cured by etiologic and substitutive therapy in all instances. No clear correlation was found with either socio-economic status or pathogenetic causes of iron deficiency and pica, and no haematological differences were seen between patients with pica and those without this alteration. (1) The pathogenesis of pica is unclear, although it appears unrelated to the degree of iron deficiency. (2) According to the findings in this series, pica seems a consequence of iron deficiency rather than its cause. (3) Adequate therapy can cure both conditions, although pica may reappear upon relapse of iron deficiency.

  12. Vitamin D levels and deficiency with different occupations: a systematic review.

    PubMed

    Sowah, Daniel; Fan, Xiangning; Dennett, Liz; Hagtvedt, Reidar; Straube, Sebastian

    2017-06-22

    Vitamin D deficiency is prevalent worldwide, but some groups are at greater risk. We aim to evaluate vitamin D levels in different occupations and identify groups vulnerable to vitamin D deficiency. An electronic search conducted in Medline, Embase, the Cochrane Central Register of Controlled Trials, and CINAHL Plus with Full Text generated 2505 hits; 71 peer-reviewed articles fulfilled the inclusion criteria. Occupations investigated included outdoor and indoor workers, shiftworkers, lead/smelter workers, coalminers, and healthcare professionals. We calculated the pooled average metabolite level as mean ± SD; deficiency/insufficiency status was described as % of the total number of subjects in a given category. Compared to outdoor workers, indoor workers had lower 25-hydroxyvitamin D (25-(OH)D) levels (40.6 ± 13.3 vs. 66.7 ± 16.7 nmol/L; p < 0.0001). Mean 25-(OH)D levels (in nmol/L) in shiftworkers, lead/smelter workers and coalminers were 33.8 ± 10.0, 77.8 ± 5.4 and 56.6 ± 28.4, respectively. Vitamin D deficiency (25-(OH)D < 50 nmol/L), was high in shiftworkers (80%) and indoor workers (78%) compared to outdoor workers (48%). Among healthcare professionals, medical residents and healthcare students had the lowest levels of mean 25-(OH)D, 44.0 ± 8.3 nmol/L and 45.2 ± 5.5 nmol/L, respectively. The mean 25-(OH)D level of practising physicians, 55.0 ± 5.8 nmol/L, was significantly different from both medical residents (p < 0.0001) and healthcare students (p < 0.0001). Nurses and other healthcare employees had 25-(OH)D levels of 63.4 ± 4.2 nmol/L and 63.0 ± 11.0 nmol/L, respectively, which differed significantly compared to practising physicians (p = 0.01), medical residents (p < 0.0001) and healthcare students (p < 0.0001). Rates of vitamin D deficiency among healthcare professionals were: healthcare students 72%, medical residents 65%, practising physicians 46%, other healthcare employees 44%, and nurses 43

  13. [Effect of Acaí (Euterpe oleracea) on biological expression characteristics of deficiency-heat and deficiency-cold rats].

    PubMed

    Wang, Lin-Yuan; Zhang, Jian-Jun; Wang, Chun; Zhu, Ying-Li; Wang, Zi-Chen; He, Cheng; Qu, Yan; Wang, Sha

    2016-10-01

    To study the effects of Acaí on biological expression characteristics in rats with deficiency-heat and deficiency-cold syndromes, SD rats were divided into blank group, deficiency-heat model group, deficiency-heat+Phellodendri Chinensis Cortex group, deficiency-heat+Acaí high dose and low dose groups, deficiency-cold model group, deficiency-cold+Cinnamomi Cortex group, deficiency-cold+Acaí high dose and low dose groups. The rats were treated with intramuscular injection of hydrocortisone (20 mg•kg⁻¹) or dexamethasone sodium phosphate (0.35 mg•kg⁻¹) for 21 days to set up deficiency-heat model and deficiency-cold models. The levels of cAMP, cGMP, T3, T4 and rT3 were detected by radioimmunoassay. The levels of TP, UA, TC, TG and ALB were detected by colorimetry. The level of cAMP, cAMP/cGMP in serum were reduced in Acaí high dose group (P<0.05, P<0.001). The levels of T3, T4 and rT3 were significantly reduced in the Acaí high dose group (P<0.01, P<0.001, P<0.05). The levels of TP, UA, TC, TG and ALB were significantly reduced in the Acaí high dose group (P<0.001, P<0.05, P<0.05, P<0.05, P<0.01). However, Acaí had no obvious effects on deficiency-cold models. Acaí showed the same effect with Phellodendri Chinensis Cortex in adjusting the levels of deficiency-heat rats; but unlike Cinnamomi Cortex, Acaí showed no obvious effects in adjusting the levels of deficiency-cold rats. Copyright© by the Chinese Pharmaceutical Association.

  14. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Hypogammaglobulinemia factitia- Munchausen syndrome masquerading as common variable immune deficiency

    PubMed Central

    2013-01-01

    Background We describe the first case of a patient with factitious disorder who closely simulated a primary immune deficiency disorder – Common Variable Immune Deficiency (CVID), by surreptitiously ingesting non-steroidal anti-inflammatory agents. Case description He was treated with several expensive and potentially dangerous drugs before the diagnosis was established through collateral information. In retrospect he did not meet the proposed new criteria for CVID. These criteria may prove useful in distinguishing cases of CVID from secondary hypogammaglobulinemia. Conclusion It is imperative clinicians recognise patients with factitious disorder at the earliest opportunity to prevent iatrogenic morbidity and mortality. PMID:24341706

  16. Psychomotor retardation in a girl with complete growth hormone deficiency.

    PubMed

    Dayal, Devi; Malhi, Prabhjot; Kumar Bhalla, Anil; Sachdeva, Naresh; Kumar, Rakesh

    2013-01-01

    Infants with complete growth hormone deficiency may suffer from psychomotor retardation in addition to severe growth failure. Without replacement therapy, they may have a compromised intellectual potential manifesting as learning disabilities and attention-deficit disorders in later life. In this communication, we discuss an infant who showed improvement in physical growth after growth hormone therapy but her psychomotor skills did not improve probably due to late start of treatment. There is a need to start growth hormone therapy as early as possible in infants with complete growth hormone deficiency to avoid adverse effects on psychomotor and brain development.

  17. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury.

    PubMed

    Newton, K; Dugger, D L; Maltzman, A; Greve, J M; Hedehus, M; Martin-McNulty, B; Carano, R A D; Cao, T C; van Bruggen, N; Bernstein, L; Lee, W P; Wu, X; DeVoss, J; Zhang, J; Jeet, S; Peng, I; McKenzie, B S; Roose-Girma, M; Caplazi, P; Diehl, L; Webster, J D; Vucic, D

    2016-09-01

    Necroptosis is a caspase-independent form of cell death that is triggered by activation of the receptor interacting serine/threonine kinase 3 (RIPK3) and phosphorylation of its pseudokinase substrate mixed lineage kinase-like (MLKL), which then translocates to membranes and promotes cell lysis. Activation of RIPK3 is regulated by the kinase RIPK1. Here we analyze the contribution of RIPK1, RIPK3, or MLKL to several mouse disease models. Loss of RIPK3 had no effect on lipopolysaccharide-induced sepsis, dextran sodium sulfate-induced colitis, cerulein-induced pancreatitis, hypoxia-induced cerebral edema, or the major cerebral artery occlusion stroke model. However, kidney ischemia-reperfusion injury, myocardial infarction, and systemic inflammation associated with A20 deficiency or high-dose tumor necrosis factor (TNF) were ameliorated by RIPK3 deficiency. Catalytically inactive RIPK1 was also beneficial in the kidney ischemia-reperfusion injury model, the high-dose TNF model, and in A20(-/-) mice. Interestingly, MLKL deficiency offered less protection in the kidney ischemia-reperfusion injury model and no benefit in A20(-/-) mice, consistent with necroptosis-independent functions for RIPK1 and RIPK3. Combined loss of RIPK3 (or MLKL) and caspase-8 largely prevented the cytokine storm, hypothermia, and morbidity induced by TNF, suggesting that the triggering event in this model is a combination of apoptosis and necroptosis. Tissue-specific RIPK3 deletion identified intestinal epithelial cells as the major target organ. Together these data emphasize that MLKL deficiency rather than RIPK1 inactivation or RIPK3 deficiency must be examined to implicate a role for necroptosis in disease.

  18. Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency.

    PubMed

    Li, Pengcheng; Zhuang, Zhongjuan; Cai, Hongguang; Cheng, Shuai; Soomro, Ayaz Ali; Liu, Zhigang; Gu, Riliang; Mi, Guohua; Yuan, Lixing; Chen, Fanjun

    2016-03-01

    Maize (Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen (N) deficiency, but the underlying genetic architecture remains to be investigated. Using an advanced BC4 F3 population, we investigated the root growth plasticity under two contrasted N levels and identified the quantitative trait loci (QTLs) with QTL-environment (Q × E) interaction effects. Principal components analysis (PCA) on changes of root traits to N deficiency (ΔLN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC, while root traits scattered highly on PC2 and PC3. Hierarchical cluster analysis on traits for ΔLN-HN further assigned the BC4 F3 lines into six groups, in which the special phenotypic responses to N deficiency was presented. These results revealed the complicated root plasticity of maize in response to N deficiency that can be caused by genotype-environment (G × E) interactions. Furthermore, QTL mapping using a multi-environment analysis identified 35 QTLs for root traits. Nine of these QTLs exhibited significant Q × E interaction effects. Taken together, our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N deficiency, which will be useful for developing maize tolerance cultivars to N deficiency. © 2015 Institute of Botany, Chinese Academy of Sciences.

  19. Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform

    PubMed Central

    Nishihara, Kana; Huang, Ruili; Zhao, Jinghua; Shahane, Sampada A.; Witt, Kristine L.; Smith-Roe, Stephanie L.; Tice, Raymond R.; Takeda, Shunichi; Xia, Menghang

    2016-01-01

    DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines (KU70 −/−/RAD54 −/− and REV3 −/−) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity—2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether—were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA. PMID:26243743

  20. Glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    G6PD deficiency; Hemolytic anemia due to G6PD deficiency; Anemia - hemolytic due to G6PD deficiency ... Gallagher PG. Hemolytic anemias. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 161. Janz ...

  1. Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms

    PubMed Central

    2012-01-01

    A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD patients and compile their clinical, 1H-MRS, biochemical and molecular data. Six GAMT [N-guanidinoacetatemethyltransferase (EC 2.1.1.2)] and 10 X-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2.1.4.1)] deficient patients were identified in this manner. Three additional affected sibs were further identified after familial inquiry (1 brother with GAMT deficiency and 2 brothers with SLC6A8 deficiency in two different families). The prevalence of PCD in this population was 0.25% (0.09% and 0.16% for GAMT and SLC6A8 deficiencies, respectively). Seven new PCD-causing mutations were discovered (2 nonsense [c.577C > T and c.289C > T] and 1 splicing [c.391 + 15G > T] mutations for the GAMT gene and, 2 missense [c.1208C > A and c.926C > A], 1 frameshift [c.930delG] and 1 splicing [c.1393-1G > A] mutations for the SLC6A8 gene). No hot spot mutations were observed in these genes, as all the mutations were distributed throughout the entire gene sequences and were essentially patient/family specific. Approximately one fifth of the mutations of SLC6A8, but not GAMT, were attributed to neo-mutation, germinal or somatic mosaicism events. The only SLC6A8-deficient female patient in our series presented with the severe phenotype usually characterizing affected male patients, an observation in agreement with recent evidence that is in support of the fact that this X-linked disorder might be more frequent than expected in the female population with intellectual disability. PMID:23234264

  2. Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms.

    PubMed

    Cheillan, David; Joncquel-Chevalier Curt, Marie; Briand, Gilbert; Salomons, Gajja S; Mention-Mulliez, Karine; Dobbelaere, Dries; Cuisset, Jean-Marie; Lion-François, Laurence; Portes, Vincent Des; Chabli, Allel; Valayannopoulos, Vassili; Benoist, Jean-François; Pinard, Jean-Marc; Simard, Gilles; Douay, Olivier; Deiva, Kumaran; Afenjar, Alexandra; Héron, Delphine; Rivier, François; Chabrol, Brigitte; Prieur, Fabienne; Cartault, François; Pitelet, Gaëlle; Goldenberg, Alice; Bekri, Soumeya; Gerard, Marion; Delorme, Richard; Tardieu, Marc; Porchet, Nicole; Vianey-Saban, Christine; Vamecq, Joseph

    2012-12-13

    A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD patients and compile their clinical, 1H-MRS, biochemical and molecular data. Six GAMT [N-guanidinoacetatemethyltransferase (EC 2.1.1.2)] and 10 X-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2.1.4.1)] deficient patients were identified in this manner. Three additional affected sibs were further identified after familial inquiry (1 brother with GAMT deficiency and 2 brothers with SLC6A8 deficiency in two different families). The prevalence of PCD in this population was 0.25% (0.09% and 0.16% for GAMT and SLC6A8 deficiencies, respectively). Seven new PCD-causing mutations were discovered (2 nonsense [c.577C > T and c.289C > T] and 1 splicing [c.391 + 15G > T] mutations for the GAMT gene and, 2 missense [c.1208C > A and c.926C > A], 1 frameshift [c.930delG] and 1 splicing [c.1393-1G > A] mutations for the SLC6A8 gene). No hot spot mutations were observed in these genes, as all the mutations were distributed throughout the entire gene sequences and were essentially patient/family specific. Approximately one fifth of the mutations of SLC6A8, but not GAMT, were attributed to neo-mutation, germinal or somatic mosaicism events. The only SLC6A8-deficient female patient in our series presented with the severe phenotype usually characterizing affected male patients, an observation in agreement with recent evidence that is in support of the fact that this X-linked disorder might be more frequent than expected in the female population with intellectual disability.

  3. Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency

    PubMed Central

    Kurosawa, Yuko; DeGrauw, Ton J.; Lindquist, Diana M.; Blanco, Victor M.; Pyne-Geithman, Gail J.; Daikoku, Takiko; Chambers, James B.; Benoit, Stephen C.; Clark, Joseph F.

    2012-01-01

    The second-largest cause of X-linked mental retardation is a deficiency in creatine transporter (CRT; encoded by SLC6A8), which leads to speech and language disorders with severe cognitive impairment. This syndrome, caused by the absence of creatine in the brain, is currently untreatable because CRT is required for creatine entry into brain cells. Here, we developed a brain-specific Slc6a8 knockout mouse (Slc6a8–/y) as an animal model of human CRT deficiency in order to explore potential therapies for this syndrome. The phenotype of the Slc6a8–/y mouse was comparable to that of human patients. We successfully treated the Slc6a8–/y mice with the creatine analog cyclocreatine. Brain cyclocreatine and cyclocreatine phosphate were detected after 9 weeks of cyclocreatine treatment in Slc6a8–/y mice, in contrast to the same mice treated with creatine or placebo. Cyclocreatine-treated Slc6a8–/y mice also exhibited a profound improvement in cognitive abilities, as seen with novel object recognition as well as spatial learning and memory tests. Thus, cyclocreatine appears promising as a potential therapy for CRT deficiency. PMID:22751104

  4. Co-inheritance of glucose-6-phosphate dehydrogenase deficiency mutations and hemoglobin E in a Kachin population in a malaria-endemic region of Southeast Asia

    PubMed Central

    He, Lijun; Li, Qing; Wu, Yanrui; Luo, Lan; Li, Hong; Ma, Limei; Yang, Zhaoqing; He, Yongshu; Cui, Liwang

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobin E (HbE, β26 Glu-Lys) are two common red cell disorders in Southeast Asia. G6PD deficiency produces hemolytic anemia, which can be triggered by certain drugs or infections. HbE is asymptomatic or is manifested as microcytic, minimally hemolytic anemia. The association between G6PD deficiency and HbE is little understood. This study aimed to investigate G6PD deficiency and HbE in a Kachin ethnic group in the China-Myanmar border area. G6PD enzyme activity was measured using a quantitative G6PD assay, G6PD variants genotyped by the SNaPshot assay, and an HbE gene mutation identified by an amplification refractory mutation system and subsequently confirmed by using a reverse dot blot hybridization assay from 100 unrelated individuals in the study area. G6PD enzyme activity ranged from 0.4 to 24.7 U/g Hb, and six males had severe G6PD deficiency (<0.12–1.2 U/g Hb), while six males and 12 females had mild G6PD deficiency (>1.2–4.5 U/g Hb). Among the 24 G6PD-deficient subjects, 22 (92%) had the Mahidol 487G>A mutation (12 male hemizygotes, one female homozygote, and nine female heterozygotes), while the G6PD genotypes in two female subjects were unknown. HbE was identified in 39 subjects (20 males and 19 females), including 15 HbEE (seven males and eight females) and 24 HbAE (13 males and 11 females). Twenty-three subjects co-inherited both G6PD deficiency and HbE (22 with HbAE and one with HbEE). Whereas mean Hb levels were not significantly different between the HbA and HbE groups, G6PD-deficient males had significantly lower Hb levels than G6PD-normal males (P < 0.05, t-test). However, it is noteworthy that two G6PD-deficient hemizygous males with HbAE were severely anemic with Hb levels below 50 g/L. This study revealed high prevalence of co-inheritance of G6PD deficiency with HbAE in the Kachin ethnicity, and a potential interaction of the G6PD Mahidol 487G>A and HbAE in males leading to severe

  5. Co-inheritance of glucose-6-phosphate dehydrogenase deficiency mutations and hemoglobin E in a Kachin population in a malaria-endemic region of Southeast Asia.

    PubMed

    Deng, Zeshuai; Yang, Fang; Bai, Yao; He, Lijun; Li, Qing; Wu, Yanrui; Luo, Lan; Li, Hong; Ma, Limei; Yang, Zhaoqing; He, Yongshu; Cui, Liwang

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobin E (HbE, β26 Glu-Lys) are two common red cell disorders in Southeast Asia. G6PD deficiency produces hemolytic anemia, which can be triggered by certain drugs or infections. HbE is asymptomatic or is manifested as microcytic, minimally hemolytic anemia. The association between G6PD deficiency and HbE is little understood. This study aimed to investigate G6PD deficiency and HbE in a Kachin ethnic group in the China-Myanmar border area. G6PD enzyme activity was measured using a quantitative G6PD assay, G6PD variants genotyped by the SNaPshot assay, and an HbE gene mutation identified by an amplification refractory mutation system and subsequently confirmed by using a reverse dot blot hybridization assay from 100 unrelated individuals in the study area. G6PD enzyme activity ranged from 0.4 to 24.7 U/g Hb, and six males had severe G6PD deficiency (<0.12-1.2 U/g Hb), while six males and 12 females had mild G6PD deficiency (>1.2-4.5 U/g Hb). Among the 24 G6PD-deficient subjects, 22 (92%) had the Mahidol 487G>A mutation (12 male hemizygotes, one female homozygote, and nine female heterozygotes), while the G6PD genotypes in two female subjects were unknown. HbE was identified in 39 subjects (20 males and 19 females), including 15 HbEE (seven males and eight females) and 24 HbAE (13 males and 11 females). Twenty-three subjects co-inherited both G6PD deficiency and HbE (22 with HbAE and one with HbEE). Whereas mean Hb levels were not significantly different between the HbA and HbE groups, G6PD-deficient males had significantly lower Hb levels than G6PD-normal males (P < 0.05, t-test). However, it is noteworthy that two G6PD-deficient hemizygous males with HbAE were severely anemic with Hb levels below 50 g/L. This study revealed high prevalence of co-inheritance of G6PD deficiency with HbAE in the Kachin ethnicity, and a potential interaction of the G6PD Mahidol 487G>A and HbAE in males leading to severe

  6. Cytosine-based nucleoside analogs are selectively lethal to DNA mismatch repair-deficient tumour cells by enhancing levels of intracellular oxidative stress

    PubMed Central

    Hewish, M; Martin, S A; Elliott, R; Cunningham, D; Lord, C J; Ashworth, A

    2013-01-01

    Background: DNA mismatch repair deficiency is present in a significant proportion of a number of solid tumours and is associated with distinct clinical behaviour. Methods: To identify the therapeutic agents that might show selectivity for mismatch repair-deficient tumour cells, we screened a pair of isogenic MLH1-deficient and MLH1-proficient tumour cell lines with a library of clinically used drugs. To test the generality of hits in the screen, selective agents were retested in cells deficient in the MSH2 mismatch repair gene. Results: We identified cytarabine and other related cytosine-based nucleoside analogues as being selectively toxic to MLH1 and MSH2-deficient tumour cells. The selective cytotoxicity we observed was likely caused by increased levels of cellular oxidative stress, as it could be abrogated by antioxidants. Conclusion: We propose that cytarabine-based chemotherapy regimens may represent a tumour-selective treatment strategy for mismatch repair-deficient cancers. PMID:23361057

  7. Vitamin D Deficiency in India: Prevalence, Causalities and Interventions

    PubMed Central

    G, Ritu; Gupta, Ajay

    2014-01-01

    Vitamin D deficiency prevails in epidemic proportions all over the Indian subcontinent, with a prevalence of 70%–100% in the general population. In India, widely consumed food items such as dairy products are rarely fortified with vitamin D. Indian socioreligious and cultural practices do not facilitate adequate sun exposure, thereby negating potential benefits of plentiful sunshine. Consequently, subclinical vitamin D deficiency is highly prevalent in both urban and rural settings, and across all socioeconomic and geographic strata. Vitamin D deficiency is likely to play an important role in the very high prevalence of rickets, osteoporosis, cardiovascular diseases, diabetes, cancer and infections such as tuberculosis in India. Fortification of staple foods with vitamin D is the most viable population based strategy to achieve vitamin D sufficiency. Unfortunately, even in advanced countries like USA and Canada, food fortification strategies with vitamin D have been only partially effective and have largely failed to attain vitamin D sufficiency. This article reviews the status of vitamin D nutrition in the Indian subcontinent and also the underlying causes for this epidemic. Implementation of population based educational and interventional strategies to combat this scourge require recognition of vitamin D deficiency as a public health problem by the governing bodies so that healthcare funds can be allocated appropriately. PMID:24566435

  8. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    PubMed

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  9. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    PubMed Central

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  10. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    PubMed

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  11. Maternal dietary tryptophan deficiency alters cardiorespiratory control in rat pups.

    PubMed

    Penatti, Eliana M; Barina, Alexis E; Raju, Sharat; Li, Aihua; Kinney, Hannah C; Commons, Kathryn G; Nattie, Eugene E

    2011-02-01

    Malnutrition during pregnancy adversely affects postnatal forebrain development; its effect upon brain stem development is less certain. To evaluate the role of tryptophan [critical for serotonin (5-HT) synthesis] on brain stem 5-HT and the development of cardiorespiratory function, we fed dams a diet ∼45% deficient in tryptophan during gestation and early postnatal life and studied cardiorespiratory variables in the developing pups. Deficient pups were of normal weight at postnatal day (P)5 but weighed less than control pups at P15 and P25 (P < 0.001) and had lower body temperatures at P15 (P < 0.001) and P25 (P < 0.05; females only). Oxygen consumption (Vo(2)) was unaffected. At P15, deficient pups had an altered breathing pattern and slower heart rates. At P25, they had significantly lower ventilation (Ve) and Ve-to-Vo(2) ratios in both air and 7% CO(2). The ventilatory response to CO(2) (% increase in Ve/Vo(2)) was significantly increased at P5 (males) and reduced at P15 and P25 (males and females). Deficient pups had 41-56% less medullary 5-HT (P < 0.01) compared with control pups, without a difference in 5-HT neuronal number. These data indicate important interactions between nutrition, brain stem physiology, and age that are potentially relevant to understanding 5-HT deficiency in the sudden infant death syndrome.

  12. The impact of phenotypic and genotypic G6PD deficiency on risk of plasmodium vivax infection: a case-control study amongst Afghan refugees in Pakistan.

    PubMed

    Leslie, Toby; Briceño, Marnie; Mayan, Ismail; Mohammed, Nasir; Klinkenberg, Eveline; Sibley, Carol Hopkins; Whitty, Christopher J M; Rowland, Mark

    2010-05-25

    The most common form of malaria outside Africa, Plasmodium vivax, is more difficult to control than P. falciparum because of the latent liver hypnozoite stage, which causes multiple relapses and provides an infectious reservoir. The African (A-) G6PD (glucose-6-phosphate dehydrogenase) deficiency confers partial protection against severe P. falciparum. Recent evidence suggests that the deficiency also confers protection against P. vivax, which could explain its wide geographical distribution in human populations. The deficiency has a potentially serious interaction with antirelapse therapies (8-aminoquinolines such as primaquine). If the level of protection was sufficient, antirelapse therapy could become more widely available. We therefore tested the hypothesis that G6PD deficiency is protective against vivax malaria infection. A case-control study design was used amongst Afghan refugees in Pakistan. The frequency of phenotypic and genotypic G6PD deficiency in individuals with vivax malaria was compared against controls who had not had malaria in the previous two years. Phenotypic G6PD deficiency was less common amongst cases than controls (cases: 4/372 [1.1%] versus controls 42/743 [5.7%]; adjusted odds ratio [AOR] 0.18 [95% confidence interval (CI) 0.06-0.52], p = 0.001). Genetic analysis demonstrated that the G6PD deficiency allele identified (Mediterranean type) was associated with protection in hemizygous deficient males (AOR = 0.12 [95% CI 0.02-0.92], p = 0.041). The deficiency was also protective in females carrying the deficiency gene as heterozygotes or homozygotes (pooled AOR = 0.37 [95% CI 0.15-0.94], p = 0.037). G6PD deficiency (Mediterranean type) conferred significant protection against vivax malaria infection in this population whether measured by phenotype or genotype, indicating a possible evolutionary role for vivax malaria in the selective retention of the G6PD deficiency trait in human populations. Further work is required on the genotypic

  13. Identifying Potential Ventilator Auto-Triggering Among Organ Procurement Organization Referrals.

    PubMed

    Henry, Nicholas R; Russian, Christopher J; Nespral, Joseph

    2016-06-01

    Ventilator auto-trigger is the delivery of an assisted mechanical ventilated breath over the set ventilator frequency in the absence of a spontaneous inspiratory effort and can be caused by inappropriate ventilator trigger sensitivity. Ventilator auto-trigger can be misinterpreted as a spontaneous breath and has the potential to delay or prevent brain death testing and confuse health-care professionals and/or patient families. To determine the frequency of organ donor referrals from 1 Organ Procurement Organization (OPO) that could benefit from an algorithm designed to assist organ recovery coordinators to identify and correct ventilator auto-triggering. This retrospective analysis evaluated documentation of organ donor referrals from 1 OPO in central Texas during the 2013 calendar year that resulted in the withdrawal of care by the patient's family and the recovery of organs. The frequency of referrals that presented with absent brain stem reflexes except for additional respirations over the set ventilator rate was determined to assess for the need of the proposed algorithm. Documentation of 672 organ procurement organization referrals was evaluated. Documentation from 42 referrals that resulted in the withdrawal of care and 21 referrals that resulted in the recovery of organs were identified with absent brain stem reflexes except for spontaneous respirations on the mechanical ventilator. As a result, an algorithm designed to identify and correct ventilator auto-trigger could have been used 63 times during the 2013 calendar year. © 2016, NATCO.

  14. Fat-soluble vitamin deficiency in children and adolescents with cystic fibrosis.

    PubMed

    Rana, Malay; Wong-See, Denise; Katz, Tamarah; Gaskin, Kevin; Whitehead, Bruce; Jaffe, Adam; Coakley, John; Lochhead, Alistair

    2014-07-01

    Determine the prevalence of fat-soluble vitamin deficiency in children with cystic fibrosis (CF) aged ≤18 years in New South Wales (NSW), Australia, from 2007 to 2010. A retrospective analysis of fat-soluble vitamin levels in children aged ≤18 years who lived in NSW and attended any of the three paediatric CF centres from 2007 to 2010. An audit of demographic and clinical data during the first vitamin level measurement of the study period was performed. Deficiency of one or more fat-soluble vitamins was present in 240/530 children (45%) on their first vitamin level test in the study period. The prevalence of vitamins D and E deficiency fell from 22.11% in 2007 to 15.54% in 2010, and 20.22% to 13.89%, respectively. The prevalence of vitamin A deficiency increased from 11.17% to 13.13%. Low vitamin K was present in 29% in 2007, and prevalence of prolonged prothrombin time increased from 19.21% to 22.62%. Fat-soluble vitamin deficiency is present in 10%-35% of children with pancreatic insufficiency, but only a very small proportion of children who are pancreatic-sufficient. This is one of few studies of fat-soluble vitamin deficiency in children with CF in Australia. Fat-soluble vitamin testing is essential to identify deficiency in pancreatic-insufficient children who may be non-compliant to supplementation or require a higher supplement dose, and pancreatic-sufficient children who may be progressing to insufficiency. Testing of vitamin K-dependent factors needs consideration. Further studies are needed to monitor rates of vitamin deficiency in the CF community. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Identifying and exploiting genes that potentiate the evolution of antibiotic resistance.

    PubMed

    Gifford, Danna R; Furió, Victoria; Papkou, Andrei; Vogwill, Tom; Oliver, Antonio; MacLean, R Craig

    2018-06-01

    There is an urgent need to develop novel approaches for predicting and preventing the evolution of antibiotic resistance. Here, we show that the ability to evolve de novo resistance to a clinically important β-lactam antibiotic, ceftazidime, varies drastically across the genus Pseudomonas. This variation arises because strains possessing the ampR global transcriptional regulator evolve resistance at a high rate. This does not arise because of mutations in ampR. Instead, this regulator potentiates evolution by allowing mutations in conserved peptidoglycan biosynthesis genes to induce high levels of β-lactamase expression. Crucially, blocking this evolutionary pathway by co-administering ceftazidime with the β-lactamase inhibitor avibactam can be used to eliminate pathogenic P. aeruginosa populations before they can evolve resistance. In summary, our study shows that identifying potentiator genes that act as evolutionary catalysts can be used to both predict and prevent the evolution of antibiotic resistance.

  16. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  17. Prevalence of vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period

    PubMed Central

    do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2015-01-01

    Abstract Objective: To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. Methods: This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95%, was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α <5%. Results: From 226 women included, 200 (88.5%) were 20-44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. Conclusions: This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. PMID:26100593

  18. Newer Approaches to Identify Potential Untoward Effects in Functional Foods.

    PubMed

    Marone, Palma Ann; Birkenbach, Victoria L; Hayes, A Wallace

    2016-01-01

    Globalization has greatly accelerated the numbers and variety of food and beverage products available worldwide. The exchange among greater numbers of countries, manufacturers, and products in the United States and worldwide has necessitated enhanced quality measures for nutritional products for larger populations increasingly reliant on functionality. These functional foods, those that provide benefit beyond basic nutrition, are increasingly being used for their potential to alleviate food insufficiency while enhancing quality and longevity of life. In the United States alone, a steady import increase of greater than 15% per year or 24 million shipments, over 70% products of which are food related, is regulated under the Food and Drug Administration (FDA). This unparalleled growth has resulted in the need for faster, cheaper, and better safety and efficacy screening methods in the form of harmonized guidelines and recommendations for product standardization. In an effort to meet this need, the in vitro toxicology testing market has similarly grown with an anticipatory 15% increase between 2010 and 2015 of US$1.3 to US$2.7 billion. Although traditionally occupying a small fraction of the market behind pharmaceuticals and cosmetic/household products, the scope of functional food testing, including additives/supplements, ingredients, residues, contact/processing, and contaminants, is potentially expansive. Similarly, as functional food testing has progressed, so has the need to identify potential adverse factors that threaten the safety and quality of these products. © The Author(s) 2015.

  19. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency

    PubMed Central

    Hixon, Jeff; Kosinski, Penelope A.; Cianchetta, Giovanni; Histen, Gavin; Chen, Yue; Hill, Collin; Gross, Stefan; Si, Yaguang; Johnson, Kendall; DeLaBarre, Byron; Luo, Zhiyong; Gu, Zhiwei; Yao, Gui; Tang, Huachun; Fang, Cheng; Xu, Yingxia; Lv, Xiaobing; Biller, Scott; Su, Shin-San Michael; Yang, Hua; Popovici-Muller, Janeta; Salituro, Francesco; Silverman, Lee; Dang, Lenny

    2017-01-01

    Pyruvate kinase (PK) deficiency is a rare genetic disease that causes chronic hemolytic anemia. There are currently no targeted therapies for PK deficiency. Here, we describe the identification and characterization of AG-348, an allosteric activator of PK that is currently in clinical trials for the treatment of PK deficiency. We demonstrate that AG-348 can increase the activity of wild-type and mutant PK enzymes in biochemical assays and in patient red blood cells treated ex vivo. These data illustrate the potential for AG-348 to restore the glycolytic pathway activity in patients with PK deficiency and ultimately lead to clinical benefit. PMID:28760888

  20. Prenatal Nutritional Deficiency and Risk of Adult Schizophrenia

    PubMed Central

    Brown, Alan S.; Susser, Ezra S.

    2008-01-01

    Converging evidence suggests that a neurodevelopmental disruption plays a role in the vulnerability to schizophrenia. The authors review evidence supporting in utero exposure to nutritional deficiency as a determinant of schizophrenia. We first describe studies demonstrating that early gestational exposure to the Dutch Hunger Winter of 1944–1945 and to a severe famine in China are each associated with an increased risk of schizophrenia in offspring. The plausibility of several candidate micronutrients as potential risk factors for schizophrenia and the biological mechanisms that may underlie these associations are then reviewed. These nutrients include folate, essential fatty acids, retinoids, vitamin D, and iron. Following this discussion, we describe the methodology and results of an epidemiologic study based on a large birth cohort that has tested the association between prenatal homocysteine, an indicator of serum folate, and schizophrenia risk. The study capitalized on the use of archived prenatal serum specimens that make it possible to obtain direct, prospective biomarkers of prenatal insults, including levels of various nutrients during pregnancy. Finally, we discuss several strategies for subjecting the prenatal nutritional hypothesis of schizophrenia to further testing. These approaches include direct assessment of additional prenatal nutritional biomarkers in relation to schizophrenia in large birth cohorts, studies of epigenetic effects of prenatal starvation, association studies of genes relevant to folate and other micronutrient deficiencies, and animal models. Given the relatively high prevalence of nutritional deficiencies during pregnancy, this work has the potential to offer substantial benefits for the prevention of schizophrenia in the population. PMID:18682377

  1. Iron deficiency anemia due to excessive green tea drinking.

    PubMed

    Fan, Frank S

    2016-11-01

    Tea interferes with iron absorption and can lead to iron deficiency anemia when consumed in large quantities. The rechallenge effect of green tea on anemia in a middle-aged man emphasizes the potential causal role of this beverage. Lifestyle and dietary habits are important diagnostic considerations in diseases of this type.

  2. Pathogenic Mechanisms Underlying Iron Deficiency and Iron Overload: New Insights for Clinical Application

    PubMed Central

    van Velden, DP; van Rensburg, SJ; Erasmus, R

    2009-01-01

    Iron uptake, utilisation, release and storage occur at the gene level. Individuals with variant forms of genes involved in iron metabolism may have different requirements for iron and are likely to respond differently to the same amount of iron in the diet, a concept termed nutrigenetics. Iron deficiency, iron overload and the anemia of inflammation are the commonest iron-related disorders. While at least four types of hereditary iron overload have been identified to date, our knowledge of the genetic basis and consequences of inherited iron deficiency remain limited. The importance of genetic risk factors in relation to iron overload was highlighted with the identification of the HFE gene in 1996. Deleterious mutations in this gene account for 80-90% of inherited iron overload and are associated with loss of iron homeostasis, alterations in inflammatory responses, oxidative stress and in its most severe form, the disorder hereditary haemochromatosis (HH). Elucidation of the genetic basis of HH has led to rapid clinical benefit through drastic reduction in liver biopsies performed as part of the diagnostic work-up of affected patients. Today, detection of a genetic predisposition in the presence of high serum ferritin and transferrin saturation levels is usually sufficient to diagnose HH, thereby addressing the potential danger of inherited iron overload which starts with the same symptoms as iron deficiency, namely chronic fatigue. This review provides the scientific back-up for application of pathology supported genetic testing, a new test concept that is well placed for optimizing clinical benefit to patients with regard to iron status. PMID:27683335

  3. Glucose-6-phosphate dehydrogenase deficiency and the sickle cell gene in Makkah, Saudi Arabia.

    PubMed

    el-Hazmi, M A; Warsy, A S; Bahakim, H H; al-Swailem, A

    1994-02-01

    This study was conducted on 689 Saudi males and females living in the Makkah area in the western province of Saudi Arabia. The frequency of severe glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in the male and female populations was 0.055 and 0.042 respectively. The normal G-6-PD was G-6-PD-B+ and the G-6-PD phenotypes identified included G-6-PD-A+, G-6-PD-A-, G-6-PD-Mediterranean, and G-6-PD-Mediterranean-like at gene frequencies of 0.0288, 0.0026, 0.05497, and 0.1969 in the male population and 0.026, 0.0146, 0.0407, and 0.02606 in the female population. The main variants producing severe and mild G-6-PD deficiency were G-6-PD-Mediterranean and G-6-PD-Mediterranean-like, respectively. The sickle cell gene was identified at a frequency of 0.029 and no interaction between sickle cell and G-6-PD deficiency genes was encountered.

  4. Increased anxiety but normal fear and safety learning in orexin-deficient mice.

    PubMed

    Khalil, Radwa; Fendt, Markus

    2017-03-01

    The loss of orexin neurons in humans leads to the disease narcolepsy, characterized by daytime sleepiness and cataplexy. Recent data suggest that orexin is also involved in emotional processing. The goal of the present study was to evaluate fear and safety learning as well as unconditioned fear (anxiety) in orexin-deficient animals. Orexin-deficient mice are an established animal model used to investigate the neuropathology and potential treatments for narcolepsy. Here, we present novel data showing that orexin-deficient mice express increased anxiety in the open field, light-dark box test and carnivore odor-induced avoidance, but are normal in fear and safety learning. These findings suggest an important role of orexin in brain areas involved in anxiety. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Are MAO-A deficiency states in the general population and in putative high-risk populations highly uncommon?

    PubMed

    Murphy, D L; Sims, K; Eisenhofer, G; Greenberg, B D; George, T; Berlin, F; Zametkin, A; Ernst, M; Breakefield, X O

    1998-01-01

    Lack of monoamine oxidase A (MAO-A) due to either Xp chromosomal deletions or alterations in the coding sequence of the gene for this enzyme are associated with marked changes in monoamine metabolism and appear to be associated with variable cognitive deficits and behavioral changes in humans and in transgenic mice. In mice, some of the most marked behavioral changes are ameliorated by pharmacologically-induced reductions in serotonin synthesis during early development, raising the question of possible therapeutic interventions in humans with MAO deficiency states. At the present time, only one multi-generational family and a few other individuals with marked MAO-A deficiency states have been identified and studied in detail. Although MAO deficiency states associated with Xp chromosomal deletions were identified by distinct symptoms (including blindness in infancy) produced by the contiguous Norrie disease gene, the primarily behavioral phenotype of individuals with the MAO mutation is less obvious. This paper reports a sequential research design and preliminary results from screening several hundred volunteers in the general population and from putative high-risk groups for possible MAO deficiency states. These preliminary results suggest that marked MAO deficiency states are very rare.

  6. Next Generation Sequencing of Prostate Cancer from a Patient Identifies a Deficiency of Methylthioadenosine Phosphorylase (MTAP), an Exploitable Tumor Target

    PubMed Central

    Collins, Colin C; Volik, Stanislav V; Lapuk, Anna V; Wang, Yuwei; Gout, Peter W; Wu, Chunxiao; Xue, Hui; Cheng, Hongwei; Haegert, Anne; Bell, Robert H; Brahmbhatt, Sonal; Anderson, Shawn; Fazli, Ladan; Hurtado-Coll, Antonio; Rubin, Mark A.; Demichelis, Francesca; Beltran, Himisha; Hirst, Martin; Marra, Marco; Maher, Christopher A.; Chinnaiyan, Arul M.; Gleave, Martin; Bertino, Joseph R.; Lubin, Martin; Wang, Yuzhuo

    2013-01-01

    Castrate resistant prostate cancer (CRPC) and neuroendocrine carcinoma of the prostate are invariably fatal diseases for which only palliative therapies exist. As part of a prostate tumour sequencing program, a patient tumour was analyzed using Illumina genome sequencing and a matched renal capsule tumour xenograft was generated. Both tumour and xenograft had a homozygous 9p21 deletion spanning the MTAP, CDKN2 and ARF genes. It is rare for this deletion to occur in primary prostate tumours yet approximately 10% express decreased levels of MTAP mRNA. Decreased MTAP expression is a prognosticator for poor outcome. Moreover, it appears that this deletion is more common in CRPC than in primary prostate cancer. We show for the first time that treatment with methylthioadenosine and high dose 6-thioguanine causes marked inhibition of a patient derived neuroendocrine xenograft growth while protecting the host from 6-thioguanine toxicity. This therapeutic approach can be applied to other MTAP-deficient human cancers since deletion or hypermethylation of the MTAP gene occurs in a broad spectrum of tumours at high frequency. The combination of genome sequencing and patient-derived xenografts can identify candidate therapeutic agents and evaluate them for personalized oncology. PMID:22252602

  7. Prevalence and molecular basis of glucose-6-phosphate dehydrogenase deficiency in Afghan populations: implications for treatment policy in the region

    PubMed Central

    2013-01-01

    Background Glucose-6-phosphate dehydrogenase deficiency (G6PD), an x-linked inherited enzymopathy, is a barrier to malaria control because primaquine cannot be readily applied for radical cure in individuals with the condition. In endemic areas, including in Afghanistan, the G6PD status of vivax patients is not routinely determined so the drug is rarely, if ever, prescribed even though it is included as a recommended treatment in local, regional and global guidelines. This study assessed the prevalence and genotype of G6PD deficiency in Afghan populations and examined the need for routine G6PD testing as a malaria treatment and control tool. Methods A cross-sectional household survey was conducted using random sampling in five Afghan cities to determine the prevalence of G6PD deficiency in Afghan ethnic groups. Filter-paper blood spots were analysed for phenotypic G6PD deficiency using a fluorescent spot test. Molecular analysis was conducted to identify the genetic basis of the disorder. Results Overall, 45/1,436 (3.1%) people were G6PD deficient, 36/728 (5.0%) amongst males and 9/708 (1.3%) amongst females. Amongst males the prevalence was highest in the Pashtun ethnic group (10%, 26/260) while in Tajik males it was 8/250 (3.2%); in Hazara males it was 1/77 (1.3%) and in Uzbek males is was 0/125. Genetic testing in those with deficiency showed that all were of the Mediterranean type (Med-) characterized by a C-T change at codon 563 of the G6PD gene. Conclusion Prevalence of G6PD deficiency in Afghanistan varies considerably by ethnic group and is predominantly of the Mediterranean type. G6PD deficient individuals are susceptible to potentially severe and life-threatening haemolysis after standard primaquine treatment. If the aim of increasing access to radical treatment of vivax is to be successful reliable G6PD testing needs to be made routinely available within the health system. PMID:23834949

  8. Prevalence and molecular basis of glucose-6-phosphate dehydrogenase deficiency in Afghan populations: implications for treatment policy in the region.

    PubMed

    Leslie, Toby; Moiz, Bushra; Mohammad, Nader; Amanzai, Omar; Ur Rasheed, Haroon; Jan, Sakhi; Siddiqi, Abdul M; Nasir, Amna; Beg, Mohammad A; Vink, Martijn

    2013-07-08

    Glucose-6-phosphate dehydrogenase deficiency (G6PD), an x-linked inherited enzymopathy, is a barrier to malaria control because primaquine cannot be readily applied for radical cure in individuals with the condition. In endemic areas, including in Afghanistan, the G6PD status of vivax patients is not routinely determined so the drug is rarely, if ever, prescribed even though it is included as a recommended treatment in local, regional and global guidelines. This study assessed the prevalence and genotype of G6PD deficiency in Afghan populations and examined the need for routine G6PD testing as a malaria treatment and control tool. A cross-sectional household survey was conducted using random sampling in five Afghan cities to determine the prevalence of G6PD deficiency in Afghan ethnic groups. Filter-paper blood spots were analysed for phenotypic G6PD deficiency using a fluorescent spot test. Molecular analysis was conducted to identify the genetic basis of the disorder. Overall, 45/1,436 (3.1%) people were G6PD deficient, 36/728 (5.0%) amongst males and 9/708 (1.3%) amongst females. Amongst males the prevalence was highest in the Pashtun ethnic group (10%, 26/260) while in Tajik males it was 8/250 (3.2%); in Hazara males it was 1/77 (1.3%) and in Uzbek males is was 0/125. Genetic testing in those with deficiency showed that all were of the Mediterranean type (Med-) characterized by a C-T change at codon 563 of the G6PD gene. Prevalence of G6PD deficiency in Afghanistan varies considerably by ethnic group and is predominantly of the Mediterranean type. G6PD deficient individuals are susceptible to potentially severe and life-threatening haemolysis after standard primaquine treatment. If the aim of increasing access to radical treatment of vivax is to be successful reliable G6PD testing needs to be made routinely available within the health system.

  9. 77 FR 41406 - Evaluation of In Vitro Tests for Identifying Eye Injury Hazard Potential of Chemicals and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Evaluation of In Vitro Tests for Identifying Eye Injury...-animal testing strategies proposed for identifying eye injury hazard potential of chemicals and products... Panel and submission of data from substances tested in in vitro tests for identifying eye injury hazard...

  10. Weaker cognitive control abilities of Pi (Spleen) qi-deficient individuals supported Chinese medicine diagnosis.

    PubMed

    Lin, Hui-Yan; Zhao, Yan-Ping; Xu, Gui-Ping; Li, Yun-Si; Xie, Wei-Yun; Bai, Li-Hua; Jin, Hua

    2017-07-28

    To investigate whether Pi (Spleen) qi-deficiency affected psychological and neural responses in relevance to cognitive control. Pi qi-deficient and balanced participants were asked to perform the Stroop task, a classical cognitive control paradigm. In this paradigm, participants had to judge the color of the prompted word. The word's meaning indicated the color (the consistent condition) or not (the inconsistent condition), or were unrelated to the color (the neutral condition). Electroencephalograph (EEG) was recorded during the task. Event-related potential (ERP) results showed that Pi qi-deficient individuals failed to exhibit a normal Stroop effect as Balanced individuals did, such as the accuracy differences between the consistent and the inconsistent conditions as well as the N450 effect (P>0.05). Meanwhile, Pi qi-deficient individuals displayed larger P2 and P3 amplitudes than balanced individuals did during performing the cognitive control task (P<0.05). Pi qi-deficiency had psychological and neural basis at least in cognitive control aspect.

  11. Molecular characterization of FXI deficiency.

    PubMed

    Berber, Ergul

    2011-02-01

    Factor XI (FXI) deficiency is a rare autosomal bleeding disease associated with genetic defects in the FXI gene. It is a heterogeneous disorder with variable tendency in bleeding and variable causative FXI gene mutations. It is characterized as a cross-reacting material-negative (CRM-) FXI deficiency due to decreased FXI levels or cross-reacting material-positive (CRM+) FXI deficiency due to impaired FXI function. Increasing number of mutations has been reported in FXI mutation database, and most of the mutations are affecting serine protease (SP) domain of the protein. Functional characterization for the mutations helps to better understand the molecular basis of FXI deficiency. Prevalence of the disease is higher in certain populations such as Ashkenazi Jews. The purpose of this review is to give an overview of the molecular basis of congenital FXI deficiency.

  12. The genotypic and phenotypic spectrum of MTO1 deficiency.

    PubMed

    O'Byrne, James J; Tarailo-Graovac, Maja; Ghani, Aisha; Champion, Michael; Deshpande, Charu; Dursun, Ali; Ozgul, Riza K; Freisinger, Peter; Garber, Ian; Haack, Tobias B; Horvath, Rita; Barić, Ivo; Husain, Ralf A; Kluijtmans, Leo A J; Kotzaeridou, Urania; Morris, Andrew A; Ross, Colin J; Santra, Saikat; Smeitink, Jan; Tarnopolsky, Mark; Wortmann, Saskia B; Mayr, Johannes A; Brunner-Krainz, Michaela; Prokisch, Holger; Wasserman, Wyeth W; Wevers, Ron A; Engelke, Udo F; Rodenburg, Richard J; Ting, Teck Wah; McFarland, Robert; Taylor, Robert W; Salvarinova, Ramona; van Karnebeek, Clara D M

    2018-01-01

    Mitochondrial diseases, a group of multi-systemic disorders often characterized by tissue-specific phenotypes, are usually progressive and fatal disorders resulting from defects in oxidative phosphorylation. MTO1 (Mitochondrial tRNA Translation Optimization 1), an evolutionarily conserved protein expressed in high-energy demand tissues has been linked to human early-onset combined oxidative phosphorylation deficiency associated with hypertrophic cardiomyopathy, often referred to as combined oxidative phosphorylation deficiency-10 (COXPD10). Thirty five cases of MTO1 deficiency were identified and reviewed through international collaboration. The cases of two female siblings, who presented at 1 and 2years of life with seizures, global developmental delay, hypotonia, elevated lactate and complex I and IV deficiency on muscle biopsy but without cardiomyopathy, are presented in detail. For the description of phenotypic features, the denominator varies as the literature was insufficient to allow for complete ascertainment of all data for the 35 cases. An extensive review of all known MTO1 deficiency cases revealed the most common features at presentation to be lactic acidosis (LA) (21/34; 62% cases) and hypertrophic cardiomyopathy (15/34; 44% cases). Eventually lactic acidosis and hypertrophic cardiomyopathy are described in 35/35 (100%) and 27/34 (79%) of patients with MTO1 deficiency, respectively; with global developmental delay/intellectual disability present in 28/29 (97%), feeding difficulties in 17/35 (49%), failure to thrive in 12/35 (34%), seizures in 12/35 (34%), optic atrophy in 11/21 (52%) and ataxia in 7/34 (21%). There are 19 different pathogenic MTO1 variants identified in these 35 cases: one splice-site, 3 frameshift and 15 missense variants. None have bi-allelic variants that completely inactivate MTO1; however, patients where one variant is truncating (i.e. frameshift) while the second one is a missense appear to have a more severe, even fatal

  13. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.

    PubMed Central

    Howden, R; Andersen, C R; Goldsbrough, P B; Cobbett, C S

    1995-01-01

    The roots of the cadmium-sensitive mutant of Arabidopsis thaliana, cad1-1, become brown in the presence of cadmium. A new cadmium-sensitive mutant affected at a second locus, cad2, has been identified using this phenotype. Genetic analysis has grown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Assays of cadmium accumulation by intact plants indicated that the mutant is deficient in its ability to sequester cadmium. Undifferentiated callus tissue was also cadmium sensitive, suggesting that the mutant phenotype is expressed at the cellular level. The level of cadmium-binding complexes formed in vivo was decreased compared with the wild type and accumulation of phytochelatins was about 10% of that in the wild type. The level of glutathione, the substrate for phytochelatin biosynthesis, in tissues of the mutant was decreased to about 15 to 30% of that in the wild type. Thus, the deficiency in phytochelatin biosynthesis can be explained by a deficiency in glutathione. PMID:7770518

  14. Vitamin D deficiency and its risk factors in Malaysian children with epilepsy.

    PubMed

    Fong, Choong Yi; Kong, Ann Nie; Poh, Bee Koon; Mohamed, Ahmad Rithauddin; Khoo, Teik Beng; Ng, Rui Lun; Noordin, Mazidah; Nadarajaw, Thiyagar; Ong, Lai Choo

    2016-08-01

    Long-term use of antiepileptic drugs (AEDs) is a significant risk factor for vitamin D deficiency in children with epilepsy. The aims of our study were to evaluate the prevalence and risk factors for vitamin D deficiency among Malaysian children with epilepsy. Cross-sectional study of ambulant children with epilepsy on long-term AEDs for >1 year seen in three tertiary hospitals in Malaysia from April 2014 to April 2015. Detailed assessment of pubertal status, skin pigmentation, sunshine exposure behavior, physical activity, dietary vitamin D and calcium intake, anthropometric measurements and bone health blood tests (vitamin D, alkaline phosphatase, calcium, phosphate, and parathyroid hormone levels) were obtained on all patients. Vitamin D deficiency was defined as 25-hydroxy vitamin D [25(OH)D] levels ≤35 nmol/L and insufficiency as 25(OH)D levels of 36-50 nmol/L. A total of 244 children (146 male) participated in the study. Ages ranged between 3.7 and 18.8 years (mean 12.3 years). 25(OH)D levels ranged between 7.5 and 140.9 nmol/L (mean 53.9 nmol/L). Vitamin D deficiency was identified in 55 patients (22.5%), and a further 48 (19.7%) had vitamin D insufficiency. Multivariate logistic regression analysis identified polytherapy >1 AED (odds ratio [OR] 2.16, 95% confidence interval [CI] 1.07-4.36), age >12 years (OR 4.16, 95% CI 1.13-15.30), Indian ethnicity (OR 6.97, 95% CI 2.48-19.55), sun exposure time 30-60 min/day (OR 2.44, 95% CI 1.05-5.67), sun exposure time <30 min/day (OR 3.83, 95% CI 1.61-9.09), and female (OR 2.61, 95% CI 1.31-5.20) as statistically significant (p < 0.05) risk factors for vitamin D deficiency. Despite living in the tropics, a high proportion of Malaysian children with epilepsy are at risk of vitamin D deficiency. Targeted strategies including vitamin D supplementation and lifestyle advice of healthy sunlight exposure behavior should be implemented among children with epilepsy, particularly for those at high risk of having vitamin D

  15. Identifying DNA-binding proteins using structural motifs and the electrostatic potential

    PubMed Central

    Shanahan, Hugh P.; Garcia, Mario A.; Jones, Susan; Thornton, Janet M.

    2004-01-01

    Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif. PMID:15356290

  16. Leptin Deficiency: Clinical Implications and Opportunities for Therapeutic Interventions

    PubMed Central

    Blüher, Susan; Shah, Sunali; Mantzoros, Christos S.

    2017-01-01

    The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and energy expenditure leading to a morbidly obese phenotype and a disrupted regulation in neuroendocrine and immune function and in glucose and fat metabolism. Observational and interventional studies in humans with (complete) congenital leptin deficiency caused by mutations in the leptin gene or with relative leptin deficiency as seen in states of negative energy balance such as lipoatrophy, anorexia nervosa, or exercise-induced hypothalamic and neuroendocrine dysfunction have contributed to the elucidation of the pathophysiological role of leptin in these conditions and of the clinical significance of leptin administration in these subjects. More specifically, interventional studies have demonstrated that several neuroendocrine, metabolic, or immune disturbances in these states could be restored by leptin administration. Leptin replacement therapy is currently available through a compassionate use program for congenital complete leptin deficiency and under an expanded access program to subjects with leptin deficiency associated with congenital or acquired lipoatrophy. In addition, leptin remains a potentially forthcoming treatment for several other states of energy deprivation including anorexia nervosa or milder forms of hypothalamic amenorrhea pending appropriate clinical trials. PMID:19730134

  17. Boron deficiency inhibits root growth by controlling meristem activity under cytokinin regulation.

    PubMed

    Poza-Viejo, Laura; Abreu, Isidro; González-García, Mary Paz; Allauca, Paúl; Bonilla, Ildefonso; Bolaños, Luis; Reguera, María

    2018-05-01

    Significant advances have been made in the last years trying to identify regulatory pathways that control plant responses to boron (B) deficiency. Still, there is a lack of a deep understanding of how they act regulating growth and development under B limiting conditions. Here, we analyzed the impact of B deficit on cell division leading to root apical meristem (RAM) disorganization. Our results reveal that inhibition of cell proliferation under the regulatory control of cytokinins (CKs) is an early event contributing to root growth arrest under B deficiency. An early recovery of QC46:GUS expression after transferring B-deficient seedlings to control conditions revealed a role of B in the maintenance of QC identity whose loss under deficiency occurred at later stages of the stress. Additionally, the D-type cyclin CYCD3 overexpressor and triple mutant cycd3;1-3 were used to evaluate the effect on mitosis inhibition at the G1-S boundary. Overall, this study supports the hypothesis that meristem activity is inhibited by B deficiency at early stages of the stress as it does cell elongation. Likewise, distinct regulatory mechanisms seem to take place depending on the severity of the stress. The results presented here are key to better understand early signaling responses under B deficiency. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Identifying potential recommendation domains for conservation agriculture in Ethiopia, Kenya, and Malawi.

    PubMed

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km(2)) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5% of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21% of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries.

  19. Identifying Potential Recommendation Domains for Conservation Agriculture in Ethiopia, Kenya, and Malawi

    NASA Astrophysics Data System (ADS)

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km2) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5 % of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21 % of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries.

  20. Systems to identify potentially inappropriate prescribing in people with advanced dementia: a systematic review.

    PubMed

    Disalvo, Domenica; Luckett, Tim; Agar, Meera; Bennett, Alexandra; Davidson, Patricia Mary

    2016-05-31

    Systems for identifying potentially inappropriate medications in older adults are not immediately transferrable to advanced dementia, where the management goal is palliation. The aim of the systematic review was to identify and synthesise published systems and make recommendations for identifying potentially inappropriate prescribing in advanced dementia. Studies were included if published in a peer-reviewed English language journal and concerned with identifying the appropriateness or otherwise of medications in advanced dementia or dementia and palliative care. The quality of each study was rated using the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) checklist. Synthesis was narrative due to heterogeneity among designs and measures. Medline (OVID), CINAHL, the Cochrane Database of Systematic Reviews (2005 - August 2014) and AMED were searched in October 2014. Reference lists of relevant reviews and included articles were searched manually. Eight studies were included, all of which were scored a high quality using the STROBE checklist. Five studies used the same system developed by the Palliative Excellence in Alzheimer Care Efforts (PEACE) Program. One study used number of medications as an index, and two studies surveyed health professionals' opinions on appropriateness of specific medications in different clinical scenarios. Future research is needed to develop and validate systems with clinical utility for improving safety and quality of prescribing in advanced dementia. Systems should account for individual clinical context and distinguish between deprescribing and initiation of medications.

  1. High Prevalence of Vitamin D Deficiency among Iranian Population: A Systematic Review and Meta-Analysis

    PubMed Central

    Tabrizi, Reza; Moosazadeh, Mahmood; Akbari, Maryam; Dabbaghmanesh, Mohammad Hossein; Mohamadkhani, Minoo; Asemi, Zatollah; Heydari, Seyed Taghi; Akbari, Mojtaba; Lankarani, Kamran B

    2018-01-01

    Background The prevention and correction of vitamin D deficiency requires a precise depiction of the current situation and identification of risk factors in each region. The present study attempted to determine these entities using a systematic review and meta-analysis in Iran. Methods Articles published online in Persian and English between 2000 and November 1, 2016, were reviewed. This was carried out using national databases such as SID, IranMedex, Magiran, and IranDoc and international databases such as PubMed, Google Scholar, and Scopus. The heterogeneity index among the studies was determined using the Cochran (Q) and I2 test. Based on the heterogeneity results, the random-effect model was applied to estimate the prevalence of vitamin D deficiency. In addition, meta-regression analysis was used to determine heterogeneity-suspected factors, and the Egger test was applied to identify publication bias. Results The meta-analysis of 48 studies identified 18531 individuals with vitamin D deficiency. According to the random-effect model, the prevalence of vitamin D deficiency among male, female, and pregnant women was estimated to be 45.64% (95% CI: 29.63 to 61.65), 61.90% (95% CI: 48.85 to 74.96), and 60.45% (95% CI: 23.73 to 97.16), respectively. The results of the meta-regression analysis indicated that the prevalence of vitamin D deficiency was significantly different in various geographical regions (β=4.4; P=0.023). Conclusion The results obtained showed a significant prevalence of vitamin D deficiency among the Iranian population, a condition to be addressed by appropriate planning. PMID:29749981

  2. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency

    NASA Astrophysics Data System (ADS)

    Tharkeshwar, Arun Kumar; Trekker, Jesse; Vermeire, Wendy; Pauwels, Jarne; Sannerud, Ragna; Priestman, David A.; Te Vruchte, Danielle; Vints, Katlijn; Baatsen, Pieter; Decuypere, Jean-Paul; Lu, Huiqi; Martin, Shaun; Vangheluwe, Peter; Swinnen, Johannes V.; Lagae, Liesbet; Impens, Francis; Platt, Frances M.; Gevaert, Kris; Annaert, Wim

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions.

  3. Novel Spectrophotometric Method for the Quantitation of Urinary Xanthurenic Acid and Its Application in Identifying Individuals with Hyperhomocysteinemia Associated with Vitamin B6 Deficiency

    PubMed Central

    Chen, Chi-Fen; Liu, Tsan-Zon; Lan, Wu-Hsiang; Wu, Li-An; Tsai, Chin-Hung; Chiou, Jeng-Fong; Tsai, Li-Yu

    2013-01-01

    A novel spectrophotometric method for the quantification of urinary xanthurenic acid (XA) is described. The direct acid ferric reduction (DAFR) procedure was used to quantify XA after it was purified by a solid-phase extraction column. The linearity of proposed method extends from 2.5 to 100.0 mg/L. The method is precise, yielding day-to-day CVs for two pooled controls of 3.5% and 4.6%, respectively. Correlation studies with an established HPLC method and a fluorometric procedure showed correlation coefficients of 0.98 and 0.98, respectively. Interference from various urinary metabolites was insignificant. In a small-scale screening of elderly conducted at Penghu county in Taiwan (n = 80), we were able to identify a group of twenty individuals having hyperhomocysteinemia (>15 μmole/L). Three of them were found to be positive for XA as analyzed by the proposed method, which correlated excellently with the results of the activation coefficient method for RBC's AST/B6 functional test. These data confirm the usefulness of the proposed method for identifying urinary XA as an indicator of vitamin B6 deficiency-associated hyperhomocysteinemic condition. PMID:24151616

  4. Racial/Ethnic Disparities in Nursing Home Quality of Life Deficiencies, 2001 to 2011

    PubMed Central

    Campbell, Lauren J.; Cai, Xueya; Gao, Shan; Li, Yue

    2016-01-01

    Objectives: Racial/ethnic disparities in nursing homes (NHs) are associated with lower quality of care, and state Medicaid payment policies may influence NH quality. However, no studies analyzing disparities in NH quality of life (QoL) exist. Therefore, this study aims to estimate associations at the NH level between average number of QoL deficiencies and concentrations of racial/ethnic minority residents, and to identify effects of state Medicaid payment policies on racial/ethnic disparities. Method: Multivariable Poisson regression with NH random effects was used to determine the association between NH minority concentration in 2000 to 2010 and average number of QoL deficiencies in 2001 to 2011 at the NH level, and the effect of state NH payment policies on QoL deficiencies and racial/ethnic disparities in QoL deficiencies across NH minority concentrations. Results: Racial/ethnic disparities in QoL between high and low minority concentration NHs decrease over time, but are not eliminated. Case mix payment was associated with an increased disparity between high and low minority concentration NHs in QoL deficiencies. Discussion: NH managers and policy makers should consider initiatives targeting minority residents or low-performing NHs with higher minority concentrations for improvement to reduce disparities and address QoL deficiencies. PMID:27819015

  5. Nutritional deficiency during colonoscopy preparation: the forgotten iatrogeny.

    PubMed

    Nunes, Gonçalo; Barata, Ana Teresa; Santos, Carla Adriana; Patita, Marta; Fonseca, Jorge

    2018-05-01

    bowel preparation for colonoscopy induces a semi-fasting state, with a potential negative impact on fragile patients. The present study aims to quantify nutritional deficiency during colonoscopy preparation. this was an observational and cross-sectional study. A convenience sample was obtained that included adults that underwent colonoscopy after bowel preparation with Klean-Prep® according to the center protocol. Anthropometric evaluation was performed and nutritional deficiency was calculated via the quantification of energy and protein intake during the 48 hours prior to the examination which was compared with the individuals' needs. The association between nutritional deficiency with the quality of bowel preparation, age and status (hospitalized/ambulatory) was evaluated. the study included 131 patients aged 21-91 years (mean 63.6 ± 13.2 years); 73 cases were male. Malnutrition reached 67.2% using specific anthropometric tools. A median preparation quality of six points was found when the Boston Bowel Preparation Scale was considered. The mean intake 48 hours prior to the procedure was 1,795 kcal and 100 g of protein. A daily energy intake of less than 50% of the individual needs was observed in 88 patients and less than 25% in 29 cases. The mean energy and protein deficiency were 59% (p < 0.01) and 45% (p < 0.01), and there was no correlation with preparation quality (p > 0.05). Nutritional defiency is similar in hospitalized and ambulatory patients (p > 0.05), but higher in older individuals (p = 0.04). nutritional deficiency during colonoscopy preparation was significant, more so in older patients, and there was no correlation with the quality of bowel preparation. We conclude that bowel preparation regimens should be reformulated with an improved nutritional intake and the inclusion of nutritional supplements without residues.

  6. Measurement of the IgG2 response to Pneumococcal capsular polysaccharides may identify an antibody deficiency in individuals referred for immunological investigation.

    PubMed

    Parker, Antony; Irure Ventura, Juan; Sims, Dawn; Echeverría de Carlos, Ainara; Gómez de la Torre, Ricardo; Tricas Aizpún, Lourdes; Ocejo-Vinyals, J Gonzalo; López-Hoyos, Marcos; Wallis, Gregg; Harding, Stephen

    2017-01-01

    IgG2 is the most efficient subclass for providing protection against pneumococcal pathogens. We hypothesised that some individuals may be unable to mount an effective pneumococcal capsular polysaccharide (PCP) IgG2 response despite having a normal PCP IgG concentration (PCP IgG2 deficient). The median pre-vaccination PCP IgG2 concentration was significantly lower in individuals referred for immunological investigation compared to healthy controls (2.8 mg/L range, 95% CI 1.1-88 vs. 29.5mg/L, 95% CI 13.5-90, p = 0.0002). PCP IgG:IgG2 ratios were significantly higher for the referral population than for healthy controls suggesting the increased production of PCP specific subclasses other than IgG2. The percentage of individuals with PCP IgG2 deficiency was significantly higher in referral groups compared to controls (31% vs. 5%; p = 0.0009) and in an individual with PCP IgG2 deficiency, the balance of PCP specific IgG subclass antibodies post vaccination changed from IgG2>IgG1>IgG3>IgG4 to IgG1>IgG3>IgG2>IgG4. The median PCP IgG2 concentration in those with PCP IgG2 deficiency was significantly lower in the referral groups compared to controls (7.8 mg/L, 95% CI 1.1-12 vs. 12.7 mg/L, 95% CI 11.8-13.1; p = 0.006). The data suggests a defect in the production PCP IgG2 may be present in individuals with normal PCP IgG referred for immunological investigation.

  7. Prenatal Choline Supplementation Diminishes Early-Life Iron Deficiency-Induced Reprogramming of Molecular Networks Associated with Behavioral Abnormalities in the Adult Rat Hippocampus.

    PubMed

    Tran, Phu V; Kennedy, Bruce C; Pisansky, Marc T; Won, Kyoung-Jae; Gewirtz, Jonathan C; Simmons, Rebecca A; Georgieff, Michael K

    2016-03-01

    Early-life iron deficiency is a common nutrient deficiency worldwide. Maternal iron deficiency increases the risk of schizophrenia and autism in the offspring. Postnatal iron deficiency in young children results in cognitive and socioemotional abnormalities in adulthood despite iron treatment. The rat model of diet-induced fetal-neonatal iron deficiency recapitulates the observed neurobehavioral deficits. We sought to establish molecular underpinnings for the persistent psychopathologic effects of early-life iron deficiency by determining whether it permanently reprograms the hippocampal transcriptome. We also assessed the effects of maternal dietary choline supplementation on the offspring's hippocampal transcriptome to identify pathways through which choline mitigates the emergence of long-term cognitive deficits. Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (4 g Fe/kg) from gestational day (G) 2 through postnatal day (PND) 7 and an iron-sufficient (IS) diet (200 g Fe/kg) thereafter. Control pups were provided IS diet throughout. Choline (5 g/kg) was given to half the pregnant dams in each group from G11 to G18. PND65 hippocampal transcriptomes were assayed by next generation sequencing (NGS) and analyzed with the use of knowledge-based Ingenuity Pathway Analysis. Real-time polymerase chain reaction was performed to validate a subset of altered genes. Formerly ID rats had altered hippocampal expression of 619 from >10,000 gene loci sequenced by NGS, many of which map onto molecular networks implicated in psychological disorders, including anxiety, autism, and schizophrenia. There were significant interactions between iron status and prenatal choline treatment in influencing gene expression. Choline supplementation reduced the effects of iron deficiency, including those on gene networks associated with autism and schizophrenia. Fetal-neonatal iron deficiency reprograms molecular networks associated with the

  8. Application of wide selected-ion monitoring data-independent acquisition to identify tomato fruit proteins regulated by the CUTIN DEFICIENT2 transcription factor.

    PubMed

    Martin, Laetitia B B; Sherwood, Robert W; Nicklay, Joshua J; Yang, Yong; Muratore-Schroeder, Tara L; Anderson, Elizabeth T; Thannhauser, Theodore W; Rose, Jocelyn K C; Zhang, Sheng

    2016-08-01

    We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral library consisting of 11 753 unique peptides, corresponding to 2338 tomato protein groups, was used and the DIA analysis was performed at the MS1 level utilizing narrow mass windows for extraction with Skyline 2.6 software. We identified a total of 1140 proteins, 67 of which had expression levels that differed significantly between the cd2 tomato mutant and the wild-type cultivar M82. Differentially expressed proteins including a key protein involved in cutin biosynthesis, were selected for validation by target SRM/MRM and by Western blot analysis. In addition to confirming a role for CD2 in regulating cuticle formation, the results also revealed that CD2 influences pathways associated with cell wall biology, anthocyanin biosynthesis, plant development, and responses to stress, which complements findings of earlier RNA-Seq experiments. Our results provide new insights into molecular processes and aspects of fruit biology associated with CD2 function, and demonstrate that the WiSIM-DIA is an effective quantitative approach for global protein identifications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application of wide selected-ion monitoring data-independent acquisition to identify tomato fruit proteins regulated by the CUTIN DEFICIENT2 transcription factor

    PubMed Central

    Martin, Laetitia B. B.; Sherwood, Robert W.; Nicklay, Joshua J.; Yang, Yong; Muratore-Schroeder, Tara L.; Anderson, Elizabeth T.; Thannhauser, Theodore W.; Rose, Jocelyn K. C.; Zhang, Sheng

    2017-01-01

    We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral library consisting of 11 753 unique peptides, corresponding to 2338 tomato protein groups, was used and the DIA analysis was performed at the MS1 level utilizing narrow mass windows for extraction with Skyline 2.6 software. We identified a total of 1140 proteins, 67 of which had expression levels that differed significantly between the cd2 tomato mutant and the wild-type cultivar M82. Differentially expressed proteins including a key protein involved in cutin biosynthesis, were selected for validation by target SRM/MRM and by Western blot analysis. In addition to confirming a role for CD2 in regulating cuticle formation, the results also revealed that CD2 influences pathways associated with cell wall biology, anthocyanin biosynthesis, plant development, and responses to stress, which complements findings of earlier RNA-Seq experiments. Our results provide new insights into molecular processes and aspects of fruit biology associated with CD2 function, and demonstrate that the WiSIM-DIA is an effective quantitative approach for global protein identifications. PMID:27089858

  10. Selective IgA Deficiency

    MedlinePlus

    ... immunoglobulins. Videos: Choosing Wisely » Selective IgA Deficiency Treatment & Management The underlying cause for Selective IgA Deficiency is ... the Evidence » Practice Parameter for the Diagnosis and Management of Primary Immunodefiency » 2017 Non-CME Recordings » Vaccination ...

  11. Combined vitamin C and vitamin E deficiency worsens early atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Babaev, Vladimir R; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F; May, James M

    2010-09-01

    To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis (an inflammatory condition associated with oxidative stress), 4 combinations of vitamin supplementation (low C/low E, low C/high E, high C/low E, and high C/high E) were studied in atherosclerosis-prone apolipoprotein E-deficient mice also unable to synthesize their own vitamin C (gulonolactone oxidase(-/-)); and to evaluate the effect of a more severe depletion of vitamin C alone in a second experiment using gulonolactone oxidase(-/-) mice carrying the hemizygous deletion of SVCT2 (the vitamin C transporter). After 8 weeks of a high-fat diet (16% lard and 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2- to 3-fold in male mice, although only plaque macrophage content was increased in female mice. A more severe deficiency of vitamin C in gulonolactone oxidase(-/-) mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apolipoprotein E(-/-) mice compared with littermates receiving a diet replete in vitamin C, again most clearly in males. Combined deficiencies of vitamins E and C are required to worsen early atherosclerosis in an apolipoprotein E-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete.

  12. Genetics Home Reference: factor V deficiency

    MedlinePlus

    ... Twitter Home Health Conditions Factor V deficiency Factor V deficiency Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Factor V deficiency is a rare bleeding disorder. The signs ...

  13. Genetics Home Reference: protein C deficiency

    MedlinePlus

    ... Twitter Home Health Conditions Protein C deficiency Protein C deficiency Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Protein C deficiency is a disorder that increases the risk ...

  14. Genetics Home Reference: factor X deficiency

    MedlinePlus

    ... Twitter Home Health Conditions Factor X deficiency Factor X deficiency Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Factor X deficiency is a rare bleeding disorder that varies ...

  15. Genomic Analysis of Storage Protein Deficiency in Genetically Related Lines of Common Bean (Phaseolus vulgaris)

    PubMed Central

    Pandurangan, Sudhakar; Diapari, Marwan; Yin, Fuqiang; Munholland, Seth; Perry, Gregory E.; Chapman, B. Patrick; Huang, Shangzhi; Sparvoli, Francesca; Bollini, Roberto; Crosby, William L.; Pauls, Karl P.; Marsolais, Frédéric

    2016-01-01

    A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in β-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might

  16. Intravenous ferric carboxymaltose for the treatment of iron deficiency anemia

    PubMed Central

    Friedrisch, João Ricardo; Cançado, Rodolfo Delfini

    2015-01-01

    Nutritional iron deficiency anemia is the most common deficiency disorder, affecting more than two billion people worldwide. Oral iron supplementation is usually the first choice for the treatment of iron deficiency anemia, but in many conditions, oral iron is less than ideal mainly because of gastrointestinal adverse events and the long course needed to treat the disease and replenish body iron stores. Intravenous iron compounds consist of an iron oxyhydroxide core, which is surrounded by a carbohydrate shell made of polymers such as dextran, sucrose or gluconate. The first iron product for intravenous use was the high molecular weight iron dextran. However, dextran-containing intravenous iron preparations are associated with an elevated risk of anaphylactic reactions, which made physicians reluctant to use intravenous iron for the treatment of iron deficiency anemia over many years. Intravenous ferric carboxymaltose is a stable complex with the advantage of being non-dextran-containing and a very low immunogenic potential and therefore not predisposed to anaphylactic reactions. Its properties permit the administration of large doses (15 mg/kg; maximum of 1000 mg/infusion) in a single and rapid session (15-minute infusion) without the requirement of a test dose. The purpose of this review is to discuss some pertinent issues in relation to the history, pharmacology, administration, efficacy, and safety profile of ferric carboxymaltose in the treatment of patients with iron deficiency anemia. PMID:26670403

  17. Prospective signs of cleidocranial dysplasia in Cebpb deficiency

    PubMed Central

    2014-01-01

    Background Although runt-related transcription factor 2 (RUNX2) has been considered a determinant of cleidocranial dysplasia (CCD), some CCD patients were free of RUNX2 mutations. CCAAT/enhancer-binding protein beta (Cebpb) is a key factor of Runx2 expression and our previous study has reported two CCD signs including hyperdontia and elongated coronoid process of the mandible in Cebpb deficient mice. Following that, this work aimed to conduct a case-control study of thoracic, zygomatic and masticatory muscular morphology to propose an association between musculoskeletal phenotypes and deficiency of Cebpb, using a sample of Cebpb-/-, Cebpb+/- and Cebpb+/+ adult mice. Somatic skeletons and skulls of mice were inspected with soft x-rays and micro-computed tomography (μCT), respectively. Zygomatic inclination was assessed using methods of coordinate geometry and trigonometric function on anatomic landmarks identified with μCT. Masseter and temporal muscles were collected and weighed. Expression of Cebpb was examined with a reverse transcriptase polymerase chain reaction (RT-PCR) technique. Results Cebpb-/- mice displayed hypoplastic clavicles, a narrow thoracic cage, and a downward tilted zygomatic arch (p < 0.001). Although Cebpb+/- mice did not show the phenotypes above (p = 0.357), a larger mass percentage of temporal muscles over masseter muscles was seen in Cebpb+/- littermates (p = 0.012). The mRNA expression of Cebpb was detected in the clavicle, the zygoma, the temporal muscle and the masseter muscle, respectively. Conclusions Prospective signs of CCD were identified in mice with Cebpb deficiency. These could provide an additional aetiological factor of CCD. Succeeding investigation into interactions among Cebpb, Runx2 and musculoskeletal development is indicated. PMID:24885110

  18. Heterogeneity of G6PD deficiency prevalence in Mozambique: a school-based cross-sectional survey in three different regions.

    PubMed

    Galatas, Beatriz; Mabote, Lurdes; Simone, Wilson; Matambisso, Gloria; Nhamussua, Lidia; Mañú-Pereira, María Del Mar; Menéndez, Clara; Saute, Francisco; Macete, Eusebio; Bassat, Quique; Alonso, Pedro; Aide, Pedro

    2017-01-19

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary enzymatic abnormality that affects more than 400 million people worldwide. Most deficient individuals do not manifest any symptoms; however, several precipitant agents-such as fava intake, infections, or several drugs-may trigger acute haemolytic anaemia. Countries should be informed of the prevalence of this enzymatic anomaly within their borders, in order to make safe and appropriate national decisions regarding the use of potentially unsafe drugs for G6PD deficient individuals. A school-based cross-sectional survey was conducted in three districts in Mozambique, namely Manhiça, located in the south; Mocuba in the centre; and Pemba in the northern tip of the country. G6PD deficiency was evaluated using the CareStart™ diagnostic test, and enzyme activity levels were measured through fluorescence spectrophotometry in deficient individuals. Chi squared and ANOVA tests were used to assess prevalence and mean enzyme activity differences, and logistic regression was used to identify risk factors associated to the deficiency. G6PD deficiency prevalence estimates were lowest in the northern city of Pemba (8.3%) and among Emakhuwas and Shimakondes, and higher in the centre and southern regions of the country (16.8 and 14.6%, respectively), particularly among Elomwes and Xichanganas. G6PD deficiency was significantly more prevalent among male students than females (OR = 1.4, 95% CI 1.0-1.8, p = 0.02), although enzyme activity levels were not different among deficient individuals from either gender group. Finally, median deficiency levels were found to be more severe among the deficient students from the north (0.7 U/gHg [0.2-0.7] p < 0.001) and south (0.7 U/gHg [0.5-2.5]), compared to those from the centre (1.4 U/gHg [0.6-2.1]). These findings suggest that Mozambique, as a historically high malaria-endemic country has considerable levels of G6PD deficiency, that vary significantly

  19. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease

    PubMed Central

    Hecker, Peter A.; Leopold, Jane A.; Gupte, Sachin A.; Recchia, Fabio A.

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the rate-determining step in the pentose phosphate pathway and produces NADPH to fuel glutathione recycling. G6PD deficiency is the most common enzyme deficiency in humans and affects over 400 million people worldwide; however, its impact on cardiovascular disease is poorly understood. The glutathione pathway is paramount to antioxidant defense, and G6PD-deficient cells do not cope well with oxidative damage. Limited clinical evidence indicates that G6PD deficiency may be associated with hypertension. However, there are also data to support a protective role of G6PD deficiency in decreasing the risk of heart disease and cardiovascular-associated deaths, perhaps through a decrease in cholesterol synthesis. Studies in G6PD-deficient (G6PDX) mice are mixed and provide evidence for both protective and deleterious effects. G6PD deficiency may provide a protective effect through decreasing cholesterol synthesis, superoxide production, and reductive stress. However, recent studies indicate that G6PDX mice are moderately more susceptible to ventricular dilation in response to myocardial infarction or pressure overload-induced heart failure. Furthermore, G6PDX hearts do not recover as well as nondeficient mice when faced with ischemia-reperfusion injury, and G6PDX mice are susceptible to the development of age-associated cardiac hypertrophy. Overall, the limited available data indicate a complex interplay in which adverse effects of G6PD deficiency may outweigh potential protective effects in the face of cardiac stress. Definitive clinical studies in large populations are needed to determine the effects of G6PD deficiency on the development of cardiovascular disease and subsequent outcomes. PMID:23241320

  20. A Psychoevolutionary Approach to Identifying Preferred Nature Scenes With Potential to Provide Restoration From Stress.

    PubMed

    Thake, Carol L; Bambling, Matthew; Edirippulige, Sisira; Marx, Eric

    2017-10-01

    Research supports therapeutic use of nature scenes in healthcare settings, particularly to reduce stress. However, limited literature is available to provide a cohesive guide for selecting scenes that may provide optimal therapeutic effect. This study produced and tested a replicable process for selecting nature scenes with therapeutic potential. Psychoevolutionary theory informed the construction of the Importance for Survival Scale (IFSS), and its usefulness for identifying scenes that people generally prefer to view and that hold potential to reduce stress was tested. Relationships between Importance for Survival (IFS), preference, and restoration were tested. General community participants ( N = 20 males, 20 females; M age = 48 years) Q-sorted sets of landscape photographs (preranked by the researcher in terms of IFS using the IFSS) from most to least preferred, and then completed the Short-Version Revised Restoration Scale in response to viewing a selection of the scenes. Results showed significant positive relationships between IFS and each of scene preference (large effect), and restoration potential (medium effect), as well as between scene preference and restoration potential across the levels of IFS (medium effect), and for individual participants and scenes (large effect). IFS was supported as a framework for identifying nature scenes that people will generally prefer to view and that hold potential for restoration from emotional distress; however, greater therapeutic potential may be expected when people can choose which of the scenes they would prefer to view. Evidence for the effectiveness of the IFSS was produced.

  1. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    DOE PAGES

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric; ...

    2015-03-30

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1more » amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. Finally, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.« less

  2. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1more » amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. Finally, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.« less

  3. DNA Repair Deficiency in Neurodegeneration

    PubMed Central

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A.; Stevnsner, Tinna

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington’s disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration. PMID:21550379

  4. Genetics Home Reference: factor VII deficiency

    MedlinePlus

    ... Facebook Twitter Home Health Conditions Factor VII deficiency Factor VII deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Factor VII deficiency is a rare bleeding disorder that varies ...

  5. [Prevalence of vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period].

    PubMed

    do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado Junior, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2015-01-01

    To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95% was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α<5%. From 226 women included, 200 (88.5%) were 20 to 44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  6. Fetal and neonatal iron deficiency but not copper deficiency increases vascular complexity in the developing rat brain

    PubMed Central

    Bastian, Thomas W.; Santarriaga, Stephanie; Nguyen, Thu An; Prohaska, Joseph R.; Georgieff, Michael K.; Anderson, Grant W.

    2015-01-01

    Objectives Anemia caused by nutritional deficiencies, such as iron and copper deficiencies, is a global health problem. Iron and copper deficiencies have their most profound effect on the developing fetus/infant, leading to brain development deficits and poor cognitive outcomes. Tissue iron depletion or chronic anemia can induce cellular hypoxic signaling. In mice, chronic hypoxia induces a compensatory increase in brain blood vessel outgrowth. We hypothesized that developmental anemia, due to iron or copper deficiencies, induces angiogenesis/vasculogenesis in the neonatal brain. Methods To test our hypothesis, three independent experiments were performed where pregnant rats were fed iron- or copper-deficient diets from gestational day 2 through mid-lactation. Effects on the neonatal brain vasculature were determined using qPCR to assess mRNA levels of angiogenesis/vasculogenesis-associated genes and GLUT1 immunohistochemistry (IHC) to assess brain blood vessel density and complexity. Results Iron deficiency, but not copper deficiency, increased mRNA expression of brain endothelial cell- and angiogenesis/vasculogenesis-associated genes (i.e. Glut1, Vwf, Vegfa, Ang2, Cxcl12, and Flk1) in the neonatal brain, suggesting increased cerebrovascular density. Iron deficiency also increased hippocampal and cerebral cortical blood vessel branching by 62% and 78%, respectively. Discussion This study demonstrates increased blood vessel complexity in the neonatal iron-deficient brain, which is likely due to elevated angiogenic/vasculogenic signaling. At least initially, this is probably an adaptive response to maintain metabolic substrate homeostasis in the developing iron-deficient brain. However, this may also contribute to long-term neurodevelopmental deficits. PMID:26177275

  7. Nutritional Deficiencies in Chinese Patients Undergoing Gastric Bypass and Sleeve Gastrectomy: Prevalence and Predictors.

    PubMed

    Guan, Bingsheng; Yang, Jingge; Chen, Yanya; Yang, Wah; Wang, Cunchuan

    2018-05-12

    Nutritional deficiencies have been reported in bariatric surgery patients with inconsistent results. However, scarce data exist for Chinese patients. We aimed to assess nutritional deficiencies in Chinese patients undergoing Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), and to identify predictors of postoperative nutritional status. A retrospective review of a prospectively collected database was conducted in the patients undergoing RYGB and SG in our hospital between June 2013 and January 2017. Anthropometric data and nutritional data were collected before surgery, at 6 and 12 months postoperatively. This study enrolled 269 patients (120 RYGB, 149 SG). Nutritional deficiencies were common in Chinese bariatric candidates, with vitamin D deficiency the most serious (78.8%), followed by vitamin B1 (39.2%), vitamin B6 (28.0%), folate (26.8%), vitamin C (18.0%) albumin (13.4%), transferrin (11.6%), and phosphorus (11.5%). Despite postoperative routine multivitamin and calcium supplements, nutritional deficiencies were still obvious for RYGB and SG patients. The prevalence of hemoglobin and vitamin B12 deficiencies increased remarkably in the RYGB group; the levels of hemoglobin, globin, vitamin B12, and ferritin decreased significantly (P < 0.05). Preoperative hemoglobin, vitamin B12, and ferritin levels were independently associated with postoperative decrease, respectively. Deficiencies of vitamin D, vitamin B1, vitamin B6, vitamin C, and albumin before surgery were predictors for deficiencies 1 year after surgery, respectively. Nutritional deficiencies are common in Chinese bariatric surgery candidates. Similar deficiencies were also seen after RYGB and SG. Routine evaluation and related corrections of preoperative nutritional abnormity could contribute to postoperative nutrient balance.

  8. Infant anaemia is associated with infection, low birthweight and iron deficiency in rural Bangladesh.

    PubMed

    Eneroth, Hanna; Persson, Lars-Åke; El Arifeen, Shams; Ekström, Eva-Charlotte

    2011-02-01

    To estimate the prevalence of infant anaemia and its association with iron deficiency, growth, infection and other micronutrient deficiencies. Using data from MINIMat, a randomized maternal food and micronutrient supplementation trial, we assessed the associations between anaemia (haemoglobin < 105 g/L) in 580 infants at 6 months and deficiencies of iron, vitamin A, vitamin B12, zinc and folate, infection and anthropometric indices. Variables associated with anaemia in bivariate analyses were evaluated in logistic regression models, adjusting for potential confounders. Anaemia was found in 46% of the infants, and among these, 28% had iron deficiency (plasma ferritin <9 μg/L). Elevated C-reactive protein (>10mg/L) (OR = 2.7, 95% CI: 1.6, 4.7), low birthweight (OR = 2.3, 95% CI: 1.5, 3.5) and iron deficiency (OR = 2.2, 95% CI: 1.4, 3.6) were independently associated with increased risk for anaemia. We also observed a seasonal variation in anaemia not mediated through the other factors studied. In a cohort in rural Bangladesh, anaemia at age 6 months was common and associated with infection, low birthweight and iron deficiency. © 2010 The Author(s)/Acta Paediatrica © 2010 Foundation Acta Paediatrica.

  9. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.

    PubMed

    Dey-Rao, Rama; Sinha, Animesh A

    2017-01-28

    Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. Unsupervised clustering methods of the VL-blood dataset demonstrate a "disease-state"-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as "hidden" (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional "hot spot" that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address

  10. Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency

    PubMed Central

    Burrage, Lindsay C.; Sun, Qin; Elsea, Sarah H.; Jiang, Ming-Ming; Nagamani, Sandesh C.S.; Frankel, Arthur E.; Stone, Everett; Alters, Susan E.; Johnson, Dale E.; Rowlinson, Scott W.; Georgiou, George; Lee, Brendan H.

    2015-01-01

    Arginase deficiency is caused by deficiency of arginase 1 (ARG1), a urea cycle enzyme that converts arginine to ornithine. Clinical features of arginase deficiency include elevated plasma arginine levels, spastic diplegia, intellectual disability, seizures and growth deficiency. Unlike other urea cycle disorders, recurrent hyperammonemia is typically less severe in this disorder. Normalization of plasma arginine levels is the consensus treatment goal, because elevations of arginine and its metabolites are suspected to contribute to the neurologic features. Using data from patients enrolled in a natural history study conducted by the Urea Cycle Disorders Consortium, we found that 97% of plasma arginine levels in subjects with arginase deficiency were above the normal range despite conventional treatment. Recently, arginine-degrading enzymes have been used to deplete arginine as a therapeutic strategy in cancer. We tested whether one of these enzymes, a pegylated human recombinant arginase 1 (AEB1102), reduces plasma arginine in murine models of arginase deficiency. In neonatal and adult mice with arginase deficiency, AEB1102 reduced the plasma arginine after single and repeated doses. However, survival did not improve likely, because this pegylated enzyme does not enter hepatocytes and does not improve hyperammonemia that accounts for lethality. Although murine models required dosing every 48 h, studies in cynomolgus monkeys indicate that less frequent dosing may be possible in patients. Given that elevated plasma arginine rather than hyperammonemia is the major treatment challenge, we propose that AEB1102 may have therapeutic potential as an arginine-reducing agent in patients with arginase deficiency. PMID:26358771

  11. Plasticity of the Arabidopsis Root System under Nutrient Deficiencies1[C][W][OPEN

    PubMed Central

    Gruber, Benjamin D.; Giehl, Ricardo F.H.; Friedel, Swetlana; von Wirén, Nicolaus

    2013-01-01

    Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program. PMID:23852440

  12. Mismatch repair deficiency commonly precedes adenoma formation in Lynch Syndrome-Associated colorectal tumorigenesis.

    PubMed

    Sekine, Shigeki; Mori, Taisuke; Ogawa, Reiko; Tanaka, Masahiro; Yoshida, Hiroshi; Taniguchi, Hirokazu; Nakajima, Takeshi; Sugano, Kokichi; Yoshida, Teruhiko; Kato, Mamoru; Furukawa, Eisaku; Ochiai, Atsushi; Hiraoka, Nobuyoshi

    2017-08-01

    Lynch syndrome is a cancer predisposition syndrome caused by germline mutations in mismatch repair (MMR) genes. MMR deficiency is a ubiquitous feature of Lynch syndrome-associated colorectal adenocarcinomas; however, it remains unclear when the MMR-deficient phenotype is acquired during tumorigenesis. To probe this issue, the present study examined genetic alterations and MMR statuses in Lynch syndrome-associated colorectal adenomas and adenocarcinomas, in comparison with sporadic adenomas. Among the Lynch syndrome-associated colorectal tumors, 68 of 86 adenomas (79%) and all adenocarcinomas were MMR-deficient, whereas all the sporadic adenomas were MMR-proficient, as determined by microsatellite instability testing and immunohistochemistry for MMR proteins. Sequencing analyses identified APC or CTNNB1 mutations in the majority of sporadic adenomas (58/84, 69%) and MMR-proficient Lynch syndrome-associated adenomas (13/18, 72%). However, MMR-deficient Lynch syndrome-associated adenomas had less APC or CTNNB1 mutations (25/68, 37%) and frequent frameshift RNF43 mutations involving mononucleotide repeats (45/68, 66%). Furthermore, frameshift mutations affecting repeat sequences constituted 14 of 26 APC mutations (54%) in MMR-deficient adenomas whereas these frameshift mutations were rare in MMR-proficient adenomas in patients with Lynch syndrome (1/12, 8%) and in sporadic adenomas (3/52, 6%). Lynch syndrome-associated adenocarcinomas exhibited mutation profiles similar to those of MMR-deficient adenomas. Considering that WNT pathway activation sufficiently drives colorectal adenoma formation, the distinct mutation profiles of WNT pathway genes in Lynch syndrome-associated adenomas suggest that MMR deficiency commonly precedes adenoma formation.

  13. Nightmares in the general population: identifying potential causal factors.

    PubMed

    Rek, Stephanie; Sheaves, Bryony; Freeman, Daniel

    2017-09-01

    Nightmares are inherently distressing, prevent restorative sleep, and are associated with a number of psychiatric problems, but have rarely been the subject of empirical study. Negative affect, linked to stressful events, is generally considered the key trigger of nightmares; hence nightmares have most often been considered in the context of post-traumatic stress disorder (PTSD). However, many individuals with heightened negative affect do not have nightmares. The objective of this study was to identify mechanistically plausible factors, beyond negative affect, that may explain why individuals experience nightmares. 846 participants from the UK general population completed an online survey about nightmare occurrence and severity (pre-occupation, distress, and impairment), negative affect, worry, depersonalisation, hallucinatory experiences, paranoia, alcohol use, sleep duration, physical activity levels, PTSD symptoms, and stressful life events. Associations of nightmares with the putative predictive factors were tested controlling for levels of negative affect. Analyses were also repeated controlling for levels of PTSD and the recent occurrence of stressful life events. Nightmare occurrence, adjusting for negative affect, was associated with higher levels of worry, depersonalisation, hallucinatory experiences, paranoia, and sleep duration (odds ratios 1.25-1.45). Nightmare severity, controlling for negative affect, was associated with higher levels of worry, depersonalisation, hallucinatory experiences, and paranoia (R 2 s: 0.33-0.39). Alcohol use and physical activity levels were not associated with nightmares. The study identifies a number of potential predictors of the occurrence and severity of nightmares. Causal roles require testing in future longitudinal, experimental, and treatment studies.

  14. Risk-Based Questionnaires Fail to Detect Adolescent Iron Deficiency and Anemia.

    PubMed

    Sekhar, Deepa L; Murray-Kolb, Laura E; Schaefer, Eric W; Paul, Ian M

    2017-08-01

    To evaluate the predictive ability of screening questionnaires to identify adolescent women at high-risk for iron deficiency or iron deficiency anemia who warrant objective laboratory testing. Cross-sectional study of 96 female individuals 12-21 years old seen at an academic medical center. Participants completed an iron deficiency risk assessment questionnaire including the 4 Bright Futures Adolescent Previsit Questionnaire anemia questions, along with depression, attention, food insecurity, and daytime sleepiness screens. Multiple linear regression controlling for age, race, and hormonal contraception use compared the predictive ability of 2 models for adolescent iron deficiency (defined as ferritin <12 mcg/L) and anemia (hemoglobin <12 g/dL). Model 1, the Bright Futures questions, was compared with model 2, which included the 4 aforementioned screens and body mass index percentile. Among participants, 18% (17/96) had iron deficiency and 5% (5/96) had iron deficiency anemia. Model 1 (Bright Futures) poorly predicted ferritin and hemoglobin values (R 2  = 0.03 and 0.08, respectively). Model 2 demonstrated similarly poor predictive ability (R 2  = 0.05 and 0.06, respectively). Mean differences for depressive symptoms (0.3, 95% CI -0.2, 0.8), attention difficulty (-0.1, 95% CI -0.5, 0.4), food insecurity (0.04, 95% CI -0.5, 0.6), daytime sleepiness (0.1, 95% CI -0.1, 0.3), and body mass index percentile (-0.04, 95% CI -0.3, 0.2) were not significantly associated with ferritin in model 2. Mean differences for hemoglobin were also nonsignificant. Risk-based surveys poorly predict objective measures of iron status using ferritin and hemoglobin. Next steps are to establish the optimal timing for objective assessment of adolescent iron deficiency and anemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Enzymatic testing sensitivity, variability and practical diagnostic algorithm for pyruvate dehydrogenase complex (PDC) deficiency.

    PubMed

    Shin, Ha Kyung; Grahame, George; McCandless, Shawn E; Kerr, Douglas S; Bedoyan, Jirair K

    2017-11-01

    Pyruvate dehydrogenase complex (PDC) deficiency is a major cause of primary lactic acidemia in children. Prompt and correct diagnosis of PDC deficiency and differentiating between specific vs generalized, or secondary deficiencies has important implications for clinical management and therapeutic interventions. Both genetic and enzymatic testing approaches are being used in the diagnosis of PDC deficiency. However, the diagnostic efficacy of such testing approaches for individuals affected with PDC deficiency has not been systematically investigated in this disorder. We sought to evaluate the diagnostic sensitivity and variability of the various PDC enzyme assays in females and males at the Center for Inherited Disorders of Energy Metabolism (CIDEM). CIDEM data were filtered by lactic acidosis and functional PDC deficiency in at least one cell/tissue type (blood lymphocytes, cultured fibroblasts or skeletal muscle) identifying 186 subjects (51% male and 49% female), about half were genetically resolved with 78% of those determined to have a pathogenic PDHA1 mutation. Assaying PDC in cultured fibroblasts in cases where the underlying genetic etiology is PDHA1, was highly sensitive irrespective of gender; 97% (95% confidence interval [CI]: 90%-100%) and 91% (95% CI: 82%-100%) in females and males, respectively. In contrast to the fibroblast-based testing, the lymphocyte- and muscle-based testing were not sensitive (36% [95% CI: 11%-61%, p=0.0003] and 58% [95% CI: 30%-86%, p=0.014], respectively) for identifying known PDC deficient females with pathogenic PDHA1 mutations. In males with a known PDHA1 mutation, the sensitivity of the various cell/tissue assays (75% lymphocyte, 91% fibroblast and 88% muscle) were not statistically different, and the discordance frequency due to the specific cell/tissue used for assaying PDC was 0.15±0.11. Based on this data, a practical diagnostic algorithm is proposed accounting for current molecular approaches, enzyme testing

  16. Vitamin D deficiency and associated factors in hemodialysis patients.

    PubMed

    Jean, Guillaume; Charra, Bernard; Chazot, Charles

    2008-09-01

    mineral density. In multivariate logistic regression analyses, no factors were significantly associated with vitamin D deficiency. Calcidiol deficiency was highly prevalent in a French dialysis population. The associated factors mainly included female sex, diabetes, shorter dialysis duration, and higher intact parathyroid hormone level. Although there are no guidelines for the therapy of patients with chronic kidney disease at stage 5, the usefulness of vitamin D supplementation may be assessed by considering its potential direct action, the need for providing fuel for renal and extrarenal calcitriol production in particular, and the numerous potential favorable effects on health.

  17. Combined Vitamin C and Vitamin E Deficiency Worsens Early Atherosclerosis in ApoE-Deficient Mice

    PubMed Central

    Babaev, Vladimir R.; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F.; May, James M.

    2010-01-01

    Objective Atherosclerosis is an inflammatory condition associated with oxidative stress, but controversy persists regarding whether antioxidants such as vitamins C and E are preventative. To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis, four combinations of vitamin supplementation (Low C/Low E, Low C/High E, High C/Low E, High C/High E) were studied in atherosclerosis-prone apolipoprotein E (apoE)-deficient mice also unable to synthesize their own vitamin C (gulo−/−). The effect of a more severe depletion of vitamin C alone was evaluated in a second experiment using gulo−/− mice carrying the hemizygous deletion of SVCT2, the vitamin C transporter. Methods and Results After 8 weeks on a high-fat diet (16% lard, 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2-3-fold in males, although only plaque macrophage content was increased in females. A more severe deficiency of vitamin C in gulo−/− mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apoE−/− mice compared to littermates on a diet replete in vitamin C, again most clearly in males. Conclusion Combined vitamin E and C deficiencies are required to worsen early atherosclerosis in an apoE-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete. PMID:20558818

  18. Citrus can help prevent vitamin A deficiency in developing countries

    USDA-ARS?s Scientific Manuscript database

    California is a major producer of tangerines and oranges, which contain carotenoids that form vitamin A. Deficiencies of this vitamin are common in southern Asia and Africa, causing blindness and more than one-half million deaths each year. We evaluated the potential of tangerines and oranges to pre...

  19. Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice.

    PubMed

    Gross, Adi; Benninger, Felix; Madar, Ravit; Illouz, Tomer; Griffioen, Kathleen; Steiner, Israel; Offen, Daniel; Okun, Eitan

    2017-04-01

    Epilepsy affects 60 million people worldwide. Despite the development of antiepileptic drugs, up to 35% of patients are drug refractory with uncontrollable seizures. Toll-like receptors (TLRs) are central components of the nonspecific innate inflammatory response. Because TLR3 was recently implicated in neuronal plasticity, we hypothesized that it may contribute to the development of epilepsy after status epilepticus (SE). To test the involvement of TLR3 in epileptogenesis, we used the pilocarpine model for SE in TLR3-deficient mice and their respective wild-type controls. In this model, a single SE event leads to spontaneous recurrent seizures (SRS). Two weeks after SE, mice were implanted with wireless electroencephalography (EEG) transmitters for up to 1 month. The impact of TLR3 deficiency on SE was assessed using separate cohorts of mice regarding EEG activity, seizure progression, hippocampal microglial distribution, and expression of the proinflammatory cytokines tumor necrosis factor (TNF)α and interferon (IFN)β. Our data indicate that TLR3 deficiency reduced SRS, microglial activation, and the levels of the proinflammatory cytokines TNFα and IFNβ, and increased survival following SE. This study reveals novel insights into the pathophysiology of epilepsy and the contribution of TLR3 to disease progression. Our results identify the TLR3 pathway as a potential future therapeutic target in SE. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  20. What Is Combined Deficiency of Vitamin K-Dependent Clotting Factors?

    MedlinePlus

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  1. Identifying Potential Collapse Features Under Highways

    DOT National Transportation Integrated Search

    2003-01-01

    In 1994, subsidence features were identified on Interstate 70 in eastern Ohio. These : features were caused by collapse of old mine workings beneath the highway. An attempt : was made to delineate these features using geophysical methods with no avai...

  2. Use of multi-criteria decision analysis to identify potentially dangerous glacial lakes.

    PubMed

    Kougkoulos, Ioannis; Cook, Simon J; Jomelli, Vincent; Clarke, Leon; Symeonakis, Elias; Dortch, Jason M; Edwards, Laura A; Merad, Myriam

    2018-04-15

    Glacial Lake Outburst Floods (GLOFs) represent a significant threat in deglaciating environments, necessitating the development of GLOF hazard and risk assessment procedures. Here, we outline a Multi-Criteria Decision Analysis (MCDA) approach that can be used to rapidly identify potentially dangerous lakes in regions without existing tailored GLOF risk assessments, where a range of glacial lake types exist, and where field data are sparse or non-existent. Our MCDA model (1) is desk-based and uses freely and widely available data inputs and software, and (2) allows the relative risk posed by a range of glacial lake types to be assessed simultaneously within any region. A review of the factors that influence GLOF risk, combined with the strict rules of criteria selection inherent to MCDA, has allowed us to identify 13 exhaustive, non-redundant, and consistent risk criteria. We use our MCDA model to assess the risk of 16 extant glacial lakes and 6 lakes that have already generated GLOFs, and found that our results agree well with previous studies. For the first time in GLOF risk assessment, we employed sensitivity analyses to test the strength of our model results and assumptions, and to identify lakes that are sensitive to the criteria and risk thresholds used. A key benefit of the MCDA method is that sensitivity analyses are readily undertaken. Overall, these sensitivity analyses lend support to our model, although we suggest that further work is required to determine the relative importance of assessment criteria, and the thresholds that determine the level of risk for each criterion. As a case study, the tested method was then applied to 25 potentially dangerous lakes in the Bolivian Andes, where GLOF risk is poorly understood; 3 lakes are found to pose 'medium' or 'high' risk, and require further detailed investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Impaired Calcium Entry into Cells Is Associated with Pathological Signs of Zinc Deficiency12

    PubMed Central

    O’Dell, Boyd L.; Browning, Jimmy D.

    2013-01-01

    Zinc is an essential trace element whose deficiency gives rise to specific pathological signs. These signs occur because an essential metabolic function is impaired as the result of failure to form or maintain a specific metal-ion protein complex. Although zinc is a component of many essential metalloenzymes and transcription factors, few of these have been identified with a specific sign of incipient zinc deficiency. Zinc also functions as a structural component of other essential proteins. Recent research with Swiss murine fibroblasts, 3T3 cells, has shown that zinc deficiency impairs calcium entry into cells, a process essential for many cell functions, including proliferation, maturation, contraction, and immunity. Impairment of calcium entry and the subsequent failure of cell proliferation could explain the growth failure associated with zinc deficiency. Defective calcium uptake is associated with impaired nerve transmission and pathology of the peripheral nervous system, as well as the failure of platelet aggregation and the bleeding tendency of zinc deficiency. There is a strong analogy between the pathology of genetic diseases that result in impaired calcium entry and other signs of zinc deficiency, such as decreased and cyclic food intake, taste abnormalities, abnormal water balance, skin lesions, impaired reproduction, depressed immunity, and teratogenesis. This analogy suggests that failure of calcium entry is involved in these signs of zinc deficiency as well. PMID:23674794

  4. Incidence of vitamin D deficiency rickets among Australian children: an Australian Paediatric Surveillance Unit study.

    PubMed

    Munns, Craig F; Simm, Peter J; Rodda, Christine P; Garnett, Sarah P; Zacharin, Margaret R; Ward, Leanne M; Geddes, Janet; Cherian, Sarah; Zurynski, Yvonne; Cowell, Christopher T

    2012-04-16

    To determine the incidence of and factors associated with vitamin D deficiency rickets in Australian children. 18-month questionnaire-based prospective observational study, using Australian Paediatric Surveillance Unit (APSU) data. Australian paediatricians and child health workers, January 2006 - July 2007. Children aged ≤ 15 years with vitamin D deficiency rickets (25-hydroxyvitamin D [25OHD] ≤ 50 nmol/L, and elevated alkaline phosphatase levels [> 229 IU/L] and/or radiological rickets). Incidence of vitamin D deficiency rickets. Description of demographics, clinical presentation, identification and further analysis of overrepresented groups, and treatment regimens compared with best-practice guidelines. We identified 398 children with vitamin D deficiency (55% male; median age, 6.3 years [range, 0.2-15 years]). The overall incidence in children ≤ 15 years of age in Australia was 4.9/100 000/year. All had a low 25OHD level (median, 28 nmol/L [range, 5-50 nmol]) and an elevated alkaline phosphatase level (median, 407 IU/L [range, 229-5443 IU/L]), and 48 (12%) were hypocalcaemic. Ninety-five children had wrist x-rays, of whom 67 (71%) had rachitic changes. Most (98%) had dark or intermediate skin colour and 18% of girls were partially or completely veiled. Most children were born in Africa (252; 63%) and 75% of children were refugees. Duration of exclusive breastfeeding was inversely related to serum vitamin D levels in children < 3 years of age. Empirical vitamin D treatment was given to 4% of children before diagnosis. Vitamin D deficiency rickets is a significant problem in Australia among known high-risk groups. Public health campaigns to prevent, identify and tre@vitamin D deficiency, especially in high-risk groups, are essential.

  5. Genetic mannose binding lectin deficiency is associated with airway microbiota diversity and reduced exacerbation frequency in COPD.

    PubMed

    Dicker, Alison J; Crichton, Megan L; Cassidy, Andrew J; Brady, Gill; Hapca, Adrian; Tavendale, Roger; Einarsson, Gisli G; Furrie, Elizabeth; Elborn, J Stuart; Schembri, Stuart; Marshall, Sara E; Palmer, Colin N A; Chalmers, James D

    2018-06-01

    In cystic fibrosis and bronchiectasis, genetic mannose binding lectin (MBL) deficiency is associated with increased exacerbations and earlier mortality; associations in COPD are less clear. Preclinical data suggest MBL interferes with phagocytosis of Haemophilus influenzae , a key COPD pathogen. We investigated whether MBL deficiency impacted on clinical outcomes or microbiota composition in COPD. Patients with COPD (n=1796) underwent MBL genotyping; linkage to health records identified exacerbations, lung function decline and mortality. A nested subcohort of 141 patients, followed for up to 6 months, was studied to test if MBL deficiency was associated with altered sputum microbiota, through 16S rRNA PCR and sequencing, or airway inflammation during stable and exacerbated COPD. Patients with MBL deficiency with COPD were significantly less likely to have severe exacerbations (incidence rate ratio (IRR) 0.66, 95% CI 0.48 to 0.90, p=0.009), or to have moderate or severe exacerbations (IRR 0.77, 95% CI 0.60 to 0.99, p=0.047). MBL deficiency did not affect rate of FEV 1 decline or mortality. In the subcohort, patients with MBL deficiency had a more diverse lung microbiota (p=0.008), and were less likely to be colonised with Haemophilus spp. There were lower levels of airway inflammation in patients with MBL deficiency. Patients with MBL deficient genotype with COPD have a lower risk of exacerbations and a more diverse lung microbiota. This is the first study to identify a genetic association with the lung microbiota in COPD. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Emerging Trends in Epigenetic Regulation of Nutrient Deficiency Response in Plants.

    PubMed

    Sirohi, Gunjan; Pandey, Bipin K; Deveshwar, Priyanka; Giri, Jitender

    2016-03-01

    Diverse environmental stimuli largely affect the ionic balance of soil, which have a direct effect on growth and crop yield. Details are fast emerging on the genetic/molecular regulators, at whole-genome levels, of plant responses to mineral deficiencies in model and crop plants. These genetic regulators determine the root architecture and physiological adaptations for better uptake and utilization of minerals from soil. Recent evidence also shows the potential roles of epigenetic mechanisms in gene regulation, driven by minerals imbalance. Mineral deficiency or sufficiency leads to developmental plasticity in plants for adaptation, which is preceded by a change in the pattern of gene expression. Notably, such changes at molecular levels are also influenced by altered chromatin structure and methylation patterns, or involvement of other epigenetic components. Interestingly, many of the changes induced by mineral deficiency are also inheritable in the form of epigenetic memory. Unravelling these mechanisms in response to mineral deficiency would further advance our understanding of this complex plant response. Further studies on such approaches may serve as an exciting interaction model of epigenetic and genetic regulations of mineral homeostasis in plants and designing strategies for crop improvement.

  7. Development of type 2 diabetes caused by a deficiency of a tRNA(lys) modification.

    PubMed

    Wei, Fan-Yan; Tomizawa, Kazuhito

    2012-01-01

    Genetic variations in the cdk5 regulator associated protein 1-like 1 (cdkal1) gene have been identified in whole genome association studies as a risk factor for the development of type 2 diabetes (T2D). A recent study showed that Cdkal1 was a mammalian methythiotransferase, which specifically synthesizes 2-methylthio-N (6)-threonylcarbamoyladenosine (ms (2)t (6)A) at position 37 of tRNA(lys)(UUU). The ms (2)t (6)A modification in tRNA(lys)(UUU) was important for the accurate decoding of its cognate codon. In pancreatic β-cell-specific Cdkal1 knockout (Cdkal1 KO) mice, a deficiency of ms (2)t (6)A caused the mistranslation of a Lys codon in proinsulin, resulting in improper processing. The mice showed a decrease in insulin secretion and glucose intolerance. In addition, the mistranslation contributed to the expression of the endoplasmic reticulum (ER) stress response in Cdkal1-deficient β-cells. Furthermore, Cdkal1 KO mice were hypersensitive to high-fat diet-induced glucose intolerance, as well as the ER stress response. These findings might potentially explain the molecular pathogenesis of T2D in patients carrying Cdkal1 variations.

  8. Identifying potential collapse features under highways.

    DOT National Transportation Integrated Search

    2003-03-01

    In 1994, subsidence features were identified on Interstate 70 in eastern Ohio. These features were caused by collapse of old mine workings beneath the highway. An attempt was made to delineate these features using geophysical methods with no avail. T...

  9. Anaemia, iron deficiency and iron deficiency anaemia among blood donors in Port Harcourt, Nigeria.

    PubMed

    Jeremiah, Zaccheaus Awortu; Koate, Baribefe Banavule

    2010-04-01

    There is paucity of information on the effect of blood donation on iron stores in Port Harcourt, Nigeria. The present study was, therefore, designed to assess, using a combination of haemoglobin and iron status parameters, the development of anaemia and prevalence of iron deficiency anaemia in this area of Nigeria. Three hundred and forty-eight unselected consecutive whole blood donors, comprising 96 regular donors, 156 relatives of patients and 96 voluntary donors, constituted the study population. Three haematological parameters (haemoglobin, packed cell volume, and mean cell haemoglobin concentration) and four biochemical iron parameters (serum ferritin, serum iron, total iron binding capacity and transferrin saturation) were assessed using standard colorimetric and ELISA techniques. The prevalence of anaemia alone (haemoglobin <11.0 g/dL) was 13.7%. The prevalence of isolated iron deficiency (serum ferritin <12 ng/mL) was 20.6% while that of iron-deficiency anaemia (haemoglobin <11.0 g/dL + serum ferritin <12.0 ng/mL) was 12.0%. Among the three categories of the donors, the regular donors were found to be most adversely affected as shown by the reduction in mean values of both haematological and biochemical iron parameters. Interestingly, anaemia, iron deficiency and iron-deficiency anaemia were present almost exclusively among regular blood donors, all of whom were over 35 years old. Anaemia, iron deficiency and iron-deficiency anaemia are highly prevalent among blood donors in Port Harcourt, Nigeria. It will be necessary to review the screening tests for the selection of blood donors and also include serum ferritin measurement for the routine assessment of blood donors, especially among regular blood donors.

  10. Incidence and characteristics of vitamin D deficiency rickets in New Zealand children: a New Zealand Paediatric Surveillance Unit study.

    PubMed

    Wheeler, Benjamin J; Dickson, Nigel P; Houghton, Lisa A; Ward, Leanne M; Taylor, Barry J

    2015-08-01

    To investigate the incidence and characteristics of vitamin D deficiency rickets in New Zealand (NZ). Prospective surveillance among paediatricians of Vitamin D Deficiency Rickets was conducted by the New Zealand Paediatric Surveillance Unit (NZPSU) for 36 months, from July 2010 to June 2013, inclusive. Inclusion criteria were: children and adolescents <15 years of age with vitamin D deficiency rickets (defined by low serum 25-hydroxyvitamin D and elevated alkaline phosphatase levels, and/or radiological rickets). Fifty-eight children with confirmed vitamin D deficiency rickets were identified. Median age was 1.4 (range 0.3-11) years, 47% were male, and 95% of the children were born in NZ; however, the majority of the mothers (68%) were born outside NZ. Overall annual incidence of rickets in children aged <15 years was 2.2/100,000 (95%CI 1.4-3.5); with incidence in those <3 years being 10.5/100,000 (95%CI 6.7-16.6). Skeletal abnormalities, poor growth and motor delay were the most common presenting features, with hypocalcaemic convulsion in 16% of children. Key risk factors identified were: darker skin pigment, Indian and African ethnicity, age <3 years, exclusive breast feeding, and southern latitude, particularly when combined with season (winter/spring). Of the patients reported, none had received appropriate vitamin D supplementation. Vitamin D deficiency rickets remains a problem for NZ children. Key risk factors remain similar to those identified in the international literature. Preventative targeted vitamin D supplementation, as per existing national guidelines, was lacking in all cases reported. Vitamin D deficiency rickets is the most significant manifestation of vitamin D deficiency in growing children. To reduce the incidence of this disease among those at high risk, increasing awareness and implementation of current public health policies for targeted maternal, infant and child supplementation are required. © 2015 Public Health Association of Australia.

  11. Prevalence of anaemia, deficiencies of iron and folic acid and their determinants in Ethiopian women.

    PubMed

    Haidar, Jemal

    2010-08-01

    A cross-sectional community-based study with analytic component was conducted among Ethiopian women during June-July 2005 to assess the magnitude of anaemia and deficiencies of iron and folic acid and to compare the factors responsible for anaemia among anaemic and non-anaemic cases. In total, 970 women, aged 15-19 years, were selected systematically for haematological and other important parameters. The overall prevalence of anaemia, iron deficiency, iron-deficiency anaemia, deficiency of folic acid, and parasitic infestations was 30.4%, 50.1%, 18.1%, 31.3%, and 13.7% respectively. Women who had more children aged less than five years but above two years, open-field toilet habits, chronic illnesses, and having intestinal parasites were positively associated with anaemia. Women who had no formal education and who did not use contraceptives were negatively associated with anaemia. The major determinants identified for anaemia were chronic illnesses [adjusted odds ratio (AOR) = 1.1, 95% confidence interval (CI) 1.15-1.55), deficiency of iron (AOR = 0.4, 95% CI 0.35-0.64), and deficiency of folic acid (AOR = 0.5, 95% CI 0.50-0.90). The odds for developing anaemia was 1.1 times more likely among women with chronic illnesses, 60% more likely in the iron-deficient and 40% more likely in the folic acid-deficient than their counterparts. One in every three women had anaemia and deficiency of folic acid while one in every two had iron deficiency, suggesting that deficiencies of both folic acid and iron constitute the major micronutrient deficiencies in Ethiopian women. The risk imposed by anaemia to the health of women ranging from impediment of daily activities and poor pregnancy outcome calls for effective public-health measures, such as improved nutrient supplementation, health education, and timely treatment of illnesses.

  12. Protease-Activated Receptor-2 Deficiency Attenuates Atherosclerotic Lesion Progression and Instability in Apolipoprotein E-Deficient Mice

    PubMed Central

    Zuo, Pengfei; Zuo, Zhi; Zheng, Yueyue; Wang, Xin; Zhou, Qianxing; Chen, Long; Ma, Genshan

    2017-01-01

    Inflammatory mechanisms are involved in the process of atherosclerotic plaque formation and rupture. Accumulating evidence suggests that protease-activated receptor (PAR)-2 contributes to the pathophysiology of chronic inflammation on the vasculature. To directly examine the role of PAR-2 in atherosclerosis, we generated apolipoprotein E/PAR-2 double-deficient mice. Mice were fed with high-fat diet for 12 weeks starting at ages of 6 weeks. PAR-2 deficiency attenuated atherosclerotic lesion progression with reduced total lesion area, reduced percentage of stenosis and reduced total necrotic core area. PAR-2 deficiency increased fibrous cap thickness and collagen content of plaque. Moreover, PAR-2 deficiency decreased smooth muscle cell content, macrophage accumulation, matrix metallopeptidase-9 expression and neovascularization in plaque. Relative quantitative PCR assay using thoracic aorta revealed that PAR-2 deficiency reduced mRNA expression of inflammatory molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. In vitro experiment, we found that PAR-2 deficiency reduced mRNA expression of interferon-γ, interleukin-6, TNF-α and MCP-1 in macrophage under unstimulated and lipopolysaccharide-stimulated conditions. These results suggest that PAR-2 deficiency attenuates the progression and instability of atherosclerotic plaque. PMID:28959204

  13. Iron deficiency and iron deficiency anaemia in women.

    PubMed

    Percy, Laura; Mansour, Diana; Fraser, Ian

    2017-04-01

    Iron deficiency (ID) is the most common micronutrient deficiency worldwide with >20% of women experiencing it during their reproductive lives. Hepcidin, a peptide hormone mostly produced by the liver, controls the absorption and regulation of iron. Understanding iron metabolism is pivotal in the successful management of ID and iron deficiency anaemia (IDA) using oral preparations, parenteral iron or blood transfusion. Oral preparations vary in their iron content and can result in gastrointestinal side effects. Parenteral iron is indicated when there are compliance/tolerance issues with oral iron, comorbidities which may affect absorption or ongoing iron losses that exceed absorptive capacity. It may also be the preferred option when rapid iron repletion is required to prevent physiological decompensation or given preoperatively for non-deferrable surgery. As gynaecologists, we focus on managing women's heavy menstrual bleeding (HMB) and assume that primary care clinicians are treating the associated ID/IDA. We now need to take the lead in diagnosing, managing and initiating treatment for ID/IDA and treating HMB simultaneously. This dual management will significantly improve their quality of life. In this chapter we will summarise the importance of iron in cellular functioning, describe how to diagnose ID/IDA and help clinicians choose between the available treatment options. Copyright © 2016. Published by Elsevier Ltd.

  14. Using high frequency consumption data to identify demand response potential for solar energy integration

    NASA Astrophysics Data System (ADS)

    Jin, L.; Borgeson, S.; Fredman, D.; Hans, L.; Spurlock, A.; Todd, A.

    2015-12-01

    California's renewable portfolio standard (2012) requires the state to get 33% of its electricity from renewable sources by 2020. Increased share of variable renewable sources such as solar and wind in the California electricity system may require more grid flexibility to insure reliable power services. Such grid flexibility can be potentially provided by changes in end use electricity consumptions in response to grid conditions (demand-response). In the solar case, residential consumption in the late afternoon can be used as reserve capacity to balance the drop in solar generation. This study presents our initial attempt to identify, from a behavior perspective, residential demand response potentials in relation to solar ramp events using a data-driven approach. Based on hourly residential energy consumption data, we derive representative daily load shapes focusing on discretionary consumption with an innovative clustering analysis technique. We aggregate the representative load shapes into behavior groups in terms of the timing and rhythm of energy use in the context of solar ramp events. Households of different behavior groups that are active during hours with high solar ramp rates are identified for capturing demand response potential. Insights into the nature and predictability of response to demand-response programs are provided.

  15. CD6 as a potential target for treating multiple sclerosis

    PubMed Central

    Singer, Nora G.; Whitbred, Joy; Bowen, Michael A.; Lin, Feng

    2017-01-01

    CD6 was established as a marker of T cells more than three decades ago, and recent studies have identified CD6 as a risk gene for multiple sclerosis (MS), a disease in which autoreactive T cells are integrally involved. Nevertheless, the precise role of CD6 in regulating T-cell responses is controversial and its significance in the pathogenesis of various diseases remains elusive, partly due to the lack of animals engineered to alter expression of the CD6 gene. In this report, we found that CD6 KO mice showed decreased pathogenic T-cell responses, reduced spinal cord T-cell infiltration, and attenuated disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CD6-deficient T cells exhibited augmented activation, but also significantly reduced survival and proliferation after activation, leading to overall decreased Th1 and Th17 polarization. Activated CD6-deficient T cells also showed impaired infiltration through brain microvascular endothelial cell monolayers. Furthermore, by developing CD6 humanized mice, we identified a mouse anti-human CD6 monoclonal antibody that is highly effective in treating established EAE without depleting T cells. These results suggest that (i) CD6 is a negative regulator of T-cell activation, (ii) at the same time, CD6 is a positive regulator of activated T-cell survival/proliferation and infiltration; and (iii) CD6 is a potential new target for treating MS and potentially other T-cell–driven autoimmune conditions. PMID:28209777

  16. Congenital Proprotein Convertase 1/3 Deficiency Causes Malabsorptive Diarrhea and other Endocrinopathies in a Pediatric Cohort

    PubMed Central

    Martín, Martín G.; Lindberg, Iris; Solorzano-Vargas, R. Sergio; Wang, Jiafang; Avitzur, Yaron; Bandsma, Robert; Sokollik, Christiane; Lawrence, Sarah; Pickett, Lindsay A.; Chen, Zijun; Egritas, Odul; Dalgic, Buket; Albornoz, Valeria; de Ridder, Lissy; Hulst, Jessie; Gok, Faysal; Aydoğan, Ayşen; Al-Hussaini, Abdulrahman; Gok, Deniz Engin; Yourshaw, Michael; Wu, S. Vincent; Cortina, Galen; Stanford, Sara; Georgia, Senta

    2013-01-01

    Background & Aims Proprotein convertase 1/3 (PC1/3) deficiency, an autosomal recessive disorder caused by rare mutations in the PCSK1 gene, has been associated with obesity, severe malabsorptive diarrhea, and certain endocrine abnormalities. Common variants in PCSK1 have also been associated with obesity in heterozygotes in several population studies. PC1/3 is an endoprotease that processes many prohormones expressed in endocrine and neuronal cells. We investigated clinical and molecular features of PC1/3 deficiency. Methods We studied the clinical features of 13 children with PC1/3 deficiency and performed sequence analysis of PCSK1. We measured enzymatic activity of recombinant PC1/3 proteins. Results We identified a pattern of endocrinopathies that develop in an age-dependent manner. Eight of the mutations had severe biochemical consequences in vitro. Neonates had severe malabsorptive diarrhea and failure to thrive, required prolonged parenteral nutrition support, and had high mortality. Additional endocrine abnormalities developed as the disease progressed, including diabetes insipidus, growth hormone deficiency, primary hypogonadism, adrenal insufficiency, and hypothyroidism. We identified growth hormone deficiency, central diabetes insipidus, and male hypogonadism as new features of PCSK1 insufficiency. Interestingly, despite early growth abnormalities, moderate obesity, associated with severe polyphagia, generally appears. Conclusion In a study of 13 children with PC1/3 deficiency caused by disruption of PCSK1, failure of enteroendocrine cells to produce functional hormones resulted in generalized malabsorption. These findings indicate that PC1/3 is involved in processing of one or more enteric hormones that are required for nutrient absorption. PMID:23562752

  17. [Effects of zinc deficiency in pregnancy on the mother and the newborn infant].

    PubMed

    Favier, A; Favier, M

    1990-01-01

    There seems to be a zinc deficiency during pregnancy in view of the low serum zinc levels, but especially low zinc levels in hair and leucocytes. The need for zinc supplements is still ill-defined but represents at least 5 mg per day which are not covered by the diet and taken from the maternal reserves. Therefore the risk of deficiency is real and its manifestations are numerous. There is a risk of spontaneous abortion, gravidic toxemia, treatment-resistant anemia, abnormally prolonged gestation and difficult delivery for the mother. As for the fetus, with zinc deficiency there is a risk of hypotrophism and malformations with potentialization of the teratogenic effect of alcohol and many medications. Besides, in animals, zinc deficiency during pregnancy results in late effects several months after birth: decrease immunity, learning or memory disorders. In view of all these consequences, administration of supplements is imperative and must be evaluated providing that it does not exceed 50 mg of zinc per day. Besides, it seems preferable to provide balanced multisupplements in minerals and vitamins, since supplement in iron alone results in zinc deficiency.

  18. MENTAL DEFICIENCY. SECOND EDITION.

    ERIC Educational Resources Information Center

    HILLIARD, L.T.; KIRMAN, BRIAN H.

    REVISED TO INCLUDE LEGISLATIVE AND ADMINISTRATIVE PROCEDURES NEW IN BRITAIN SINCE THE 1957 EDITION, THE TEXT INCLUDES RECENT ADVANCES IN ETIOLOGY, PATHOLOGY, AND TREATMENT OF MENTAL DEFICIENCY. CONSIDERATION OF THE BACKGROUND OF MENTAL DEFICIENCY INCLUDES HISTORICAL AND LEGAL ASPECTS, THE SOCIAL BACKGROUND OF MENTAL DEFECT, PRENATAL CAUSES OF…

  19. The Impact of Phenotypic and Genotypic G6PD Deficiency on Risk of Plasmodium vivax Infection: A Case-Control Study amongst Afghan Refugees in Pakistan

    PubMed Central

    Leslie, Toby; Briceño, Marnie; Mayan, Ismail; Mohammed, Nasir; Klinkenberg, Eveline; Sibley, Carol Hopkins; Whitty, Christopher J. M.; Rowland, Mark

    2010-01-01

    Background The most common form of malaria outside Africa, Plasmodium vivax, is more difficult to control than P. falciparum because of the latent liver hypnozoite stage, which causes multiple relapses and provides an infectious reservoir. The African (A−) G6PD (glucose-6-phosphate dehydrogenase) deficiency confers partial protection against severe P. falciparum. Recent evidence suggests that the deficiency also confers protection against P. vivax, which could explain its wide geographical distribution in human populations. The deficiency has a potentially serious interaction with antirelapse therapies (8-aminoquinolines such as primaquine). If the level of protection was sufficient, antirelapse therapy could become more widely available. We therefore tested the hypothesis that G6PD deficiency is protective against vivax malaria infection. Methods and Findings A case-control study design was used amongst Afghan refugees in Pakistan. The frequency of phenotypic and genotypic G6PD deficiency in individuals with vivax malaria was compared against controls who had not had malaria in the previous two years. Phenotypic G6PD deficiency was less common amongst cases than controls (cases: 4/372 [1.1%] versus controls 42/743 [5.7%]; adjusted odds ratio [AOR] 0.18 [95% confidence interval (CI) 0.06–0.52], p = 0.001). Genetic analysis demonstrated that the G6PD deficiency allele identified (Mediterranean type) was associated with protection in hemizygous deficient males (AOR = 0.12 [95% CI 0.02–0.92], p = 0.041). The deficiency was also protective in females carrying the deficiency gene as heterozygotes or homozygotes (pooled AOR = 0.37 [95% CI 0.15–0.94], p = 0.037). Conclusions G6PD deficiency (Mediterranean type) conferred significant protection against vivax malaria infection in this population whether measured by phenotype or genotype, indicating a possible evolutionary role for vivax malaria in the selective retention of the G6PD deficiency

  20. Zinc Deficiency Induces Apoptosis via Mitochondrial p53- and Caspase-Dependent Pathways in Human Neuronal Precursor Cells

    ERIC Educational Resources Information Center

    Seth, Rohit; Corniola, Rikki S.; Gower-Winter, Shannon D.; Morgan, Thomas J., Jr.; Bishop, Brian; Levenson, Cathy W.

    2015-01-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent…