Sample records for identify protein biomarkers

  1. Integrating multiple ‘omics’ analyses identifies serological protein biomarkers for preeclampsia

    PubMed Central

    2013-01-01

    Background Preeclampsia (PE) is a pregnancy-related vascular disorder which is the leading cause of maternal morbidity and mortality. We sought to identify novel serological protein markers to diagnose PE with a multi-’omics’ based discovery approach. Methods Seven previous placental expression studies were combined for a multiplex analysis, and in parallel, two-dimensional gel electrophoresis was performed to compare serum proteomes in PE and control subjects. The combined biomarker candidates were validated with available ELISA assays using gestational age-matched PE (n=32) and control (n=32) samples. With the validated biomarkers, a genetic algorithm was then used to construct and optimize biomarker panels in PE assessment. Results In addition to the previously identified biomarkers, the angiogenic and antiangiogenic factors (soluble fms-like tyrosine kinase (sFlt-1) and placental growth factor (PIGF)), we found 3 up-regulated and 6 down-regulated biomakers in PE sera. Two optimal biomarker panels were developed for early and late onset PE assessment, respectively. Conclusions Both early and late onset PE diagnostic panels, constructed with our PE biomarkers, were superior over sFlt-1/PIGF ratio in PE discrimination. The functional significance of these PE biomarkers and their associated pathways were analyzed which may provide new insights into the pathogenesis of PE. PMID:24195779

  2. Quantitative label-free proteomic analysis of human urine to identify novel candidate protein biomarkers for schistosomiasis.

    PubMed

    Onile, Olugbenga Samson; Calder, Bridget; Soares, Nelson C; Anumudu, Chiaka I; Blackburn, Jonathan M

    2017-11-01

    Schistosomiasis is a chronic neglected tropical disease that is characterized by continued inflammatory challenges to the exposed population and it has been established as a possible risk factor in the aetiology of bladder cancer. Improved diagnosis of schistosomiasis and its associated pathology is possible through mass spectrometry to identify biomarkers among the infected population, which will influence early detection of the disease and its subtle morbidity. A high-throughput proteomic approach was used to analyse human urine samples for 49 volunteers from Eggua, a schistosomiasis endemic community in South-West, Nigeria. The individuals were previously screened for Schistosoma haematobium and structural bladder pathologies via microscopy and ultrasonography respectively. Samples were categorised into schistosomiasis, schistosomiasis with bladder pathology, bladder pathology, and a normal healthy control group. These samples were analysed to identify potential protein biomarkers. A total of 1306 proteins and 9701 unique peptides were observed in this study (FDR = 0.01). Fifty-four human proteins were found to be potential biomarkers for schistosomiasis and bladder pathologies due to schistosomiasis by label-free quantitative comparison between groups. Thirty-six (36) parasite-derived potential biomarkers were also identified, which include some existing putative schistosomiasis biomarkers that have been previously reported. Some of these proteins include Elongation factor 1 alpha, phosphopyruvate hydratase, histone H4 and heat shock proteins (HSP 60, HSP 70). These findings provide an in-depth analysis of potential schistosoma and human host protein biomarkers for diagnosis of chronic schistosomiasis caused by Schistosoma haematobium and its pathogenesis.

  3. Cross-platform method for identifying candidate network biomarkers for prostate cancer.

    PubMed

    Jin, G; Zhou, X; Cui, K; Zhang, X-S; Chen, L; Wong, S T C

    2009-11-01

    Discovering biomarkers using mass spectrometry (MS) and microarray expression profiles is a promising strategy in molecular diagnosis. Here, the authors proposed a new pipeline for biomarker discovery that integrates disease information for proteins and genes, expression profiles in both genomic and proteomic levels, and protein-protein interactions (PPIs) to discover high confidence network biomarkers. Using this pipeline, a total of 474 molecules (genes and proteins) related to prostate cancer were identified and a prostate-cancer-related network (PCRN) was derived from the integrative information. Thus, a set of candidate network biomarkers were identified from multiple expression profiles composed by eight microarray datasets and one proteomics dataset. The network biomarkers with PPIs can accurately distinguish the prostate patients from the normal ones, which potentially provide more reliable hits of biomarker candidates than conventional biomarker discovery methods.

  4. Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers.

    PubMed

    Kumar, Aparna; Rao, Arvind; Bhavani, Santosh; Newberg, Justin Y; Murphy, Robert F

    2014-12-23

    Molecular biomarkers are changes measured in biological samples that reflect disease states. Such markers can help clinicians identify types of cancer or stages of progression, and they can guide in tailoring specific therapies. Many efforts to identify biomarkers consider genes that mutate between normal and cancerous tissues or changes in protein or RNA expression levels. Here we define location biomarkers, proteins that undergo changes in subcellular location that are indicative of disease. To discover such biomarkers, we have developed an automated pipeline to compare the subcellular location of proteins between two sets of immunohistochemistry images. We used the pipeline to compare images of healthy and tumor tissue from the Human Protein Atlas, ranking hundreds of proteins in breast, liver, prostate, and bladder based on how much their location was estimated to have changed. The performance of the system was evaluated by determining whether proteins previously known to change location in tumors were ranked highly. We present a number of candidate location biomarkers for each tissue, and identify biochemical pathways that are enriched in proteins that change location. The analysis technology is anticipated to be useful not only for discovering new location biomarkers but also for enabling automated analysis of biomarker distributions as an aid to determining diagnosis.

  5. Identifying protein biomarkers in predicting disease severity of dengue virus infection using immune-related protein microarray.

    PubMed

    Soe, Hui Jen; Yong, Yean K; Al-Obaidi, Mazen M Jamil; Raju, Chandramathi Samudi; Gudimella, Ranganath; Manikam, Rishya; Sekaran, Shamala Devi

    2018-02-01

    Dengue virus is one of the most widespread flaviviruses that re-emerged throughout recent decades. The progression from mild dengue to severe dengue (SD) with the complications such as vascular leakage and hemorrhage increases the fatality rate of dengue. The pathophysiology of SD is not entirely clear. To investigate potential biomarkers that are suggestive of pathogenesis of SD, a small panel of serum samples selected from 1 healthy individual, 2 dengue patients without warning signs (DWS-), 2 dengue patients with warning signs (DWS+), and 5 patients with SD were subjected to a pilot analysis using Sengenics Immunome protein array. The overall fold changes of protein expressions and clustering heat map revealed that PFKFB4, TPM1, PDCL3, and PTPN20A were elevated among patients with SD. Differential expression analysis identified that 29 proteins were differentially elevated greater than 2-fold in SD groups than DWS- and DWS+. From the 29 candidate proteins, pathways enrichment analysis also identified insulin signaling and cytoskeleton pathways were involved in SD, suggesting that the insulin pathway may play a pivotal role in the pathogenesis of SD.

  6. Proteomic profiling identifies the inorganic pyrophosphatase (PPA1) protein as a potential biomarker of metastasis in laryngeal squamous cell carcinoma.

    PubMed

    Bodnar, Magdalena; Luczak, Magdalena; Bednarek, Kinga; Szylberg, Lukasz; Marszalek, Andrzej; Grenman, Reidar; Szyfter, Krzysztof; Jarmuz-Szymczak, Malgorzata; Giefing, Maciej

    2016-06-01

    Relapse and metastasis are the main causes of unfavorable outcome in head and neck cancers. Whereas, understanding of the molecular background of these processes is far from being complete. Therefore, in this study we aimed to identify potential biomarker candidates of relapse and metastasis in laryngeal squamous cell carcinoma (LSCC) by combining the 2D electrophoresis based protein screen and immunohistochemical analysis of candidate proteins. We screened three groups of LSCC cell lines derived from primary tumors, recurrent tumors and metastases and identified seven proteins that differed significantly in relative abundance between the analyzed groups. Among the identified proteins were the heat shock proteins HSP60 and HSP70 that were significantly downregulated both in recurrences- and metastases-derived cell lines but not in primary tumor-derived cell lines. Moreover, we identified significant upregulation of the annexin V, calreticulin and the inorganic pyrophosphatase (PPA1) exclusively in the metastases-derived cell lines. As these upregulated proteins could potentially become novel biomarkers of metastasis, we have compared their abundance in primary tumor LSCC N(0) cases, primary tumor LSCC N(+) cases as well as in LSCC metastases N(+). Our results show an intense increase of cytoplasmic PPA1 abundance in the N(+) (p = 0.000042) compared to the N(0) group. In summary, we show a group of proteins deregulated in recurrences and metastases of LSCC. Moreover, we suggest the PPA1 protein as a potential new biomarker for metastasis in this cancer.

  7. Use of ProteinChip technology for identifying biomarkers of parasitic diseases: the example of porcine cysticercosis (Taenia solium).

    PubMed

    Deckers, N; Dorny, P; Kanobana, K; Vercruysse, J; Gonzalez, A E; Ward, B; Ndao, M

    2008-12-01

    Taenia solium cysticercosis is a significant public health problem in endemic countries. The current serodiagnostic techniques are not able to differentiate between infections with viable cysts and infections with degenerated cysts. The objectives of this study were to identify specific novel biomarkers of these different disease stages in the serum of experimentally infected pigs using ProteinChip technology (Bio-Rad) and to validate these biomarkers by analyzing serum samples from naturally infected pigs. In the experimental sample set 30 discriminating biomarkers (p<0.05) were found, 13 specific for the viable phenotype, 9 specific for the degenerated phenotype and 8 specific for the infected phenotype (either viable or degenerated cysts). Only 3 of these biomarkers were also significant in the field samples; however, the peak profiles were not consistent among the two sample sets. Five biomarkers discovered in the sera from experimentally infected pigs were identified as clusterin, lecithin-cholesterol acyltransferase, vitronectin, haptoglobin and apolipoprotein A-I.

  8. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma.

    PubMed

    Mundt, Filip; Johansson, Henrik J; Forshed, Jenny; Arslan, Sertaç; Metintas, Muzaffer; Dobra, Katalin; Lehtiö, Janne; Hjerpe, Anders

    2014-03-01

    Malignant mesothelioma is an aggressive asbestos-induced cancer, and affected patients have a median survival of approximately one year after diagnosis. It is often difficult to reach a conclusive diagnosis, and ancillary measurements of soluble biomarkers could increase diagnostic accuracy. Unfortunately, few soluble mesothelioma biomarkers are suitable for clinical application. Here we screened the effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass-spectrometry-based proteomics using isobaric tags for quantification and used narrow-range immobilized pH gradient/high-resolution isoelectric focusing (pH 4-4.25) prior to analysis by means of nano liquid chromatography coupled to MS/MS. More than 1,300 proteins were identified in pleural effusions from patients with malignant mesothelioma (n = 6), lung adenocarcinoma (n = 6), or benign mesotheliosis (n = 7). Data are available via ProteomeXchange with identifier PXD000531. The identified proteins included a set of known mesothelioma markers and proteins that regulate hallmarks of cancer such as invasion, angiogenesis, and immune evasion, plus several new candidate proteins. Seven candidates (aldo-keto reductase 1B10, apolipoprotein C-I, galectin 1, myosin-VIIb, superoxide dismutase 2, tenascin C, and thrombospondin 1) were validated by enzyme-linked immunosorbent assays in a larger group of patients with mesothelioma (n = 37) or metastatic carcinomas (n = 25) and in effusions from patients with benign, reactive conditions (n = 16). Galectin 1 was identified as overexpressed in effusions from lung adenocarcinoma relative to mesothelioma and was validated as an excellent predictor for metastatic carcinomas against malignant mesothelioma. Galectin 1, aldo-keto reductase 1B10, and apolipoprotein C-I were all identified as potential prognostic biomarkers for malignant mesothelioma. This analysis of the effusion proteome

  9. Computational analysis identifies putative prognostic biomarkers of pathological scarring in skin wounds.

    PubMed

    Nagaraja, Sridevi; Chen, Lin; DiPietro, Luisa A; Reifman, Jaques; Mitrophanov, Alexander Y

    2018-02-20

    Pathological scarring in wounds is a prevalent clinical outcome with limited prognostic options. The objective of this study was to investigate whether cellular signaling proteins could be used as prognostic biomarkers of pathological scarring in traumatic skin wounds. We used our previously developed and validated computational model of injury-initiated wound healing to simulate the time courses for platelets, 6 cell types, and 21 proteins involved in the inflammatory and proliferative phases of wound healing. Next, we analysed thousands of simulated wound-healing scenarios to identify those that resulted in pathological (i.e., excessive) scarring. Then, we identified candidate proteins that were elevated (or decreased) at the early stages of wound healing in those simulations and could therefore serve as predictive biomarkers of pathological scarring outcomes. Finally, we performed logistic regression analysis and calculated the area under the receiver operating characteristic curve to quantitatively assess the predictive accuracy of the model-identified putative biomarkers. We identified three proteins (interleukin-10, tissue inhibitor of matrix metalloproteinase-1, and fibronectin) whose levels were elevated in pathological scars as early as 2 weeks post-wounding and could predict a pathological scarring outcome occurring 40 days after wounding with 80% accuracy. Our method for predicting putative prognostic wound-outcome biomarkers may serve as an effective means to guide the identification of proteins predictive of pathological scarring.

  10. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    PubMed

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  11. Blood-based protein biomarkers for diagnosis of Alzheimer disease.

    PubMed

    Doecke, James D; Laws, Simon M; Faux, Noel G; Wilson, William; Burnham, Samantha C; Lam, Chiou-Peng; Mondal, Alinda; Bedo, Justin; Bush, Ashley I; Brown, Belinda; De Ruyck, Karl; Ellis, Kathryn A; Fowler, Christopher; Gupta, Veer B; Head, Richard; Macaulay, S Lance; Pertile, Kelly; Rowe, Christopher C; Rembach, Alan; Rodrigues, Mark; Rumble, Rebecca; Szoeke, Cassandra; Taddei, Kevin; Taddei, Tania; Trounson, Brett; Ames, David; Masters, Colin L; Martins, Ralph N

    2012-10-01

    To identify plasma biomarkers for the diagnosis of Alzheimer disease (AD). Baseline plasma screening of 151 multiplexed analytes combined with targeted biomarker and clinical pathology data. General community-based, prospective, longitudinal study of aging. A total of 754 healthy individuals serving as controls and 207 participants with AD from the Australian Imaging Biomarker and Lifestyle study (AIBL) cohort with identified biomarkers that were validated in 58 healthy controls and 112 individuals with AD from the Alzheimer Disease Neuroimaging Initiative (ADNI) cohort. A biomarker panel was identified that included markers significantly increased (cortisol, pancreatic polypeptide, insulinlike growth factor binding protein 2, β(2) microglobulin, vascular cell adhesion molecule 1, carcinoembryonic antigen, matrix metalloprotein 2, CD40, macrophage inflammatory protein 1α, superoxide dismutase, and homocysteine) and decreased (apolipoprotein E, epidermal growth factor receptor, hemoglobin, calcium, zinc, interleukin 17, and albumin) in AD. Cross-validated accuracy measures from the AIBL cohort reached a mean (SD) of 85% (3.0%) for sensitivity and specificity and 93% (3.0) for the area under the receiver operating characteristic curve. A second validation using the ADNI cohort attained accuracy measures of 80% (3.0%) for sensitivity and specificity and 85% (3.0) for area under the receiver operating characteristic curve. This study identified a panel of plasma biomarkers that distinguish individuals with AD from cognitively healthy control subjects with high sensitivity and specificity. Cross-validation within the AIBL cohort and further validation within the ADNI cohort provides strong evidence that the identified biomarkers are important for AD diagnosis.

  12. Urine protein profiling identified alpha-1-microglobulin and haptoglobin as biomarkers for early diagnosis of acute allograft rejection following kidney transplantation.

    PubMed

    Stubendorff, Beatrice; Finke, Stephanie; Walter, Martina; Kniemeyer, Olaf; von Eggeling, Ferdinand; Gruschwitz, Torsten; Steiner, Thomas; Ott, Undine; Wolf, Gunter; Wunderlich, Heiko; Junker, Kerstin

    2014-12-01

    Early diagnosis of acute rejection and effective immunosuppressive therapy lead to improvement in graft survival following kidney transplantation. In this study, we aimed to establish a urinary protein profile suitable to distinguish between patients with rejection and stable graft function and to predict acute rejection based on postoperatively collected urine samples. A further objective was to identify candidate proteins for the use as biomarkers in clinical practice. Urine samples of 116 kidney recipients were included. Rejection was proven by biopsy (n = 58), and stable transplant function was monitored for at least 2 years (n = 58). Postoperative urine samples were collected between 3rd and 10th day following transplantation. Urinary protein profiles were obtained by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Protein identification and validation were performed using multiplex fluorescence 2DE, peptide mass fingerprinting and enzyme-linked immunosorbent assay. A protein profile including four mass peaks differentiated acute rejection from stable transplants at the time point of rejection and at the postoperative state with 73 % sensitivity and 88 % specificity. Alpha-1-microglobulin (A1MG) and Haptoglobin (Hp) were identified as putative rejection biomarkers. Protein levels were significantly higher in postoperative urine from patients with rejection (A1MG 29.13 vs. 22.06 μg/ml, p = 0.001; Hp 628.34 vs. 248.57 ng/ml, p = 0.003). The combination of both proteins enabled the diagnosis of early rejection with 85 % sensitivity and 80 % specificity. Protein profiling using mass spectrometry is suitable for noninvasive detection of rejection-specific changes following kidney transplantation. A specific protein profile enables the prediction of early acute allograft rejection in the immediate postoperative period. A1MG and Hp appear to be reliable rejection biomarkers.

  13. Prioritization of biomarker targets in human umbilical cord blood: identification of proteins in infant blood serving as validated biomarkers in adults.

    PubMed

    Hansmeier, Nicole; Chao, Tzu-Chiao; Goldman, Lynn R; Witter, Frank R; Halden, Rolf U

    2012-05-01

    Early diagnosis represents one of the best lines of defense in the fight against a wide array of human diseases. Umbilical cord blood (UCB) is one of the first easily available diagnostic biofluids and can inform about the health status of newborns. However, compared with adult blood, its diagnostic potential remains largely untapped. Our goal was to accelerate biomarker research on UCB by exploring its detectable protein content and providing a priority list of potential biomarkers based on known proteins involved in disease pathways. We explored cord blood serum proteins by profiling a UCB pool of 12 neonates with different backgrounds using a combination of isoelectric focusing and liquid chromatography coupled with matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) and by comparing results with information contained in metabolic and disease databases available for adult blood. A total of 1,210 UCB proteins were identified with a protein-level false discovery rate of ~ 5% as estimated by naïve target-decoy and MAYU approaches, signifying a 6-fold increase in the number of UCB proteins described to date. Identified proteins correspond to 138 different metabolic and disease pathways and provide a platform of mechanistically linked biomarker candidates for tracking disruptions in cellular processes. Moreover, among the identified proteins, 38 were found to be approved biomarkers for adult blood. The results of this study advance current knowledge of the human cord blood serum proteome. They showcase the potential of UCB as a diagnostic medium for assessing infant health by detection and identification of candidate biomarkers for known disease pathways using a global, nontargeted approach. These biomarkers may inform about mechanisms of exposure-disease relationships. Furthermore, biomarkers approved by the U.S. Food and Drug Administration for screening in adult blood were detected in UCB and represent high-priority targets for

  14. Discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2) is a novel biomarker of myxofibrosarcoma invasion identified by global protein expression profiling.

    PubMed

    Kikuta, Kazutaka; Kubota, Daisuke; Yoshida, Akihiko; Qiao, Zhiwei; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Chuman, Hirokazu; Kawai, Akira; Kondo, Tadashi

    2017-09-01

    Myxofibrosarcoma (MFS) is a mesenchymal malignancy characterized by frequent recurrence even after radical wide resection. To optimize therapy for MFS patients, we aimed to identify candidate tissue biomarkers of MFS invasion potential. Invasion characteristics of MFS were evaluated by magnetic resonance imaging and protein expression profiling of primary tumor tissues performed using two-dimensional difference gel electrophoresis (2D-DIGE). Protein expression profiles were compared between invasive and non-invasive tumors surgically resected from 11 patients. Among the 3453 protein spots observed, 59 demonstrated statistically significant difference in intensity (≥2-fold) between invasive and non-invasive tumors (p<0.01 by Wilkoxon test), and were identified by mass spectrometry as 47 individual proteins. Among them, we further focused on discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2), a receptor tyrosine kinase with aberrant expression in malignant tumors. Immunohistochemistry analysis of 21 additional MFS cases revealed that higher DCBLD2 expression was significantly associated with invasive properties of tumor cells. DCBLD2 sensitivity and specificity, and positive and negative predictive values for MFS invasion were 69.2%, 87.5%, 90%, and 63.6%, respectively. The expression level of DCBLD2 was consistent in different portions of tumor tissues. Thus, DCBLD2 expression can be a useful biomarker to evaluate invasive properties of MFS. Further validation studies based on multi-institutional collaboration and comprehensive analysis of DCBLD2 biological functions in MFS are required to confirm its prognostic utility for clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. International Team Identifies Biomarker for Scleroderma

    MedlinePlus

    ... Identifies Biomarker for Scleroderma Spotlight on Research International Team Identifies Biomarker for Scleroderma By Kirstie Saltsman, Ph. ... suggests it stems from immune system malfunction. The team chose to focus on immune cells called plasmacytoid ...

  16. Prioritization of Biomarker Targets in Human Umbilical Cord Blood: Identification of Proteins in Infant Blood Serving as Validated Biomarkers in Adults

    PubMed Central

    Hansmeier, Nicole; Chao, Tzu-Chiao; Goldman, Lynn R.; Witter, Frank R.

    2012-01-01

    Background: Early diagnosis represents one of the best lines of defense in the fight against a wide array of human diseases. Umbilical cord blood (UCB) is one of the first easily available diagnostic biofluids and can inform about the health status of newborns. However, compared with adult blood, its diagnostic potential remains largely untapped. Objectives: Our goal was to accelerate biomarker research on UCB by exploring its detectable protein content and providing a priority list of potential biomarkers based on known proteins involved in disease pathways. Methods: We explored cord blood serum proteins by profiling a UCB pool of 12 neonates with different backgrounds using a combination of isoelectric focusing and liquid chromatography coupled with matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) and by comparing results with information contained in metabolic and disease databases available for adult blood. Results: A total of 1,210 UCB proteins were identified with a protein-level false discovery rate of ~ 5% as estimated by naïve target-decoy and MAYU approaches, signifying a 6-fold increase in the number of UCB proteins described to date. Identified proteins correspond to 138 different metabolic and disease pathways and provide a platform of mechanistically linked biomarker candidates for tracking disruptions in cellular processes. Moreover, among the identified proteins, 38 were found to be approved biomarkers for adult blood. Conclusions: The results of this study advance current knowledge of the human cord blood serum proteome. They showcase the potential of UCB as a diagnostic medium for assessing infant health by detection and identification of candidate biomarkers for known disease pathways using a global, nontargeted approach. These biomarkers may inform about mechanisms of exposure–disease relationships. Furthermore, biomarkers approved by the U.S. Food and Drug Administration for screening in adult blood were

  17. Validation of Biomarker Proteins Using Reverse Capture Protein Microarrays.

    PubMed

    Jozwik, Catherine; Eidelman, Ofer; Starr, Joshua; Pollard, Harvey B; Srivastava, Meera

    2017-01-01

    Genomics has revolutionized large-scale and high-throughput sequencing and has led to the discovery of thousands of new proteins. Protein chip technology is emerging as a miniaturized and highly parallel platform that is suited to rapid, simultaneous screening of large numbers of proteins and the analysis of various protein-binding activities, enzyme substrate relationships, and posttranslational modifications. Specifically, reverse capture protein microarrays provide the most appropriate platform for identifying low-abundance, disease-specific biomarker proteins in a sea of high-abundance proteins from biological fluids such as blood, serum, plasma, saliva, urine, and cerebrospinal fluid as well as tissues and cells obtained by biopsy. Samples from hundreds of patients can be spotted in serial dilutions on many replicate glass slides. Each slide can then be probed with one specific antibody to the biomarker of interest. That antibody's titer can then be determined quantitatively for each patient, allowing for the statistical assessment and validation of the diagnostic or prognostic utility of that particular antigen. As the technology matures and the availability of validated, platform-compatible antibodies increases, the platform will move further into the desirable realm of discovery science for detecting and quantitating low-abundance signaling proteins. In this chapter, we describe methods for the successful application of the reverse capture protein microarray platform for which we have made substantial contributions to the development and application of this method, particularly in the use of body fluids other than serum/plasma.

  18. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics

    PubMed Central

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients’ saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects (p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity. PMID:28326926

  19. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics.

    PubMed

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana; Hu, Shen

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients' saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects ( p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity.

  20. Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: a systematic review.

    PubMed

    Nicolaou, Orthodoxia; Kousios, Andreas; Hadjisavvas, Andreas; Lauwerys, Bernard; Sokratous, Kleitos; Kyriacou, Kyriacos

    2017-05-01

    Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Screening and validation of serum protein biomarkers for early postmenopausal osteoporosis diagnosis.

    PubMed

    Wang, Long; Hu, Ya-Qian; Zhao, Zhuo-Jie; Zhang, Hong-Yang; Gao, Bo; Lu, Wei-Guang; Xu, Xiao-Long; Lin, Xi-Sheng; Wang, Jin-Peng; Jie, Qiang; Luo, Zhuo-Jing; Yang, Liu

    2017-12-01

    Postmenopausal osteoporosis is one of the most prominent worldwide public health problems and the morbidity is increasing with the aging population. It has been demonstrated that early diagnosis and intervention delay the disease progression and improve the outcome. Therefore, searching for biomarkers that are able to identify postmenopausal women at high risk for developing osteoporosis is an effective way to improve the quality of life of patients, and alleviate social and economic burdens. In the present study, a protein array was used to identify potential biomarkers. The bone mineral densities of 10 rats were dynamically measured in an ovariectomized model by micro‑computed tomography assessment, and the early stage of osteoporosis was defined. Through the protein array‑based screening, the expression levels of six serum protein biomarkers in ovariectomized rats were observed to alter at the initiation stage of the postmenopausal osteoporosis. Fractalkine, tissue inhibitor of metalloproteinases‑1 and monocyte chemotactic protein‑1 were finally demonstrated to be increased in the serum of eight enrolled postmenopausal osteoporosis patients using ELISA assay and were correlated with the severity of progressive bone loss. These biomarkers may be explored as potential early biomarkers to readily evaluate and diagnose postmenopausal osteoporosis in the clinic.

  2. Bladder Cancer-associated Protein, a Potential Prognostic Biomarker in Human Bladder Cancer*

    PubMed Central

    Moreira, José M. A.; Ohlsson, Gita; Gromov, Pavel; Simon, Ronald; Sauter, Guido; Celis, Julio E.; Gromova, Irina

    2010-01-01

    It is becoming increasingly clear that no single marker will have the sensitivity and specificity necessary to be used on its own for diagnosis/prognosis of tumors. Interpatient and intratumor heterogeneity provides overwhelming odds against the existence of such an ideal marker. With this in mind, our laboratory has been applying a long term systematic approach to identify multiple biomarkers that can be used for clinical purposes. As a result of these studies, we have identified and reported several candidate biomarker proteins that are deregulated in bladder cancer. Following the conceptual biomarker development phases proposed by the Early Detection Research Network, we have taken some of the most promising candidate proteins into postdiscovery validation studies, and here we report on the characterization of one such biomarker, the bladder cancer-associated protein (BLCAP), formerly termed Bc10. To characterize BLCAP protein expression and cellular localization patterns in benign bladder urothelium and urothelial carcinomas (UCs), we used two independent sets of samples from different patient cohorts: a reference set consisting of 120 bladder specimens (formalin-fixed as well as frozen biopsies) and a validation set consisting of 2,108 retrospectively collected UCs with long term clinical follow-up. We could categorize the UCs examined into four groups based on levels of expression and subcellular localization of BLCAP protein and showed that loss of BLCAP expression is associated with tumor progression. The results indicated that increased expression of this protein confers an adverse patient outcome, suggesting that categorization of staining patterns for this protein may have prognostic value. Finally, we applied a combinatorial two-marker discriminator using BLCAP and adipocyte-type fatty acid-binding protein, another UC biomarker previously reported by us, and found that the combination of the two markers correlated more closely with grade and/or stage of

  3. Interactomic approach for evaluating nucleophosmin-binding proteins as biomarkers for Ewing's sarcoma.

    PubMed

    Haga, Ayako; Ogawara, Yoko; Kubota, Daisuke; Kitabayashi, Issay; Murakami, Yasufumi; Kondo, Tadashi

    2013-06-01

    Nucleophosmin (NPM) is a novel prognostic biomarker for Ewing's sarcoma. To evaluate the prognostic utility of NPM, we conducted an interactomic approach to characterize the NPM protein complex in Ewing's sarcoma cells. A gene suppression assay revealed that NPM promoted cell proliferation and the invasive properties of Ewing's sarcoma cells. FLAG-tag-based affinity purification coupled with liquid chromatography-tandem mass spectrometry identified 106 proteins in the NPM protein complex. The functional classification suggested that the NPM complex participates in critical biological events, including ribosome biogenesis, regulation of transcription and translation, and protein folding, that are mediated by these proteins. In addition to JAK1, a candidate prognostic biomarker for Ewing's sarcoma, the NPM complex, includes 11 proteins known as prognostic biomarkers for other malignancies. Meta-analysis of gene expression profiles of 32 patients with Ewing's sarcoma revealed that 6 of 106 were significantly and independently associated with survival period. These observations suggest a functional role as well as prognostic value of these NPM complex proteins in Ewing's sarcoma. Further, our study suggests the potential applications of interactomics in conjunction with meta-analysis for biomarker discovery. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identifying Thoracic Malignancies Through Pleural Fluid Biomarkers: A Predictive Multivariate Model.

    PubMed

    Porcel, José M; Esquerda, Aureli; Martínez-Alonso, Montserrat; Bielsa, Silvia; Salud, Antonieta

    2016-03-01

    The diagnosis of malignant pleural effusions may be challenging when cytological examination of aspirated pleural fluid is equivocal or noncontributory. The purpose of this study was to identify protein candidate biomarkers differentially expressed in the pleural fluid of patients with mesothelioma, lung adenocarcinoma, lymphoma, and tuberculosis (TB).A multiplex protein biochip comprising 120 biomarkers was used to determine the pleural fluid protein profile of 29 mesotheliomas, 29 lung adenocarcinomas, 12 lymphomas, and 35 tuberculosis. The relative abundance of these predetermined biomarkers among groups served to establish the differential diagnosis of: malignant versus benign (TB) effusions, lung adenocarcinoma versus mesothelioma, and lymphoma versus TB. The selected putative markers were validated using widely available commercial techniques in an independent sample of 102 patients.Significant differences were found in the protein expressions of metalloproteinase-9 (MMP-9), cathepsin-B, C-reactive protein, and chondroitin sulfate between malignant and TB effusions. When integrated into a scoring model, these proteins yielded 85% sensitivity, 100% specificity, and an area under the curve (AUC) of 0.98 for labeling malignancy in the verification sample. For lung adenocarcinoma-mesothelioma discrimination, combining CA19-9, CA15-3, and kallikrein-12 had maximal discriminatory capacity (65% sensitivity, 100% specificity, AUC 0.94); figures which also refer to the validation set. Last, cathepsin-B in isolation was only moderately useful (sensitivity 89%, specificity 62%, AUC 0.75) in separating lymphomatous and TB effusions. However, this last differentiation improved significantly when cathepsin-B was used with respect to the patient's age (sensitivity 72%, specificity 100%, AUC 0.94).In conclusion, panels of 4 (i.e., MMP-9, cathepsin-B, C-reactive protein, chondroitin sulfate), or 3 (i.e., CA19-9, CA15-3, kallikrein-12) different protein biomarkers on pleural

  5. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury

    PubMed Central

    Zhou, Hua; Pisitkun, Trairak; Aponte, Angel; Yuen, Peter S.T.; Hoffert, Jason D.; Yasuda, Hideo; Hu, Xuzhen; Chawla, Lakhmir; Shen, Rong-Fong; Knepper, Mark A.; Star., Robert A.

    2008-01-01

    Urinary exosomes containing apical membrane and intracellular fluid are normally secreted into the urine from all nephron segments, and may carry protein markers of renal dysfunction and structural injury. We aimed to discover biomarkers in urinary exosomes to detect acute kidney injury (AKI) which has a high mortality and morbidity. Animals were injected intravenously with cisplatin. Urinary exosomes were isolated by differential centrifugation. Protein changes were evaluated by two-dimensional difference in gel electrophoresis and changed proteins were identified by MALDI-TOF-TOF or LC-MS/MS. The identified candidate biomarkers were validated by western blotting in individual urine samples from rats subjected to cisplatin injection; bilateral ischemia and reperfusion (I/R); volume depletion (VD); and ICU patients with and without AKI. We identified 18 proteins that were increased and 9 proteins that were decreased 8 hr after cisplatin. Most of the candidates could not be validated by western blotting. However, exosomal Fetuin-A increased 52.5-fold at day 2 (1 day before serum creatinine increase and tubule damage) and remained elevated 51.5-fold at day 5 (peak renal injury) after cisplatin injection. By immuno-electron microscopy and elution studies, Fetuin-A was located inside urinary exosomes. Urinary Fetuin-A was increased 31.6-fold in the early phase (2~8hr) of ischemia/reperfusion, but not in prerenal azotemia. Urinary exosomal Fetuin-A also increased in three ICU patients with AKI compared to the patients without AKI. We conclude that 1) Proteomic analysis of urinary exosomes can provide biomarker candidates for the diagnosis of AKI; 2) Urinary Fetuin-A might be a predictive biomarker of structural renal injury. PMID:17021608

  6. RNA Sequencing Identifies Novel Translational Biomarkers of Kidney Fibrosis

    PubMed Central

    Craciun, Florin L.; Bijol, Vanesa; Ajay, Amrendra K.; Rao, Poornima; Kumar, Ramya K.; Hutchinson, John; Hofmann, Oliver; Joshi, Nikita; Luyendyk, James P.; Kusebauch, Ulrike; Moss, Christopher L.; Srivastava, Anand; Himmelfarb, Jonathan; Waikar, Sushrut S.; Moritz, Robert L.

    2016-01-01

    CKD is the gradual, asymptomatic loss of kidney function, but current tests only identify CKD when significant loss has already happened. Several potential biomarkers of CKD have been reported, but none have been approved for preclinical or clinical use. Using RNA sequencing in a mouse model of folic acid-induced nephropathy, we identified ten genes that track kidney fibrosis development, the common pathologic finding in patients with CKD. The gene expression of all ten candidates was confirmed to be significantly higher (approximately ten- to 150-fold) in three well established, mechanistically distinct mouse models of kidney fibrosis than in models of nonfibrotic AKI. Protein expression of these genes was also high in the folic acid model and in patients with biopsy-proven kidney fibrosis. mRNA expression of the ten genes increased with increasing severity of kidney fibrosis, decreased in response to therapeutic intervention, and increased only modestly (approximately two- to five-fold) with liver fibrosis in mice and humans, demonstrating specificity for kidney fibrosis. Using targeted selected reaction monitoring mass spectrometry, we detected three of the ten candidates in human urine: cadherin 11 (CDH11), macrophage mannose receptor C1 (MRC1), and phospholipid transfer protein (PLTP). Furthermore, urinary levels of each of these three proteins distinguished patients with CKD (n=53) from healthy individuals (n=53; P<0.05). In summary, we report the identification of urinary CDH11, MRC1, and PLTP as novel noninvasive biomarkers of CKD. PMID:26449608

  7. Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement

    PubMed Central

    Ellias, Mohd Faiz; Zainal Ariffin, Shahrul Hisham; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Senafi, Shahidan; Megat Abdul Wahab, Rohaya

    2012-01-01

    Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption. PMID:22919344

  8. Glycosylation Changes in Serum Proteins Identify Patients with Pancreatic Cancer.

    PubMed

    Drabik, Anna; Bodzon-Kulakowska, Anna; Suder, Piotr; Silberring, Jerzy; Kulig, Jan; Sierzega, Marek

    2017-04-07

    After more than a decade of biomarker discovery using advanced proteomic and genomic approaches, very few biomarkers have been involved in clinical diagnostics. Most candidate biomarkers are focused on the protein component. Targeting post-translational modifications (PTMs) in combination with protein sequences will provide superior diagnostic information with regards to sensitivity and specificity. Glycosylation is one of the most common and functionally important PTMs. It plays a central role in many biological processes, including protein folding, host-pathogen interactions, immune response, and inflammation. Cancer-associated aberrant glycosylation has been identified in various types of cancer. Expression of cancer-specific glycan epitopes represents an excellent opportunity for diagnostics and potentially specific detection of tumors. Here, we report four proteins (LIFR, CE350, VP13A, HPT) found in sera from pancreatic cancer patients carrying aberrant glycan structures as compared to those of controls.

  9. Protein biomarker validation via proximity ligation assays.

    PubMed

    Blokzijl, A; Nong, R; Darmanis, S; Hertz, E; Landegren, U; Kamali-Moghaddam, M

    2014-05-01

    The ability to detect minute amounts of specific proteins or protein modifications in blood as biomarkers for a plethora of human pathological conditions holds great promise for future medicine. Despite a large number of plausible candidate protein biomarkers published annually, the translation to clinical use is impeded by factors such as the required size of the initial studies, and limitations of the technologies used. The proximity ligation assay (PLA) is a versatile molecular tool that has the potential to address some obstacles, both in validation of biomarkers previously discovered using other techniques, and for future routine clinical diagnostic needs. The enhanced specificity of PLA extends the opportunities for large-scale, high-performance analyses of proteins. Besides advantages in the form of minimal sample consumption and an extended dynamic range, the PLA technique allows flexible assay reconfiguration. The technology can be adapted for detecting protein complexes, proximity between proteins in extracellular vesicles or in circulating tumor cells, and to address multiple post-translational modifications in the same protein molecule. We discuss herein requirements for biomarker validation, and how PLA may play an increasing role in this regard. We describe some recent developments of the technology, including proximity extension assays, the use of recombinant affinity reagents suitable for use in proximity assays, and the potential for single cell proteomics. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. © 2013.

  10. Identification of Surface Protein Biomarkers of Listeria monocytogenes via Bioinformatics and Antibody-Based Protein Detection Tools

    PubMed Central

    Zhang, Cathy X. Y.; Brooks, Brian W.; Huang, Hongsheng; Pagotto, Franco

    2016-01-01

    ABSTRACT The Gram-positive bacterium Listeria monocytogenes causes a significant percentage of the fatalities among foodborne illnesses in humans. Surface proteins specifically expressed in a wide range of L. monocytogenes serotypes under selective enrichment culture conditions could serve as potential biomarkers for detection and isolation of this pathogen via antibody-based methods. Our study aimed to identify such biomarkers. Interrogation of the L. monocytogenes serotype 4b strain F2365 genome identified 130 putative or known surface proteins. The homologues of four surface proteins, LMOf2365_0578, LMOf2365_0581, LMOf2365_0639, and LMOf2365_2117, were assessed as biomarkers due to the presence of conserved regions among strains of L. monocytogenes which are variable among other Listeria species. Rabbit polyclonal antibodies against the four recombinant proteins revealed the expression of only LMOf2365_0639 on the surface of serotype 4b strain LI0521 cells despite PCR detection of mRNA transcripts for all four proteins in the organism. Three of 35 monoclonal antibodies (MAbs) to LMOf2365_0639, MAbs M3643, M3644, and M3651, specifically recognized 42 (91.3%) of 46 L. monocytogenes lineage I and II isolates grown in nonselective brain heart infusion medium. While M3644 and M3651 reacted with 14 to 15 (82.4 to 88.2%) of 17 L. monocytogenes lineage I and II isolates, M3643 reacted with 22 (91.7%) of 24 lineage I, II, and III isolates grown in selective enrichment media (UVM1, modified Fraser, Palcam, and UVM2 media). The three MAbs exhibited only weak reactivities (the optical densities at 414 nm were close to the cutoff value) to some other Listeria species grown in selective enrichment media. Collectively, the data indicate the potential of LMOf2365_0639 as a surface biomarker of L. monocytogenes, with the aid of specific MAbs, for pathogen detection, identification, and isolation in clinical, environmental, and food samples. IMPORTANCE L. monocytogenes is

  11. SWATH-based proteomics identified carbonic anhydrase 2 as a potential diagnosis biomarker for nasopharyngeal carcinoma

    PubMed Central

    Luo, Yanzhang; Mok, Tin Seak; Lin, Xiuxian; Zhang, Wanling; Cui, Yizhi; Guo, Jiahui; Chen, Xing; Zhang, Tao; Wang, Tong

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is a serious threat to public health, and the biomarker discovery is of urgent needs. The data-independent mode (DIA) based sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry (MS) has been proved to be precise in protein quantitation and efficient for cancer biomarker researches. In this study, we performed the first SWATH-MS analysis comparing the NPC and normal tissues. Spike-in stable isotope labeling by amino acids in cell culture (super-SILAC) MS was used as a shotgun reference. We identified and quantified 1414 proteins across all SWATH-MS analyses. We found that SWATH-MS had a unique feature to preferentially detect proteins with smaller molecular weights than either super-SILAC MS or human proteome background. With SWATH-MS, 29 significant differentially express proteins (DEPs) were identified. Among them, carbonic anhydrase 2 (CA2) was selected for further validation per novelty, MS quality and other supporting rationale. With the tissue microarray analysis, we found that CA2 had an AUC of 0.94 in differentiating NPC from normal tissue samples. In conclusion, SWATH-MS has unique features in proteome analysis, and it leads to the identification of CA2 as a potentially new diagnostic biomarker for NPC. PMID:28117408

  12. Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies.

    PubMed

    Al Shweiki, Mhd Rami; Oeckl, Patrick; Steinacker, Petra; Hengerer, Bastian; Schönfeldt-Lecuona, Carlos; Otto, Markus

    2017-06-01

    Major Depressive Disorder (MDD) is the leading cause of global disability, and an increasing body of literature suggests different cerebrospinal fluid (CSF) proteins as biomarkers of MDD. The aim of this review is to summarize the suggested CSF biomarkers and to analyze the MDD proteomics studies of CSF and brain tissues for promising biomarker candidates. Areas covered: The review includes the human studies found by a PubMed search using the following terms: 'depression cerebrospinal fluid biomarker', 'major depression biomarker CSF', 'depression CSF biomarker', 'proteomics depression', 'proteomics biomarkers in depression', 'proteomics CSF biomarker in depression', and 'major depressive disorder CSF'. The literature analysis highlights promising biomarker candidates and demonstrates conflicting results on others. It reveals 42 differentially regulated proteins in MDD that were identified in more than one proteomics study. It discusses the diagnostic potential of the biomarker candidates and their association with the suggested pathologies. Expert commentary: One ultimate goal of finding biomarkers for MDD is to improve the diagnostic accuracy to achieve better treatment outcomes; due to the heterogeneous nature of MDD, using bio-signatures could be a good strategy to differentiate MDD from other neuropsychiatric disorders. Notably, further validation studies of the suggested biomarkers are still needed.

  13. A cross sectional study of two independent cohorts identifies serum biomarkers for facioscapulohumeral muscular dystrophy (FSHD)

    PubMed Central

    Petek, Lisa M.; Rickard, Amanda M.; Budech, Christopher; Poliachik, Sandra L.; Shaw, Dennis; Ferguson, Mark R.; Tawil, Rabi; Friedman, Seth D.; Miller, Daniel G.

    2016-01-01

    Measuring the severity and progression of facioscapulohumeral muscular dystrophy (FSHD) is particularly challenging because muscle weakness progresses over long periods of time and can be sporadic. Biomarkers are essential for measuring disease burden and testing treatment strategies. We utilized the sensitive, specific, high-throughput SomaLogic proteomics platform of 1129 proteins to identify proteins with levels that correlate with FSHD severity in a cross-sectional study of two independent cohorts. We discovered biomarkers that correlate with clinical severity and disease burden measured by magnetic resonance imaging. Sixty-eight proteins in the Rochester cohort (n = 48) and 51 proteins in the Seattle cohort (n = 30) had significantly different levels in FSHD-affected individuals when compared with controls (p-value ≤ .005). A subset of these varied by at least 1.5 fold and four biomarkers were significantly elevated in both cohorts. Levels of creatine kinase MM and MB isoforms, carbonic anhydrase III, and troponin I type 2 reliably predicted the disease state and correlated with disease severity. Other novel biomarkers were also discovered that may reveal mechanisms of disease pathology. Assessing the levels of these biomarkers during clinical trials may add significance to other measures of quantifying disease progression or regression. PMID:27185459

  14. Selenium-binding protein 1: a sensitive urinary biomarker to detect heavy metal-induced nephrotoxicity.

    PubMed

    Lee, Eui Kyung; Shin, Young-Jun; Park, Eun Young; Kim, Nam Deuk; Moon, Aree; Kwack, Seung Jun; Son, Ji Yeon; Kacew, Sam; Lee, Byung Mu; Bae, Ok-Nam; Kim, Hyung Sik

    2017-04-01

    Identifying novel biomarkers to detect nephrotoxicity is clinically important. Here, we attempted to identify new biomarkers for mercury-induced nephrotoxicity and compared their sensitivity to that of traditional biomarkers in animal models. Comparative proteomics analysis was performed in kidney tissues of Sprague-Dawley rats after oral treatment with HgCl 2 (0.1, 1, or 5 mg/kg/day) for 21 days. Kidney cortex tissues were analyzed by two-dimensional gel electrophoresis/matrix-assisted laser desorption/ionization, and differentially expressed proteins were identified. The corresponding spots were quantitated by RT-PCR. Selenium-binding protein 1 (SBP1) was found to be the most markedly upregulated protein in the kidney cortex of rats after HgCl 2 administration. However, blood urea nitrogen, serum creatinine, and glucose levels increased significantly only in the 1 or 5 mg/kg HgCl 2 -treated groups. A number of urinary excretion proteins, including kidney injury molecule-1, clusterin, monocyte chemoattractant protein-1, and β-microglobulin, increased dose-dependently. Histopathological examination revealed severe proximal tubular damage in high-dose (5 mg/kg) HgCl 2 -exposed groups. In addition, urinary excretion of SBP1 significantly increased in a dose-dependent manner. To confirm the critical role of SBP1 as a biomarker for nephrotoxicity, normal kidney proximal tubular cells were treated with HgCl 2 , CdCl 2 , or cisplatin for 24 h. SBP1 levels significantly increased in conditioned media exposed to nephrotoxicants, but decreased in cell lysates. Our investigations suggest that SBP1 may play a critical role in the pathological processes underlying chemical-induced nephrotoxicity. Thus, urinary excretion of SBP1 might be a sensitive and specific biomarker to detect early stages of kidney injury.

  15. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Tanyi, Janos L; Zhang, Rugang; Liu, Qin; Speicher, David W

    2013-08-26

    New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. This manuscript addresses the importance of distinguishing between protein homologs and isoforms when identifying and validating cancer biomarkers in plasma or serum. Specifically, it describes the use of targeted in-depth LC-MS/MS analysis to determine the members of two protein families, chloride intracellular channel (CLIC) and tropomyosin (TPM) proteins that are detectable in sera of ovarian cancer patients. It then establishes a multiplexed isoform- and homology-specific MRM assay to quantify all observed gene products in these two protein

  16. Proteomics-based approach identified differentially expressed proteins with potential roles in endometrial carcinoma.

    PubMed

    Li, Zhengyu; Min, Wenjiao; Huang, Canhua; Bai, Shujun; Tang, Minghai; Zhao, Xia

    2010-01-01

    We used proteomic approaches to identify altered expressed proteins in endometrial carcinoma, with the aim of discovering potential biomarkers or therapeutic targets for endometrial carcinoma. The global proteins extracted from endometrial carcinoma and normal endometrial tissues were separated by 2-dimensional electrophoresis and analyzed with PDQuest (Bio-Rad, Hercules, Calif) software. The differentially expressed spots were identified by mass spectrometry and searched against NCBInr protein database. Those proteins with potential roles were confirmed by Western blotting and immunohistochemical assays. Ninety-nine proteins were identified by mass spectrometry, and a cluster diagram analysis indicated that these proteins were involved in metabolism, cell transformation, protein folding, translation and modification, proliferation and apoptosis, signal transduction, cytoskeleton, and so on. In confirmatory immunoblotting and immunohistochemical analyses, overexpressions of epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A were also observed in endometrial carcinoma tissues, which were consistent with the proteomic results. Our results suggested that these identified proteins, including epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A, might be of potential values in the studies of endometrial carcinogenesis or investigations of diagnostic biomarkers or treatment targets for endometrial carcinoma.

  17. A structured proteomic approach identifies 14-3-3Sigma as a novel and reliable protein biomarker in panel based differential diagnostics of liver tumors.

    PubMed

    Reis, Henning; Pütter, Carolin; Megger, Dominik A; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-C; Bertram, Stefanie; Wohlschläger, Jeremias; Hagemann, Sascha; Eisenacher, Martin; Scherag, André; Schlaak, Jörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-06-01

    Hepatocellular carcinoma (HCC) is a major lethal cancer worldwide. Despite sophisticated diagnostic algorithms, the differential diagnosis of small liver nodules still is difficult. While imaging techniques have advanced, adjuvant protein-biomarkers as glypican3 (GPC3), glutamine-synthetase (GS) and heat-shock protein 70 (HSP70) have enhanced diagnostic accuracy. The aim was to further detect useful protein-biomarkers of HCC with a structured systematic approach using differential proteome techniques, bring the results to practical application and compare the diagnostic accuracy of the candidates with the established biomarkers. After label-free and gel-based proteomics (n=18 HCC/corresponding non-tumorous liver tissue (NTLT)) biomarker candidates were tested for diagnostic accuracy in immunohistochemical analyses (n=14 HCC/NTLT). Suitable candidates were further tested for consistency in comparison to known protein-biomarkers in HCC (n=78), hepatocellular adenoma (n=25; HCA), focal nodular hyperplasia (n=28; FNH) and cirrhosis (n=28). Of all protein-biomarkers, 14-3-3Sigma (14-3-3S) exhibited the most pronounced up-regulation (58.8×) in proteomics and superior diagnostic accuracy (73.0%) in the differentiation of HCC from non-tumorous hepatocytes also compared to established biomarkers as GPC3 (64.7%) and GS (45.4%). 14-3-3S was part of the best diagnostic three-biomarker panel (GPC3, HSP70, 14-3-3S) for the differentiation of HCC and HCA which is of most important significance. Exclusion of GS and inclusion of 14-3-3S in the panel (>1 marker positive) resulted in a profound increase in specificity (+44.0%) and accuracy (+11.0%) while sensitivity remained stable (96.0%). 14-3-3S is an interesting protein biomarker with the potential to further improve the accuracy of differential diagnostic process of hepatocellular tumors. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Biomarker Candidates of Chlamydophila pneumoniae Proteins and Protein Fragments Identified by Affinity-Proteomics Using FTICR-MS and LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Susnea, Iuliana; Bunk, Sebastian; Wendel, Albrecht; Hermann, Corinna; Przybylski, Michael

    2011-04-01

    We report here an affinity-proteomics approach that combines 2D-gel electrophoresis and immunoblotting with high performance mass spectrometry to the identification of both full length protein antigens and antigenic fragments of Chlamydophila pneumoniae (C. pneumoniae). The present affinity-mass spectrometry approach effectively utilized high resolution FTICR mass spectrometry and LC-tandem-MS for protein identification, and enabled the identification of several new highly antigenic C. pneumoniae proteins that were not hitherto reported or previously detected only in other Chlamydia species, such as Chlamydia trachomatis. Moreover, high resolution affinity-MS provided the identification of several neo-antigenic protein fragments containing N- and C-terminal, and central domains such as fragments of the membrane protein Pmp21 and the secreted chlamydial proteasome-like factor (Cpaf), representing specific biomarker candidates.

  19. Normalization of Patient-Identified Plasma Biomarkers in SMNΔ7 Mice following Postnatal SMN Restoration

    PubMed Central

    Arnold, W. David; Duque, Sandra; Iyer, Chitra C.; Zaworski, Phillip; McGovern, Vicki L.; Taylor, Shannon J.; von Herrmann, Katharine M.; Kobayashi, Dione T.; Chen, Karen S.; Kolb, Stephen J.; Paushkin, Sergey V.; Burghes, Arthur H. M.

    2016-01-01

    Introduction and Objective Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disorder. SMA is caused by homozygous loss of the SMN1 gene and retention of the SMN2 gene resulting in reduced levels of full length SMN protein that are insufficient for motor neuron function. Various treatments that restore levels of SMN are currently in clinical trials and biomarkers are needed to determine the response to treatment. Here, we sought to investigate in SMA mice a set of plasma analytes, previously identified in patients with SMA to correlate with motor function. The goal was to determine whether levels of plasma markers were altered in the SMNΔ7 mouse model of SMA and whether postnatal SMN restoration resulted in normalization of the biomarkers. Methods SMNΔ7 and control mice were treated with antisense oligonucleotides (ASO) targeting ISS-N1 to increase SMN protein from SMN2 or scramble ASO (sham treatment) via intracerebroventricular injection on postnatal day 1 (P1). Brain, spinal cord, quadriceps muscle, and liver were analyzed for SMN protein levels at P12 and P90. Ten plasma biomarkers (a subset of biomarkers in the SMA-MAP panel available for analysis in mice) were analyzed in plasma obtained at P12, P30, and P90. Results Of the eight plasma biomarkers assessed, 5 were significantly changed in sham treated SMNΔ7 mice compared to control mice and were normalized in SMNΔ7 mice treated with ASO. Conclusion This study defines a subset of the SMA-MAP plasma biomarker panel that is abnormal in the most commonly used mouse model of SMA. Furthermore, some of these markers are responsive to postnatal SMN restoration. These findings support continued clinical development of these potential prognostic and pharmacodynamic biomarkers. PMID:27907033

  20. Identifying novel biomarkers in sarcoidosis using genome-based approaches

    PubMed Central

    Knox, Kenneth S.; Garcia, Joe G.N.

    2015-01-01

    Synopsis We briefly review conventional biomarkers used clinically to 1) support a diagnosis and 2) monitor disease progression in patients with sarcoidosis. We describe potential new biomarkers identified by genome-wide screening and the approaches to discover these biomarkers. PMID:26593137

  1. SurvNet: a web server for identifying network-based biomarkers that most correlate with patient survival data.

    PubMed

    Li, Jun; Roebuck, Paul; Grünewald, Stefan; Liang, Han

    2012-07-01

    An important task in biomedical research is identifying biomarkers that correlate with patient clinical data, and these biomarkers then provide a critical foundation for the diagnosis and treatment of disease. Conventionally, such an analysis is based on individual genes, but the results are often noisy and difficult to interpret. Using a biological network as the searching platform, network-based biomarkers are expected to be more robust and provide deep insights into the molecular mechanisms of disease. We have developed a novel bioinformatics web server for identifying network-based biomarkers that most correlate with patient survival data, SurvNet. The web server takes three input files: one biological network file, representing a gene regulatory or protein interaction network; one molecular profiling file, containing any type of gene- or protein-centred high-throughput biological data (e.g. microarray expression data or DNA methylation data); and one patient survival data file (e.g. patients' progression-free survival data). Given user-defined parameters, SurvNet will automatically search for subnetworks that most correlate with the observed patient survival data. As the output, SurvNet will generate a list of network biomarkers and display them through a user-friendly interface. SurvNet can be accessed at http://bioinformatics.mdanderson.org/main/SurvNet.

  2. Candidate Proteins, Metabolites and Transcripts in the Biomarkers for Spinal Muscular Atrophy (BforSMA) Clinical Study

    PubMed Central

    Finkel, Richard S.; Crawford, Thomas O.; Swoboda, Kathryn J.; Kaufmann, Petra; Juhasz, Peter; Li, Xiaohong; Guo, Yu; Li, Rebecca H.; Trachtenberg, Felicia; Forrest, Suzanne J.; Kobayashi, Dione T.; Chen, Karen S.; Joyce, Cynthia L.; Plasterer, Thomas

    2012-01-01

    Background Spinal Muscular Atrophy (SMA) is a neurodegenerative motor neuron disorder resulting from a homozygous mutation of the survival of motor neuron 1 (SMN1) gene. The gene product, SMN protein, functions in RNA biosynthesis in all tissues. In humans, a nearly identical gene, SMN2, rescues an otherwise lethal phenotype by producing a small amount of full-length SMN protein. SMN2 copy number inversely correlates with disease severity. Identifying other novel biomarkers could inform clinical trial design and identify novel therapeutic targets. Objective: To identify novel candidate biomarkers associated with disease severity in SMA using unbiased proteomic, metabolomic and transcriptomic approaches. Materials and Methods: A cross-sectional single evaluation was performed in 108 children with genetically confirmed SMA, aged 2–12 years, manifesting a broad range of disease severity and selected to distinguish factors associated with SMA type and present functional ability independent of age. Blood and urine specimens from these and 22 age-matched healthy controls were interrogated using proteomic, metabolomic and transcriptomic discovery platforms. Analyte associations were evaluated against a primary measure of disease severity, the Modified Hammersmith Functional Motor Scale (MHFMS) and to a number of secondary clinical measures. Results A total of 200 candidate biomarkers correlate with MHFMS scores: 97 plasma proteins, 59 plasma metabolites (9 amino acids, 10 free fatty acids, 12 lipids and 28 GC/MS metabolites) and 44 urine metabolites. No transcripts correlated with MHFMS. Discussion In this cross-sectional study, “BforSMA” (Biomarkers for SMA), candidate protein and metabolite markers were identified. No transcript biomarker candidates were identified. Additional mining of this rich dataset may yield important insights into relevant SMA-related pathophysiology and biological network associations. Additional prospective studies are needed to confirm

  3. Wound outcome in combat injuries is associated with a unique set of protein biomarkers

    PubMed Central

    2013-01-01

    Background The ability to forecast whether a wound will heal after closure without further debridement(s), would provide substantial benefits to patients with severe extremity trauma. Methods Wound effluent is a readily available material which can be collected without disturbing healthy tissue. For analysis of potential host response biomarkers, forty four serial combat wound effluent samples from 19 patients with either healing or failing traumatic- and other combat-related wounds were examined by 2-D DIGE. Spot map patterns were correlated to eventual wound outcome (healed or wound failure) and analyzed using DeCyder 7.0 and differential proteins identified via LC-MS/MS. Results This approach identified 52 protein spots that were differentially expressed and thus represent candidate biomarkers for this clinical application. Many of these proteins are intimately involved in inflammatory and immune responses. Furthermore, discriminate analysis further refined the 52 differential protein spots to a smaller subset of which successfully differentiate between wounds that will heal and those that will fail and require further surgical intervention with greater than 83% accuracy. Conclusion These results suggest candidates for a panel of protein biomarkers that may aid traumatic wound care prognosis and treatment. We recommend that this strategy be refined, and then externally validated, in future studies of traumatic wounds. PMID:24192341

  4. Protein biomarkers of alcohol abuse

    PubMed Central

    Torrente, Mariana P; Freeman, Willard M; Vrana, Kent E

    2012-01-01

    Alcohol abuse can lead to a number of health and social issues. Our current inability to accurately assess long-term drinking behaviors is an important obstacle to its diagnosis and treatment. Biomarkers for chronic alcohol consumption have made a number of important advances but have yet to become highly accurate and as accepted as objective tests for other diseases. Thus, there is a crucial need for the development of more sensitive and specific markers of alcohol abuse. Recent advancements in proteomic technologies have greatly increased the potential for alcohol abuse biomarker discovery. Here, the authors review established and novel protein biomarkers for long-term alcohol consumption and the proteomic technologies that have been used in their study. PMID:22967079

  5. A proteomic analysis identifies candidate early biomarkers to predict ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients.

    PubMed

    Wu, Lan; Sun, Yazhou; Wan, Jun; Luan, Ting; Cheng, Qing; Tan, Yong

    2017-07-01

    Ovarian hyperstimulation syndrome (OHSS) is a potentially life‑threatening, iatrogenic complication that occurs during assisted reproduction. Polycystic ovarian syndrome (PCOS) significantly increases the risk of OHSS during controlled ovarian stimulation. Therefore, a more effective early prediction technique is required in PCOS patients. Quantitative proteomic analysis of serum proteins indicates the potential diagnostic value for disease. In the present study, the authors revealed the differentially expressed proteins in OHSS patients with PCOS as new diagnostic biomarkers. The promising proteins obtained from liquid chromatography‑mass spectrometry were subjected to ELISA and western blotting assay for further confirmation. A total of 57 proteins were identified with significant difference, of which 29 proteins were upregulated and 28 proteins were downregulated in OHSS patients. Haptoglobin, fibrinogen and lipoprotein lipase were selected as candidate biomarkers. Receiver operating characteristic curve analysis demonstrated all three proteins may have potential as biomarkers to discriminate OHSS in PCOS patients. Haptoglobin, fibrinogen and lipoprotein lipase have never been reported as a predictive marker of OHSS in PCOS patients, and their potential roles in OHSS occurrence deserve further studies. The proteomic results reported in the present study may gain deeper insights into the pathophysiology of OHSS.

  6. Pathway mapping and development of disease-specific biomarkers: protein-based network biomarkers

    PubMed Central

    Chen, Hao; Zhu, Zhitu; Zhu, Yichun; Wang, Jian; Mei, Yunqing; Cheng, Yunfeng

    2015-01-01

    It is known that a disease is rarely a consequence of an abnormality of a single gene, but reflects the interactions of various processes in a complex network. Annotated molecular networks offer new opportunities to understand diseases within a systems biology framework and provide an excellent substrate for network-based identification of biomarkers. The network biomarkers and dynamic network biomarkers (DNBs) represent new types of biomarkers with protein–protein or gene–gene interactions that can be monitored and evaluated at different stages and time-points during development of disease. Clinical bioinformatics as a new way to combine clinical measurements and signs with human tissue-generated bioinformatics is crucial to translate biomarkers into clinical application, validate the disease specificity, and understand the role of biomarkers in clinical settings. In this article, the recent advances and developments on network biomarkers and DNBs are comprehensively reviewed. How network biomarkers help a better understanding of molecular mechanism of diseases, the advantages and constraints of network biomarkers for clinical application, clinical bioinformatics as a bridge to the development of diseases-specific, stage-specific, severity-specific and therapy predictive biomarkers, and the potentials of network biomarkers are also discussed. PMID:25560835

  7. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Tanyi, Janos L.; Zhang, Rugang; Liu, Qin; Speicher, David W.

    2013-01-01

    New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. PMID:23792823

  8. Analytical validation considerations of multiplex mass-spectrometry-based proteomic platforms for measuring protein biomarkers.

    PubMed

    Boja, Emily S; Fehniger, Thomas E; Baker, Mark S; Marko-Varga, György; Rodriguez, Henry

    2014-12-05

    Protein biomarker discovery and validation in current omics era are vital for healthcare professionals to improve diagnosis, detect cancers at an early stage, identify the likelihood of cancer recurrence, stratify stages with differential survival outcomes, and monitor therapeutic responses. The success of such biomarkers would have a huge impact on how we improve the diagnosis and treatment of patients and alleviate the financial burden of healthcare systems. In the past, the genomics community (mostly through large-scale, deep genomic sequencing technologies) has been steadily improving our understanding of the molecular basis of disease, with a number of biomarker panels already authorized by the U.S. Food and Drug Administration (FDA) for clinical use (e.g., MammaPrint, two recently cleared devices using next-generation sequencing platforms to detect DNA changes in the cystic fibrosis transmembrane conductance regulator (CFTR) gene). Clinical proteomics, on the other hand, albeit its ability to delineate the functional units of a cell, more likely driving the phenotypic differences of a disease (i.e., proteins and protein-protein interaction networks and signaling pathways underlying the disease), "staggers" to make a significant impact with only an average ∼ 1.5 protein biomarkers per year approved by the FDA over the past 15-20 years. This statistic itself raises the concern that major roadblocks have been impeding an efficient transition of protein marker candidates in biomarker development despite major technological advances in proteomics in recent years.

  9. Differential proteomic and tissue expression analyses identify valuable diagnostic biomarkers of hepatocellular differentiation and hepatoid adenocarcinomas.

    PubMed

    Reis, Henning; Padden, Juliet; Ahrens, Maike; Pütter, Carolin; Bertram, Stefanie; Pott, Leona L; Reis, Anna-Carinna; Weber, Frank; Juntermanns, Benjamin; Hoffmann, Andreas-C; Eisenacher, Martin; Schlaak, Joörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-10-01

    The exact discrimination of lesions with true hepatocellular differentiation from secondary tumours and neoplasms with hepatocellular histomorphology like hepatoid adenocarcinomas (HAC) is crucial. Therefore, we aimed to identify ancillary protein biomarkers by using complementary proteomic techniques (2D-DIGE, label-free MS). The identified candidates were immunohistochemically validated in 14 paired samples of hepatocellular carcinoma (HCC) and non-tumourous liver tissue (NT). The candidates and HepPar1/Arginase1 were afterwards tested for consistency in a large cohort of hepatocellular lesions and NT (n = 290), non-hepatocellular malignancies (n = 383) and HAC (n = 13). Eight non-redundant, differentially expressed proteins were suitable for further immunohistochemical validation and four (ABAT, BHMT, FABP1, HAOX1) for further evaluation. Sensitivity and specificity rates for HCC/HAC were as follows: HepPar1 80.2%, 94.3% / 80.2%, 46.2%; Arginase1 82%, 99.4% / 82%, 69.2%; BHMT 61.4%, 93.8% / 61.4%, 100%; ABAT 84.4%, 33.7% / 84.4%, 30.8%; FABP1 87.2%, 95% / 87.2%, 69.2%; HAOX1 95.5%, 36.3% / 95.5%, 46.2%. The best 2×/3× biomarker panels for the diagnosis of HCC consisted of Arginase1/HAOX1 and BHMT/Arginase1/HAOX1 and for HAC consisted of Arginase1/FABP1 and BHMT/Arginase1/FABP1. In summary, we successfully identified, validated and benchmarked protein biomarker candidates of hepatocellular differentiation. BHMT in particular exhibited superior diagnostic characteristics in hepatocellular lesions and specifically in HAC. BHMT is therefore a promising (panel based) biomarker candidate in the differential diagnostic process of lesions with hepatocellular aspect.

  10. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow.

    PubMed

    Kulkarni, Shilpa; Koller, Antonius; Mani, Kartik M; Wen, Ruofeng; Alfieri, Alan; Saha, Subhrajit; Wang, Jian; Patel, Purvi; Bandeira, Nuno; Guha, Chandan; Chen, Emily I

    2016-11-01

    Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted proteins were identified in urinary and serum exosomes

  11. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Shilpa; Koller, Antonius; Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24more » and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially

  12. SELDI-TOF-MS ProteinChip array profiling of T-cell clones propagated in long-term culture identifies human profilin-1 as a potential bio-marker of immunosenescence.

    PubMed

    Mazzatti, Dawn J; Pawelec, Graham; Longdin, Robin; Powell, Jonathan R; Forsey, Rosalyn J

    2007-06-05

    The adaptive immune response requires waves of T-cell clonal expansion on contact with pathogen and elimination after clearance of the source of antigen. However, lifelong persistent infections with common viruses cause chronic antigenic stimulation which takes its toll on adaptive immunity in late life. Chronic antigenic stress results in deregulation of the T-cell response and accumulation of anergic cells. Longitudinal studies of the elderly show that this impacts on survival. Identifying the nature of the defects in chronically-stimulated T-cells and protein bio-markers of these dysfunctional cells would help to understand age-associated compromised T-cell function (immunosenescence) and facilitate the development of targeted intervention strategies.The purpose of this work was to use surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) to analyse proteins associated with T-cell senescence in order to identify potential bio-markers. Clonal populations of T-cells isolated from elderly octogenarian and centenarian donors were grown in vitro until senescence, and early passage and late passage (pre-senescent) cells were analysed using SELDI-TOF-MS ProteinChip arrays. Discriminant analysis identified several protein or peptide peaks in the region of 14.5-16.5 kDa that were associated with T-cell clone senescence. Human profilin-1, a ubiquitous protein associated with actin remodelling and cellular motility was unambiguously identified. Altered expression of profilin-1 in senescent T-cell clones was confirmed by Western blot analysis. Due to the proposed roles of profilin-1 in cellular survival, cytoskeleton remodelling, motility, and proliferation, it is hypothesised that differential expression of profilin-1 in ageing may contribute directly to immunosenescence.

  13. Identification of urine protein biomarkers with the potential for early detection of lung cancer.

    PubMed

    Zhang, Hongjuan; Cao, Jing; Li, Lin; Liu, Yanbin; Zhao, Hong; Li, Nan; Li, Bo; Zhang, Aiqun; Huang, Huanwei; Chen, She; Dong, Mengqiu; Yu, Lei; Zhang, Jian; Chen, Liang

    2015-07-02

    Lung cancer is the leading cause of cancer-related deaths and has an overall 5-year survival rate lower than 15%. Large-scale clinical trials have demonstrated a significant relative reduction in mortality in high-risk individuals with low-dose computed tomography screening. However, biomarkers capable of identifying the most at-risk population and detecting lung cancer before it becomes clinically apparent are urgently needed in the clinic. Here, we report the identification of urine biomarkers capable of detecting lung cancer. Using the well-characterized inducible Kras (G12D) mouse model of lung cancer, we identified alterations in the urine proteome in tumor-bearing mice compared with sibling controls. Marked differences at the proteomic level were also detected between the urine of patients and that of healthy population controls. Importantly, we identified 7 proteins commonly found to be significantly up-regulated in both tumor-bearing mice and patients. In an independent cohort, we showed that 2 of the 7 proteins were up-regulated in urine samples from lung cancer patients but not in those from controls. The kinetics of these proteins correlated with the disease state in the mouse model. These tumor biomarkers could potentially aid in the early detection of lung cancer.

  14. Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects.

    PubMed

    Nath, Anjali K; Krauthammer, Michael; Li, Puyao; Davidov, Eugene; Butler, Lucas C; Copel, Joshua; Katajamaa, Mikko; Oresic, Matej; Buhimschi, Irina; Buhimschi, Catalin; Snyder, Michael; Madri, Joseph A

    2009-01-01

    Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs). However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies. Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others) were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B) was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1) as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF) samples from women carrying normal fetuses and those with CHDs. The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs.

  15. Proteomic-Based Detection of a Protein Cluster Dysregulated during Cardiovascular Development Identifies Biomarkers of Congenital Heart Defects

    PubMed Central

    Nath, Anjali K.; Krauthammer, Michael; Li, Puyao; Davidov, Eugene; Butler, Lucas C.; Copel, Joshua; Katajamaa, Mikko; Oresic, Matej; Buhimschi, Irina; Buhimschi, Catalin; Snyder, Michael; Madri, Joseph A.

    2009-01-01

    Background Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs). However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies. Methodology/Principal Findings Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others) were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B) was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1) as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF) samples from women carrying normal fetuses and those with CHDs. Conclusions/Significance The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs. PMID:19156209

  16. The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases

    PubMed Central

    Ahsan, Muhammad; Ek, Weronica E.; Karlsson, Torgny; Gyllensten, Ulf

    2017-01-01

    Associations between epigenetic alterations and disease status have been identified for many diseases. However, there is no strong evidence that epigenetic alterations are directly causal for disease pathogenesis. In this study, we combined SNP and DNA methylation data with measurements of protein biomarkers for cancer, inflammation or cardiovascular disease, to investigate the relative contribution of genetic and epigenetic variation on biomarker levels. A total of 121 protein biomarkers were measured and analyzed in relation to DNA methylation at 470,000 genomic positions and to over 10 million SNPs. We performed epigenome-wide association study (EWAS) and genome-wide association study (GWAS) analyses, and integrated biomarker, DNA methylation and SNP data using between 698 and 1033 samples depending on data availability for the different analyses. We identified 124 and 45 loci (Bonferroni adjusted P < 0.05) with effect sizes up to 0.22 standard units’ change per 1% change in DNA methylation levels and up to four standard units’ change per copy of the effective allele in the EWAS and GWAS respectively. Most GWAS loci were cis-regulatory whereas most EWAS loci were located in trans. Eleven EWAS loci were associated with multiple biomarkers, including one in NLRC5 associated with CXCL11, CXCL9, IL-12, and IL-18 levels. All EWAS signals that overlapped with a GWAS locus were driven by underlying genetic variants and three EWAS signals were confounded by smoking. While some cis-regulatory SNPs for biomarkers appeared to have an effect also on DNA methylation levels, cis-regulatory SNPs for DNA methylation were not observed to affect biomarker levels. We present associations between protein biomarker and DNA methylation levels at numerous loci in the genome. The associations are likely to reflect the underlying pattern of genetic variants, specific environmental exposures, or represent secondary effects to the pathogenesis of disease. PMID:28915241

  17. Combining micro-RNA and protein sequencing to detect robust biomarkers for Graves' disease and orbitopathy.

    PubMed

    Zhang, Lei; Masetti, Giulia; Colucci, Giuseppe; Salvi, Mario; Covelli, Danila; Eckstein, Anja; Kaiser, Ulrike; Draman, Mohd Shazli; Muller, Ilaria; Ludgate, Marian; Lucini, Luigi; Biscarini, Filippo

    2018-05-30

    Graves' Disease (GD) is an autoimmune condition in which thyroid-stimulating antibodies (TRAB) mimic thyroid-stimulating hormone function causing hyperthyroidism. 5% of GD patients develop inflammatory Graves' orbitopathy (GO) characterized by proptosis and attendant sight problems. A major challenge is to identify which GD patients are most likely to develop GO and has relied on TRAB measurement. We screened sera/plasma from 14 GD, 19 GO and 13 healthy controls using high-throughput proteomics and miRNA sequencing (Illumina's HiSeq2000 and Agilent-6550 Funnel quadrupole-time-of-flight mass spectrometry) to identify potential biomarkers for diagnosis or prognosis evaluation. Euclidean distances and differential expression (DE) based on miRNA and protein quantification were analysed by multidimensional scaling (MDS) and multinomial regression respectively. We detected 3025 miRNAs and 1886 proteins and MDS revealed good separation of the 3 groups. Biomarkers were identified by combined DE and Lasso-penalized predictive models; accuracy of predictions was 0.86 (±0:18), and 5 miRNA and 20 proteins were found including Zonulin, Alpha-2 macroglobulin, Beta-2 glycoprotein 1 and Fibronectin. Functional analysis identified relevant metabolic pathways, including hippo signaling, bacterial invasion of epithelial cells and mRNA surveillance. Proteomic and miRNA analyses, combined with robust bioinformatics, identified circulating biomarkers applicable to diagnose GD, predict GO disease status and optimize patient management.

  18. A novel quantification-driven proteomic strategy identifies an endogenous peptide of pleiotrophin as a new biomarker of Alzheimer's disease.

    PubMed

    Skillbäck, Tobias; Mattsson, Niklas; Hansson, Karl; Mirgorodskaya, Ekaterina; Dahlén, Rahil; van der Flier, Wiesje; Scheltens, Philip; Duits, Floor; Hansson, Oskar; Teunissen, Charlotte; Blennow, Kaj; Zetterberg, Henrik; Gobom, Johan

    2017-10-17

    We present a new, quantification-driven proteomic approach to identifying biomarkers. In contrast to the identification-driven approach, limited in scope to peptides that are identified by database searching in the first step, all MS data are considered to select biomarker candidates. The endopeptidome of cerebrospinal fluid from 40 Alzheimer's disease (AD) patients, 40 subjects with mild cognitive impairment, and 40 controls with subjective cognitive decline was analyzed using multiplex isobaric labeling. Spectral clustering was used to match MS/MS spectra. The top biomarker candidate cluster (215% higher in AD compared to controls, area under ROC curve = 0.96) was identified as a fragment of pleiotrophin located near the protein's C-terminus. Analysis of another cohort (n = 60 over four clinical groups) verified that the biomarker was increased in AD patients while no change in controls, Parkinson's disease or progressive supranuclear palsy was observed. The identification of the novel biomarker pleiotrophin 151-166 demonstrates that our quantification-driven proteomic approach is a promising method for biomarker discovery, which may be universally applicable in clinical proteomics.

  19. The first decade of MALDI protein profiling: a lesson in translational biomarker research.

    PubMed

    Albrethsen, Jakob

    2011-05-16

    MALDI protein profiling has identified several important challenges in omics-based biomarker research. First, research into the analytical performance of a novel omics-platform of potential diagnostic impact must be carried out in a critical manner and according to common guidelines. Evaluation studies should be performed at an early time and preferably before massive advancement into explorative biomarker research. In particular, MALDI profiling underscores the need for an adequate understanding of the causal relationship between molecular abundance and the quantitative measure in multivariate biomarker research. Secondly, MALDI profiling has raised awareness of the significant risk of false-discovery in biomarker research due to several confounding factors, including sample processing and unspecific host-response to disease. Here, the experience from MALDI profiling supports that a central challenge in unbiased molecular profiling is to pinpoint the aberrations of clinical interest among potentially massive unspecific changes that can accompany disease. The lessons from the first decade of MALDI protein profiling are relevant for future efforts in advancing omics-based biomarker research beyond the laboratory setting and into clinical verification. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption.

    PubMed

    Lee, Regent; Fischer, Roman; Charles, Philip D; Adlam, David; Valli, Alessandro; Di Gleria, Katalin; Kharbanda, Rajesh K; Choudhury, Robin P; Antoniades, Charalambos; Kessler, Benedikt M; Channon, Keith M

    2017-01-01

    Atherosclerotic plaque rupture is the culprit event which underpins most acute vascular syndromes such as acute myocardial infarction. Novel biomarkers of plaque rupture could improve biological understanding and clinical management of patients presenting with possible acute vascular syndromes but such biomarker(s) remain elusive. Investigation of biomarkers in the context of de novo plaque rupture in humans is confounded by the inability to attribute the plaque rupture as the source of biomarker release, as plaque ruptures are typically associated with prompt down-stream events of myocardial necrosis and systemic inflammation. We developed a novel approach to identify potential biomarkers of plaque rupture by integrating plaque imaging, using optical coherence tomography, with both plaque and plasma proteomic analysis in a human model of angioplasty-induced plaque disruption. We compared two pairs of coronary plaque debris, captured by a FilterWire Device, and their corresponding control samples and found matrix metalloproteinase 9 (MMP9) to be significantly enriched in plaque. Plaque contents, as defined by optical coherence tomography, affect the systemic changes of MMP9. Disruption of lipid-rich plaque led to prompt elevation of plasma MMP9, whereas disruption of non-lipid-rich plaque resulted in delayed elevation of plasma MMP9. Systemic MMP9 elevation is independent of the associated myocardial necrosis and systemic inflammation (measured by Troponin I and C-reactive protein, respectively). This information guided the selection of a subset of subjects of for further label free proteomics analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). We discovered five novel, plaque-enriched proteins (lipopolysaccharide binding protein, Annexin A5, eukaryotic translocation initiation factor, syntaxin 11, cytochrome B5 reductase 3) to be significantly elevated in systemic circulation at 5 min after plaque disruption. This novel approach for biomarker

  1. Rapid label-free profiling of oral cancer biomarker proteins using nano-UPLC-Q-TOF ion mobility mass spectrometry.

    PubMed

    Nassar, Ala F; Williams, Brad J; Yaworksy, Dustin C; Patel, Vyomesh; Rusling, James F

    2016-03-01

    It has become quite clear that single cancer biomarkers cannot in general provide high sensitivity and specificity for reliable clinical cancer diagnostics. This paper explores the feasibility of rapid detection of multiple biomarker proteins in model oral cancer samples using label-free protein relative quantitation. MS-based label-free quantitative proteomics offer a rapid alternative that bypasses the need for stable isotope containing compounds to chemically bind and label proteins. Total protein content in oral cancer cell culture conditioned media was precipitated, subjected to proteolytic digestion, and then analyzed using a nano-UPLC (where UPLC is ultra-performance liquid chromatography) coupled to a hybrid Q-Tof ion-mobility mass spectrometry (MS). Rapid, simultaneous identification and quantification of multiple possible cancer biomarker proteins was achieved. In a comparative study between cancer and noncancer samples, approximately 952 proteins were identified using a high-throughput 1D ion mobility assisted data independent acquisition (IM-DIA) approach. As we previously demonstrated that interleukin-8 (IL-8) and vascular endothelial growth factor A (VEGF-A) were readily detected in oral cancer cell conditioned media(1), we targeted these biomarker proteins to validate our approach. Target biomarker protein IL-8 was found between 3.5 and 8.8 fmol, while VEGF-A was found at 1.45 fmol in the cancer cell media. Overall, our data suggest that the nano-UPLC-IM-DIA bioassay is a feasible approach to identify and quantify proteins in complex samples without the need for stable isotope labeling. These results have significant implications for rapid tumor diagnostics and prognostics by monitoring proteins such as IL-8 and VEGF-A implicated in cancer development and progression. The analysis in tissue or plasma is not possible at this time, but the subsequent work would be needed for validation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset.

    PubMed

    Metz, Thomas O; Qian, Wei-Jun; Jacobs, Jon M; Gritsenko, Marina A; Moore, Ronald J; Polpitiya, Ashoka D; Monroe, Matthew E; Camp, David G; Mueller, Patricia W; Smith, Richard D

    2008-02-01

    Novel biomarkers of type 1 diabetes must be identified and validated in initial, exploratory studies before they can be assessed in proficiency evaluations. Currently, untargeted "-omics" approaches are underutilized in profiling studies of clinical samples. This report describes the evaluation of capillary liquid chromatography (LC) coupled with mass spectrometry (MS) in a pilot proteomic analysis of human plasma and serum from a subset of control and type 1 diabetic individuals enrolled in the Diabetes Autoantibody Standardization Program, with the goal of identifying candidate biomarkers of type 1 diabetes. Initial high-resolution capillary LC-MS/MS experiments were performed to augment an existing plasma peptide database, while subsequent LC-FTICR studies identified quantitative differences in the abundance of plasma proteins. Analysis of LC-FTICR proteomic data identified five candidate protein biomarkers of type 1 diabetes. alpha-2-Glycoprotein 1 (zinc), corticosteroid-binding globulin, and lumican were 2-fold up-regulated in type 1 diabetic samples relative to control samples, whereas clusterin and serotransferrin were 2-fold up-regulated in control samples relative to type 1 diabetic samples. Observed perturbations in the levels of all five proteins are consistent with the metabolic aberrations found in type 1 diabetes. While the discovery of these candidate protein biomarkers of type 1 diabetes is encouraging, follow up studies are required for validation in a larger population of individuals and for determination of laboratory-defined sensitivity and specificity values using blinded samples.

  3. Transcript and protein environmental biomarkers in fish--a review.

    PubMed

    Tom, Moshe; Auslander, Meirav

    2005-04-01

    The levels of contaminant-affected gene products (transcripts and proteins) are increasingly utilized as environmental biomarkers, and their appropriate implementation as diagnostic tools is discussed. The required characteristics of a gene product biomarker are accurate evaluation using properly normalized absolute units, aiming at long-term comparability of biomarker levels over a wide geographical range and among many laboratories. Quantitative RT-PCR and competitive ELISA are suggested as preferred evaluation methods for transcript and protein, respectively. Constitutively expressed RNAs or proteins which are part of the examined homogenate are suggested as normalizing agents, compensating for variable processing efficiency. Essential characterization of expression patterns is suggested, providing reference values to be compared to the monitored levels. This comparison would enable estimation of the intensity of biological effects of contaminants. Contaminant-independent reference expression patterns should include natural fluctuations of the biomarker level. Contaminant-dependent patterns should include dose response to model contaminants chronically administered in two environmentally-realistic routes, reaching extreme sub-lethal affected levels. Recent studies using fish as environmental sentinel species, applying gene products as environmental biomarkers, and implementing at least part of the depicted methodologies are reviewed.

  4. Novel Stool-Based Protein Biomarkers for Improved Colorectal Cancer Screening: A Case-Control Study.

    PubMed

    Bosch, Linda J W; de Wit, Meike; Pham, Thang V; Coupé, Veerle M H; Hiemstra, Annemieke C; Piersma, Sander R; Oudgenoeg, Gideon; Scheffer, George L; Mongera, Sandra; Sive Droste, Jochim Terhaar; Oort, Frank A; van Turenhout, Sietze T; Larbi, Ilhame Ben; Louwagie, Joost; van Criekinge, Wim; van der Hulst, Rene W M; Mulder, Chris J J; Carvalho, Beatriz; Fijneman, Remond J A; Jimenez, Connie R; Meijer, Gerrit A

    2017-12-19

    The fecal immunochemical test (FIT) for detecting hemoglobin is used widely for noninvasive colorectal cancer (CRC) screening, but its sensitivity leaves room for improvement. To identify novel protein biomarkers in stool that outperform or complement hemoglobin in detecting CRC and advanced adenomas. Case-control study. Colonoscopy-controlled referral population from several centers. 315 stool samples from one series of 12 patients with CRC and 10 persons without colorectal neoplasia (control samples) and a second series of 81 patients with CRC, 40 with advanced adenomas, and 43 with nonadvanced adenomas, as well as 129 persons without colorectal neoplasia (control samples); 72 FIT samples from a third independent series of 14 patients with CRC, 16 with advanced adenomas, and 18 with nonadvanced adenomas, as well as 24 persons without colorectal neoplasia (control samples). Stool samples were analyzed by mass spectrometry. Classification and regression tree (CART) analysis and logistic regression analyses were performed to identify protein combinations that differentiated CRC or advanced adenoma from control samples. Antibody-based assays for 4 selected proteins were done on FIT samples. In total, 834 human proteins were identified, 29 of which were statistically significantly enriched in CRC versus control stool samples in both series. Combinations of 4 proteins reached sensitivities of 80% and 45% for detecting CRC and advanced adenomas, respectively, at 95% specificity, which was higher than that of hemoglobin alone (P < 0.001 and P = 0.003, respectively). Selected proteins could be measured in small sample volumes used in FIT-based screening programs and discriminated between CRC and control samples (P < 0.001). Lack of availability of antibodies prohibited validation of the top protein combinations in FIT samples. Mass spectrometry of stool samples identified novel candidate protein biomarkers for CRC screening. Several protein combinations outperformed

  5. Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins

    PubMed Central

    2013-01-01

    Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation. PMID:24010718

  6. Biomarkers identified by urinary metabonomics for noninvasive diagnosis of nutritional rickets.

    PubMed

    Wang, Maoqing; Yang, Xue; Ren, Lihong; Li, Songtao; He, Xuan; Wu, Xiaoyan; Liu, Tingting; Lin, Liqun; Li, Ying; Sun, Changhao

    2014-09-05

    Nutritional rickets is a worldwide public health problem; however, the current diagnostic methods retain shortcomings for accurate diagnosis of nutritional rickets. To identify urinary biomarkers associated with nutritional rickets and establish a noninvasive diagnosis method, urinary metabonomics analysis by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis were employed to investigate the metabolic alterations associated with nutritional rickets in 200 children with or without nutritional rickets. The pathophysiological changes and pathogenesis of nutritional rickets were illustrated by the identified biomarkers. By urinary metabolic profiling, 31 biomarkers of nutritional rickets were identified and five candidate biomarkers for clinical diagnosis were screened and identified by quantitative analysis and receiver operating curve analysis. Urinary levels of five candidate biomarkers were measured using mass spectrometry or commercial kits. In the validation step, the combination of phosphate and sebacic acid was able to give a noninvasive and accurate diagnostic with high sensitivity (94.0%) and specificity (71.2%). Furthermore, on the basis of the pathway analysis of biomarkers, our urinary metabonomics analysis gives new insight into the pathogenesis and pathophysiology of nutritional rickets.

  7. Breast cancer and protein biomarkers

    PubMed Central

    Gam, Lay-Harn

    2012-01-01

    Breast cancer is a healthcare concern of women worldwide. Despite procedures being available for diagnosis, prognosis and treatment of breast cancer, researchers are working intensively on the disease in order to improve the life quality of breast cancer patients. At present, there is no single treatment known to bring a definite cure for breast cancer. One of the possible solutions for combating breast cancer is through identification of reliable protein biomarkers that can be effectively used for early detection, prognosis and treatments of the cancer. Therefore, the task of identification of biomarkers for breast cancer has become the focus of many researchers worldwide. PMID:24520539

  8. Protein biomarkers identify patients unlikely to benefit from primary prevention implantable cardioverter defibrillators: findings from the Prospective Observational Study of Implantable Cardioverter Defibrillators (PROSE-ICD).

    PubMed

    Cheng, Alan; Zhang, Yiyi; Blasco-Colmenares, Elena; Dalal, Darshan; Butcher, Barbara; Norgard, Sanaz; Eldadah, Zayd; Ellenbogen, Kenneth A; Dickfeld, Timm; Spragg, David D; Marine, Joseph E; Guallar, Eliseo; Tomaselli, Gordon F

    2014-12-01

    Primary prevention implantable cardioverter defibrillators (ICDs) reduce all-cause mortality, but the benefits are heterogeneous. Current risk stratification based on left ventricular ejection fraction has limited discrimination power. We hypothesize that biomarkers for inflammation, neurohumoral activation, and cardiac injury can predict appropriate shocks and all-cause mortality in patients with primary prevention ICDs. The Prospective Observational Study of Implantable Cardioverter Defibrillators (PROSe-ICD) enrolled 1189 patients with systolic heart failure who underwent ICD implantation for primary prevention of sudden cardiac death. The primary end point was an ICD shock for adjudicated ventricular tachyarrhythmia. The secondary end point was all-cause mortality. After a median follow-up of 4.0 years, 137 subjects experienced an appropriate ICD shock and 343 participants died (incidence rates of 3.2 and 5.8 per 100 person-years, respectively). In multivariable-adjusted models, higher interleukin-6 levels increased the risk of appropriate ICD shocks. In contrast, C-reactive protein, interleukin-6, tumor necrosis factor-α receptor II, pro-brain natriuretic peptide (pro-BNP), and cardiac troponin T showed significant linear trends for increased risk of all-cause mortality across quartiles. A score combining these 5 biomarkers identified patients who were much more likely to die than to receive an appropriate shock from the ICD. An increase in serum biomarkers of inflammation, neurohumoral activation, and myocardial injury increased the risk for death but poorly predicted the likelihood of an ICD shock. These findings highlight the potential importance of serum-based biomarkers in identifying patients who are unlikely to benefit from primary prevention ICDs. clinicaltrials.gov; Unique Identifier: NCT00733590. © 2014 American Heart Association, Inc.

  9. Current and Prospective Protein Biomarkers of Lung Cancer

    PubMed Central

    Zamay, Tatiana N.; Zamay, Galina S.; Kolovskaya, Olga S.; Zukov, Ruslan A.; Petrova, Marina M.; Gargaun, Ana; Berezovski, Maxim V.

    2017-01-01

    Lung cancer is a malignant lung tumor with various histological variants that arise from different cell types, such as bronchial epithelium, bronchioles, alveoli, or bronchial mucous glands. The clinical course and treatment efficacy of lung cancer depends on the histological variant of the tumor. Therefore, accurate identification of the histological type of cancer and respective protein biomarkers is crucial for adequate therapy. Due to the great diversity in the molecular-biological features of lung cancer histological types, detection is impossible without knowledge of the nature and origin of malignant cells, which release certain protein biomarkers into the bloodstream. To date, different panels of biomarkers are used for screening. Unfortunately, a uniform serum biomarker composition capable of distinguishing lung cancer types is yet to be discovered. As such, histological analyses of tumor biopsies and immunohistochemistry are the most frequently used methods for establishing correct diagnoses. Here, we discuss the recent advances in conventional and prospective aptamer based strategies for biomarker discovery. Aptamers like artificial antibodies can serve as molecular recognition elements for isolation detection and search of novel tumor-associated markers. Here we will describe how these small synthetic single stranded oligonucleotides can be used for lung cancer biomarker discovery and utilized for accurate diagnosis and targeted therapy. Furthermore, we describe the most frequently used in-clinic and novel lung cancer biomarkers, which suggest to have the ability of differentiating between histological types of lung cancer and defining metastasis rate. PMID:29137182

  10. Novel Serum Biomarkers Detected by Protein Array in Polycystic Ovary Syndrome with Low Progesterone Level.

    PubMed

    Zheng, Qin; Zhou, Feifei; Cui, Xinyuan; Liu, Mulin; Li, Yulin; Liu, Shuai; Tan, Jichun; Yan, Qiu

    2018-01-01

    Polycystic ovary syndrome (PCOS), characterized by female infertility and metabolic abnormalities, is one of the most common endocrine disorders. The etiology of PCOS remains unknown. The comprehensive analysis of protein alterations in PCOS patients is meaningful for identifying diagnostic biomarkers of PCOS. Here, we explored the clinical value of serum proteins as novel biomarkers to detect PCOS with low progesterone level. A total of 43 patients with PCOS and 30 healthy women were enrolled. Protein array was used to detect the variations of serum proteins between PCOS patients and healthy women. The level of five serum proteins was further confirmed by ELISA and western blot. The human ovarian granulosa cells (KGN) was cultured to examine the underlying mechanism of PCOS. CCK8 assay and western blot were carried out to evaluate the alterations in proliferative ability, TUNEL assay and DAPI staining to detect the apoptosis of KGN cells. Among the 507 proteins, we identified 76 differentially expressed serum proteins (≧1.5 fold), with 40 elevated and 36 decreased proteins. Moreover, 47 proteins were newly reported in PCOS. The alterations in the five significantly decreased proteins (EREG, inhibin βA, IDE, PDGF-D and KNG1) were further confirmed by ELISA and western blot. The level of these proteins were directly associated with the low progesterone, and the expression could be upregulated by progesterone. EREG and inhibin βA also promoted the proliferation and inhibited the apoptosis of ovarian granulosa cells. The study highlights that serum proteins are differentially expressed in PCOS patients and healthy women, and EREG and inhibin βA levels are upregulated by progesterone, which are correlated with ovarian functions. The study suggests that EREG and inhibin βA may be applied as novel potential biomarkers for PCOS with low progesterone level. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. Proteomic analysis of first trimester maternal serum to identify candidate biomarkers potentially predictive of spontaneous preterm birth.

    PubMed

    D'Silva, Arlene M; Hyett, Jon A; Coorssen, Jens R

    2018-04-30

    Spontaneous preterm birth (sPTB) remains a major clinical dilemma; current diagnostics and interventions have not reduced the rate of this serious healthcare burden. This study characterizes differential protein profiles and post-translational modifications (PTMs) in first trimester maternal serum using a refined top-down approach coupling two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) to directly compare subsequent term and preterm labour events and identify marked protein differences. 30 proteoforms were found to be significantly increased or decreased in the sPTB group including 9 phosphoproteins and 11 glycoproteins. Changes occurred in proteins associated with immune and defence responses. We identified protein species that are associated with several clinically relevant biological processes, including interrelated biological networks linked to regulation of the complement cascade and coagulation pathways, immune modulation, metabolic processes and cell signalling. The finding of altered proteoforms in maternal serum from pregnancies that delivered preterm suggests these as potential early biomarkers of sPTB and also possible mediators of the disorder. Identifying changes in protein profiles is critical in the study of cell biology, and disease treatment and prevention. Identifying consistent changes in the maternal serum proteome during early pregnancy, including specific protein PTMs (e.g. phosphorylation, glycosylation), is likely to provide better opportunities for prediction, intervention and prevention of preterm birth. This is the first study to examine first trimester maternal serum using a highly refined top-down proteomic analytical approach based on high resolution 2DE coupled with mass spectrometry to directly compare preterm (<37 weeks) and preterm (≥37 weeks) events and identify select protein differences between these conditions. As such, the data present a promising avenue for translation of biomarker discovery to a

  12. Application of proteomics in the discovery of candidate protein biomarkers in a Diabetes Autoantibody Standardization Program (DASP) sample subset

    PubMed Central

    Metz, Thomas O.; Qian, Wei-Jun; Jacobs, Jon M.; Gritsenko, Marina A.; Moore, Ronald J.; Polpitiya, Ashoka D.; Monroe, Matthew E.; Camp, David G.; Mueller, Patricia W.; Smith, Richard D.

    2009-01-01

    Novel biomarkers of type 1 diabetes must be identified and validated in initial, exploratory studies before they can be assessed in proficiency evaluations. Currently, untargeted “-omics” approaches are under-utilized in profiling studies of clinical samples. This report describes the evaluation of capillary liquid chromatography (LC) coupled with mass spectrometry (MS) in a pilot proteomic analysis of human plasma and serum from a subset of control and type 1 diabetic individuals enrolled in the Diabetes Autoantibody Standardization Program with the goal of identifying candidate biomarkers of type 1 diabetes. Initial high-resolution capillary LC-MS/MS experiments were performed to augment an existing plasma peptide database, while subsequent LC-FTICR studies identified quantitative differences in the abundance of plasma proteins. Analysis of LC-FTICR proteomic data identified five candidate protein biomarkers of type 1 diabetes. Alpha-2-glycoprotein 1 (zinc), corticosteroid-binding globulin, and lumican were 2-fold up-regulated in type 1 diabetic samples relative to control samples, whereas clusterin and serotransferrin were 2-fold up-regulated in control samples relative to type 1 diabetic samples. Observed perturbations in the levels of all five proteins are consistent with the metabolic aberrations found in type 1 diabetes. While the discovery of these candidate protein biomarkers of type 1 diabetes is encouraging, follow up studies are required for validation in a larger population of individuals and for determination of laboratory-defined sensitivity and specificity values using blinded samples. PMID:18092746

  13. Standardization of protein biomarker measurements: is it feasible?

    PubMed

    Schimmel, Heinz; Zegers, Ingrid; Emons, Hendrik

    2010-01-01

    The standardisation of measurements of protein biomarkers, which are potentially heterogeneous in terms of fragmentation, modification, substitution, primary, secondary, tertiary and quaternary structure, is a demanding task. However, they are a prime target for standardisation efforts due to the importance of protein biomarkers in diagnostics and health care and the typically observed significant discrepancies in measurement results obtained with non-standardized platforms. Based on the experience gathered during successfully completed projects for the production of reference materials, pragmatic approaches are described how standardisation could become feasible despite the fuzziness of the target analytes.

  14. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    PubMed Central

    Barkla, Bronwyn J.

    2016-01-01

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised. PMID:28248236

  15. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity.

    PubMed

    Barkla, Bronwyn J

    2016-09-08

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  16. Urinary vitamin D-binding protein, a novel biomarker for lupus nephritis, predicts the development of proteinuric flare.

    PubMed

    Go, D J; Lee, J Y; Kang, M J; Lee, E Y; Lee, E B; Yi, E C; Song, Y W

    2018-01-01

    Lupus nephritis (LN) is a major complication of systemic lupus erythematosus (SLE). Conventional biomarkers for assessing renal disease activity are imperfect in predicting clinical outcomes associated with LN. The aim of this study is to identify urinary protein biomarkers that reliably reflect the disease activity or predict clinical outcomes. A quantitative proteomic analysis was performed to identify protein biomarker candidates that can differentiate between SLE patients with and without LN. Selected biomarker candidates were further verified by enzyme-linked immunosorbent assay using urine samples from a larger cohort of SLE patients ( n = 121) to investigate their predictive values for LN activity measure. Furthermore, the association between urinary levels of a selected panel of potential biomarkers and prognosis of LN was assessed with a four-year follow-up study of renal outcomes. Urinary vitamin D-binding protein (VDBP), transthyretin (TTR), retinol binding protein 4 (RBP4), and prostaglandin D synthase (PTGDS) were significantly elevated in SLE patients with LN, especially in patients with active LN ( n = 21). Among them, VDBP well correlated with severity of proteinuria (rho = 0.661, p < 0.001) and renal SLE Disease Activity Index (renal SLEDAI) (rho = 0.520, p < 0.001). In the four-year follow-up, VDBP was a significant risk factor (hazard ratio 9.627, 95% confidence interval 1.698 to 54.571, p = 0.011) for the development of proteinuric flare in SLE patients without proteinuria ( n = 100) after adjustments for multiple confounders. Urinary VDBP correlated with proteinuria and renal SLEDAI, and predicted the development of proteinuria.

  17. A protocol for identifying suitable biomarkers to assess fish health: A systematic review

    PubMed Central

    2017-01-01

    Background Biomarkers have been used extensively to provide the connection between external levels of contaminant exposure, internal levels of tissue contamination, and early adverse effects in organisms. Objectives To present a three-step protocol for identifying suitable biomarkers to assess fish health in coastal and marine ecosystems, using Gladstone Harbour (Australia) as a case study. Methods Prior to applying our protocol, clear working definitions for biomarkers were developed to ensure consistency with the global literature on fish health assessment. First, contaminants of concern were identified based on the presence of point and diffuse sources of pollution and available monitoring data for the ecosystem of interest. Second, suitable fish species were identified using fisheries dependent and independent data, and prioritised based on potential pathways of exposure to the contaminants of concern. Finally, a systematic and critical literature review was conducted on the use of biomarkers to assess the health of fish exposed to the contaminants of concern. Results/Discussion We present clear working definitions for bioaccumulation markers, biomarkers of exposure, biomarkers of effect and biomarkers of susceptibility. Based on emission and concentration information, seven metals were identified as contaminants of concern for Gladstone Harbour. Twenty out of 232 fish species were abundant enough to be potentially suitable for biomarker studies; five of these were prioritised based on potential pathways of exposure and susceptibility to metals. The literature search on biomarkers yielded 5,035 articles, of which 151met the inclusion criteria. Based on our review, the most suitable biomarkers include bioaccumulation markers, biomarkers of exposure (CYP1A, EROD, SOD, LPOX, HSP, MT, DNA strand breaks, micronuclei, apoptosis), and biomarkers of effect (histopathology, TAG:ST). Conclusion Our protocol outlines a clear pathway to identify suitable biomarkers to

  18. Strategies to design clinical studies to identify predictive biomarkers in cancer research.

    PubMed

    Perez-Gracia, Jose Luis; Sanmamed, Miguel F; Bosch, Ana; Patiño-Garcia, Ana; Schalper, Kurt A; Segura, Victor; Bellmunt, Joaquim; Tabernero, Josep; Sweeney, Christopher J; Choueiri, Toni K; Martín, Miguel; Fusco, Juan Pablo; Rodriguez-Ruiz, Maria Esperanza; Calvo, Alfonso; Prior, Celia; Paz-Ares, Luis; Pio, Ruben; Gonzalez-Billalabeitia, Enrique; Gonzalez Hernandez, Alvaro; Páez, David; Piulats, Jose María; Gurpide, Alfonso; Andueza, Mapi; de Velasco, Guillermo; Pazo, Roberto; Grande, Enrique; Nicolas, Pilar; Abad-Santos, Francisco; Garcia-Donas, Jesus; Castellano, Daniel; Pajares, María J; Suarez, Cristina; Colomer, Ramon; Montuenga, Luis M; Melero, Ignacio

    2017-02-01

    The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promising candidate biomarkers have been established. This has led to the proliferation of a myriad of exploratory studies using dissimilar strategies, most of which fail to identify any promising targets and are seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are developed below their potential, due to failure to identify predictive biomarkers. While some drugs will be systematically administered to many patients who will not benefit from them, leading to unnecessary toxicities and costs, others will never reach registration due to our inability to identify the specific patient population in which they are active. Despite these drawbacks, a limited number of outstanding predictive biomarkers have been successfully identified and validated, and have changed the standard practice of oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified and, based on those experiences, proposes a methodological framework-the DESIGN guidelines-to standardize the clinical design of biomarker identification studies and to develop future research in this pivotal field. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Computational prediction of human salivary proteins from blood circulation and application to diagnostic biomarker identification.

    PubMed

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer.

  20. Computational Prediction of Human Salivary Proteins from Blood Circulation and Application to Diagnostic Biomarker Identification

    PubMed Central

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer. PMID:24324552

  1. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone

    PubMed Central

    Ludwig, Susann K. J.; Tokarski, Christian; Lang, Stefan N.; van Ginkel, Leendert A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, Michel W. F.

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD) depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST) in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1). Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this ‘protein microarray on a smartphone’-concept for on-site testing, e.g., in food safety, environment and health monitoring. PMID:26308444

  2. Biomarkers for ragwort poisoning in horses: identification of protein targets

    PubMed Central

    Moore, Rowan E; Knottenbelt, Derek; Matthews, Jacqueline B; Beynon, Robert J; Whitfield, Phillip D

    2008-01-01

    Background Ingestion of the poisonous weed ragwort (Senecio jacobea) by horses leads to irreversible liver damage. The principal toxins of ragwort are the pyrrolizidine alkaloids that are rapidly metabolised to highly reactive and cytotoxic pyrroles, which can escape into the circulation and bind to proteins. In this study a non-invasive in vitro model system has been developed to investigate whether pyrrole toxins induce specific modifications of equine blood proteins that are detectable by proteomic methods. Results One dimensional gel electrophoresis revealed a significant alteration in the equine plasma protein profile following pyrrole exposure and the formation of a high molecular weight protein aggregate. Using mass spectrometry and confirmation by western blotting the major components of this aggregate were identified as fibrinogen, serum albumin and transferrin. Conclusion These findings demonstrate that pyrrolic metabolites can modify equine plasma proteins. The high molecular weight aggregate may result from extensive inter- and intra-molecular cross-linking of fibrinogen with the pyrrole. This model has the potential to form the basis of a novel proteomic strategy aimed at identifying surrogate protein biomarkers of ragwort exposure in horses and other livestock. PMID:18691403

  3. Gene expression profiling combined with bioinformatics analysis identify biomarkers for Parkinson disease.

    PubMed

    Diao, Hongyu; Li, Xinxing; Hu, Sheng; Liu, Yunhui

    2012-01-01

    Parkinson disease (PD) progresses relentlessly and affects approximately 4% of the population aged over 80 years old. It is difficult to diagnose in its early stages. The purpose of our study is to identify molecular biomarkers for PD initiation using a computational bioinformatics analysis of gene expression. We downloaded the gene expression profile of PD from Gene Expression Omnibus and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in PD patients compared to controls. Besides, we built a regulatory network by mapping the DCGs to known regulatory data between transcription factors (TFs) and target genes and calculated the regulatory impact factor of each transcription factor. As the results, a total of 1004 genes associated with PD initiation were identified. Pathway enrichment of these genes suggests that biological processes of protein turnover were impaired in PD. In the regulatory network, HLF, E2F1 and STAT4 were found have altered expression levels in PD patients. The expression levels of other transcription factors, NKX3-1, TAL1, RFX1 and EGR3, were not found altered. However, they regulated differentially expressed genes. In conclusion, we suggest that HLF, E2F1 and STAT4 may be used as molecular biomarkers for PD; however, more work is needed to validate our result.

  4. Gene Expression Profiling Combined with Bioinformatics Analysis Identify Biomarkers for Parkinson Disease

    PubMed Central

    Diao, Hongyu; Li, Xinxing; Hu, Sheng; Liu, Yunhui

    2012-01-01

    Parkinson disease (PD) progresses relentlessly and affects approximately 4% of the population aged over 80 years old. It is difficult to diagnose in its early stages. The purpose of our study is to identify molecular biomarkers for PD initiation using a computational bioinformatics analysis of gene expression. We downloaded the gene expression profile of PD from Gene Expression Omnibus and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in PD patients compared to controls. Besides, we built a regulatory network by mapping the DCGs to known regulatory data between transcription factors (TFs) and target genes and calculated the regulatory impact factor of each transcription factor. As the results, a total of 1004 genes associated with PD initiation were identified. Pathway enrichment of these genes suggests that biological processes of protein turnover were impaired in PD. In the regulatory network, HLF, E2F1 and STAT4 were found have altered expression levels in PD patients. The expression levels of other transcription factors, NKX3-1, TAL1, RFX1 and EGR3, were not found altered. However, they regulated differentially expressed genes. In conclusion, we suggest that HLF, E2F1 and STAT4 may be used as molecular biomarkers for PD; however, more work is needed to validate our result. PMID:23284986

  5. Myocardial Injury Is Distinguished from Stable Angina by a Set of Candidate Plasma Biomarkers Identified Using iTRAQ/MRM-Based Approach.

    PubMed

    Cheow, Esther Sok Hwee; Cheng, Woo Chin; Yap, Terence; Dutta, Bamaprasad; Lee, Chuen Neng; Kleijn, Dominique P V de; Sorokin, Vitaly; Sze, Siu Kwan

    2018-01-05

    The lack of precise biomarkers that identify patients at risk for myocardial injury and stable angina delays administration of optimal therapy. Hence, the search for noninvasive biomarkers that could accurately stratify patients with impending heart attack, from patients with stable coronary artery disease (CAD), is urgently needed in the clinic. Herein, we performed comparative quantitative proteomics on whole plasma sampled from patients with stable angina (NMI), acute myocardial infarction (MI), and healthy control subjects (Ctrl). We detected a total of 371 proteins with high confidence (FDR < 1%, p < 0.05) including 53 preliminary biomarkers that displayed ≥2-fold modulated expression in patients with CAD (27 associated with atherosclerotic stable angina, 26 with myocardial injury). In the verification phase, we used label-free LC-MRM-MS-based targeted method to verify the preliminary biomarkers in pooled plasma, excluded peptides that were poorly distinguished from background, and performed further validation of the remaining candidates in 49 individual plasma samples. Using this approach, we identified a final panel of eight novel candidate biomarkers that were significantly modulated in CAD (p < 0.05) including proteins associated with atherosclerotic stable angina that were implicated in endothelial dysfunction (F10 and MST1), proteins associated with myocardial injury reportedly involved in plaque destabilization (SERPINA3, CPN2, LUM), and in tissue protection/repair mechanisms (ORM2, ACTG1, NAGLU). Taken together, our data showed that candidate biomarkers with potential diagnostic values can be successfully detected in nondepleted human plasma using an iTRAQ/MRM-based discovery-validation approach and demonstrated the plausible clinical utility of the proposed panel in discriminating atherosclerotic stable angina from myocardial injury in the studied cohort.

  6. Identifying module biomarkers from gastric cancer by differential correlation network

    PubMed Central

    Liu, Xiaoping; Chang, Xiao

    2016-01-01

    Gastric cancer (stomach cancer) is a severe disease caused by dysregulation of many functionally correlated genes or pathways instead of the mutation of individual genes. Systematic identification of gastric cancer biomarkers can provide insights into the mechanisms underlying this deadly disease and help in the development of new drugs. In this paper, we present a novel network-based approach to predict module biomarkers of gastric cancer that can effectively distinguish the disease from normal samples. Specifically, by assuming that gastric cancer has mainly resulted from dysfunction of biomolecular networks rather than individual genes in an organism, the genes in the module biomarkers are potentially related to gastric cancer. Finally, we identified a module biomarker with 27 genes, and by comparing the module biomarker with known gastric cancer biomarkers, we found that our module biomarker exhibited a greater ability to diagnose the samples with gastric cancer. PMID:27703371

  7. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2016-10-18

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  8. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G; Ward, David C; Bray-Ward, Patricia

    2015-03-10

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  9. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2010-02-23

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  10. Protein Biomarkers for Insulin Resistance and Type 2 Diabetes Risk in Two Large Community Cohorts

    PubMed Central

    Nowak, Christoph; Sundström, Johan; Gustafsson, Stefan; Giedraitis, Vilmantas; Lind, Lars; Ingelsson, Erik; Fall, Tove

    2016-01-01

    Insulin resistance (IR) is a precursor of type 2 diabetes (T2D), and improved risk prediction and understanding of the pathogenesis are needed. We used a novel high-throughput 92-protein assay to identify circulating biomarkers for HOMA of IR in two cohorts of community residents without diabetes (n = 1,367) (mean age 73 ± 3.6 years). Adjusted linear regression identified cathepsin D and confirmed six proteins (leptin, renin, interleukin-1 receptor antagonist [IL-1ra], hepatocyte growth factor, fatty acid–binding protein 4, and tissue plasminogen activator [t-PA]) as IR biomarkers. Mendelian randomization analysis indicated a positive causal effect of IR on t-PA concentrations. Two biomarkers, IL-1ra (hazard ratio [HR] 1.28, 95% CI 1.03–1.59) and t-PA (HR 1.30, 1.02–1.65) were associated with incident T2D, and t-PA predicted 5-year transition to hyperglycemia (odds ratio 1.30, 95% CI 1.02–1.65). Additional adjustment for fasting glucose rendered both coefficients insignificant and revealed an association between renin and T2D (HR 0.79, 0.62–0.99). LASSO regression suggested a risk model including IL-1ra, t-PA, and the Framingham Offspring Study T2D score, but prediction improvement was nonsignificant (difference in C-index 0.02, 95% CI −0.08 to 0.12) over the T2D score only. In conclusion, proteomic blood profiling indicated cathepsin D as a new IR biomarker and suggested a causal effect of IR on t-PA. PMID:26420861

  11. The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker.

    PubMed

    Fadini, Gian Paolo; Albiero, Mattia; Millioni, Renato; Poncina, Nicol; Rigato, Mauro; Scotton, Rachele; Boscari, Federico; Brocco, Enrico; Arrigoni, Giorgio; Villano, Gianmarco; Turato, Cristian; Biasiolo, Alessandra; Pontisso, Patrizia; Avogaro, Angelo

    2014-09-01

    Chronic foot ulceration is a severe complication of diabetes, driving morbidity and mortality. The mechanisms underlying delaying wound healing in diabetes are incompletely understood and tools to identify such pathways are eagerly awaited. Wound biopsies were obtained from 75 patients with diabetic foot ulcers. Matched subgroups of rapidly healing (RH, n = 17) and non-healing (NH, n = 11) patients were selected. Proteomic analysis was performed by labelling with isobaric tag for relative and absolute quantification and mass spectrometry. Differentially expressed proteins were analysed in NH vs RH for identification of pathogenic pathways. Individual sample gene/protein validation and in vivo validation of candidate pathways in mouse models were carried out. Pathway analyses were conducted on 92/286 proteins that were differentially expressed in NH vs RH. The following pathways were enriched in NH vs RH patients: apoptosis, protease inhibitors, epithelial differentiation, serine endopeptidase activity, coagulation and regulation of defence response. SerpinB3 was strongly upregulated in RH vs NH wounds, validated as protein and mRNA in individual samples. To test the relevance of serpinB3 in vivo, we used a transgenic mouse model with α1-antitrypsin promoter-driven overexpression of human SERPINB3. In this model, wound healing was unaffected by SERPINB3 overexpression in non-diabetic or diabetic mice with or without hindlimb ischaemia. In an independent validation cohort of 47 patients, high serpinB3 protein content was confirmed as a biomarker of healing improvement. We provide a benchmark for the unbiased discovery of novel molecular targets and biomarkers of impaired diabetic wound healing. High serpinB3 protein content was found to be a biomarker of successful healing in diabetic patients.

  12. Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy.

    PubMed

    Hathout, Yetrib; Brody, Edward; Clemens, Paula R; Cripe, Linda; DeLisle, Robert Kirk; Furlong, Pat; Gordish-Dressman, Heather; Hache, Lauren; Henricson, Erik; Hoffman, Eric P; Kobayashi, Yvonne Monique; Lorts, Angela; Mah, Jean K; McDonald, Craig; Mehler, Bob; Nelson, Sally; Nikrad, Malti; Singer, Britta; Steele, Fintan; Sterling, David; Sweeney, H Lee; Williams, Steve; Gold, Larry

    2015-06-09

    Serum biomarkers in Duchenne muscular dystrophy (DMD) may provide deeper insights into disease pathogenesis, suggest new therapeutic approaches, serve as acute read-outs of drug effects, and be useful as surrogate outcome measures to predict later clinical benefit. In this study a large-scale biomarker discovery was performed on serum samples from patients with DMD and age-matched healthy volunteers using a modified aptamer-based proteomics technology. Levels of 1,125 proteins were quantified in serum samples from two independent DMD cohorts: cohort 1 (The Parent Project Muscular Dystrophy-Cincinnati Children's Hospital Medical Center), 42 patients with DMD and 28 age-matched normal volunteers; and cohort 2 (The Cooperative International Neuromuscular Research Group, Duchenne Natural History Study), 51 patients with DMD and 17 age-matched normal volunteers. Forty-four proteins showed significant differences that were consistent in both cohorts when comparing DMD patients and healthy volunteers at a 1% false-discovery rate, a large number of significant protein changes for such a small study. These biomarkers can be classified by known cellular processes and by age-dependent changes in protein concentration. Our findings demonstrate both the utility of this unbiased biomarker discovery approach and suggest potential new diagnostic and therapeutic avenues for ameliorating the burden of DMD and, we hope, other rare and devastating diseases.

  13. CNS Injury: Posttranslational Modification of the Tau Protein as a Biomarker.

    PubMed

    Caprelli, Mitchell T; Mothe, Andrea J; Tator, Charles H

    2017-11-01

    The ideal biomarker for central nervous system (CNS) trauma in patients would be a molecular marker specific for injured nervous tissue that would provide a consistent and reliable assessment of the presence and severity of injury and the prognosis for recovery. One candidate biomarker is the protein tau, a microtubule-associated protein abundant in the axonal compartment of CNS neurons. Following axonal injury, tau becomes modified primarily by hyperphosphorylation of its various amino acid residues and cleavage into smaller fragments. These posttrauma products can leak into the cerebrospinal fluid or bloodstream and become candidate biomarkers of CNS injury. This review examines the primary molecular changes that tau undergoes following traumatic brain injury and spinal cord injury, and reviews the current literature in traumatic CNS biomarker research with a focus on the potential for hyperphosphorylated and cleaved tau as sensitive biomarkers of injury.

  14. Enrichment of low-molecular-weight proteins from biofluids for biomarker discovery.

    PubMed

    Chertov, Oleg; Simpson, John T; Biragyn, Arya; Conrads, Thomas P; Veenstra, Timothy D; Fisher, Robert J

    2005-01-01

    The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome -- low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.

  15. Identification of multiple novel protein biomarkers shed by human serous ovarian tumors into the blood of immunocompromised mice and verified in patient sera.

    PubMed

    Beer, Lynn A; Wang, Huan; Tang, Hsin-Yao; Cao, Zhijun; Chang-Wong, Tony; Tanyi, Janos L; Zhang, Rugang; Liu, Qin; Speicher, David W

    2013-01-01

    The most cancer-specific biomarkers in blood are likely to be proteins shed directly by the tumor rather than less specific inflammatory or other host responses. The use of xenograft mouse models together with in-depth proteome analysis for identification of human proteins in the mouse blood is an under-utilized strategy that can clearly identify proteins shed by the tumor. In the current study, 268 human proteins shed into mouse blood from human OVCAR-3 serous tumors were identified based upon human vs. mouse species differences using a four-dimensional plasma proteome fractionation strategy. A multi-step prioritization and verification strategy was subsequently developed to efficiently select some of the most promising biomarkers from this large number of candidates. A key step was parallel analysis of human proteins detected in the tumor supernatant, because substantially greater sequence coverage for many of the human proteins initially detected in the xenograft mouse plasma confirmed assignments as tumor-derived human proteins. Verification of candidate biomarkers in patient sera was facilitated by in-depth, label-free quantitative comparisons of serum pools from patients with ovarian cancer and benign ovarian tumors. The only proteins that advanced to multiple reaction monitoring (MRM) assay development were those that exhibited increases in ovarian cancer patients compared with benign tumor controls. MRM assays were facilely developed for all 11 novel biomarker candidates selected by this process and analysis of larger pools of patient sera suggested that all 11 proteins are promising candidate biomarkers that should be further evaluated on individual patient blood samples.

  16. Identification of Multiple Novel Protein Biomarkers Shed by Human Serous Ovarian Tumors into the Blood of Immunocompromised Mice and Verified in Patient Sera

    PubMed Central

    Beer, Lynn A.; Wang, Huan; Tang, Hsin-Yao; Cao, Zhijun; Chang-Wong, Tony; Tanyi, Janos L.; Zhang, Rugang; Liu, Qin; Speicher, David W.

    2013-01-01

    The most cancer-specific biomarkers in blood are likely to be proteins shed directly by the tumor rather than less specific inflammatory or other host responses. The use of xenograft mouse models together with in-depth proteome analysis for identification of human proteins in the mouse blood is an under-utilized strategy that can clearly identify proteins shed by the tumor. In the current study, 268 human proteins shed into mouse blood from human OVCAR-3 serous tumors were identified based upon human vs. mouse species differences using a four-dimensional plasma proteome fractionation strategy. A multi-step prioritization and verification strategy was subsequently developed to efficiently select some of the most promising biomarkers from this large number of candidates. A key step was parallel analysis of human proteins detected in the tumor supernatant, because substantially greater sequence coverage for many of the human proteins initially detected in the xenograft mouse plasma confirmed assignments as tumor-derived human proteins. Verification of candidate biomarkers in patient sera was facilitated by in-depth, label-free quantitative comparisons of serum pools from patients with ovarian cancer and benign ovarian tumors. The only proteins that advanced to multiple reaction monitoring (MRM) assay development were those that exhibited increases in ovarian cancer patients compared with benign tumor controls. MRM assays were facilely developed for all 11 novel biomarker candidates selected by this process and analysis of larger pools of patient sera suggested that all 11 proteins are promising candidate biomarkers that should be further evaluated on individual patient blood samples. PMID:23544127

  17. Mammalian plasma membrane proteins as potential biomarkers and drug targets.

    PubMed

    Rucevic, Marijana; Hixson, Douglas; Josic, Djuro

    2011-06-01

    Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer.

    PubMed

    Borrebaeck, Carl A K

    2017-03-01

    Interest in precision diagnostics has been fuelled by the concept that early detection of cancer would benefit patients; that is, if detected early, more tumours should be resectable and treatment more efficacious. Serum contains massive amounts of potentially diagnostic information, and affinity proteomics has risen as an accurate approach to decipher this, to generate actionable information that should result in more precise and evidence-based options to manage cancer. To achieve this, we need to move from single to multiplex biomarkers, a so-called signature, that can provide significantly increased diagnostic accuracy. This Opinion article focuses on the progress being made in identifying protein biomarker signatures of clinical utility, using blood-based proteomics.

  19. Mass spectrometry based biomarker discovery, verification, and validation--quality assurance and control of protein biomarker assays.

    PubMed

    Parker, Carol E; Borchers, Christoph H

    2014-06-01

    In its early years, mass spectrometry (MS)-based proteomics focused on the cataloging of proteins found in different species or different tissues. By 2005, proteomics was being used for protein quantitation, typically based on "proteotypic" peptides which act as surrogates for the parent proteins. Biomarker discovery is usually done by non-targeted "shotgun" proteomics, using relative quantitation methods to determine protein expression changes that correlate with disease (output given as "up-or-down regulation" or "fold-increases"). MS-based techniques can also perform "absolute" quantitation which is required for clinical applications (output given as protein concentrations). Here we describe the differences between these methods, factors that affect the precision and accuracy of the results, and some examples of recent studies using MS-based proteomics to verify cancer-related biomarkers. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Serum Immunoproteomics Combined With Pathological Reassessment of Surgical Specimens Identifies TCP-1ζ Autoantibody as a Potential Biomarker in Thyroid Neoplasia.

    PubMed

    Belousov, Pavel V; Bogolyubova, Apollinariya V; Kim, Yan S; Abrosimov, Alexander Y; Kopylov, Arthur T; Tvardovskiy, Andrey A; Lanshchakov, Kirill V; Sazykin, Alexei Y; Dvinskikh, Nina Y; Bobrovskaya, Yana I; Selivanova, Lilia S; Shilov, Evgeniy S; Schwartz, Anton M; Shebzukhov, Yuriy V; Severskaia, Natalya V; Vanushko, Vladimir E; Moshkovskii, Sergei A; Nedospasov, Sergei A; Kuprash, Dmitry V

    2015-09-01

    Current methods of preoperative diagnostics frequently fail to discriminate between benign and malignant thyroid neoplasms. In encapsulated follicular-patterned tumors (EnFPT), this discrimination is challenging even using histopathological analysis. Autoantibody response against tumor-associated antigens is a well-documented phenomenon with prominent diagnostic potential; however, autoantigenicity of thyroid tumors remains poorly explored. Objectives were exploration of tumor-associated antigen repertoire of thyroid tumors and identification of candidate autoantibody biomarkers capable of discrimination between benign and malignant thyroid neoplasms. Proteins isolated from FTC-133 cells were subjected to two-dimensional Western blotting using pooled serum samples of patients originally diagnosed with either papillary thyroid carcinoma (PTC) or EnFPT represented by apparently benign follicular thyroid adenomas, as well as healthy individuals. Immunoreactive proteins were identified using liquid chromatography-tandem mass-spectrometry. Pathological reassessment of EnFPT was performed applying nonconservative criteria for capsular invasion and significance of focal PTC nuclear changes (PTC-NCs). Recombinant T-complex protein 1 subunitζ (TCP-1ζ) was used to examine an expanded serum sample set of patients with various thyroid neoplasms (n = 89) for TCP-1ζ autoantibodies. All patients were included in tertiary referral centers. A protein demonstrating a distinct pattern of EnFPT-specific seroreactivity was identified as TCP-1ζ protein. A subsequent search for clinicopathological correlates of TCP-1ζ seroreactivity revealed nonclassical capsular invasion or focal PTC-NC in all TCP-1ζ antibody-positive cases. Further studies in an expanded sample set confirmed the specificity of TCP-1ζ autoantibodies to malignant EnFPT. We identified TCP-1ζ autoantibodies as a potential biomarker for presurgical discrimination between benign and malignant encapsulated follicular

  1. Fluorescence alteration of MPA capped CdSe quantum dots by spontaneous biomarker protein adsorption.

    PubMed

    Rowley, Amber; Parks, Tegan; Parks, Kaden; Medley, Kyle; Cordner, Alex; Yu, Ming

    2018-05-23

    Quantum dots (QDs) have significant potentials in biomedical applications of bioimaging and biosensing. Spontaneous adsorption of proteins on QDs surface is a common phenomenon, which occurred to serum proteins in biological samples, and has been observed to enhance QDs fluorescence. In this study, fluorescence alteration of 3-mercaptopropionic acid (MPA) capped CdSe quantum dots by four individual biomarker proteins was investigated. By monitoring the fluorescence emission of QDs, the biomarker protein adsorbed spontaneously on QDs surface was recognized and quantified. When alpha fetoprotein (AFP) or heat shock protein 90 alpha (HSP90α) were present, the QDs became brighter. The presence of cytochrome C (CytoC) or lysozyme (Lyz) made the QDs dimmer first, and then brighter. Within 5 min response time all four biomarker proteins were detected individually with the estimated detection limit in the range of 1-10 ng/mL and good linear dynamic ranges. The results suggested that the fluorescence of QDs was responsive to not only serum proteins but also biomarker proteins. The fluorescence response was able to correlate quantitatively with the amount of biomarker proteins in relatively low concentrations. These results provide more information to understand QDs and support their applications in biomedical fields. Copyright © 2018. Published by Elsevier Inc.

  2. Semi-automated literature mining to identify putative biomarkers of disease from multiple biofluids

    PubMed Central

    2014-01-01

    Background Computational methods for mining of biomedical literature can be useful in augmenting manual searches of the literature using keywords for disease-specific biomarker discovery from biofluids. In this work, we develop and apply a semi-automated literature mining method to mine abstracts obtained from PubMed to discover putative biomarkers of breast and lung cancers in specific biofluids. Methodology A positive set of abstracts was defined by the terms ‘breast cancer’ and ‘lung cancer’ in conjunction with 14 separate ‘biofluids’ (bile, blood, breastmilk, cerebrospinal fluid, mucus, plasma, saliva, semen, serum, synovial fluid, stool, sweat, tears, and urine), while a negative set of abstracts was defined by the terms ‘(biofluid) NOT breast cancer’ or ‘(biofluid) NOT lung cancer.’ More than 5.3 million total abstracts were obtained from PubMed and examined for biomarker-disease-biofluid associations (34,296 positive and 2,653,396 negative for breast cancer; 28,355 positive and 2,595,034 negative for lung cancer). Biological entities such as genes and proteins were tagged using ABNER, and processed using Python scripts to produce a list of putative biomarkers. Z-scores were calculated, ranked, and used to determine significance of putative biomarkers found. Manual verification of relevant abstracts was performed to assess our method’s performance. Results Biofluid-specific markers were identified from the literature, assigned relevance scores based on frequency of occurrence, and validated using known biomarker lists and/or databases for lung and breast cancer [NCBI’s On-line Mendelian Inheritance in Man (OMIM), Cancer Gene annotation server for cancer genomics (CAGE), NCBI’s Genes & Disease, NCI’s Early Detection Research Network (EDRN), and others]. The specificity of each marker for a given biofluid was calculated, and the performance of our semi-automated literature mining method assessed for breast and lung cancer

  3. Dynamic application of microprojection arrays to skin induces circulating protein extravasation for enhanced biomarker capture and detection.

    PubMed

    Coffey, Jacob W; Meliga, Stefano C; Corrie, Simon R; Kendall, Mark A F

    2016-04-01

    Surface modified microprojection arrays are a needle-free alternative to capture circulating biomarkers from the skin in vivo for diagnosis. The concentration and turnover of biomarkers in the interstitial fluid, however, may limit the amount of biomarker that can be accessed by microprojection arrays and ultimately their capture efficiency. Here we report that microprojection array insertion induces protein extravasation from blood vessels and increases the concentration of biomarkers in skin, which can synergistically improve biomarker capture. Regions of blood vessels in skin were identified in the upper dermis and subcutaneous tissue by multi-photon microscopy. Insertion of microprojection array designs with varying projection length (40-190 μm), density (5000-20,408 proj.cm(-2)) and array size (4-36 mm(2)) did not affect the degree of extravasation. Furthermore, the location of extravasated protein did not correlate with projection penetration to these highly vascularised regions, suggesting extravasation was not caused by direct puncture of blood vessels. Biomarker extravasation was also induced by dynamic application of flat control surfaces, and varied with the impact velocity, further supporting this conclusion. The extravasated protein distribution correlated well with regions of high mechanical stress generated during insertion, quantified by finite element models. Using this approach to induce extravasation prior to microprojection array-based biomarker capture, anti-influenza IgG was captured within a 2 min application time, demonstrating that extravasation can lead to rapid biomarker sampling and significantly improved microprojection array capture efficiency. These results have broad implications for the development of transdermal devices that deliver to and sample from the skin. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. Phage display for identification of serum biomarkers of traumatic brain injury.

    PubMed

    Ghoshal, Sarbani; Bondada, Vimala; Saatman, Kathryn E; Guttmann, Rodney P; Geddes, James W

    2016-10-15

    The extent and severity of traumatic brain injuries (TBIs) can be difficult to determine with current diagnostic methods. To address this, there has been increased interest in developing biomarkers to assist in the diagnosis, determination of injury severity, evaluation of recovery and therapeutic efficacy, and prediction of outcomes. Several promising serum TBI biomarkers have been identified using hypothesis-driven approaches, largely examining proteins that are abundant in neurons and non-neural cells in the CNS. An unbiased approach, phage display, was used to identify serum TBI biomarkers. In this proof-of-concept study, mice received a TBI using the controlled cortical impact model of TBI (1mm injury depth, 3.5m/s velocity) and phage display was utilized to identify putative serum biomarkers at 6h postinjury. An engineered phage which preferentially bound to injured serum was sequenced to identify the 12-mer 'recognizer' peptide expressed on the coat protein. Following synthesis of the recognizer peptide, pull down, and mass spectrometry analysis, the target protein was identified as glial fibrillary acidic protein (GFAP). GFAP has previously been identified as a promising TBI biomarker. The results provide proof of concept regarding the ability of phage display to identify TBI serum biomarkers. This methodology is currently being applied to serum biomarkers of mild TBI. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Identifying Disease Associated miRNAs Based on Protein Domains.

    PubMed

    Qin, Gui-Min; Li, Rui-Yi; Zhao, Xing-Ming

    2016-01-01

    MicroRNAs (miRNAs) are a class of small endogenous non-coding genes, acting as regulators in the post-transcriptional processes. Recently, the miRNAs are found to be widely involved in different types of diseases. Therefore, the identification of disease associated miRNAs can help understand the mechanisms that underlie the disease and identify new biomarkers. However, it is not easy to identify the miRNAs related to diseases due to its extensive involvements in various biological processes. In this work, we present a new approach to identify disease associated miRNAs based on domains, the functional and structural blocks of proteins. The results on real datasets demonstrate that our method can effectively identify disease related miRNAs with high precision.

  6. Epithelial membrane protein-1 is a biomarker of gefitinib resistance.

    PubMed

    Jain, Anjali; Tindell, Charles A; Laux, Isett; Hunter, Jacob B; Curran, John; Galkin, Anna; Afar, Daniel E; Aronson, Nina; Shak, Steven; Natale, Ronald B; Agus, David B

    2005-08-16

    We describe a molecular resistance biomarker to gefitinib, epithelial membrane protein-1 (EMP-1). Gefitinib is a small-molecule inhibitor that competes for the ATP-binding site on EGF receptor (EGFR) and has been approved for patients with advanced lung cancers. Treatment with gefitinib has resulted in clinical benefit in patients, and, recently, heterozygous somatic mutations within the EGFR catalytic domain have been identified as a clinical correlate to objective response to gefitinib. However, clinical resistance to gefitinib limits the utility of this therapeutic to a fraction of patients, and objective clinical responses are rare. We aimed to assess the molecular phenotype and mechanism of in vivo gefitinib resistance in xenograft models and in patient samples. We generated in vivo gefitinib-resistance models in an adenocarcinoma xenograft model by serially passaging tumors in nude mice in presence of gefitinib until resistance was acquired. EMP-1 was identified as a surface biomarker whose expression correlated with acquisition of gefitinib resistance. EMP-1 expression was further correlated with lack of complete or partial response to gefitinib in lung cancer patient samples as well as clinical progression to secondary gefitinib resistance. EMP-1 expression and acquisition of gefitinib clinical resistance was independent of gefitinib-sensitizing EGFR somatic mutations. This report suggests the role of the adhesion molecule, EMP-1, as a biomarker of gefitinib clinical resistance, and further suggests a probable cross-talk between this molecule and the EGFR signaling pathway.

  7. Epithelial membrane protein-1 is a biomarker of gefitinib resistance

    PubMed Central

    Jain, Anjali; Tindell, Charles A.; Laux, Isett; Hunter, Jacob B.; Curran, John; Galkin, Anna; Afar, Daniel E.; Aronson, Nina; Shak, Steven; Natale, Ronald B.; Agus, David B.

    2005-01-01

    We describe a molecular resistance biomarker to gefitinib, epithelial membrane protein-1 (EMP-1). Gefitinib is a small-molecule inhibitor that competes for the ATP-binding site on EGF receptor (EGFR) and has been approved for patients with advanced lung cancers. Treatment with gefitinib has resulted in clinical benefit in patients, and, recently, heterozygous somatic mutations within the EGFR catalytic domain have been identified as a clinical correlate to objective response to gefitinib. However, clinical resistance to gefitinib limits the utility of this therapeutic to a fraction of patients, and objective clinical responses are rare. We aimed to assess the molecular phenotype and mechanism of in vivo gefitinib resistance in xenograft models and in patient samples. We generated in vivo gefitinib-resistance models in an adenocarcinoma xenograft model by serially passaging tumors in nude mice in presence of gefitinib until resistance was acquired. EMP-1 was identified as a surface biomarker whose expression correlated with acquisition of gefitinib resistance. EMP-1 expression was further correlated with lack of complete or partial response to gefitinib in lung cancer patient samples as well as clinical progression to secondary gefitinib resistance. EMP-1 expression and acquisition of gefitinib clinical resistance was independent of gefitinib-sensitizing EGFR somatic mutations. This report suggests the role of the adhesion molecule, EMP-1, as a biomarker of gefitinib clinical resistance, and further suggests a probable cross-talk between this molecule and the EGFR signaling pathway. PMID:16087880

  8. High-throughput serum proteomics for the identification of protein biomarkers of mortality in older men

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orwoll, Eric S.; Wiedrick, Jack; Jacobs, Jon

    The biological perturbations associated with incident mortality are not well elucidated, and there are limited biomarkers for the prediction of mortality. We used a novel high throughput proteomics approach to identify serum peptides and proteins associated with 5 year mortality in community dwelling men age >65 years who participated in a longitudinal observational study of musculoskeletal aging (Osteoporotic Fractures in Men: MrOS). In a discovery phase, serum specimens collected at baseline in 2473 men were analyzed using liquid chromatography-ion mobility-mass spectrometry, and incident mortality in the subsequent 5 years was ascertained by tri-annual questionnaire. Rigorous statistical methods were utilized tomore » identify 56 peptides (31 proteins) that were associated with 5-year mortality. In an independent replication phase, selected reaction monitoring was used to examine 21 of those peptides in baseline serum from 750 additional men; 81% of those peptides remained significantly associated with mortality. Mortality-associated proteins included a variety involved in inflammation or complement activation; several have been previously linked to mortality (e.g. C reactive protein, alpha 1-antichymotrypsin) and others are not previously known to be associated with mortality. Other novel proteins of interest included pregnancy-associated plasma protein, VE cadherin, leucine-rich α-2 glycoprotein 1, vinculin, vitronectin, mast/stem cell growth factor receptor and Saa4. A panel of peptides improved the predictive value of a commonly used clinical predictor of mortality. Overall, these results suggest that complex inflammatory pathways, and proteins in other pathways, are linked to 5-year mortality risk. This work may serve to identify novel biomarkers for near term mortality.« less

  9. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction.

    PubMed

    Ortea, I; Rodríguez-Ariza, A; Chicano-Gálvez, E; Arenas Vacas, M S; Jurado Gámez, B

    2016-04-14

    Lung cancer currently ranks as the neoplasia with the highest global mortality rate. Although some improvements have been introduced in recent years, new advances in diagnosis are required in order to increase survival rates. New mildly invasive endoscopy-based diagnostic techniques include the collection of bronchoalveolar lavage fluid (BALF), which is discarded after using a portion of the fluid for standard pathological procedures. BALF proteomic analysis can contribute to clinical practice with more sensitive biomarkers, and can complement cytohistological studies by aiding in the diagnosis, prognosis, and subtyping of lung cancer, as well as the monitoring of treatment response. The range of quantitative proteomics methodologies used for biomarker discovery is currently being broadened with the introduction of data-independent acquisition (DIA) analysis-related approaches that address the massive quantitation of the components of a proteome. Here we report for the first time a DIA-based quantitative proteomics study using BALF as the source for the discovery of potential lung cancer biomarkers. The results have been encouraging in terms of the number of identified and quantified proteins. A panel of candidate protein biomarkers for adenocarcinoma in BALF is reported; this points to the activation of the complement network as being strongly over-represented and suggests this pathway as a potential target for lung cancer research. In addition, the results reported for haptoglobin, complement C4-A, and glutathione S-transferase pi are consistent with previous studies, which indicates that these proteins deserve further consideration as potential lung cancer biomarkers in BALF. Our study demonstrates that the analysis of BALF proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS), combining a simple sample pre-treatment and SWATH DIA MS, is a useful method for the discovery of potential lung cancer biomarkers. Bronchoalveolar lavage fluid (BALF

  10. Quantitative HDL Proteomics Identifies Peroxiredoxin-6 as a Biomarker of Human Abdominal Aortic Aneurysm

    PubMed Central

    Burillo, Elena; Jorge, Inmaculada; Martínez-López, Diego; Camafeita, Emilio; Blanco-Colio, Luis Miguel; Trevisan-Herraz, Marco; Ezkurdia, Iakes; Egido, Jesús; Michel, Jean-Baptiste; Meilhac, Olivier; Vázquez, Jesús; Martin-Ventura, Jose Luis

    2016-01-01

    High-density lipoproteins (HDLs) are complex protein and lipid assemblies whose composition is known to change in diverse pathological situations. Analysis of the HDL proteome can thus provide insight into the main mechanisms underlying abdominal aortic aneurysm (AAA) and potentially detect novel systemic biomarkers. We performed a multiplexed quantitative proteomics analysis of HDLs isolated from plasma of AAA patients (N = 14) and control study participants (N = 7). Validation was performed by western-blot (HDL), immunohistochemistry (tissue), and ELISA (plasma). HDL from AAA patients showed elevated expression of peroxiredoxin-6 (PRDX6), HLA class I histocompatibility antigen (HLA-I), retinol-binding protein 4, and paraoxonase/arylesterase 1 (PON1), whereas α-2 macroglobulin and C4b-binding protein were decreased. The main pathways associated with HDL alterations in AAA were oxidative stress and immune-inflammatory responses. In AAA tissue, PRDX6 colocalized with neutrophils, vascular smooth muscle cells, and lipid oxidation. Moreover, plasma PRDX6 was higher in AAA (N = 47) than in controls (N = 27), reflecting increased systemic oxidative stress. Finally, a positive correlation was recorded between PRDX6 and AAA diameter. The analysis of the HDL proteome demonstrates that redox imbalance is a major mechanism in AAA, identifying the antioxidant PRDX6 as a novel systemic biomarker of AAA. PMID:27934969

  11. Protein Biomarkers for Early Detection of Pancreatic Ductal Adenocarcinoma: Progress and Challenges.

    PubMed

    Root, Alex; Allen, Peter; Tempst, Paul; Yu, Kenneth

    2018-03-07

    Approximately 75% of patients with pancreatic ductal adenocarcinoma are diagnosed with advanced cancer, which cannot be safely resected. The most commonly used biomarker CA19-9 has inadequate sensitivity and specificity for early detection, which we define as Stage I/II cancers. Therefore, progress in next-generation biomarkers is greatly needed. Recent reports have validated a number of biomarkers, including combination assays of proteins and DNA mutations; however, the history of translating promising biomarkers to clinical utility suggests that several major hurdles require careful consideration by the medical community. The first set of challenges involves nominating and verifying biomarkers. Candidate biomarkers need to discriminate disease from benign controls with high sensitivity and specificity for an intended use, which we describe as a two-tiered strategy of identifying and screening high-risk patients. Community-wide efforts to share samples, data, and analysis methods have been beneficial and progress meeting this challenge has been achieved. The second set of challenges is assay optimization and validating biomarkers. After initial candidate validation, assays need to be refined into accurate, cost-effective, highly reproducible, and multiplexed targeted panels and then validated in large cohorts. To move the most promising candidates forward, ideally, biomarker panels, head-to-head comparisons, meta-analysis, and assessment in independent data sets might mitigate risk of failure. Much more investment is needed to overcome these challenges. The third challenge is achieving clinical translation. To moonshot an early detection test to the clinic requires a large clinical trial and organizational, regulatory, and entrepreneurial know-how. Additional factors, such as imaging technologies, will likely need to improve concomitant with molecular biomarker development. The magnitude of the clinical translational challenge is uncertain, but interdisciplinary

  12. Tubulin Beta-3 Chain as a New Candidate Protein Biomarker of Human Skin Aging: A Preliminary Study

    PubMed Central

    2017-01-01

    Skin aging is a complex process, and a lot of efforts have been made to identify new and specific targets that could help to diagnose, prevent, and treat skin aging. Several studies concerning skin aging have analyzed the changes in gene expression, and very few investigations have been performed at the protein level. Moreover, none of these proteomic studies has used a global quantitative labeled proteomic offgel approach that allows a more accurate description of aging phenotype. We applied such an approach on human primary keratinocytes obtained from sun-nonexposed skin biopsies of young and elderly women. A total of 517 unique proteins were identified, and 58 proteins were significantly differentially expressed with 40 that were downregulated and 18 upregulated with aging. Gene ontology and pathway analysis performed on these 58 putative biomarkers of skin aging evidenced that these dysregulated proteins were mostly involved in metabolism and cellular processes such as cell cycle and signaling pathways. Change of expression of tubulin beta-3 chain was confirmed by western blot on samples originated from several donors. Thus, this study suggested the tubulin beta-3 chain has a promising biomarker in skin aging. PMID:28626498

  13. Tubulin Beta-3 Chain as a New Candidate Protein Biomarker of Human Skin Aging: A Preliminary Study.

    PubMed

    Lehmann, Sylvia G; Bourgoin-Voillard, Sandrine; Seve, Michel; Rachidi, Walid

    2017-01-01

    Skin aging is a complex process, and a lot of efforts have been made to identify new and specific targets that could help to diagnose, prevent, and treat skin aging. Several studies concerning skin aging have analyzed the changes in gene expression, and very few investigations have been performed at the protein level. Moreover, none of these proteomic studies has used a global quantitative labeled proteomic offgel approach that allows a more accurate description of aging phenotype. We applied such an approach on human primary keratinocytes obtained from sun-nonexposed skin biopsies of young and elderly women. A total of 517 unique proteins were identified, and 58 proteins were significantly differentially expressed with 40 that were downregulated and 18 upregulated with aging. Gene ontology and pathway analysis performed on these 58 putative biomarkers of skin aging evidenced that these dysregulated proteins were mostly involved in metabolism and cellular processes such as cell cycle and signaling pathways. Change of expression of tubulin beta-3 chain was confirmed by western blot on samples originated from several donors. Thus, this study suggested the tubulin beta-3 chain has a promising biomarker in skin aging.

  14. Harnessing pain heterogeneity and RNA transcriptome to identify blood–based pain biomarkers: a novel correlational study design and bioinformatics approach in a graded chronic constriction injury model

    PubMed Central

    Grace, Peter M.; Hurley, Daniel; Barratt, Daniel T.; Tsykin, Anna; Watkins, Linda R.; Rolan, Paul E.; Hutchinson, Mark R.

    2017-01-01

    A quantitative, peripherally accessible biomarker for neuropathic pain has great potential to improve clinical outcomes. Based on the premise that peripheral and central immunity contribute to neuropathic pain mechanisms, we hypothesized that biomarkers could be identified from the whole blood of adult male rats, by integrating graded chronic constriction injury (CCI), ipsilateral lumbar dorsal quadrant (iLDQ) and whole blood transcriptomes, and pathway analysis with pain behavior. Correlational bioinformatics identified a range of putative biomarker genes for allodynia intensity, many encoding for proteins with a recognized role in immune/nociceptive mechanisms. A selection of these genes was validated in a separate replication study. Pathway analysis of the iLDQ transcriptome identified Fcγ and Fcε signaling pathways, among others. This study is the first to employ the whole blood transcriptome to identify pain biomarker panels. The novel correlational bioinformatics, developed here, selected such putative biomarkers based on a correlation with pain behavior and formation of signaling pathways with iLDQ genes. Future studies may demonstrate the predictive ability of these biomarker genes across other models and additional variables. PMID:22697386

  15. Coronin-1C is a novel biomarker for hepatocellular carcinoma invasive progression identified by proteomics analysis and clinical validation

    PubMed Central

    2010-01-01

    Background To better search for potential markers for hepatocellular carcinoma (HCC) invasion and metastasis, proteomic approach was applied to identify potential metastasis biomarkers associated with HCC. Methods Membrane proteins were extracted from MHCC97L and HCCLM9 cells, with a similar genetic background and remarkably different metastasis potential, and compared by SDS-PAGE and identified by ESI-MS/MS. The results were further validated by western blot analysis, immunohistochemistry (IHC) of tumor tissues from HCCLM9- and MHCC97L-nude mice, and clinical specimens. Results Membrane proteins were extracted from MHCC97L and HCCLM9 cell and compared by SDS-PAGE analyses. A total of 14 differentially expressed proteins were identified by ESI-MS/MS. Coronin-1C, a promising candidate, was found to be overexpressed in HCCLM9 cells as compared with MHCC97L cells, and validated by western blot and IHC from both nude mice tumor tissues and clinical specimens. Coronin-1C level showed an abrupt upsurge when pulmonary metastasis occurred. Increasing coronin-1C expression was found in liver cancer tissues of HCCLM9-nude mice with spontaneous pulmonary metastasis. IHC study on human HCC specimens revealed that more patients in the higher coronin-1C group had overt larger tumor and more advanced stage. Conclusions Coronin-1C could be a candidate biomarker to predict HCC invasive behavior. PMID:20181269

  16. Coronin-1C is a novel biomarker for hepatocellular carcinoma invasive progression identified by proteomics analysis and clinical validation.

    PubMed

    Wu, Long; Peng, Chun-Wei; Hou, Jin-Xuan; Zhang, Yan-Hua; Chen, Chuang; Chen, Liang-Dong; Li, Yan

    2010-02-24

    To better search for potential markers for hepatocellular carcinoma (HCC) invasion and metastasis, proteomic approach was applied to identify potential metastasis biomarkers associated with HCC. Membrane proteins were extracted from MHCC97L and HCCLM9 cells, with a similar genetic background and remarkably different metastasis potential, and compared by SDS-PAGE and identified by ESI-MS/MS. The results were further validated by western blot analysis, immunohistochemistry (IHC) of tumor tissues from HCCLM9- and MHCC97L-nude mice, and clinical specimens. Membrane proteins were extracted from MHCC97L and HCCLM9 cell and compared by SDS-PAGE analyses. A total of 14 differentially expressed proteins were identified by ESI-MS/MS. Coronin-1C, a promising candidate, was found to be overexpressed in HCCLM9 cells as compared with MHCC97L cells, and validated by western blot and IHC from both nude mice tumor tissues and clinical specimens. Coronin-1C level showed an abrupt upsurge when pulmonary metastasis occurred. Increasing coronin-1C expression was found in liver cancer tissues of HCCLM9-nude mice with spontaneous pulmonary metastasis. IHC study on human HCC specimens revealed that more patients in the higher coronin-1C group had overt larger tumor and more advanced stage. Coronin-1C could be a candidate biomarker to predict HCC invasive behavior.

  17. Protein biomarkers in vernix with potential to predict the development of atopic eczema in early childhood

    PubMed Central

    Holm, T; Rutishauser, D; Kai-Larsen, Y; Lyutvinskiy, Y; Stenius, F; Zubarev, R A; Agerberth, B; Alm, J; Scheynius, A

    2014-01-01

    Background Atopic eczema (AE) is a chronic inflammatory skin disease, which has increased in prevalence. Evidence points toward lifestyle as a major risk factor. AE is often the first symptom early in life later followed by food allergy, asthma, and allergic rhinitis. Thus, there is a great need to find early, preferentially noninvasive, biomarkers to identify individuals that are predisposed to AE with the goal to prevent disease development. Objective To investigate whether the protein abundances in vernix can predict later development of AE. Methods Vernix collected at birth from 34 newborns within the Assessment of Lifestyle and Allergic Disease During INfancy (ALADDIN) birth cohort was included in the study. At 2 years of age, 18 children had developed AE. Vernix proteins were identified and quantified with liquid chromatography coupled to tandem mass spectrometry. Results We identified and quantified 203 proteins in all vernix samples. An orthogonal projections to latent structures-discriminant analysis (OPLS-DA) model was found with R2 = 0.85, Q2 = 0.39, and discrimination power between the AE and healthy group of 73.5%. Polyubiquitin-C and calmodulin-like protein 5 showed strong negative correlation to the AE group, with a correlation coefficient of 0.73 and 0.68, respectively, and a P-value of 8.2 E-7 and 1.8 E-5, respectively. For these two proteins, the OPLS-DA model showed a prediction accuracy of 91.2%. Conclusion The protein abundances in vernix, and particularly that of polyubiquitin-C and calmodulin-like protein 5, are promising candidates as biomarkers for the identification of newborns predisposed to develop AE. PMID:24205894

  18. Muscle-Derived Proteins as Serum Biomarkers for Monitoring Disease Progression in Three Forms of Muscular Dystrophy

    PubMed Central

    Burch, Peter M.; Pogoryelova, Oksana; Goldstein, Richard; Bennett, Donald; Guglieri, Michela; Straub, Volker; Bushby, Kate; Lochmüller, Hanns; Morris, Carl

    2015-01-01

    Abstract Background: Identifying translatable, non-invasive biomarkers of muscular dystrophy that better reflect the disease pathology than those currently available would aid the development of new therapies, the monitoring of disease progression and the response to therapy. Objective: The goal of this study was to evaluate a panel of serum protein biomarkers with the potential to specifically detect skeletal muscle injury. Method: Serum concentrations of skeletal troponin I (sTnI), myosin light chain 3 (Myl3), fatty acid binding protein 3 (FABP3) and muscle-type creatine kinase (CKM) proteins were measured in 74 Duchenne muscular dystrophy (DMD), 38 Becker muscular dystrophy (BMD) and 49 Limb-girdle muscular dystrophy type 2B (LGMD2B) patients and 32 healthy controls. Results: All four proteins were significantly elevated in the serum of these three muscular dystrophy patient populations when compared to healthy controls, but, interestingly, displayed different profiles depending on the type of muscular dystrophy. Additionally, the effects of patient age, ambulatory status, cardiac function and treatment status on the serum concentrations of the proteins were investigated. Statistical analysis revealed correlations between the serum concentrations and certain clinical endpoints including forced vital capacity in DMD patients and the time to walk ten meters in LGMD2B patients. Serum concentrations of these proteins were also elevated in two preclinical models of muscular dystrophy, the mdx mouse and the golden-retriever muscular dystrophy dog. Conclusions: These proteins, therefore, are potential muscular dystrophy biomarkers for monitoring disease progression and therapeutic response in both preclinical and clinical studies. PMID:26870665

  19. Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus.

    PubMed

    Bollineni, Ravi Chand; Fedorova, Maria; Blüher, Matthias; Hoffmann, Ralf

    2014-11-07

    Protein carbonylation is a common nonenzymatic oxidative post-translational modification, which is often considered as biomarker of oxidative stress. Recent evidence links protein carbonylation also to obesity and type 2 diabetes mellitus (T2DM), though the protein targets of carbonylation in human plasma have not been identified. In this study, we profiled carbonylated proteins in plasma samples obtained from lean individuals and obese patients with or without T2DM. The plasma samples were digested with trypsin, carbonyl groups were derivatized with O-(biotinylcarbazoylmethyl)hydroxylamine, enriched by avidin affinity chromatography, and analyzed by RPC-MS/MS. Signals of potentially modified peptides were targeted in a second LC-MS/MS analysis to retrieve the peptide sequence and the modified residues. A total of 158 unique carbonylated proteins were identified, of which 52 were detected in plasma samples of all three groups. Interestingly, 36 carbonylated proteins were detected only in obese patients with T2DM, whereas 18 were detected in both nondiabetic groups. The carbonylated proteins originated mostly from liver, plasma, platelet, and endothelium. Functionally, they were mainly involved in cell adhesion, signaling, angiogenesis, and cytoskeletal remodeling. Among the identified carbonylated proteins were several candidates, such as VEGFR-2, MMP-1, argin, MKK4, and compliment C5, already connected before to diabetes, obesity and metabolic diseases.

  20. Biomarkers of sepsis

    PubMed Central

    2013-01-01

    Sepsis is an unusual systemic reaction to what is sometimes an otherwise ordinary infection, and it probably represents a pattern of response by the immune system to injury. A hyper-inflammatory response is followed by an immunosuppressive phase during which multiple organ dysfunction is present and the patient is susceptible to nosocomial infection. Biomarkers to diagnose sepsis may allow early intervention which, although primarily supportive, can reduce the risk of death. Although lactate is currently the most commonly used biomarker to identify sepsis, other biomarkers may help to enhance lactate’s effectiveness; these include markers of the hyper-inflammatory phase of sepsis, such as pro-inflammatory cytokines and chemokines; proteins such as C-reactive protein and procalcitonin which are synthesized in response to infection and inflammation; and markers of neutrophil and monocyte activation. Recently, markers of the immunosuppressive phase of sepsis, such as anti-inflammatory cytokines, and alterations of the cell surface markers of monocytes and lymphocytes have been examined. Combinations of pro- and anti-inflammatory biomarkers in a multi-marker panel may help identify patients who are developing severe sepsis before organ dysfunction has advanced too far. Combined with innovative approaches to treatment that target the immunosuppressive phase, these biomarkers may help to reduce the mortality rate associated with severe sepsis which, despite advances in supportive measures, remains high. PMID:23480440

  1. Prespecified candidate biomarkers identify follicular lymphoma patients who achieved longer progression-free survival with bortezomib-rituximab versus rituximab.

    PubMed

    Coiffier, Bertrand; Li, Weimin; Henitz, Erin D; Karkera, Jayaprakash D; Favis, Reyna; Gaffney, Dana; Shapiro, Alice; Theocharous, Panteli; Elsayed, Yusri A; van de Velde, Helgi; Schaffer, Michael E; Osmanov, Evgenii A; Hong, Xiaonan; Scheliga, Adriana; Mayer, Jiri; Offner, Fritz; Rule, Simon; Teixeira, Adriana; Romejko-Jarosinska, Joanna; de Vos, Sven; Crump, Michael; Shpilberg, Ofer; Zinzani, Pier Luigi; Cakana, Andrew; Esseltine, Dixie-Lee; Mulligan, George; Ricci, Deborah

    2013-05-01

    Identify subgroups of patients with relapsed/refractory follicular lymphoma deriving substantial progression-free survival (PFS) benefit with bortezomib-rituximab versus rituximab in the phase III LYM-3001 study. A total of 676 patients were randomized to five 5-week cycles of bortezomib-rituximab or rituximab. The primary end point was PFS; this prespecified analysis of candidate protein biomarkers and genes was an exploratory objective. Archived tumor tissue and whole blood samples were collected at baseline. Immunohistochemistry and genetic analyses were completed for 4 proteins and 8 genes. In initial pairwise analyses, using individual single-nucleotide polymorphism genotypes, one biomarker pair (PSMB1 P11A C/G heterozygote, low CD68 expression) was associated with a significant PFS benefit with bortezomib-rituximab versus rituximab, controlling for multiple comparison corrections. The pair was analyzed under dominant, recessive, and additive genetic models, with significant association with PFS seen under the dominant model (G/G+C/G). In patients carrying this biomarker pair [PSMB1 P11A G allele, low CD68 expression (≤50 CD68-positive cells), population frequency: 43.6%], median PFS was 14.2 months with bortezomib-rituximab versus 9.1 months with rituximab (HR 0.47, P < 0.0001), and there was a significant overall survival benefit (HR 0.49, P = 0.0461). Response rates were higher and time to next antilymphoma therapy was longer in the bortezomib-rituximab group. In biomarker-negative patients, no significant efficacy differences were seen between treatment groups. Similar proportions of patients had high-risk features in the biomarker-positive and biomarker-negative subsets. Patients with PSMB1 P11A (G allele) and low CD68 expression seemed to have significantly longer PFS and greater clinical benefit with bortezomib-rituximab versus rituximab. ©2013 AACR.

  2. Creation of a federated database of blood proteins: a powerful new tool for finding and characterizing biomarkers in serum

    PubMed Central

    2014-01-01

    Protein biomarkers offer major benefits for diagnosis and monitoring of disease processes. Recent advances in protein mass spectrometry make it feasible to use this very sensitive technology to detect and quantify proteins in blood. To explore the potential of blood biomarkers, we conducted a thorough review to evaluate the reliability of data in the literature and to determine the spectrum of proteins reported to exist in blood with a goal of creating a Federated Database of Blood Proteins (FDBP). A unique feature of our approach is the use of a SQL database for all of the peptide data; the power of the SQL database combined with standard informatic algorithms such as BLAST and the statistical analysis system (SAS) allowed the rapid annotation and analysis of the database without the need to create special programs to manage the data. Our mathematical analysis and review shows that in addition to the usual secreted proteins found in blood, there are many reports of intracellular proteins and good agreement on transcription factors, DNA remodelling factors in addition to cellular receptors and their signal transduction enzymes. Overall, we have catalogued about 12,130 proteins identified by at least one unique peptide, and of these 3858 have 3 or more peptide correlations. The FDBP with annotations should facilitate testing blood for specific disease biomarkers. PMID:24476026

  3. Computational Biomarker Pipeline from Discovery to Clinical Implementation: Plasma Proteomic Biomarkers for Cardiac Transplantation

    PubMed Central

    Cohen Freue, Gabriela V.; Meredith, Anna; Smith, Derek; Bergman, Axel; Sasaki, Mayu; Lam, Karen K. Y.; Hollander, Zsuzsanna; Opushneva, Nina; Takhar, Mandeep; Lin, David; Wilson-McManus, Janet; Balshaw, Robert; Keown, Paul A.; Borchers, Christoph H.; McManus, Bruce; Ng, Raymond T.; McMaster, W. Robert

    2013-01-01

    Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac

  4. Multiplexed Immunoassay Panel Identifies Novel CSF Biomarkers for Alzheimer's Disease Diagnosis and Prognosis

    PubMed Central

    Craig-Schapiro, Rebecca; Kuhn, Max; Xiong, Chengjie; Pickering, Eve H.; Liu, Jingxia; Misko, Thomas P.; Perrin, Richard J.; Bales, Kelly R.; Soares, Holly; Fagan, Anne M.; Holtzman, David M.

    2011-01-01

    Background Clinicopathological studies suggest that Alzheimer's disease (AD) pathology begins ∼10–15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181). Methods and Findings Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age. Conclusions/Significance Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best

  5. Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats.

    PubMed

    Kobeissy, Firas H; Guingab-Cagmat, Joy D; Zhang, Zhiqun; Moghieb, Ahmed; Glushakova, Olena Y; Mondello, Stefania; Boutté, Angela M; Anagli, John; Rubenstein, Richard; Bahmad, Hisham; Wagner, Amy K; Hayes, Ronald L; Wang, Kevin K W

    2016-01-01

    Traumatic brain injury (TBI) represents a critical health problem of which diagnosis, management, and treatment remain challenging. TBI is a contributing factor in approximately one-third of all injury-related deaths in the United States. The Centers for Disease Control and Prevention estimate that 1.7 million people suffer a TBI in the United States annually. Efforts continue to focus on elucidating the complex molecular mechanisms underlying TBI pathophysiology and defining sensitive and specific biomarkers that can aid in improving patient management and care. Recently, the area of neuroproteomics-systems biology is proving to be a prominent tool in biomarker discovery for central nervous system injury and other neurological diseases. In this work, we employed the controlled cortical impact (CCI) model of experimental TBI in rat model to assess the temporal-global proteome changes after acute (1 day) and for the first time, subacute (7 days), post-injury time frame using the established cation-anion exchange chromatography-1D SDS gel electrophoresis LC-MS/MS platform for protein separation combined with discrete systems biology analyses to identify temporal biomarker changes related to this rat TBI model. Rather than focusing on any one individual molecular entity, we used in silico systems biology approach to understand the global dynamics that govern proteins that are differentially altered post-injury. In addition, gene ontology analysis of the proteomic data was conducted in order to categorize the proteins by molecular function, biological process, and cellular localization. Results show alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day) and subacute (7 days) periods post-TBI. Moreover, results suggest a differential upregulation of neuroprotective proteins at 7 days post-CCI involved in cellular functions such as neurite growth, regeneration, and axonal guidance. Our study is among the

  6. Joint analysis of multiple biomarkers for identifying type 2 diabetes in middle-aged and older Chinese: a cross-sectional study

    PubMed Central

    Wu, Hongyu; Yu, Zhijie; Qi, Qibin; Li, Huaixing; Sun, Qi

    2011-01-01

    Objective Identifying individuals with high risk of type 2 diabetes is important. To evaluate discriminatory ability of multiple biomarkers for type 2 diabetes in a Chinese population. Methods Plasma adiponectin, plasminogen activator inhibitor-1, retinol-binding protein 4, resistin, C-reactive protein, interleukin 6 (IL-6), tumour necrosis factor α receptor 2 and ferritin were measured in a population-based sample of 3189 Chinese (1419 men and 1770 women) aged 50–70 years. A weighted biomarkers risk score (BRS) was developed based on the strength of associations of these biomarkers with type 2 diabetes. The discriminatory ability was tested by the area under receiver operating characteristics curve (AUC). Results Adiponectin, plasminogen activator inhibitor-1, IL-6 and ferritin were independently associated with the prevalence of type 2 diabetes, and they were used to calculate the biomarkers risk score (BRS). After adjustment for the confounding factors, the ORs for type 2 diabetes and impaired fasting glucose with each point increment of BRS were 1.28 (95% CI 1.22 to 1.34) and 1.16 (1.12 to 1.20), respectively. Compared with those in the lowest quintile of the BRS, the participants in the highest quintile have an OR (95% CI) of 6.67 (4.21 to 10.55) for type 2 diabetes. The area under the curve for the BRS and conventional risk factors alone was 0.73 and 0.76, respectively, and substantially increased to 0.81 after combining both BRS and conventional risk factors (p<0.001). Conclusions These data suggest that combining multiple biomarkers and conventional risk factors might substantially enhance the ability to identify individuals with type 2 diabetes. More prospective data are warranted to confirm this observation. PMID:22021786

  7. A CONCISE PANEL OF BIOMARKERS IDENTIFIES NEUROCOGNITIVE FUNCTIONING CHANGES IN HIV-INFECTED INDIVIDUALS

    PubMed Central

    Marcotte, Thomas D.; Deutsch, Reena; Michael, Benedict Daniel; Franklin, Donald; Cookson, Debra Rosario; Bharti, Ajay R.; Grant, Igor; Letendre, Scott L.

    2013-01-01

    Background Neurocognitive (NC) impairment (NCI) occurs commonly in people living with HIV. Despite substantial effort, no biomarkers have been sufficiently validated for diagnosis and prognosis of NCI in the clinic. The goal of this project was to identify diagnostic or prognostic biomarkers for NCI in a comprehensively characterized HIV cohort. Methods Multidisciplinary case review selected 98 HIV-infected individuals and categorized them into four NC groups using normative data: stably normal (SN), stably impaired (SI), worsening (Wo), or improving (Im). All subjects underwent comprehensive NC testing, phlebotomy, and lumbar puncture at two timepoints separated by a median of 6.2 months. Eight biomarkers were measured in CSF and blood by immunoassay. Results were analyzed using mixed model linear regression and staged recursive partitioning. Results At the first visit, subjects were mostly middle-aged (median 45) white (58%) men (84%) who had AIDS (70%). Of the 73% who took antiretroviral therapy (ART), 54% had HIV RNA levels below 50 c/mL in plasma. Mixed model linear regression identified that only MCP-1 in CSF was associated with neurocognitive change group. Recursive partitioning models aimed at diagnosis (i.e., correctly classifying neurocognitive status at the first visit) were complex and required most biomarkers to achieve misclassification limits. In contrast, prognostic models were more efficient. A combination of three biomarkers (sCD14, MCP-1, SDF-1α) correctly classified 82% of Wo and SN subjects, including 88% of SN subjects. A combination of two biomarkers (MCP-1, TNF-α) correctly classified 81% of Im and SI subjects, including 100% of SI subjects. Conclusions This analysis of well-characterized individuals identified concise panels of biomarkers associated with NC change. Across all analyses, the two most frequently identified biomarkers were sCD14 and MCP-1, indicators of monocyte/macrophage activation. While the panels differed depending on

  8. Harnessing pain heterogeneity and RNA transcriptome to identify blood-based pain biomarkers: a novel correlational study design and bioinformatics approach in a graded chronic constriction injury model.

    PubMed

    Grace, Peter M; Hurley, Daniel; Barratt, Daniel T; Tsykin, Anna; Watkins, Linda R; Rolan, Paul E; Hutchinson, Mark R

    2012-09-01

    A quantitative, peripherally accessible biomarker for neuropathic pain has great potential to improve clinical outcomes. Based on the premise that peripheral and central immunity contribute to neuropathic pain mechanisms, we hypothesized that biomarkers could be identified from the whole blood of adult male rats, by integrating graded chronic constriction injury (CCI), ipsilateral lumbar dorsal quadrant (iLDQ) and whole blood transcriptomes, and pathway analysis with pain behavior. Correlational bioinformatics identified a range of putative biomarker genes for allodynia intensity, many encoding for proteins with a recognized role in immune/nociceptive mechanisms. A selection of these genes was validated in a separate replication study. Pathway analysis of the iLDQ transcriptome identified Fcγ and Fcε signaling pathways, among others. This study is the first to employ the whole blood transcriptome to identify pain biomarker panels. The novel correlational bioinformatics, developed here, selected such putative biomarkers based on a correlation with pain behavior and formation of signaling pathways with iLDQ genes. Future studies may demonstrate the predictive ability of these biomarker genes across other models and additional variables. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  9. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment

    PubMed Central

    Hemadi, Abdullah S; Huang, Ruijie; Zhou, Yuan; Zou, Jing

    2017-01-01

    Early childhood caries (ECC) is a term used to describe dental caries in children aged 6 years or younger. Oral streptococci, such as Streptococcus mutans and Streptococcus sorbrinus, are considered to be the main etiological agents of tooth decay in children. Other bacteria, such as Prevotella spp. and Lactobacillus spp., and fungus, that is, Candida albicans, are related to the development and progression of ECC. Biomolecules in saliva, mainly proteins, affect the survival of oral microorganisms by multiple innate defensive mechanisms, thus modulating the oral microflora. Therefore, the protein composition of saliva can be a sensitive indicator for dental health. Resistance or susceptibility to caries may be significantly correlated with alterations in salivary protein components. Some oral microorganisms and saliva proteins may serve as useful biomarkers in predicting the risk and prognosis of caries. Current research has generated abundant information that contributes to a better understanding of the roles of microorganisms and salivary proteins in ECC occurrence and prevention. This review summarizes the microorganisms that cause caries and tooth-protective salivary proteins with their potential as functional biomarkers for ECC risk assessment. The identification of biomarkers for children at high risk of ECC is not only critical for early diagnosis but also important for preventing and treating the disease. PMID:29125139

  10. Top-Down Quantitative Proteomics Identified Phosphorylation of Cardiac Troponin I as a Candidate Biomarker for Chronic Heart Failure

    PubMed Central

    Zhang, Jiang; Guy, Moltu J.; Norman, Holly S.; Chen, Yi-Chen; Xu, Qingge; Dong, Xintong; Guner, Huseyin; Wang, Sijian; Kohmoto, Takushi; Young, Ken H.; Moss, Richard L.; Ge, Ying

    2011-01-01

    The rapid increase in the prevalence of chronic heart failure (CHF) worldwide underscores an urgent need to identify biomarkers for the early detection of CHF. Post-translational modifications (PTMs) are associated with many critical signaling events during disease progression and thus offer a plethora of candidate biomarkers. We have employed top-down quantitative proteomics methodology for comprehensive assessment of PTMs in whole proteins extracted from normal and diseased tissues. We have systematically analyzed thirty-six clinical human heart tissue samples and identified phosphorylation of cardiac troponin I (cTnI) as a candidate biomarker for CHF. The relative percentages of the total phosphorylated cTnI forms over the entire cTnI populations (%Ptotal) were 56.4±3.5%, 36.9±1.6%, 6.1±2.4%, and 1.0±0.6% for postmortem hearts with normal cardiac function (n=7), early-stage of mild hypertrophy (n=5), severe hypertrophy/dilation (n=4), and end-stage CHF (n=6), respectively. In fresh transplant samples, the %Ptotal of cTnI from non-failing donor (n=4), and end-stage failing hearts (n=10) were 49.5±5.9% and 18.8±2.9%, respectively. Top-down MS with electron capture dissociation unequivocally localized the altered phosphorylation sites to Ser22/23 and determined the order of phosphorylation/dephosphorylation. This study represents the first clinical application of top-down MS-based quantitative proteomics for biomarker discovery from tissues, highlighting the potential of PTM as disease biomarkers. PMID:21751783

  11. Nano and Microparticle-Enhanced Immunosensor Approaches for the Detection of Cancer Biomarker Proteins

    NASA Astrophysics Data System (ADS)

    Mani, Vigneshwaran

    Accurate, sensitive, point-of-care multiplexed protein measurements are critical for early disease detection and monitoring, impacting biomarker and drug discovery, and personalized medicine. Significant application involves monitoring panels of proteins in the blood that are biomarkers for diagnosing cancer. However, measurements of biomarker panels in blood or other bodily fluids have been slow to integrate into current practice of cancer diagnostics partly due to the lack of technically simple, low-cost, sensitive, point-of-care multiplexed measurement devices, as well as the lack of rigorously validated protein panels. The present thesis in part addresses these limitations by the development of electrochemical and surface plasmon resonance (SPR) immunosensors utilizing 1mum superparamagnetic labels for accurate detection of prostate cancer biomarker proteins in patient serum samples. Electrochemical discrete immunosensors featuring nanostructured surface with densely packed 5 nm glutathione-coated gold nanoparticles coupled with multi-enzyme magnetic particle (MP) labels enabled measurement of prostate specific antigen (PSA) with a detection limit (DL) of 0.5 pg mL-1 in undiluted serum. Such low DLs are attributed to high surface area, conductivity of nanostructured surface, and multi-enzyme signal amplification. DLs are further improved by utilizing MP bioconjugated with more than 100,000 antibody labels to offline capture proteins from the serum sample matrix, minimizing nonspecific binding of interfering proteins on sensor surface before detection. This approach provided an unprecedented 10 fg DL mL-1 for PSA in undiluted serum using a flow SPR biosensor. Finally electrochemical microfluidic immunoarrays featuring nanostructured surface and offline protein capture by multi-label MPs enabled multiplexed detection of prostate cancer biomarkers PSA and interleukin-6 (IL-6). These approaches provided up to 1000-fold lower DLs compared to commercial bead based

  12. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum.

    PubMed

    Chambers, Andrew G; Percy, Andrew J; Simon, Romain; Borchers, Christoph H

    2014-04-01

    Accurate cancer biomarkers are needed for early detection, disease classification, prediction of therapeutic response and monitoring treatment. While there appears to be no shortage of candidate biomarker proteins, a major bottleneck in the biomarker pipeline continues to be their verification by enzyme linked immunosorbent assays. Multiple reaction monitoring (MRM), also known as selected reaction monitoring, is a targeted mass spectrometry approach to protein quantitation and is emerging to bridge the gap between biomarker discovery and clinical validation. Highly multiplexed MRM assays are readily configured and enable simultaneous verification of large numbers of candidates facilitating the development of biomarker panels which can increase specificity. This review focuses on recent applications of MRM to the analysis of plasma and serum from cancer patients for biomarker verification. The current status of this approach is discussed along with future directions for targeted mass spectrometry in clinical biomarker validation.

  13. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    PubMed

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  14. Plasma protein absolute quantification by nano-LC Q-TOF UDMSE for clinical biomarker verification

    PubMed Central

    ILIES, MARIA; IUGA, CRISTINA ADELA; LOGHIN, FELICIA; DHOPLE, VISHNU MUKUND; HAMMER, ELKE

    2017-01-01

    Background and aims Proteome-based biomarker studies are targeting proteins that could serve as diagnostic, prognosis, and prediction molecules. In the clinical routine, immunoassays are currently used for the absolute quantification of such biomarkers, with the major limitation that only one molecule can be targeted per assay. The aim of our study was to test a mass spectrometry based absolute quantification method for the verification of plasma protein sets which might serve as reliable biomarker panels for the clinical practice. Methods Six EDTA plasma samples were analyzed after tryptic digestion using a high throughput data independent acquisition nano-LC Q-TOF UDMSE proteomics approach. Synthetic Escherichia coli standard peptides were spiked in each sample for the absolute quantification. Data analysis was performed using ProgenesisQI v2.0 software (Waters Corporation). Results Our method ensured absolute quantification of 242 non redundant plasma proteins in a single run analysis. The dynamic range covered was 105. 86% were represented by classical plasma proteins. The overall median coefficient of variation was 0.36, while a set of 63 proteins was found to be highly stable. Absolute protein concentrations strongly correlated with values reviewed in the literature. Conclusions Nano-LC Q-TOF UDMSE proteomic analysis can be used for a simple and rapid determination of absolute amounts of plasma proteins. A large number of plasma proteins could be analyzed, while a wide dynamic range was covered with low coefficient of variation at protein level. The method proved to be a reliable tool for the quantification of protein panel for biomarker verification in the clinical practice. PMID:29151793

  15. Mining the Immune Cell Proteome to Identify Ovarian Cancer-Specific Biomarkers

    DTIC Science & Technology

    2012-03-01

    data and are in the process of identifying gene signatures that can be used as biomarkers for the identification of ovarian cancer-specific biomarkers...groups. The groups showed significant difference in age as well as gestational age, which is expected when considering the disease process . Isolation of...MUC4 in intracellular signaling.32 Oligosaccharides attached to the extracellular domains of mucins have also been shown to interact with different

  16. Application of “omics” to Prion Biomarker Discovery

    PubMed Central

    Huzarewich, Rhiannon L. C. H.; Siemens, Christine G.; Booth, Stephanie A.

    2010-01-01

    The advent of genomics and proteomics has been a catalyst for the discovery of biomarkers able to discriminate biological processes such as the pathogenesis of complex diseases. Prompt detection of prion diseases is particularly desirable given their transmissibility, which is responsible for a number of human health risks stemming from exogenous sources of prion protein. Diagnosis relies on the ability to detect the biomarker PrPSc, a pathological isoform of the host protein PrPC, which is an essential component of the infectious prion. Immunochemical detection of PrPSc is specific and sensitive enough for antemortem testing of brain tissue, however, this is not the case in accessible biological fluids or for the detection of recently identified novel prions with unique biochemical properties. A complementary approach to the detection of PrPSc itself is to identify alternative, “surrogate” gene or protein biomarkers indicative of disease. Biomarkers are also useful to track the progress of disease, especially important in the assessment of therapies, or to identify individuals “at risk”. In this review we provide perspective on current progress and pitfalls in the use of “omics” technologies to screen body fluids and tissues for biomarker discovery in prion diseases. PMID:20224650

  17. Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma.

    PubMed

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Borchers, Christoph H

    2013-07-01

    An emerging approach for multiplexed targeted proteomics involves bottom-up LC-MRM-MS, with stable isotope-labeled internal standard peptides, to accurately quantitate panels of putative disease biomarkers in biofluids. In this paper, we used this approach to quantitate 27 candidate cancer-biomarker proteins in human plasma that had not been treated by immunoaffinity depletion or enrichment techniques. These proteins have been reported as biomarkers for a variety of human cancers, from laryngeal to ovarian, with breast cancer having the highest correlation. We implemented measures to minimize the analytical variability, improve the quantitative accuracy, and increase the feasibility and applicability of this MRM-based method. We have demonstrated excellent retention time reproducibility (median interday CV: 0.08%) and signal stability (median interday CV: 4.5% for the analytical platform and 6.1% for the bottom-up workflow) for the 27 biomarker proteins (represented by 57 interference-free peptides). The linear dynamic range for the MRM assays spanned four orders-of-magnitude, with 25 assays covering a 10(3) -10(4) range in protein concentration. The lowest abundance quantifiable protein in our biomarker panel was insulin-like growth factor 1 (calculated concentration: 127 ng/mL). Overall, the analytical performance of this assay demonstrates high robustness and sensitivity, and provides the necessary throughput and multiplexing capabilities required to verify and validate cancer-associated protein biomarker panels in human plasma, prior to clinical use. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Label-Free Quantitative Proteomics Identifies Novel Plasma Biomarkers for Distinguishing Pulmonary Tuberculosis and Latent Infection.

    PubMed

    Sun, Huishan; Pan, Liping; Jia, Hongyan; Zhang, Zhiguo; Gao, Mengqiu; Huang, Mailing; Wang, Jinghui; Sun, Qi; Wei, Rongrong; Du, Boping; Xing, Aiying; Zhang, Zongde

    2018-01-01

    The lack of effective differential diagnostic methods for active tuberculosis (TB) and latent infection (LTBI) is still an obstacle for TB control. Furthermore, the molecular mechanism behind the progression from LTBI to active TB has been not elucidated. Therefore, we performed label-free quantitative proteomics to identify plasma biomarkers for discriminating pulmonary TB (PTB) from LTBI. A total of 31 overlapping proteins with significant difference in expression level were identified in PTB patients ( n = 15), compared with LTBI individuals ( n = 15) and healthy controls (HCs, n = 15). Eight differentially expressed proteins were verified using western blot analysis, which was 100% consistent with the proteomics results. Statistically significant differences of six proteins were further validated in the PTB group compared with the LTBI and HC groups in the training set ( n = 240), using ELISA. Classification and regression tree (CART) analysis was employed to determine the ideal protein combination for discriminating PTB from LTBI and HC. A diagnostic model consisting of alpha-1-antichymotrypsin (ACT), alpha-1-acid glycoprotein 1 (AGP1), and E-cadherin (CDH1) was established and presented a sensitivity of 81.2% (69/85) and a specificity of 95.2% (80/84) in discriminating PTB from LTBI, and a sensitivity of 81.2% (69/85) and a specificity of 90.1% (64/81) in discriminating PTB from HCs. Additional validation was performed by evaluating the diagnostic model in blind testing set ( n = 113), which yielded a sensitivity of 75.0% (21/28) and specificity of 96.1% (25/26) in PTB vs. LTBI, 75.0% (21/28) and 92.3% (24/26) in PTB vs. HCs, and 75.0% (21/28) and 81.8% (27/33) in PTB vs. lung cancer (LC), respectively. This study obtained the plasma proteomic profiles of different M.TB infection statuses, which contribute to a better understanding of the pathogenesis involved in the transition from latent infection to TB activation and provide new potential diagnostic

  19. De Novo Identification of Biomarker Proteins Using Tandem Mass Spectrometry

    EPA Science Inventory

    Many studies have shown that biological fluids contain an important number of biomarkers associated with various pathologies. For instance, there has been extensive research to identify effective biomarkers as prognostic indicators of breast cancer. An effective approach for biom...

  20. Cerebrospinal Fluid Biomarkers for Huntington's Disease.

    PubMed

    Byrne, Lauren M; Wild, Edward J

    2016-01-01

    Cerebrospinal fluid (CSF) is enriched in brain-derived components and represents an accessible and appealing means of interrogating the CNS milieu to study neurodegenerative diseases and identify biomarkers to facilitate the development of novel therapeutics. Many such CSF biomarkers have been proposed for Huntington's disease (HD) but none has been validated for clinical trial use. Across many studies proposing dozens of biomarker candidates, there is a notable lack of statistical power, consistency, rigor and validation. Here we review proposed CSF biomarkers including neurotransmitters, transglutaminase activity, kynurenine pathway metabolites, oxidative stress markers, inflammatory markers, neuroendocrine markers, protein markers of neuronal death, proteomic approaches and mutant huntingtin protein itself. We reflect on the need for large-scale, standardized CSF collections with detailed phenotypic data to validate and qualify much-needed CSF biomarkers for clinical trial use in HD.

  1. Protein Biomarkers of New-Onset Cardiovascular Disease: A Prospective Study from the Systems Approach to Biomarker Research in Cardiovascular Disease (SABRe CVD) Initiative

    PubMed Central

    Yin, Xiaoyan; Subramanian, Subha; Hwang, Shih-Jen; O’Donnell, Christopher J.; Fox, Caroline S.; Courchesne, Paul; Muntendam, Pieter; Adourian, Aram; Juhasz, Peter; Larson, Martin G.; Levy, Daniel

    2014-01-01

    Objective Incorporation of novel plasma protein biomarkers may improve current models for prediction of atherosclerotic cardiovascular disease (ASCVD) risk. Approach and Results We utilized discovery mass spectrometry (MS) to determine plasma concentrations of 861 proteins in 135 myocardial infarction (MI) cases and 135 matched controls. We then measured 59markers by targeted MS in 336 ASCVD case-control pairs. Associations with MI or ASCVD were tested in single marker and multimarker analyses adjusted for established ASCVD risk factors. Twelve single markers from discovery MS were associated with MI incidence (at p<0.01) adjusting for clinical risk factors. Seven proteins in aggregate (cyclophilin A, CD5 antigen-like, cell surface glycoprotein MUC18, collagen-alpha 1 [XVIII] chain, salivary alpha-amylase 1, C-reactive protein, and multimerin-2) were highly associated with MI (p<0.0001) and significantly improved its prediction compared to a model with clinical risk factors alone (C-statistic of 0.71 vs. 0.84). Through targeted MS, twelve single proteins were predictors of ASCVD (at p<0.05) after adjusting for established risk factors. In multimarker analyses, four proteins in combination (alpha-1-acid glycoprotein 1, paraoxonase 1, tetranectin, and CD5 antigen-like, predicted incident ASCVD (p<0.0001) and moderately improved the C-statistic from the model with clinical covariates alone (C-statistic of 0.69 vs. 0.73). Conclusions Proteomics profiling identified single and multimarker protein panels that are associated with new onset ASCVD and may lead to a better understanding of underlying disease mechanisms. Our findings include many novel protein biomarkers that, if externally validated, may improve risk assessment for MI and ASCVD. PMID:24526693

  2. Success, Failure, and Transparency in Biomarker-Based Drug Development: A Case Study of Cholesteryl Ester Transfer Protein Inhibitors.

    PubMed

    Hey, Spencer Phillips; Franklin, Jessica M; Avorn, Jerry; Kesselheim, Aaron S

    2017-06-01

    Although biomarkers are used as surrogate measures for drug targeting and approval and are generally based on plausible biological hypotheses, some are found to not correlate well with clinical outcomes. Over-reliance on inadequately validated biomarkers in drug development can lead to harm to trial subjects and patients and to research waste. To shed greater light on the process and ethics of biomarker-based drug development, we conducted a systematic portfolio analysis of cholesterol ester transfer protein inhibitors, a drug class designed to improve lipid profiles and prevent cardiovascular events. Despite years of development, no cholesterol ester transfer protein inhibitor has yet been approved for clinical use. We searched PubMed and Clinicaltrials.gov for clinical studies of 5 known cholesterol ester transfer protein inhibitors: anacetrapib, dalcetrapib, evacetrapib, TA-8995, and torcetrapib. Published reports and registration records were extracted for patient demographic characteristics and study authors' recommendations of clinical usage or further testing. We used Accumulating Evidence and Research Organization graphing to depict the portfolio of research activities and a Poisson model to examine trends. We identified 100 studies for analysis that involved 96 944 human subjects. The data from only 41 201 (42%) of the human subjects had been presented in a published report. For the 3 discontinued cholesterol ester transfer protein inhibitors, we found a pattern of consistently positive results on lipid-modification end points followed by negative results using clinical end points. Inefficiencies and harms can arise if a biomarker hypothesis continues to drive trials despite successive failures. Regulators, research funding bodies, and public policy makers may need to play a greater role in evaluating and coordinating biomarker-driven research programs. © 2017 American Heart Association, Inc.

  3. Programmed cell death 6 interacting protein (PDCD6IP) and Rabenosyn-5 (ZFYVE20) are potential urinary biomarkers for upper gastrointestinal cancer.

    PubMed

    Husi, Holger; Skipworth, Richard J E; Cronshaw, Andrew; Stephens, Nathan A; Wackerhage, Henning; Greig, Carolyn; Fearon, Kenneth C H; Ross, James A

    2015-06-01

    Cancer of the upper digestive tract (uGI) is a major contributor to cancer-related death worldwide. Due to a rise in occurrence, together with poor survival rates and a lack of diagnostic or prognostic clinical assays, there is a clear need to establish molecular biomarkers. Initial assessment was performed on urine samples from 60 control and 60 uGI cancer patients using MS to establish a peak pattern or fingerprint model, which was validated by a further set of 59 samples. We detected 86 cluster peaks by MS above frequency and detection thresholds. Statistical testing and model building resulted in a peak profiling model of five relevant peaks with 88% overall sensitivity and 91% specificity, and overall correctness of 90%. High-resolution MS of 40 samples in the 2-10 kDa range resulted in 646 identified proteins, and pattern matching identified four of the five model peaks within significant parameters, namely programmed cell death 6 interacting protein (PDCD6IP/Alix/AIP1), Rabenosyn-5 (ZFYVE20), protein S100A8, and protein S100A9, of which the first two were validated by Western blotting. We demonstrate that MS analysis of human urine can identify lead biomarker candidates in uGI cancers, which makes this technique potentially useful in defining and consolidating biomarker patterns for uGI cancer screening. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    PubMed

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of <3%, we identified 111 candidates from conditioned medium, including 44 proteins that have signal peptides or are described as secreted proteins in the UniProt database. As validation, we confirmed that one of these proteins, insulin-like growth factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  5. Blood Pyrrole-Protein Adducts--A Biomarker of Pyrrolizidine Alkaloid-Induced Liver Injury in Humans.

    PubMed

    Ruan, Jianqing; Gao, Hong; Li, Na; Xue, Junyi; Chen, Jie; Ke, Changqiang; Ye, Yang; Fu, Peter Pi-Cheng; Zheng, Jiang; Wang, Jiyao; Lin, Ge

    2015-01-01

    Pyrrolizidine alkaloids (PAs) induce liver injury (PA-ILI) and is very likely to contribute significantly to drug-induced liver injury (DILI). In this study we used a newly developed ultra-high performance liquid chromatography-triple quadrupole-mass spectrometry (UHPLC-MS)-based method to detect and quantitate blood pyrrole-protein adducts in DILI patients. Among the 46 suspected DILI patients, 15 were identified as PA-ILI by the identification of PA-containing herbs exposed. Blood pyrrole-protein adducts were detected in all PA-ILI patients (100%). These results confirm that PA-ILI is one of the major causes of DILI and that blood pyrrole-protein adducts quantitated by the newly developed UHPLC-MS method can serve as a specific biomarker of PA-ILI.

  6. The Knowledge-Integrated Network Biomarkers Discovery for Major Adverse Cardiac Events

    PubMed Central

    Jin, Guangxu; Zhou, Xiaobo; Wang, Honghui; Zhao, Hong; Cui, Kemi; Zhang, Xiang-Sun; Chen, Luonan; Hazen, Stanley L.; Li, King; Wong, Stephen T. C.

    2010-01-01

    The mass spectrometry (MS) technology in clinical proteomics is very promising for discovery of new biomarkers for diseases management. To overcome the obstacles of data noises in MS analysis, we proposed a new approach of knowledge-integrated biomarker discovery using data from Major Adverse Cardiac Events (MACE) patients. We first built up a cardiovascular-related network based on protein information coming from protein annotations in Uniprot, protein–protein interaction (PPI), and signal transduction database. Distinct from the previous machine learning methods in MS data processing, we then used statistical methods to discover biomarkers in cardiovascular-related network. Through the tradeoff between known protein information and data noises in mass spectrometry data, we finally could firmly identify those high-confident biomarkers. Most importantly, aided by protein–protein interaction network, that is, cardiovascular-related network, we proposed a new type of biomarkers, that is, network biomarkers, composed of a set of proteins and the interactions among them. The candidate network biomarkers can classify the two groups of patients more accurately than current single ones without consideration of biological molecular interaction. PMID:18665624

  7. Imaging Biomarkers for Adult Medulloblastomas: Genetic Entities May Be Identified by Their MR Imaging Radiophenotype.

    PubMed

    Keil, V C; Warmuth-Metz, M; Reh, C; Enkirch, S J; Reinert, C; Beier, D; Jones, D T W; Pietsch, T; Schild, H H; Hattingen, E; Hau, P

    2017-10-01

    The occurrence of medulloblastomas in adults is rare; nevertheless, these tumors can be subdivided into genetic and histologic entities each having distinct prognoses. This study aimed to identify MR imaging biomarkers to classify these entities and to uncover differences in MR imaging biomarkers identified in pediatric medulloblastomas. Eligible preoperative MRIs from 28 patients (11 women; 22-53 years of age) of the Multicenter Pilot-study for the Therapy of Medulloblastoma of Adults (NOA-7) cohort were assessed by 3 experienced neuroradiologists. Lesions and perifocal edema were volumetrized and multiparametrically evaluated for classic morphologic characteristics, location, hydrocephalus, and Chang criteria. To identify MR imaging biomarkers, we correlated genetic entities sonic hedgehog ( SHH ) TP53 wild type, wingless ( WNT ), and non -WNT/ non -SHH medulloblastomas (in adults, Group 4), and histologic entities were correlated with the imaging criteria. These MR imaging biomarkers were compared with corresponding data from a pediatric study. There were 19 SHH TP53 wild type (69%), 4 WNT -activated (14%), and 5 Group 4 (17%) medulloblastomas. Six potential MR imaging biomarkers were identified, 3 of which, hydrocephalus ( P = .03), intraventricular macrometastases ( P = .02), and hemorrhage ( P = .04), when combined, could identify WNT medulloblastoma with 100% sensitivity and 88.3% specificity (95% CI, 39.8%-100.0% and 62.6%-95.3%). WNT -activated nuclear β-catenin accumulating medulloblastomas were smaller than the other entities (95% CI, 5.2-22.3 cm 3 versus 35.1-47.6 cm 3 ; P = .03). Hemorrhage was exclusively present in non -WNT/ non -SHH medulloblastomas ( P = .04; n = 2/5). MR imaging biomarkers were all discordant from those identified in the pediatric cohort. Desmoplastic/nodular medulloblastomas were more rarely in contact with the fourth ventricle (4/15 versus 7/13; P = .04). MR imaging biomarkers can help distinguish histologic and genetic

  8. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care.

    PubMed

    Barbosa, Ana I; Reis, Nuno M

    2017-03-13

    biological matrix interference, (v) fluid control, (vi) the signal detection modes and (vii) the affordability of the manufacturing process and detection system, were identified as the key to the effective development of a sensitive and affordable microfluidic protein biomarker POC test.

  9. Accurate Quantification of Cardiovascular Biomarkers in Serum Using Protein Standard Absolute Quantification (PSAQ™) and Selected Reaction Monitoring*

    PubMed Central

    Huillet, Céline; Adrait, Annie; Lebert, Dorothée; Picard, Guillaume; Trauchessec, Mathieu; Louwagie, Mathilde; Dupuis, Alain; Hittinger, Luc; Ghaleh, Bijan; Le Corvoisier, Philippe; Jaquinod, Michel; Garin, Jérôme; Bruley, Christophe; Brun, Virginie

    2012-01-01

    Development of new biomarkers needs to be significantly accelerated to improve diagnostic, prognostic, and toxicity monitoring as well as therapeutic follow-up. Biomarker evaluation is the main bottleneck in this development process. Selected Reaction Monitoring (SRM) combined with stable isotope dilution has emerged as a promising option to speed this step, particularly because of its multiplexing capacities. However, analytical variabilities because of upstream sample handling or incomplete trypsin digestion still need to be resolved. In 2007, we developed the PSAQ™ method (Protein Standard Absolute Quantification), which uses full-length isotope-labeled protein standards to quantify target proteins. In the present study we used clinically validated cardiovascular biomarkers (LDH-B, CKMB, myoglobin, and troponin I) to demonstrate that the combination of PSAQ and SRM (PSAQ-SRM) allows highly accurate biomarker quantification in serum samples. A multiplex PSAQ-SRM assay was used to quantify these biomarkers in clinical samples from myocardial infarction patients. Good correlation between PSAQ-SRM and ELISA assay results was found and demonstrated the consistency between these analytical approaches. Thus, PSAQ-SRM has the capacity to improve both accuracy and reproducibility in protein analysis. This will be a major contribution to efficient biomarker development strategies. PMID:22080464

  10. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease

    PubMed Central

    Zetterberg, Henrik; Mattsson, Niklas; Johansson, Per; Minthon, Lennart; Blennow, Kaj; Olsson, Mattias

    2015-01-01

    Objective: To compare the diagnostic accuracy of CSF biomarkers and amyloid PET for diagnosing early-stage Alzheimer disease (AD). Methods: From the prospective, longitudinal BioFINDER study, we included 122 healthy elderly and 34 patients with mild cognitive impairment who developed AD dementia within 3 years (MCI-AD). β-Amyloid (Aβ) deposition in 9 brain regions was examined with [18F]-flutemetamol PET. CSF was analyzed with INNOTEST and EUROIMMUN ELISAs. The results were replicated in 146 controls and 64 patients with MCI-AD from the Alzheimer's Disease Neuroimaging Initiative study. Results: The best CSF measures for identifying MCI-AD were Aβ42/total tau (t-tau) and Aβ42/hyperphosphorylated tau (p-tau) (area under the curve [AUC] 0.93–0.94). The best PET measures performed similarly (AUC 0.92–0.93; anterior cingulate, posterior cingulate/precuneus, and global neocortical uptake). CSF Aβ42/t-tau and Aβ42/p-tau performed better than CSF Aβ42 and Aβ42/40 (AUC difference 0.03–0.12, p < 0.05). Using nonoptimized cutoffs, CSF Aβ42/t-tau had the highest accuracy of all CSF/PET biomarkers (sensitivity 97%, specificity 83%). The combination of CSF and PET was not better than using either biomarker separately. Conclusions: Amyloid PET and CSF biomarkers can identify early AD with high accuracy. There were no differences between the best CSF and PET measures and no improvement when combining them. Regional PET measures were not better than assessing the global Aβ deposition. The results were replicated in an independent cohort using another CSF assay and PET tracer. The choice between CSF and amyloid PET biomarkers for identifying early AD can be based on availability, costs, and doctor/patient preferences since both have equally high diagnostic accuracy. Classification of evidence: This study provides Class III evidence that amyloid PET and CSF biomarkers identify early-stage AD equally accurately. PMID:26354982

  11. Search for breast cancer biomarkers in fractionated serum samples by protein profiling with SELDI-TOF MS.

    PubMed

    Opstal-van Winden, Annemieke W J; Beijnen, Jos H; Loof, Arnoud; van Heerde, Waander L; Vermeulen, Roel; Peeters, Petra H M; van Gils, Carla H

    2012-01-01

    Many high-abundant acute phase reactants have been previously detected as potential breast cancer biomar-kers. However, they are unlikely to be specific for breast cancer. Cancer-specific biomarkers are thought to be among the lower abundant proteins. We aimed to detect lower abundant discriminating proteins by performing serum fractionation by strong anion exchange chromatography preceding protein profiling with SELDI-TOF MS. In a pilot study, we tested the different fractions resulting from fractionation, on several array types. Fraction 3 on IMAC30 and Fraction 6 on Q10 yielded the most discriminative proteins and were used for serum protein profiling of 73 incident breast cancer cases and 73 matched controls. Eight peaks showed statistically significantly different intensities between cases and controls (P⧁0.05), and had less than 10% chance to be a false-positive finding. Seven of these were tentatively identified as apolipoprotein C-II (m/z 8,909), oxidized apolipoprotein C-II (m/z 8,925), apolipoprotein C-III (m/z 8,746), fragment of coagulation factor XIIIa (m/z 3,959), heterodimer of apolipoprotein A-I and apolipoprotein A-II (m/z 45,435), hemoglobin B-chain (m/z 15,915), and post-translational modified hemoglobin (m/z 15,346). By extensive serum fractionation, we detected many more proteins than in previous studies without fractionation. However, discriminating proteins were still high abundant. Results indicate that either lower abundant proteins are less distinctive, or more rigorous fractionation and selective protein depletion, or a more sensitive assay, are needed to detect lower abundant discriminative proteins. © 2012 Wiley Periodicals, Inc.

  12. Protein and microRNA biomarkers from lavage, urine, and serum in military personnel evaluated for dyspnea

    PubMed Central

    2014-01-01

    Background We have identified candidate protein and microRNA (miRNA) biomarkers for dyspnea by studying serum, lavage fluid, and urine from military personnel who reported serious respiratory symptoms after they were deployed to Iraq or Afghanistan. Methods Forty-seven soldiers with the complaint of dyspnea who enrolled in the STudy of Active Duty Military Personnel for Environmental Dust Exposure (STAMPEDE) underwent comprehensive pulmonary evaluations at the San Antonio Military Medical Center. The evaluation included fiber-optic bronchoscopy with bronchoalveolar lavage. The clinical findings from the STAMPEDE subjects pointed to seven general underlying diagnoses or findings including airway hyperreactivity, asthma, low diffusivity of carbon monoxide, and abnormal cell counts. The largest category was undiagnosed. As an exploratory study, not a classification study, we profiled proteins or miRNAs in lavage fluid, serum, or urine in this group to look for any underlying molecular patterns that might lead to biomarkers. Proteins in lavage fluid and urine were identified by accurate mass tag (database-driven) proteomics methods while miRNAs were profiled by a hybridization assay applied to serum, urine, and lavage fluid. Results Over seventy differentially expressed proteins were reliably identified both from lavage and from urine in forty-eight dyspnea subjects compared to fifteen controls with no known lung disorder. Six of these proteins were detected both in urine and lavage. One group of subjects was distinguished from controls by expressing a characteristic group of proteins. A related group of dyspnea subjects expressed a unique group of miRNAs that included one miRNA that was differentially overexpressed in all three fluids studied. The levels of several miRNAs also showed modest but direct associations with several standard clinical measures of lung health such as forced vital capacity or gas exchange efficiency. Conclusions Candidate proteins and mi

  13. Protein and microRNA biomarkers from lavage, urine, and serum in military personnel evaluated for dyspnea.

    PubMed

    Brown, Joseph N; Brewer, Heather M; Nicora, Carrie D; Weitz, Karl K; Morris, Michael J; Skabelund, Andrew J; Adkins, Joshua N; Smith, Richard D; Cho, Ji-Hoon; Gelinas, Richard

    2014-10-05

    We have identified candidate protein and microRNA (miRNA) biomarkers for dyspnea by studying serum, lavage fluid, and urine from military personnel who reported serious respiratory symptoms after they were deployed to Iraq or Afghanistan. Forty-seven soldiers with the complaint of dyspnea who enrolled in the STudy of Active Duty Military Personnel for Environmental Dust Exposure (STAMPEDE) underwent comprehensive pulmonary evaluations at the San Antonio Military Medical Center. The evaluation included fiber-optic bronchoscopy with bronchoalveolar lavage. The clinical findings from the STAMPEDE subjects pointed to seven general underlying diagnoses or findings including airway hyperreactivity, asthma, low diffusivity of carbon monoxide, and abnormal cell counts. The largest category was undiagnosed. As an exploratory study, not a classification study, we profiled proteins or miRNAs in lavage fluid, serum, or urine in this group to look for any underlying molecular patterns that might lead to biomarkers. Proteins in lavage fluid and urine were identified by accurate mass tag (database-driven) proteomics methods while miRNAs were profiled by a hybridization assay applied to serum, urine, and lavage fluid. Over seventy differentially expressed proteins were reliably identified both from lavage and from urine in forty-eight dyspnea subjects compared to fifteen controls with no known lung disorder. Six of these proteins were detected both in urine and lavage. One group of subjects was distinguished from controls by expressing a characteristic group of proteins. A related group of dyspnea subjects expressed a unique group of miRNAs that included one miRNA that was differentially overexpressed in all three fluids studied. The levels of several miRNAs also showed modest but direct associations with several standard clinical measures of lung health such as forced vital capacity or gas exchange efficiency. Candidate proteins and miRNAs associated with the general diagnosis of

  14. Protein and microRNA biomarkers from lavage, urine, and serum in military personnel evaluated for dyspnea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Joseph N.; Brewer, Heather M.; Nicora, Carrie D.

    Background: We have identified candidate protein and microRNA (miRNA) biomarkers for dyspnea by studying serum, lavage fluid, and urine from military personnel who reported serious respiratory symptoms after they were deployed to Iraq or Afghanistan. Methods: Forty-seven soldiers with the complaint of dyspnea who enrolled in the STudy of Active Duty Military Personnel for Environmental Dust Exposure (STAMPEDE) underwent comprehensive pulmonary evaluations at the San Antonio Military Medical Center. The evaluation included fiber-optic bronchoscopy with bronchoalveolar lavage. The clinical findings from the STAMPEDE subjects pointed to seven general underlying diagnoses or findings including airway hyperreactivity, asthma, low diffusivity of carbonmore » monoxide, and abnormal cell counts. The largest category was undiagnosed. As an exploratory study, not a classification study, we profiled proteins or miRNAs in lavage fluid, serum, or urine in this group to look for any underlying molecular patterns that might lead to biomarkers. Proteins in lavage fluid and urine were identified by accurate mass tag (database-driven) proteomics methods while miRNAs were profiled by a hybridization assay applied to serum, urine, and lavage fluid. Results: Over seventy differentially expressed proteins were reliably identified both from lavage and from urine in forty-eight dyspnea subjects compared to fifteen controls with no known lung disorder. Six of these proteins were detected both in urine and lavage. One group of subjects was distinguished from controls by expressing a characteristic group of proteins. A related group of dyspnea subjects expressed a unique group of miRNAs that included one miRNA that was differentially overexpressed in all three fluids studied. The levels of several miRNAs also showed modest but direct associations with several standard clinical measures of lung health such as forced vital capacity or gas exchange efficiency. Conclusions: Candidate proteins

  15. Protein and microRNA biomarkers from lavage, urine, and serum in military personnel evaluated for dyspnea

    DOE PAGES

    Brown, Joseph N.; Brewer, Heather M.; Nicora, Carrie D.; ...

    2014-10-05

    Background: We have identified candidate protein and microRNA (miRNA) biomarkers for dyspnea by studying serum, lavage fluid, and urine from military personnel who reported serious respiratory symptoms after they were deployed to Iraq or Afghanistan. Methods: Forty-seven soldiers with the complaint of dyspnea who enrolled in the STudy of Active Duty Military Personnel for Environmental Dust Exposure (STAMPEDE) underwent comprehensive pulmonary evaluations at the San Antonio Military Medical Center. The evaluation included fiber-optic bronchoscopy with bronchoalveolar lavage. The clinical findings from the STAMPEDE subjects pointed to seven general underlying diagnoses or findings including airway hyperreactivity, asthma, low diffusivity of carbonmore » monoxide, and abnormal cell counts. The largest category was undiagnosed. As an exploratory study, not a classification study, we profiled proteins or miRNAs in lavage fluid, serum, or urine in this group to look for any underlying molecular patterns that might lead to biomarkers. Proteins in lavage fluid and urine were identified by accurate mass tag (database-driven) proteomics methods while miRNAs were profiled by a hybridization assay applied to serum, urine, and lavage fluid. Results: Over seventy differentially expressed proteins were reliably identified both from lavage and from urine in forty-eight dyspnea subjects compared to fifteen controls with no known lung disorder. Six of these proteins were detected both in urine and lavage. One group of subjects was distinguished from controls by expressing a characteristic group of proteins. A related group of dyspnea subjects expressed a unique group of miRNAs that included one miRNA that was differentially overexpressed in all three fluids studied. The levels of several miRNAs also showed modest but direct associations with several standard clinical measures of lung health such as forced vital capacity or gas exchange efficiency. Conclusions: Candidate proteins

  16. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action.

    PubMed

    Xuan, Jiekun; Pan, Guihua; Qiu, Yunping; Yang, Lun; Su, Mingming; Liu, Yumin; Chen, Jian; Feng, Guoyin; Fang, Yiru; Jia, Wei; Xing, Qinghe; He, Lin

    2011-12-02

    Despite recent advances in understanding the pathophysiology of schizophrenia and the mechanisms of antipsychotic drug action, the development of biomarkers for diagnosis and therapeutic monitoring in schizophrenia remains challenging. Metabolomics provides a powerful approach to discover diagnostic and therapeutic biomarkers by analyzing global changes in an individual's metabolic profile in response to pathophysiological stimuli or drug intervention. In this study, we performed gas chromatography-mass spectrometry based metabolomic profiling in serum of unmedicated schizophrenic patients before and after an 8-week risperidone monotherapy, to detect potential biomarkers associated with schizophrenia and risperidone treatment. Twenty-two marker metabolites contributing to the complete separation of schizophrenic patients from matched healthy controls were identified, with citrate, palmitic acid, myo-inositol, and allantoin exhibiting the best combined classification performance. Twenty marker metabolites contributing to the complete separation between posttreatment and pretreatment patients were identified, with myo-inositol, uric acid, and tryptophan showing the maximum combined classification performance. Metabolic pathways including energy metabolism, antioxidant defense systems, neurotransmitter metabolism, fatty acid biosynthesis, and phospholipid metabolism were found to be disturbed in schizophrenic patients and partially normalized following risperidone therapy. Further study of these metabolites may facilitate the development of noninvasive biomarkers and more efficient therapeutic strategies for schizophrenia.

  17. Identifying cut points for biomarker defined subset effects in clinical trials with survival endpoints.

    PubMed

    He, Pei

    2014-07-01

    The advancements in biotechnology and genetics lead to an increasing research interest in personalized medicine, where a patient's genetic profile or biological traits contribute to choosing the most effective treatment for the patient. The process starts with finding a specific biomarker among all possible candidates that can best predict the treatment effect. After a biomarker is chosen, identifying a cut point of the biomarker value that splits the patients into treatment effective and non-effective subgroups becomes an important scientific problem. Numerous methods have been proposed to validate the predictive marker and select the appropriate cut points either prospectively or retrospectively using clinical trial data. In trials with survival outcomes, the current practice applies an interaction testing procedure and chooses the cut point that minimizes the p-values for the tests. Such method assumes independence between the baseline hazard and biomarker value. In reality, however, this assumption is often violated, as the chosen biomarker might also be prognostic in addition to its predictive nature for treatment effect. In this paper we propose a block-wise estimation and a sequential testing approach to identify the cut point in biomarkers that can group the patients into subsets based on their distinct treatment outcomes without assuming independence between the biomarker and baseline hazard. Numerical results based on simulated survival data show that the proposed method could pinpoint accurately the cut points in biomarker values that separate the patient subpopulations into subgroups with distinctive treatment outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-2-0032 TITLE: Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis PRINCIPAL...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis 5b...Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The subject of the project is FY14 PRMRP Topic Area – Tinnitus . The broad

  19. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia

    PubMed Central

    Geng, Huimin; Brennan, Sarah; Milne, Thomas A.; Chen, Wei-Yi; Li, Yushan; Hurtz, Christian; Kweon, Soo-Mi; Zickl, Lynette; Shojaee, Seyedmehdi; Neuberg, Donna; Huang, Chuanxin; Biswas, Debabrata; Xin, Yuan; Racevskis, Janis; Ketterling, Rhett P.; Luger, Selina M.; Lazarus, Hillard; Tallman, Martin S.; Rowe, Jacob M.; Litzow, Mark R.; Guzman, Monica L.; Allis, C. David; Roeder, Robert G.; Müschen, Markus; Paietta, Elisabeth; Elemento, Olivier; Melnick, Ari M.

    2012-01-01

    Genetic lesions such as BCR-ABL1, E2A-PBX1 and MLL rearrangements (MLLr) are associated with unfavorable outcomes in adult B-acute lymphoblastic leukemia (B-ALL). Leukemia oncoproteins may directly or indirectly disrupt cytosine methylation patterning to mediate the malignant phenotype. We postulated that DNA methylation signatures in these aggressive B-ALLs would point towards disease mechanisms and useful biomarkers and therapeutic targets. We therefore performed DNA methylation and gene expression profiling on a cohort of 215 adult B-ALL patients enrolled in a single phase III clinical trial (ECOG E2993) and normal control B-cells. In BCR-ABL1-positive B-ALL, aberrant cytosine methylation patterning centered around a cytokine network defined by hypomethylation and overexpression of IL2RA(CD25). The E2993 trial clinical data showed that CD25 expression was strongly associated with a poor outcome in ALL patients regardless of BCR-ABL1 status, suggesting CD25 as a novel prognostic biomarker for risk stratification in B-ALL. In E2A-PBX1-positive B-ALL, aberrant DNA methylation patterning was strongly associated with direct fusion protein binding as shown by the E2A-PBX1 ChIP sequencing (ChIP-seq), suggesting that E2A-PBX1 fusion protein directly remodels the epigenome to impose an aggressive B-ALL phenotype. MLLr B-ALL featured prominent cytosine hypomethylation, which was linked with MLL fusion protein binding, H3K79 dimethylation and transcriptional upregulation, affecting a set of known and newly identified MLL fusion direct targets with oncogenic activity such as FLT3 and BCL6. Notably, BCL6 blockade or loss of function suppressed proliferation and survival of MLLr leukemia cells, suggesting BCL6 targeted therapy as a new therapeutic strategy for MLLr B-ALL. PMID:23107779

  20. Application of a proteomic approach to identify proteins associated with primary graft non-function after liver transplantation.

    PubMed

    Kornasiewicz, Oskar; Bojarczuk, Kamil; Bugajski, Marek; Golab, Jakub; Krawczyk, Marek

    2012-10-01

    Primary graft non-function (PNF) is a rare, life-threatening complication of liver transplantation. Increasing use of extended criteria donor pools and high-risk recipients seem to influence the incidence of PNF. Primary failure is associated with high patient morbidity and inferior graft survival. The only available treatment for PNF is emergency hepatic retransplantation, which is also correlated with significant morbidity and mortality. Therefore, researchers are working to identify risk factors of diagnostic value to prevent PNF. The current study attempted to explore liver proteomic patterns in patients with PNF. Using two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry (LC-MS), we compared liver protein homogenates from 3 patients with PNF to those obtained from 6 healthy liver samples to identify potential new biomarkers of PNF. Our comparisons revealed 21 proteins with differential expression (13 upregulated and 8 downregulated). Most of these proteins are involved in energy metabolism, lipid metabolism, peptide cleavage, cell differentiation, and apoptosis. Although none of these proteins appeared more than once in separate analyses, this preliminary study shows that two-dimensional gel electrophoresis and LC-MS may allow identification of characteristic proteins to be used as biomarkers of a life-threatening complication of liver transplantation. Larger-scale analyses could improve patient care by finding suitable prognostic and therapeutic options. These data represent the first global proteomic approach to study PNF.

  1. [Biomarkers of Metabolism and Iron Nutrition].

    PubMed

    Sermini, Carmen Gloria; Acevedo, María José; Arredondo, Miguel

    2017-01-01

    Iron deficiency anemia is the most common nutritional deficiency worldwide, and the most susceptible groups are infants, preschoolers, women of childbearing age, and pregnant women. It is therefore essential to understand the mechanisms of regulation of iron uptake, transport, and absorption at the cellular level, particularly in enterocytes, and to identify blood biomarkers that allow the evaluation of iron status. This review describes how iron absorption is regulated by intestinal epithelial cells, the main proteins involved (iron transporters, oxidoreductases, storage proteins), and the main blood biomarkers of iron metabolism.

  2. Blood/Brain Biomarkers of Inflammation After Stroke and Their Association With Outcome: From C-Reactive Protein to Damage-Associated Molecular Patterns.

    PubMed

    Bustamante, Alejandro; Simats, Alba; Vilar-Bergua, Andrea; García-Berrocoso, Teresa; Montaner, Joan

    2016-10-01

    Stroke represents one of the most important causes of disability and death in developed countries. However, there is a lack of prognostic tools in clinical practice to monitor the neurological condition and predict the final outcome. Blood biomarkers have been proposed and studied in this indication; however, no biomarker is currently used in clinical practice. The stroke-related neuroinflammatory processes have been associated with a poor outcome in stroke, as well as with poststroke complications. In this review, we focus on the most studied blood biomarkers of this inflammatory processes, cytokines, and C-reactive protein, evaluating its association with outcome and complications in stroke through the literature, and performing a systematic review on the association of C-reactive protein and functional outcome after stroke. Globally, we identified uncertainty with regard to the association of the evaluated biomarkers with stroke outcome, with little added value on top of clinical predictors such as age or stroke severity, which makes its implementation unlikely in clinical practice for global outcome prediction. Regarding poststroke complications, despite being more practical scenarios in which to make medical decisions following a biomarker prediction, not many studies have been performed, although there are now some candidates for prediction of poststroke infections. Finally, as potential new candidates, we reviewed the pathophysiological actions of damage-associated molecular patterns as triggers of the neuroinflammatory cascade of stroke, and their possible use as biomarkers.

  3. Novel Bioinformatics-Based Approach for Proteomic Biomarkers Prediction of Calpain-2 & Caspase-3 Protease Fragmentation: Application to βII-Spectrin Protein

    NASA Astrophysics Data System (ADS)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Kobeissy, Firas

    2017-01-01

    The crucial biological role of proteases has been visible with the development of degradomics discipline involved in the determination of the proteases/substrates resulting in breakdown-products (BDPs) that can be utilized as putative biomarkers associated with different biological-clinical significance. In the field of cancer biology, matrix metalloproteinases (MMPs) have shown to result in MMPs-generated protein BDPs that are indicative of malignant growth in cancer, while in the field of neural injury, calpain-2 and caspase-3 proteases generate BDPs fragments that are indicative of different neural cell death mechanisms in different injury scenarios. Advanced proteomic techniques have shown a remarkable progress in identifying these BDPs experimentally. In this work, we present a bioinformatics-based prediction method that identifies protease-associated BDPs with high precision and efficiency. The method utilizes state-of-the-art sequence matching and alignment algorithms. It starts by locating consensus sequence occurrences and their variants in any set of protein substrates, generating all fragments resulting from cleavage. The complexity exists in space O(mn) as well as in O(Nmn) time, where N, m, and n are the number of protein sequences, length of the consensus sequence, and length per protein sequence, respectively. Finally, the proposed methodology is validated against βII-spectrin protein, a brain injury validated biomarker.

  4. Verification of Ribosomal Proteins of Aspergillus fumigatus for Use as Biomarkers in MALDI-TOF MS Identification.

    PubMed

    Nakamura, Sayaka; Sato, Hiroaki; Tanaka, Reiko; Yaguchi, Takashi

    2016-01-01

    We have previously proposed a rapid identification method for bacterial strains based on the profiles of their ribosomal subunit proteins (RSPs), observed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method can perform phylogenetic characterization based on the mass of housekeeping RSP biomarkers, ideally calculated from amino acid sequence information registered in public protein databases. With the aim of extending its field of application to medical mycology, this study investigates the actual state of information of RSPs of eukaryotic fungi registered in public protein databases through the characterization of ribosomal protein fractions extracted from genome-sequenced Aspergillus fumigatus strains Af293 and A1163 as a model. In this process, we have found that the public protein databases harbor problems. The RSP names are in confusion, so we have provisionally unified them using the yeast naming system. The most serious problem is that many incorrect sequences are registered in the public protein databases. Surprisingly, more than half of the sequences are incorrect, due chiefly to mis-annotation of exon/intron structures. These errors could be corrected by a combination of in silico inspection by sequence homology analysis and MALDI-TOF MS measurements. We were also able to confirm conserved post-translational modifications in eleven RSPs. After these verifications, the masses of 31 expressed RSPs under 20,000 Da could be accurately confirmed. These RSPs have a potential to be useful biomarkers for identifying clinical isolates of A. fumigatus .

  5. Chromatography/Mass Spectrometry-Based Biomarkers in the Field of Obstructive Sleep Apnea

    PubMed Central

    Xu, Huajun; Zheng, Xiaojiao; Jia, Wei; Yin, Shankai

    2015-01-01

    Abstract Biomarker assessment is based on quantifying several proteins and metabolites. Recent developments in proteomics and metabolomics have enabled detection of these small molecules in biological samples and exploration of the underlying disease mechanisms in obstructive sleep apnea (OSA). This systemic review was performed to identify biomarkers, which were only detected by chromatography and/or mass spectrometry (MS) and to discuss the role of these biomarkers in the field of OSA. We systemically reviewed relevant articles from PubMed and EMBASE referring to proteins and metabolite profiles of biological samples in patients with OSA. The analytical platforms in this review were focused on chromatography and/or MS. In total, 30 studies evaluating biomarkers in patients with OSA using chromatography and/or MS methods were included. Numerous proteins and metabolites, including lipid profiles, adrenergic/dopaminergic biomarkers and derivatives, amino acids, oxidative stress biomarkers, and other micromolecules were identified in patients with OSA. Applying chromatography and/or MS methods to detect biomarkers helps develop an understanding of OSA mechanisms. More proteomic and metabolomic studies are warranted to develop potential diagnostic and clinical monitoring methods for OSA. PMID:26448002

  6. Tissue is alive: New technologies are needed to address the problems of protein biomarker pre-analytical variability.

    PubMed

    Espina, Virginia; Mueller, Claudius; Edmiston, Kirsten; Sciro, Manuela; Petricoin, Emanuel F; Liotta, Lance A

    2009-08-01

    Instability of tissue protein biomarkers is a critical issue for molecular profiling. Pre-analytical variables during tissue procurement, such as time delays during which the tissue remains stored at room temperature, can cause significant variability and bias in downstream molecular analysis. Living tissue, ex vivo, goes through a defined stage of reactive changes that begin with oxidative, hypoxic and metabolic stress, and culminate in apoptosis. Depending on the delay time ex vivo, and reactive stage, protein biomarkers, such as signal pathway phosphoproteins will be elevated or suppressed in a manner which does not represent the biomarker levels at the time of excision. Proteomic data documenting reactive tissue protein changes post collection indicate the need to recognize and address tissue stability, preservation of post-translational modifications, and preservation of morphologic features for molecular analysis. Based on the analysis of phosphoproteins, one of the most labile tissue protein biomarkers, we set forth tissue procurement guidelines for clinical research. We propose technical solutions for (i) assessing the state of protein analyte preservation and specimen quality via identification of a panel of natural proteins (surrogate stability markers), and (ii) using multi-purpose fixative solution designed to stabilize, preserve and maintain proteins, nucleic acids, and tissue architecture.

  7. Tissue is alive: New technologies are needed to address the problems of protein biomarker pre-analytical variability

    PubMed Central

    Espina, Virginia; Mueller, Claudius; Edmiston, Kirsten; Sciro, Manuela; Petricoin, Emanuel F.; Liotta, Lance A.

    2010-01-01

    Instability of tissue protein biomarkers is a critical issue for molecular profiling. Pre-analytical variables during tissue procurement, such as time delays during which the tissue remains stored at room temperature, can cause significant variability and bias in downstream molecular analysis. Living tissue, ex vivo, goes through a defined stage of reactive changes that begin with oxidative, hypoxic and metabolic stress, and culminate in apoptosis. Depending on the delay time ex vivo, and reactive stage, protein biomarkers, such as signal pathway phosphoproteins will be elevated or suppressed in a manner which does not represent the biomarker levels at the time of excision. Proteomic data documenting reactive tissue protein changes post collection indicate the need to recognize and address tissue stability, preservation of post-translational modifications, and preservation of morphologic features for molecular analysis. Based on the analysis of phosphoproteins, one of the most labile tissue protein biomarkers, we set forth tissue procurement guidelines for clinical research. We propose technical solutions for (i) assessing the state of protein analyte preservation and specimen quality via identification of a panel of natural proteins (surrogate stability markers), and (ii) using multi-purpose fixative solution designed to stabilize, preserve and maintain proteins, nucleic acids, and tissue architecture. PMID:20871745

  8. Quantification of Protein Biomarker Using SERS Nano-Stress Sensing with Peak Intensity Ratiometry

    NASA Astrophysics Data System (ADS)

    Goh, Douglas; Kong, Kien Voon; Jayakumar, Perumal; Gong, Tianxun; Dinish, U. S.; Olivo, Malini

    We report a surface enhanced Raman spectroscopy (SERS) ratiometry method based on peak intensity coupled in a nano-stress sensing platform to detect and quantify biological molecules. Herein, we employed an antibody-conjugated p-aminothiophenol (ATP) functionalized on a bimetallic-film-over-nanosphere (BMFON) substrate as a sensitive SERS platform to detect human haptoglobin (Hp) protein, which is an acute phase protein and a biomarker for various cancers. Correlation between change in the ATP spectral characteristics and concentration of Hp protein was established by examining the peak intensity ratio at 1572cm-1 and 1592cm-1 that reflects the degree of stress experienced by the aromatic ring of ATP during Hp protein-antibody interaction. Development of this platform shows the potential in developing a low-cost and sensitive SERS sensor for the pre-screening of various biomarkers.

  9. Identification of a sensitive urinary biomarker, selenium-binding protein 1, for early detection of acute kidney injury.

    PubMed

    Kim, Kyeong Seok; Yang, Hun Yong; Song, Hosup; Kang, Ye Rim; Kwon, JiHoon; An, JiHye; Son, Ji Yeon; Kwack, Seung Jun; Kim, Young-Mi; Bae, Ok-Nam; Ahn, Mee-Young; Lee, Jaewon; Yoon, Sungpil; Lee, Byung Mu; Kim, Hyung Sik

    2017-01-01

    Acute kidney injury (AKI) is associated with increased mortality rate in patients but clinically available biomarkers for disease detection are currently not available. Recently, a new biomarker, selenium-binding protein 1 (SBP1), was identified for detection of nephrotoxicity using proteomic analysis. The aim of this study was to assess the sensitivity of urinary SBP1 levels as an early detection of AKI using animal models such as cisplatin or ischemia/reperfusion (I/R). Sprague-Dawley rats were injected with cisplatin (6 mg/kg, once i.p.) and sacrificed at 1, 3, or 5 days after treatment. Ischemia was achieved by bilaterally occluding both kidneys with a microvascular clamp for 45 min and verified visually by a change in tissue color. After post-reperfusion, urine samples were collected at 9, 24, and 48 hr intervals. Urinary excretion of protein-based biomarkers was measured by Western blot analysis. In cisplatin-treated rats, mild histopathologic alterations were noted at day 1 which became severe at day 3. Blood urea nitrogen (BUN) and serum creatinine (SCr) levels were significantly increased at day 3. Levels of urinary excretion of SBP1, neutrophil gelatinase-associated lipocalin (NGAL), and a tissue inhibitor of metalloproteinase-1 (TIMP-1) were markedly elevated at day 3 and 5 following drug treatment. In the vehicle-treated I/R group, serum levels of BUN and SCr and AST activity were significantly increased compared to sham. Urinary excretion of SBP1 and NGAL rose markedly following I/R. The urinary levels of SBP1, NGAL, TIMP-1, and KIM-1 proteins excreted by AKI patients and normal subjects were compared. Among these proteins, a marked rise in SBP1 was observed in urine of patients with AKI compared to normal subjects. Based upon receiver-operator curves (ROC), SBP1 displayed a higher area under the curve (AUC) scores than levels of SCr, BUN, total protein, and glucose. In particular, SBP1 protein was readily detected in small amounts of urine without

  10. Meconium proteins as a source of biomarkers for the assessment of the intrauterine environment of the fetus.

    PubMed

    Lisowska-Myjak, B; Skarżyńska, E; Bakun, M

    2018-06-01

    Intrauterine environmental factors can be associated with perinatal complications and long-term health outcomes although the underlying mechanisms remain poorly defined. Meconium formed exclusively in utero and passed naturally by a neonate may contain proteins which characterise the intrauterine environment. The aim of the study was proteomic analysis of the composition of meconium proteins and their classification by biological function. Proteomic techniques combining isoelectrofocussing fractionation and LC-MS/MS analysis were used to study the protein composition of a meconium sample obtained by pooling 50 serial meconium portions from 10 healthy full-term neonates. The proteins were classified by function based on the literature search for each protein in the PubMed database. A total of 946 proteins were identified in the meconium, including 430 proteins represented by two or more peptides. When the proteins were classified by their biological function the following were identified: immunoglobulin fragments and enzymatic, neutrophil-derived, structural and fetal intestine-specific proteins. Meconium is a rich source of proteins deposited in the fetal intestine during its development in utero. A better understanding of their specific biological functions in the intrauterine environment may help to identify these proteins which may serve as biomarkers associated with specific clinical conditions/diseases with the possible impact on the fetal development and further health consequences in infants, older children and adults.

  11. Fluorescence-based Western blotting for quantitation of protein biomarkers in clinical samples.

    PubMed

    Zellner, Maria; Babeluk, Rita; Diestinger, Michael; Pirchegger, Petra; Skeledzic, Senada; Oehler, Rudolf

    2008-09-01

    Since most high throughput techniques used in biomarker discovery are very time and cost intensive, highly specific and quantitative analytical alternative application methods are needed for the routine analysis. Conventional Western blotting allows detection of specific proteins to the level of single isotypes while its quantitative accuracy is rather limited. We report a novel and improved quantitative Western blotting method. The use of fluorescently labelled secondary antibodies strongly extends the dynamic range of the quantitation and improves the correlation with the protein amount (r=0.997). By an additional fluorescent staining of all proteins immediately after their transfer to the blot membrane, it is possible to visualise simultaneously the antibody binding and the total protein profile. This allows for an accurate correction for protein load. Applying this normalisation it could be demonstrated that fluorescence-based Western blotting is able to reproduce a quantitative analysis of two specific proteins in blood platelet samples from 44 subjects with different diseases as initially conducted by 2D-DIGE. These results show that the proposed fluorescence-based Western blotting is an adequate application technique for biomarker quantitation and suggest possibilities of employment that go far beyond.

  12. Discovery of new rheumatoid arthritis biomarkers using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry ProteinChip approach.

    PubMed

    de Seny, Dominique; Fillet, Marianne; Meuwis, Marie-Alice; Geurts, Pierre; Lutteri, Laurence; Ribbens, Clio; Bours, Vincent; Wehenkel, Louis; Piette, Jacques; Malaise, Michel; Merville, Marie-Paule

    2005-12-01

    To identify serum protein biomarkers specific for rheumatoid arthritis (RA), using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technology. A total of 103 serum samples from patients and healthy controls were analyzed. Thirty-four of the patients had a diagnosis of RA, based on the American College of Rheumatology criteria. The inflammation control group comprised 20 patients with psoriatic arthritis (PsA), 9 with asthma, and 10 with Crohn's disease. The noninflammation control group comprised 14 patients with knee osteoarthritis and 16 healthy control subjects. Serum protein profiles were obtained by SELDI-TOF-MS and compared in order to identify new biomarkers specific for RA. Data were analyzed by a machine learning algorithm called decision tree boosting, according to different preprocessing steps. The most discriminative mass/charge (m/z) values serving as potential biomarkers for RA were identified on arrays for both patients with RA versus controls and patients with RA versus patients with PsA. From among several candidates, the following peaks were highlighted: m/z values of 2,924 (RA versus controls on H4 arrays), 10,832 and 11,632 (RA versus controls on CM10 arrays), 4,824 (RA versus PsA on H4 arrays), and 4,666 (RA versus PsA on CM10 arrays). Positive results of proteomic analysis were associated with positive results of the anti-cyclic citrullinated peptide test. Our observations suggested that the 10,832 peak could represent myeloid-related protein 8. SELDI-TOF-MS technology allows rapid analysis of many serum samples, and use of decision tree boosting analysis as the main statistical method allowed us to propose a pattern of protein peaks specific for RA.

  13. Identification of candidate cerebrospinal fluid biomarkers in parkinsonism using quantitative proteomics.

    PubMed

    Magdalinou, N K; Noyce, A J; Pinto, R; Lindstrom, E; Holmén-Larsson, J; Holtta, M; Blennow, K; Morris, H R; Skillbäck, T; Warner, T T; Lees, A J; Pike, I; Ward, M; Zetterberg, H; Gobom, J

    2017-04-01

    Neurodegenerative parkinsonian syndromes have significant clinical and pathological overlap, making early diagnosis difficult. Cerebrospinal fluid (CSF) biomarkers may aid the differentiation of these disorders, but other than α-synuclein and neurofilament light chain protein, which have limited diagnostic power, specific protein biomarkers remain elusive. To study disease mechanisms and identify possible CSF diagnostic biomarkers through discovery proteomics, which discriminate parkinsonian syndromes from healthy controls. CSF was collected consecutively from 134 participants; Parkinson's disease (n = 26), atypical parkinsonian syndromes (n = 78, including progressive supranuclear palsy (n = 36), multiple system atrophy (n = 28), corticobasal syndrome (n = 14)), and elderly healthy controls (n = 30). Participants were divided into a discovery and a validation set for analysis. The samples were subjected to tryptic digestion, followed by liquid chromatography-mass spectrometry analysis for identification and relative quantification by isobaric labelling. Candidate protein biomarkers were identified based on the relative abundances of the identified tryptic peptides. Their predictive performance was evaluated by analysis of the validation set. 79 tryptic peptides, derived from 26 proteins were found to differ significantly between atypical parkinsonism patients and controls. They included acute phase/inflammatory markers and neuronal/synaptic markers, which were respectively increased or decreased in atypical parkinsonism, while their levels in PD subjects were intermediate between controls and atypical parkinsonism. Using an unbiased proteomic approach, proteins were identified that were able to differentiate atypical parkinsonian syndrome patients from healthy controls. Our study indicates that markers that may reflect neuronal function and/or plasticity, such as the amyloid precursor protein, and inflammatory markers may hold future promise as

  14. Protein mass spectra data analysis for clinical biomarker discovery: a global review.

    PubMed

    Roy, Pascal; Truntzer, Caroline; Maucort-Boulch, Delphine; Jouve, Thomas; Molinari, Nicolas

    2011-03-01

    The identification of new diagnostic or prognostic biomarkers is one of the main aims of clinical cancer research. In recent years there has been a growing interest in using high throughput technologies for the detection of such biomarkers. In particular, mass spectrometry appears as an exciting tool with great potential. However, to extract any benefit from the massive potential of clinical proteomic studies, appropriate methods, improvement and validation are required. To better understand the key statistical points involved with such studies, this review presents the main data analysis steps of protein mass spectra data analysis, from the pre-processing of the data to the identification and validation of biomarkers.

  15. Targeted Metabolomics Identifies Pharmacodynamic Biomarkers for BIO 300 Mitigation of Radiation-Induced Lung Injury.

    PubMed

    Jones, Jace W; Jackson, Isabel L; Vujaskovic, Zeljko; Kaytor, Michael D; Kane, Maureen A

    2017-12-01

    Biomarkers serve a number of purposes during drug development including defining the natural history of injury/disease, serving as a secondary endpoint or trigger for intervention, and/or aiding in the selection of an effective dose in humans. BIO 300 is a patent-protected pharmaceutical formulation of nanoparticles of synthetic genistein being developed by Humanetics Corporation. The primary goal of this metabolomic discovery experiment was to identify biomarkers that correlate with radiation-induced lung injury and BIO 300 efficacy for mitigating tissue damage based upon the primary endpoint of survival. High-throughput targeted metabolomics of lung tissue from male C57L/J mice exposed to 12.5 Gy whole thorax lung irradiation, treated daily with 400 mg/kg BIO 300 for either 2 weeks or 6 weeks starting 24 h post radiation exposure, were assayed at 180 d post-radiation to identify potential biomarkers. A panel of lung metabolites that are responsive to radiation and able to distinguish an efficacious treatment schedule of BIO 300 from a non-efficacious treatment schedule in terms of 180 d survival were identified. These metabolites represent potential biomarkers that could be further validated for use in drug development of BIO 300 and in the translation of dose from animal to human.

  16. Detection of colorectal neoplasia: Combination of eight blood-based, cancer-associated protein biomarkers.

    PubMed

    Wilhelmsen, Michael; Christensen, Ib J; Rasmussen, Louise; Jørgensen, Lars N; Madsen, Mogens R; Vilandt, Jesper; Hillig, Thore; Klaerke, Michael; Nielsen, Knud T; Laurberg, Søren; Brünner, Nils; Gawel, Susan; Yang, Xiaoqing; Davis, Gerard; Heijboer, Annemieke; Martens, Frans; Nielsen, Hans J

    2017-03-15

    Serological biomarkers may be an option for early detection of colorectal cancer (CRC). The present study assessed eight cancer-associated protein biomarkers in plasma from subjects undergoing first time ever colonoscopy due to symptoms attributable to colorectal neoplasia. Plasma AFP, CA19-9, CEA, hs-CRP, CyFra21-1, Ferritin, Galectin-3 and TIMP-1 were determined in EDTA-plasma using the Abbott ARCHITECT® automated immunoassay platform. Primary endpoints were detection of (i) CRC and high-risk adenoma and (ii) CRC. Logistic regression was performed. Final reduced models were constructed selecting the four biomarkers with the highest likelihood scores. Subjects (N = 4,698) were consecutively included during 2010-2012. Colonoscopy detected 512 CRC patients, 319 colonic cancer and 193 rectal cancer. Extra colonic malignancies were detected in 177 patients, 689 had adenomas of which 399 were high-risk, 1,342 had nonneoplastic bowell disease and 1,978 subjects had 'clean' colorectum. Univariable analysis demonstrated that all biomarkers were statistically significant. Multivariate logistic regression demonstrated that the blood-based biomarkers in combination significantly predicted the endpoints. The reduced model resulted in the selection of CEA, hs-CRP, CyFra21-1 and Ferritin for the two endpoints; AUCs were 0.76 and 0.84, respectively. The postive predictive value at 90% sensitivity was 25% for endpoint 1 and the negative predictive value was 93%. For endpoint 2, the postive predictive value was 18% and the negative predictive value was 97%. Combinations of serological protein biomarkers provided a significant identification of subjects with high risk of the presence of colorectal neoplasia. The present set of biomarkers could become important adjunct in early detection of CRC. © 2016 UICC.

  17. Proteomics of gliomas: Initial biomarker discovery and evolution of technology

    PubMed Central

    Kalinina, Juliya; Peng, Junmin; Ritchie, James C.; Van Meir, Erwin G.

    2011-01-01

    Gliomas are a group of aggressive brain tumors that diffusely infiltrate adjacent brain tissues, rendering them largely incurable, even with multiple treatment modalities and agents. Mostly asymptomatic at early stages, they present in several subtypes with astrocytic or oligodendrocytic features and invariably progress to malignant forms. Gliomas are difficult to classify precisely because of interobserver variability during histopathologic grading. Identifying biological signatures of each glioma subtype through protein biomarker profiling of tumor or tumor-proximal fluids is therefore of high priority. Such profiling not only may provide clues regarding tumor classification but may identify clinical biomarkers and pathologic targets for the development of personalized treatments. In the past decade, differential proteomic profiling techniques have utilized tumor, cerebrospinal fluid, and plasma from glioma patients to identify the first candidate diagnostic, prognostic, predictive, and therapeutic response markers, highlighting the potential for glioma biomarker discovery. The number of markers identified, however, has been limited, their reproducibility between studies is unclear, and none have been validated for clinical use. Recent technological advancements in methodologies for high-throughput profiling, which provide easy access, rapid screening, low sample consumption, and accurate protein identification, are anticipated to accelerate brain tumor biomarker discovery. Reliable tools for biomarker verification forecast translation of the biomarkers into clinical diagnostics in the foreseeable future. Herein we update the reader on the recent trends and directions in glioma proteomics, including key findings and established and emerging technologies for analysis, together with challenges we are still facing in identifying and verifying potential glioma biomarkers. PMID:21852429

  18. Protein C: a potential biomarker in severe sepsis and a possible tool for monitoring treatment with drotrecogin alfa (activated)

    PubMed Central

    Shorr, Andrew F; Nelson, David R; Wyncoll, Duncan LA; Reinhart, Konrad; Brunkhorst, Frank; Vail, George Matthew; Janes, Jonathan

    2008-01-01

    Introduction Drotrecogin alfa (activated; DrotAA) treatment, a 96-hour infusion, reduces 28-day mortality in severe sepsis to approximately 25%. The question remains whether a longer infusion or higher dose could increase rate of survival. The goal of this study was to identify a dependable, sensitive measure with which to monitor disease progression and response in patients during DrotAA treatment. Methods Data on severe sepsis patients included in PROWESS (placebo-controlled, double-blind, randomized study of 850 DrotAA and 840 placebo individuals) and ENHANCE (single-arm, open-label study of 2,375 DrotAA patients) studies were analyzed. In these studies, DrotAA (24 μg/kg per hour) or placebo was infused for 96 hours and patients were followed for 28 days. Data on six laboratory measures and five organ dysfunctions were systematically analyzed to identify a potential surrogate end-point for monitoring DrotAA therapy and predicting 28-day mortality at the end of therapy. To allow comparison across variables, sensitivity and specificity analyses identified cut-off values for preferred outcome, and relative risks for being above or below cut-offs were calculated, as was the 'proportion of treatment effect explained' (PTEE) to identify biomarkers that contribute to benefit from DrotAA. Results Protein C was the only variable that correlated with outcome across all analyses. Using placebo data, a baseline protein C under 40% was established as a useful predictor of outcome (odds ratio 2.12). Similar odds ratios were associated with cut-off values of other biomarkers, but the treatment benefit associated with DrotAA was significantly greater below the cut-off than above the cut-off only for protein C (relative risk for 28-day mortality 0.66 versus 0.88; P = 0.04). Protein C was the only end-of-infusion biomarker that potentially explained at least 50% of the benefit from DrotAA (PTEE 57.2%). The PTEE was 41% for cardiovascular Sequential Organ Failure Assessment score

  19. Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer.

    PubMed

    Whiteaker, Jeffrey R; Zhang, Heidi; Zhao, Lei; Wang, Pei; Kelly-Spratt, Karen S; Ivey, Richard G; Piening, Brian D; Feng, Li-Chia; Kasarda, Erik; Gurley, Kay E; Eng, Jimmy K; Chodosh, Lewis A; Kemp, Christopher J; McIntosh, Martin W; Paulovich, Amanda G

    2007-10-01

    Despite their potential to impact diagnosis and treatment of cancer, few protein biomarkers are in clinical use. Biomarker discovery is plagued with difficulties ranging from technological (inability to globally interrogate proteomes) to biological (genetic and environmental differences among patients and their tumors). We urgently need paradigms for biomarker discovery. To minimize biological variation and facilitate testing of proteomic approaches, we employed a mouse model of breast cancer. Specifically, we performed LC-MS/MS of tumor and normal mammary tissue from a conditional HER2/Neu-driven mouse model of breast cancer, identifying 6758 peptides representing >700 proteins. We developed a novel statistical approach (SASPECT) for prioritizing proteins differentially represented in LC-MS/MS datasets and identified proteins over- or under-represented in tumors. Using a combination of antibody-based approaches and multiple reaction monitoring-mass spectrometry (MRM-MS), we confirmed the overproduction of multiple proteins at the tissue level, identified fibulin-2 as a plasma biomarker, and extensively characterized osteopontin as a plasma biomarker capable of early disease detection in the mouse. Our results show that a staged pipeline employing shotgun-based comparative proteomics for biomarker discovery and multiple reaction monitoring for confirmation of biomarker candidates is capable of finding novel tissue and plasma biomarkers in a mouse model of breast cancer. Furthermore, the approach can be extended to find biomarkers relevant to human disease.

  20. Systematic approach identifies RHOA as a potential biomarker therapeutic target for Asian gastric cancer.

    PubMed

    Chang, Hae Ryung; Nam, Seungyoon; Lee, Jinhyuk; Kim, Jin-Hee; Jung, Hae Rim; Park, Hee Seo; Park, Sungjin; Ahn, Young Zoo; Huh, Iksoo; Balch, Curt; Ku, Ja-Lok; Powis, Garth; Park, Taesung; Jeong, Jin-Hyun; Kim, Yon Hui

    2016-12-06

    Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer "Big Data" has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of "hit" compounds.

  1. Methodology and Applications of Disease Biomarker Identification in Human Serum

    PubMed Central

    Sahab, Ziad J.; Semaan, Suzan M.; Sang, Qing-Xiang Amy

    2007-01-01

    Biomarkers are biomolecules that serve as indicators of biological and pathological processes, or physiological and pharmacological responses to a drug treatment. Because of the high abundance of albumin and heterogeneity of plasma lipoproteins and glycoproteins, biomarkers are difficult to identify in human serum. Due to the clinical significance the identification of disease biomarkers in serum holds great promise for personalized medicine, especially for disease diagnosis and prognosis. This review summarizes some common and emerging proteomics techniques utilized in the separation of serum samples and identification of disease signatures. The practical application of each protein separation or identification technique is analyzed using specific examples. Biomarkers of cancers of prostate, breast, ovary, and lung in human serum have been reviewed, as well as those of heart disease, arthritis, asthma, and cystic fibrosis. Despite the advancement of technology few biomarkers have been approved by the Food and Drug Administration for disease diagnosis and prognosis due to the complexity of structure and function of protein biomarkers and lack of high sensitivity, specificity, and reproducibility for those putative biomarkers. The combination of different types of technologies and statistical analysis may provide more effective methods to identify and validate new disease biomarkers in blood. PMID:19662190

  2. Verification of Ribosomal Proteins of Aspergillus fumigatus for Use as Biomarkers in MALDI-TOF MS Identification

    PubMed Central

    Nakamura, Sayaka; Sato, Hiroaki; Tanaka, Reiko; Yaguchi, Takashi

    2016-01-01

    We have previously proposed a rapid identification method for bacterial strains based on the profiles of their ribosomal subunit proteins (RSPs), observed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method can perform phylogenetic characterization based on the mass of housekeeping RSP biomarkers, ideally calculated from amino acid sequence information registered in public protein databases. With the aim of extending its field of application to medical mycology, this study investigates the actual state of information of RSPs of eukaryotic fungi registered in public protein databases through the characterization of ribosomal protein fractions extracted from genome-sequenced Aspergillus fumigatus strains Af293 and A1163 as a model. In this process, we have found that the public protein databases harbor problems. The RSP names are in confusion, so we have provisionally unified them using the yeast naming system. The most serious problem is that many incorrect sequences are registered in the public protein databases. Surprisingly, more than half of the sequences are incorrect, due chiefly to mis-annotation of exon/intron structures. These errors could be corrected by a combination of in silico inspection by sequence homology analysis and MALDI-TOF MS measurements. We were also able to confirm conserved post-translational modifications in eleven RSPs. After these verifications, the masses of 31 expressed RSPs under 20,000 Da could be accurately confirmed. These RSPs have a potential to be useful biomarkers for identifying clinical isolates of A. fumigatus. PMID:27843740

  3. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases.

    PubMed

    Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning

    2007-10-18

    Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and code examples are available at

  4. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases

    PubMed Central

    Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning

    2007-01-01

    Background Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. Results We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. Conclusion We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and

  5. Proteomic profiling for plasma biomarkers of tuberculosis progression.

    PubMed

    Liu, Qiuyue; Pan, Liping; Han, Fen; Luo, Baojian; Jia, Hongyan; Xing, Aiying; Li, Qi; Zhang, Zongde

    2018-06-05

    Severe pulmonary tuberculosis (STB) is a life‑threatening condition with high economic and social burden. The present study aimed to screen for distinct proteins in different stages of TB and identify biomarkers for a better understanding of TB progression and pathogenesis. Blood samples were obtained from 81 patients with STB, 80 with mild TB (MTB) and 50 healthy controls. Differentially expressed proteins were identified using liquid chromatography‑tandem mass spectrometry‑based label‑free quantitative proteomic analysis. Functional and pathway enrichment analyses were performed for the identified proteins. The expression of potential biomarkers was further validated by western blot analysis and enzyme‑linked immunosorbent assays. The accuracy, sensitivity and specificity for selected protein biomarkers in diagnosing STB were also evaluated. A total of 1,011 proteins were identified in all three groups, and 153 differentially expressed proteins were identified in patients with STB. These proteins were involved in 'cellular process', 'response to stimulus', 'apoptotic process', 'immune system process' and 'select metabolic process'. Significant differences in protein expression were detected in α‑1‑acid glycoprotein 2 (ORM2), interleukin‑36α (IL‑36α), S100 calcium binding protein A9 (S100‑A9), superoxide dismutase (SOD)1 in the STB group, compared with the MTB and control groups. The combination of plasma ORM2, IL‑36α, S100A9 and SOD1 levels achieved 90.00% sensitivity and 92.16% specificity to discriminate between patients with STB and MTB, and 89.66% sensitivity and 98.9% specificity to discriminate between patients with STB and healthy controls. ORM2, S100A9, IL‑36α and SOD1 were associated with the development of TB, and have the potential to distinguish between different stages of TB. Differential protein expression during disease progression may improve the current understanding of STB pathogenesis.

  6. Is myelin basic protein a potential biomarker of brain cancer?

    PubMed

    Zavialova, M G; Shevchenko, V E; Nikolaev, E N; Zgoda, V G

    2017-08-01

    Myelin basic protein is a potential biomarker for the central nervous system diseases in which the myelin sheath is destroyed. Using pseudo-selected reaction monitoring and the method of standard additions, we have measured the myelin basic protein level in the cerebrospinal fluid of patients with neurotrauma (n = 6), chronic neurodegenerative diseases (n = 2) and brain cancer (n = 5). Myelin basic protein was detected only in four out of five cerebrospinal fluid samples of patients with brain cancer. The cerebrospinal fluid myelin basic protein level ranged from 3.7 to 8.8 ng ml -1 . We suggest that monitoring of myelin basic protein in cerebrospinal fluid can serve as a diagnostic test for the brain cancer.

  7. Oncofetal protein IMP3, a new cancer biomarker.

    PubMed

    Gong, Yuna; Woda, Bruce A; Jiang, Zhong

    2014-05-01

    IMP3 is a member of a family of RNA-binding proteins that consists of IMP1, IMP2 and IMP3. These proteins contain 2 RNA recognition motifs and 4 K-homology domains that allow them to bind RNAs strongly and specifically. IMP3 is an oncofetal protein involved in embryogenesis and its expression is associated with a number of malignant neoplasms. IMP3 is associated with aggressive and advanced cancers and is specifically expressed in malignant tumors but is not found in adjacent benign tissues. Moreover, in vitro studies have shown that IMP3 promotes tumor cell proliferation, adhesion, and invasion. This review focuses on the studies of IMP3 expression in different cancers and emphasizes the potential utility of IMP3 in routine surgical pathology practice. We also discuss IMP3 as a prognostic biomarker for cancer patients' outcomes.

  8. Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding

    PubMed Central

    Sirois, Allison R.; Deny, Daniela A.; Baierl, Samantha R.; George, Katia S.

    2018-01-01

    Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics. PMID:29738555

  9. Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility.

    PubMed

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Hardie, Darryl B; Borchers, Christoph H

    2014-05-01

    Accurate and rapid protein quantitation is essential for screening biomarkers for disease stratification and monitoring, and to validate the hundreds of putative markers in human biofluids, including blood plasma. An analytical method that utilizes stable isotope-labeled standard (SIS) peptides and selected/multiple reaction monitoring-mass spectrometry (SRM/MRM-MS) has emerged as a promising technique for determining protein concentrations. This targeted approach has analytical merit, but its true potential (in terms of sensitivity and multiplexing) has yet to be realized. Described herein is a method that extends the multiplexing ability of the MRM method to enable the quantitation 142 high-to-moderate abundance proteins (from 31mg/mL to 44ng/mL) in undepleted and non-enriched human plasma in a single run. The proteins have been reported to be associated to a wide variety of non-communicable diseases (NCDs), from cardiovascular disease (CVD) to diabetes. The concentrations of these proteins in human plasma are inferred from interference-free peptides functioning as molecular surrogates (2 peptides per protein, on average). A revised data analysis strategy, involving the linear regression equation of normal control plasma, has been instituted to enable the facile application to patient samples, as demonstrated in separate nutrigenomics and CVD studies. The exceptional robustness of the LC/MS platform and the quantitative method, as well as its high throughput, makes the assay suitable for application to patient samples for the verification of a condensed or complete protein panel. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. © 2013.

  10. Identifying Exosome-Derived MicroRNAs as Candidate Biomarkers of Frailty.

    PubMed

    Ipson, B R; Fletcher, M B; Espinoza, S E; Fisher, A L

    2018-01-01

    Frailty is a geriatric syndrome associated with progressive physical decline and significantly increases risk for falls, disability, hospitalizations, and death. However, much remains unknown regarding the biological mechanisms that contribute to aging and frailty, and to date, there are no clinically used prognostic or diagnostic molecular biomarkers. The present study profiled exosome-derived microRNAs isolated from the plasma of young, robust older, and frail older individuals and identified eight miRNAs that are uniquely enriched in frailty: miR-10a-3p, miR-92a-3p, miR-185-3p, miR-194-5p, miR-326, miR-532-5p, miR-576-5p, and miR-760. Furthermore, since exosomes can deliver miRNAs to alter cellular activity and behavior, these miRNAs may also provide insights into the biological mechanisms underlying frailty; KEGG analysis of their target genes revealed multiple pathways implicated in aging and age-related processes. Although further validation and research studies are warranted, our study identified eight novel candidate biomarkers of frailty that may help to elucidate the multifactorial pathogenesis of frailty.

  11. A Proteomics View of the Molecular Mechanisms and Biomarkers of Glaucomatous Neurodegeneration

    PubMed Central

    Tezel, Gülgün

    2013-01-01

    Despite improving understanding of glaucoma, key molecular players of neurodegeneration that can be targeted for treatment of glaucoma, or molecular biomarkers that can be useful for clinical testing, remain unclear. Proteomics technology offers a powerful toolbox to accomplish these important goals of the glaucoma research and is increasingly being applied to identify molecular mechanisms and biomarkers of glaucoma. Recent studies of glaucoma using proteomics analysis techniques have resulted in the lists of differentially expressed proteins in human glaucoma and animal models. The global analysis of protein expression in glaucoma has been followed by cell-specific proteome analysis of retinal ganglion cells and astrocytes. The proteomics data have also guided targeted studies to identify post-translational modifications and protein-protein interactions during glaucomatous neurodegeneration. In addition, recent applications of proteomics have provided a number of potential biomarker candidates. Proteomics technology holds great promise to move glaucoma research forward toward new treatment strategies and biomarker discovery. By reviewing the major proteomics approaches and their applications in the field of glaucoma, this article highlights the power of proteomics in translational and clinical research related to glaucoma and also provides a framework for future research to functionally test the importance of specific molecular pathways and validate candidate biomarkers. PMID:23396249

  12. Overlap of proteomics biomarkers between women with pre-eclampsia and PCOS: a systematic review and biomarker database integration

    PubMed Central

    Khan, Gulafshana Hafeez; Galazis, Nicolas; Docheva, Nikolina; Layfield, Robert; Atiomo, William

    2015-01-01

    STUDY QUESTION Do any proteomic biomarkers previously identified for pre-eclampsia (PE) overlap with those identified in women with polycystic ovary syndrome (PCOS). SUMMARY ANSWER Five previously identified proteomic biomarkers were found to be common in women with PE and PCOS when compared with controls. WHAT IS KNOWN ALREADY Various studies have indicated an association between PCOS and PE; however, the pathophysiological mechanisms supporting this association are not known. STUDY DESIGN, SIZE, DURATION A systematic review and update of our PCOS proteomic biomarker database was performed, along with a parallel review of PE biomarkers. The study included papers from 1980 to December 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS In all the studies analysed, there were a total of 1423 patients and controls. The number of proteomic biomarkers that were catalogued for PE was 192. MAIN RESULTS AND THE ROLE OF CHANCE Five proteomic biomarkers were shown to be differentially expressed in women with PE and PCOS when compared with controls: transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. In PE, the biomarkers were identified in serum, plasma and placenta and in PCOS, the biomarkers were identified in serum, follicular fluid, and ovarian and omental biopsies. LIMITATIONS, REASONS FOR CAUTION The techniques employed to detect proteomics have limited ability in identifying proteins that are of low abundance, some of which may have a diagnostic potential. The sample sizes and number of biomarkers identified from these studies do not exclude the risk of false positives, a limitation of all biomarker studies. The biomarkers common to PE and PCOS were identified from proteomic analyses of different tissues. WIDER IMPLICATIONS OF THE FINDINGS This data amalgamation of the proteomic studies in PE and in PCOS, for the first time, discovered a panel of five biomarkers for PE which are common to women with PCOS, including transferrin

  13. Adding biological meaning to human protein-protein interactions identified by yeast two-hybrid screenings: A guide through bioinformatics tools.

    PubMed

    Felgueiras, Juliana; Silva, Joana Vieira; Fardilha, Margarida

    2018-01-16

    "A man is known by the company he keeps" is a popular expression that perfectly fits proteins. A common approach to characterize the function of a target protein is to identify its interacting partners and thus infer its roles based on the known functions of the interactors. Protein-protein interaction networks (PPINs) have been created for several organisms, including humans, primarily as results of high-throughput screenings, such as yeast two-hybrid (Y2H). Their unequivocal use to understand events underlying human pathophysiology is promising in identifying genes and proteins associated with diseases. Therefore, numerous opportunities have emerged for PPINs as tools for clinical management of diseases: network-based disease classification systems, discovery of biomarkers and identification of therapeutic targets. Despite the great advantages of PPINs, their use is still unrecognised by several researchers who generate high-throughput data to generally characterize interactions in a certain model or to select an interaction to study in detail. We strongly believe that both approaches are not exclusive and that we can use PPINs as a complementary methodology and rich-source of information to the initial study proposal. Here, we suggest a pipeline to deal with Y2H results using bioinformatics tools freely available for academics. Yeast two-hybrid is widely-used to identify protein-protein interactions. Conventionally, the positive clones that result from a yeast two-hybrid screening are sequenced to identify the interactors of the protein of interest (also known as bait protein), and few interactions, thought as potentially relevant for the model in study, are selected for further validation using biochemical methods (e.g. co-immunoprecipitation and co-localization). The huge amount of data that is potentially lost during this conservative approach motivated us to write this tutorial-like review, so that researchers feel encouraged to take advantage of

  14. Urinary metabolomics analysis identifies key biomarkers of different stages of nonalcoholic fatty liver disease

    PubMed Central

    Dong, Shu; Zhan, Zong-Ying; Cao, Hong-Yan; Wu, Chao; Bian, Yan-Qin; Li, Jian-Yuan; Cheng, Gen-Hong; Liu, Ping; Sun, Ming-Yu

    2017-01-01

    AIM To identify a panel of biomarkers that can distinguish between non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), and explore molecular mechanism involved in the process of developing NASH from NAFLD. METHODS Biomarkers may differ during stages of NAFLD. Urine and blood were obtained from non-diabetic subjects with NAFLD and steatosis, with normal liver function (n = 33), from patients with NASH, with abnormal liver function (n = 45), and from healthy age and sex-matched controls (n = 30). Samples were subjected to metabolomic analysis to identify potential non-invasive biomarkers. Differences in urinary metabolic profiles were analyzed using liquid chromatography tandem mass spectrometry with principal component analysis and partial least squares-discriminate analysis. RESULTS Compared with NAFLD patients, patients with NASH had abnormal liver function and high serum lipid concentrations. Urinary metabonomics found differences in 31 metabolites between these two groups, including differences in nucleic acids and amino acids. Pathway analysis based on overlapping metabolites showed that pathways of energy and amino acid metabolism, as well as the pentose phosphate pathway, were closely associated with pathological processes in NAFLD and NASH. CONCLUSION These findings suggested that a panel of biomarkers could distinguish between NAFLD and NASH, and could help to determine the molecular mechanism involved in the process of developing NASH from NAFLD. Urinary biomarkers may be diagnostic in these patients and could be used to assess responses to therapeutic interventions. PMID:28487615

  15. Head-to-Head Comparison and Evaluation of 92 Plasma Protein Biomarkers for Early Detection of Colorectal Cancer in a True Screening Setting.

    PubMed

    Chen, Hongda; Zucknick, Manuela; Werner, Simone; Knebel, Phillip; Brenner, Hermann

    2015-07-15

    Novel noninvasive blood-based screening tests are strongly desirable for early detection of colorectal cancer. We aimed to conduct a head-to-head comparison of the diagnostic performance of 92 plasma-based tumor-associated protein biomarkers for early detection of colorectal cancer in a true screening setting. Among all available 35 carriers of colorectal cancer and a representative sample of 54 men and women free of colorectal neoplasms recruited in a cohort of screening colonoscopy participants in 2005-2012 (N = 5,516), the plasma levels of 92 protein biomarkers were measured. ROC analyses were conducted to evaluate the diagnostic performance. A multimarker algorithm was developed through the Lasso logistic regression model and validated in an independent validation set. The .632+ bootstrap method was used to adjust for the potential overestimation of diagnostic performance. Seventeen protein markers were identified to show statistically significant differences in plasma levels between colorectal cancer cases and controls. The adjusted area under the ROC curves (AUC) of these 17 individual markers ranged from 0.55 to 0.70. An eight-marker classifier was constructed that increased the adjusted AUC to 0.77 [95% confidence interval (CI), 0.59-0.91]. When validating this algorithm in an independent validation set, the AUC was 0.76 (95% CI, 0.65-0.85), and sensitivities at cutoff levels yielding 80% and 90% specificities were 65% (95% CI, 41-80%) and 44% (95% CI, 24-72%), respectively. The identified profile of protein biomarkers could contribute to the development of a powerful multimarker blood-based test for early detection of colorectal cancer. ©2015 American Association for Cancer Research.

  16. Systematic approach identifies RHOA as a potential biomarker therapeutic target for Asian gastric cancer

    PubMed Central

    Jung, Hae Rim; Park, Hee Seo; Park, Sungjin; Ahn, Young Zoo; Huh, Iksoo; Balch, Curt; Ku, Ja-Lok; Powis, Garth; Park, Taesung; Jeong, Jin-Hyun; Kim, Yon Hui

    2016-01-01

    Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer “Big Data” has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of “hit” compounds. PMID:27806312

  17. Global transcriptome analysis of formalin-fixed prostate cancer specimens identifies biomarkers of disease recurrence.

    PubMed

    Long, Qi; Xu, Jianpeng; Osunkoya, Adeboye O; Sannigrahi, Soma; Johnson, Brent A; Zhou, Wei; Gillespie, Theresa; Park, Jong Y; Nam, Robert K; Sugar, Linda; Stanimirovic, Aleksandra; Seth, Arun K; Petros, John A; Moreno, Carlos S

    2014-06-15

    Prostate cancer remains the second leading cause of cancer death in American men and there is an unmet need for biomarkers to identify patients with aggressive disease. In an effort to identify biomarkers of recurrence, we performed global RNA sequencing on 106 formalin-fixed, paraffin-embedded prostatectomy samples from 100 patients at three independent sites, defining a 24-gene signature panel. The 24 genes in this panel function in cell-cycle progression, angiogenesis, hypoxia, apoptosis, PI3K signaling, steroid metabolism, translation, chromatin modification, and transcription. Sixteen genes have been associated with cancer, with five specifically associated with prostate cancer (BTG2, IGFBP3, SIRT1, MXI1, and FDPS). Validation was performed on an independent publicly available dataset of 140 patients, where the new signature panel outperformed markers published previously in terms of predicting biochemical recurrence. Our work also identified differences in gene expression between Gleason pattern 4 + 3 and 3 + 4 tumors, including several genes involved in the epithelial-to-mesenchymal transition and developmental pathways. Overall, this study defines a novel biomarker panel that has the potential to improve the clinical management of prostate cancer. ©2014 American Association for Cancer Research.

  18. The Urine Proteome as a Biomarker of Radiation Injury

    PubMed Central

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury. PMID:19746194

  19. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection

    PubMed Central

    Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J.; Memišević, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P.; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M.; Panchal, Rekha G.

    2015-01-01

    Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031

  20. Inter-individual variation in expression: a missing link in biomarker biology?

    PubMed

    Little, Peter F R; Williams, Rohan B H; Wilkins, Marc R

    2009-01-01

    The past decade has seen an explosion of variation data demonstrating that diversity of both protein-coding sequences and of regulatory elements of protein-coding genes is common and of functional importance. In this article, we argue that genetic diversity can no longer be ignored in studies of human biology, even research projects without explicit genetic experimental design, and that this knowledge can, and must, inform research. By way of illustration, we focus on the potential role of genetic data in case-control studies to identify and validate cancer protein biomarkers. We argue that a consideration of genetics, in conjunction with proteomic biomarker discovery projects, should improve the proportion of biomarkers that can accurately classify patients.

  1. Total Protein of Whole Saliva as a Biomarker of Anaerobic Threshold

    ERIC Educational Resources Information Center

    Bortolini, Miguel Junior Sordi; De Agostini, Guilherme Gularte; Reis, Ismair Teodoro; Lamounier, Romeu Paulo Martins Silva; Blumberg, Jeffrey B.; Espindola, Foued Salmen

    2009-01-01

    Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a…

  2. BluePen Biomarkers LLC: integrated biomarker solutions

    PubMed Central

    Blair, Ian A; Mesaros, Clementina; Lilley, Patrick; Nunez, Matthew

    2016-01-01

    BluePen Biomarkers provides a unique comprehensive multi-omics biomarker discovery and validation platform. We can quantify, integrate and analyze genomics, proteomics, metabolomics and lipidomics biomarkers, alongside clinical data, demographics and other phenotypic data. A unique bio-inspired signal processing analytic approach is used that has the proven ability to identify biomarkers in a wide variety of diseases. The resulting biomarkers can be used for diagnosis, prognosis, mechanistic studies and predicting treatment response, in contexts from core research through clinical trials. BluePen Biomarkers provides an additional groundbreaking research goal: identifying surrogate biomarkers from different modalities. This not only provides new biological insights, but enables least invasive, least-cost tests that meet or exceed the predictive quality of current tests. PMID:28031971

  3. A Systematic Review of the Diagnostic and Prognostic Value of Urinary Protein Biomarkers in Urothelial Bladder Cancer

    PubMed Central

    D’Costa, Jamie J.; Goldsmith, James C.; Wilson, Jayne S.; Bryan, Richard T.; Ward, Douglas G.

    2016-01-01

    For over 80 years, cystoscopy has remained the gold-standard for detecting tumours of the urinary bladder. Since bladder tumours have a tendency to recur and progress, many patients are subjected to repeated cystoscopies during long-term surveillance, with the procedure being both unpleasant for the patient and expensive for healthcare providers. The identification and validation of bladder tumour specific molecular markers in urine could enable tumour detection and reduce reliance on cystoscopy, and numerous classes of biomarkers have been studied. Proteins represent the most intensively studied class of biomolecule in this setting. As an aid to researchers searching for better urinary biomarkers, we report a comprehensive systematic review of the literature and a searchable database of proteins that have been investigated to date. Our objective was to classify these proteins as: 1) those with robustly characterised sensitivity and specificity for bladder cancer detection; 2) those that show potential but further investigation is required; 3) those unlikely to warrant further investigation; and 4) those investigated as prognostic markers. This work should help to prioritise certain biomarkers for rigorous validation, whilst preventing wasted effort on proteins that have shown no association whatsoever with the disease, or only modest biomarker performance despite large-scale efforts at validation. PMID:27500198

  4. Using bacterial biomarkers to identify early indicators of cystic fibrosis pulmonary exacerbation onset

    PubMed Central

    Rogers, Geraint B; Hoffman, Lucas R; Johnson, Matt W; Mayer-Hamblett, Nicole; Schwarze, Jürgen; Carroll, Mary P; Bruce, Kenneth D

    2011-01-01

    Acute periods of pulmonary exacerbation are the single most important cause of morbidity in cystic fibrosis patients, and may be associated with a loss of lung function. Intervening prior to the onset of a substantially increased inflammatory response may limit the associated damage to the airways. While a number of biomarker assays based on inflammatory markers have been developed, providing useful and important measures of disease during these periods, such factors are typically only elevated once the process of exacerbation has been initiated. Identifying biomarkers that can predict the onset of pulmonary exacerbation at an early stage would provide an opportunity to intervene before the establishment of a substantial immune response, with major implications for the advancement of cystic fibrosis care. The precise triggers of pulmonary exacerbation remain to be determined; however, the majority of models relate to the activity of microbes present in the patient's lower airways of cystic fibrosis. Advances in diagnostic microbiology now allow for the examination of these complex systems at a level likely to identify factors on which biomarker assays can be based. In this article, we discuss key considerations in the design and testing of assays that could predict pulmonary exacerbations. PMID:21405970

  5. Proximal tubule proteins are significantly elevated in bladder urine of patients with ureteropelvic junction obstruction and may represent novel biomarkers: A pilot study.

    PubMed

    Gerber, Claire; Harel, Miriam; Lynch, Miranda L; Herbst, Katherine W; Ferrer, Fernando A; Shapiro, Linda H

    2016-04-01

    Ureteropelvic junction obstruction (UPJO) is the major cause of hydronephrosis in children and may lead to renal injury and early renal dysfunction. However, diagnosis of the degree of obstruction and severity of renal injury relies on invasive and often inconclusive renal scans. Biomarkers from voided urine that detect early renal injury are highly desirable because of their noninvasive collection and their potential to assist in earlier and more reliable diagnosis of the severity of obstruction. Early in response to UPJO, increased intrarenal pressure directly impacts the proximal tubule brush border. We hypothesize that single-pass, apically expressed proximal tubule brush border proteins will be shed into the urine early and rapidly and will be reliable noninvasive urinary biomarkers, providing the tools for a more reliable stratification of UPJO patients. We performed a prospective cohort study at Connecticut Children's Medical Center. Bladder urine samples from 12 UPJO patients were obtained prior to surgical intervention. Control urine samples were collected from healthy pediatric patients presenting with primary nocturnal enuresis. We determined levels of NGAL, KIM-1 (previously identified biomarkers), CD10, CD13, and CD26 (potentially novel biomarkers) by ELISA in control and experimental urine samples. Urinary creatinine levels were used to normalize the urinary protein levels measured by ELISA. Each of the proximal tubule proteins outperformed the previously published biomarkers. No differences in urinary NGAL and KIM-1 levels were observed between control and obstructed patients (p = 0.932 and p = 0.799, respectively). However, levels of CD10, CD13, and CD26 were significantly higher in the voided urine of obstructed individuals when compared with controls (p = 0.002, p = 0.024, and p = 0.007, respectively) (Figure). Targeted identification of reliable, noninvasive biomarkers of renal injury is critical to aid in diagnosing patients at risk, guiding

  6. Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer.

    PubMed

    Shukla, Hem D

    2017-10-25

    During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA), and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein-protein interaction, and pharmacogenomics

  7. Alpha-fetoprotein, a fascinating protein and biomarker in neurology.

    PubMed

    Schieving, J H; de Vries, M; van Vugt, J M G; Weemaes, C; van Deuren, M; Nicolai, J; Wevers, R A; Willemsen, M A

    2014-05-01

    Alpha-fetoprotein (AFP) is present in fetal serum in concentrations up to 5,000,000 μg/l. After birth, AFP gene expression is turned down with a subsequent fall of the serum concentrations of this albumin-like protein to 'adult values' of circa 0.5-15 μg/l from the age of 2 years onwards. Irrespective of its assumed important functions, individuals with AFP deficiency appear fully healthy. The other way around, the presence of AFP in the circulation after the first years of life doesn't seem to harm, since individuals with 'hereditary persistence of AFP' are also without clinical abnormalities. During pregnancy, AFP (in maternal serum) has long been recognized as a marker for congenital anomalies of the fetus. Equally well known is AFP as biomarker for hepatocellular carcinoma and some other malignancies. There are at least four neurodegenerative disorders, all inherited as autosomal recessive traits and characterized by the presence of cerebellar ataxia, abnormal ocular movements, and neuropathy, for which an elevated concentration of serum AFP is an important diagnostic biomarker. The availability of a reliable biomarker is not only important during screening or diagnostic processes, but is also relevant for objective follow-up during (future) therapeutic interventions. Copyright © 2013. Published by Elsevier Ltd.

  8. Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report.

    PubMed

    Yokobori, Shoji; Zhang, Zhiqun; Moghieb, Ahmed; Mondello, Stefania; Gajavelli, Shyam; Dietrich, W Dalton; Bramlett, Helen; Hayes, Ronald L; Wang, Michael; Wang, Kevin K W; Bullock, M Ross

    2015-05-01

    Many efforts have been made to create new diagnostic technologies for use in the diagnosis of central nervous system injury. However, there is still no consensus for the use of biomarkers in clinical acute spinal cord injury (SCI). The aims of this review are (1) to evaluate the current status of neurochemical biomarkers and (2) to discuss their potential acute diagnostic role in SCI by reviewing the literature. PubMed (http://www.ncbi.nlm.nih.gov/pubmed) was searched up to 2012 to identify publications concerning diagnostic biomarkers in SCI. To support more knowledge, we also checked secondary references in the primarily retrieved literature. Neurofilaments, cleaved-Tau, microtubule-associated protein 2, myelin basic protein, neuron-specific enolase, S100β, and glial fibrillary acidic protein were identified as structural protein biomarkers in SCI by this review process. We could not find reports relating ubiquitin C-terminal hydrolase-L1 and α-II spectrin breakdown products, which are widely researched in other central nervous system injuries. Therefore, we present our preliminary data relating to these two biomarkers. Some of biomarkers showed promising results for SCI diagnosis and outcome prediction; however, there were unresolved issues relating to accuracy and their accessibility. Currently, there still are not many reports focused on diagnostic biomarkers in SCI. This fact warranted the need for greater efforts to innovate sensitive and reliable biomarkers for SCI. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Novel heart failure biomarkers: why do we fail to exploit their potential?

    PubMed

    Piek, Arnold; Du, Weijie; de Boer, Rudolf A; Silljé, Herman H W

    2018-06-01

    Plasma biomarkers are useful tools in the diagnosis and prognosis of heart failure (HF). In the last decade, numerous studies have aimed to identify novel HF biomarkers that would provide superior and/or additional diagnostic, prognostic, or stratification utility. Although numerous biomarkers have been identified, their implementation in clinical practice has so far remained largely unsuccessful. Whereas cardiac-specific biomarkers, including natriuretic peptides (ANP and BNP) and high sensitivity troponins (hsTn), are widely used in clinical practice, other biomarkers have not yet proven their utility. Galectin-3 (Gal-3) and soluble suppression of tumorigenicity 2 (sST2) are the only novel HF biomarkers that are included in the ACC/AHA HF guidelines, but their clinical utility still needs to be demonstrated. In this review, we will describe natriuretic peptides, hsTn, and novel HF biomarkers, including Gal-3, sST2, human epididymis protein 4 (HE4), insulin-like growth factor-binding protein 7 (IGFBP-7), heart fatty acid-binding protein (H-FABP), soluble CD146 (sCD146), interleukin-6 (IL-6), growth differentiation factor 15 (GDF-15), procalcitonin (PCT), adrenomedullin (ADM), microRNAs (miRNAs), and metabolites like 5-oxoproline. We will discuss the biology of these HF biomarkers and conclude that most of them are markers of general pathological processes like fibrosis, cell death, and inflammation, and are not cardiac- or HF-specific. These characteristics explain to a large degree why it has been difficult to relate these biomarkers to a single disease. We propose that, in addition to clinical investigations, it will be pivotal to perform comprehensive preclinical biomarker investigations in animal models of HF in order to fully reveal the potential of these novel HF biomarkers.

  10. Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner

    PubMed Central

    2013-01-01

    The current study evaluated the differential expression detected in the proteomic profiles of low risk- and high risk- ALL pediatric patients to characterize candidate biomarkers related to diagnosis, prognosis and patient targeted therapy. Bone marrow and peripheral blood plasma and cell lysates samples were obtained from pediatric patients with low- (LR) and high-risk (HR) ALL at diagnosis. As controls, non-leukemic pediatric patients were studied. Cytogenetic analysis was carried out by G- banding and interphase fluorescent in situ hybridization. Differential proteomic analysis was performed using two-dimensional gel electrophoresis and protein identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The differential expression of certain proteins was confirmed by Western blot analysis. The obtained data revealed that CLUS, CERU, APOE, APOA4, APOA1, GELS, S10A9, AMBP, ACTB, CATA and AFAM proteins play a significant role in leukemia prognosis, potentially serving as distinctive biomarkers for leukemia aggressiveness, or as suppressor proteins in HR-ALL cases. In addition, vitronectin and plasminogen probably contributed to leukemogenesis, whilst bicaudal D-related protein 1 could afford a significant biomarker for pediatric ALL therapeutics. PMID:23849470

  11. Epitope presentation is an important determinant of the utility of antigens identified from protein arrays in the development of autoantibody diagnostic assays.

    PubMed

    Murphy, Mairead A; O'Connell, David J; O'Kane, Sara L; O'Brien, John K; O'Toole, Sharon; Martin, Cara; Sheils, Orla; O'Leary, John J; Cahill, Dolores J

    2012-08-03

    Autoantibodies represent an attractive biomarker for diagnostic assays principally due to the stability of immunoglobulin in patient serum facilitating measurement with conventional assays. Immune responses to tumorigenesis may facilitate detection of ovarian cancer in the early stages of the disease with identification of a panel of tumour specific autoantibodies. Despite the reporting of many tumour associated autoantibodies using arrays of tumour antigens, this has not led to the advance in diagnostic capability as rapidly as was initially expected. Here we examine the potential diagnostic utility of candidate autoantibody biomarkers identified via screening of serum samples on a high content human protein array from a unique cohort of early stage and late stage ovarian cancer patients. We analyse the performance of autoantibodies to the tumour suppressor protein p53 and the novel autoantigens alpha adducin and endosulfine alpha identified in our array screen. Each antigen has different performance characteristics using conventional ELISA format and Western blot immunoassay. The high attrition rate of promising autoantigens identified by array screening can in part be explained by the presentation of the epitope of the antigen in the subsequent method of validation and this study provides directions on maximising the potential of candidate biomarkers. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Proteomic Profiling of Paraffin-Embedded Samples Identifies Metaplasia-Specific and Early-Stage Gastric Cancer Biomarkers

    PubMed Central

    Sousa, Josane F.; Ham, Amy-Joan L.; Whitwell, Corbin; Nam, Ki Taek; Lee, Hyuk-Joon; Yang, Han-Kwang; Kim, Woo Ho; Zhang, Bing; Li, Ming; LaFleur, Bonnie; Liebler, Daniel C.; Goldenring, James R.

    2013-01-01

    Early diagnosis and curative resection are the predominant factors associated with increased survival in patients with gastric cancer. However, most gastric cancer cases are still diagnosed at later stages. Since most pathologic specimens are archived as FFPE samples, the ability to use them to generate expression profiles can greatly improve cancer biomarker discovery. We sought to uncover new biomarkers for stomach preneoplastic metaplasias and neoplastic lesions by generating proteome profiles using FFPE samples. We combined peptide isoelectric focusing and liquid chromatography–tandem mass spectrometry analysis to generate proteomic profiles from FFPE samples of intestinal-type gastric cancer, metaplasia, and normal mucosa. The expression patterns of selected proteins were analyzed by immunostaining first in single tissue sections from normal stomach, metaplasia, and gastric cancer and later in larger tissue array cohorts. We detected 60 proteins up-regulated and 87 proteins down-regulated during the progression from normal mucosa to metaplasia to gastric cancer. Two of the up-regulated proteins, LTF and DMBT1, were validated as specific markers for spasmolytic polypeptide–expressing metaplasia and intestinal metaplasia, respectively. In cancers, significantly lower levels of DMBT1 or LTF correlated with more advanced disease and worse prognosis. Thus, proteomic profiling using FFPE samples has led to the identification of two novel markers for stomach metaplasias and gastric cancer prognosis. PMID:22944598

  13. A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection.

    PubMed

    Yasui, Yutaka; Pepe, Margaret; Thompson, Mary Lou; Adam, Bao-Ling; Wright, George L; Qu, Yinsheng; Potter, John D; Winget, Marcy; Thornquist, Mark; Feng, Ziding

    2003-07-01

    With recent advances in mass spectrometry techniques, it is now possible to investigate proteins over a wide range of molecular weights in small biological specimens. This advance has generated data-analytic challenges in proteomics, similar to those created by microarray technologies in genetics, namely, discovery of 'signature' protein profiles specific to each pathologic state (e.g. normal vs. cancer) or differential profiles between experimental conditions (e.g. treated by a drug of interest vs. untreated) from high-dimensional data. We propose a data-analytic strategy for discovering protein biomarkers based on such high-dimensional mass spectrometry data. A real biomarker-discovery project on prostate cancer is taken as a concrete example throughout the paper: the project aims to identify proteins in serum that distinguish cancer, benign hyperplasia, and normal states of prostate using the Surface Enhanced Laser Desorption/Ionization (SELDI) technology, a recently developed mass spectrometry technique. Our data-analytic strategy takes properties of the SELDI mass spectrometer into account: the SELDI output of a specimen contains about 48,000 (x, y) points where x is the protein mass divided by the number of charges introduced by ionization and y is the protein intensity of the corresponding mass per charge value, x, in that specimen. Given high coefficients of variation and other characteristics of protein intensity measures (y values), we reduce the measures of protein intensities to a set of binary variables that indicate peaks in the y-axis direction in the nearest neighborhoods of each mass per charge point in the x-axis direction. We then account for a shifting (measurement error) problem of the x-axis in SELDI output. After this pre-analysis processing of data, we combine the binary predictors to generate classification rules for cancer, benign hyperplasia, and normal states of prostate. Our approach is to apply the boosting algorithm to select binary

  14. Biomarkers of Oxidative Stress Study V: Ozone exposure of rats and its effect on lipids, proteins and DNA in plasma and urine

    PubMed Central

    Kadiiska, Maria B.; Basu, Samar; Brot, Nathan; Cooper, Christopher; Csallany, A. Saari; Davies, Michael J.; George, Magdalene M.; Murray, Dennis M.; Roberts, L. Jackson; Shigenaga, Mark K.; Sohal, Rajindar S.; Stocker, Roland; Van Thiel, David H.; Wiswedel, Ingrid; Hatch, Gary E.; Mason, Ronald P.

    2014-01-01

    Ozone exposure effect on free radical-catalyzed oxidation products of lipids, proteins and DNA in the plasma and urine of rats was studied as a continuation of the international Biomarker of Oxidative Stress Study (BOSS) sponsored by NIEHS/NIH. The goal was to identify a biomarker for ozone-induced oxidative stress and to assess whether inconsistent results often reported in the literature might be due to the limitations of the available methods for measuring the various types of oxidative products. The time and dose-dependent effects of ozone exposure on rat plasma lipid hydroperoxides, malondialdehyde, F2-isoprostanes, protein carbonyls, methionine oxidation, tyrosine- and phenylalanine oxidation products, as well as urinary malondialdehyde and F2-isoprostanes were investigated with various techniques. The criterion used to recognize a marker in the model of ozone exposure was that a significant effect could be identified and measured in a biological fluid seen at both doses at more than one time point. No statistically significant differences between the experimental and control groups at either ozone dose and time point studied could be identified in this study. Tissue samples were not included. Despite all the work accomplished in the BOSS study of ozone, no available product of oxidation in biological fluid has yet met the required criteria of being a biomarker. The current negative findings as a consequence of ozone exposure are of great importance, because they document that in complex systems, as the present in vivo experiment, the assays used may not provide meaningful data of ozone oxidation, especially in human studies. PMID:23608465

  15. Development of a sequential workflow based on LC-PRM for the verification of endometrial cancer protein biomarkers in uterine aspirate samples.

    PubMed

    Martinez-Garcia, Elena; Lesur, Antoine; Devis, Laura; Campos, Alexandre; Cabrera, Silvia; van Oostrum, Jan; Matias-Guiu, Xavier; Gil-Moreno, Antonio; Reventos, Jaume; Colas, Eva; Domon, Bruno

    2016-08-16

    About 30% of endometrial cancer (EC) patients are diagnosed at an advanced stage of the disease, which is associated with a drastic decrease in the 5-year survival rate. The identification of biomarkers in uterine aspirate samples, which are collected by a minimally invasive procedure, would improve early diagnosis of EC. We present a sequential workflow to select from a list of potential EC biomarkers, those which are the most promising to enter a validation study. After the elimination of confounding contributions by residual blood proteins, 52 potential biomarkers were analyzed in uterine aspirates from 20 EC patients and 18 non-EC controls by a high-resolution accurate mass spectrometer operated in parallel reaction monitoring mode. The differential abundance of 26 biomarkers was observed, and among them ten proteins showed a high sensitivity and specificity (AUC > 0.9). The study demonstrates that uterine aspirates are valuable samples for EC protein biomarkers screening. It also illustrates the importance of a biomarker verification phase to fill the gap between discovery and validation studies and highlights the benefits of high resolution mass spectrometry for this purpose. The proteins verified in this study have an increased likelihood to become a clinical assay after a subsequent validation phase.

  16. Proteomics as a Tool for Biomarker Discovery

    PubMed Central

    Kohn, Elise C.; Azad, Nilofer; Annunziata, Christina; Dhamoon, Amit S.; Whiteley, Gordon

    2007-01-01

    Novel technologies are now being advanced for the purpose of identification and validation of new disease biomarkers. A reliable and useful clinical biomarker must a) come from a readily attainable source, such as blood or urine, b) have sufficient sensitivity to correctly identify affected individuals, c) have sufficient specificity to avoid incorrect labeling of unaffected persons, and d) result in a notable benefit for the patient through intervention, such as survival or life quality improvement. Despite these critical descriptors, the few available FDA-approved biomarkers for cancer do not completely fit this definition and their benefits are limited to a small number of cancers. Ovarian cancer exemplifies the need for a diagnostic biomarker of early stage disease. Symptoms are present but not specific to the disease, delaying diagnosis until an advanced and generally incurable stage in over 70% of affected women. As such, diagnostic intervention in the form of oopherectomy can be performed in the appropriate at-risk population if identified such as with a new accurate, sensitive, and specific biomarker. If early stage disease is identified, the requirement for survival and life quality improvement will be met. One of the new technologies applied to biomarker discovery is tour-de-force analysis of serum peptides and proteins. Optimization of mass spectrometry techniques coupled with advanced bioinformatics approaches has yielded informative biomarker signatures discriminating presence of cancer from unaffected in multiple studies from different groups. Validation and randomized outcome studies are needed to determine the true value of these new biomarkers in early diagnosis, and improved survival and quality of life. PMID:18057524

  17. Peroxiredoxin I protein, a potential biomarker of hydronephrosis in fetal mice exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Liu, Mingxue; Liu, Jing; Liu, Xing; Wei, Guanghui

    2014-06-01

    In previous studies, we established an animal model of human congenital hydronephrosis with exposure of developing mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but the etiopathogenesis is not entirely clear. The present study was to identify the changes that may be involved in the etiology at the protein level. C57BL/6J mice fetuses were treated with TCDD. Comparative proteomic analysis was adopted to identify the proteins associated with hydronephrosis induced by TCDD. Two-dimensional electrophoresis display revealed that 19 protein spots were differentially expressed in the upper urinary tract tissues in fetal mice after exposure to TCDD. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) identified 12 up-regulated proteins: peroxiredoxin I (Prx I), cadherin 6, gamma-actin, radixin, desmin, type II transforming growth factor-beta receptor, chromogranin B, serum albumin precursor, transferrin, hypothetical protein LOC70984, lipk protein, and zinc finger protein 336. Histochemical staining indicated that Prx I protein was positively expressed in the ureteric epithelium in the treated group, and not in the control group, which is consistent with MALDI-TOF-MS. Prx I protein may be a potential biomarker or responsive protein of hydronephrosis in fetal mice induced by TCDD. Copyright © 2013 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  18. Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning.

    PubMed

    Zu, Chen; Gao, Yue; Munsell, Brent; Kim, Minjeong; Peng, Ziwen; Cohen, Jessica R; Zhang, Daoqiang; Wu, Guorong

    2018-06-14

    The functional brain network has gained increased attention in the neuroscience community because of its ability to reveal the underlying architecture of human brain. In general, majority work of functional network connectivity is built based on the correlations between discrete-time-series signals that link only two different brain regions. However, these simple region-to-region connectivity models do not capture complex connectivity patterns between three or more brain regions that form a connectivity subnetwork, or subnetwork for short. To overcome this current limitation, a hypergraph learning-based method is proposed to identify subnetwork differences between two different cohorts. To achieve our goal, a hypergraph is constructed, where each vertex represents a subject and also a hyperedge encodes a subnetwork with similar functional connectivity patterns between different subjects. Unlike previous learning-based methods, our approach is designed to jointly optimize the weights for all hyperedges such that the learned representation is in consensus with the distribution of phenotype data, i.e. clinical labels. In order to suppress the spurious subnetwork biomarkers, we further enforce a sparsity constraint on the hyperedge weights, where a larger hyperedge weight indicates the subnetwork with the capability of identifying the disorder condition. We apply our hypergraph learning-based method to identify subnetwork biomarkers in Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). A comprehensive quantitative and qualitative analysis is performed, and the results show that our approach can correctly classify ASD and ADHD subjects from normal controls with 87.65 and 65.08% accuracies, respectively.

  19. A Proteomic Analysis of Eccrine Sweat: Implications for the Discovery of Schizophrenia Biomarker Proteins

    PubMed Central

    Raiszadeh, Michelle M.; Ross, Mark M.; Russo, Paul S.; Schaepper, Mary Ann H.; Zhou, Weidong; Deng, Jianghong; Ng, Daniel; Dickson, April; Dickson, Cindy; Strom, Monica; Osorio, Carolina; Soeprono, Thomas; Wulfkuhle, Julia D.; Kabbani, Nadine; Petricoin, Emanuel F.; Liotta, Lance A.; Kirsch, Wolff M.

    2012-01-01

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) and multiple reaction monitoring mass spectrometry (MRM-MS) proteomics analyses were performed on eccrine sweat of healthy controls, and the results were compared with those from individuals diagnosed with schizophrenia (SZ). This is the first large scale study of the sweat proteome. First, we performed LC-MS/MS on pooled SZ samples and pooled control samples for global proteomics analysis. Results revealed a high abundance of diverse proteins and peptides in eccrine sweat. Most of the proteins identified from sweat samples were found to be different than the most abundant proteins from serum, which indicates that eccrine sweat is not simply a plasma transudate, and may thereby be a source of unique disease-associated biomolecules. A second independent set of patient and control sweat samples were analyzed by LC-MS/MS and spectral counting to determine qualitative protein differential abundances between the control and disease groups. Differential abundances of selected proteins, initially determined by spectral counting, were verified by MRM-MS analyses. Seventeen proteins showed a differential abundance of approximately two-fold or greater between the SZ pooled sample and the control pooled sample. This study demonstrates the utility of LC-MS/MS and MRM-MS as a viable strategy for the discovery and verification of potential sweat protein disease biomarkers. PMID:22256890

  20. Utility of salivary biomarkers for demonstrating acute myocardial infarction.

    PubMed

    Miller, C S; Foley, J D; Floriano, P N; Christodoulides, N; Ebersole, J L; Campbell, C L; Bailey, A L; Rose, B G; Kinane, D F; Novak, M J; McDevitt, J T; Ding, X; Kryscio, R J

    2014-07-01

    The comparative utility of serum and saliva as diagnostic fluids for identifying biomarkers of acute myocardial infarction (AMI) was investigated. The goal was to determine if salivary biomarkers could facilitate a screening diagnosis of AMI, especially in cases of non-ST elevation MI (NSTEMI), since these cases are not readily identified by electrocardiogram (ECG). Serum and unstimulated whole saliva (UWS) collected from 92 AMI patients within 48 hours of chest pain onset and 105 asymptomatic healthy control individuals were assayed for 13 proteins relevant to cardiovascular disease, by Beadlyte technology (Luminex(®)) and enzyme immunoassays. Data were analyzed with concentration cut-points, ECG findings, logistic regression (LR) (adjusted for matching for age, gender, race, smoking, number of teeth, and oral health status), and classification and regression tree (CART) analysis. A sensitivity analysis was conducted by repetition of the CART analysis in 58 cases and 58 controls, each matched by age and gender. Serum biomarkers demonstrated AMI sensitivity and specificity superior to that of saliva, as determined by LR and CART. The predominant discriminators in serum by LR were troponin I (TnI), B-type natriuretic peptide (BNP), and creatine kinase-MB (CK-MB), and TnI and BNP by CART. In saliva, LR identified C-reactive protein (CRP) as the biomarker most predictive of AMI. A combination of smoking tobacco, UWS CRP, CK-MB, sCD40 ligand, gender, and number of teeth identified AMI in the CART decision trees. When ECG findings, salivary biomarkers, and confounders were included, AMI was predicted with 80.0% sensitivity and 100% specificity. These analyses support the potential utility of salivary biomarker measurements used with ECG for the identification of AMI. Thus, saliva-based tests may provide additional diagnostic screening information in the clinical course for patients suspected of having an AMI. © International & American Associations for Dental Research.

  1. [Cellular microparticles, potential useful biomarkers in the identification of cerebrovascular accidents].

    PubMed

    Anglés-Cano, Eduardo; Vivien, Denis

    2009-10-01

    The clinical utility of biomarkers depends on their ability to identify high-risk individuals in order to establish preventive, diagnostic or therapeutic measures. Currently, no practical, rapid and sensitive test is available for the diagnosis of acute ischemic stroke. A number of soluble molecules have been identified that are merely associated to these cerebrovascular accidents. Despite this association not a single molecule has the characteristics of a true biomarker directly involved in the pathophysiology of ischemic stroke-none of them is organ-specific and may therefore be elevated in the context of medical comorbidities. When explored as a combination of biomarkers, e.g. matrix metalloproteinase 9, brain natriuretic protein, D-dimer, protein S100B, the question still remains whether serial biomarker analysis provides additional prognostic information. Even S100B, a glial activation protein, has a low specificity for acute ischemic stroke because it may originate from extracranial sources. Current knowledge from the field of cell-derived microparticles suggests that these membrane fragments may represent reliable biomarkers as they are cell-specific and are released early in the pathophysiological cascade of a disease. These microparticles can be found not only in the cerebrospinal fluid but also in tears and circulating blood in case of blood-brain barrier dysfunction. They represent a new challenge in stroke diagnosis and management.

  2. Discovery and identification of potential biomarkers of pediatric Acute Lymphoblastic Leukemia

    PubMed Central

    Shi, Linan; Zhang, Jun; Wu, Peng; Feng, Kai; Li, Jing; Xie, Zhensheng; Xue, Peng; Cai, Tanxi; Cui, Ziyou; Chen, Xiulan; Hou, Junjie; Zhang, Jianzhong; Yang, Fuquan

    2009-01-01

    Background Acute lymphoblastic leukemia (ALL) is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL. Methods Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls) and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML) patients). Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS). A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays. Results A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z) were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z) were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4) and pro-platelet basic protein precursor (PBP). Two other candidate protein peaks (8137 and 8937 m/z) were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a). Conclusion Platelet factor (PF4), connective tissue activating peptide III (CTAP-III) and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with additional

  3. Genomic reprograming analysis of the Mesothelial to Mesenchymal Transition identifies biomarkers in peritoneal dialysis patients

    PubMed Central

    Ruiz-Carpio, Vicente; Sandoval, Pilar; Aguilera, Abelardo; Albar-Vizcaíno, Patricia; Perez-Lozano, María Luisa; González-Mateo, Guadalupe T.; Acuña-Ruiz, Adrián; García-Cantalejo, Jesús; Botías, Pedro; Bajo, María Auxiliadora; Selgas, Rafael; Sánchez-Tomero, José Antonio; Passlick-Deetjen, Jutta; Piecha, Dorothea; Büchel, Janine; Steppan, Sonja; López-Cabrera, Manuel

    2017-01-01

    Peritoneal dialysis (PD) is an effective renal replacement therapy, but a significant proportion of patients suffer PD-related complications, which limit the treatment duration. Mesothelial-to-mesenchymal transition (MMT) contributes to the PD-related peritoneal dysfunction. We analyzed the genetic reprograming of MMT to identify new biomarkers that may be tested in PD-patients. Microarray analysis revealed a partial overlapping between MMT induced in vitro and ex vivo in effluent-derived mesothelial cells, and that MMT is mainly a repression process being higher the number of genes that are down-regulated than those that are induced. Cellular morphology and number of altered genes showed that MMT ex vivo could be subdivided into two stages: early/epithelioid and advanced/non-epithelioid. RT-PCR array analysis demonstrated that a number of genes differentially expressed in effluent-derived non-epithelioid cells also showed significant differential expression when comparing standard versus low-GDP PD fluids. Thrombospondin-1 (TSP1), collagen-13 (COL13), vascular endothelial growth factor A (VEGFA), and gremlin-1 (GREM1) were measured in PD effluents, and except GREM1, showed significant differences between early and advanced stages of MMT, and their expression was associated with a high peritoneal transport status. The results establish a proof of concept about the feasibility of measuring MMT-associated secreted protein levels as potential biomarkers in PD. PMID:28327551

  4. Identification of candidate diagnostic serum biomarkers for Kawasaki disease using proteomic analysis

    PubMed Central

    Kimura, Yayoi; Yanagimachi, Masakatsu; Ino, Yoko; Aketagawa, Mao; Matsuo, Michie; Okayama, Akiko; Shimizu, Hiroyuki; Oba, Kunihiro; Morioka, Ichiro; Imagawa, Tomoyuki; Kaneko, Tetsuji; Yokota, Shumpei; Hirano, Hisashi; Mori, Masaaki

    2017-01-01

    Kawasaki disease (KD) is a systemic vasculitis and childhood febrile disease that can lead to cardiovascular complications. The diagnosis of KD depends on its clinical features, and thus it is sometimes difficult to make a definitive diagnosis. In order to identify diagnostic serum biomarkers for KD, we explored serum KD-related proteins, which differentially expressed during the acute and recovery phases of two patients by mass spectrometry (MS). We identified a total of 1,879 proteins by MS-based proteomic analysis. The levels of three of these proteins, namely lipopolysaccharide-binding protein (LBP), leucine-rich alpha-2-glycoprotein (LRG1), and angiotensinogen (AGT), were higher in acute phase patients. In contrast, the level of retinol-binding protein 4 (RBP4) was decreased. To confirm the usefulness of these proteins as biomarkers, we analyzed a total of 270 samples, including those collected from 55 patients with acute phase KD, by using western blot analysis and microarray enzyme-linked immunosorbent assays (ELISAs). Over the course of this experiment, we determined that the expression level of these proteins changes specifically in the acute phase of KD, rather than the recovery phase of KD or other febrile illness. Thus, LRG1 could be used as biomarkers to facilitate KD diagnosis based on clinical features. PMID:28262744

  5. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers.

    PubMed

    Cohen, Joshua D; Javed, Ammar A; Thoburn, Christopher; Wong, Fay; Tie, Jeanne; Gibbs, Peter; Schmidt, C Max; Yip-Schneider, Michele T; Allen, Peter J; Schattner, Mark; Brand, Randall E; Singhi, Aatur D; Petersen, Gloria M; Hong, Seung-Mo; Kim, Song Cheol; Falconi, Massimo; Doglioni, Claudio; Weiss, Matthew J; Ahuja, Nita; He, Jin; Makary, Martin A; Maitra, Anirban; Hanash, Samir M; Dal Molin, Marco; Wang, Yuxuan; Li, Lu; Ptak, Janine; Dobbyn, Lisa; Schaefer, Joy; Silliman, Natalie; Popoli, Maria; Goggins, Michael G; Hruban, Ralph H; Wolfgang, Christopher L; Klein, Alison P; Tomasetti, Cristian; Papadopoulos, Nickolas; Kinzler, Kenneth W; Vogelstein, Bert; Lennon, Anne Marie

    2017-09-19

    The earlier diagnosis of cancer is one of the keys to reducing cancer deaths in the future. Here we describe our efforts to develop a noninvasive blood test for the detection of pancreatic ductal adenocarcinoma. We combined blood tests for KRAS gene mutations with carefully thresholded protein biomarkers to determine whether the combination of these markers was superior to any single marker. The cohort tested included 221 patients with resectable pancreatic ductal adenocarcinomas and 182 control patients without known cancer. KRAS mutations were detected in the plasma of 66 patients (30%), and every mutation found in the plasma was identical to that subsequently found in the patient's primary tumor (100% concordance). The use of KRAS in conjunction with four thresholded protein biomarkers increased the sensitivity to 64%. Only one of the 182 plasma samples from the control cohort was positive for any of the DNA or protein biomarkers (99.5% specificity). This combinatorial approach may prove useful for the earlier detection of many cancer types.

  6. Screening and identification of potential protein biomarkers for evaluating the efficacy of intensive therapy in pulmonary tuberculosis.

    PubMed

    Jiang, Ting-Ting; Shi, Li-Ying; Chen, Jing; Wei, Li-Liang; Li, Meng; Hu, Yu-Ting; Gan, Lin; Liu, Chang-Ming; Tu, Hui-Hui; Li, Zhi-Bin; Yi, Wen-Jing; Li, Ji-Cheng

    2018-06-27

    This research aimed to discover potential biomarkers for evaluating the therapeutic efficacy of intensive therapy in pulmonary tuberculosis (TB). Protein profiles in 2-months intensively treated TB patients, untreated TB patients, and healthy controls were investigated with iTRAQ-2DLC-MS/MS technique. 71 differential proteins were identified in 2-months intensively treated TB patients. Significant differences in complement component C7 (CO7), apolipoprotein A-IV (APOA4), apolipoprotein C-II (APOC2), and angiotensinogen (ANGT) were found by ELISA validation. CO7 and ANGT were also found significantly different in sputum negative patients, compared with sputum positive patients after intensive treatment. Clinical analysis showed that after 2-months intensive treatment several indicators were significantly changed, and the one-year cure rate of sputum negative patients were significantly higher than sputum positive patients. Diagnostic models consisting of APOC2, CO7 and APOA4 were established to distinguish intensively treated TB patients from untreated TB patients and healthy controls with the AUC value of 0.910 and 0.935. Meanwhile, ANGT and CO7 were combined to identify sputum negative and sputum positive TB patients after intensive treatment with 89.36% sensitivity, 71.43% specificity, and the AUC value of 0.853. The results showed that APOC2, CO7, APOA4, and ANGT may be potential biomarkers for evaluating the efficacy of intensive anti-TB therapy. Copyright © 2018. Published by Elsevier Inc.

  7. Characterization of biomarkers in stroke based on ego-networks and pathways.

    PubMed

    Li, Haixia; Guo, Qianqian

    2017-12-01

    To explore potential biomarkers in stroke based on ego-networks and pathways. EgoNet method was applied to search for the underlying biomarkers in stroke using transcription profiling of E-GEOD-58294 and protein-protein interaction (PPI) data. Eight ego-genes were identified from PPI network according to the degree characteristics at the criteria of top 5% ranked z-sore and degree >1. Eight candidate ego-networks with classification accuracy ≥0.9 were selected. After performed randomization test, seven significant ego-networks with adjusted p value < 0.05 were identified. Pathway enrichment analysis was then conducted with these ego-networks to search for the significant pathways. Finally, two significant pathways were identified, and six of seven ego-networks were enriched to "3'-UTR-mediated translational regulation" pathway, indicating that this pathway performs an important role in the development of stroke. Seven ego-networks were constructed using EgoNet and two significant enriched by pathways were identified. These may provide new insights into the potential biomarkers for the development of stroke.

  8. Cohort profile of BIOMArCS: the BIOMarker study to identify the Acute risk of a Coronary Syndrome—a prospective multicentre biomarker study conducted in the Netherlands

    PubMed Central

    Oemrawsingh, Rohit M; Akkerhuis, K Martijn; Umans, Victor A; Kietselaer, Bas; Schotborgh, Carl; Ronner, Eelko; Lenderink, Timo; Liem, Anho; Haitsma, David; van der Harst, Pim; Asselbergs, Folkert W; Maas, Arthur; Oude Ophuis, Anton J; Ilmer, Ben; Dijkgraaf, Rene; de Winter, Robbert-Jan; The, S Hong Kie; Wardeh, Alexander J; Hermans, Walter; Cramer, Etienne; van Schaik, Ron H; Hoefer, Imo E; Doevendans, Pieter A; Simoons, Maarten L; Boersma, Eric

    2016-01-01

    Purpose Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such ‘vulnerable periods’. Participants BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. Methods and analysis We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate ‘vulnerable periods’ during which patients with CAD are at high short-term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for non-fatal ACS had occurred in 50 patients. A case–cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS. Future plans and dissemination Follow-up and event adjudication have been completed. Prespecified biomarker analyses are currently being performed and dissemination through peer-reviewed publications and

  9. A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data

    PubMed Central

    2015-01-01

    Background Investigations into novel biomarkers using omics techniques generate large amounts of data. Due to their size and numbers of attributes, these data are suitable for analysis with machine learning methods. A key component of typical machine learning pipelines for omics data is feature selection, which is used to reduce the raw high-dimensional data into a tractable number of features. Feature selection needs to balance the objective of using as few features as possible, while maintaining high predictive power. This balance is crucial when the goal of data analysis is the identification of highly accurate but small panels of biomarkers with potential clinical utility. In this paper we propose a heuristic for the selection of very small feature subsets, via an iterative feature elimination process that is guided by rule-based machine learning, called RGIFE (Rule-guided Iterative Feature Elimination). We use this heuristic to identify putative biomarkers of osteoarthritis (OA), articular cartilage degradation and synovial inflammation, using both proteomic and transcriptomic datasets. Results and discussion Our RGIFE heuristic increased the classification accuracies achieved for all datasets when no feature selection is used, and performed well in a comparison with other feature selection methods. Using this method the datasets were reduced to a smaller number of genes or proteins, including those known to be relevant to OA, cartilage degradation and joint inflammation. The results have shown the RGIFE feature reduction method to be suitable for analysing both proteomic and transcriptomics data. Methods that generate large ‘omics’ datasets are increasingly being used in the area of rheumatology. Conclusions Feature reduction methods are advantageous for the analysis of omics data in the field of rheumatology, as the applications of such techniques are likely to result in improvements in diagnosis, treatment and drug discovery. PMID:25923811

  10. Blood biomarkers for brain injury: What are we measuring?

    PubMed Central

    Kawata, Keisuke; Liu, Charles Y.; Merkel, Steven F.; Ramirez, Servio H.; Tierney, Ryan T.; Langford, Dianne

    2016-01-01

    Accurate diagnosis for mild traumatic brain injury (mTBI) remains challenging, as prognosis and return-to-play/work decisions are based largely on patient reports. Numerous investigations have identified and characterized cellular factors in the blood as potential biomarkers for TBI, in the hope that these factors may be used to gauge the severity of brain injury. None of these potential biomarkers have advanced to use in the clinical setting. Some of the most extensively studied blood biomarkers for TBI include S100β, neuron-specific enolase, glial fibrillary acidic protein, and Tau. Understanding the biological function of each of these factors may be imperative to achieve progress in the field. We address the basic question: what are we measuring? This review will discuss blood biomarkers in terms of cellular origin, normal and pathological function, and possible reasons for increased blood levels. Considerations in the selection, evaluation, and validation of potential biomarkers will also be addressed, along with mechanisms that allow brain-derived proteins to enter the bloodstream after TBI. Lastly, we will highlight perspectives and implications for repetitive neurotrauma in the field of blood biomarkers for brain injury. PMID:27181909

  11. Comprehensive and integrative analysis identifies microRNA-106 as a novel non-invasive biomarker for detection of gastric cancer.

    PubMed

    Peng, Qiliang; Shen, Yi; Lin, Kaisu; Zou, Li; Shen, Yuntian; Zhu, Yaqun

    2018-05-15

    Recently, accumulating evidences have revealed that microRNA-106 (miR-106) may serve as a non-invasive and cost-effective biomarker in gastric cancer (GC) detection. However, inconsistent results have prevented its application to clinical practice. As a result of this, a comprehensive meta-analysis was conducted to evaluate the diagnostic performance of miR-106 alone and miR-106-related combination markers for GC detection. Meanwhile, an integrative bioinformatics analysis was performed to explore the function of miR-106 at the systems biology level. The results in our work showed that sensitivity of 0.71 (95% CI 0.65-0.76) and specificity of 0.82 (0.72-0.88), with the under area AUC (area under the curve) value of 0.80 (0.76-0.83) for miR-106 alone. Prospectively, miR-106-related combination markers improved the combined sensitivity, specificity and AUC, describing the discriminatory ability of 0.78 (0.65-0.87), 0.83 (0.77-0.89) and 0.88 (0.85-0.90) in the present analysis. Furthermore, targets of miR-106 were obtained and enriched by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, revealing their associations with the occurrence and development of GC. Hub genes and significant modules were identified from the protein-protein interaction networks constructed by miR-106 targets and found closely associated with the initiation and progression of GC again. Our comprehensive and integrative analysis revealed that miR-106 may be suitable as a diagnostic biomarker for GC while microRNA combination biomarkers may provide a new alternative for clinical application. However, it is necessary to conduct large-scale population-based studies and biological experiments to further investigate the diagnostic value of miR-106.

  12. Protein Biomarkers of Periodontitis in Saliva

    PubMed Central

    Taylor, John J.

    2014-01-01

    Periodontitis is a chronic inflammatory condition of the tissues that surround and support the teeth and is initiated by inappropriate and excessive immune responses to bacteria in subgingival dental plaque leading to loss of the integrity of the periodontium, compromised tooth function, and eventually tooth loss. Periodontitis is an economically important disease as it is time-consuming and expensive to treat. Periodontitis has a worldwide prevalence of 5–15% and the prevalence of severe disease in western populations has increased in recent decades. Furthermore, periodontitis is more common in smokers, in obesity, in people with diabetes, and in heart disease patients although the pathogenic processes underpinning these links are, as yet, poorly understood. Diagnosis and monitoring of periodontitis rely on traditional clinical examinations which are inadequate to predict patient susceptibility, disease activity, and response to treatment. Studies of the immunopathogenesis of periodontitis and analysis of mediators in saliva have allowed the identification of many potentially useful biomarkers. Convenient measurement of these biomarkers using chairside analytical devices could form the basis for diagnostic tests which will aid the clinician and the patient in periodontitis management; this review will summarise this field and will identify the experimental, technical, and clinical issues that remain to be addressed before such tests can be implemented. PMID:24944840

  13. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery

    PubMed Central

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N.; Carter, Jeff; Dalby, Andrew B.; Eaton, Bruce E.; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R.; Kim, Nancy; Koch, Tad H.; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K.; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M.; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I.; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D.; Vrkljan, Mike; Walker, Jeffrey J.; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K.; Wolfson, Alexey; Wolk, Steven K.; Zhang, Chi; Zichi, Dom

    2010-01-01

    Background The interrogation of proteomes (“proteomics”) in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. Methodology/Principal Findings We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (∼100 fM–1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. Conclusions/Significance We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of

  14. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    PubMed

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N; Carter, Jeff; Dalby, Andrew B; Eaton, Bruce E; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R; Kim, Nancy; Koch, Tad H; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D; Vrkljan, Mike; Walker, Jeffrey J; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K; Wolfson, Alexey; Wolk, Steven K; Zhang, Chi; Zichi, Dom

    2010-12-07

    The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  15. Detection of candidate biomarkers of prostate cancer progression in serum: a depletion-free 3D LC/MS quantitative proteomics pilot study.

    PubMed

    Larkin, S E T; Johnston, H E; Jackson, T R; Jamieson, D G; Roumeliotis, T I; Mockridge, C I; Michael, A; Manousopoulou, A; Papachristou, E K; Brown, M D; Clarke, N W; Pandha, H; Aukim-Hastie, C L; Cragg, M S; Garbis, S D; Townsend, P A

    2016-10-25

    Prostate cancer (PCa) is the most common male cancer in the United Kingdom and we aimed to identify clinically relevant biomarkers corresponding to stage progression of the disease. We used enhanced proteomic profiling of PCa progression using iTRAQ 3D LC mass spectrometry on high-quality serum samples to identify biomarkers of PCa. We identified >1000 proteins. Following specific inclusion/exclusion criteria we targeted seven proteins of which two were validated by ELISA and six potentially interacted forming an 'interactome' with only a single protein linking each marker. This network also includes accepted cancer markers, such as TNF, STAT3, NF-κB and IL6. Our linked and interrelated biomarker network highlights the potential utility of six of our seven markers as a panel for diagnosing PCa and, critically, in determining the stage of the disease. Our validation analysis of the MS-identified proteins found that SAA alongside KLK3 may improve categorisation of PCa than by KLK3 alone, and that TSR1, although not significant in this model, might also be a clinically relevant biomarker.

  16. Potential biomarkers in psychiatry: focus on the cholesterol system

    PubMed Central

    Woods, Alisa G; Sokolowska, Izabela; Taurines, Regina; Gerlach, Manfred; Dudley, Edward; Thome, Johannes; Darie, Costel C

    2012-01-01

    Abstract Measuring biomarkers to identify and assess illness is a strategy growing in popularity and relevance. Although already in clinical use for treating and predicting cancer, no biological measurement is used clinically for any psychiatric disorder. Biomarkers could predict the course of a medical problem, and aid in determining how and when to treat. Several studies have indicated that of candidate psychiatric biomarkers detected using proteomic techniques, cholesterol and associated proteins, specifically apolipoproteins (Apos), may be of interest. Cholesterol is necessary for brain development and its synthesis continues at a lower rate in the adult brain. Apos are the protein component of lipoproteins responsible for lipid transport. There is extensive evidence that the levels of cholesterol and Apos may be disturbed in psychiatric disorders, including autistic spectrum disorders (ASD). Here, we describe putative serum biomarkers for psychiatric disorders, and the role of cholesterol and Apos in central nervous system (CNS) disorders. PMID:22304330

  17. Computational systems biology analysis of biomarkers in lung cancer; unravelling genomic regions which frequently encode biomarkers, enriched pathways, and new candidates.

    PubMed

    Alanazi, Ibrahim O; AlYahya, Sami A; Ebrahimie, Esmaeil; Mohammadi-Dehcheshmeh, Manijeh

    2018-06-15

    Exponentially growing scientific knowledge in scientific publications has resulted in the emergence of a new interdisciplinary science of literature mining. In text mining, the machine reads the published literature and transfers the discovered knowledge to mathematical-like formulas. In an integrative approach in this study, we used text mining in combination with network discovery, pathway analysis, and enrichment analysis of genomic regions for better understanding of biomarkers in lung cancer. Particular attention was paid to non-coding biomarkers. In total, 60 MicroRNA biomarkers were reported for lung cancer, including some prognostic biomarkers. MIR21, MIR155, MALAT1, and MIR31 were the top non-coding RNA biomarkers of lung cancer. Text mining identified 447 proteins which have been studied as biomarkers in lung cancer. EGFR (receptor), TP53 (transcription factor), KRAS, CDKN2A, ENO2, KRT19, RASSF1, GRP (ligand), SHOX2 (transcription factor), and ERBB2 (receptor) were the most studied proteins. Within small molecules, thymosin-a1, oestrogen, and 8-OHdG have received more attention. We found some chromosomal bands, such as 7q32.2, 18q12.1, 6p12, 11p15.5, and 3p21.3 that are highly involved in deriving lung cancer biomarkers. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein

    PubMed Central

    Orth, Martin F.; Cazes, Alex; Butt, Elke; Grunewald, Thomas G. P.

    2015-01-01

    The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities. PMID:25622104

  19. High Mobility Group Box 1 Protein as an Auxiliary Biomarker for Dengue Diagnosis

    PubMed Central

    Allonso, Diego; Vázquez, Susana; Guzmán, Maria G.; Mohana-Borges, Ronaldo

    2013-01-01

    Despite the availability of many methods for rapid and early diagnosis of dengue, there is still a need to develop new approaches that not only combine low cost, specificity, and sensitivity, but also are capable of accurately detecting secondary infection in the early stages of the disease. We report the potential of the high mobility group box 1 protein as an auxiliary biomarker for early dengue diagnosis. We tested a 205-sample serum panel that included negative and positive samples from primary and secondary dengue cases, as well as samples from patients with dengue-like symptoms. We observed that high mobility group box 1 protein was generally detected only in dengue-positive samples for persons with primary and secondary infections. These results highlight the possibility of using this endogenous molecule as an auxiliary biomarker to aid in dengue detection and improve current methods for early diagnosis of dengue. PMID:23269659

  20. Overcoming biofluid protein complexity during targeted mass spectrometry detection and quantification of protein biomarkers by MRM cubed (MRM3).

    PubMed

    Jeudy, Jeremy; Salvador, Arnaud; Simon, Romain; Jaffuel, Aurore; Fonbonne, Catherine; Léonard, Jean-François; Gautier, Jean-Charles; Pasquier, Olivier; Lemoine, Jerome

    2014-02-01

    Targeted mass spectrometry in the so-called multiple reaction monitoring mode (MRM) is certainly a promising way for the precise, accurate, and multiplexed measurement of proteins and their genetic or posttranslationally modified isoforms. MRM carried out on a low-resolution triple quadrupole instrument faces a lack of specificity when addressing the quantification of weakly concentrated proteins. In this case, extensive sample fractionation or immunoenrichment alleviates signal contamination by interferences, but in turn decreases assay performance and throughput. Recently, MRM(3) was introduced as an alternative to MRM to improve the limit of quantification of weakly concentrated protein biomarkers. In the present work, we compare MRM and MRM(3) modes for the detection of biomarkers in plasma and urine. Calibration curves drawn with MRM and MRM(3) showed a similar range of linearity (R(2) > 0.99 for both methods) with protein concentrations above 1 μg/mL in plasma and a few nanogram per milliliter in urine. In contrast, optimized MRM(3) methods improve the limits of quantification by a factor of 2 to 4 depending on the targeted peptide. This gain arises from the additional MS(3) fragmentation step, which significantly removes or decreases interfering signals within the targeted transition channels.

  1. Biomarkers of oxidative stress study V: ozone exposure of rats and its effect on lipids, proteins, and DNA in plasma and urine.

    PubMed

    Kadiiska, Maria B; Basu, Samar; Brot, Nathan; Cooper, Christopher; Saari Csallany, A; Davies, Michael J; George, Magdalene M; Murray, Dennis M; Jackson Roberts, L; Shigenaga, Mark K; Sohal, Rajindar S; Stocker, Roland; Van Thiel, David H; Wiswedel, Ingrid; Hatch, Gary E; Mason, Ronald P

    2013-08-01

    Ozone exposure effect on free radical-catalyzed oxidation products of lipids, proteins, and DNA in the plasma and urine of rats was studied as a continuation of the international Biomarker of Oxidative Stress Study (BOSS) sponsored by NIEHS/NIH. The goal was to identify a biomarker for ozone-induced oxidative stress and to assess whether inconsistent results often reported in the literature might be due to the limitations of the available methods for measuring the various types of oxidative products. The time- and dose-dependent effects of ozone exposure on rat plasma lipid hydroperoxides, malondialdehyde, F2-isoprostanes, protein carbonyls, methionine oxidation, and tyrosine- and phenylalanine oxidation products, as well as urinary malondialdehyde and F2-isoprostanes were investigated with various techniques. The criterion used to recognize a marker in the model of ozone exposure was that a significant effect could be identified and measured in a biological fluid seen at both doses at more than one time point. No statistically significant differences between the experimental and the control groups at either ozone dose and time point studied could be identified in this study. Tissue samples were not included. Despite all the work accomplished in the BOSS study of ozone, no available product of oxidation in biological fluid has yet met the required criteria of being a biomarker. The current negative findings as a consequence of ozone exposure are of great importance, because they document that in complex systems, as the present in vivo experiment, the assays used may not provide meaningful data of ozone oxidation, especially in human studies. Published by Elsevier Inc.

  2. Monocyte Chemotactic Protein 1 in Plasma from Soluble Leishmania Antigen-Stimulated Whole Blood as a Potential Biomarker of the Cellular Immune Response to Leishmania infantum

    PubMed Central

    Ibarra-Meneses, Ana V.; Sanchez, Carmen; Alvar, Jorge; Moreno, Javier; Carrillo, Eugenia

    2017-01-01

    New biomarkers are needed to identify asymptomatic Leishmania infection as well as immunity following vaccination or treatment. With the aim of finding a robust biomarker to assess an effective cellular immune response, monocyte chemotactic protein 1 (MCP-1) was examined in plasma from soluble Leishmania antigen (SLA)-stimulated whole blood collected from subjects living in a Leishmania infantum-endemic area. MCP-1, expressed 110 times more strongly than IL-2, identified 87.5% of asymptomatic subjects and verified some asymptomatic subjects close to the cutoff. MCP-1 was also significantly elevated in all patients cured of visceral leishmaniasis (VL), unlike IL-2, indicating the specific memory response generated against Leishmania. These results show MCP-1 to be a robust candidate biomarker of immunity that could be used as a marker of cure and to both select and follow the population in vaccine phase I–III human clinical trials with developed rapid, easy-to-use field tools. PMID:29033933

  3. Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers

    PubMed Central

    Xue, Shenghui; Qiao, Jingjuan; Pu, Fan; Cameron, Mathew; Yang, Jenny J.

    2014-01-01

    Magnetic resonance imaging (MRI) of disease biomarkers, especially cancer biomarkers, could potentially improve our understanding of the disease and drug activity during preclinical and clinical drug treatment and patient stratification. MRI contrast agents with high relaxivity and targeting capability to tumor biomarkers are highly required. Extensive work has been done to develop MRI contrast agents. However, only a few limited literatures report that protein residues can function as ligands to bind Gd3+ with high binding affinity, selectivity, and relaxivity. In this paper, we focus on reporting our current progress on designing a novel class of protein-based Gd3+ MRI contrast agents (ProCAs) equipped with several desirable capabilities for in vivo application of MRI of tumor biomarkers. We will first discuss our strategy for improving the relaxivity by a novel protein-based design. We then discuss the effect of increased relaxivity of ProCAs on improving the detection limits for MRI contrast agent, especially for in vivo application. We will further report our efforts to improve in vivo imaging capability and our achievement in molecular imaging of cancer biomarkers with potential preclinical and clinical applications. PMID:23335551

  4. S100A12 and S100A8/9 proteins are biomarkers of articular disease activity in Blau syndrome.

    PubMed

    Wang, Lin; Rosé, Carlos D; Foley, Kevin P; Anton, Jordi; Bader-Meunier, Brigitte; Brissaud, Philippe; Chédeville, Gaelle; Cimaz, Rolando; Fernández-Martín, Jorge; Guly, Catherine; Hachulla, Eric; Harjacek, Miroslav; Mackensen, Friederike; Merino, Rosa; Modesto, Consuelo; Naranjo Hernández, Antonio; Pajot, Christine; Ramanan, Athimalaipet V; Thatayatikom, Akaluck; Thomée, Caroline; Vastert, Sebastiaan; Votta, Bart J; Bertin, John; Wouters, Carine H

    2018-04-07

    To identify biomarkers of articular and ocular disease activity in patients with Blau syndrome (BS). Multiplex plasma protein arrays were performed in five BS patients and eight normal healthy volunteers (NHVs). Plasma S100A12 and S100A8/9 were subsequently measured by ELISA at baseline and 1-year follow-up in all patients from a prospective multicentre cohort study. CRP was measured using Meso Scale Discovery immunoassay. Active joint counts, standardization uveitis nomenclature for anterior uveitis cells and vitreous haze by Nussenblatt scale were the clinical parameters. Multiplex Luminex arrays identified S100A12 as the most significantly elevated protein in five selected BS vs eight NHVs and this was confirmed by ELISA on additional samples from the same five BS patients. In the patient cohort, S100A12 (n = 39) and S100A8/9 (n = 33) were significantly higher compared with NHVs (n = 44 for S100A12, n = 40 for S100A8/9) (P = 0.0000004 and P = 0.0003, respectively). Positive correlations between active joint counts and S100 levels were significant for S100A12 (P = 0.0008) and S100A8/9 (P = 0.015). CRP levels did not correlate with active joint count. Subgroup analysis showed significant association of S100 proteins with active arthritis (S100A12 P = 0.01, S100A8/9 P = 0.008). Active uveitis was not associated with increased S100 levels. S100 proteins are biomarkers of articular disease activity in BS and potential outcome measures in future clinical trials. As secreted neutrophil and macrophage products, S100 proteins may reflect the burden of granulomatous tissue in BS.

  5. Profiling signaling proteins in human spermatozoa: biomarker identification for sperm quality evaluation.

    PubMed

    Silva, Joana Vieira; Freitas, Maria João; Correia, Bárbara Regadas; Korrodi-Gregório, Luís; Patrício, António; Pelech, Steven; Fardilha, Margarida

    2015-10-01

    To determine the correlation between semen basic parameters and the expression and activity of signaling proteins. In vitro studies with human spermatozoa. Academic research institute. Thirty-seven men provided semen samples for routine analysis. None. Basic semen parameters tracked included sperm DNA fragmentation (SDF), the expression levels of 75 protein kinases, and the phosphorylation/cleavage patterns of 18 signaling proteins in human spermatozoa. The results indicated that the phosphorylated levels of several proteins (Bad, GSK-3β, HSP27, JNK/SAPK, mTOR, p38 MAPK, and p53), as well as cleavage of PARP (at D214) and Caspase-3 (at D175), were significantly correlated with motility parameters. Additionally, the percentage of morphologically normal spermatozoa demonstrated a significant positive correlation with the phosphorylated levels of p70 S6 kinase and, in turn, head defects and the teratozoospermia index (TZI) showed a significant negative correlation with the phosphorylated levels of Stat3. There was a significant positive correlation between SDF and the teratozoospermia index, as well as the presence of head defects. In contrast, SDF negatively correlated with the percentage of morphologically normal spermatozoa and the phosphorylation of Akt and p70 S6 kinase. Subjects with varicocele demonstrated a significant negative correlation between head morphological defects and the phosphorylated levels of Akt, GSK3β, p38 MAPK, and Stat1. Additionally, 34 protein kinases were identified as expressed in their total protein levels in normozoospermic samples. This study contributed toward establishing a biomarker "fingerprint" to assess sperm quality on the basis of molecular parameters. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Peptide and protein biomarkers for type 1 diabetes mellitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qibin; Metz, Thomas O.

    A method for identifying persons with increased risk of developing type 1 diabetes mellitus, or having type I diabetes mellitus, utilizing selected biomarkers described herein either alone or in combination. The present disclosure allows for broad based, reliable, screening of large population bases. Also provided are arrays and kits that can be used to perform such methods.

  7. Peptide and protein biomarkers for type 1 diabetes mellitus

    DOEpatents

    Zhang, Qibin; Metz, Thomas O.

    2014-06-10

    A method for identifying persons with increased risk of developing type 1 diabetes mellitus, or having type I diabetes mellitus, utilizing selected biomarkers described herein either alone or in combination. The present disclosure allows for broad based, reliable, screening of large population bases. Also provided are arrays and kits that can be used to perform such methods.

  8. A putative OTU domain-containing protein 1 deubiquitinating enzyme is differentially expressed in thyroid cancer and identifies less-aggressive tumours

    PubMed Central

    Carneiro, A P; Reis, C F; Morari, E C; Maia, Y C P; Nascimento, R; Bonatto, J M C; de Souza, M A; Goulart, L R; Ward, L S

    2014-01-01

    Background: This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. Methods: We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. Results: One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Conclusions: The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management. PMID:24937664

  9. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers

    PubMed Central

    Cohen, Joshua D.; Javed, Ammar A.; Thoburn, Christopher; Wong, Fay; Tie, Jeanne; Gibbs, Peter; Schmidt, C. Max; Yip-Schneider, Michele T.; Allen, Peter J.; Schattner, Mark; Brand, Randall E.; Singhi, Aatur D.; Petersen, Gloria M.; Hong, Seung-Mo; Kim, Song Cheol; Falconi, Massimo; Doglioni, Claudio; Weiss, Matthew J.; Ahuja, Nita; He, Jin; Makary, Martin A.; Maitra, Anirban; Hanash, Samir M.; Dal Molin, Marco; Wang, Yuxuan; Li, Lu; Ptak, Janine; Dobbyn, Lisa; Schaefer, Joy; Silliman, Natalie; Popoli, Maria; Goggins, Michael G.; Hruban, Ralph H.; Wolfgang, Christopher L.; Klein, Alison P.; Tomasetti, Cristian; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Lennon, Anne Marie

    2017-01-01

    The earlier diagnosis of cancer is one of the keys to reducing cancer deaths in the future. Here we describe our efforts to develop a noninvasive blood test for the detection of pancreatic ductal adenocarcinoma. We combined blood tests for KRAS gene mutations with carefully thresholded protein biomarkers to determine whether the combination of these markers was superior to any single marker. The cohort tested included 221 patients with resectable pancreatic ductal adenocarcinomas and 182 control patients without known cancer. KRAS mutations were detected in the plasma of 66 patients (30%), and every mutation found in the plasma was identical to that subsequently found in the patient’s primary tumor (100% concordance). The use of KRAS in conjunction with four thresholded protein biomarkers increased the sensitivity to 64%. Only one of the 182 plasma samples from the control cohort was positive for any of the DNA or protein biomarkers (99.5% specificity). This combinatorial approach may prove useful for the earlier detection of many cancer types. PMID:28874546

  10. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    PubMed

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  11. Cohort profile of BIOMArCS: the BIOMarker study to identify the Acute risk of a Coronary Syndrome-a prospective multicentre biomarker study conducted in the Netherlands.

    PubMed

    Oemrawsingh, Rohit M; Akkerhuis, K Martijn; Umans, Victor A; Kietselaer, Bas; Schotborgh, Carl; Ronner, Eelko; Lenderink, Timo; Liem, Anho; Haitsma, David; van der Harst, Pim; Asselbergs, Folkert W; Maas, Arthur; Oude Ophuis, Anton J; Ilmer, Ben; Dijkgraaf, Rene; de Winter, Robbert-Jan; The, S Hong Kie; Wardeh, Alexander J; Hermans, Walter; Cramer, Etienne; van Schaik, Ron H; Hoefer, Imo E; Doevendans, Pieter A; Simoons, Maarten L; Boersma, Eric

    2016-12-23

    Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such 'vulnerable periods'. BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate 'vulnerable periods' during which patients with CAD are at high short-term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for non-fatal ACS had occurred in 50 patients. A case-cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS. Follow-up and event adjudication have been completed. Prespecified biomarker analyses are currently being performed and dissemination through peer-reviewed publications and conference presentations is expected from the third quarter of 2016. Should

  12. Deciphering metabonomics biomarkers-targets interactions for psoriasis vulgaris by network pharmacology.

    PubMed

    Gu, Jiangyong; Li, Li; Wang, Dongmei; Zhu, Wei; Han, Ling; Zhao, Ruizhi; Xu, Xiaojie; Lu, Chuanjian

    2018-06-01

    Psoriasis vulgaris is a chronic inflammatory and immune-mediated skin disease. 44 metabonomics biomarkers were identified by high-throughput liquid chromatography coupled to mass spectrometry in our previous work, but the roles of metabonomics biomarkers in the pathogenesis of psoriasis is unclear. The metabonomics biomarker-enzyme network was constructed. The key metabonomics biomarkers and enzymes were screened out by network analysis. The binding affinity between each metabonomics biomarker and target was calculated by molecular docking. A binding energy-weighted polypharmacological index was introduced to evaluate the importance of target-related pathways. Long-chain fatty acids, phospholipids, Estradiol and NADH were the most important metabonomics biomarkers. Most key enzymes belonged hydrolase, thioesterase and acyltransferase. Six proteins (TNF-alpha, MAPK3, iNOS, eNOS, COX2 and mTOR) were extensively involved in inflammatory reaction, immune response and cell proliferation, and might be drug targets for psoriasis. PI3K-Akt signaling pathway and five other pathways had close correlation with the pathogenesis of psoriasis and could deserve further research. The inflammatory reaction, immune response and cell proliferation are mainly involved in psoriasis. Network pharmacology provide a new insight into the relationships between metabonomics biomarkers and the pathogenesis of psoriasis. KEY MESSAGES   • Network pharmacology was adopted to identify key metabonomics biomarkers and enzymes.   • Six proteins were screened out as important drug targets for psoriasis.   • A binding energy-weighted polypharmacological index was introduced to evaluate the importance of target-related pathways.

  13. Derivation and Validation of a Serum Biomarker Panel to Identify Infants With Acute Intracranial Hemorrhage.

    PubMed

    Berger, Rachel Pardes; Pak, Brian J; Kolesnikova, Mariya D; Fromkin, Janet; Saladino, Richard; Herman, Bruce E; Pierce, Mary Clyde; Englert, David; Smith, Paul T; Kochanek, Patrick M

    2017-06-05

    Abusive head trauma is the leading cause of death from physical abuse. Missing the diagnosis of abusive head trauma, particularly in its mild form, is common and contributes to increased morbidity and mortality. Serum biomarkers may have potential as quantitative point-of-care screening tools to alert physicians to the possibility of intracranial hemorrhage. To identify and validate a set of biomarkers that could be the basis of a multivariable model to identify intracranial hemorrhage in well-appearing infants using the Ziplex System. Binary logistic regression was used to develop a multivariable model incorporating 3 serum biomarkers (matrix metallopeptidase-9, neuron-specific enolase, and vascular cellular adhesion molecule-1) and 1 clinical variable (total hemoglobin). The model was then prospectively validated. Multiplex biomarker measurements were performed using Flow-Thru microarray technology on the Ziplex System, which has potential as a point-of-care system. The model was tested at 3 pediatric emergency departments in level I pediatric trauma centers (Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Primary Children's Hospital, Salt Lake City, Utah; and Lurie Children's Hospital, Chicago, Illinois) among well-appearing infants who presented for care owing to symptoms that placed them at increased risk of abusive head trauma. The study took place from November 2006 to April 2014 at Children's Hospital of Pittsburgh, June 2010 to August 2013 at Primary Children's Hospital, and January 2011 to August 2013 at Lurie Children's Hospital. A mathematical model that can predict acute intracranial hemorrhage in infants at increased risk of abusive head trauma. The multivariable model, Biomarkers for Infant Brain Injury Score, was applied prospectively to 599 patients. The mean (SD) age was 4.7 (3.1) months. Fifty-two percent were boys, 78% were white, and 8% were Hispanic. At a cutoff of 0.182, the model was 89

  14. Non-invasive identification of protein biomarkers for early pregnancy diagnosis in the cheetah (Acinonyx jubatus).

    PubMed

    Koester, Diana C; Wildt, David E; Maly, Morgan; Comizzoli, Pierre; Crosier, Adrienne E

    2017-01-01

    Approximately 80% of cheetahs living in typical zoological collections never reproduce. In more than 60% of breedings, the female is confirmed to ovulate, but parturition fails to occur. It is unknown if these non-pregnant intervals of elevated progesterone (deemed luteal phases) are conception failures or a pregnancy terminating in embryonic/fetal loss. There have been recent advances in metabolic profiling and proteome analyses in many species with mass spectrometry used to identify 'biomarkers' and mechanisms indicative of specific physiological states (including pregnancy). Here, we hypothesized that protein expression in voided cheetah feces varied depending on pregnancy status. We: 1) identified the expansive protein profile present in fecal material of females; and 2) isolated proteins that may be candidates playing a role in early pregnancy establishment and diagnosis. Five hundred and seventy unique proteins were discovered among samples from pregnant (n = 8), non-pregnant, luteal phase (n = 5), and non-ovulatory control (n = 5) cheetahs. Four protein candidates were isolated that were significantly up-regulated and two were down-regulated in samples from pregnant compared to non-pregnant or control counterparts. One up-regulated candidate, immunoglobulin J chain (IGJ; an important component of the secretory immune system) was detected using a commercially available antibody via immunoblotting. Findings revealed that increased IGJ abundance could be used to detect pregnancy successfully in >80% of 23 assessed females within 4 weeks after mating. The discovery of a novel fecal pregnancy marker improves the ability to determine reproductive, especially gestational, status in cheetahs managed in an ex situ insurance and source population.

  15. Proteoglycan 4 is a diagnostic biomarker for COPD.

    PubMed

    Lee, Kang-Yun; Chuang, Hsiao-Chi; Chen, Tzu-Tao; Liu, Wen-Te; Su, Chien-Ling; Feng, Po-Hao; Chiang, Ling-Ling; Bien, Mauo-Ying; Ho, Shu-Chuan

    2015-01-01

    The measurement of C-reactive protein (CRP) to confirm the stability of COPD has been reported. However, CRP is a systemic inflammatory biomarker that is related to many other diseases. The objective of this study is to discover a diagnostic biomarker for COPD. Sixty-one subjects with COPD and 15 healthy controls (10 healthy non-smokers and 5 smokers) were recruited for a 1-year follow-up study. Data regarding the 1-year acute exacerbation frequency and changes in lung function were collected. CRP and the identified biomarkers were assessed in the validation COPD cohort patients and healthy subjects. Receiver operating characteristic values of CRP and the identified biomarkers were determined. A validation COPD cohort was used to reexamine the identified biomarker. Correlation of the biomarker with 1-year lung function decline was determined. Proteoglycan 4 (PRG4) was identified as a biomarker in COPD. The serum concentrations of PRG4 in COPD Global initiative for chronic Obstructive Lung Disease (GOLD) stages 1+2 and 3+4 were 10.29 ng/mL and 13.20 ng/mL, respectively; 4.99 ng/mL for healthy controls (P<0.05); and 4.49 ng/mL for healthy smokers (P<0.05). PRG4 was more sensitive and specific than CRP for confirming COPD severity and acute exacerbation frequency. There was no correlation between CRP and PRG4 levels, and PRG4 was negatively correlated with the 1-year change in predicted forced vital capacity percent (R (2)=0.91, P=0.013). PRG4 may be a biomarker for identification of severity in COPD. It was related to the 1-year forced vital capacity decline in COPD patients.

  16. Mass Spectrometry-based Assay for High Throughput and High Sensitivity Biomarker Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xuejiang; Tang, Keqi

    Searching for disease specific biomarkers has become a major undertaking in the biomedical research field as the effective diagnosis, prognosis and treatment of many complex human diseases are largely determined by the availability and the quality of the biomarkers. A successful biomarker as an indicator to a specific biological or pathological process is usually selected from a large group of candidates by a strict verification and validation process. To be clinically useful, the validated biomarkers must be detectable and quantifiable by the selected testing techniques in their related tissues or body fluids. Due to its easy accessibility, protein biomarkers wouldmore » ideally be identified in blood plasma or serum. However, most disease related protein biomarkers in blood exist at very low concentrations (<1ng/mL) and are “masked” by many none significant species at orders of magnitude higher concentrations. The extreme requirements of measurement sensitivity, dynamic range and specificity make the method development extremely challenging. The current clinical protein biomarker measurement primarily relies on antibody based immunoassays, such as ELISA. Although the technique is sensitive and highly specific, the development of high quality protein antibody is both expensive and time consuming. The limited capability of assay multiplexing also makes the measurement an extremely low throughput one rendering it impractical when hundreds to thousands potential biomarkers need to be quantitatively measured across multiple samples. Mass spectrometry (MS)-based assays have recently shown to be a viable alternative for high throughput and quantitative candidate protein biomarker verification. Among them, the triple quadrupole MS based assay is the most promising one. When it is coupled with liquid chromatography (LC) separation and electrospray ionization (ESI) source, a triple quadrupole mass spectrometer operating in a special selected reaction monitoring (SRM

  17. Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery

    PubMed Central

    Wang, Hongyu; Li, Xin; Volk, David E.; Lokesh, Ganesh L.-R.; Elizondo-Riojas, Miguel-Angel; Li, Li; Nick, Alpa M.; Sood, Anil K.; Rosenblatt, Kevin P.; Gorenstein, David G.

    2016-01-01

    High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5′dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes. PMID:27839510

  18. Development of a multi-biomarker disease activity test for rheumatoid arthritis.

    PubMed

    Centola, Michael; Cavet, Guy; Shen, Yijing; Ramanujan, Saroja; Knowlton, Nicholas; Swan, Kathryn A; Turner, Mary; Sutton, Chris; Smith, Dustin R; Haney, Douglas J; Chernoff, David; Hesterberg, Lyndal K; Carulli, John P; Taylor, Peter C; Shadick, Nancy A; Weinblatt, Michael E; Curtis, Jeffrey R

    2013-01-01

    Disease activity measurement is a key component of rheumatoid arthritis (RA) management. Biomarkers that capture the complex and heterogeneous biology of RA have the potential to complement clinical disease activity assessment. To develop a multi-biomarker disease activity (MBDA) test for rheumatoid arthritis. Candidate serum protein biomarkers were selected from extensive literature screens, bioinformatics databases, mRNA expression and protein microarray data. Quantitative assays were identified and optimized for measuring candidate biomarkers in RA patient sera. Biomarkers with qualifying assays were prioritized in a series of studies based on their correlations to RA clinical disease activity (e.g. the Disease Activity Score 28-C-Reactive Protein [DAS28-CRP], a validated metric commonly used in clinical trials) and their contributions to multivariate models. Prioritized biomarkers were used to train an algorithm to measure disease activity, assessed by correlation to DAS and area under the receiver operating characteristic curve for classification of low vs. moderate/high disease activity. The effect of comorbidities on the MBDA score was evaluated using linear models with adjustment for multiple hypothesis testing. 130 candidate biomarkers were tested in feasibility studies and 25 were selected for algorithm training. Multi-biomarker statistical models outperformed individual biomarkers at estimating disease activity. Biomarker-based scores were significantly correlated with DAS28-CRP and could discriminate patients with low vs. moderate/high clinical disease activity. Such scores were also able to track changes in DAS28-CRP and were significantly associated with both joint inflammation measured by ultrasound and damage progression measured by radiography. The final MBDA algorithm uses 12 biomarkers to generate an MBDA score between 1 and 100. No significant effects on the MBDA score were found for common comorbidities. We followed a stepwise approach to

  19. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD.

    PubMed

    Sun, Wei; Kechris, Katerina; Jacobson, Sean; Drummond, M Bradley; Hawkins, Gregory A; Yang, Jenny; Chen, Ting-Huei; Quibrera, Pedro Miguel; Anderson, Wayne; Barr, R Graham; Basta, Patricia V; Bleecker, Eugene R; Beaty, Terri; Casaburi, Richard; Castaldi, Peter; Cho, Michael H; Comellas, Alejandro; Crapo, James D; Criner, Gerard; Demeo, Dawn; Christenson, Stephanie A; Couper, David J; Curtis, Jeffrey L; Doerschuk, Claire M; Freeman, Christine M; Gouskova, Natalia A; Han, MeiLan K; Hanania, Nicola A; Hansel, Nadia N; Hersh, Craig P; Hoffman, Eric A; Kaner, Robert J; Kanner, Richard E; Kleerup, Eric C; Lutz, Sharon; Martinez, Fernando J; Meyers, Deborah A; Peters, Stephen P; Regan, Elizabeth A; Rennard, Stephen I; Scholand, Mary Beth; Silverman, Edwin K; Woodruff, Prescott G; O'Neal, Wanda K; Bowler, Russell P

    2016-08-01

    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p < 8 X 10-10) pQTLs in 38 (43%) of blood proteins tested. Most pQTL SNPs were novel with low overlap to eQTL SNPs. The pQTL SNPs explained >10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10-392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In

  20. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    PubMed Central

    Drummond, M. Bradley; Hawkins, Gregory A.; Yang, Jenny; Chen, Ting-huei; Quibrera, Pedro Miguel; Anderson, Wayne; Barr, R. Graham; Bleecker, Eugene R.; Beaty, Terri; Casaburi, Richard; Castaldi, Peter; Cho, Michael H.; Comellas, Alejandro; Crapo, James D.; Criner, Gerard; Demeo, Dawn; Christenson, Stephanie A.; Couper, David J.; Doerschuk, Claire M.; Freeman, Christine M.; Gouskova, Natalia A.; Han, MeiLan K.; Hanania, Nicola A.; Hansel, Nadia N.; Hersh, Craig P.; Hoffman, Eric A.; Kaner, Robert J.; Kanner, Richard E.; Kleerup, Eric C.; Lutz, Sharon; Martinez, Fernando J.; Meyers, Deborah A.; Peters, Stephen P.; Regan, Elizabeth A.; Rennard, Stephen I.; Scholand, Mary Beth; Silverman, Edwin K.; Woodruff, Prescott G.; O’Neal, Wanda K.; Bowler, Russell P.

    2016-01-01

    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p < 8 X 10−10) pQTLs in 38 (43%) of blood proteins tested. Most pQTL SNPs were novel with low overlap to eQTL SNPs. The pQTL SNPs explained >10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In

  1. Identification of novel diagnostic biomarkers for thyroid carcinoma.

    PubMed

    Wang, Xiliang; Zhang, Qing; Cai, Zhiming; Dai, Yifan; Mou, Lisha

    2017-12-19

    Thyroid carcinoma (THCA) is the most universal endocrine malignancy worldwide. Unfortunately, a limited number of large-scale analyses have been performed to identify biomarkers for THCA. Here, we conducted a meta-analysis using 505 THCA patients and 59 normal controls from The Cancer Genome Atlas. After identifying differentially expressed long non-coding RNA (lncRNA) and protein coding genes (PCG), we found vast difference in various lncRNA-PCG co-expressed pairs in THCA. A dysregulation network with scale-free topology was constructed. Four molecules (LA16c-380H5.2, RP11-203J24.8, MLF1 and SDC4) could potentially serve as diagnostic biomarkers of THCA with high sensitivity and specificity. We further represent a diagnostic panel with expression cutoff values. Our results demonstrate the potential application of those four molecules as novel independent biomarkers for THCA diagnosis.

  2. Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Kim, Deog Kyeom; Cho, Michael H.; Hersh, Craig P.; Lomas, David A.; Miller, Bruce E.; Kong, Xiangyang; Bakke, Per; Gulsvik, Amund; Agustí, Alvar; Wouters, Emiel; Celli, Bartolome; Coxson, Harvey; Vestbo, Jørgen; MacNee, William; Yates, Julie C.; Rennard, Stephen; Litonjua, Augusto; Qiu, Weiliang; Beaty, Terri H.; Crapo, James D.; Riley, John H.; Tal-Singer, Ruth

    2012-01-01

    Rationale: A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility. Objectives: To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD. Methods: GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10−8), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated. Measurements and Main Results: Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009–0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001–0.049), although these COPD associations were not replicated in two additional cohorts. Conclusions: Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility. Clinical trial registered with www.clinicaltrials.gov (NCT 00292552). PMID

  3. Non-invasive detection of candidate pregnancy protein biomarkers in the feces of captive polar bears (Ursus maritimus).

    PubMed

    Curry, E; Stoops, M A; Roth, T L

    2012-07-15

    Currently, there is no method of accurately and non-invasively diagnosing pregnancy in polar bears. Specific proteins may exhibit altered profiles in the feces of pregnant bears, but predicting appropriate candidate proteins to investigate is speculative at best. The objective of this study was to identify potential pregnancy biomarker proteins based on their increased abundance in the feces of pregnant polar bears compared to pseudopregnant females (controls) using two-dimensional in-gel electrophoresis (2D-DIGE) and mass spectrometry (MS). Three 2D-DIGE gels were performed to evaluate fecal protein profiles from controls (n=3) and pregnant polar bears (n=3). There were 2224.67±52.39 (mean±SEM) spots resolved per gel. Of these, only five proteins were elevated in the pregnant group (P<0.05), and seven additional spots tended to be higher (0.0599.9% confidence interval. The 11 spots represented seven distinct proteins, five of which were significantly more abundant in the pregnant group: IgGFc-binding protein, filamin-C, carboxypeptidase B, transthyretin, and immunoglobulin heavy chain variable region. To our knowledge, this was the first study that employed 2D-DIGE to identify differentially expressed proteins in fecal samples to characterize a physiological condition other than those related to gastrointestinal disorders. These promising results provided a strong foundation for ensuing efforts to develop a non-invasive pregnancy assay for use in both captive and wild polar bears. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Rapid, Potentially Automatable, Method Extract Biomarkers for HPLC/ESI/MS/MS to Detect and Identify BW Agents

    DTIC Science & Technology

    1997-11-01

    status can sometimes be reflected in the infectious potential or drug resistance of those pathogens. For example, in Mycobacterium tuberculosis ... Mycobacterium tuberculosis , its antibiotic resistance and prediction of pathogenicity amongst Mycobacterium spp. based on signature lipid biomarkers ...TITLE AND SUBTITLE Rapid, Potentially Automatable, Method Extract Biomarkers for HPLC/ESI/MS/MS to Detect and Identify BW Agents 5a. CONTRACT NUMBER 5b

  5. A standardized kit for automated quantitative assessment of candidate protein biomarkers in human plasma.

    PubMed

    Percy, Andrew J; Mohammed, Yassene; Yang, Juncong; Borchers, Christoph H

    2015-12-01

    An increasingly popular mass spectrometry-based quantitative approach for health-related research in the biomedical field involves the use of stable isotope-labeled standards (SIS) and multiple/selected reaction monitoring (MRM/SRM). To improve inter-laboratory precision and enable more widespread use of this 'absolute' quantitative technique in disease-biomarker assessment studies, methods must be standardized. Results/methodology: Using this MRM-with-SIS-peptide approach, we developed an automated method (encompassing sample preparation, processing and analysis) for quantifying 76 candidate protein markers (spanning >4 orders of magnitude in concentration) in neat human plasma. The assembled biomarker assessment kit - the 'BAK-76' - contains the essential materials (SIS mixes), methods (for acquisition and analysis), and tools (Qualis-SIS software) for performing biomarker discovery or verification studies in a rapid and standardized manner.

  6. An integrated proteomics and metabolomics approach for defining oncofetal biomarkers in the colorectal cancer.

    PubMed

    Ma, Yanlei; Zhang, Peng; Wang, Feng; Liu, Weijie; Yang, Jianjun; Qin, Huanlong

    2012-04-01

    The present study was designed to search for potential diagnostic biomarkers in the serum of colorectal cancer (CRC). CRC is the third most common cancer worldwide, and its prognosis is poor at early stages. A panel of novel biomarkers is urgently needed for early diagnosis of CRC. An integrated proteomics and metabolomics approach was performed to define oncofetal biomarkers in CRC by protein and metabolite profiling of serum samples from CRC patients, healthy control adults, and fetus. The differentially expressed proteins were identified by a 2-D DIGE (2-Dimensional Difference Gel Electrophoresis) coupled with a Finnigan LTQ-based proteomics approach. Meanwhile, the serum metabolome was analyzed using gas chromatography-mass spectrometry integrated with a commercial mass spectral library for peak identification. Of the 28 identified proteins and the 34 analyzed metabolites, only 5 protein spots and 6 metabolites were significantly increased or decreased in both CRC and fetal serum groups compared with the healthy adult group. Data from supervised predictive models allowed a separation of 93.5% of CRC patients from the healthy controls using the 6 metabolites. Finally, correlation analysis was applied to establish quantitative linkages between the 5 individual metabolite 3-hydroxybutyric acid, L-valine, L-threonine, 1-deoxyglucose, and glycine and the 5 individual proteins MACF1, APOH, A2M, IGL@, and VDB. Furthermore, 10 potential oncofetal biomarkers were characterized and their potential for CRC diagnosis was validated. The integrated approach we developed will promote the translation of biomarkers with clinical value into routine clinical practice.

  7. Sweetening the pot: adding glycosylation to the biomarker discovery equation.

    PubMed

    Drake, Penelope M; Cho, Wonryeon; Li, Bensheng; Prakobphol, Akraporn; Johansen, Eric; Anderson, N Leigh; Regnier, Fred E; Gibson, Bradford W; Fisher, Susan J

    2010-02-01

    Cancer has profound effects on gene expression, including a cell's glycosylation machinery. Thus, tumors produce glycoproteins that carry oligosaccharides with structures that are markedly different from the same protein produced by a normal cell. A single protein can have many glycosylation sites that greatly amplify the signals they generate compared with their protein backbones. In this article, we survey clinical tests that target carbohydrate modifications for diagnosing and treating cancer. We present the biological relevance of glycosylation to disease progression by highlighting the role these structures play in adhesion, signaling, and metastasis and then address current methodological approaches to biomarker discovery that capitalize on selectively capturing tumor-associated glycoforms to enrich and identify disease-related candidate analytes. Finally, we discuss emerging technologies--multiple reaction monitoring and lectin-antibody arrays--as potential tools for biomarker validation studies in pursuit of clinically useful tests. The future of carbohydrate-based biomarker studies has arrived. At all stages, from discovery through verification and deployment into clinics, glycosylation should be considered a primary readout or a way of increasing the sensitivity and specificity of protein-based analyses.

  8. Analysis of 320 gastroenteropancreatic neuroendocrine tumors identifies TS expression as independent biomarker for survival.

    PubMed

    Lee, Hye Seung; Chen, Min; Kim, Ji Hun; Kim, Woo Ho; Ahn, Soyeon; Maeng, Kyungah; Allegra, Carmen J; Kaye, Frederic J; Hochwald, Steven N; Zajac-Kaye, Maria

    2014-07-01

    Thymidylate synthase (TS), a critical enzyme for DNA synthesis and repair, is both a potential tumor prognostic biomarker as well as a tumorigenic oncogene in animal models. We have now studied the clinical implications of TS expression in gastroenteropancreatic (GEP) neuroendocrine tumors (NETs) and compared these results to other cell cycle biomarker genes. Protein tissue arrays were used to study TS, Ki-67, Rb, pRb, E2F1, p18, p21, p27 and menin expression in 320 human GEP-NETs samples. Immunohistochemical expression was correlated with univariate and multivariate predictors of survival utilizing Kaplan Meier and Cox proportional hazards models. Real time RT-PCR was used to validate these findings. We found that 78 of 320 GEP-NETs (24.4%) expressed TS. NETs arising in the colon, stomach and pancreas showed the highest expression of TS (47.4%, 42.6% and 37.3%, respectively), whereas NETs of the appendix, rectum and duodenum displayed low TS expression (3.3%, 12.9% and 15.4%, respectively). TS expression in GEP-NETs was associated with poorly differentiated endocrine carcinoma, angiolymphatic invasion, lymph node metastasis and distant metastasis (p < 0.05). Patients with TS-positive NETs had markedly worse outcomes than TS-negative NETs as shown by univariate (p < 0.001) and multivariate (p = 0.01) survival analyses. Expression of p18 predicted survival in TS-positive patients that received chemotherapy (p = 0.015). In conclusion, TS protein expression was an independent prognostic biomarker for GEP-NETs. The strong association of increased TS expression with aggressive disease and early death supports the role of TS as a cancer promoting agent in these tumors. © 2013 UICC.

  9. A new biomarker panel in bronchoalveolar lavage for an improved lung cancer diagnosis.

    PubMed

    Uribarri, María; Hormaeche, Itsaso; Zalacain, Rafael; Lopez-Vivanco, Guillermo; Martinez, Antonio; Nagore, Daniel; Ruiz-Argüello, M Begoña

    2014-10-01

    The enormous biological complexity and high mortality rate of lung cancer highlights the need for new global approaches for the discovery of reliable early diagnostic biomarkers. The study of bronchoalveolar lavage samples by proteomic techniques could identify new lung cancer biomarkers and may provide promising noninvasive diagnostic tools able to enhance the sensitivity of current methods. First, an observational prospective study was designed to assess protein expression differences in bronchoalveolar lavages from patients with (n = 139) and without (n = 49) lung cancer, using two-dimensional gel electrophoresis and subsequent protein identification by mass spectrometry. Second, validation of candidate biomarkers was performed by bead-based immunoassays with a different patient cohort (204 patients, 48 controls). Thirty-two differentially expressed proteins were identified in bronchoalveolar lavages, 10 of which were confirmed by immunoassays. The expression levels of APOA1, CO4A, CRP, GSTP1, and SAMP led to a lung cancer diagnostic panel that reached 95% sensitivity and 81% specificity, and the quantification of STMN1 and GSTP1 proteins allowed the two main lung cancer subtypes to be discriminated with 90% sensitivity and 57% specificity. Bronchoalveolar lavage represents a promising noninvasive source of lung cancer specific protein biomarkers with high diagnostic accuracy. Measurement of APOA1, CO4A, CRP, GSTP1, SAMP, and STMN1 in this fluid may be a useful tool for lung cancer diagnosis, although a further validation in a larger clinical set is required for early stages.

  10. Analytical Pipeline for Discovery and Verification of Glycoproteins from Plasma-Derived Extracellular Vesicles as Breast Cancer Biomarkers.

    PubMed

    Chen, I-Hsuan; Aguilar, Hillary Andaluz; Paez Paez, J Sebastian; Wu, Xiaofeng; Pan, Li; Wendt, Michael K; Iliuk, Anton B; Zhang, Ying; Tao, W Andy

    2018-05-15

    Glycoproteins comprise more than half of current FDA-approved protein cancer markers, but the development of new glycoproteins as disease biomarkers has been stagnant. Here we present a pipeline to develop glycoproteins from extracellular vesicles (EVs) through integrating quantitative glycoproteomics with a novel reverse phase glycoprotein array and then apply it to identify novel biomarkers for breast cancer. EV glycoproteomics show promise in circumventing the problems plaguing current serum/plasma glycoproteomics and allowed us to identify hundreds of glycoproteins that have not been identified in blood. We identified 1,453 unique glycopeptides representing 556 glycoproteins in EVs, among which 20 were verified significantly higher in individual breast cancer patients. We further applied a novel glyco-specific reverse phase protein array to quantify a subset of the candidates. Together, this study demonstrates the great potential of this integrated pipeline for biomarker discovery.

  11. Investigating the clinical potential for 14-3-3 zeta protein to serve as a biomarker for epithelial ovarian cancer

    PubMed Central

    2013-01-01

    Objective Recently, 14-3-3 zeta protein was identified as a potential serum biomarker of epithelial ovarian cancer (EOC). The goal of this study was to investigate the clinical potential of 14-3-3 zeta protein for monitoring EOC progression compared with CA-125 and HE4. Design Prospective follow-up study. Setting University of Pecs Medical Center Department of Obstetrics and Gynecology/Oncology (Pecs, Hungary). Population Thirteen EOC patients with advanced stage (FIGO IIb-IIIc) epithelial ovarian cancer that underwent radical surgery and received six consecutive cycles of first line chemotherapy (paclitaxel, carboplatin) in 21-day intervals. Methods Pre- and post-chemotherapy computed tomography (CT) scans were performed. Serum levels of CA-125, HE4, and 14-3-3 zeta protein were detected by enzyme-linked immunosorbent assay (ELISA) and quantitative electrochemiluminescence assay (ECLIA). Main outcome measures Serum levels of CA-125, HE4, and 14-3-3 zeta protein, as well as lesion size according to pre- and post-chemotherapy CT scans. Results Serum levels of CA-125 and HE4 were found to significantly decrease following chemotherapy, and this was consistent with the decrease in lesion size detected post-chemotherapy. In contrast, 14-3-3 zeta protein levels did not significantly differ in healthy postmenopausal patients versus EOC patients. Conclusions Determination of CA-125 and HE4 serum levels for the determination of the risk of ovarian malignancy algorithm (ROMA) represents a useful tool for the prediction of chemotherapy efficacy for EOC patients. However, levels of 14-3-3 zeta protein were not found to vary significantly as a consequence of treatment. Therefore we question if 14-3-3 zeta protein is a reliable biomarker, which correlates with the clinical behavior of EOC. PMID:24238270

  12. Progression Rate Associated Peripheral Blood Biomarkers of Parkinson's Disease.

    PubMed

    Fan, Yanxia; Xiao, Shuping

    2018-06-23

    Parkinson disease (PD) is one of the most frequent neurodegenerative disorders. The aim of this study was to identify blood biomarkers capable to discriminate PD patients with different progression rates. Differentially expressed genes (DEGs) were acquired by comparing the expression profiles of PD patients with rapid and slow progression rates, using an expression dataset from Gene Expression Omnibus (GEO) under accession code of GSE80599. Altered biological processes and pathways were revealed by functional annotation. Potential biomarkers of PD were identified by protein-protein interaction (PPI) network analysis. Critical transcription factors (TFs) and miRNAs regulating DEGs were predicted by TF analysis and miRNA analysis. A total of 225 DEGs were identified between PD patients with rapid and slow progression profiles. These genes were significantly enriched in biological processes and pathways related to fatty acid metabolism. Among these DEGs, ZFAND4, SRMS, UBL4B, PVALB, DIRAS1, PDP2, LRCH1, and MYL4 were potential progression rate associated biomarkers of PD. Additionally, these DEGs may be regulated by miRNAs of the miR-30 family and TFs STAT1 and GRHL3. Our results may contribute to our understanding of the molecular mechanisms underlying different PD progression profiles.

  13. Increased liver-specific proteins in circulating extracellular vesicles as potential biomarkers for drug- and alcohol-induced liver injury

    PubMed Central

    Cho, Young-Eun; Im, Eun-Ju; Moon, Pyong-Gon; Mezey, Esteban; Song, Byoung-Joon; Baek, Moon-Chang

    2017-01-01

    Drug- and alcohol-induced liver injury are a leading cause of liver failure and transplantation. Emerging evidence suggests that extracellular vesicles (EVs) are a source of biomarkers because they contain unique proteins reflecting the identity and tissue-specific origin of the EV proteins. This study aimed to determine whether potentially hepatotoxic agents, such as acetaminophen (APAP) and binge alcohol, can increase the amounts of circulating EVs and evaluate liver-specific EV proteins as potential biomarkers for liver injury. The circulating EVs, isolated from plasma of APAP-exposed, ethanol-fed mice, or alcoholic hepatitis patients versus normal control counterparts, were characterized by proteomics and biochemical methods. Liver specific EV proteins were analyzed by immunoblots and ELISA. The amounts of total and liver-specific proteins in circulating EVs from APAP-treated mice significantly increased in a dose- and time-dependent manner. Proteomic analysis of EVs from APAP-exposed mice revealed that the amounts of liver-specific and/or hepatotoxic proteins were increased compared to those of controls. Additionally, the increased protein amounts in EVs following APAP exposure returned to basal levels when mice were treated with N-acetylcysteine or glutathione. Similar results of increased amounts and liver-specific proteins in circulating EVs were also observed in mice exposed to hepatotoxic doses of thioacetamide or d-galactosamine but not by non-hepatotoxic penicillin or myotoxic bupivacaine. Additionally, binge ethanol exposure significantly elevated liver-specific proteins in circulating EVs from mice and alcoholics with alcoholic hepatitis, compared to control counterparts. These results indicate that circulating EVs in drug- and alcohol-mediated hepatic injury contain liver-specific proteins that could serve as specific biomarkers for hepatotoxicity. PMID:28225807

  14. Protocol for Standardizing High-to-Moderate Abundance Protein Biomarker Assessments Through an MRM-with-Standard-Peptides Quantitative Approach.

    PubMed

    Percy, Andrew J; Yang, Juncong; Chambers, Andrew G; Mohammed, Yassene; Miliotis, Tasso; Borchers, Christoph H

    2016-01-01

    Quantitative mass spectrometry (MS)-based approaches are emerging as a core technology for addressing health-related queries in systems biology and in the biomedical and clinical fields. In several 'omics disciplines (proteomics included), an approach centered on selected or multiple reaction monitoring (SRM or MRM)-MS with stable isotope-labeled standards (SIS), at the protein or peptide level, has emerged as the most precise technique for quantifying and screening putative analytes in biological samples. To enable the widespread use of MRM-based protein quantitation for disease biomarker assessment studies and its ultimate acceptance for clinical analysis, the technique must be standardized to facilitate precise and accurate protein quantitation. To that end, we have developed a number of kits for assessing method/platform performance, as well as for screening proposed candidate protein biomarkers in various human biofluids. Collectively, these kits utilize a bottom-up LC-MS methodology with SIS peptides as internal standards and quantify proteins using regression analysis of standard curves. This chapter details the methodology used to quantify 192 plasma proteins of high-to-moderate abundance (covers a 6 order of magnitude range from 31 mg/mL for albumin to 18 ng/mL for peroxidredoxin-2), and a 21-protein subset thereof. We also describe the application of this method to patient samples for biomarker discovery and verification studies. Additionally, we introduce our recently developed Qualis-SIS software, which is used to expedite the analysis and assessment of protein quantitation data in control and patient samples.

  15. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer.

    PubMed

    Nedaeinia, R; Manian, M; Jazayeri, M H; Ranjbar, M; Salehi, R; Sharifi, M; Mohaghegh, F; Goli, M; Jahednia, S H; Avan, A; Ghayour-Mobarhan, M

    2017-02-01

    The most important biological function of exosomes is their possible use as biomarkers in clinical diagnosis. Compared with biomarkers identified in conventional specimens such as serum or urine, exosomal biomarkers provide the highest amount of sensitivity and specificity, which can be attributed to their excellent stability. Exosomes, which harbor different types of proteins, nucleic acids and lipids, are present in almost all bodily fluids. The molecular constituents of exosomes, especially exosomal proteins and microRNAs (miRNAs), are promising as biomarkers in clinical diagnosis. This discovery that exosomes also contain messenger RNAs and miRNAs shows that they could be carriers of genetic information. Although the majority of RNAs found in exosomes are degraded RNA fragments with a length of <200 nucleotides, some full-length RNAs might be present that may affect protein production in the recipient cell. In addition, exosomal miRNAs have been found to be associated with certain diseases. Several studies have pointed out miRNA contents of circulating exosomes that are similar to those of originating cancer cells. In this review, the recent advances in circulating exosomal miRNAs as biomarkers in gastrointestinal cancers are discussed. These studies indicated that miRNAs can be detected in exosomes isolated from body fluids such as saliva, which suggests potential advantages of using exosomal miRNAs as noninvasive novel biomarkers.

  16. Identification and localization of trauma-related biomarkers using matrix assisted laser desorption/ionization imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jones, Kirstin; Reilly, Matthew A.; Glickman, Randolph D.

    2017-02-01

    Current treatments for ocular and optic nerve trauma are largely ineffective and may have adverse side effects; therefore, new approaches are needed to understand trauma mechanisms. Identification of trauma-related biomarkers may yield insights into the molecular aspects of tissue trauma that can contribute to the development of better diagnostics and treatments. The conventional approach for protein biomarker measurement largely relies on immunoaffinity methods that typically can only be applied to analytes for which antibodies or other targeting means are available. Matrix assisted laser-assisted desorption/ionization imaging mass spectrometry (MALDI-IMS) is a specialized application of mass spectrometry that not only is well suited to the discovery of novel or unanticipated biomarkers, but also provides information about the spatial localization of biomarkers in tissue. We have been using MALDI-IMS to find traumarelated protein biomarkers in retina and optic nerve tissue from animal models subjected to ocular injury produced by either blast overpressure or mechanical torsion. Work to date by our group, using MALDI-IMS, found that the pattern of protein expression is modified in the injured ocular tissue as soon as 24 hr post-injury, compared to controls. Specific proteins may be up- or down-regulated by trauma, suggesting different tissue responses to a given injury. Ongoing work is directed at identifying the proteins affected and mapping their expression in the ocular tissue, anticipating that systematic analysis can be used to identify targets for prospective therapies for ocular trauma.

  17. Identification of Tetranectin as a Potential Biomarker for Metastatic Oral Cancer

    PubMed Central

    Arellano-Garcia, Martha E.; Li, Roger; Liu, Xiaojun; Xie, Yongming; Yan, Xiaofei; Loo, Joseph A.; Hu, Shen

    2010-01-01

    Lymph node involvement is the most important predictor of survival rates in patients with oral squamous cell carcinoma (OSCC). A biomarker that can indicate lymph node metastasis would be valuable to classify patients with OSCC for optimal treatment. In this study, we have performed a serum proteomic analysis of OSCC using 2-D gel electrophoresis and liquid chromatography/tandem mass spectrometry. One of the down-regulated proteins in OSCC was identified as tetranectin, which is a protein encoded by the CLEC3B gene (C-type lectin domain family 3, member B). We further tested the protein level in serum and saliva from patients with lymph-node metastatic and primary OSCC. Tetranectin was found significantly under-expressed in both serum and saliva of metastatic OSCC compared to primary OSCC. Our results suggest that serum or saliva tetranectin may serve as a potential biomarker for metastatic OSCC. Other candidate serum biomarkers for OSCC included superoxide dismutase, ficolin 2, CD-5 antigen-like protein, RalA binding protein 1, plasma retinol-binding protein and transthyretin. Their clinical utility for OSCC detection remains to be further tested in cancer patients. PMID:20957082

  18. Biomarkers of One-Carbon Metabolism Are Associated with Biomarkers of Inflammation in Women123

    PubMed Central

    Abbenhardt, Clare; Miller, Joshua W.; Song, Xiaoling; Brown, Elissa C.; Cheng, Ting-Yuan David; Wener, Mark H.; Zheng, Yingye; Toriola, Adetunji T.; Neuhouser, Marian L.; Beresford, Shirley A. A.; Makar, Karen W.; Bailey, Lynn B.; Maneval, David R.; Green, Ralph; Manson, JoAnn E.; Van Horn, Linda; Ulrich, Cornelia M.

    2014-01-01

    Folate-mediated one-carbon metabolism is essential for DNA synthesis, repair, and methylation. Perturbations in one-carbon metabolism have been implicated in increased risk of some cancers and may also affect inflammatory processes. We investigated these interrelated pathways to understand their relation. The objective was to explore associations between inflammation and biomarkers of nutritional status and one-carbon metabolism. In a cross-sectional study in 1976 women selected from the Women’s Health Initiative Observational Study, plasma vitamin B-6 [pyridoxal-5′-phosphate (PLP)], plasma vitamin B-12, plasma folate, and RBC folate were measured as nutritional biomarkers; serum C-reactive protein (CRP) and serum amyloid A (SAA) were measured as biomarkers of inflammation; and homocysteine and cysteine were measured as integrated biomarkers of one-carbon metabolism. Student’s t, chi-square, and Spearman rank correlations, along with multiple linear regressions, were used to explore relations between biomarkers; additionally, we tested stratification by folic acid fortification period and multivitamin use. With the use of univariate analysis, plasma PLP was the only nutritional biomarker that was modestly significantly correlated with serum CRP and SAA (ρ = −0.22 and −0.12, respectively; P < 0.0001). Homocysteine (μmol/L) showed significant inverse correlations with all nutritional biomarkers (ranging from ρ = −0.30 to ρ = −0.46; all P < 0.0001). With the use of multiple linear regression, plasma PLP, RBC folate, homocysteine, and cysteine were identified as independent predictors of CRP; and PLP, vitamin B-12, RBC folate, and homocysteine were identified as predictors of SAA. When stratified by folic acid fortification period, nutrition-homocysteine correlations were generally weaker in the postfortification period, whereas associations between plasma PLP and serum CRP increased. Biomarkers of inflammation are associated with PLP, RBC folate, and

  19. Peptidome Analysis Reveals Novel Serum Biomarkers for Children with Autism Spectrum Disorder in China.

    PubMed

    Yang, Juan; Chen, Yanni; Xiong, Xiaofan; Zhou, Xiaobo; Han, Lin; Ni, Ei; Wang, Wenjing; Wang, Xiaofei; Zhao, Lingyu; Shao, Dongdong; Huang, Chen

    2018-05-13

    Autism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts throughout one's life. Early diagnosis is essential for ASD since early treatment can enable children with ASD to make significant gains in language and social skills, but remains challenging since there are currently no specific biomarkers of ASD. The study aimed to identify serum biomarkers for ASD. Serum of Han Chinese children with ASD (n = 68) and age-matched healthy controls (n = 80) was analyzed using magnetic bead-based separation combined with mass spectrum. Eight potential ASD serum biomarker peaks (m/z: 3886.69, 7775.12, 2381.71, 6638.63, 3319.17, 894.34, 4968.59, and 5910.53) with higher expression in ASD group were further identified as peptide regions of Plasma Serine Protease Inhibitor Precursor (SERPINA5), Platelet Factor 4 (PF4), Fatty Acid Binding Protein 1(FABP1), Apolipoprotein C-I Precursor (APOC1), Alpha-fetoprotein Precursor (AFP), Carboxypeptidase B2 (CPB2), Trace Amine-associated Receptor 6 (TAAR6) and Isoform1 of Fibrinogen Alpha Chain Precursor (FGA). The expression of identified proteins was validated by enzyme-linked immunosorbent assay (ELISA). Our findings reveal the exceptional disease etiology of ASD from a serum proteomic perspective, and the identified proteins might be potential biomarkers for ASD diagnosis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Plasma Protein Turnover Rates in Rats Using Stable Isotope Labeling, Global Proteomics, and Activity-Based Protein Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan Ned; Tyrrell, Kimberly J.; Hansen, Joshua R.

    Protein turnover is important for general health on cellular and organism scales providing a strategy to replace old, damaged, or dysfunctional proteins. Protein turnover also informs of biomarker kinetics, as a better understanding of synthesis and degradation of proteins increases the clinical utility of biomarkers. Here, turnover rates of plasma proteins in rats were measured in vivo using a pulse-chase stable isotope labeling experiment. During the pulse, rats (n=5) were fed 13C6-labeled lysine (“heavy”) feed for 23 days to label proteins. During the chase, feed was changed to an unlabeled equivalent feed (“light”), and blood was repeatedly sampled from ratsmore » over 10 time points for 28 days. Plasma samples were digested with trypsin, and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used to identify peptides and proteins, and quantify heavy:light lysine ratios. A system of ordinary differential equations was used to calculate protein turnover rates. Using this approach, 273 proteins were identified, and turnover rates were quantified for 157 plasma proteins with half-lives ranging 0.3-103 days. For the ~70 most abundant proteins, variability in turnover rates among rats was low (median coefficient of variation: 0.09). Activity-based protein profiling was applied to pooled plasma samples to enrich serine hydrolases using a fluorophosphonate (FP2) activity-based probe. This enrichment resulted in turnover rates for an additional 17 proteins. This study is the first to measure global plasma protein turnover rates in rats in vivo, measure variability of protein turnover rates in any animal model, and utilize activity-based protein profiling for enhancing measurements of targeted, low-abundant proteins, such as those commonly used as biomarkers. Measured protein turnover rates will be important for understanding of the role of protein turnover in cellular and organism health as well as increasing the utility of

  1. Identifying DNA Methylation Biomarkers for Non-Endoscopic Detection of Barrett’s Esophagus

    PubMed Central

    Moinova, Helen R.; LaFramboise, Thomas; Lutterbaugh, James D.; Chandar, Apoorva Krishna; Dumot, John; Faulx, Ashley; Brock, Wendy; De la Cruz Cabrera, Omar; Guda, Kishore; Barnholtz-Sloan, Jill S.; Iyer, Prasad G.; Canto, Marcia I.; Wang, Jean S.; Shaheen, Nicholas J.; Thota, Prashanti N.; Willis, Joseph E.; Chak, Amitabh; Markowitz, Sanford D.

    2018-01-01

    We report a biomarker-based non-endoscopic method for detecting Barrett’s esophagus (BE), based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma (EAC). Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve (AUC)=0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals, who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 minutes. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE. PMID:29343623

  2. Identification of novel diagnostic biomarkers for thyroid carcinoma

    PubMed Central

    Wang, Xiliang; Zhang, Qing; Cai, Zhiming; Dai, Yifan; Mou, Lisha

    2017-01-01

    Thyroid carcinoma (THCA) is the most universal endocrine malignancy worldwide. Unfortunately, a limited number of large-scale analyses have been performed to identify biomarkers for THCA. Here, we conducted a meta-analysis using 505 THCA patients and 59 normal controls from The Cancer Genome Atlas. After identifying differentially expressed long non-coding RNA (lncRNA) and protein coding genes (PCG), we found vast difference in various lncRNA-PCG co-expressed pairs in THCA. A dysregulation network with scale-free topology was constructed. Four molecules (LA16c-380H5.2, RP11-203J24.8, MLF1 and SDC4) could potentially serve as diagnostic biomarkers of THCA with high sensitivity and specificity. We further represent a diagnostic panel with expression cutoff values. Our results demonstrate the potential application of those four molecules as novel independent biomarkers for THCA diagnosis. PMID:29340074

  3. Plasma Protein Pentosidine and Carboxymethyllysine, Biomarkers for Age-related Macular Degeneration*

    PubMed Central

    Ni, Jiaqian; Yuan, Xianglin; Gu, Jiayin; Yue, Xiuzhen; Gu, Xiaorong; Nagaraj, Ram H.; Crabb, John W.

    2009-01-01

    Age-related macular degeneration (AMD) causes severe vision loss in the elderly; early identification of AMD risk could help slow or prevent disease progression. Toward the discovery of AMD biomarkers, we quantified plasma protein Nε-carboxymethyllysine (CML) and pentosidine from 58 AMD and 32 control donors. CML and pentosidine are advanced glycation end products that are abundant in Bruch membrane, the extracellular matrix separating the retinal pigment epithelium from the blood-bearing choriocapillaris. We measured CML and pentosidine by LC-MS/MS and LC-fluorometry, respectively, and found higher mean levels of CML (∼54%) and pentosidine (∼64%) in AMD (p < 0.0001) relative to normal controls. Plasma protein fructosyl-lysine, a marker of early glycation, was found by amino acid analysis to be in equal amounts in control and non-diabetic AMD donors, supporting an association between AMD and increased levels of CML and pentosidine independent of other diseases like diabetes. Carboxyethylpyrrole (CEP), an oxidative modification from docosahexaenoate-containing lipids and also abundant in AMD Bruch membrane, was elevated ∼86% in the AMD cohort, but autoantibody titers to CEP, CML, and pentosidine were not significantly increased. Compellingly higher mean levels of CML and pentosidine were present in AMD plasma protein over a broad age range. Receiver operating curves indicate that CML, CEP adducts, and pentosidine alone discriminated between AMD and control subjects with 78, 79, and 88% accuracy, respectively, whereas CML in combination with pentosidine provided ∼89% accuracy, and CEP plus pentosidine provided ∼92% accuracy. Pentosidine levels appeared slightly altered in AMD patients with hypertension and cardiovascular disease, indicating further studies are warranted. Overall this study supports the potential utility of plasma protein CML and pentosidine as biomarkers for assessing AMD risk and susceptibility, particularly in combination with CEP

  4. Do classic blood biomarkers of JSLE identify active lupus nephritis? Evidence from the UK JSLE Cohort Study.

    PubMed

    Smith, E M D; Jorgensen, A L; Beresford, M W

    2017-10-01

    Background Lupus nephritis (LN) affects up to 80% of juvenile-onset systemic lupus erythematosus (JSLE) patients. The value of commonly available biomarkers, such as anti-dsDNA antibodies, complement (C3/C4), ESR and full blood count parameters in the identification of active LN remains uncertain. Methods Participants from the UK JSLE Cohort Study, aged <16 years at diagnosis, were categorized as having active or inactive LN according to the renal domain of the British Isles Lupus Assessment Group score. Classic biomarkers: anti-dsDNA, C3, C4, ESR, CRP, haemoglobin, total white cells, neutrophils, lymphocytes, platelets and immunoglobulins were assessed for their ability to identify active LN using binary logistic regression modeling, with stepAIC function applied to select a final model. Receiver-operating curve analysis was used to assess diagnostic accuracy. Results A total of 370 patients were recruited; 191 (52%) had active LN and 179 (48%) had inactive LN. Binary logistic regression modeling demonstrated a combination of ESR, C3, white cell count, neutrophils, lymphocytes and IgG to be best for the identification of active LN (area under the curve 0.724). Conclusions At best, combining common classic blood biomarkers of lupus activity using multivariate analysis provides a 'fair' ability to identify active LN. Urine biomarkers were not included in these analyses. These results add to the concern that classic blood biomarkers are limited in monitoring discrete JSLE manifestations such as LN.

  5. Biomarkers in Japanese Encephalitis: A Review

    PubMed Central

    Kant Upadhyay, Ravi

    2013-01-01

    JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future. PMID:24455705

  6. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    PubMed

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis

    DTIC Science & Technology

    2017-10-13

    AWARD NUMBER: W81XWH-15-2-0032 TITLE: Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-15-2-0032 5b. GRANT NUMBER Identifying Subgroups of Tinnitus Using Novel Resting State fMRI...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The subject of the project is FY14 PRMRP Topic Area – Tinnitus . The broad goal is

  8. Identification of Tengfu Jiangya Tablet Target Biomarkers with Quantitative Proteomic Technique

    PubMed Central

    Xu, Jingwen; Zhang, Shijun; Jiang, Haiqiang; Wang, Nan; Lin, Haiqing

    2017-01-01

    Tengfu Jiangya Tablet (TJT) is a well accepted antihypertension drug in China and its major active components were Uncaria total alkaloids and Semen Raphani soluble alkaloid. To further explore treatment effects mechanism of TJT on essential hypertension, a serum proteomic study was performed. Potential biomarkers were quantified in serum of hypertension individuals before and after taking TJT with isobaric tags for relative and absolute quantitation (iTRAQ) coupled two-dimensional liquid chromatography followed electrospray ionization-tandem mass spectrometry (2D LC-MS/MS) proteomics technique. Among 391 identified proteins with high confidence, 70 proteins were differentially expressed (fold variation criteria, >1.2 or <0.83) between two groups (39 upregulated and 31 downregulated). Combining with Gene Ontology annotation, KEGG pathway analysis, and literature retrieval, 5 proteins were chosen as key target biomarkers during TJT therapeutic process. And the alteration profiles of these 5 proteins were verified by ELISA and Western Blot. Proteins Kininogen 1 and Keratin 1 are members of Kallikrein system, while Myeloperoxidase, Serum Amyloid protein A, and Retinol binding protein 4 had been reported closely related to vascular endothelial injury. Our study discovered 5 target biomarkers of the compound Chinese medicine TJT. Secondly, this research initially revealed the antihypertension therapeutic mechanism of this drug from a brand-new aspect. PMID:28408942

  9. Inflammation and hemostasis biomarkers for predicting stroke in postmenopausal women: The Women’s Health Initiative Observational Study

    PubMed Central

    Kaplan, Robert C; McGinn, Aileen P; Baird, Alison E; Hendrix, Susan L; Kooperberg, Charles; Lynch, John; Rosenbaum, Daniel M; Johnson, Karen C; Strickler, Howard D; Wassertheil-Smoller, Sylvia

    2009-01-01

    Background Inflammatory and hemostasis-related biomarkers may identify women at risk of stroke. Methods Hormones and Biomarkers Predicting Stroke is a study of ischemic stroke among postmenopausal women participating in the Women’s Health Initiative Observational Study (n = 972 case-control pairs). A Biomarker Risk Score was derived from levels of seven inflammatory and hemostasis-related biomarkers that appeared individually to predict risk of ischemic stroke: C-reactive protein, interleukin-6, tissue plasminogen activator, D-dimer, white blood cell count, neopterin, and homocysteine. The c index was used to evaluate discrimination. Results Of all the individual biomarkers examined, C-reactive protein emerged as the only independent single predictor of ischemic stroke (adjusted odds ratio comparing Q4 versus Q1 = 1.64, 95% confidence interval: 1.15–2.32, p = 0.01) after adjustment for other biomarkers and standard stroke risk factors. The Biomarker Risk Score identified a gradient of increasing stroke risk with a greater number of elevated inflammatory/hemostasis biomarkers, and improved the c index significantly compared with standard stroke risk factors (p = 0.02). Among the subset of individuals who met current criteria for “high risk” levels of C-reactive protein (> 3.0 mg/L), the Biomarker Risk Score defined an approximately two-fold gradient of risk. We found no evidence for a relationship between stroke and levels of E-selectin, fibrinogen, tumor necrosis factor-alpha, vascular cell adhesion molecule-1, prothrombin fragment 1+2, Factor VIIC, or plasminogen activator inhibitor-1 antigen (p >0.15). Discussion The findings support the further exploration of multiple-biomarker panels to develop approaches for stratifying an individual’s risk of stroke. PMID:18984425

  10. A Resource for Discovering Specific and Universal Biomarkers for Distributed Stem Cells

    PubMed Central

    Noh, Minsoo; Smith, Janet L.; Huh, Yang Hoon; Sherley, James L.

    2011-01-01

    Specific and universal biomarkers for distributed stem cells (DSCs) have been elusive. A major barrier to discovery of such ideal DSC biomarkers is difficulty in obtaining DSCs in sufficient quantity and purity. To solve this problem, we used cell lines genetically engineered for conditional asymmetric self-renewal, the defining DSC property. In gene microarray analyses, we identified 85 genes whose expression is tightly asymmetric self-renewal associated (ASRA). The ASRA gene signature prescribed DSCs to undergo asymmetric self-renewal to a greater extent than committed progenitor cells, embryonic stem cells, or induced pluripotent stem cells. This delineation has several significant implications. These include: 1) providing experimental evidence that DSCs in vivo undergo asymmetric self-renewal as individual cells; 2) providing an explanation why earlier attempts to define a common gene expression signature for DSCs were unsuccessful; and 3) predicting that some ASRA proteins may be ideal biomarkers for DSCs. Indeed, two ASRA proteins, CXCR6 and BTG2, and two other related self-renewal pattern associated (SRPA) proteins identified in this gene resource, LGR5 and H2A.Z, display unique asymmetric patterns of expression that have a high potential for universal and specific DSC identification. PMID:21818293

  11. Identifying Protein-Calorie Malnutrition Workshop.

    ERIC Educational Resources Information Center

    Walker, Susan S.; Barker, Ellen M.

    Instructional materials are provided for a workshop to enable participants to assist in identifying patients at risk with protein-calorie malnutrition and in corrrecting this nutritional deficiency. Representative topics are nutrients; protein, mineral, and vitamin sources, functions, and deficiency symptoms; malnutrition; nutritional deficiency…

  12. Sweetening the pot: adding glycosylation to the biomarker discovery equation

    PubMed Central

    Drake, Penelope M.; Cho, Wonryeon; Li, Bensheng; Prakobphol, Akraporn; Johansen, Eric; Anderson, N. Leigh; Regnier, Fred E.; Gibson, Bradford W.; Fisher, Susan J.

    2010-01-01

    Background Cancer has profound effects on gene expression, including a cell’s glycosylation machinery. Thus, tumors produce glycoproteins that carry oligosaccharides with structures that are markedly different from the same protein produced by a normal cell. A single protein can have many glycosylation sites that greatly amplify the signals they generate as compared to their protein backbones. Content We survey clinical tests that target carbohydrate modifications. for diagnosing and treating cancer. Next, we present the biological relevance of glycosylation to disease progression by highlighting the role these structures play in adhesion, signaling and metastasis, and then address current methodological approaches to biomarker discovery that capitalize on selectively capturing tumor-associated glycoforms to enrich and identify disease-related candidate analytes. Finally, we discuss emerging technologies—multiple reaction monitoring and lectin-antibody arrays—as potential tools for biomarker validation studies in pursuit of clinically useful tests. Summary The future of carbohydrate-based biomarker studies has arrived. At all stages, from discovery through verification and deployment into clinics, glycosylation should be considered a primary readout or a way of increasing the sensitivity and specificity of protein-based analyses. PMID:19959616

  13. Development of a Multi-Biomarker Disease Activity Test for Rheumatoid Arthritis

    PubMed Central

    Shen, Yijing; Ramanujan, Saroja; Knowlton, Nicholas; Swan, Kathryn A.; Turner, Mary; Sutton, Chris; Smith, Dustin R.; Haney, Douglas J.; Chernoff, David; Hesterberg, Lyndal K.; Carulli, John P.; Taylor, Peter C.; Shadick, Nancy A.; Weinblatt, Michael E.; Curtis, Jeffrey R.

    2013-01-01

    Background Disease activity measurement is a key component of rheumatoid arthritis (RA) management. Biomarkers that capture the complex and heterogeneous biology of RA have the potential to complement clinical disease activity assessment. Objectives To develop a multi-biomarker disease activity (MBDA) test for rheumatoid arthritis. Methods Candidate serum protein biomarkers were selected from extensive literature screens, bioinformatics databases, mRNA expression and protein microarray data. Quantitative assays were identified and optimized for measuring candidate biomarkers in RA patient sera. Biomarkers with qualifying assays were prioritized in a series of studies based on their correlations to RA clinical disease activity (e.g. the Disease Activity Score 28-C-Reactive Protein [DAS28-CRP], a validated metric commonly used in clinical trials) and their contributions to multivariate models. Prioritized biomarkers were used to train an algorithm to measure disease activity, assessed by correlation to DAS and area under the receiver operating characteristic curve for classification of low vs. moderate/high disease activity. The effect of comorbidities on the MBDA score was evaluated using linear models with adjustment for multiple hypothesis testing. Results 130 candidate biomarkers were tested in feasibility studies and 25 were selected for algorithm training. Multi-biomarker statistical models outperformed individual biomarkers at estimating disease activity. Biomarker-based scores were significantly correlated with DAS28-CRP and could discriminate patients with low vs. moderate/high clinical disease activity. Such scores were also able to track changes in DAS28-CRP and were significantly associated with both joint inflammation measured by ultrasound and damage progression measured by radiography. The final MBDA algorithm uses 12 biomarkers to generate an MBDA score between 1 and 100. No significant effects on the MBDA score were found for common comorbidities

  14. Discovery of Colorectal Cancer Biomarker Candidates by Membrane Proteomic Analysis and Subsequent Verification using Selected Reaction Monitoring (SRM) and Tissue Microarray (TMA) Analysis*

    PubMed Central

    Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi

    2014-01-01

    Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the

  15. Discovery of colorectal cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis.

    PubMed

    Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi

    2014-06-01

    Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the

  16. Identifying biomarkers of dietary patterns by using metabolomics123

    PubMed Central

    Derkach, Andriy; Reedy, Jill; Subar, Amy F; Sampson, Joshua N; Albanes, Demetrius; Gu, Fangyi; Kontto, Jukka; Lassale, Camille; Liao, Linda M; Männistö, Satu; Mondul, Alison M; Weinstein, Stephanie J; Irwin, Melinda L; Mayne, Susan T; Stolzenberg-Solomon, Rachael

    2017-01-01

    Background: Healthy dietary patterns that conform to national dietary guidelines are related to lower chronic disease incidence and longer life span. However, the precise mechanisms involved are unclear. Identifying biomarkers of dietary patterns may provide tools to validate diet quality measurement and determine underlying metabolic pathways influenced by diet quality. Objective: The objective of this study was to examine the correlation of 4 diet quality indexes [the Healthy Eating Index (HEI) 2010, the Alternate Mediterranean Diet Score (aMED), the WHO Healthy Diet Indicator (HDI), and the Baltic Sea Diet (BSD)] with serum metabolites. Design: We evaluated dietary patterns and metabolites in male Finnish smokers (n = 1336) from 5 nested case-control studies within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study cohort. Participants completed a validated food-frequency questionnaire and provided a fasting serum sample before study randomization (1985–1988). Metabolites were measured with the use of mass spectrometry. We analyzed cross-sectional partial correlations of 1316 metabolites with 4 diet quality indexes, adjusting for age, body mass index, smoking, energy intake, education, and physical activity. We pooled estimates across studies with the use of fixed-effects meta-analysis with Bonferroni correction for multiple comparisons, and conducted metabolic pathway analyses. Results: The HEI-2010, aMED, HDI, and BSD were associated with 23, 46, 23, and 33 metabolites, respectively (17, 21, 11, and 10 metabolites, respectively, were chemically identified; r-range: −0.30 to 0.20; P = 6 × 10−15 to 8 × 10−6). Food-based diet indexes (HEI-2010, aMED, and BSD) were associated with metabolites correlated with most components used to score adherence (e.g., fruit, vegetables, whole grains, fish, and unsaturated fat). HDI correlated with metabolites related to polyunsaturated fat and fiber components, but not other macro- or micronutrients (e

  17. Comparison of Pancreas Juice Proteins from Cancer Versus Pancreatitis Using Quantitative Proteomic Analysis

    PubMed Central

    Chen, Ru; Pan, Sheng; Cooke, Kelly; Moyes, Kara White; Bronner, Mary P.; Goodlett, David R.; Aebersold, Ruedi; Brentnall, Teresa A.

    2008-01-01

    Objectives Pancreatitis is an inflammatory condition of the pancreas. However, it often shares many molecular features with pancreatic cancer. Biomarkers present in pancreatic cancer frequently occur in the setting of pancreatitis. The efforts to develop diagnostic biomarkers for pancreatic cancer have thus been complicated by the false-positive involvement of pancreatitis. Methods In an attempt to develop protein biomarkers for pancreatic cancer, we previously use quantitative proteomics to identify and quantify the proteins from pancreatic cancer juice. Pancreatic juice is a rich source of proteins that are shed by the pancreatic ductal cells. In this study, we used a similar approach to identify and quantify proteins from pancreatitis juice. Results In total, 72 proteins were identified and quantified in the comparison of pancreatic juice from pancreatitis patients versus pooled normal control juice. Nineteen of the juice proteins were overexpressed, and 8 were underexpressed in pancreatitis juice by at least 2-fold compared with normal pancreatic juice. Of these 27 differentially expressed proteins in pancreatitis, 9 proteins were also differentially expressed in the pancreatic juice from pancreatic cancer patient. Conclusions Identification of these differentially expressed proteins from pancreatitis juice provides useful information for future study of specific pancreatitis-associated proteins and to eliminate potential false-positive biomarkers for pancreatic cancer. PMID:17198186

  18. Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis.

    PubMed

    Chen, Ru; Pan, Sheng; Cooke, Kelly; Moyes, Kara White; Bronner, Mary P; Goodlett, David R; Aebersold, Ruedi; Brentnall, Teresa A

    2007-01-01

    Pancreatitis is an inflammatory condition of the pancreas. However, it often shares many molecular features with pancreatic cancer. Biomarkers present in pancreatic cancer frequently occur in the setting of pancreatitis. The efforts to develop diagnostic biomarkers for pancreatic cancer have thus been complicated by the false-positive involvement of pancreatitis. In an attempt to develop protein biomarkers for pancreatic cancer, we previously use quantitative proteomics to identify and quantify the proteins from pancreatic cancer juice. Pancreatic juice is a rich source of proteins that are shed by the pancreatic ductal cells. In this study, we used a similar approach to identify and quantify proteins from pancreatitis juice. In total, 72 proteins were identified and quantified in the comparison of pancreatic juice from pancreatitis patients versus pooled normal control juice. Nineteen of the juice proteins were overexpressed, and 8 were underexpressed in pancreatitis juice by at least 2-fold compared with normal pancreatic juice. Of these 27 differentially expressed proteins in pancreatitis, 9 proteins were also differentially expressed in the pancreatic juice from pancreatic cancer patient. Identification of these differentially expressed proteins from pancreatitis juice provides useful information for future study of specific pancreatitis-associated proteins and to eliminate potential false-positive biomarkers for pancreatic cancer.

  19. Comparison of Protein Immunoprecipitation-Multiple Reaction Monitoring with ELISA for Assay of Biomarker Candidates in Plasma

    PubMed Central

    2013-01-01

    Quantitative analysis of protein biomarkers in plasma is typically done by ELISA, but this method is limited by the availability of high-quality antibodies. An alternative approach is protein immunoprecipitation combined with multiple reaction monitoring mass spectrometry (IP-MRM). We compared IP-MRM to ELISA for the analysis of six colon cancer biomarker candidates (metalloproteinase inhibitor 1 (TIMP1), cartilage oligomeric matrix protein (COMP), thrombospondin-2 (THBS2), endoglin (ENG), mesothelin (MSLN) and matrix metalloproteinase-9 (MMP9)) in plasma from colon cancer patients and noncancer controls. Proteins were analyzed by multiplex immunoprecipitation from plasma with the ELISA capture antibodies, further purified by SDS-PAGE, digested and analyzed by stable isotope dilution MRM. IP-MRM provided linear responses (r = 0.978–0.995) between 10 and 640 ng/mL for the target proteins spiked into a “mock plasma” matrix consisting of 60 mg/mL bovine serum albumin. Measurement variation (coefficient of variation at the limit of detection) for IP-MRM assays ranged from 2.3 to 19%, which was similar to variation for ELISAs of the same samples. IP-MRM and ELISA measurements for all target proteins except ENG were highly correlated (r = 0.67–0.97). IP-MRM with high-quality capture antibodies thus provides an effective alternative method to ELISA for protein quantitation in biological fluids. PMID:24224610

  20. The study of protein biomarkers to understand the biochemical processes underlying beef color development in young bulls.

    PubMed

    Gagaoua, Mohammed; Terlouw, E M Claudia; Picard, Brigitte

    2017-12-01

    This study investigates relationships between 21 biomarkers and meat color traits of Longissimus thoracis muscles of young Aberdeen Angus and Limousin bulls. The relationships found allowed to propose metabolic processes underlying meat color. The color coordinates were related with several biomarkers. The relationships were in some cases breed-dependent and the variability explained in the regression models varied between 31 and 56%. The correlations between biomarkers and color parameters were sometimes opposite between breeds. The PCA using the 21 biomarkers and the instrumental color coordinates showed that these variables discriminated efficiently between the two studied breeds. Results are coherent with earlier studies on other beef breeds showing that several proteins belonging to different but partly related biological pathways involved in muscle contraction, metabolism, heat stress and apoptosis are related to beef color. The results suggest that in future, biomarkers may be used to classify meat cuts sampled early post-mortem according to their forthcoming color. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biomarker Analysis of Samples Visually Identified as Microbial in the Eocene Green River Formation: An Analogue for Mars.

    PubMed

    Olcott Marshall, Alison; Cestari, Nicholas A

    2015-09-01

    One of the major exploration targets for current and future Mars missions are lithofacies suggestive of biotic activity. Although such lithofacies are not confirmation of biotic activity, they provide a way to identify samples for further analyses. To test the efficacy of this approach, we identified carbonate samples from the Eocene Green River Formation as "microbial" or "non-microbial" based on the macroscale morphology of their laminations. These samples were then crushed and analyzed by gas chromatography/mass spectroscopy (GC/MS) to determine their lipid biomarker composition. GC/MS analysis revealed that carbonates visually identified as "microbial" contained a higher concentration of more diverse biomarkers than those identified as "non-microbial," suggesting that this could be a viable detection strategy for selecting samples for further analysis or caching on Mars.

  2. Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome.

    PubMed

    Marimuthu, Arivusudar; Chavan, Sandip; Sathe, Gajanan; Sahasrabuddhe, Nandini A; Srikanth, Srinivas M; Renuse, Santosh; Ahmad, Sartaj; Radhakrishnan, Aneesha; Barbhuiya, Mustafa A; Kumar, Rekha V; Harsha, H C; Sidransky, David; Califano, Joseph; Pandey, Akhilesh; Chatterjee, Aditi

    2013-11-01

    Protein biomarker discovery for early detection of head and neck squamous cell carcinoma (HNSCC) is a crucial unmet need to improve patient outcomes. Mass spectrometry-based proteomics has emerged as a promising tool for identification of biomarkers in different cancer types. Proteins secreted from cancer cells can serve as potential biomarkers for early diagnosis. In the current study, we have used isobaric tag for relative and absolute quantitation (iTRAQ) labeling methodology coupled with high resolution mass spectrometry to identify and quantitate secreted proteins from a panel of head and neck carcinoma cell lines. In all, we identified 2,472 proteins, of which 225 proteins were secreted at higher or lower abundance in HNSCC-derived cell lines. Of these, 148 were present in higher abundance and 77 were present in lower abundance in the cancer-cell derived secretome. We detected a higher abundance of some previously known markers for HNSCC including insulin like growth factor binding protein 3, IGFBP3 (11-fold) and opioid growth factor receptor, OGFR (10-fold) demonstrating the validity of our approach. We also identified several novel secreted proteins in HNSCC including olfactomedin-4, OLFM4 (12-fold) and hepatocyte growth factor activator, HGFA (5-fold). IHC-based validation was conducted in HNSCC using tissue microarrays which revealed overexpression of IGFBP3 and OLFM4 in 70% and 75% of the tested cases, respectively. Our study illustrates quantitative proteomics of secretome as a robust approach for identification of potential HNSCC biomarkers. This article is part of a Special Issue entitled: An Updated Secretome. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Characterization of the liver tissue interstitial fluid (TIF) proteome indicates potential for application in liver disease biomarker discovery.

    PubMed

    Sun, Wei; Ma, Jie; Wu, Songfeng; Yang, Dong; Yan, Yujuan; Liu, Kehui; Wang, Jinglan; Sun, Longqin; Chen, Ning; Wei, Handong; Zhu, Yunping; Xing, Baocai; Zhao, Xiaohang; Qian, Xiaohong; Jiang, Ying; He, Fuchu

    2010-02-05

    Tissue interstitial fluid (TIF) forms the interface between circulating body fluids and intracellular fluid. Pathological alterations of liver cells could be reflected in TIF, making it a promising source of liver disease biomarkers. Mouse liver TIF was extracted, separated by SDS-PAGE, analyzed by linear ion trap mass spectrometer, and 1450 proteins were identified. These proteins may be secreted, shed from membrane vesicles, or represent cellular breakdown products. They show different profiling patterns, quantities, and possibly modification/cleavage of intracellular proteins. The high solubility and even distribution of liver TIF supports its suitability for proteome analysis. Comparison of mouse liver TIF data with liver tissue and plasma proteome data identified major proteins that might be released from liver to plasma and serve as blood biomarkers of liver origin. This result was partially supported by comparison of human liver TIF data with human liver and plasma proteome data. Paired TIFs from tumor and nontumor liver tissues of a hepatocellular carcinoma patient were analyzed and the profile of subtracted differential proteins supports the potential for biomarker discovery in TIF. This study is the first analysis of the liver TIF proteome and provides a foundation for further application of TIF in liver disease biomarker discovery.

  4. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi.

    PubMed

    Boonla, Chanchai; Tosukhowong, Piyaratana; Spittau, Björn; Schlosser, Andreas; Pimratana, Chaowat; Krieglstein, Kerstin

    2014-02-15

    To uncover whether urinary proteins are incorporated into stones, the proteomic profiles of kidney stones and urine collected from the same patients have to be explored. We employed 1D-PAGE and nanoHPLC-ESI-MS/MS to analyze the proteomes of kidney stone matrix (n=16), nephrolithiatic urine (n=14) and healthy urine (n=3). We identified 62, 66 and 22 proteins in stone matrix, nephrolithiatic urine and healthy urine, respectively. Inflammation- and fibrosis-associated proteins were frequently detected in the stone matrix and nephrolithiatic urine. Eighteen proteins were exclusively found in the stone matrix and nephrolithiatic urine, considered as candidate biomarkers for kidney stone formation. S100A8 and fibronectin, representatives of inflammation and fibrosis, respectively, were up-regulated in nephrolithiasis renal tissues. S100A8 was strongly expressed in infiltrated leukocytes. Fibronectin was over-expressed in renal tubular cells. S100A8 and fibronectin were immunologically confirmed to exist in nephrolithiatic urine and stone matrix, but in healthy urine they were undetectable. Conclusion, both kidney stones and urine obtained from the same patients greatly contained inflammatory and fibrotic proteins. S100A8 and fibronectin were up-regulated in stone-baring kidneys and nephrolithiatic urine. Therefore, inflammation and fibrosis are suggested to be involved in the formation of kidney calculi. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    NASA Astrophysics Data System (ADS)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  6. Identification of ovarian cancer-associated proteins in symptomatic women: A novel method for semi-quantitative plasma proteomics.

    PubMed

    Shield-Artin, Kristy L; Bailey, Mark J; Oliva, Karen; Liovic, Ana K; Barker, Gillian; Dellios, Nicole L; Reisman, Simone; Ayhan, Mustafa; Rice, Gregory E

    2012-04-01

    To evaluate the utility of an enhanced biomarker discovery approach in order to identify potential biomarkers relevant to ovarian cancer detection. We combined immuno-depletion, liquid-phase IEF, 1D-DIGE, MALDI-TOF/MS and LC-MS/MS to identify differentially expressed proteins in the plasma of symptomatic ovarian cancer patients, stratified by stage, compared to samples obtained from normal subjects. We demonstrate that this approach is a practical alternative to traditional 2D gel techniques and that it has some advantages, most notably increased protein capacity. Proteins were identified in all 76 bands excised from the gels in this project and confirmed the cancer-associated expression of several well-established biomarkers of ovarian cancer. These included C-reactive protein (CRP), haptoglobin, alpha-2 macroglobulin and A1A2. We also identified new ovarian cancer candidate biomarkers, Protein S100-A9 (S100A9) and multimerin-2. The cancer-associated differential expression of CRP and S100A9 was further confirmed by Western blot and ELISA. The methods developed in this study allow for the increased loading of plasma proteins into the analytical stream when compared to traditional 2D-DIGE. This increased protein identification sensitivity allowed us to identify new putative ovarian cancer biomarkers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. IL-11 and CCL-1: Novel Protein Diagnostic Biomarkers of Lung Adenocarcinoma in Bronchoalveolar Lavage Fluid (BALF).

    PubMed

    Pastor, Maria Delores; Nogal, Ana; Molina-Pinelo, Sonia; Quintanal-Villalonga, Álvaro; Meléndez, Ricardo; Ferrer, I; Romero-Romero, Beatrice; De Miguel, Maria José; López-Campos, José Luis; Corral, Jesús; García-Carboner, Rocío; Carnero, Amancio; Paz-Ares, Luis

    2016-12-01

    Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are smoking-related diseases, with the presence of COPD itself increasing the risk for development of LC, probably owing to underlying inflammation. LC is typically detected at late stages of the disease and carries a poor prognosis. There is an unmet need for methods to facilitate the early detection of LC in high-risk subjects such as smokers. The expression of inflammatory proteins in bronchoalveolar lavage fluid (BALF) samples was studied by antibody arrays in a prospective cohort of 60 smokers of more than 30 pack-years divided into four groups (control, patients with LC, patients with COPD, and patients with LC plus COPD). Relevant biomarkers were validated by Western blot. Additional validation with enzyme-linked immunosorbent assay (ELISA) was carried out on two independent controlled cohorts of 139 patients (control, patients with LC, patients with COPD, and patients with LC plus COPD) and 160 patients (control and patients with LC of all histological types). A total of 16 differentially expressed proteins in samples from patients with LC, COPD, and LC plus COPD were identified by antibody arrays and validated by Western blot and ELISA. C-C motif chemokine ligand 1 (CCL-1) and interleukin-11 (IL)-11 were selectively expressed in samples from patients with adenocarcinoma with or without COPD (p < 0.005). These proteins exhibited a remarkable diagnostic performance for lung adenocarcinoma in an independent cohort of 139 patients. Receiver operating characteristic curves showed that the optimum diagnostic cutoff value for IL-11 was 42 pg/mL (area under the curve = 0.93 [95% confidence interval: 0.896-0.975], sensitivity 90%, specificity 86%), whereas for CCL-1 it was 39.5 pg/mL (0.83 [95% confidence interval: 0.749-0.902], sensitivity 83%, and specificity 74%). Further validation of the ELISA biomarkers at the aforementioned cutoffs was performed in an additional cohort of 160 patients (20

  8. Biomarkers of systemic inflammation in farmers with musculoskeletal disorders; a plasma proteomic study.

    PubMed

    Ghafouri, Bijar; Carlsson, Anders; Holmberg, Sara; Thelin, Anders; Tagesson, Christer

    2016-05-10

    Farmers have an increased risk for musculoskeletal disorders (MSD) such as osteoarthritis of the hip, low back pain, and neck and upper limb complaints. The underlying mechanisms are not fully understood. Work-related exposures and inflammatory responses might be involved. Our objective was to identify plasma proteins that differentiated farmers with MSD from rural referents. Plasma samples from 13 farmers with MSD and rural referents were included in the investigation. Gel based proteomics was used for protein analysis and proteins that differed significantly between the groups were identified by mass spectrometry. In total, 15 proteins differed significantly between the groups. The levels of leucine-rich alpha-2-glycoprotein, haptoglobin, complement factor B, serotransferrin, one isoform of kininogen, one isoform of alpha-1-antitrypsin, and two isoforms of hemopexin were higher in farmers with MSD than in referents. On the other hand, the levels of alpha-2-HS-glycoprotein, alpha-1B-glycoprotein, vitamin D- binding protein, apolipoprotein A1, antithrombin, one isoform of kininogen, and one isoform of alpha-1-antitrypsin were lower in farmers than in referents. Many of the identified proteins are known to be involved in inflammation. Farmers with MSD had altered plasma levels of protein biomarkers compared to the referents, indicating that farmers with MSD may be subject to a more systemic inflammation. It is possible that the identified differences of proteins may give clues to the biochemical changes occurring during the development and progression of MSD in farmers, and that one or several of these protein biomarkers might eventually be used to identify and prevent work-related MSD.

  9. Sepsis biomarkers in neutropaenic systemic inflammatory response syndrome patients on standard care wards.

    PubMed

    Ratzinger, Franz; Haslacher, Helmuth; Perkmann, Thomas; Schmetterer, Klaus G; Poeppl, Wolfgang; Mitteregger, Dieter; Dorffner, Georg; Burgmann, Heinz

    2015-08-01

    Neutropaenic patients are at a high risk of contracting severe infections. In particular, in these patients, parameters with a high negative predictive value are desirable for excluding infection or bacteraemia. This study evaluated sepsis biomarkers in neutropaenic patients suffering from systemic inflammatory response syndrome (SIRS). Further, the predictive capacities of evaluated biomarkers in neutropaenic SIRS patients were compared to non-neutropaenic SIRS patients. In this prospective observational cohort study, patients with clinically suspected sepsis were screened. The predictive capacities of procalcitonin (PCT), C-reactive protein and lipopolysaccharide-binding protein (LBP) in neutropaenic SIRS patients were evaluated in terms of their potential to identify infection or bacteraemia and were compared to results for non-neutropaenic SIRS patients. To select an appropriate control cohort, propensity score matching was applied, balancing confounding factors between neutropaenic and non-neutropaenic SIRS patients. Of 3370 prospectively screened patients with suspected infection, 51 patients suffered from neutropaenic SIRS. For the identification of infection, none of the assessed biomarkers presented a clinically relevant discriminatory potency. Lipopolysaccharide-binding protein and PCT demonstrated discriminatory capacity to discriminate between nonbacteraemic and bacteraemic SIRS in patients with neutropaenia [receiver-operating characteristics-area under the curves (ROC-AUCs): 0.860, 0.818]. In neutropaenic SIRS patients, LBP had a significantly better ROC-AUC than in a comparable non-neutropaenic patient cohort for identifying bacteraemia (P = 0.01). In neutropaenic SIRS patients, none of the evaluated biomarkers was able to adequately identify infection. LBP and PCT presented a good performance in identifying bacteraemia. Therefore, these markers could be used for screening purposes to increase the pretest probability of blood culture analysis.

  10. Multiplexing of miniaturized planar antibody arrays for serum protein profiling--a biomarker discovery in SLE nephritis.

    PubMed

    Petersson, Linn; Dexlin-Mellby, Linda; Bengtsson, Anders A; Sturfelt, Gunnar; Borrebaeck, Carl A K; Wingren, Christer

    2014-06-07

    In the quest to decipher disease-associated biomarkers, miniaturized and multiplexed antibody arrays may play a central role in generating protein expression profiles, or protein maps, of crude serum samples. In this conceptual study, we explored a novel, 4-times larger pen design, enabling us to, in a unique manner, simultaneously print 48 different reagents (antibodies) as individual 78.5 μm(2) (10 μm in diameter) sized spots at a density of 38,000 spots cm(-2) using dip-pen nanolithography technology. The antibody array set-up was interfaced with a high-resolution fluorescent-based scanner for sensitive sensing. The performance and applicability of this novel 48-plex recombinant antibody array platform design was demonstrated in a first clinical application targeting SLE nephritis, a severe chronic autoimmune connective tissue disorder, as the model disease. To this end, crude, directly biotinylated serum samples were targeted. The results showed that the miniaturized and multiplexed array platform displayed adequate performance, and that SLE-associated serum biomarker panels reflecting the disease process could be deciphered, outlining the use of miniaturized antibody arrays for disease proteomics and biomarker discovery.

  11. Schizophrenia proteomics: biomarkers on the path to laboratory medicine?

    PubMed Central

    Lakhan, Shaheen Emmanuel

    2006-01-01

    Over two million Americans are afflicted with schizophrenia, a debilitating mental health disorder with a unique symptomatic and epidemiological profile. Genomics studies have hinted towards candidate schizophrenia susceptibility chromosomal loci and genes. Modern proteomic tools, particularly mass spectrometry and expression scanning, aim to identify both pathogenic-revealing and diagnostically significant biomarkers. Only a few studies on basic proteomics have been conducted for psychiatric disorders relative to the plethora of cancer specific experiments. One such proteomic utility enables the discovery of proteins and biological marker fingerprinting profiling techniques (SELDI-TOF-MS), and then subjects them to tandem mass spectrometric fragmentation and de novo protein sequencing (MALDI-TOF/TOF-MS) for the accurate identification and characterization of the proteins. Such utilities can explain the pathogenesis of neuro-psychiatric disease, provide more objective testing methods, and further demonstrate a biological basis to mental illness. Although clinical proteomics in schizophrenia have yet to reveal a biomarker with diagnostic specificity, methods that better characterize the disorder using endophenotypes can advance findings. Schizophrenia biomarkers could potentially revolutionize its psychopharmacology, changing it into a more hypothesis and genomic/proteomic-driven science. PMID:16846510

  12. Proteomic Workflows for Biomarker Identification Using Mass Spectrometry — Technical and Statistical Considerations during Initial Discovery

    PubMed Central

    Orton, Dennis J.; Doucette, Alan A.

    2013-01-01

    Identification of biomarkers capable of differentiating between pathophysiological states of an individual is a laudable goal in the field of proteomics. Protein biomarker discovery generally employs high throughput sample characterization by mass spectrometry (MS), being capable of identifying and quantifying thousands of proteins per sample. While MS-based technologies have rapidly matured, the identification of truly informative biomarkers remains elusive, with only a handful of clinically applicable tests stemming from proteomic workflows. This underlying lack of progress is attributed in large part to erroneous experimental design, biased sample handling, as well as improper statistical analysis of the resulting data. This review will discuss in detail the importance of experimental design and provide some insight into the overall workflow required for biomarker identification experiments. Proper balance between the degree of biological vs. technical replication is required for confident biomarker identification. PMID:28250400

  13. Differential representation of liver proteins in obese human subjects suggests novel biomarkers and promising targets for drug development in obesity.

    PubMed

    Caira, Simonetta; Iannelli, Antonio; Sciarrillo, Rosaria; Picariello, Gianluca; Renzone, Giovanni; Scaloni, Andrea; Addeo, Pietro

    2017-12-01

    The proteome of liver biopsies from human obese (O) subjects has been compared to those of nonobese (NO) subjects using two-dimensional gel electrophoresis (2-DE). Differentially represented proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based peptide mass fingerprinting (PMF) and nanoflow-liquid chromatography coupled to electrospray-tandem mass spectrometry (nLC-ESI-MS/MS). Overall, 61 gene products common to all of the liver biopsies were identified within 65 spots, among which 25 ones were differently represented between O and NO subjects. In particular, over-representation of short-chain acyl-CoA dehydrogenase, Δ(3,5)-Δ(2,4)dienoyl-CoA isomerase, acetyl-CoA acetyltransferase, glyoxylate reductase/hydroxypyruvate reductase, fructose-biphosphate aldolase B, peroxiredoxin I, protein DJ-1, catalase, α- and β-hemoglobin subunits, 3-mercaptopyruvate S-transferase, calreticulin, aminoacylase 1, phenazine biosynthesis-like domain-containing protein and a form of fatty acid-binding protein, together with downrepresentation of glutamate dehydrogenase, glutathione S-transferase A1, S-adenosylmethionine synthase 1A and a form of apolipoprotein A-I, was associated with the obesity condition. Some of these metabolic enzymes and antioxidant proteins have already been identified as putative diagnostic markers of liver dysfunction in animal models of steatosis or obesity, suggesting additional investigations on their role in these syndromes. Their differential representation in human liver was suggestive of their consideration as obesity human biomarkers and for the development of novel antiobesity drugs.

  14. The clinical performance evaluation of novel protein chips for eleven biomarkers detection and the diagnostic model study.

    PubMed

    Luo, Yuan; Zhu, Xu; Zhang, Pengjun; Shen, Qian; Wang, Zi; Wen, Xinyu; Wang, Ling; Gao, Jing; Dong, Jin; Yang, Caie; Wu, Tangming; Zhu, Zheng; Tian, Yaping

    2015-01-01

    We aimed to develop and validate two novel protein chips, which are based on microarray chemiluminescence immunoassay and can simultaneously detected 11 biomarkers, and then to evaluate their clinical diagnostic value by comparing with the traditional methods. Protein chips were evaluated for limit of detection, specificity, common interferences, linearity, precision and accuracy. 11 biomarkers were simultaneously detected by traditional methods and protein chips in 3683 samples, which included 1723 cancer patients, 1798 benign diseases patients and 162 healthy controls. After assay validation, protein chips demonstrated high sensitivity, high specificity, good linearity, low imprecision and were free of common interferences. Compared with the traditional methods, protein chips have good correlation in the detection of all the 13 kinds of biomarkers (r≥0.935, P<0.001). For specific cancer detection, there were no statistically significant differences between the traditional method and novel protein chips, except that male protein chip showed significantly better diagnostic value on NSE detection (P=0.004) but significantly worse value on pro-GRP detection (P=0.012), female chip showed significantly better diagnostic value on pro-GRP detection (P=0.005). Furthermore, both male and female multivariate diagnostic models had significantly better diagnostic value than single detection of PGI, PG II, pro-GRP, NSE and CA125 (P<0.05). In addition, male models had significantly better diagnostic value than single CA199 and free-PSA (P<0.05), while female models observed significantly better diagnostic value than single CA724 and β-HCG (P<0.05). For total disease or cancer detection, the AUC of multivariate logistic regression for the male and female disease detection was 0.981 (95% CI: 0.975-0.987) and 0.836 (95% CI: 0.798-0.874), respectively. While, that for total cancer detection was 0.691 (95% CI: 0.666-0.717) and 0.753 (95% CI: 0.731-0.775), respectively. The new

  15. The clinical performance evaluation of novel protein chips for eleven biomarkers detection and the diagnostic model study

    PubMed Central

    Luo, Yuan; Zhu, Xu; Zhang, Pengjun; Shen, Qian; Wang, Zi; Wen, Xinyu; Wang, Ling; Gao, Jing; Dong, Jin; Yang, Caie; Wu, Tangming; Zhu, Zheng; Tian, Yaping

    2015-01-01

    We aimed to develop and validate two novel protein chips, which are based on microarray chemiluminescence immunoassay and can simultaneously detected 11 biomarkers, and then to evaluate their clinical diagnostic value by comparing with the traditional methods. Protein chips were evaluated for limit of detection, specificity, common interferences, linearity, precision and accuracy. 11 biomarkers were simultaneously detected by traditional methods and protein chips in 3683 samples, which included 1723 cancer patients, 1798 benign diseases patients and 162 healthy controls. After assay validation, protein chips demonstrated high sensitivity, high specificity, good linearity, low imprecision and were free of common interferences. Compared with the traditional methods, protein chips have good correlation in the detection of all the 13 kinds of biomarkers (r≥0.935, P<0.001). For specific cancer detection, there were no statistically significant differences between the traditional method and novel protein chips, except that male protein chip showed significantly better diagnostic value on NSE detection (P=0.004) but significantly worse value on pro-GRP detection (P=0.012), female chip showed significantly better diagnostic value on pro-GRP detection (P=0.005). Furthermore, both male and female multivariate diagnostic models had significantly better diagnostic value than single detection of PGI, PG II, pro-GRP, NSE and CA125 (P<0.05). In addition, male models had significantly better diagnostic value than single CA199 and free-PSA (P<0.05), while female models observed significantly better diagnostic value than single CA724 and β-HCG (P<0.05). For total disease or cancer detection, the AUC of multivariate logistic regression for the male and female disease detection was 0.981 (95% CI: 0.975-0.987) and 0.836 (95% CI: 0.798-0.874), respectively. While, that for total cancer detection was 0.691 (95% CI: 0.666-0.717) and 0.753 (95% CI: 0.731-0.775), respectively. The new

  16. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

    PubMed Central

    Godonoga, Maia; Lin, Ting-Yu; Oshima, Azusa; Sumitomo, Koji; Tang, Marco S. L.; Cheung, Yee-Wai; Kinghorn, Andrew B.; Dirkzwager, Roderick M.; Zhou, Cunshan; Kuzuya, Akinori; Tanner, Julian A.; Heddle, Jonathan G.

    2016-01-01

    DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target protein. Captured PfLDH retained enzymatic activity and protein-aptamer binding was observed dynamically using high-speed AFM. This work demonstrates the ability of DNA aptamers to recognise a malaria biomarker whilst being integrated within a supramolecular DNA scaffold, opening new possibilities for malaria diagnostic approaches based on DNA nanotechnology. PMID:26891622

  17. Protein S100B in umbilical cord blood as a potential biomarker of hypoxic-ischemic encephalopathy in asphyxiated newborns.

    PubMed

    Zaigham, Mehreen; Lundberg, Fredrik; Olofsson, Per

    2017-09-01

    Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating condition resulting from a sustained lack of oxygen during birth. The interest in identifying a relevant biomarker of HIE has thrown into limelight the role of protein S100B as a clinical diagnostic marker of hypoxic brain damage in neonates. To evaluate the diagnostic value of protein S100B, measured in umbilical cord blood immediately after birth, as a useful biomarker in the diagnosis of HIE Sarnat stages II-III as well as a marker for long-term mortality and morbidity. Protein S100B was analyzed in cord blood sampled at birth from 13 newborns later diagnosed with stage II-III HIE and compared with 21 healthy controls. S100B concentrations were related to cord artery pH, amplitude-integrated electroencephalography (aEEG), stage of HIE, and death/sequelae up to an age of 6years. Both parametric and non-parametric statistics were used with a two-sided P<0.05 considered significant. The difference in S100B concentration was marginally statistically significant between HIE cases and controls (P=0.056). Cord blood acidosis (P=0.046), aEEG pattern severity (P=0.030), HIE severity (P=0.027), and condition at 6-year follow-up (healthy/permanent sequelae/death; P=0.027) were all related to an increase in S100B concentration. Protein S100B in neonates suffering from HIE stages II-III appeared elevated in umbilical cord blood at birth. The S100B concentrations were positively associated to the severity of disease and the risk of suffering from neurodevelopmental sequelae and even death. Copyright © 2017. Published by Elsevier B.V.

  18. Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread.

    PubMed

    Spreafico, Filippo; Bongarzone, Italia; Pizzamiglio, Sara; Magni, Ruben; Taverna, Elena; De Bortoli, Maida; Ciniselli, Chiara M; Barzanò, Elena; Biassoni, Veronica; Luchini, Alessandra; Liotta, Lance A; Zhou, Weidong; Signore, Michele; Verderio, Paolo; Massimino, Maura

    2017-07-11

    Central nervous system (CNS) tumors are the most common solid tumors in childhood. Since the sensitivity of combined cerebrospinal fluid (CSF) cytology and radiological neuroimaging in detecting meningeal metastases remains relatively low, we sought to characterize the CSF proteome of patients with CSF tumors to identify biomarkers predictive of metastatic spread. CSF samples from 27 children with brain tumors and 13 controls (extra-CNS non-Hodgkin lymphoma) were processed using core-shell hydrogel nanoparticles, and analyzed with reverse-phase liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS). Candidate proteins were identified with Fisher's exact test and/or a univariate logistic regression model. Reverse phase protein array (RPPA), Western blot (WB), and ELISA were used in the training set and in an independent set of CFS samples (60 cases, 14 controls) to validate our discovery findings. Among the 558 non-redundant proteins identified by LC-MS/MS, 147 were missing from the CSF database at http://www.biosino.org. Fourteen of the 26 final top-candidate proteins were chosen for validation with WB, RPPA and ELISA methods. Six proteins (type 1 collagen, insulin-like growth factor binding protein 4, procollagen C-endopeptidase enhancer 1, glial cell-line derived neurotrophic factor receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, neural proliferation and differentiation control protein-1) revealed the ability to discriminate metastatic cases from controls. Combining a unique dataset of CSFs from pediatric CNS tumors with a novel enabling nanotechnology led us to identify CSF proteins potentially related to metastatic status.

  19. Identification of specific bovine blood biomarkers with a non-targeted approach using HPLC ESI tandem mass spectrometry.

    PubMed

    Lecrenier, M C; Marbaix, H; Dieu, M; Veys, P; Saegerman, C; Raes, M; Baeten, V

    2016-12-15

    Animal by-products are valuable protein sources in animal nutrition. Among them are blood products and blood meal, which are used as high-quality material for their beneficial effects on growth and health. Within the framework of the feed ban relaxation, the development of complementary methods in order to refine the identification of processed animal proteins remains challenging. The aim of this study was to identify specific biomarkers that would allow the detection of bovine blood products and processed animal proteins using tandem mass spectrometry. Seventeen biomarkers were identified: nine peptides for bovine plasma powder; seven peptides for bovine haemoglobin powder, including six peptides for bovine blood meal; and one peptide for porcine blood. They were not detected in several commercial compound feed or feed materials, such as blood by-products of other animal origins, milk-derived products and fish meal. These biomarkers could be used for developing a species-specific and blood-specific detection method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Identification of MicroRNA as Sepsis Biomarker Based on miRNAs Regulatory Network Analysis

    PubMed Central

    Huang, Jie; Sun, Zhandong; Yan, Wenying; Zhu, Yujie; Lin, Yuxin; Chen, Jiajai; Shen, Bairong

    2014-01-01

    Sepsis is regarded as arising from an unusual systemic response to infection but the physiopathology of sepsis remains elusive. At present, sepsis is still a fatal condition with delayed diagnosis and a poor outcome. Many biomarkers have been reported in clinical application for patients with sepsis, and claimed to improve the diagnosis and treatment. Because of the difficulty in the interpreting of clinical features of sepsis, some biomarkers do not show high sensitivity and specificity. MicroRNAs (miRNAs) are small noncoding RNAs which pair the sites in mRNAs to regulate gene expression in eukaryotes. They play a key role in inflammatory response, and have been validated to be potential sepsis biomarker recently. In the present work, we apply a miRNA regulatory network based method to identify novel microRNA biomarkers associated with the early diagnosis of sepsis. By analyzing the miRNA expression profiles and the miRNA regulatory network, we obtained novel miRNAs associated with sepsis. Pathways analysis, disease ontology analysis, and protein-protein interaction network (PIN) analysis, as well as ROC curve, were exploited to testify the reliability of the predicted miRNAs. We finally identified 8 novel miRNAs which have the potential to be sepsis biomarkers. PMID:24809055

  1. Identifying Key Attributes for Protein Beverages.

    PubMed

    Oltman, A E; Lopetcharat, K; Bastian, E; Drake, M A

    2015-06-01

    This study identified key attributes of protein beverages and evaluated effects of priming on liking of protein beverages. An adaptive choice-based conjoint study was conducted along with Kano analysis to gain insight on protein beverage consumers (n = 432). Attributes evaluated included label claim, protein type, amount of protein, carbohydrates, sweeteners, and metabolic benefits. Utility scores for levels and importance scores for attributes were determined. Subsequently, two pairs of clear acidic whey protein beverages were manufactured that differed by age of protein source or the amount of whey protein per serving. Beverages were evaluated by 151 consumers on two occasions with or without priming statements. One priming statement declared "great flavor," the other priming statement declared 20 g protein per serving. A two way analysis of variance was applied to discern the role of each priming statement. The most important attribute for protein beverages was sweetener type, followed by amount of protein, followed by type of protein followed by label claim. Beverages with whey protein, naturally sweetened, reduced sugar and ≥15 g protein per serving were most desired. Three consumer clusters were identified, differentiated by their preferences for protein type, sweetener and amount of protein. Priming statements positively impacted concept liking (P < 0.05) but had no effect on overall liking (P > 0.05). Consistent with trained panel profiles of increased cardboard flavor with higher protein content, consumers liked beverages with 10 g protein more than beverages with 20 g protein (6.8 compared with 5.7, P < 0.05). Protein beverages must have desirable flavor for wide consumer appeal. © 2015 Institute of Food Technologists®

  2. Collecting Protein Biomarkers in Breath Using Electret Filters: A Preliminary Method on New Technical Model and Human Study.

    PubMed

    Li, Wang; Pi, Xitian; Qiao, Panpan; Liu, Hongying

    2016-01-01

    Biomarkers in exhaled breath are useful for respiratory disease diagnosis in human volunteers. Conventional methods that collect non-volatile biomarkers, however, necessitate an extensive dilution and sanitation processes that lowers collection efficiencies and convenience of use. Electret filter emerged in recent decade to collect virus biomarkers in exhaled breath given its simplicity and effectiveness. To investigate the capability of electret filters to collect protein biomarkers, a model that consists of an atomizer that produces protein aerosol and an electret filter that collects albumin and carcinoembryonic antigen-a typical biomarker in lung cancer development- from the atomizer is developed. A device using electret filter as the collecting medium is designed to collect human albumin from exhaled breath of 6 volunteers. Comparison of the collecting ability between the electret filter method and other 2 reported methods is finally performed based on the amounts of albumin collected from human exhaled breath. In conclusion, a decreasing collection efficiency ranging from 17.6% to 2.3% for atomized albumin aerosol and 42% to 12.5% for atomized carcinoembryonic antigen particles is found; moreover, an optimum volume of sampling human exhaled breath ranging from 100 L to 200 L is also observed; finally, the self-designed collecting device shows a significantly better performance in collecting albumin from human exhaled breath than the exhaled breath condensate method (p<0.05) but is not significantly more effective than reported 3-stage impactor method (p>0.05). In summary, electret filters are potential in collecting non-volatile biomarkers in human exhaled breath not only because it was simpler, cheaper and easier to use than traditional methods but also for its better collecting performance.

  3. Integration of co-localized glandular morphometry and protein biomarker expression in immunofluorescent images for prostate cancer prognosis

    NASA Astrophysics Data System (ADS)

    Scott, Richard; Khan, Faisal M.; Zeineh, Jack; Donovan, Michael; Fernandez, Gerardo

    2015-03-01

    Immunofluorescent (IF) image analysis of tissue pathology has proven to be extremely valuable and robust in developing prognostic assessments of disease, particularly in prostate cancer. There have been significant advances in the literature in quantitative biomarker expression as well as characterization of glandular architectures in discrete gland rings. However, while biomarker and glandular morphometric features have been combined as separate predictors in multivariate models, there is a lack of integrative features for biomarkers co-localized within specific morphological sub-types; for example the evaluation of androgen receptor (AR) expression within Gleason 3 glands only. In this work we propose a novel framework employing multiple techniques to generate integrated metrics of morphology and biomarker expression. We demonstrate the utility of the approaches in predicting clinical disease progression in images from 326 prostate biopsies and 373 prostatectomies. Our proposed integrative approaches yield significant improvements over existing IF image feature metrics. This work presents some of the first algorithms for generating innovative characteristics in tissue diagnostics that integrate co-localized morphometry and protein biomarker expression.

  4. Development of protein biomarkers in cerebrospinal fluid for secondary progressive multiple sclerosis using selected reaction monitoring mass spectrometry (SRM-MS)

    PubMed Central

    2012-01-01

    Background Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS). It involves damage to the myelin sheath surrounding axons and to the axons themselves. MS most often presents with a series of relapses and remissions but then evolves over a variable period of time into a slowly progressive form of neurological dysfunction termed secondary progressive MS (SPMS). The reasons for this change in clinical presentation are unclear. The absence of a diagnostic marker means that there is a lag time of several years before the diagnosis of SPMS can be established. At the same time, understanding the mechanisms that underlie SPMS is critical to the development of rational therapies for this untreatable stage of the disease. Results Using high performance liquid chromatography-coupled mass spectrometry (HPLC); we have established a highly specific and sensitive selected reaction monitoring (SRM) assay. Our multiplexed SRM assay has facilitated the simultaneous detection of surrogate peptides originating from 26 proteins present in cerebrospinal fluid (CSF). Protein levels in CSF were generally ~200-fold lower than that in human sera. A limit of detection (LOD) was determined to be as low as one femtomol. We processed and analysed CSF samples from a total of 22 patients with SPMS, 7 patients with SPMS treated with lamotrigine, 12 patients with non-inflammatory neurological disorders (NIND) and 10 healthy controls (HC) for the levels of these 26 selected potential protein biomarkers. Our SRM data found one protein showing significant difference between SPMS and HC, three proteins differing between SPMS and NIND, two proteins between NIND and HC, and 11 protein biomarkers showing significant difference between a lamotrigine-treated and untreated SPMS group. Principal component analysis (PCA) revealed that these 26 proteins were correlated, and could be represented by four principal components. Overall, we established an efficient platform

  5. Use of a Combination Biomarker Algorithm To Identify Medical Intensive Care Unit Patients with Suspected Sepsis at Very Low Likelihood of Bacterial Infection

    PubMed Central

    Nachamkin, Irving; Coffin, Susan E.; Gerber, Jeffrey S.; Fuchs, Barry; Garrigan, Charles; Han, Xiaoyan; Bilker, Warren B.; Wise, Jacqueleen; Tolomeo, Pam; Lautenbach, Ebbing

    2015-01-01

    Sepsis remains a diagnostic challenge in the intensive care unit (ICU), and the use of biomarkers may help in differentiating bacterial sepsis from other causes of systemic inflammatory syndrome (SIRS). The goal of this study was to assess test characteristics of a number of biomarkers for identifying ICU patients with a very low likelihood of bacterial sepsis. A prospective cohort study was conducted in a medical ICU of a university hospital. Immunocompetent patients with presumed bacterial sepsis were consecutively enrolled from January 2012 to May 2013. Concentrations of nine biomarkers (α-2 macroglobulin, C-reactive protein [CRP], ferritin, fibrinogen, haptoglobin, procalcitonin [PCT], serum amyloid A, serum amyloid P, and tissue plasminogen activator) were determined at baseline and at 24 h, 48 h, and 72 h after enrollment. Performance characteristics were calculated for various combinations of biomarkers for discrimination of bacterial sepsis from other causes of SIRS. Seventy patients were included during the study period; 31 (44%) had bacterial sepsis, and 39 (56%) had other causes of SIRS. PCT and CRP values were significantly higher at all measured time points in patients with bacterial sepsis. A number of combinations of PCT and CRP, using various cutoff values and measurement time points, demonstrated high negative predictive values (81.1% to 85.7%) and specificities (63.2% to 79.5%) for diagnosing bacterial sepsis. Combinations of PCT and CRP demonstrated a high ability to discriminate bacterial sepsis from other causes of SIRS in medical ICU patients. Future studies should focus on the use of these algorithms to improve antibiotic use in the ICU setting. PMID:26239984

  6. Serum Antibody Biomarkers for ASD

    DTIC Science & Technology

    2015-10-01

    autism blood biomarker. In addition, we have identified two new proteins that are linked to ASD. 15. SUBJECT TERMS ASD, autism spectrum disorders . TD...4 8. Appendices…………………………………………………………. 5 3 Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder ...immune responses in young children with autism spectrum disorders : their relationship to gastrointestinal symptoms and dietary intervention

  7. Melanoma Biomolecules: Independently Identified but Functionally Intertwined

    PubMed Central

    Dye, Danielle E.; Medic, Sandra; Ziman, Mel; Coombe, Deirdre R.

    2013-01-01

    The majority of patients diagnosed with melanoma present with thin lesions and generally these patients have a good prognosis. However, 5% of patients with early melanoma (<1 mm thick) will have recurrence and die within 10 years, despite no evidence of local or metastatic spread at the time of diagnosis. Thus, there is a need for additional prognostic markers to help identify those patients that may be at risk of recurrent disease. Many studies and several meta-analyses have compared gene and protein expression in melanocytes, naevi, primary, and metastatic melanoma in an attempt to find informative prognostic markers for these patients. However, although a large number of putative biomarkers have been described, few of these molecules are informative when used in isolation. The best approach is likely to involve a combination of molecules. We believe one approach could be to analyze the expression of a group of interacting proteins that regulate different aspects of the metastatic pathway. This is because a primary lesion expressing proteins involved in multiple stages of metastasis may be more likely to lead to secondary disease than one that does not. This review focuses on five putative biomarkers – melanoma cell adhesion molecule (MCAM), galectin-3 (gal-3), matrix metalloproteinase 2 (MMP-2), chondroitin sulfate proteoglycan 4 (CSPG4), and paired box 3 (PAX3). The goal is to provide context around what is known about the contribution of these biomarkers to melanoma biology and metastasis. Although each of these molecules have been independently identified as likely biomarkers, it is clear from our analyses that each are closely linked with each other, with intertwined roles in melanoma biology. PMID:24069584

  8. Detecting Blood-Based Biomarkers in Metastatic Breast Cancer: A Systematic Review of Their Current Status and Clinical Utility

    PubMed Central

    Berghuis, A. M. Sofie; Koffijberg, Hendrik; Prakash, Jai; Terstappen, Leon W. M. M.; IJzerman, Maarten J.

    2017-01-01

    Reviews on circulating biomarkers in breast cancer usually focus on one single biomarker or a selective group of biomarkers. An overview summarizing the discovery and evaluation of all blood-based biomarkers in metastatic breast cancer is lacking. This systematic review aims to identify the available evidence of known blood-based biomarkers in metastatic breast cancer, regarding their clinical utility and state-of-the-art position in the validation process. The initial search yielded 1078 original studies, of which 420 were assessed for eligibility. A total of 320 studies were included in the final synthesis. A Development, Evaluation and Application Chart (DEAC) of all biomarkers was developed. Most studies focus on identifying new biomarkers and search for relations between these biomarkers and traditional molecular characteristics. Biomarkers are usually investigated in only one study (68.8%). Only 9.8% of all biomarkers was investigated in more than five studies. Circulating tumor cells, gene expression within tumor cells and the concentration of secreted proteins are the most frequently investigated biomarkers in liquid biopsies. However, there is a lack of studies focusing on identifying the clinical utility of these biomarkers, by which the additional value still seems to be limited according to the investigated evidence. PMID:28208771

  9. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    NASA Astrophysics Data System (ADS)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.; Baker, Erin S.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2018-05-01

    In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150-250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMS-CID-TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10-200 nM range, while simultaneously achieving discovery measurements of not initially targeted peptides as markers from the same proteins and, eventually, other proteins. [Figure not available: see fulltext.

  10. Development of Diagnostic Biomarkers for Detecting Diabetic Retinopathy at Early Stages Using Quantitative Proteomics

    PubMed Central

    Min, Hophil; Kim, Sang Jin; Oh, Sohee; Kim, Kyunggon; Yu, Hyeong Gon; Park, Taesung; Kim, Youngsoo

    2016-01-01

    Diabetic retinopathy (DR) is a common microvascular complication caused by diabetes mellitus (DM) and is a leading cause of vision impairment and loss among adults. Here, we performed a comprehensive proteomic analysis to discover biomarkers for DR. First, to identify biomarker candidates that are specifically expressed in human vitreous, we performed data-mining on both previously published DR-related studies and our experimental data; 96 proteins were then selected. To confirm and validate the selected biomarker candidates, candidates were selected, confirmed, and validated using plasma from diabetic patients without DR (No DR) and diabetics with mild or moderate nonproliferative diabetic retinopathy (Mi or Mo NPDR) using semiquantitative multiple reaction monitoring (SQ-MRM) and stable-isotope dilution multiple reaction monitoring (SID-MRM). Additionally, we performed a multiplex assay using 15 biomarker candidates identified in the SID-MRM analysis, which resulted in merged AUC values of 0.99 (No DR versus Mo NPDR) and 0.93 (No DR versus Mi and Mo NPDR). Although further validation with a larger sample size is needed, the 4-protein marker panel (APO4, C7, CLU, and ITIH2) could represent a useful multibiomarker model for detecting the early stages of DR. PMID:26665153

  11. Quantitative Proteomic Analysis of Differentially Expressed Protein Profiles Involved in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Kuo, Kung-Kai; Kuo, Chao-Jen; Chiu, Chiang-Yen; Liang, Shih-Shin; Huang, Chun-Hao; Chi, Shu-Wen; Tsai, Kun-Bow; Chen, Chiao-Yun; Hsi, Edward; Cheng, Kuang-Hung; Chiou, Shyh-Horng

    2016-01-01

    Objectives The aim of this study was to identify differentially expressed proteins among various stages of pancreatic ductal adenocarcinoma (PDAC) by shotgun proteomics using nano-liquid chromatography coupled tandem mass spectrometry and stable isotope dimethyl labeling. Methods Differentially expressed proteins were identified and compared based on the mass spectral differences of their isotope-labeled peptide fragments generated from protease digestion. Results Our quantitative proteomic analysis of the differentially expressed proteins with stable isotope (deuterium/hydrogen ratio, ≥2) identified a total of 353 proteins, with at least 5 protein biomarker proteins that were significantly differentially expressed between cancer and normal mice by at least a 2-fold alteration. These 5 protein biomarker candidates include α-enolase, α-catenin, 14-3-3 β, VDAC1, and calmodulin with high confidence levels. The expression levels were also found to be in agreement with those examined by Western blot and histochemical staining. Conclusions The systematic decrease or increase of these identified marker proteins may potentially reflect the morphological aberrations and diseased stages of pancreas carcinoma throughout progressive developments leading to PDAC. The results would form a firm foundation for future work concerning validation and clinical translation of some identified biomarkers into targeted diagnosis and therapy for various stages of PDAC. PMID:26262590

  12. iTRAQ-Based Proteomics Reveals Novel Biomarkers for Idiopathic Pulmonary Fibrosis

    PubMed Central

    Niu, Rui; Liu, Ying; Zhang, Ying; Zhang, Yuan; Wang, Hui; Wang, Yongbin; Wang, Wei; Li, Xiaohui

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a gradual lung disease with a survival of less than 5 years post-diagnosis for most patients. Poor molecular description of IPF has led to unsatisfactory interpretation of the pathogenesis of this disease, resulting in the lack of successful treatments. The objective of this study was to discover novel noninvasive biomarkers for the diagnosis of IPF. We employed a coupled isobaric tag for relative and absolute quantitation (iTRAQ)-liquid chromatography–tandem mass spectrometry (LC–MS/MS) approach to examine protein expression in patients with IPF. A total of 97 differentially expressed proteins (38 upregulated proteins and 59 downregulated proteins) were identified in the serum of IPF patients. Using String software, a regulatory network containing 87 nodes and 244 edges was built, and the functional enrichment showed that differentially expressed proteins were predominantly involved in protein activation cascade, regulation of response to wounding and extracellular components. A set of three most significantly upregulated proteins (HBB, CRP and SERPINA1) and four most significantly downregulated proteins (APOA2, AHSG, KNG1 and AMBP) were selected for validation in an independent cohort of IPF and other lung diseases using ELISA test. The results confirmed the iTRAQ profiling results and AHSG, AMBP, CRP and KNG1 were found as specific IPF biomarkers. ROC analysis indicated the diagnosis potential of the validated biomarkers. The findings of this study will contribute in understanding the pathogenesis of IPF and facilitate the development of therapeutic targets. PMID:28122020

  13. iTRAQ-Based Proteomics Reveals Novel Biomarkers for Idiopathic Pulmonary Fibrosis.

    PubMed

    Niu, Rui; Liu, Ying; Zhang, Ying; Zhang, Yuan; Wang, Hui; Wang, Yongbin; Wang, Wei; Li, Xiaohui

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a gradual lung disease with a survival of less than 5 years post-diagnosis for most patients. Poor molecular description of IPF has led to unsatisfactory interpretation of the pathogenesis of this disease, resulting in the lack of successful treatments. The objective of this study was to discover novel noninvasive biomarkers for the diagnosis of IPF. We employed a coupled isobaric tag for relative and absolute quantitation (iTRAQ)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach to examine protein expression in patients with IPF. A total of 97 differentially expressed proteins (38 upregulated proteins and 59 downregulated proteins) were identified in the serum of IPF patients. Using String software, a regulatory network containing 87 nodes and 244 edges was built, and the functional enrichment showed that differentially expressed proteins were predominantly involved in protein activation cascade, regulation of response to wounding and extracellular components. A set of three most significantly upregulated proteins (HBB, CRP and SERPINA1) and four most significantly downregulated proteins (APOA2, AHSG, KNG1 and AMBP) were selected for validation in an independent cohort of IPF and other lung diseases using ELISA test. The results confirmed the iTRAQ profiling results and AHSG, AMBP, CRP and KNG1 were found as specific IPF biomarkers. ROC analysis indicated the diagnosis potential of the validated biomarkers. The findings of this study will contribute in understanding the pathogenesis of IPF and facilitate the development of therapeutic targets.

  14. A novel strategy of integrated microarray analysis identifies CENPA, CDK1 and CDC20 as a cluster of diagnostic biomarkers in lung adenocarcinoma.

    PubMed

    Liu, Wan-Ting; Wang, Yang; Zhang, Jing; Ye, Fei; Huang, Xiao-Hui; Li, Bin; He, Qing-Yu

    2018-07-01

    Lung adenocarcinoma (LAC) is the most lethal cancer and the leading cause of cancer-related death worldwide. The identification of meaningful clusters of co-expressed genes or representative biomarkers may help improve the accuracy of LAC diagnoses. Public databases, such as the Gene Expression Omnibus (GEO), provide rich resources of valuable information for clinics, however, the integration of multiple microarray datasets from various platforms and institutes remained a challenge. To determine potential indicators of LAC, we performed genome-wide relative significance (GWRS), genome-wide global significance (GWGS) and support vector machine (SVM) analyses progressively to identify robust gene biomarker signatures from 5 different microarray datasets that included 330 samples. The top 200 genes with robust signatures were selected for integrative analysis according to "guilt-by-association" methods, including protein-protein interaction (PPI) analysis and gene co-expression analysis. Of these 200 genes, only 10 genes showed both intensive PPI network and high gene co-expression correlation (r > 0.8). IPA analysis of this regulatory networks suggested that the cell cycle process is a crucial determinant of LAC. CENPA, as well as two linked hub genes CDK1 and CDC20, are determined to be potential indicators of LAC. Immunohistochemical staining showed that CENPA, CDK1 and CDC20 were highly expressed in LAC cancer tissue with co-expression patterns. A Cox regression model indicated that LAC patients with CENPA + /CDK1 + and CENPA + /CDC20 + were high-risk groups in terms of overall survival. In conclusion, our integrated microarray analysis demonstrated that CENPA, CDK1 and CDC20 might serve as novel cluster of prognostic biomarkers for LAC, and the cooperative unit of three genes provides a technically simple approach for identification of LAC patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Proteomic Characterization of Annexin l (ANX1) and Heat Shock Protein 27 (HSP27) as Biomarkers for Invasive Hepatocellular Carcinoma Cells.

    PubMed

    Wang, Ruo-Chiau; Huang, Chien-Yu; Pan, Tai-Long; Chen, Wei-Yu; Ho, Chun-Te; Liu, Tsan-Zon; Chang, Yu-Jia

    2015-01-01

    To search for reliable biomarkers and drug targets for management of hepatocellular carcinoma (HCC), we performed a global proteomic analysis of a pair of HCC cell lines with distinct differentiation statuses using 2-DE coupled with MALDI-TOF MS. In total, 106 and 55 proteins were successfully identified from the total cell lysate and the cytosolic, nuclear and membrane fractions in well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) HCC clonal variants, respectively. Among these proteins, nine spots corresponding to proteins differentially expressed between HCC cell types were selected and confirmed by immunofluorescence staining and western blotting. Notably, Annexin 1 (ANX1), ANX-2, vimentin and stress-associated proteins, such as GRP78, HSP75, HSC-70, protein disulfide isomerase (PDI), and heat shock protein-27 (HSP27), were exclusively up-regulated in SK-Hep-1 cells. Elevated levels of ANX-4 and antioxidant/metabolic enzymes, such as MnSOD, peroxiredoxin, NADP-dependent isocitrate dehydrogenase, α-enolase and UDP-glucose dehydrogenase, were observed in HepG2 cells. We functionally demonstrated that ANX1 and HSP27 were abundantly overexpressed only in highly invasive types of HCC cells, such as Mahlavu and SK-Hep-1. Knockdown of ANX1 or HSP27 in HCC cells resulted in a severe reduction in cell migration. The in-vitro observations of ANX1 and HSP27 expressions in HCC sample was demonstrated by immunohistochemical stains performed on HCC tissue microarrays. Poorly differentiated HCC tended to have stronger ANX1 and HSP27 expressions than well-differentiated or moderately differentiated HCC. Collectively, our findings suggest that ANX1 and HSP27 are two novel biomarkers for predicting invasive HCC phenotypes and could serve as potential treatment targets.

  16. A lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform for identification of multiple liver cancer biomarkers in human plasma.

    PubMed

    Ahn, Yeong Hee; Shin, Park Min; Oh, Na Ree; Park, Gun Wook; Kim, Hoguen; Yoo, Jong Shin

    2012-09-18

    Aberrantly glycosylated proteins related to liver cancer progression were captured with specific lectin and identified from human plasma by multiple reaction monitoring (MRM) mass spectrometry as multiple biomarkers for hepatocellular carcinoma (HCC). The lectin fractionation for fucosylated protein glycoforms in human plasma was conducted with a fucose-specific aleuria aurantia lectin (AAL). Following tryptic digestion of the lectin-captured fraction, plasma samples from 30 control cases (including 10 healthy, 10 hepatitis B virus [HBV], and 10 cirrhosis cases) and 10 HCC cases were quantitatively analyzed by MRM to identify which glycoproteins are viable HCC biomarkers. A1AG1, AACT, A1AT, and CERU were found to be potent biomarkers to differentiate HCC plasma from control plasmas. The AUROC generated independently from these four biomarker candidates ranged from 0.73 to 0.92. However, the lectin-coupled MRM assay with multiple combinations of biomarker candidates is superior statistically to those generated from the individual candidates with AUROC more than 0.95, which can be an alternative to the immunoassay inevitably requiring tedious development of multiple antibodies against biomarker candidates to be verified. Eventually the lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform was found to be efficient to identify multiple biomarkers from human plasma according to cancer progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics.

    PubMed

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.

  18. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics

    PubMed Central

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E.; Joshi, Lokesh

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques. PMID:26509158

  19. Development of a Multiplexed Liquid Chromatography Multiple-Reaction-Monitoring Mass Spectrometry (LC-MRM/MS) Method for Evaluation of Salivary Proteins as Oral Cancer Biomarkers.

    PubMed

    Chen, Yi-Ting; Chen, Hsiao-Wei; Wu, Chun-Feng; Chu, Lichieh Julie; Chiang, Wei-Fang; Wu, Chih-Ching; Yu, Jau-Song; Tsai, Cheng-Han; Liang, Kung-Hao; Chang, Yu-Sun; Wu, Maureen; Ou Yang, Wei-Ting

    2017-05-01

    Multiple (selected) reaction monitoring (MRM/SRM) of peptides is a growing technology for target protein quantification because it is more robust, precise, accurate, high-throughput, and multiplex-capable than antibody-based techniques. The technique has been applied clinically to the large-scale quantification of multiple target proteins in different types of fluids. However, previous MRM-based studies have placed less focus on sample-preparation workflow and analytical performance in the precise quantification of proteins in saliva, a noninvasively sampled body fluid. In this study, we evaluated the analytical performance of a simple and robust multiple reaction monitoring (MRM)-based targeted proteomics approach incorporating liquid chromatography with mass spectrometry detection (LC-MRM/MS). This platform was used to quantitatively assess the biomarker potential of a group of 56 salivary proteins that have previously been associated with human cancers. To further enhance the development of this technology for assay of salivary samples, we optimized the workflow for salivary protein digestion and evaluated quantification performance, robustness and technical limitations in analyzing clinical samples. Using a clinically well-characterized cohort of two independent clinical sample sets (total n = 119), we quantitatively characterized these protein biomarker candidates in saliva specimens from controls and oral squamous cell carcinoma (OSCC) patients. The results clearly showed a significant elevation of most targeted proteins in saliva samples from OSCC patients compared with controls. Overall, this platform was capable of assaying the most highly multiplexed panel of salivary protein biomarkers, highlighting the clinical utility of MRM in oral cancer biomarker research. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Development of a Multiplexed Liquid Chromatography Multiple-Reaction-Monitoring Mass Spectrometry (LC-MRM/MS) Method for Evaluation of Salivary Proteins as Oral Cancer Biomarkers*

    PubMed Central

    Chen, Hsiao-Wei; Wu, Chun-Feng; Chu, Lichieh Julie; Chiang, Wei-Fang; Wu, Chih-Ching; Yu, Jau-Song; Tsai, Cheng-Han; Liang, Kung-Hao; Chang, Yu-Sun; Wu, Maureen; Ou Yang, Wei-Ting

    2017-01-01

    Multiple (selected) reaction monitoring (MRM/SRM) of peptides is a growing technology for target protein quantification because it is more robust, precise, accurate, high-throughput, and multiplex-capable than antibody-based techniques. The technique has been applied clinically to the large-scale quantification of multiple target proteins in different types of fluids. However, previous MRM-based studies have placed less focus on sample-preparation workflow and analytical performance in the precise quantification of proteins in saliva, a noninvasively sampled body fluid. In this study, we evaluated the analytical performance of a simple and robust multiple reaction monitoring (MRM)-based targeted proteomics approach incorporating liquid chromatography with mass spectrometry detection (LC-MRM/MS). This platform was used to quantitatively assess the biomarker potential of a group of 56 salivary proteins that have previously been associated with human cancers. To further enhance the development of this technology for assay of salivary samples, we optimized the workflow for salivary protein digestion and evaluated quantification performance, robustness and technical limitations in analyzing clinical samples. Using a clinically well-characterized cohort of two independent clinical sample sets (total n = 119), we quantitatively characterized these protein biomarker candidates in saliva specimens from controls and oral squamous cell carcinoma (OSCC) patients. The results clearly showed a significant elevation of most targeted proteins in saliva samples from OSCC patients compared with controls. Overall, this platform was capable of assaying the most highly multiplexed panel of salivary protein biomarkers, highlighting the clinical utility of MRM in oral cancer biomarker research. PMID:28235782

  1. Identification and Quantification of Preterm Birth Biomarkers in Human Cervicovaginal Fluid by Liquid Chromatography/Tandem Mass Spectrometry

    PubMed Central

    Shah, Sumit J.; Yu, Kenneth H.; Sangar, Vineet; Parry, Samuel I.; Blair, Ian A.

    2009-01-01

    Spontaneous preterm birth (PTB) before 37 completed weeks of gestation resulting from preterm labor (PTL) is a leading contributor of perinatal morbidity and mortality. Early identification of at-risk women by reliable screening tests could alleviate this health issue; however, conventional methods such as obstetric history and clinical risk factors, uterine activity monitoring, biochemical markers, and cervical sonography for screening women at risk for PTB have proven unsuccessful in lowering the rate of PTB. Cervicovaginal fluid (CVF) might prove to be a useful, readily available biological fluid for identifying diagnostic PTB biomarkers. Human columnar epithelial endocervical-1 (End1) and vaginal (Vk2) cell secretomes were employed to generate a stable isotope labeled proteome (SILAP) standard to facilitate characterization and relative quantification of proteins present in CVF. The SILAP standard was prepared using stable isotope labeling by amino acids in cell culture (SILAC) of End1 and Vk2 through seven passages. The labeled secreted proteins from both cell lines were combined and characterized by liquid-chromatography-tandem mass spectrometry (LC-MS/MS). 1211 proteins were identified in the End1-Vk2 SILAP standard, with 236 proteins being consistently identified in each of the replicates analyzed. Individual proteins were found to contain < 0.5 % of the endogenous unlabeled forms. Identified proteins were screened to provide a set of fifteen candidates that have either previously been identified as potential PTB biomarkers or could be linked mechanistically to PTB. Stable isotope dilution LC-multiple reaction monitoring (MRM/MS) assays were then developed for conducting relative quantification of the fifteen candidate biomarkers in human CVF samples from term and PTB cases. Three proteins were significantly elevated in PTB cases (desmoplakin isoform 1, stratifin, and thrombospondin 1 precursor), providing a foundation for further validation in larger

  2. Identification and quantification of preterm birth biomarkers in human cervicovaginal fluid by liquid chromatography/tandem mass spectrometry.

    PubMed

    Shah, Sumit J; Yu, Kenneth H; Sangar, Vineet; Parry, Samuel I; Blair, Ian A

    2009-05-01

    Spontaneous preterm birth (PTB) before 37 completed weeks of gestation resulting from preterm labor (PTL) is a leading contributor of perinatal morbidity and mortality. Early identification of at-risk women by reliable screening tests could alleviate this health issue; however, conventional methods such as obstetric history and clinical risk factors, uterine activity monitoring, biochemical markers, and cervical sonography for screening women at risk for PTB have proven unsuccessful in lowering the rate of PTB. Cervicovaginal fluid (CVF) might prove to be a useful, readily available biological fluid for identifying diagnostic PTB biomarkers. Human columnar epithelial endocervical-1 (End1) and vaginal (Vk2) cell secretomes were employed to generate a stable isotope labeled proteome (SILAP) standard to facilitate characterization and relative quantification of proteins present in CVF. The SILAP standard was prepared using stable isotope labeling by amino acids in cell culture (SILAC) of End1 and Vk2 through seven passages. The labeled secreted proteins from both cell lines were combined and characterized by liquid-chromatography-tandem mass spectrometry (LC-MS/MS). In total, 1211 proteins were identified in the End1-Vk2 SILAP standard, with 236 proteins being consistently identified in each of the replicates analyzed. Individual proteins were found to contain <0.5% of the endogenous unlabeled forms. Identified proteins were screened to provide a set of 15 candidates that have either previously been identified as potential PTB biomarkers or could be linked mechanistically to PTB. Stable isotope dilution LC-multiple reaction monitoring (MRM/MS) assays were then developed for conducting relative quantification of the 15 candidate biomarkers in human CVF samples from term and PTB cases. Three proteins were significantly elevated in PTB cases (desmoplakin isoform 1, stratifin, and thrombospondin 1 precursor), providing a foundation for further validation in larger patient

  3. Dithiothreitol-based protein equalization technology to unravel biomarkers for bladder cancer.

    PubMed

    Araújo, J E; López-Fernández, H; Diniz, M S; Baltazar, Pedro M; Pinheiro, Luís Campos; da Silva, Fernando Calais; Carrascal, Mylène; Videira, Paula; Santos, H M; Capelo, J L

    2018-04-01

    This study aimed to assess the benefits of dithiothreitol (DTT)-based sample treatment for protein equalization to assess potential biomarkers for bladder cancer. The proteome of plasma samples of patients with bladder carcinoma, patients with lower urinary tract symptoms (LUTS) and healthy volunteers, was equalized with dithiothreitol (DTT) and compared. The equalized proteomes were interrogated using two-dimensional gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry. Six proteins, namely serum albumin, gelsolin, fibrinogen gamma chain, Ig alpha-1 chain C region, Ig alpha-2 chain C region and haptoglobin, were found dysregulated in at least 70% of bladder cancer patients when compared with a pool of healthy individuals. One protein, serum albumin, was found overexpressed in 70% of the patients when the equalized proteome of the healthy pool was compared with the equalized proteome of the LUTS patients. The pathways modified by the proteins differentially expressed were analyzed using Cytoscape. The method here presented is fast, cheap, of easy application and it matches the analytical minimalism rules as outlined by Halls. Orthogonal validation was done using western-blot. Overall, DTT-based protein equalization is a promising methodology in bladder cancer research. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Biomarkers in Scleroderma: Progressing from Association to Clinical Utility.

    PubMed

    Ligon, Colin; Hummers, Laura K

    2016-03-01

    Scleroderma is a heterogenous disease characterized by autoimmunity, a characteristic vasculopathy, and often widely varying extents of deep organ fibrosis. Recent advances in the understanding of scleroderma's evolution have improved the ability to identify subgroups of patients with similar prognosis in order to improve risk stratification, enrich clinical trials for patients likely to benefit from specific therapies, and identify promising therapeutic targets for intervention. High-throughput technologies have recently identified fibrotic and inflammatory effectors in scleroderma that exhibit strong prognostic ability and may be tied to disease evolution. Increasingly, the use of collections of assayed circulating proteins and patterns of gene expression in tissue has replaced single-marker investigations in understanding the evolution of scleroderma and in objectively characterizing disease extent. Lastly, identification of shared patterns of disease evolution has allowed classification of patients into latent disease subtypes, which may allow rapid clinical prognostication and targeted management in both clinical and research settings. The concept of biomarkers in scleroderma is expanding to include nontraditional measures of aggregate protein signatures and disease evolution. This review examines the recent advances in biomarkers with a focus on those approaches poised to guide prospective management or themselves serve as quantitative surrogate disease outcomes.

  5. Development of an Immunoassay for the Kidney Specific Protein myo-Inositol Oxygenase, a Potential Biomarker of Acute Kidney Injury

    PubMed Central

    Gaut, Joseph P.; Crimmins, Dan L.; Ohlendorf, Matt F.; Lockwood, Christina M.; Griest, Terry A.; Brada, Nancy A.; Hoshi, Masato; Sato, Bryan; Hotchkiss, Richard S.; Jain, Sanjay; Ladenson, Jack H.

    2014-01-01

    Background Acute kidney injury (AKI) affects 45% of critically ill patients resulting in increased morbidity and mortality. The diagnostic standard, serum creatinine (SCr), is non-specific and may not increase until days after injury. There is significant need for a renal specific AKI biomarker detectable early enough that there would be a potential window for therapeutic intervention. In this study, we sought to identify a renal specific biomarker of AKI. Methods Gene expression data was analyzed from normal mouse tissues to identify kidney specific genes, one of which was Miox. Monoclonal antibodies were generated to recombinant myo-inositol oxygenase (MIOX), and an immunoassay was developed to quantify MIOX in plasma. The immunoassay was tested in animals and retrospectively in patients with and without AKI. Results Kidney tissue specificity of MIOX was supported by Western blot. Immunohistochemistry localized MIOX to the proximal renal tubule. Plasma MIOX, undetectable at baseline, increased 24 hours following AKI in mice. Plasma MIOX was increased in critically ill patients with AKI (12.4 ± 4.3 ng/mL, n=42) compared with patients without AKI (0.5 ± 0.3 ng/mL, n=17) and was highest in patients with oliguric AKI (20.2 ± 7.5 ng/mL, n=23). Plasma MIOX increased 54.3 ± 3.8 hours before the increase in SCr. Conclusions MIOX is a renal specific, proximal tubule protein that is increased in plasma of animals and critically ill patients with AKI. MIOX preceded the elevation in SCr by approximately two days in human patients. Large-scale studies are warranted to further investigate MIOX as an AKI biomarker. PMID:24486646

  6. Neo-epitope Peptides as Biomarkers of Disease Progression for Muscular Dystrophies and Other Myopathies

    PubMed Central

    Arvanitidis, A.; Henriksen, K.; Karsdal, M.A.; Nedergaard, A.

    2016-01-01

    For several decades, serological biomarkers of neuromuscular diseases as dystrophies, myopathies and myositis have been limited to routine clinical biochemistry panels. Gauging the pathological progression is a prerequisite for proper treatment and therefore identifying accessible, easy to monitor biomarkers that can predict the disease progression would be an important advancement. Most muscle diseases involve accelerated muscle fiber degradation, inflammation, fatty tissue substitution and/or fibrosis. All these pathological traits have been shown to give rise to serological peptide biomarkers in other tissues, underlining the potential application of existing biomarkers of such traits in muscle disorders. A significant quantity of tissue is involved in these pathological mechanisms alongside with qualitative changes in protein turnover in myofibrillar, extra-cellular matrix and immunological cell protein fractions accompanied by alterations in body fluids. We propose that protein and peptides can leak out of the afflicted muscles and can be of use in diagnosis, prediction of pathology trajectory and treatment efficacy. Proteolytic cleavage systems are especially modulated during a range of muscle pathologies, thereby giving rise to peptides that are differentially released during disease manifestation. Therefore, we believe that pathology-specific post-translational modifications like cleavages can give rise to neoepitope peptides that may represent a promising class of peptides for discovery of biomarkers pertaining to neuromuscular diseases. PMID:27854226

  7. Minimally-invasive biomarker studies in eosinophilic esophagitis: a systematic review.

    PubMed

    Hines, Brittany T; Rank, Matthew A; Wright, Benjamin L; Marks, Lisa A; Hagan, John B; Straumann, Alex; Greenhawt, Matthew; Dellon, Evan S

    2018-05-10

    Eosinophilic esophagitis (EoE) is a chronic, inflammatory disease of the esophagus which currently requires repeated endoscopic biopsies for diagnosis and monitoring as no reliable non-invasive markers have been identified. To identify promising minimally-invasive EoE biomarkers and remaining gaps in biomarker validation. We performed a systematic review of EMBASE, Ovid Medline, PubMed, and Web of Science from inception to June 6, 2017. Studies were included if subjects met the 2007 consensus criteria for EoE diagnosis, a minimally-invasive biomarker was assessed, and the study included at least 1 control for comparison. The search identified 2094 studies, with 234 reviewed at full text level, and 49 included in the analysis (20 adult, 19 pediatric, 7 pediatric and adult, and 3 not stated). The majority (26 of 49) were published after 2014. Thirty-five studies included normal controls, 9 analyzed atopic controls, and 29 compared samples from subjects with active and inactive EoE. Minimally-invasive biomarkers were obtained from peripheral blood (n=41 studies), sponge/string samples (3), oral/throat swab secretions (2), breath condensate (2), stool (2), and urine (2). The most commonly reported biomarkers were peripheral blood eosinophils (16), blood and string eosinophil granule proteins (14), and eosinophil surface or intracellular markers (12). EoE biomarkers distinguished active EoE from normal controls in 23 studies, atopic controls in 2 studies, and inactive EoE controls in 20 studies. Several promising minimally-invasive biomarkers for EoE have emerged; however, few are able to differentiate EoE from other atopic diseases. Copyright © 2018. Published by Elsevier Inc.

  8. Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers.

    PubMed

    Irigoyen, Antonio; Jimenez-Luna, Cristina; Benavides, Manuel; Caba, Octavio; Gallego, Javier; Ortuño, Francisco Manuel; Guillen-Ponce, Carmen; Rojas, Ignacio; Aranda, Enrique; Torres, Carolina; Prados, Jose

    2018-01-01

    Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses ('gained' genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative meta-analysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.

  9. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis.

    PubMed

    Madeddu, Roberto; Farace, Cristiano; Tolu, Paola; Solinas, Giuliana; Asara, Yolande; Sotgiu, Maria Alessandra; Delogu, Lucia Gemma; Prados, Jose Carlos; Sotgiu, Stefano; Montella, Andrea

    2013-02-01

    The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p < 0.0001) in MS than in OND group; no significant difference (p > 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable.

  10. Serum Protein KNG1, APOC3, and PON1 as Potential Biomarkers for Yin-Deficiency-Heat Syndrome.

    PubMed

    Liu, Changming; Mao, Liangen; Ping, Zepeng; Jiang, Tingting; Wang, Chong; Chen, Zhongliang; Li, Zhongjie; Li, Jicheng

    2016-01-01

    Yin-deficiency-heat (YDH) syndrome is a concept in Traditional Chinese Medicine (TCM) for describing subhealth status. However, there are few efficient diagnostic methods available for confirming YDH syndrome. To explore the novel method for diagnosing YDH syndrome, we applied iTRAQ to observe the serum protein profiles in YDH syndrome rats and confirmed protein levels by ELISA. A total of 92 differentially expressed proteins (63 upregulated proteins and 29 downregulated proteins), which were mainly involved in complement and coagulation cascades and glucose metabolism pathway, were identified by the proteomic experiments. Kininogen 1 (KNG1) was significantly increased ( p < 0.0001), while apolipoprotein C-III (APOC3, p < 0.005) and paraoxonase 1 (PON1, p < 0.001) were significantly decreased in the serum of YDH syndrome rats. The combination of KNG1, APOC3, and PON1 constituted a diagnostic model with 100.0% sensitivity and 85.0% specificity. The results indicated that KNG1, APOC3, and PON1 may act as potential biomarkers for diagnosing YDH syndrome. KNG1 may regulate cytokines and chemokines release in YDH syndrome, and the low levels of PON1 and APOC3 may increase oxidative stress and lipolysis in YDH syndrome, respectively. Our work provides a novel method for YDH syndrome diagnosis and also provides valuable experimental basis to understand the molecular mechanism of YDH syndrome.

  11. Microarray expression analysis and identification of serum biomarkers for Niemann-Pick disease, type C1.

    PubMed

    Cluzeau, Celine V M; Watkins-Chow, Dawn E; Fu, Rao; Borate, Bhavesh; Yanjanin, Nicole; Dail, Michelle K; Davidson, Cristin D; Walkley, Steven U; Ory, Daniel S; Wassif, Christopher A; Pavan, William J; Porter, Forbes D

    2012-08-15

    Niemann-Pick disease type C (NPC) is a lysosomal storage disorder characterized by liver disease and progressive neurodegeneration. Deficiency of either NPC1 or NPC2 leads to the accumulation of cholesterol and glycosphingolipids in late endosomes and early lysosomes. In order to identify pathological mechanisms underlying NPC and uncover potential biomarkers, we characterized liver gene expression changes in an Npc1 mouse model at six ages spanning the pathological progression of the disease. We identified altered gene expression at all ages, including changes in asymptomatic, 1-week-old mice. Biological pathways showing early altered gene expression included: lipid metabolism, cytochrome P450 enzymes involved in arachidonic acid and drug metabolism, inflammation and immune responses, mitogen-activated protein kinase and G-protein signaling, cell cycle regulation, cell adhesion and cytoskeleton remodeling. In contrast, apoptosis and oxidative stress appeared to be late pathological processes. To identify potential biomarkers that could facilitate monitoring of disease progression, we focused on a subset of 103 differentially expressed genes that encode secreted proteins. Further analysis identified two secreted proteins with increased serum levels in NPC1 patients: galectin-3 (LGALS3), a pro-inflammatory molecule, and cathepsin D (CTSD), a lysosomal aspartic protease. Elevated serum levels of both proteins correlated with neurological disease severity and appeared to be specific for NPC1. Expression of Lgals3 and Ctsd was normalized following treatment with 2-hydroxypropyl-β-cyclodextrin, a therapy that reduces pathological findings and significantly increases Npc1(-/-) survival. Both LGALS3 and CTSD have the potential to aid in diagnosis and serve as biomarkers to monitor efficacy in therapeutic trials.

  12. Sporadic Inclusion Body Myositis: Possible pathogenesis inferred from biomarkers

    PubMed Central

    Weihl, Conrad C.; Pestronk, Alan

    2013-01-01

    Purpose of review The relevance of proteins that accumulate and aggregate in the muscle fibers of patients with sporadic inclusion body myositis (sIBM) is unknown. Many of these proteins also aggregate in other disorders, including Alzheimer’s disease, leading to speculation that sIBM pathogenesis has similarities to neurodegenerative disorders. Our review will discuss current studies on these protein biomarkers and any utility in sIBM diagnosis. Recent findings Two “classical” components of sIBM aggregates (Aβ and phospho-tau) have been re-evaluated. Three additional components of aggregates (TDP-43, p62, and LC3) have been identified. The sensitivity and specificity of these biomarkers has been explored. Two studies suggest that TDP-43 may have clinical utility in distinguishing sIBM from other inflammatory myopathies. Summary The fact that sIBM muscle accumulates multiple protein aggregates with no single protein appearing in every sIBM patient biopsy suggests that it is not presently possible to place pathogenic blame on any single protein (i.e. Aβ or TDP-43). Instead changes in protein homeostasis may lead to the accumulation of different proteins that have a propensity to aggregate in skeletal muscle. Therapies aimed at improving protein homeostasis, instead of targeting a specific protein that may or may not accumulate in all sIBM patients, could be useful future strategies for this devastating and enigmatic disorder. PMID:20664349

  13. High-sensitive factor I and C-reactive protein based biomarkers for coronary artery disease.

    PubMed

    Zhao, Qing; Du, Jian-Shi; Han, Dong-Mei; Ma, Ying

    2014-01-01

    An analysis of high-sensitive factor I and C-reactive proteins as biomarkers for coronary artery disease has been performed from 19 anticipated cohort studies that included 21,567 participants having no information about coronary artery disease. Besides, the clinical implications of statin therapy initiated due to assessment of factor I and C-reactive proteins have also been modeled during studies. The measure of risk discrimination (C-index) was increased (by 0.0101) as per the prognostic model for coronary artery disease with respect to sex, smoking status, age, blood pressure, total cholesterol level along with diabetic history characteristic parameters. The C-index was further raised by 0.0045 and 0.0053 when factor I and C-reactive proteins based information were added, respectively which finally predicted 10-year risk categories as: high (> 20%), medium (10% to < 20%), and low (< 10%) risks. We found 2,254 persons (among 15,000 adults (age ≥ 45 years)) would initially be classified as being at medium risk for coronary artery disease when only conventional risk factors were used as calculated risk. Besides, persons with a predicted risk of more than 20% as well as for persons suffering from other risk factors (i.e. diabetes), statin therapy was initiated (irrespective of their decade old predicted risk). We conclude that under current treatment guidelines assessment of factor I and C-reactive proteins levels (as biomarker) in people at medium risk for coronary artery disease could prevent one additional coronary artery disease risk over a period a decade for every 390-500 people screened.

  14. Plasma soluble prion protein, a potential biomarker for sport-related concussions: a pilot study.

    PubMed

    Pham, Nam; Akonasu, Hungbo; Shishkin, Rhonda; Taghibiglou, Changiz

    2015-01-01

    Sport-related mild traumatic brain injury (mTBI) or concussion is a significant health concern to athletes with potential long-term consequences. The diagnosis of sport concussion and return to sport decision making is one of the greatest challenges facing health care clinicians working in sports. Blood biomarkers have recently demonstrated their potential in assisting the detection of brain injury particularly, in those cases with no obvious physical injury. We have recently discovered plasma soluble cellular prion protein (PrP(C)) as a potential reliable biomarker for blast induced TBI (bTBI) in a rodent animal model. In order to explore the application of this novel TBI biomarker to sport-related concussion, we conducted a pilot study at the University of Saskatchewan (U of S) by recruiting athlete and non-athlete 18 to 30 year-old students. Using a modified quantitative ELISA method, we first established normal values for the plasma soluble PrP(C) in male and female students. The measured plasma soluble PrP(C) in confirmed concussion cases demonstrated a significant elevation of this analyte in post-concussion samples. Data collected from our pilot study indicates that the plasma soluble PrP(C) is a potential biomarker for sport-related concussion, which may be further developed into a clinical diagnostic tool to assist clinicians in the assessment of sport concussion and return-to-play decision making.

  15. MicroRNA, Proteins, and Metabolites as Novel Biomarkers for Prediabetes, Diabetes, and Related Complications

    PubMed Central

    Vaishya, Suniti; Sarwade, Rucha D.; Seshadri, Vasudevan

    2018-01-01

    Type 2 diabetes mellitus (T2DM) is no more a lifestyle disease of developed countries. It has emerged as a major health problem worldwide including developing countries. However, how diabetes could be detected at an early stage (prediabetes) to prevent the progression of disease is still unclear. Currently used biomarkers like glycated hemoglobin and assessment of blood glucose level have their own limitations. These classical markers can be detected when the disease is already established. Prognosis of disease at early stages and prediction of population at a higher risk require identification of specific markers that are sensitive enough to be detected at early stages of disease. Biomarkers which could predict the risk of disease in people will be useful for developing preventive/proactive therapies to those individuals who are at a higher risk of developing the disease. Recent studies suggested that the expression of biomolecules including microRNAs, proteins, and metabolites specifically change during the progression of T2DM and related complications, suggestive of disease pathology. Owing to their omnipresence in body fluids and their association with onset, progression, and pathogenesis of T2DM, these biomolecules can be potential biomarker for prognosis, diagnosis, and management of disease. In this article, we summarize biomolecules that could be potential biomarkers and their signature changes associated with T2DM and related complications during disease pathogenesis. PMID:29740397

  16. Predictive Biomarkers for Asthma Therapy.

    PubMed

    Medrek, Sarah K; Parulekar, Amit D; Hanania, Nicola A

    2017-09-19

    Asthma is a heterogeneous disease characterized by multiple phenotypes. Treatment of patients with severe disease can be challenging. Predictive biomarkers are measurable characteristics that reflect the underlying pathophysiology of asthma and can identify patients that are likely to respond to a given therapy. This review discusses current knowledge regarding predictive biomarkers in asthma. Recent trials evaluating biologic therapies targeting IgE, IL-5, IL-13, and IL-4 have utilized predictive biomarkers to identify patients who might benefit from treatment. Other work has suggested that using composite biomarkers may offer enhanced predictive capabilities in tailoring asthma therapy. Multiple biomarkers including sputum eosinophil count, blood eosinophil count, fractional concentration of nitric oxide in exhaled breath (FeNO), and serum periostin have been used to identify which patients will respond to targeted asthma medications. Further work is needed to integrate predictive biomarkers into clinical practice.

  17. Biomarkers for AAA: Encouraging steps but clinical relevance still to be delivered.

    PubMed

    Htun, Nay Min; Peter, Karlheinz

    2014-10-01

    Potential biomarkers have been investigated using proteomic studies in a variety of diseases. Some biomarkers have central roles in both diagnosis and monitoring of various disorders in clinical medicine, such as troponins, brain natriuretic peptide, and C-reactive protein. Although several biomarkers have been suggested in human abdominal aortic aneurysm (AAA), reliable markers have been lacking. In this issue, Moxon et al. [Proteomics Clin Appl. 2014, 8, 762-772] undertook a broad and systematic proteomic approach toward identification of biomarkers in a commonly used AAA mouse model (AAA created by angiotensin-II infusion). In this mouse model, apolipoprotein C1 and matrix metalloproteinase-9 were identified as novel biomarkers of stable AAA. This finding represents an important step forward, toward a clinically relevant role of biomarkers in AAA. This also encourages for further studies toward the identification of biomarkers (or their combinations) that can predict AAA progression and rupture, which would represent a major progress in AAA management and would establish an AAA biomarker as a much anticipated clinical tool. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Novel isoprenylated proteins identified by an expression library screen.

    PubMed

    Biermann, B J; Morehead, T A; Tate, S E; Price, J R; Randall, S K; Crowell, D N

    1994-10-14

    Isoprenylated proteins are involved in eukaryotic cell growth and signal transduction. The protein determinant for prenylation is a short carboxyl-terminal motif containing a cysteine, to which the isoprenoid is covalently attached via thioether linkage. To date, isoprenylated proteins have almost all been identified by demonstrating the attachment of an isoprenoid to previously known proteins. Thus, many isoprenylated proteins probably remain undiscovered. To identify novel isoprenylated proteins for subsequent biochemical study, colony blots of a Glycine max cDNA expression library were [3H]farnesyl-labeled in vitro. Proteins identified by this screen contained several different carboxyl termini that conform to consensus farnesylation motifs. These proteins included known farnesylated proteins (DnaJ homologs) and several novel proteins, two of which contained six or more tandem repeats of a hexapeptide having the consensus sequence (E/G)(G/P)EK(P/K)K. Thus, plants contain a diverse array of genes encoding farnesylated proteins, and our results indicate that fundamental differences in the identities of farnesylated proteins may exist between plants and other eukaryotes. Expression library screening by direct labeling can be adapted to identify isoprenylated proteins from other organisms, as well as proteins with other post-translational modifications.

  19. Use of a Combination Biomarker Algorithm To Identify Medical Intensive Care Unit Patients with Suspected Sepsis at Very Low Likelihood of Bacterial Infection.

    PubMed

    Han, Jennifer H; Nachamkin, Irving; Coffin, Susan E; Gerber, Jeffrey S; Fuchs, Barry; Garrigan, Charles; Han, Xiaoyan; Bilker, Warren B; Wise, Jacqueleen; Tolomeo, Pam; Lautenbach, Ebbing

    2015-10-01

    Sepsis remains a diagnostic challenge in the intensive care unit (ICU), and the use of biomarkers may help in differentiating bacterial sepsis from other causes of systemic inflammatory syndrome (SIRS). The goal of this study was to assess test characteristics of a number of biomarkers for identifying ICU patients with a very low likelihood of bacterial sepsis. A prospective cohort study was conducted in a medical ICU of a university hospital. Immunocompetent patients with presumed bacterial sepsis were consecutively enrolled from January 2012 to May 2013. Concentrations of nine biomarkers (α-2 macroglobulin, C-reactive protein [CRP], ferritin, fibrinogen, haptoglobin, procalcitonin [PCT], serum amyloid A, serum amyloid P, and tissue plasminogen activator) were determined at baseline and at 24 h, 48 h, and 72 h after enrollment. Performance characteristics were calculated for various combinations of biomarkers for discrimination of bacterial sepsis from other causes of SIRS. Seventy patients were included during the study period; 31 (44%) had bacterial sepsis, and 39 (56%) had other causes of SIRS. PCT and CRP values were significantly higher at all measured time points in patients with bacterial sepsis. A number of combinations of PCT and CRP, using various cutoff values and measurement time points, demonstrated high negative predictive values (81.1% to 85.7%) and specificities (63.2% to 79.5%) for diagnosing bacterial sepsis. Combinations of PCT and CRP demonstrated a high ability to discriminate bacterial sepsis from other causes of SIRS in medical ICU patients. Future studies should focus on the use of these algorithms to improve antibiotic use in the ICU setting. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Biomarker candidates for the detection of an infectious etiology of febrile neutropenia.

    PubMed

    Richter, Martin E; Neugebauer, Sophie; Engelmann, Falco; Hagel, Stefan; Ludewig, Katrin; La Rosée, Paul; Sayer, Herbert G; Hochhaus, Andreas; von Lilienfeld-Toal, Marie; Bretschneider, Tom; Pausch, Christine; Engel, Christoph; Brunkhorst, Frank M; Kiehntopf, Michael

    2016-04-01

    Infections and subsequent septicemia are major complications in neutropenic patients with hematological malignancies. Here, we identify biomarker candidates for the early detection of an infectious origin, and monitoring of febrile neutropenia (FN). Proteome, metabolome, and conventional biomarkers from 20 patients with febrile neutropenia without proven infection (FNPI) were compared to 28 patients with proven infection, including 17 patients with bacteremia. Three peptides (mass to charge ratio 1017.4-1057.3; p-values 0.011-0.024), six proteins (mass to charge ratio 6881-17,215; p-values 0.002-0.004), and six phosphatidylcholines (p-values 0.007-0.037) were identified that differed in FNPI patients compared to patients with infection or bacteremia. Seven of these marker candidates discriminated FNPI from infection at fever onset with higher sensitivity and specificity (ROC-AUC 0.688-0.824) than conventional biomarkers i.e., procalcitonin, C-reactive protein, or interleukin-6 (ROC-AUC 0.535-0.672). In a post hoc analysis, monitoring the time course of four lysophosphatidylcholines, threonine, and tryptophan allowed for discrimination of patients with or without resolution of FN (ROC-AUC 0.648-0.919) with higher accuracy compared to conventional markers (ROC-AUC 0.514-0.871). Twenty-one promising biomarker candidates for the early detection of an infectious origin or for monitoring the course of FN were found which might overcome known shortcomings of conventional markers.

  1. NYU Lung Cancer Biomarker Center — EDRN Public Portal

    Cancer.gov

    A. SPECIFIC AIMS 1. To develop and prospectively follow a large cohort at high-risk for lung cancer. Individuals are recruited to one of two different study groups: The Screening Cohort includes people with and without increased risk for lung cancer. The Rule-Out Lung Cancer Patient Group is recruited from patients referred for evaluation of suspicious nodules. All individuals answer a questionnaire, obtain PFTs, chest CT scan, sputum induction and phlebotomy. For patients undergoing lung resections or biopsies, tissue samples are collected and banked. Individuals are recruited for research bronchoscopy. All participants are then followed prospectively. The specimens obtained are banked and used for biomarker discovery and validation studies. 2. To identify and validate biomarkers for the early detection of lung cancer, and to describe preneoplastic cellular changes and lesions. Biomarker studies include DNA adducts, DNA methylation, protein markers, and other collaborations. Preneoplasia studies include: fluorescence and Superdimension bronchoscopies to obtain biopsies of preneoplastic lesions and biomarker studies in individuals with preneoplasias.

  2. Identification of novel biomarker and therapeutic target candidates for acute intracerebral hemorrhage by quantitative plasma proteomics.

    PubMed

    Li, Guo-Chun; Zhang, Lina; Yu, Ming; Jia, Haiyu; Tian, Ting; Wang, Junqin; Wang, Fuqiang; Zhou, Ling

    2017-01-01

    The systematic mechanisms of acute intracerebral hemorrhage are still unknown and unverified, although many recent researches have indicated the secondary insults. This study was aimed to disclose the pathological mechanism and identify novel biomarker and therapeutic target candidates by plasma proteome. Patients with AICH (n = 8) who demographically matched healthy controls (n = 4) were prospectively enrolled, and their plasma samples were obtained. The TMT-LC-MS/MS-based proteomics approach was used to quantify the differential proteome across plasma samples, and the results were analyzed by Ingenuity Pathway Analysis to explore canonical pathways and the relationship involved in the uploaded data. Compared with healthy controls, there were 31 differentially expressed proteins in the ICH group ( P  < 0.05), of which 21 proteins increased while 10 proteins decreased in abundance. These proteins are involved in 21 canonical pathways. One network with high confidence level was selected by the function network analysis, in which 23 proteins, P38MAPK and NFκB signaling pathways participated. Upstream regulator analysis found two regulators, IL6 and TNF, with an activation z -score. Seven biomarker candidates: APCS, FGB, LBP, MGMT, IGFBP2, LYZ, and APOA4 were found. Six candidate proteins were selected to assess the validity of the results by subsequent Western blotting analysis. Our analysis provided several intriguing pathways involved in ICH, like LXR/RXR activation, acute phase response signaling, and production of NO and ROS in macrophages pathways. The three upstream regulators: IL-6, TNF, LPS, and seven biomarker candidates: APCS, APOA4, FGB, IGFBP2, LBP, LYZ, and MGMT were uncovered. LPS, APOA4, IGFBP2, LBP, LYZ, and MGMT are novel potential biomarkers in ICH development. The identified proteins and pathways provide new perspectives to the potential pathological mechanism and therapeutic targets underlying ICH.

  3. Conversion to Sirolimus Ameliorates Cyclosporine-Induced Nephropathy in the Rat: Focus on Serum, Urine, Gene, and Protein Renal Expression Biomarkers

    PubMed Central

    Sereno, José; Nunes, Sara; Rodrigues-Santos, Paulo; Rocha-Pereira, Petronila; Fernandes, João; Teixeira, Frederico; Reis, Flávio

    2014-01-01

    Protocols of conversion from cyclosporin A (CsA) to sirolimus (SRL) have been widely used in immunotherapy after transplantation to prevent CsA-induced nephropathy, but the molecular mechanisms underlying these protocols remain nuclear. This study aimed to identify the molecular pathways and putative biomarkers of CsA-to-SRL conversion in a rat model. Four animal groups (n = 6) were tested during 9 weeks: control, CsA, SRL, and conversion (CsA for 3 weeks followed by SRL for 6 weeks). Classical and emergent serum, urinary, and kidney tissue (gene and protein expression) markers were assessed. Renal lesions were analyzed in hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome stains. SRL-treated rats presented proteinuria and NGAL (serum and urinary) as the best markers of renal impairment. Short CsA treatment presented slight or even absent kidney lesions and TGF-β, NF-κ β, mTOR, PCNA, TP53, KIM-1, and CTGF as relevant gene and protein changes. Prolonged CsA exposure aggravated renal damage, without clear changes on the traditional markers, but with changes in serums TGF-β and IL-7, TBARs clearance, and kidney TGF-β and mTOR. Conversion to SRL prevented CsA-induced renal damage evolution (absent/mild grade lesions), while NGAL (serum versus urine) seems to be a feasible biomarker of CsA replacement to SRL. PMID:24971338

  4. Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology

    PubMed Central

    Swan, Anna Louise; Mobasheri, Ali; Allaway, David; Liddell, Susan

    2013-01-01

    Abstract Mass spectrometry is an analytical technique for the characterization of biological samples and is increasingly used in omics studies because of its targeted, nontargeted, and high throughput abilities. However, due to the large datasets generated, it requires informatics approaches such as machine learning techniques to analyze and interpret relevant data. Machine learning can be applied to MS-derived proteomics data in two ways. First, directly to mass spectral peaks and second, to proteins identified by sequence database searching, although relative protein quantification is required for the latter. Machine learning has been applied to mass spectrometry data from different biological disciplines, particularly for various cancers. The aims of such investigations have been to identify biomarkers and to aid in diagnosis, prognosis, and treatment of specific diseases. This review describes how machine learning has been applied to proteomics tandem mass spectrometry data. This includes how it can be used to identify proteins suitable for use as biomarkers of disease and for classification of samples into disease or treatment groups, which may be applicable for diagnostics. It also includes the challenges faced by such investigations, such as prediction of proteins present, protein quantification, planning for the use of machine learning, and small sample sizes. PMID:24116388

  5. Urinary Metabolomic Profiling to Identify Potential Biomarkers for the Diagnosis of Behcet's Disease by Gas Chromatography/Time-of-Flight-Mass Spectrometry.

    PubMed

    Ahn, Joong Kyong; Kim, Jungyeon; Hwang, Jiwon; Song, Juhwan; Kim, Kyoung Heon; Cha, Hoon-Suk

    2017-11-02

    Diagnosing Behcet's disease (BD) is challenging because of the lack of a diagnostic biomarker. The purposes of this study were to investigate distinctive metabolic changes in urine samples of BD patients and to identify urinary metabolic biomarkers for diagnosis of BD using gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS). Metabolomic profiling of urine samples from 44 BD patients and 41 healthy controls (HC) were assessed using GC/TOF-MS, in conjunction with multivariate statistical analysis. A total of 110 urinary metabolites were identified. The urine metabolite profiles obtained from GC/TOF-MS analysis could distinguish BD patients from the HC group in the discovery set. The parameter values of the orthogonal partial least squared-discrimination analysis (OPLS-DA) model were R ² X of 0.231, R ² Y of 0.804, and Q ² of 0.598. A biomarker panel composed of guanine, pyrrole-2-carboxylate, 3-hydroxypyridine, mannose, l-citrulline, galactonate, isothreonate, sedoheptuloses, hypoxanthine, and gluconic acid lactone were selected and adequately validated as putative biomarkers of BD (sensitivity 96.7%, specificity 93.3%, area under the curve 0.974). OPLS-DA showed clear discrimination of BD and HC groups by a biomarker panel of ten metabolites in the independent set (accuracy 88%). We demonstrated characteristic urinary metabolic profiles and potential urinary metabolite biomarkers that have clinical value in the diagnosis of BD using GC/TOF-MS.

  6. Cytoplasmic Localization of HTLV-1 HBZ Protein: A Biomarker of HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP).

    PubMed

    Baratella, Marco; Forlani, Greta; Raval, Goutham U; Tedeschi, Alessandra; Gout, Olivier; Gessain, Antoine; Tosi, Giovanna; Accolla, Roberto S

    2017-01-01

    HTLV-1 is the causative agent of a severe form of adult T cell leukemia/Lymphoma (ATL), and of a chronic progressive neuromyelopathy designated HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Two important HTLV-1-encoded proteins, Tax-1 and HBZ, play crucial roles in the generation and maintenance of the oncogenic process. Less information is instead available on the molecular and cellular mechanisms leading to HAM/TSP. More importantly, no single specific biomarker has been described that unambiguously define the status of HAM/TSP. Here we report for the first time the finding that HBZ, described until now as an exclusive nuclear protein both in chronically infected and in ATL cells, is instead exclusively localized in the cytoplasm of peripheral blood mononuclear cells (PBMC) from patients suffering of HAM/TSP. Interestingly, at the single cell level, HBZ and Tax-1 proteins are never found co-expressed in the same cell, suggesting the existence of mechanisms of expression uncoupling of these two important HTLV-1 viral products in HAM/TSP patients. Cells expressing cytoplasmic HBZ were almost exclusively found in the CD4+ T cell compartment that was not, at least in a representative HAM/TSP patient, expressing the CD25 marker. Less than 1 percent CD8+ T cells were fond positive for HBZ, while B cells and NK cells were found negative for HBZ in HAM/TSP patients. Our results identify the cytoplasmic localization of HBZ in HAM/TSP patient as a possible biomarker of this rather neglected tropical disease, and raise important hypotheses on the role of HBZ in the pathogenesis of the neuromyelopathy associated to HTLV-1 infection.

  7. GM2-activator protein: a new biomarker for lung cancer.

    PubMed

    Potprommanee, Laddawan; Ma, Haou-Tzong; Shank, Lalida; Juan, Yi-Hsiu; Liao, Wei-Yu; Chen, Shui-Tein; Yu, Chong-Jen

    2015-01-01

    Effective biomarkers for early diagnosis of lung cancer are needed. A recent study demonstrated that urinary GM2-activator protein (GM2AP) level was increased in lung cancer patients. This study aims to validate the potential application of GM2AP as a biomarker for diagnosis of lung cancer. Serum and urine samples were obtained from 189 participants (133 patients for treatment naive lung cancer, 26 healthy volunteers for urine, and 30 healthy volunteers for serum). GM2AP level was detected by Western blotting and quantified using enzyme-linked immunosorbent assay (ELISA). The GM2AP expression in tumors and nontumor parts of lung tissues from 143 nonsmall cell lung cancers was detected by immunohistochemical stains. There was an 8.11 ± 1.36 folds increase in urine and a 5.41 ± 0.73 folds increase in serum level of GM2AP in lung cancer patients compared with healthy volunteers (p < 0.0001), achieving a 0.89 AUC value in urine and 0.90 AUC value in serum for the receiver-operating characteristic curves. Both serum and urine levels of GM2AP correlated significantly with pathology stages (urine, p = 0.009; serum, p < 0.0001). Using immunohistochemical, positive expression of GM2AP was found at 83.9% of nonsmall cell lung cancers patients and none in normal tissue. The GM2AP expression was significantly correlated with pathology stage (p = 0.0001). Patients with higher GM2AP expression had shorter overall survival (p = 0.045) and disease-free survival (p = 0.049) than lower GM2AP expression. Moreover, the multivariate analysis suggested GM2AP as an independent predictors of disease-free survival and overall survival. Our study demonstrates that GM2AP might serve as potential diagnostic and prognostic biomarkers in patients with lung cancer.

  8. Computational Gene Expression Modeling Identifies Salivary Biomarker Analysis that Predict Oral Feeding Readiness in the Newborn

    PubMed Central

    Maron, Jill L.; Hwang, Jooyeon S.; Pathak, Subash; Ruthazer, Robin; Russell, Ruby L.; Alterovitz, Gil

    2014-01-01

    Objective To combine mathematical modeling of salivary gene expression microarray data and systems biology annotation with RT-qPCR amplification to identify (phase I) and validate (phase II) salivary biomarker analysis for the prediction of oral feeding readiness in preterm infants. Study design Comparative whole transcriptome microarray analysis from 12 preterm newborns pre- and post-oral feeding success was used for computational modeling and systems biology analysis to identify potential salivary transcripts associated with oral feeding success (phase I). Selected gene expression biomarkers (15 from computational modeling; 6 evidence-based; and 3 reference) were evaluated by RT-qPCR amplification on 400 salivary samples from successful (n=200) and unsuccessful (n=200) oral feeders (phase II). Genes, alone and in combination, were evaluated by a multivariate analysis controlling for sex and post-conceptional age (PCA) to determine the probability that newborns achieved successful oral feeding. Results Advancing post-conceptional age (p < 0.001) and female sex (p = 0.05) positively predicted an infant’s ability to feed orally. A combination of five genes, NPY2R (hunger signaling), AMPK (energy homeostasis), PLXNA1 (olfactory neurogenesis), NPHP4 (visual behavior) and WNT3 (facial development), in addition to PCA and sex, demonstrated good accuracy for determining feeding success (AUROC = 0.78). Conclusions We have identified objective and biologically relevant salivary biomarkers that noninvasively assess a newborn’s developing brain, sensory and facial development as they relate to oral feeding success. Understanding the mechanisms that underlie the development of oral feeding readiness through translational and computational methods may improve clinical decision making while decreasing morbidities and health care costs. PMID:25620512

  9. Targeted proteomic assays for quantitation of proteins identified by proteogenomic analysis of ovarian cancer

    DOE PAGES

    Song, Ehwang; Gao, Yuqian; Wu, Chaochao; ...

    2017-07-19

    Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less

  10. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    PubMed Central

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  11. Urinary biomarkers in hydronephrosis.

    PubMed

    Madsen, Mia Gebauer

    2013-02-01

    differences in their urinary excretion. Such results were not obtained in the chronic obstruction model in which significant differences were only demonstrated in the urinary concentrations of IL-6. Study II: Candidate urinary biomarkers in hydronephrosis - a clinical study. To study the dynamics of the urinary excretion of selected potential biomarkers in children after the relief of UPJO, and to compare their findings with healthy controls. Twenty-eight children with UPJO were included in the study from 2007-2011 together with 13 healthy children. Pre-, peri- and post-operatively (1 year) urine samples were collected. The median age of the patients was 8.1 (3.5-14.5) years. Five proteins (EGF, IP-10, MCP-1, RANTES, and MIP-1α) were examined in study IIa, and 4 proteins (NGAL, CyC, βM-2, and OPN) were examined in study IIb. In brief, significantly increased urinary concentrations of EGF and MCP-1 were demonstrated in children with UPJO compared to controls, which was followed by a decline in the post-operative period to levels similar to the controls. This indicates that the urinary concentrations of EGF and MCP-1 are regulated as a response to the obstruction, suggesting that they may have a potential as urinary biomarkers in hydronephrosis. In general, urine from the obstructed kidney exhibited higher concentrations of the proteins compared to urine from the nonobstructed kidney. Furthermore, CyC, β-2M, and OPN were negatively correlated with age, and IP-10 and MCP-1 were negatively correlated with DRF. In conclusion, this PhD study confirmed increased concentrations of selected proteins in urine from kidneys suffering from obstruction. Interestingly, it was observed that some urinary proteins had an age-dependent excretion. Further investigations are required to test the ability of the examined proteins to identify an obstruction and reveal disease progression and, thereby, be useful clinical tools.

  12. Novel protein glycan side-chain biomarker and risk of incident type 2 diabetes mellitus.

    PubMed

    Akinkuolie, Akintunde O; Pradhan, Aruna D; Buring, Julie E; Ridker, Paul M; Mora, Samia

    2015-06-01

    Enzymatically glycosylated proteins partake in multiple biological processes, including glucose transport and inflammation. We hypothesized that a novel biomarker (GlycA) of N-acetyl methyl groups originating mainly from N-acetylglucosamine moieties of acute-phase glycoproteins is related to incident type 2 diabetes mellitus and compared it with high-sensitivity C-reactive protein. In 26,508 initially healthy women free of diabetes mellitus, baseline GlycA and high-sensitivity C-reactive protein were quantified by nuclear magnetic resonance spectroscopy and immunoturbidimetry, respectively. During median follow-up of 17.2 years, 2087 type 2 diabetes mellitus cases occurred. In Cox models with adjustment for age, race, smoking, alcohol, activity, menopausal status, hormone use, family history, and body mass index, quartile 4 versus 1 hazard ratios and 95% confidence intervals were 2.67 (2.26-3.14) for GlycA and 3.93 (3.24-4.77) for high-sensitivity C-reactive protein; both P trend <0.0001. Associations for GlycA and high-sensitivity C-reactive protein were attenuated after additionally adjusting for lipids: 1.65 (1.39-1.95) and 2.83 (2.32-3.44), respectively, both P trend <0.0001, and after mutual adjustment: 1.11 (0.93-1.33; P trend=0.10) and 2.57 (2.09-3.16; P trend<0.0001), respectively. Our finding of an association between a consensus glycan sequence common to a host of acute-phase reactants and incident type 2 diabetes mellitus provides further support for inflammation in the development of type 2 diabetes mellitus. Additional studies exploring the role of enzymatic glycosylation in the prevention of type 2 diabetes mellitus are warranted. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00000479. © 2015 American Heart Association, Inc.

  13. atBioNet--an integrated network analysis tool for genomics and biomarker discovery.

    PubMed

    Ding, Yijun; Chen, Minjun; Liu, Zhichao; Ding, Don; Ye, Yanbin; Zhang, Min; Kelly, Reagan; Guo, Li; Su, Zhenqiang; Harris, Stephen C; Qian, Feng; Ge, Weigong; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2012-07-20

    Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks). The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm.

  14. Unique protein expression signatures of survival time in kidney renal clear cell carcinoma through a pan-cancer screening.

    PubMed

    Han, Guangchun; Zhao, Wei; Song, Xiaofeng; Kwok-Shing Ng, Patrick; Karam, Jose A; Jonasch, Eric; Mills, Gordon B; Zhao, Zhongming; Ding, Zhiyong; Jia, Peilin

    2017-10-03

    In 2016, it is estimated that there will be 62,700 new cases of kidney cancer in the United States, and 14,240 patients will die from the disease. Because the incidence of kidney renal clear cell carcinoma (KIRC), the most common type of kidney cancer, is expected to continue to increase in the US, there is an urgent need to find effective diagnostic biomarkers for KIRC that could help earlier detection of and customized treatment strategies for the disease. Accordingly, in this study we systematically investigated KIRC's prognostic biomarkers for survival using the reverse phase protein array (RPPA) data and the high throughput sequencing data from The Cancer Genome Atlas (TCGA). With comprehensive data available in TCGA, we systematically screened protein expression based survival biomarkers in 10 major cancer types, among which KIRC presented many protein prognostic biomarkers of survival time. This is in agreement with a previous report that expression level changes (mRNAs, microRNA and protein) may have a better performance for prognosis of KIRC. In this study, we also identified 52 prognostic genes for KIRC, many of which are involved in cell-cycle and cancer signaling, as well as 15 tumor-stage-specific prognostic biomarkers. Notably, we found fewer prognostic biomarkers for early-stage than for late-stage KIRC. Four biomarkers (the RPPA protein IDs: FASN, ACC1, Cyclin_B1 and Rad51) were found to be prognostic for survival based on both protein and mRNA expression data. Through pan-cancer screening, we found that many protein biomarkers were prognostic for patients' survival in KIRC. Stage-specific survival biomarkers in KIRC were also identified. Our study indicated that these protein biomarkers might have potential clinical value in terms of predicting survival in KIRC patients and developing individualized treatment strategies. Importantly, we found many biomarkers in KIRC at both the mRNA expression level and the protein expression level. These

  15. Identification of Oxidative Stress Related Proteins as Biomarkers for Lung Cancer and Chronic Obstructive Pulmonary Disease in Bronchoalveolar Lavage

    PubMed Central

    Pastor, Maria Dolores; Nogal, Ana; Molina-Pinelo, Sonia; Meléndez, Ricardo; Romero-Romero, Beatriz; Mediano, Maria Dolores; López-Campos, Jose L.; García-Carbonero, Rocío; Sanchez-Gastaldo, Amparo; Carnero, Amancio; Paz-Ares, Luis

    2013-01-01

    Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) commonly coexist in smokers, and the presence of COPD increases the risk of developing LC. Cigarette smoke causes oxidative stress and an inflammatory response in lung cells, which in turn may be involved in COPD and lung cancer development. The aim of this study was to identify differential proteomic profiles related to oxidative stress response that were potentially involved in these two pathological entities. Protein content was assessed in the bronchoalveolar lavage (BAL) of 60 patients classified in four groups: COPD, COPD and LC, LC, and control (neither COPD nor LC). Proteins were separated into spots by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and examined by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF). A total of 16 oxidative stress regulatory proteins were differentially expressed in BAL samples from LC and/or COPD patients as compared with the control group. A distinct proteomic reactive oxygen species (ROS) protein signature emerged that characterized lung cancer and COPD. In conclusion, our findings highlight the role of the oxidative stress response proteins in the pathogenic pathways of both diseases, and provide new candidate biomarkers and predictive tools for LC and COPD diagnosis. PMID:23389041

  16. Identification of oxidative stress related proteins as biomarkers for lung cancer and chronic obstructive pulmonary disease in bronchoalveolar lavage.

    PubMed

    Pastor, Maria Dolores; Nogal, Ana; Molina-Pinelo, Sonia; Meléndez, Ricardo; Romero-Romero, Beatriz; Mediano, Maria Dolores; López-Campos, Jose L; García-Carbonero, Rocío; Sanchez-Gastaldo, Amparo; Carnero, Amancio; Paz-Ares, Luis

    2013-02-06

    Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) commonly coexist in smokers, and the presence of COPD increases the risk of developing LC. Cigarette smoke causes oxidative stress and an inflammatory response in lung cells, which in turn may be involved in COPD and lung cancer development. The aim of this study was to identify differential proteomic profiles related to oxidative stress response that were potentially involved in these two pathological entities. Protein content was assessed in the bronchoalveolar lavage (BAL) of 60 patients classified in four groups: COPD, COPD and LC, LC, and control (neither COPD nor LC). Proteins were separated into spots by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and examined by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF). A total of 16 oxidative stress regulatory proteins were differentially expressed in BAL samples from LC and/or COPD patients as compared with the control group. A distinct proteomic reactive oxygen species (ROS) protein signature emerged that characterized lung cancer and COPD. In conclusion, our findings highlight the role of the oxidative stress response proteins in the pathogenic pathways of both diseases, and provide new candidate biomarkers and predictive tools for LC and COPD diagnosis.

  17. Identification of prostate cancer biomarkers in urinary exosomes

    PubMed Central

    Øverbye, Anders; Skotland, Tore; Koehler, Christian J.; Thiede, Bernd; Seierstad, Therese; Berge, Viktor; Sandvig, Kirsten; Llorente, Alicia

    2015-01-01

    Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumour-specific molecules can be found in exosomes isolated from biological fluids. We have here investigated the proteome of urinary exosomes by using mass spectrometry to identify proteins differentially expressed in prostate cancer patients compared to healthy male controls. In total, 15 control and 16 prostate cancer samples of urinary exosomes were analyzed. Importantly, 246 proteins were differentially expressed in the two groups. The majority of these proteins (221) were up-regulated in exosomes from prostate cancer patients. These proteins were analyzed according to specific criteria to create a focus list that contained 37 proteins. At 100% specificity, 17 of these proteins displayed individual sensitivities above 60%. Even though several of these proteins showed high sensitivity and specificity for prostate cancer as individual biomarkers, combining them in a multi-panel test has the potential for full differentiation of prostate cancer from non-disease controls. The highest sensitivity, 94%, was observed for transmembrane protein 256 (TM256; chromosome 17 open reading frame 61). LAMTOR proteins were also distinctly enriched with very high specificity for patient samples. TM256 and LAMTOR1 could be used to augment the sensitivity to 100%. Other prominent proteins were V-type proton ATPase 16 kDa proteolipid subunit (VATL), adipogenesis regulatory factor (ADIRF), and several Rab-class members and proteasomal proteins. In conclusion, this study clearly shows the potential of using urinary exosomes in the diagnosis and clinical management of prostate cancer. PMID:26196085

  18. Identification of prostate cancer biomarkers in urinary exosomes.

    PubMed

    Øverbye, Anders; Skotland, Tore; Koehler, Christian J; Thiede, Bernd; Seierstad, Therese; Berge, Viktor; Sandvig, Kirsten; Llorente, Alicia

    2015-10-06

    Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumour-specific molecules can be found in exosomes isolated from biological fluids. We have here investigated the proteome of urinary exosomes by using mass spectrometry to identify proteins differentially expressed in prostate cancer patients compared to healthy male controls. In total, 15 control and 16 prostate cancer samples of urinary exosomes were analyzed. Importantly, 246 proteins were differentially expressed in the two groups. The majority of these proteins (221) were up-regulated in exosomes from prostate cancer patients. These proteins were analyzed according to specific criteria to create a focus list that contained 37 proteins. At 100% specificity, 17 of these proteins displayed individual sensitivities above 60%. Even though several of these proteins showed high sensitivity and specificity for prostate cancer as individual biomarkers, combining them in a multi-panel test has the potential for full differentiation of prostate cancer from non-disease controls. The highest sensitivity, 94%, was observed for transmembrane protein 256 (TM256; chromosome 17 open reading frame 61). LAMTOR proteins were also distinctly enriched with very high specificity for patient samples. TM256 and LAMTOR1 could be used to augment the sensitivity to 100%. Other prominent proteins were V-type proton ATPase 16 kDa proteolipid subunit (VATL), adipogenesis regulatory factor (ADIRF), and several Rab-class members and proteasomal proteins. In conclusion, this study clearly shows the potential of using urinary exosomes in the diagnosis and clinical management of prostate cancer.

  19. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease.

    PubMed

    Soares, Holly D; Potter, William Z; Pickering, Eve; Kuhn, Max; Immermann, Frederick W; Shera, David M; Ferm, Mats; Dean, Robert A; Simon, Adam J; Swenson, Frank; Siuciak, Judith A; Kaplow, June; Thambisetty, Madhav; Zagouras, Panayiotis; Koroshetz, Walter J; Wan, Hong I; Trojanowski, John Q; Shaw, Leslie M

    2012-10-01

    A blood-based test that could be used as a screen for Alzheimer disease (AD) may enable early intervention and better access to treatment. To apply a multiplex immunoassay panel to identify plasma biomarkers of AD using plasma samples from the Alzheimer's Disease Neuroimaging Initiative cohort. Cohort study. The Biomarkers Consortium Alzheimer's Disease Plasma Proteomics Project. Plasma samples at baseline and at 1 year were analyzed from 396 (345 at 1 year) patients with mild cognitive impairment, 112 (97 at 1 year) patients with AD, and 58 (54 at 1 year) healthy control subjects. Multivariate and univariate statistical analyses were used to examine differences across diagnostic groups and relative to the apolipoprotein E (ApoE) genotype. Increased levels of eotaxin 3, pancreatic polypeptide, and N-terminal protein B-type brain natriuretic peptide were observed in patients, confirming similar changes reported in cerebrospinal fluid samples of patients with AD and MCI. Increases in tenascin C levels and decreases in IgM and ApoE levels were also observed. All participants with Apo ε3/ε4 or ε4/ε4 alleles showed a distinct biochemical profile characterized by low C-reactive protein and ApoE levels and by high cortisol, interleukin 13, apolipoprotein B, and gamma interferon levels. The use of plasma biomarkers improved specificity in differentiating patients with AD from controls, and ApoE plasma levels were lowest in patients whose mild cognitive impairment had progressed to dementia. Plasma biomarker results confirm cerebrospinal fluid studies reporting increased levels of pancreatic polypeptide and N-terminal protein B-type brain natriuretic peptide in patients with AD and mild cognitive impairment. Incorporation of plasma biomarkers yielded high sensitivity with improved specificity, supporting their usefulness as a screening tool. The ApoE genotype was associated with a unique biochemical profile irrespective of diagnosis, highlighting the importance of

  20. Protein-C Reactive as Biomarker Predictor of Schizophrenia Phases of Illness? A Systematic Review.

    PubMed

    Orsolini, Laura; Sarchione, Fabiola; Vellante, Federica; Fornaro, Michele; Matarazzo, Ilaria; Martinotti, Giovanni; Valchera, Alessandro; Di Nicola, Marco; Carano, Alessandro; Di Giannantonio, Massimo; Perna, Giampaolo; Olivieri, Luigi; De Berardis, Domenico

    2018-01-01

    Schizophrenia is a complex illness in which genetic, environmental, and epigenetic components have been implicated. However, recently, psychiatric disorders appear to be related to a chronic inflammatory state, at the level of specific cerebral areas which have been found as well impaired and responsible for schizophrenia symptomatology. Hence, a role of inflammatory mediators and cytokines has been as well defined. Accordingly, the role of an acute inflammatory phase protein, the C-reactive protein (CRP) has been recently investigated. The objective of the present study is to evaluate how PCR may represent a biomarker in schizophrenia, i.e. correlated with illness phases and/or clinical manifestation and/or psychopathological severity. A systematic review was here carried out by searching the following keywords ((C-reactive protein AND ((schizophrenia) OR (psychotic disorder))) for the topics 'PCR' and 'Schizophrenia', by using MESH terms. An immune dysfunction and inflammation have been described amongst schizophrenic patients. Findings reported elevated CRP levels in schizophrenia, mainly correlated with the severity of illness and during the recrudescent phase. CRP levels are higher when catatonic features, negative symptomatology and aggressiveness are associated. CRP levels appeared not to be related to suicidal behaviour and ideation. CRP and its blood levels have been reported higher amongst schizophrenic patients, by suggesting a role of inflammation in the pathogenesis of schizophrenia. Further studies are needed to better understand if CRP may be considered a biomarker in schizophrenia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Noninvasive diagnosis of intraamniotic infection: proteomic biomarkers in vaginal fluid.

    PubMed

    Hitti, Jane; Lapidus, Jodi A; Lu, Xinfang; Reddy, Ashok P; Jacob, Thomas; Dasari, Surendra; Eschenbach, David A; Gravett, Michael G; Nagalla, Srinivasa R

    2010-07-01

    We analyzed the vaginal fluid proteome to identify biomarkers of intraamniotic infection among women in preterm labor. Proteome analysis was performed on vaginal fluid specimens from women with preterm labor, using multidimensional liquid chromatography, tandem mass spectrometry, and label-free quantification. Enzyme immunoassays were used to quantify candidate proteins. Classification accuracy for intraamniotic infection (positive amniotic fluid bacterial culture and/or interleukin-6 >2 ng/mL) was evaluated using receiver-operator characteristic curves obtained by logistic regression. Of 170 subjects, 30 (18%) had intraamniotic infection. Vaginal fluid proteome analysis revealed 338 unique proteins. Label-free quantification identified 15 proteins differentially expressed in intraamniotic infection, including acute-phase reactants, immune modulators, high-abundance amniotic fluid proteins and extracellular matrix-signaling factors; these findings were confirmed by enzyme immunoassay. A multi-analyte algorithm showed accurate classification of intraamniotic infection. Vaginal fluid proteome analyses identified proteins capable of discriminating between patients with and without intraamniotic infection. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  2. Associations among Protein Biomarkers and pH and Color Traits in Longissimus thoracis and Rectus abdominis Muscles in Protected Designation of Origin Maine-Anjou Cull Cows.

    PubMed

    Gagaoua, Mohammed; Couvreur, Sébastien; Le Bec, Guillain; Aminot, Ghislain; Picard, Brigitte

    2017-05-03

    This study investigated the relationships among a list of 23 protein biomarkers with CIE-L*a*b* meat color traits and ultimate pH on Longissimus thoracis (LT) and Rectus abdominis (RA) muscles of 48 protected designation of origin Maine-Anjou cows. The technological parameters were correlated with several biomarkers and were in some cases muscle-dependent. More biomarkers were related to pHu in LT than in RA muscle. Some consistencies were found, by the common correlation of pHu with MyHC-IIa and MyHC-IIx. The pHu of the LT muscle was also correlated with other cytoskeletal entities and proteins belonging to metabolism and cellular stress. In contrast to the relationships found between biomarkers and LT pHu, more proteins were related to the instrumental color coordinates in RA than in LT muscle. The regression equations were parameter- and muscle-dependent. Certain of the retained proteins explained more than one color coordinate. Hsp70-Grp75 was positive in the models of L*, a*, b*, and C* of LT and of b* in the RA muscle. Further heat shock proteins were strongly related with the meat color coordinates in both muscles. The involvement of metabolic enzymes and myofibrillar proteins in the meat color development was also verified in this experiment. This study confirmed once again the importance of numerous biological pathways in beef color.

  3. Potential biomarkers of ageing.

    PubMed

    Simm, Andreas; Nass, Norbert; Bartling, Babett; Hofmann, Britt; Silber, Rolf-Edgar; Navarrete Santos, Alexander

    2008-03-01

    Life span in individual humans is very heterogeneous.Thus, the ageing rate, measured as the decline of functional capacity and stress resistance, is different in every individual. There have been attempts made to analyse this individual age, the so-called biological age, in comparison to chronological age. Biomarkers of ageing should help to characterise this biological age and, as age is a major risk factor in many degenerative diseases,could be subsequently used to identify individuals at high risk of developing age-associated diseases or disabilities. Markers based on oxidative stress, protein glycation,inflammation, cellular senescence and hormonal deregulation are discussed.

  4. Validation of biomarkers of food intake-critical assessment of candidate biomarkers.

    PubMed

    Dragsted, L O; Gao, Q; Scalbert, A; Vergères, G; Kolehmainen, M; Manach, C; Brennan, L; Afman, L A; Wishart, D S; Andres Lacueva, C; Garcia-Aloy, M; Verhagen, H; Feskens, E J M; Praticò, G

    2018-01-01

    Biomarkers of food intake (BFIs) are a promising tool for limiting misclassification in nutrition research where more subjective dietary assessment instruments are used. They may also be used to assess compliance to dietary guidelines or to a dietary intervention. Biomarkers therefore hold promise for direct and objective measurement of food intake. However, the number of comprehensively validated biomarkers of food intake is limited to just a few. Many new candidate biomarkers emerge from metabolic profiling studies and from advances in food chemistry. Furthermore, candidate food intake biomarkers may also be identified based on extensive literature reviews such as described in the guidelines for Biomarker of Food Intake Reviews (BFIRev). To systematically and critically assess the validity of candidate biomarkers of food intake, it is necessary to outline and streamline an optimal and reproducible validation process. A consensus-based procedure was used to provide and evaluate a set of the most important criteria for systematic validation of BFIs. As a result, a validation procedure was developed including eight criteria, plausibility, dose-response, time-response, robustness, reliability, stability, analytical performance, and inter-laboratory reproducibility. The validation has a dual purpose: (1) to estimate the current level of validation of candidate biomarkers of food intake based on an objective and systematic approach and (2) to pinpoint which additional studies are needed to provide full validation of each candidate biomarker of food intake. This position paper on biomarker of food intake validation outlines the second step of the BFIRev procedure but may also be used as such for validation of new candidate biomarkers identified, e.g., in food metabolomic studies.

  5. Redox Proteomics of the Inflammatory Secretome Identifies a Common Set of Redoxins and Other Glutathionylated Proteins Released in Inflammation, Influenza Virus Infection and Oxidative Stress

    PubMed Central

    Checconi, Paola; Salzano, Sonia; Bowler, Lucas; Mullen, Lisa; Mengozzi, Manuela; Hanschmann, Eva-Maria; Lillig, Christopher Horst; Sgarbanti, Rossella; Panella, Simona; Nencioni, Lucia; Palamara, Anna Teresa; Ghezzi, Pietro

    2015-01-01

    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions. PMID:25985305

  6. Moesin Is a Biomarker for the Assessment of Genotoxic Carcinogens in Mouse Lymphoma

    PubMed Central

    Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong

    2012-01-01

    1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.5-fold increase or decrease in intensity compared to control cells on a 2-D gel, we focused on the candidate biomarker moesin. Western analysis using monoclonal rabbit anti-moesin confirmed the identity of the protein and its increased level of expression upon exposure to the carcinogenic compounds. Moesin expression also increased in cells treated with six additional genotoxic carcinogens, verifying that moesin could serve as a biomarker to monitor phenotypic change upon exposure to genotoxic carcinogens in L5178Y mouse lymphoma cells. PMID:22358511

  7. Moesin is a biomarker for the assessment of genotoxic carcinogens in mouse lymphoma.

    PubMed

    Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong

    2012-02-01

    1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.5-fold increase or decrease in intensity compared to control cells on a 2-D gel, we focused on the candidate biomarker moesin. Western analysis using monoclonal rabbit anti-moesin confirmed the identity of the protein and its increased level of expression upon exposure to the carcinogenic compounds. Moesin expression also increased in cells treated with six additional genotoxic carcinogens, verifying that moesin could serve as a biomarker to monitor phenotypic change upon exposure to genotoxic carcinogens in L5178Y mouse lymphoma cells.

  8. Faecal biomarker patterns in patients with symptoms of irritable bowel syndrome

    PubMed Central

    Emmanuel, Anton; Landis, Darryl; Peucker, Mark; Hungin, A Pali S

    2016-01-01

    Objective To determine rates of faecal biomarker results capable of suggesting potentially treatable causes of irritable bowel syndrome (IBS) symptomatology in a population of patients with symptoms of IBS who meet Rome III criteria for that condition. Design Descriptive, retrospective study in which faecal biomarker results (dichotomised into ‘normal’ and ‘abnormal’ values) were related to data from patient-completed questionnaire data identifying demographics, Rome III criteria for IBS and IBS phenotype (IBS-D, IBS-C, IBS-M and IBS-U). Setting Commercial reference laboratory. Patients Individuals whose physicians ordered faecal biomarker testing for evaluation of chronic abdominal symptoms consistent with IBS. Interventions None. Main outcome measures Rates of occurrence of abnormal results on any of seven faecal biomarkers suggesting a treatable cause for IBS symptoms. Results Abdominal symptoms meeting Rome III criteria for IBS were present in 3553 records (the population), which were subjected to further analysis. Abnormal biomarker results (the outcomes) occurred in 94% of cases; 73% and 65% of records indicated growth of a bacterial potential pathogen and low growth of beneficial organisms, respectively. Abnormal results for all other faecal biomarkers occurred with frequencies from 5% to 13%. Frequency of abnormal results for elastase, calprotectin, eosinophil protein X, and beneficial organisms rose significantly with age, and differed significantly across IBS phenotypes. Conclusions A large proportion of patients manifesting symptoms meeting Rome III IBS diagnostic criteria have faecal biomarker results indicating potential underlying, treatable causes of their symptoms. Faecal biomarker testing is an appropriate means of identifying potentially treatable causes of IBS symptoms. PMID:27761231

  9. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis.

    PubMed

    Ye, Xiao-Dong; He, Yi; Wang, Sheng; Wong, Gordon T; Irwin, Michael G; Xia, Zhengyuan

    2018-05-17

    Acute myocardial infarction (AMI) is a life-threatening event. Even with timely treatment, acute ischemic myocardial injury and ensuing ischemia reperfusion injury (IRI) can still be difficult issues to tackle. Apart from radiological and other auxiliary examinations, laboratory tests of applicable cardiac biomarkers are also necessary for early diagnosis and close monitoring of this disorder. Heart-type fatty acid binding protein (H-FABP), which mainly exists inside cardiomyocytes, has recently emerged as a potentially promising biomarker for myocardial injury. In this review we discuss the sensitivity and specificity of H-FABP in the assessment of myocardial injury and IRI, especially in the early stage, and its long-term prognostic value in comparison with other commonly used cardiac biomarkers, including myoglobin (Mb), cardiac troponin I (cTnI), creatine kinase MB (CK-MB), C-reactive protein (CRP), glycogen phosphorylase isoenzyme BB (GPBB), and high-sensitivity cardiac troponin T (hs-cTnT). The potential and value of combined application of H-FABP with other biomarkers are also discussed. Finally, the prospect of H-FABP is summarized; several technical issues are discussed to facilitate wider application of H-FABP in clinical practice.

  10. Comprehensive Identification of Proteins from MALDI Imaging*

    PubMed Central

    Maier, Stefan K.; Hahne, Hannes; Gholami, Amin Moghaddas; Balluff, Benjamin; Meding, Stephan; Schoene, Cédrik; Walch, Axel K.; Kuster, Bernhard

    2013-01-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful tool for the visualization of proteins in tissues and has demonstrated considerable diagnostic and prognostic value. One main challenge is that the molecular identity of such potential biomarkers mostly remains unknown. We introduce a generic method that removes this issue by systematically identifying the proteins embedded in the MALDI matrix using a combination of bottom-up and top-down proteomics. The analyses of ten human tissues lead to the identification of 1400 abundant and soluble proteins constituting the set of proteins detectable by MALDI IMS including >90% of all IMS biomarkers reported in the literature. Top-down analysis of the matrix proteome identified 124 mostly N- and C-terminally fragmented proteins indicating considerable protein processing activity in tissues. All protein identification data from this study as well as the IMS literature has been deposited into MaTisse, a new publically available database, which we anticipate will become a valuable resource for the IMS community. PMID:23782541

  11. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides.

    PubMed

    Yang, Xu; Lazar, Iulia M

    2009-03-27

    The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing approximately 1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments

  12. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides

    PubMed Central

    2009-01-01

    Background The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. Methods MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. Results In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Conclusion

  13. Identifying FGA peptides as nasopharyngeal carcinoma-associated biomarkers by magnetic beads.

    PubMed

    Tao, Ya-Lan; Li, Yan; Gao, Jin; Liu, Zhi-Gang; Tu, Zi-Wei; Li, Guo; Xu, Bing-Qing; Niu, Dao-Li; Jiang, Chang-Bin; Yi, Wei; Li, Zhi-Qiang; Li, Jing; Wang, Yi-Ming; Cheng, Zhi-Bin; Liu, Qiao-Dan; Bai, Li; Zhang, Chun; Zhang, Jing-Yu; Zeng, Mu-Sheng; Xia, Yun-Fei

    2012-07-01

    Early diagnosis and treatment is known to improve prognosis for nasopharyngeal carcinoma (NPC). The study determined the specific peptide profiles by comparing the serum differences between NPC patients and healthy controls, and provided the basis for the diagnostic model and identification of specific biomarkers of NPC. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) can be used to detect the molecular mass of peptides. Mass spectra of peptides were generated after extracting and purification of 40 NPC samples in the training set, 21 in the single center validation set and 99 in the multicenter validation set using weak cationic-exchanger magnetic beads. The spectra were analyzed statistically using FlexAnalysis™ and ClinProt™ bioinformatics software. The four most significant peaks were selected out to train a genetic algorithm model to diagnose NPC. The diagnostic sensitivity and specificity were 100% and 100% in the training set, 90.5% and 88.9% in the single center validation set, 91.9% and 83.3% in the multicenter validation set, and the false positive rate (FPR) and false negative rate (FNR) were obviously lower in the NPC group (FPR, 16.7%; FNR, 8.1%) than in the other cancer group (FPR, 39%; FNR, 61%), respectively. So, the diagnostic model including four peptides can be suitable for NPC but not for other cancers. FGA peptide fragments identified may serve as tumor-associated biomarkers for NPC. Copyright © 2012 Wiley Periodicals, Inc.

  14. USE OF qRTPCR TO IDENTIFY POTENTIAL BIOMARKERS OF BROMATE EXPOSURE IN F344 MALE RAT KIDNEYS

    EPA Science Inventory

    Potassium bromate (KBrO3) is a drinking water disinfection by-product that is nephrotoxic and carcinogenic. To identify potential biomarkers of carcinogenicity, male F344 rats were chronically exposed to a carcinogenic dose (400mg/l) of KBrO3 in their drinking water. Kidneys were...

  15. Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer

    PubMed Central

    Panigrahi, Gati K.; Ramteke, Anand; Birks, Diane; Abouzeid Ali, Hamdy E.; Venkataraman, Sujatha; Agarwal, Chapla; Vibhakar, Rajeev; Miller, Lance D.; Agarwal, Rajesh; Abd Elmageed, Zakaria Y.; Deep, Gagan

    2018-01-01

    Hypoxia and expression of hypoxia-related biomarkers are associated with disease progression and treatment failure in prostate cancer (PCa). We have reported that exosomes (nanovesicles of 30-150 nm in diameter) secreted by human PCa cells under hypoxia promote invasiveness and stemness in naïve PCa cells. Here, we identified the unique microRNAs (miRNAs) loaded in exosomes secreted by PCa cells under hypoxia. Using TaqMan® array microRNA cards, we analyzed the miRNA profile in exosomes secreted by human PCa LNCaP cells under hypoxic (ExoHypoxic) and normoxic (ExoNormoxic) conditions. We identified 292 miRNAs loaded in both ExoHypoxic and ExoNormoxic. The top 11 miRNAs with significantly higher level in ExoHypoxic compared to ExoNormoxic were miR-517a, miR-204, miR-885, miR-143, miR-335, miR-127, miR-542, miR-433, miR-451, miR-92a and miR-181a; and top nine miRNA with significantly lower expression level in ExoHypoxic compared to ExoNormoxic were miR-521, miR-27a, miR-324, miR-579, miR-502, miR-222, miR-135b, miR-146a and miR-491. Importantly, the two differentially expressed miRNAs miR-885 (increased expression) and miR-521 (decreased expression) showed similar expression pattern in exosomes isolated from the serum of PCa patients compared to healthy individuals. Additionally, miR-204 and miR-222 displayed correlated expression patterns in prostate tumors (Pearson R = 0.66, p < 0.0001) by The Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) genomic dataset analysis. Overall, the present study identified unique miRNAs with differential expression in exosomes secreted from hypoxic PCa cells and suggests their potential usefulness as a biomarker of hypoxia in PCa patients. PMID:29568403

  16. MicroRNA Biomarkers of Toxicity in Biological Matrices ...

    EPA Pesticide Factsheets

    Biomarker measurements that reliably correlate with tissue injury and can be measured from sampling accessible biofluids offer enormous benefits in terms of cost, time, and convenience when assessing environmental and drug-induced toxicity in model systems or human cohorts. MicroRNAs (miRNAs) have emerged in recent years as a promising new type of biomarker for monitoring toxicity. Recent enthusiasm for miRNA biomarker research has been fueled by discoveries that certain miRNA species are cell-type specific and released during injury, thus raising the possibility of using biofluid-based miRNAs as a “liquid biopsy” that may be obtained by sampling extracellular fluids. As biomarkers, miRNAs demonstrate improved stability as compared to many protein markers and sequences are largely conserved across species, simplifying analytical techniques. Recent efforts have sought to identify miRNAs that are released into accessible biofluids following xenobiotic exposure, using compounds that target specific organs. While still early in the discovery phase, miRNA biomarkers will have an increasingly important role in the assessment of adverse effects of both environmental chemicals and pharmaceutical drugs. Here, we review the current findings of biofluid-based miRNAs, as well as highlight technical challenges in assessing toxicologic pathology using these biomarkers. MicroRNAs (miRNAs) are small, non-coding RNA species that selectively bind mRNA molecules and alter thei

  17. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor

    NASA Astrophysics Data System (ADS)

    Kosaka, P. M.; Pini, V.; Ruz, J. J.; da Silva, R. A.; González, M. U.; Ramos, D.; Calleja, M.; Tamayo, J.

    2014-12-01

    Blood contains a range of protein biomarkers that could be used in the early detection of disease. To achieve this, however, requires sensors capable of detecting (with high reproducibility) biomarkers at concentrations one million times lower than the concentration of the other blood proteins. Here, we show that a sandwich assay that combines mechanical and optoplasmonic transduction can detect cancer biomarkers in serum at ultralow concentrations. A biomarker is first recognized by a surface-anchored antibody and then by an antibody in solution that identifies a free region of the captured biomarker. This second antibody is tethered to a gold nanoparticle that acts as a mass and plasmonic label; the two signatures are detected by means of a silicon cantilever that serves as a mechanical resonator for ‘weighing’ the mass of the captured nanoparticles and as an optical cavity that boosts the plasmonic signal from the nanoparticles. The capabilities of the approach are illustrated with two cancer biomarkers: the carcinoembryonic antigen and the prostate specific antigen, which are currently in clinical use for the diagnosis, monitoring and prognosis of colon and prostate cancer, respectively. A detection limit of 1 × 10-16 g ml-1 in serum is achieved with both biomarkers, which is at least seven orders of magnitude lower than that achieved in routine clinical practice. Moreover, the rate of false positives and false negatives at this concentration is extremely low, ˜10-4.

  18. Review of Prospects of Biological Fluid Biomarkers in Osteoarthritis

    PubMed Central

    Nguyen, Lich Thi; Sharma, Ashish Ranjan; Chakraborty, Chiranjib; Saibaba, Balaji; Ahn, Moo-Eob; Lee, Sang-Soo

    2017-01-01

    Osteoarthritis (OA) is a degenerative disease of the joints and is one of the leading causes of disability in adults. However, there are no key therapeutics for OA and medical treatment is based on managing the symptoms and slowing down progression of the disease. Diagnostics based on clinical examination and radiography have provided little information about metabolic changes in joint tissues, disease onset and progression. Due to lack of effective methods for early detection and evaluation of treatment outcome, the measurement of biochemical markers (biomarkers) shows promise as a prospective method aiding in disease monitoring. OA biomarkers that are present in biological fluids such as blood, urine and synovial fluid, sources that are easily isolated from body, are of particular interest. Moreover, there are increasingly more studies identifying and developing new biomarkers for OA. In this review, efforts have been made to summarize the biomarkers that have been reported in recent studies on patients. We also tried to classify biomarkers according to tissue metabolism (bone, cartilage and synovial metabolism markers), pathological pathways (inflammatory and genetic markers) and biological function (chemokines, growth factors, acute phase proteins, etc.). PMID:28287489

  19. Biomarkers in systemic juvenile idiopathic arthritis: a comparison with biomarkers in cryopyrin-associated periodic syndromes.

    PubMed

    Nirmala, Nanguneri; Grom, Alexei; Gram, Hermann

    2014-09-01

    This review summarizes biomarkers in systemic juvenile idiopathic arthritis (sJIA). Broadly, the markers are classified under protein, cellular, gene expression and genetic markers. We also compare the biomarkers in sJIA to biomarkers in cryopyrin-associated periodic syndrome (CAPS). Recent publications showing the similarity of clinical response of sJIA and CAPS to anti-interleukin 1 therapies prompted a comparison at the biomarker level. sJIA traditionally is classified under the umbrella of juvenile idiopathic arthritis. At the clinical phenotypic level, sJIA has several features that are more similar to those seen in CAPS. In this review, we summarize biomarkers in sJIA and CAPS and draw upon the various similarities and differences between the two families of diseases. The main differences between sJIA and CAPS biomarkers are genetic markers, with CAPS being a family of monogenic diseases with mutations in NLRP3. There have been a small number of publications describing cellular biomarkers in sJIA with no such studies described for CAPS. Many of the protein marker's characteristics of sJIA are also seen to characterize CAPS. The gene expression data in both sJIA and CAPS show a strong upregulation of innate immunity pathways. In addition, we describe a strong similarity between sJIA and CAPS at the gene expression level in which several genes that form a part of the erythropoiesis signature are upregulated in both sJIA and CAPS.

  20. Early Detection Of Breast Cancer using Post-Translationally Modified Biomarkers

    DTIC Science & Technology

    2012-03-01

    methods are widely used to screen many potential diseases based on changes in blood proteins. Changes in proteins identified by proteomic studies are...suggest that circulating PTM levels can be used as a biomarker for endothelial cell dysfunction, which is of concern in several human diseases . We have...plasmid expressing the wild type PTENP1 3’UTR (pGLU/ψ3’UTR) or the 3’UTR in which the seed matches of the 5 PTEN-targeting microRNAs have been

  1. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE PAGES

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan; ...

    2016-04-20

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  2. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  3. Connective tissue-activating peptide III: a novel blood biomarker for early lung cancer detection.

    PubMed

    Yee, John; Sadar, Marianne D; Sin, Don D; Kuzyk, Michael; Xing, Li; Kondra, Jennifer; McWilliams, Annette; Man, S F Paul; Lam, Stephen

    2009-06-10

    There are no reliable blood biomarkers to detect early lung cancer. We used a novel strategy that allows discovery of differentially present proteins against a complex and variable background. Mass spectrometry analyses of paired pulmonary venous-radial arterial blood from 16 lung cancer patients were applied to identify plasma proteins potentially derived from the tumor microenvironment. Two differentially expressed proteins were confirmed in 64 paired venous-arterial blood samples using an immunoassay. Twenty-eight pre- and postsurgical resection peripheral blood samples and two independent, blinded sets of plasma from 149 participants in a lung cancer screening study (49 lung cancers and 100 controls) and 266 participants from the National Heart Lung and Blood Institute Lung Health Study (45 lung cancer and 221 matched controls) determined the accuracy of the two protein markers to detect subclinical lung cancer. Connective tissue-activating peptide III (CTAP III)/ neutrophil activating protein-2 (NAP-2) and haptoglobin were identified to be significantly higher in venous than in arterial blood. CTAP III/NAP-2 levels decreased after tumor resection (P = .01). In two independent population cohorts, CTAP III/NAP-2 was significantly associated with lung cancer and improved the accuracy of a lung cancer risk prediction model that included age, smoking, lung function (FEV(1)), and an interaction term between FEV(1) and CTAP III/NAP-2 (area under the curve, 0.84; 95% CI, 0.77 to 0.91) compared to CAPIII/NAP-2 alone. We identified CTAP III/NAP-2 as a novel biomarker to detect preclinical lung cancer. The study underscores the importance of applying blood biomarkers as part of a multimodal lung cancer risk prediction model instead of as stand-alone tests.

  4. Engineered gold nanoparticles for identification of novel ovarian biomarkers

    NASA Astrophysics Data System (ADS)

    Giri, Karuna

    multiple proteins not detected by mass spectrometry alone. Differential expression analysis of proteins in cancer vs. non-cancer cells identified many proteins exclusively expressed in ovarian cancer. Hepatoma derived growth factor (HDGF) was one of the identified proteins that became the focus of the second part of the study. Understanding the role of HDGF in ovarian cancer would uncover its potential as a diagnostic and/or therapeutic marker. HDGF was found to be overexpressed in multiple ovarian cancer cell lines and xenograft models of ovarian cancer. Intracellular HDGF promoted cell proliferation, cell cycle progression and survival of ovarian cancer cell lines. While HDGF was exclusively localized in the nucleus, the protein was passively released from ovarian non-cancer and cancer cells during late apoptosis and necrosis. Extracellular HDGF activated MAP kinase pathways through a yet unknown receptor and promoted cell migration. Overall, the results presented in this study provide considerable support for the use of AuNPs for protein enrichment and detection of low abundance proteins. The functional study of HDGF, which revealed the importance of its expression in cancer cell, provides additional validation for AuNPs based cancer biomarker discovery. Further studies regarding the release of HDGF by cancer cells will help evaluate its utility in detecting and monitoring ovarian cancer. Additionally, initial results with knock down experiments indicate that HDGF has the potential to be a therapeutic target for inhibition of cancer progression.

  5. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches.

    PubMed

    Checkley, William; Deza, Maria P; Klawitter, Jost; Romero, Karina M; Klawitter, Jelena; Pollard, Suzanne L; Wise, Robert A; Christians, Uwe; Hansel, Nadia N

    2016-12-01

    The diagnosis of asthma in children is challenging and relies on a combination of clinical factors and biomarkers including methacholine challenge, lung function, bronchodilator responsiveness, and presence of airway inflammation. No single test is diagnostic. We sought to identify a pattern of inflammatory biomarkers that was unique to asthma using a targeted metabolomics approach combined with data science methods. We conducted a nested case-control study of 100 children living in a peri-urban community in Lima, Peru. We defined cases as children with current asthma, and controls as children with no prior history of asthma and normal lung function. We further categorized enrollment following a factorial design to enroll equal numbers of children as either overweight or not. We obtained a fasting venous blood sample to characterize a comprehensive panel of targeted markers using a metabolomics approach based on high performance liquid chromatography-mass spectrometry. A statistical comparison of targeted metabolites between children with asthma (n = 50) and healthy controls (n = 49) revealed distinct patterns in relative concentrations of several metabolites: children with asthma had approximately 40-50% lower relative concentrations of ascorbic acid, 2-isopropylmalic acid, shikimate-3-phosphate, and 6-phospho-d-gluconate when compared to children without asthma, and 70% lower relative concentrations of reduced glutathione (all p < 0.001 after Bonferroni correction). Moreover, a combination of 2-isopropylmalic acid and betaine strongly discriminated between children with asthma (2-isopropylmalic acid ≤ 13 077 normalized counts/second) and controls (2-isopropylmalic acid > 13 077 normalized counts/second and betaine ≤ 16 47 121 normalized counts/second). By using a metabolomics approach applied to serum, we were able to discriminate between children with and without asthma by revealing different metabolic patterns. These results suggest that

  6. Biomarkers of PTSD: military applications and considerations.

    PubMed

    Lehrner, Amy; Yehuda, Rachel

    2014-01-01

    Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  7. Biomarkers Associated With the Apolipoprotein E Genotype and Alzheimer Disease

    PubMed Central

    Soares, Holly D.; Potter, William Z.; Pickering, Eve; Kuhn, Max; Immermann, Frederick W.; Shera, David M; Ferm, Mats; Dean, Robert A.; Simon, Adam J.; Swenson, Frank; Siuciak, Judith A.; Kaplow, June; Thambisetty, Madhav; Zagouras, Panayiotis; Koroshetz, Walter J.; Wan, Hong I.; Trojanowski, John Q.; Shaw, Leslie M.

    2013-01-01

    Background A blood-based test that could be used as a screen for Alzheimer disease (AD) may enable early intervention and better access to treatment. Objective To apply a multiplex immunoassay panel to identify plasma biomarkers of AD using plasma samples from the Alzheimer’s Disease Neuroimaging Initiative cohort. Design Cohort study. Setting The Biomarkers Consortium Alzheimer’s Disease Plasma Proteomics Project. Participants Plasma samples at baseline and at 1 year were analyzed from 396 (345 at 1 year) patients with mild cognitive impairment, 112 (97 at 1 year) patients with AD, and 58 (54 at 1 year) healthy control subjects. Main Outcome Measures Multivariate and univariate statistical analyses were used to examine differences across diagnostic groups and relative to the apolipoprotein E (ApoE) genotype. Results Increased levels of eotaxin 3, pancreatic polypeptide, and N-terminal protein B–type brain natriuretic peptide were observed in patients, confirming similar changes reported in cerebrospinal fluid samples of patients with AD and MCI. Increases in tenascin C levels and decreases in IgM and ApoE levels were also observed. All participants with Apo ε3/ε4 or ε4/ε4 alleles showed a distinct biochemical profile characterized by low C-reactive protein and ApoE levels and by high Cortisol, interleukin 13, apolipoprotein B, and gamma interferon levels. The use of plasma biomarkers improved specificity in differentiating patients with AD from controls, and ApoE plasma levels were lowest in patients whose mild cognitive impairment had progressed to dementia. Conclusions Plasma biomarker results confirm cerebrospinal fluid studies reporting increased levels of pancreatic polypeptide and N-terminal protein B–type brain natriuretic peptide in patients with AD and mild cognitive impairment. Incorporation of plasma biomarkers yielded high sensitivity with improved specificity, supporting their usefulness as a screening tool. The ApoE genotype was

  8. Investigation of serum biomarkers in primary gout patients using iTRAQ-based screening.

    PubMed

    Ying, Ying; Chen, Yong; Zhang, Shun; Huang, Haiyan; Zou, Rouxin; Li, Xiaoke; Chu, Zanbo; Huang, Xianqian; Peng, Yong; Gan, Minzhi; Geng, Baoqing; Zhu, Mengya; Ying, Yinyan; Huang, Zuoan

    2018-03-21

    Primary gout is a major disease that affects human health; however, its pathogenesis is not well known. The purpose of this study was to identify biomarkers to explore the underlying mechanisms of primary gout. We used the isobaric tags for relative and absolute quantitation (iTRAQ) technique combined with liquid chromatography-tandem mass spectrometry to screen differentially expressed proteins between gout patients and controls. We also identified proteins potentially involved in gout pathogenesis by analysing biological processes, cellular components, molecular functions, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein-protein interactions. We further verified some samples using enzyme-linked immunosorbent assay (ELISA). Statistical analyses were carried out using SPSS v. 20.0 and ROC (receiver operating characterstic) curve analyses were carried out using Medcalc software. Two-sided p-values <0.05 were deemed to be statistically significant for all analyses. We identified 95 differentially expressed proteins (50 up-regulated and 45 down-regulated), and selected nine proteins (α-enolase (ENOA), glyceraldehyde-3-phosphate dehydrogenase (G3P), complement component C9 (CO9), profilin-1 (PROF1), lipopolysaccharide-binding protein (LBP), tubulin beta-4A chain (TBB4A), phosphoglycerate kinase (PGK1), glucose-6-phosphate isomerase (G6PI), and transketolase (TKT)) for verification. This showed that the level of TBB4A was significantly higher in primary gout than in controls (p=0.023). iTRAQ technology was useful in the selection of differentially expressed proteins from proteomes, and provides a strong theoretical basis for the study of biomarkers and mechanisms in primary gout. In addition, TBB4A protein may be associated with primary gout.

  9. Understanding Early Post-Mortem Biochemical Processes Underlying Meat Color and pH Decline in the Longissimus thoracis Muscle of Young Blond d'Aquitaine Bulls Using Protein Biomarkers.

    PubMed

    Gagaoua, Mohammed; Terlouw, E M Claudia; Micol, Didier; Boudjellal, Abdelghani; Hocquette, Jean-François; Picard, Brigitte

    2015-08-05

    Many studies on color biochemistry and protein biomarkers were undertaken in post-mortem beef muscles after ≥24 hours. The present study was conducted on Longissimus thoracis muscles of 21 Blond d'Aquitaine young bulls to evaluate the relationships between protein biomarkers present during the early post-mortem and known to be related to tenderness and pH decline and color development. pH values at 45 min, 3 h, and 30 h post-mortem were correlated with three, seven, and six biomarkers, respectively. L*a*b* color coordinates 24 h post-mortem were correlated with nine, five, and eight protein biomarkers, respectively. Regression models included Hsp proteins and explained between 47 and 59% of the variability between individuals in pH and between 47 and 65% of the variability in L*a*b* color coordinates. Proteins correlated with pH and/or color coordinates were involved in apoptosis or had antioxidative or chaperone activities. The main results include the negative correlations between pH45 min, pH3 h, and pHu and Prdx6, which may be explained by the antioxidative and phospholipase activities of this biomarker. Similarly, inducible Hsp70-1A/B and μ-calpain were correlated with L*a*b* coordinates, due to the protective action of Hsp70-1A/B on the proteolytic activities of μ-calpain on structural proteins. Correlations existed further between MDH1, ENO3, and LDH-B and pH decline and color stability probably due to the involvement of these enzymes in the glycolytic pathway and, thus, the energy status of the cell. The present results show that research using protein indicators may increase the understanding of early post-mortem biological mechanisms involved in pH and beef color development.

  10. High-throughput simultaneous analysis of RNA, protein, and lipid biomarkers in heterogeneous tissue samples.

    PubMed

    Reiser, Vladimír; Smith, Ryan C; Xue, Jiyan; Kurtz, Marc M; Liu, Rong; Legrand, Cheryl; He, Xuanmin; Yu, Xiang; Wong, Peggy; Hinchcliffe, John S; Tanen, Michael R; Lazar, Gloria; Zieba, Renata; Ichetovkin, Marina; Chen, Zhu; O'Neill, Edward A; Tanaka, Wesley K; Marton, Matthew J; Liao, Jason; Morris, Mark; Hailman, Eric; Tokiwa, George Y; Plump, Andrew S

    2011-11-01

    With expanding biomarker discovery efforts and increasing costs of drug development, it is critical to maximize the value of mass-limited clinical samples. The main limitation of available methods is the inability to isolate and analyze, from a single sample, molecules requiring incompatible extraction methods. Thus, we developed a novel semiautomated method for tissue processing and tissue milling and division (TMAD). We used a SilverHawk atherectomy catheter to collect atherosclerotic plaques from patients requiring peripheral atherectomy. Tissue preservation by flash freezing was compared with immersion in RNAlater®, and tissue grinding by traditional mortar and pestle was compared with TMAD. Comparators were protein, RNA, and lipid yield and quality. Reproducibility of analyte yield from aliquots of the same tissue sample processed by TMAD was also measured. The quantity and quality of biomarkers extracted from tissue prepared by TMAD was at least as good as that extracted from tissue stored and prepared by traditional means. TMAD enabled parallel analysis of gene expression (quantitative reverse-transcription PCR, microarray), protein composition (ELISA), and lipid content (biochemical assay) from as little as 20 mg of tissue. The mean correlation was r = 0.97 in molecular composition (RNA, protein, or lipid) between aliquots of individual samples generated by TMAD. We also demonstrated that it is feasible to use TMAD in a large-scale clinical study setting. The TMAD methodology described here enables semiautomated, high-throughput sampling of small amounts of heterogeneous tissue specimens by multiple analytical techniques with generally improved quality of recovered biomolecules.

  11. Progress on the biomarkers for tuberculosis diagnosis.

    PubMed

    Fu, Tiwei; Xie, Jianping

    2011-01-01

    Tuberculosis (TB) remains a major threat to global health. Biomarkers derived from pathogen-host interaction can facilitate the monitoring of active TB. The recent progress regarding such biomarkers is summarized, including those can be used from serum, sputum, urine, or breath monitoring. A wide range of potential biomarkers such as protein antigens, cell-free nucleic acids, and lipoarabinomannose were compiled. The possible use of biomarkers for infection identification and monitoring drug efficacy are also presented.

  12. Ovarian Cancer Differential Interactome and Network Entropy Analysis Reveal New Candidate Biomarkers.

    PubMed

    Ayyildiz, Dilara; Gov, Esra; Sinha, Raghu; Arga, Kazim Yalcin

    2017-05-01

    Ovarian cancer is one of the most common cancers and has a high mortality rate due to insidious symptoms and lack of robust diagnostics. A hitherto understudied concept in cancer pathogenesis may offer new avenues for innovation in ovarian cancer biomarker development. Cancer cells are characterized by an increase in network entropy, and several studies have exploited this concept to identify disease-associated gene and protein modules. We report in this study the changes in protein-protein interactions (PPIs) in ovarian cancer within a differential network (interactome) analysis framework utilizing the entropy concept and gene expression data. A compendium of six transcriptome datasets that included 140 samples from laser microdissected epithelial cells of ovarian cancer patients and 51 samples from healthy population was obtained from Gene Expression Omnibus, and the high confidence human protein interactome (31,465 interactions among 10,681 proteins) was used. The uncertainties of the up- or downregulation of PPIs in ovarian cancer were estimated through an entropy formulation utilizing combined expression levels of genes, and the interacting protein pairs with minimum uncertainty were identified. We identified 105 proteins with differential PPI patterns scattered in 11 modules, each indicating significantly affected biological pathways in ovarian cancer such as DNA repair, cell proliferation-related mechanisms, nucleoplasmic translocation of estrogen receptor, extracellular matrix degradation, and inflammation response. In conclusion, we suggest several PPIs as biomarker candidates for ovarian cancer and discuss their future biological implications as potential molecular targets for pharmaceutical development as well. In addition, network entropy analysis is a concept that deserves greater research attention for diagnostic innovation in oncology and tumor pathogenesis.

  13. Granins as disease-biomarkers: translational potential for psychiatric and neurological disorders.

    PubMed

    Bartolomucci, A; Pasinetti, G M; Salton, S R J

    2010-09-29

    The identification of biomarkers represents a fundamental medical advance that can lead to an improved understanding of disease pathogenesis, and holds the potential to define surrogate diagnostic and prognostic endpoints. Because of the inherent difficulties in assessing brain function in patients and objectively identifying neurological and cognitive/emotional symptoms, future application of biomarkers to neurological and psychiatric disorders is extremely desirable. This article discusses the biomarker potential of the granin family, a group of acidic proteins present in the secretory granules of a wide variety of endocrine, neuronal and neuroendocrine cells: chromogranin A (CgA), CgB, Secretogranin II (SgII), SgIII, HISL-19 antigen, 7B2, NESP55, VGF and ProSAAS. Their relative abundance, functional significance, and secretion into the cerebrospinal fluid (CSF), saliva, and the general circulation have made granins tractable targets as biomarkers for many diseases of neuronal and endocrine origin, recently impacting diagnosis of a number of neurological and psychiatric disorders including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, frontotemporal dementia, and schizophrenia. Although research has not yet validated the clinical utility of granins as surrogate endpoints for the progression or treatment of neurological or psychiatric disease, a growing body of experimental evidence indicates that the use of granins as biomarkers might be of great potential clinical interest. Advances that further elucidate the mechanism(s) of action of granins, coupled with improvements in biomarker technology and direct clinical application, should increase the translational effectiveness of this family of proteins in disease diagnosis and drug discovery. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Identification of EBP50 as a Specific Biomarker for Carcinogens Via the Analysis of Mouse Lymphoma Cellular Proteome

    PubMed Central

    Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong

    2012-01-01

    To identify specific biomarkers generated upon exposure of L5178Y mouse lymphoma cells to carcinogens, 2-DE and MALDI-TOF MS analysis were conducted using the cellular proteome of L5178Y cells that had been treated with the known carcinogens, 1,2-dibromoethane and O-nitrotoluene and the noncarcinogens, emodin and D-mannitol. Eight protein spots that showed a greater than 1.5-fold increase or decrease in intensity following carcinogen treatment compared with treatment with noncarcinogens were selected. Of the identified proteins, we focused on the candidate biomarker ERM-binding phosphoprotein 50 (EBP50), the expression of which was specifically increased in response to treatment with the carcinogens. The expression level of EBP50 was determined by western analysis using polyclonal rabbit anti-EBP50 antibody. Further, the expression level of EBP50 was increased in cells treated with seven additional carcinogens, verifying that EBP50 could serve as a specific biomarker for carcinogens. PMID:22434383

  15. Identification of EBP50 as a specific biomarker for carcinogens via the analysis of mouse lymphoma cellular proteome.

    PubMed

    Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong

    2012-03-01

    To identify specific biomarkers generated upon exposure of L5178Y mouse lymphoma cells to carcinogens, 2-DE and MALDI-TOF MS analysis were conducted using the cellular proteome of L5178Y cells that had been treated with the known carcinogens, 1,2-dibromoethane and O-nitrotoluene and the noncarcinogens, emodin and D-mannitol. Eight protein spots that showed a greater than 1.5-fold increase or decrease in intensity following carcinogen treatment compared with treatment with noncarcinogens were selected. Of the identified proteins, we focused on the candidate biomarker ERM-binding phosphoprotein 50 (EBP50), the expression of which was specifically increased in response to treatment with the carcinogens. The expression level of EBP50 was determined by western analysis using polyclonal rabbit anti-EBP50 antibody. Further, the expression level of EBP50 was increased in cells treated with seven additional carcinogens, verifying that EBP50 could serve as a specific biomarker for carcinogens.

  16. Plasma Biomarkers for Detecting Hodgkin's Lymphoma in HIV Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varnum, Susan M.; Webb-Robertson, Bobbie-Jo M.; Hessol, Nancey

    2011-12-16

    The lifespan of AIDS patients has increased as a result of aggressive antiretroviral therapy, and the incidences of the AIDS-defining cancers, Hodgkin's lymphoma and Kaposi sarcoma, are declining, Still, the increased longevity of AIDS patients is now associated with increased incidence of other cancers, including Hodgkin's lymphoma (HL). In order to determine if we could identify biomarkers for the early detection of HL, we undertook an accurate mass and elution time tag proteomics analysis of individual plasma samples from AIDS patients without HL (n=14) and with HL (n=22). This analysis identified 33 proteins, included C-reactive protein and three serum amyloidmore » proteins, that were statistically (p<0.05) altered by at least 1.5-fold between the two groups. At least three of these proteins have previously been reported to be altered in the blood of HL patients. Ingenuity Pathway Analysis software identified 'inflammatory response' and 'cancer' as the top two, biological functions commonly associated with these proteins. The clear association of these proteins with cancer and inflammation suggests that they are truly associated with HL and that they would be useful in the detection of this disease.« less

  17. Comprehensive Analysis of Gene Expression Profiles of Sepsis-Induced Multiorgan Failure Identified Its Valuable Biomarkers.

    PubMed

    Wang, Yumei; Yin, Xiaoling; Yang, Fang

    2018-02-01

    Sepsis is an inflammatory-related disease, and severe sepsis would induce multiorgan dysfunction, which is the most common cause of death of patients in noncoronary intensive care units. Progression of novel therapeutic strategies has proven to be of little impact on the mortality of severe sepsis, and unfortunately, its mechanisms still remain poorly understood. In this study, we analyzed gene expression profiles of severe sepsis with failure of lung, kidney, and liver for the identification of potential biomarkers. We first downloaded the gene expression profiles from the Gene Expression Omnibus and performed preprocessing of raw microarray data sets and identification of differential expression genes (DEGs) through the R programming software; then, significantly enriched functions of DEGs in lung, kidney, and liver failure sepsis samples were obtained from the Database for Annotation, Visualization, and Integrated Discovery; finally, protein-protein interaction network was constructed for DEGs based on the STRING database, and network modules were also obtained through the MCODE cluster method. As a result, lung failure sepsis has the highest number of DEGs of 859, whereas the number of DEGs in kidney and liver failure sepsis samples is 178 and 175, respectively. In addition, 17 overlaps were obtained among the three lists of DEGs. Biological processes related to immune and inflammatory response were found to be significantly enriched in DEGs. Network and module analysis identified four gene clusters in which all or most of genes were upregulated. The expression changes of Icam1 and Socs3 were further validated through quantitative PCR analysis. This study should shed light on the development of sepsis and provide potential therapeutic targets for sepsis-induced multiorgan failure.

  18. Interaction of Proteins Identified in Human Thyroid Cells

    PubMed Central

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  19. PBOV1 as a potential biomarker for more advanced prostate cancer based on protein and digital histomorphometric analysis.

    PubMed

    Carleton, Neil M; Zhu, Guangjing; Gorbounov, Mikhail; Miller, M Craig; Pienta, Kenneth J; Resar, Linda M S; Veltri, Robert W

    2018-05-01

    There are few tissue-based biomarkers that can accurately predict prostate cancer (PCa) progression and aggressiveness. We sought to evaluate the clinical utility of prostate and breast overexpressed 1 (PBOV1) as a potential PCa biomarker. Patient tumor samples were designated by Grade Groups using the 2014 Gleason grading system. Primary radical prostatectomy tumors were obtained from 48 patients and evaluated for PBOV1 levels using Western blot analysis in matched cancer and benign cancer-adjacent regions. Immunohistochemical evaluation of PBOV1 was subsequently performed in 80 cancer and 80 benign cancer-adjacent patient samples across two tissue microarrays (TMAs) to verify protein levels in epithelial tissue and to assess correlation between PBOV1 proteins and nuclear architectural changes in PCa cells. Digital histomorphometric analysis was used to track 22 parameters that characterized nuclear changes in PBOV1-stained cells. Using a training and test set for validation, multivariate logistic regression (MLR) models were used to identify significant nuclear parameters that distinguish Grade Group 3 and above PCa from Grade Group 1 and 2 PCa regions. PBOV1 protein levels were increased in tumors from Grade Group 3 and above (GS 4 + 3 and ≥ 8) regions versus Grade Groups 1 and 2 (GS 3 + 3 and 3 + 4) regions (P = 0.005) as assessed by densitometry of immunoblots. Additionally, by immunoblotting, PBOV1 protein levels differed significantly between Grade Group 2 (GS 3 + 4) and Grade Group 3 (GS 4 + 3) PCa samples (P = 0.028). In the immunohistochemical analysis, measures of PBOV1 staining intensity strongly correlated with nuclear alterations in cancer cells. An MLR model retaining eight parameters describing PBOV1 staining intensity and nuclear architecture discriminated Grade Group 3 and above PCa from Grade Group 1 and 2 PCa and benign cancer-adjacent regions with a ROC-AUC of 0.90 and 0.80, respectively, in training and test

  20. The endothelial lipase protein is promising urinary biomarker for diagnosis of gastric cancer.

    PubMed

    Dong, Xueyan; Wang, Guoqing; Zhang, Guoqing; Ni, Zhaohui; Suo, Jian; Cui, Juan; Cui, Ai; Yang, Qing; Xu, Ying; Li, Fan

    2013-03-19

    Gastric cancer is one of the most common malignant tumors in the world. Finding effective diagnostic biomarkers in urine or serum would represent the most ideal solution to detecting gastric cancer during annual physical examination. This study was to evaluate the potential of endothelial lipase (EL) as a urinary biomarker for diagnosis of gastric cancer. The expression levels of EL was measured using Western blotting and immunohistochemical staining experiments on (tissue, serum, and urine) samples of gastric cancer patients versus healthy people. We also checked the EL levels in the urine samples of other cancer types (lung, colon and rectum cancers) and benign lesions (gastritis and gastric leiomyoma) to check if EL was specific to gastric cancer. We observed a clear separation between the EL expression levels in the urine samples of 90 gastric cancer patients and of 57 healthy volunteers. It was approximately 9.9 fold average decrease of the EL expression levels in the urine samples of gastric cancer compared to the healthy controls (P <0.0001), achieving a 0.967 AUC value for the ROC (receiver operating characteristic) curve, demonstrating it's highly accurate as a diagnostic marker for gastric cancer. Interestingly, the expression levels of EL in tissue and serum samples were not nearly as discriminative as in urine samples (P = 0.90 and P = 0.79). In immunohistochemical experiments, positive expression of the EL protein was found in 67% (8/12) of gastric adjacent noncancerous and in 58% (7/12) of gastric cancer samples. There was no significant statistical in the expression levels of this protein between the gastric cancer and the matching noncancerous tissues (P =0.67). The urinary EL as a highly accurate gastric cancer biomarker that is potentially applicable to the general screening with high sensitivity and specificity. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4527331618757552.

  1. The endothelial lipase protein is promising urinary biomarker for diagnosis of gastric cancer

    PubMed Central

    2013-01-01

    Background Gastric cancer is one of the most common malignant tumors in the world. Finding effective diagnostic biomarkers in urine or serum would represent the most ideal solution to detecting gastric cancer during annual physical examination. This study was to evaluate the potential of endothelial lipase (EL) as a urinary biomarker for diagnosis of gastric cancer. Methods The expression levels of EL was measured using Western blotting and immunohistochemical staining experiments on (tissue, serum, and urine) samples of gastric cancer patients versus healthy people. We also checked the EL levels in the urine samples of other cancer types (lung, colon and rectum cancers) and benign lesions (gastritis and gastric leiomyoma) to check if EL was specific to gastric cancer. Result We observed a clear separation between the EL expression levels in the urine samples of 90 gastric cancer patients and of 57 healthy volunteers. It was approximately 9.9 fold average decrease of the EL expression levels in the urine samples of gastric cancer compared to the healthy controls (P <0.0001), achieving a 0.967 AUC value for the ROC (receiver operating characteristic) curve, demonstrating it’s highly accurate as a diagnostic marker for gastric cancer. Interestingly, the expression levels of EL in tissue and serum samples were not nearly as discriminative as in urine samples (P = 0.90 and P = 0.79). In immunohistochemical experiments, positive expression of the EL protein was found in 67% (8/12) of gastric adjacent noncancerous and in 58% (7/12) of gastric cancer samples. There was no significant statistical in the expression levels of this protein between the gastric cancer and the matching noncancerous tissues (P =0.67). Conclusions The urinary EL as a highly accurate gastric cancer biomarker that is potentially applicable to the general screening with high sensitivity and specificity. Virtual Slides The virtual slide(s) for this article can be found here: http

  2. Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: simulation and application.

    PubMed

    Vasquez, Monica M; Hu, Chengcheng; Roe, Denise J; Chen, Zhao; Halonen, Marilyn; Guerra, Stefano

    2016-11-14

    The study of circulating biomarkers and their association with disease outcomes has become progressively complex due to advances in the measurement of these biomarkers through multiplex technologies. The Least Absolute Shrinkage and Selection Operator (LASSO) is a data analysis method that may be utilized for biomarker selection in these high dimensional data. However, it is unclear which LASSO-type method is preferable when considering data scenarios that may be present in serum biomarker research, such as high correlation between biomarkers, weak associations with the outcome, and sparse number of true signals. The goal of this study was to compare the LASSO to five LASSO-type methods given these scenarios. A simulation study was performed to compare the LASSO, Adaptive LASSO, Elastic Net, Iterated LASSO, Bootstrap-Enhanced LASSO, and Weighted Fusion for the binary logistic regression model. The simulation study was designed to reflect the data structure of the population-based Tucson Epidemiological Study of Airway Obstructive Disease (TESAOD), specifically the sample size (N = 1000 for total population, 500 for sub-analyses), correlation of biomarkers (0.20, 0.50, 0.80), prevalence of overweight (40%) and obese (12%) outcomes, and the association of outcomes with standardized serum biomarker concentrations (log-odds ratio = 0.05-1.75). Each LASSO-type method was then applied to the TESAOD data of 306 overweight, 66 obese, and 463 normal-weight subjects with a panel of 86 serum biomarkers. Based on the simulation study, no method had an overall superior performance. The Weighted Fusion correctly identified more true signals, but incorrectly included more noise variables. The LASSO and Elastic Net correctly identified many true signals and excluded more noise variables. In the application study, biomarkers of overweight and obesity selected by all methods were Adiponectin, Apolipoprotein H, Calcitonin, CD14, Complement 3, C-reactive protein, Ferritin

  3. Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion.

    PubMed

    Papa, Linda; Ramia, Michelle M; Edwards, Damyan; Johnson, Brian D; Slobounov, Semyon M

    2015-05-15

    The aim of this study was to systematically review clinical studies examining biofluid biomarkers of brain injury for concussion in athletes. Data sources included PubMed, MEDLINE, and the Cochrane Database from 1966 to October 2013. Studies were included if they recruited athletes participating in organized sports who experienced concussion or head injury during a sports-related activity and had brain injury biomarkers measured. Acceptable research designs included experimental, observational, and case-control studies. Review articles, opinion papers, and editorials were excluded. After title and abstract screening of potential articles, full texts were independently reviewed to identify articles that met inclusion criteria. A composite evidentiary table was then constructed and documented the study title, design, population, methods, sample size, outcome measures, and results. The search identified 52 publications, of which 13 were selected and critically reviewed. All of the included studies were prospective and were published either in or after the year 2000. Sports included boxing (six studies), soccer (five studies), running/jogging (two studies), hockey (one study), basketball (one study), cycling (one study), and swimming (one study). The majority of studies (92%) had fewer than 100 patients. Three studies (23%) evaluated biomarkers in cerebrospinal fluid (CSF), one in both serum and CSF, and 10 (77%) in serum exclusively. There were 11 different biomarkers assessed, including S100β, glial fibrillary acidic protein, neuron-specific enolase, tau, neurofilament light protein, amyloid beta, brain-derived neurotrophic factor, creatine kinase and heart-type fatty acid binding protein, prolactin, cortisol, and albumin. A handful of biomarkers showed a correlation with number of hits to the head (soccer), acceleration/deceleration forces (jumps, collisions, and falls), postconcussive symptoms, trauma to the body versus the head, and dynamics of different sports

  4. Systematic Review of Clinical Studies Examining Biomarkers of Brain Injury in Athletes after Sports-Related Concussion

    PubMed Central

    Ramia, Michelle M.; Edwards, Damyan; Johnson, Brian D.; Slobounov, Semyon M.

    2015-01-01

    Abstract The aim of this study was to systematically review clinical studies examining biofluid biomarkers of brain injury for concussion in athletes. Data sources included PubMed®, MEDLINE®, and the Cochrane Database from 1966 to October 2013. Studies were included if they recruited athletes participating in organized sports who experienced concussion or head injury during a sports-related activity and had brain injury biomarkers measured. Acceptable research designs included experimental, observational, and case-control studies. Review articles, opinion papers, and editorials were excluded. After title and abstract screening of potential articles, full texts were independently reviewed to identify articles that met inclusion criteria. A composite evidentiary table was then constructed and documented the study title, design, population, methods, sample size, outcome measures, and results. The search identified 52 publications, of which 13 were selected and critically reviewed. All of the included studies were prospective and were published either in or after the year 2000. Sports included boxing (six studies), soccer (five studies), running/jogging (two studies), hockey (one study), basketball (one study), cycling (one study), and swimming (one study). The majority of studies (92%) had fewer than 100 patients. Three studies (23%) evaluated biomarkers in cerebrospinal fluid (CSF), one in both serum and CSF, and 10 (77%) in serum exclusively. There were 11 different biomarkers assessed, including S100β, glial fibrillary acidic protein, neuron-specific enolase, tau, neurofilament light protein, amyloid beta, brain-derived neurotrophic factor, creatine kinase and heart-type fatty acid binding protein, prolactin, cortisol, and albumin. A handful of biomarkers showed a correlation with number of hits to the head (soccer), acceleration/deceleration forces (jumps, collisions, and falls), postconcussive symptoms, trauma to the body versus the head, and dynamics of

  5. Total protein of whole saliva as a biomarker of anaerobic threshold.

    PubMed

    Bortolini, Miguel Junior Sordi; De Agostini, Guilherme Gularte; Reis, Ismair Teodoro; Lamounier, Romeu Paulo Martins Silva; Blumberg, Jeffrey B; Espindola, Foued Salmen

    2009-09-01

    Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a maximum incremental exercise on a cycle ergometer. Blood and stimulated saliva were collected during the test. The TPWS anaerobic threshold (PAT) was determined using the Dmax method. The PAT was correlated with the blood lactate anaerobic threshold (AT; r = .93, p < .05). No significant difference (p = .16) was observed between PAT and AT. Thus, TPWS provides a convenient and noninvasive matrix for determining the anaerobic threshold during incremental exercise tests.

  6. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    PubMed

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  7. Biomarker Discovery and Verification of Esophageal Squamous Cell Carcinoma Using Integration of SWATH/MRM.

    PubMed

    Hou, Guixue; Lou, Xiaomin; Sun, Yulin; Xu, Shaohang; Zi, Jin; Wang, Quanhui; Zhou, Baojin; Han, Bo; Wu, Lin; Zhao, Xiaohang; Lin, Liang; Liu, Siqi

    2015-09-04

    We propose an efficient integration of SWATH with MRM for biomarker discovery and verification when the corresponding ion library is well established. We strictly controlled the false positive rate associated with SWATH MS signals and carefully selected the target peptides coupled with SWATH and MRM. We collected 10 samples of esophageal squamous cell carcinoma (ESCC) tissues paired with tumors and adjacent regions and quantified 1758 unique proteins with FDR 1% at protein level using SWATH, in which 467 proteins were abundance-dependent with ESCC. After carefully evaluating the SWATH MS signals of the up-regulated proteins, we selected 120 proteins for MRM verification. MRM analysis of the pooled and individual esophageal tissues resulted in 116 proteins that exhibited similar abundance response modes to ESCC that were acquired with SWATH. Because the ESCC-related proteins consisted of a high percentile of secreted proteins, we conducted the MRM assay on patient sera that were collected from pre- and postoperation. Of the 116 target proteins, 42 were identified in the ESCC sera, including 11 with lowered abundances postoperation. Coupling SWATH and MRM is thus feasible and efficient for the discovery and verification of cancer-related protein biomarkers.

  8. Detection of Significant Pneumococcal Meningitis Biomarkers by Ego Network.

    PubMed

    Wang, Qian; Lou, Zhifeng; Zhai, Liansuo; Zhao, Haibin

    2017-06-01

    To identify significant biomarkers for detection of pneumococcal meningitis based on ego network. Based on the gene expression data of pneumococcal meningitis and global protein-protein interactions (PPIs) data recruited from open access databases, the authors constructed a differential co-expression network (DCN) to identify pneumococcal meningitis biomarkers in a network view. Here EgoNet algorithm was employed to screen the significant ego networks that could accurately distinguish pneumococcal meningitis from healthy controls, by sequentially seeking ego genes, searching candidate ego networks, refinement of candidate ego networks and significance analysis to identify ego networks. Finally, the functional inference of the ego networks was performed to identify significant pathways for pneumococcal meningitis. By differential co-expression analysis, the authors constructed the DCN that covered 1809 genes and 3689 interactions. From the DCN, a total of 90 ego genes were identified. Starting from these ego genes, three significant ego networks (Module 19, Module 70 and Module 71) that could predict clinical outcomes for pneumococcal meningitis were identified by EgoNet algorithm, and the corresponding ego genes were GMNN, MAD2L1 and TPX2, respectively. Pathway analysis showed that these three ego networks were related to CDT1 association with the CDC6:ORC:origin complex, inactivation of APC/C via direct inhibition of the APC/C complex pathway, and DNA strand elongation, respectively. The authors successfully screened three significant ego modules which could accurately predict the clinical outcomes for pneumococcal meningitis and might play important roles in host response to pathogen infection in pneumococcal meningitis.

  9. Biomarkers in Systemic Juvenile Idiopathic Arthritis: A comparison with biomarkers in Cryopyrin Associated Periodic Syndromes

    PubMed Central

    Nirmala, Nanguneri; Grom, Alexei; Gram, Hermann

    2015-01-01

    Purpose of review This review summarizes biomarkers in Systemic Juvenile Idiopathic Arthritis (sJIA). Broadly, the markers are classified under protein, cellular, gene expression and genetic markers. We also compare the biomarkers in sJIA to biomarkers in cryopyrin associated periodic syndromes (CAPS). Recent findings Recent publications showing the similarity of clinical response of sJIA and CAPS to anti IL1 therapies prompted a comparison at the biomarker level. Summary sJIA traditionally is classified under the umbrella of juvenile idiopathic arthritis. At the clinical phenotypic level, sJIA has several features that are more similar to those seen in Cryopyrin Associated Periodic Syndromes (CAPS). In this review, we summarize biomarkers in sJIA and CAPS and draw upon the various similarities and differences between the two families of diseases. The main difference between sJIA and CAPS biomarkers are genetic markers with CAPS being a family of monogenic diseases with mutations in NLRP3. There have been a small number of publications describing cellular biomarkers in sJIA with no such studies described for CAPS. Many of the protein markers characteristic of sJIA are also seen to characterize CAPS. The gene expression data in both sJIA and CAPS show a strong upregulation of innate immunity pathways. In addition, we describe a strong similarity between sJIA and CAPS at the gene expression level where several genes that form a part of the erythropoiesis signature are upregulated in both sJIA and CAPS. PMID:25050926

  10. Development of Biomarkers for Screening Hepatocellular Carcinoma Using Global Data Mining and Multiple Reaction Monitoring

    PubMed Central

    Yu, Su Jong; Jang, Eun Sun; Yu, Jiyoung; Cho, Geunhee; Yoon, Jung-Hwan; Kim, Youngsoo

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers and is associated with a poor survival rate. Clinically, the level of alpha-fetoprotein (AFP) has been used as a biomarker for the diagnosis of HCC. The discovery of useful biomarkers for HCC, focused solely on the proteome, has been difficult; thus, wide-ranging global data mining of genomic and proteomic databases from previous reports would be valuable in screening biomarker candidates. Further, multiple reaction monitoring (MRM), based on triple quadrupole mass spectrometry, has been effective with regard to high-throughput verification, complementing antibody-based verification pipelines. In this study, global data mining was performed using 5 types of HCC data to screen for candidate biomarker proteins: cDNA microarray, copy number variation, somatic mutation, epigenetic, and quantitative proteomics data. Next, we applied MRM to verify HCC candidate biomarkers in individual serum samples from 3 groups: a healthy control group, patients who have been diagnosed with HCC (Before HCC treatment group), and HCC patients who underwent locoregional therapy (After HCC treatment group). After determining the relative quantities of the candidate proteins by MRM, we compared their expression levels between the 3 groups, identifying 4 potential biomarkers: the actin-binding protein anillin (ANLN), filamin-B (FLNB), complementary C4-A (C4A), and AFP. The combination of 2 markers (ANLN, FLNB) improved the discrimination of the before HCC treatment group from the healthy control group compared with AFP. We conclude that the combination of global data mining and MRM verification enhances the screening and verification of potential HCC biomarkers. This efficacious integrative strategy is applicable to the development of markers for cancer and other diseases. PMID:23717429

  11. Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring.

    PubMed

    Kim, Hyunsoo; Kim, Kyunggon; Yu, Su Jong; Jang, Eun Sun; Yu, Jiyoung; Cho, Geunhee; Yoon, Jung-Hwan; Kim, Youngsoo

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers and is associated with a poor survival rate. Clinically, the level of alpha-fetoprotein (AFP) has been used as a biomarker for the diagnosis of HCC. The discovery of useful biomarkers for HCC, focused solely on the proteome, has been difficult; thus, wide-ranging global data mining of genomic and proteomic databases from previous reports would be valuable in screening biomarker candidates. Further, multiple reaction monitoring (MRM), based on triple quadrupole mass spectrometry, has been effective with regard to high-throughput verification, complementing antibody-based verification pipelines. In this study, global data mining was performed using 5 types of HCC data to screen for candidate biomarker proteins: cDNA microarray, copy number variation, somatic mutation, epigenetic, and quantitative proteomics data. Next, we applied MRM to verify HCC candidate biomarkers in individual serum samples from 3 groups: a healthy control group, patients who have been diagnosed with HCC (Before HCC treatment group), and HCC patients who underwent locoregional therapy (After HCC treatment group). After determining the relative quantities of the candidate proteins by MRM, we compared their expression levels between the 3 groups, identifying 4 potential biomarkers: the actin-binding protein anillin (ANLN), filamin-B (FLNB), complementary C4-A (C4A), and AFP. The combination of 2 markers (ANLN, FLNB) improved the discrimination of the before HCC treatment group from the healthy control group compared with AFP. We conclude that the combination of global data mining and MRM verification enhances the screening and verification of potential HCC biomarkers. This efficacious integrative strategy is applicable to the development of markers for cancer and other diseases.

  12. Inflammation: an important parameter in the search of prostate cancer biomarkers

    PubMed Central

    2014-01-01

    other 2 were new proteins, not identified in our previous comparisons. Conclusions The present study indicates that inflammation might be a confounding parameter during the proteomic research of candidate biomarkers of PCa. These results indicate that some possible biomarker-candidate proteins are strongly influenced by the presence of inflammation, hence only a well-selected protein pattern should be considered for potential marker of PCa. PMID:24944525

  13. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes.

    PubMed

    Xue, Ruidan; Lynes, Matthew D; Dreyfuss, Jonathan M; Shamsi, Farnaz; Schulz, Tim J; Zhang, Hongbin; Huang, Tian Lian; Townsend, Kristy L; Li, Yiming; Takahashi, Hirokazu; Weiner, Lauren S; White, Andrew P; Lynes, Maureen S; Rubin, Lee L; Goodyear, Laurie J; Cypess, Aaron M; Tseng, Yu-Hua

    2015-07-01

    Targeting brown adipose tissue (BAT) content or activity has therapeutic potential for treating obesity and the metabolic syndrome by increasing energy expenditure. However, both inter- and intra-individual differences contribute to heterogeneity in human BAT and potentially to differential thermogenic capacity in human populations. Here we generated clones of brown and white preadipocytes from human neck fat and characterized their adipogenic and thermogenic differentiation. We combined an uncoupling protein 1 (UCP1) reporter system and expression profiling to define novel sets of gene signatures in human preadipocytes that could predict the thermogenic potential of the cells once they were maturated. Knocking out the positive UCP1 regulators, PREX1 and EDNRB, in brown preadipocytes using CRISPR-Cas9 markedly abolished the high level of UCP1 in brown adipocytes differentiated from the preadipocytes. Finally, we were able to prospectively isolate adipose progenitors with great thermogenic potential using the cell surface marker CD29. These data provide new insights into the cellular heterogeneity in human fat and offer potential biomarkers for identifying thermogenically competent preadipocytes.

  14. The quest for fragile X biomarkers.

    PubMed

    Westmark, Cara J

    2014-12-01

    Fragile X is the most common form of inherited intellectual disability and the leading known genetic cause of autism. There is currently no cure or approved medication for fragile X although various drugs target specific disease symptoms and a large number of therapeutics are in various stages of clinical development. Multiple recent clinical trials have failed on their primary endpoints indicating that there is a compelling need for validated biomarkers and outcome measures in fragile X. There are currently no validated blood-based biomarkers to assess disease severity or to monitor drug efficacy in fragile X syndrome. Herein, we review candidate blood protein biomarkers including extracellular-regulated kinase, phosphoinositide 3-kinase, matrix metalloproteinase 9, amyloid-beta and amyloid-beta protein precursor. Bench-to-bedside plans for fragile X syndrome are severely limited by the lack of validated outcome measures. The reviewed candidate biomarkers are at early stages of validation and deserve further investigation.

  15. Proteomic biomarkers for ovarian cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration.

    PubMed

    Galazis, Nicolas; Olaleye, Olalekan; Haoula, Zeina; Layfield, Robert; Atiomo, William

    2012-12-01

    To review and identify possible biomarkers for ovarian cancer (OC) in women with polycystic ovary syndrome (PCOS). Systematic literature searches of MEDLINE, EMBASE, and Cochrane using the search terms "proteomics," "proteomic," and "ovarian cancer" or "ovarian carcinoma." Proteomic biomarkers for OC were then integrated with an updated previously published database of all proteomic biomarkers identified to date in patients with PCOS. Academic department of obstetrics and gynecology in the United Kingdom. A total of 180 women identified in the six studies. Tissue samples from women with OC vs. tissue samples from women without OC. Proteomic biomarkers, proteomic technique used, and methodologic quality score. A panel of six biomarkers was overexpressed both in women with OC and in women with PCOS. These biomarkers include calreticulin, fibrinogen-γ, superoxide dismutase, vimentin, malate dehydrogenase, and lamin B2. These biomarkers could help improve our understanding of the links between PCOS and OC and could potentially be used to identify subgroups of women with PCOS at increased risk of OC. More studies are required to further evaluate the role these biomarkers play in women with PCOS and OC. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Cloud-based solution to identify statistically significant MS peaks differentiating sample categories.

    PubMed

    Ji, Jun; Ling, Jeffrey; Jiang, Helen; Wen, Qiaojun; Whitin, John C; Tian, Lu; Cohen, Harvey J; Ling, Xuefeng B

    2013-03-23

    Mass spectrometry (MS) has evolved to become the primary high throughput tool for proteomics based biomarker discovery. Until now, multiple challenges in protein MS data analysis remain: large-scale and complex data set management; MS peak identification, indexing; and high dimensional peak differential analysis with the concurrent statistical tests based false discovery rate (FDR). "Turnkey" solutions are needed for biomarker investigations to rapidly process MS data sets to identify statistically significant peaks for subsequent validation. Here we present an efficient and effective solution, which provides experimental biologists easy access to "cloud" computing capabilities to analyze MS data. The web portal can be accessed at http://transmed.stanford.edu/ssa/. Presented web application supplies large scale MS data online uploading and analysis with a simple user interface. This bioinformatic tool will facilitate the discovery of the potential protein biomarkers using MS.

  17. Combined use of epithelial membrane antigen and nuclear matrix protein 52 as sensitive biomarkers for detection of bladder cancer.

    PubMed

    Attallah, Abdelfattah M; El-Far, Mohamed; Abdallah, Sanaa O; El-Waseef, Ahmed M; Omran, Mohamed M; Abdelrazek, Mohamed A; Attallah, Ahmed A; Saadh, Mohamed J; Radwan, Mohamed; El-waffaey, Kholoud A; Abol-Enei, Hassan

    2015-11-11

    The advent of noninvasive urine-based markers as well as other novel modalities has yielded improved diagnostic accuracy. However, the new markers failed to reach higher sensitivity and specificity. We therefore evaluated the potential role of epithelial membrane antigen (EMA) and nuclear matrix protein 52 (NMP-52) singly and combined as noninvasive biomarkers for the detection of bladder cancer (BC). A total of 160 individuals including 66 patients with BC, 54 patients with benign urologic disorders and 40 healthy volunteers were investigated. Urinary EMA at 130 kDa and NMP at 52 kDa were identified, purified and quantified by Western blot, electroelution and enzyme-linked immunosorbent assay (ELISA). The diagnostic performance of each biomarker and their combination were compared using area under receiver operating characteristic curves (AUC). Mean urinary EMA, 2.42 µg/mL, and NMP-52, 17.85 µg/mL, were significantly elevated in patients with BC compared to controls, 1.18 and 3.44 µg/mL, respectively (p<0.0001). The combined use of these markers yielded values which were increased 4.4- and 13.7-fold in the benign and malignant disease groups, respectively, with respect to the normal group. The values of EMA and NMP-52 were significantly higher in patients with higher-grade tumors than those with lower-grade tumors (p<0.0001). Moreover, this combination could predict all BC stages and grades with 0.91 AUC, 94% sensitivity and 80% specificity. EMA and NMP-52 in combination could be promising noninvasive biomarkers for BC detection.

  18. Synthesis of eukaryotic lipid biomarkers in the bacterial domain

    NASA Astrophysics Data System (ADS)

    Welander, P. V.; Banta, A. B.; Lee, A. K.; Wei, J. H.

    2017-12-01

    Lipid biomarkers are organic molecules preserved in sediments and sedimentary rocks that can function as geological proxies for certain microbial taxa or for specific environmental conditions. These molecular fossils provide a link between organisms and their environments in both modern and ancient settings and have afforded significant insight into ancient climatic events, mass extinctions, and various evolutionary transitions throughout Earth's history. However, the proper interpretation of lipid biomarkers is dependent on a broad understanding of their diagenetic precursors in modern systems. This includes understanding the taphonomic transformations that these molecules undergo, their biosynthetic pathways, and the ecological conditions that affect their cellular production. In this study, we focus on one group of lipid biomarkers - the sterols. These are polycyclic isoprenoidal lipids that have a high preservation potential and play a critical role in the physiology of most eukaryotes. However, the synthesis and function of these lipids in the bacterial domain has not been fully explored. Here we utilize a combination of bioinformatics, microbial genetics, and biochemistry to demonstrate that bacterial sterol producers are more prevalent in environmental metagenomic samples than in the genomic databases of cultured organisms and to identify novel proteins required to synthesize and modify sterols in bacteria. These proteins represent a distinct pathway for sterol synthesis exclusive to bacteria and indicate that sterol synthesis in bacteria may have evolved independently of eukaryotic sterol biosynthesis. Taken together, these results demonstrate how studies in extant bacteria can provide insight into the biological sources and the biosynthetic pathways of specific lipid biomarkers and in turn may allow for more robust interpretation of biomarker signatures.

  19. Mass spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid.

    PubMed

    Whelan, Stephen A; He, Jianbo; Lu, Ming; Souda, Puneet; Saxton, Romaine E; Faull, Kym F; Whitelegge, Julian P; Chang, Helena R

    2012-10-05

    We have begun an early phase of biomarker discovery in three clinically important types of breast cancer using a panel of human cell lines: HER2 positive, hormone receptor positive and HER2 negative, and triple negative (HER2-, ER-, PR-). We identified and characterized the most abundant secreted, sloughed, or leaked proteins released into serum free media from these breast cancer cell lines using a combination of protein fractionation methods before LC-MS/MS mass spectrometry analysis. A total of 249 proteins were detected in the proximal fluid of 7 breast cancer cell lines. The expression of a selected group of high abundance and/or breast cancer-specific potential biomarkers including thromobospondin 1, galectin-3 binding protein, cathepsin D, vimentin, zinc-α2-glycoprotein, CD44, and EGFR from the breast cancer cell lines and in their culture media were further validated by Western blot analysis. Interestingly, mass spectrometry identified a cathepsin D protein single-nucleotide polymorphism (SNP) by alanine to valine replacement from the MCF-7 breast cancer cell line. Comparison of each cell line media proteome displayed unique and consistent biosignatures regardless of the individual group classifications, demonstrating the potential for stratification of breast cancer. On the basis of the cell line media proteome, predictive Tree software was able to categorize each cell line as HER2 positive, HER2 negative, and hormone receptor positive and triple negative based on only two proteins, muscle fructose 1,6-bisphosphate aldolase and keratin 19. In addition, the predictive Tree software clearly identified MCF-7 cell line overexpresing the HER2 receptor with the SNP cathepsin D biomarker.

  20. Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus

    PubMed Central

    2014-01-01

    Objective: This article discusses why CSF biomarkers found in normal-pressure hydrocephalus (NPH) can be misleading when distinguishing NPH from comorbid NPH with Alzheimer disease (AD). Methods: We describe NPH CSF biomarkers and how shunt surgery can change them. We hypothesize the effects that hydrocephalus may play on interstitial fluid space and amyloid precursor protein (APP) fragment drainage into the CSF based on a recent report and how this may explain the misleading CSF NPH biomarker findings. Results: In NPH, β-amyloid protein 42 (Aβ42) is low (as in AD), but total tau (t-tau) and phospho-tau (p-tau) levels are normal, providing conflicting biomarker findings. Low Aβ42 supports an AD diagnosis but tau findings do not. Importantly, not only Aβ42, but all APP fragments and tau proteins are low in NPH CSF. Further, these proteins increase after shunting. An increase in interstitial space and APP fragment drainage into the CSF during sleep was reported recently. Conclusions: In the setting of hydrocephalus when the brain is compressed, a decrease in interstitial space and APP protein fragment drainage into the CSF may be impeded, resulting in low levels of all APP fragments and tau proteins, which has been reported. Shunting, which decompresses the brain, would create more room for the interstitial space to increase and protein waste fragments to drain into the CSF. In fact, CSF proteins increase after shunting. CSF biomarkers in pre-shunt NPH have low Aβ42 and tau protein levels, providing misleading information to distinguish NPH from comorbid NPH plus AD. PMID:25332445

  1. Use of specific peptide biomarkers for quantitative confirmation of hidden allergenic peanut proteins Ara h 2 and Ara h 3/4 for food control by liquid chromatography-tandem mass spectrometry.

    PubMed

    Careri, M; Costa, A; Elviri, L; Lagos, J-B; Mangia, A; Terenghi, M; Cereti, A; Garoffo, L Perono

    2007-11-01

    A liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS-MS) method based on the detection of biomarker peptides from allergenic proteins was devised for confirming and quantifying peanut allergens in foods. Peptides obtained from tryptic digestion of Ara h 2 and Ara h 3/4 proteins were identified and characterized by LC-MS and LC-MS-MS with a quadrupole-time of flight mass analyzer. Four peptides were chosen and investigated as biomarkers taking into account their selectivity, the absence of missed cleavages, the uniform distribution in the Ara h 2 and Ara h 3/4 protein isoforms together with their spectral features under ESI-MS-MS conditions, and good repeatability of LC retention time. Because of the different expression levels, the selection of two different allergenic proteins was proved to be useful in the identification and univocal confirmation of the presence of peanuts in foodstuffs. Using rice crisp and chocolate-based snacks as model food matrix, an LC-MS-MS method with triple quadrupole mass analyzer allowed good detection limits to be obtained for Ara h 2 (5 microg protein g(-1) matrix) and Ara h 3/4 (1 microg protein g(-1) matrix). Linearity of the method was established in the 10-200 microg g(-1) range of peanut proteins in the food matrix investigated. Method selectivity was demonstrated by analyzing tree nuts (almonds, pecan nuts, hazelnuts, walnuts) and food ingredients such as milk, soy beans, chocolate, cornflakes, and rice crisp.

  2. Biomarkers in Autism

    PubMed Central

    Goldani, Andre A. S.; Downs, Susan R.; Widjaja, Felicia; Lawton, Brittany; Hendren, Robert L.

    2014-01-01

    Autism spectrum disorders (ASDs) are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression, and measures of the body’s metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers. PMID:25161627

  3. Identifying Epigenetic Biomarkers using Maximal Relevance and Minimal Redundancy Based Feature Selection for Multi-Omics Data.

    PubMed

    Mallik, Saurav; Bhadra, Tapas; Maulik, Ujjwal

    2017-01-01

    Epigenetic Biomarker discovery is an important task in bioinformatics. In this article, we develop a new framework of identifying statistically significant epigenetic biomarkers using maximal-relevance and minimal-redundancy criterion based feature (gene) selection for multi-omics dataset. Firstly, we determine the genes that have both expression as well as methylation values, and follow normal distribution. Similarly, we identify the genes which consist of both expression and methylation values, but do not follow normal distribution. For each case, we utilize a gene-selection method that provides maximal-relevant, but variable-weighted minimum-redundant genes as top ranked genes. For statistical validation, we apply t-test on both the expression and methylation data consisting of only the normally distributed top ranked genes to determine how many of them are both differentially expressed andmethylated. Similarly, we utilize Limma package for performing non-parametric Empirical Bayes test on both expression and methylation data comprising only the non-normally distributed top ranked genes to identify how many of them are both differentially expressed and methylated. We finally report the top-ranking significant gene-markerswith biological validation. Moreover, our framework improves positive predictive rate and reduces false positive rate in marker identification. In addition, we provide a comparative analysis of our gene-selection method as well as othermethods based on classificationperformances obtained using several well-known classifiers.

  4. Comparison of Estrogen-Responsive Plasma Protein Biomarkers and Reproductive Endpoints in Sheepshead Minnows Exposed to 17B-Trenbolone

    EPA Science Inventory

    Protein profiling can be used for detection of biomarkers that can be applied diagnostically to screen chemicals for endocrine modifying activity. In previous studies, mass spectral analysis revealed four peptides (2950.5, 2972.5, 3003.4, 3025.5 m/z) in the plasma of estrogen ag...

  5. A lanthipeptide library used to identify a protein-protein interaction inhibitor.

    PubMed

    Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A

    2018-04-01

    In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

  6. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker

    PubMed Central

    Ray, Partha; Rialon-Guevara, Kristy L.; Veras, Emanuela; Sullenger, Bruce A.; White, Rebekah R.

    2012-01-01

    Most cases of pancreatic cancer are not diagnosed until they are no longer curable with surgery. Therefore, it is critical to develop a sensitive, preferably noninvasive, method for detecting the disease at an earlier stage. In order to identify biomarkers for pancreatic cancer, we devised an in vitro positive/negative selection strategy to identify RNA ligands (aptamers) that could detect structural differences between the secretomes of pancreatic cancer and non-cancerous cells. Using this molecular recognition approach, we identified an aptamer (M9-5) that differentially bound conditioned media from cancerous and non-cancerous human pancreatic cell lines. This aptamer further discriminated between the sera of pancreatic cancer patients and healthy volunteers with high sensitivity and specificity. We utilized biochemical purification methods and mass-spectrometric analysis to identify the M9-5 target as cyclophilin B (CypB). This molecular recognition–based strategy simultaneously identified CypB as a serum biomarker and generated a new reagent to recognize it in body fluids. Moreover, this approach should be generalizable to other diseases and complementary to traditional approaches that focus on differences in expression level between samples. Finally, we suggest that the aptamer we identified has the potential to serve as a tool for the early detection of pancreatic cancer. PMID:22484812

  7. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker.

    PubMed

    Ray, Partha; Rialon-Guevara, Kristy L; Veras, Emanuela; Sullenger, Bruce A; White, Rebekah R

    2012-05-01

    Most cases of pancreatic cancer are not diagnosed until they are no longer curable with surgery. Therefore, it is critical to develop a sensitive, preferably noninvasive, method for detecting the disease at an earlier stage. In order to identify biomarkers for pancreatic cancer, we devised an in vitro positive/negative selection strategy to identify RNA ligands (aptamers) that could detect structural differences between the secretomes of pancreatic cancer and non-cancerous cells. Using this molecular recognition approach, we identified an aptamer (M9-5) that differentially bound conditioned media from cancerous and non-cancerous human pancreatic cell lines. This aptamer further discriminated between the sera of pancreatic cancer patients and healthy volunteers with high sensitivity and specificity. We utilized biochemical purification methods and mass-spectrometric analysis to identify the M9-5 target as cyclophilin B (CypB). This molecular recognition-based strategy simultaneously identified CypB as a serum biomarker and generated a new reagent to recognize it in body fluids. Moreover, this approach should be generalizable to other diseases and complementary to traditional approaches that focus on differences in expression level between samples. Finally, we suggest that the aptamer we identified has the potential to serve as a tool for the early detection of pancreatic cancer.

  8. Myelin protein zero and its antibody in serum as biomarkers of n-hexane-induced peripheral neuropathy and neurotoxicity effects.

    PubMed

    Jia, Xiaowei; Liu, Qingjun; Zhang, Yanshu; Dai, Yufei; Duan, Huawei; Bin, Ping; Niu, Yong; Liu, Jie; Zhong, Liuzhen; Guo, Jisheng; Liu, Xiaofeng; Zheng, Yuxin

    2014-01-01

    Chronic exposure to n-hexane can lead to peripheral neuropathy that no effective treatment regimen could be applied presently. This study investigated whether myelin protein zero (P0) protein and its antibody could be used to distinguish n-hexane intoxication and protect workers from peripheral neuropathy. We compared P0 protein and its antibody among three levels of n-hexane-exposed groups, which included 18 patients with n-hexane-induced peripheral neuropathy as case group, 120 n-hexane-exposed workers as n-hexaneexposed control group, and 147 non-hexane-exposed participants used as control group. ELISA method was applied to detect P0 protein and its antibody. P0 protein in serum was significantly higher in the case group and n-hexane-exposed control group in comparison with the control group (P < 0.01). Compared with the n-hexane-exposed control group, the case group also had significant increase of P0 protein (P < 0.01). After 6 months therapy, P0 protein was observed to decrease significantly in the case group (P < 0.01). The P0 antibody in serum was significantly higher in the n-hexane-exposed control group than in the control group (P < 0.01), but not significantly different between cases and controls. P0 antibodies in serum may be a short-term effect biomarker for n-hexane exposure. P0 protein in serum may be an early effective biomarker for peripheral nerve neuropathy and its biological limit value needs investigation in the future study.

  9. Biomarkers in Pediatric Community-Acquired Pneumonia.

    PubMed

    Principi, Nicola; Esposito, Susanna

    2017-02-19

    Community-acquired pneumonia (CAP) is an infectious disease caused by bacteria, viruses, or a combination of these infectious agents. The severity of the clinical manifestations of CAP varies significantly. Consequently, both the differentiation of viral from bacterial CAP cases and the accurate assessment and prediction of disease severity are critical for effectively managing individuals with CAP. To solve questionable cases, several biomarkers indicating the etiology and severity of CAP have been studied. Unfortunately, only a few studies have examined the roles of these biomarkers in pediatric practice. The main aim of this paper is to detail current knowledge regarding the use of biomarkers to diagnose and treat CAP in children, analyzing the most recently published relevant studies. Despite several attempts, the etiologic diagnosis of pediatric CAP and the estimation of the potential outcome remain unsolved problems in most cases. Among traditional biomarkers, procalcitonin (PCT) appears to be the most effective for both selecting bacterial cases and evaluating the severity. However, a precise cut-off separating bacterial from viral and mild from severe cases has not been defined. The three-host protein assay based on C-reactive protein (CRP), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), plasma interferon-γ protein-10 (IP-10), and micro-array-based whole genome expression arrays might offer more advantages in comparison with former biomarkers. However, further studies are needed before the routine use of those presently in development can be recommended.

  10. Prognostic biomarkers in osteoarthritis

    PubMed Central

    Attur, Mukundan; Krasnokutsky-Samuels, Svetlana; Samuels, Jonathan; Abramson, Steven B.

    2013-01-01

    Purpose of review Identification of patients at risk for incident disease or disease progression in osteoarthritis remains challenging, as radiography is an insensitive reflection of molecular changes that presage cartilage and bone abnormalities. Thus there is a widely appreciated need for biochemical and imaging biomarkers. We describe recent developments with such biomarkers to identify osteoarthritis patients who are at risk for disease progression. Recent findings The biochemical markers currently under evaluation include anabolic, catabolic, and inflammatory molecules representing diverse biological pathways. A few promising cartilage and bone degradation and synthesis biomarkers are in various stages of development, awaiting further validation in larger populations. A number of studies have shown elevated expression levels of inflammatory biomarkers, both locally (synovial fluid) and systemically (serum and plasma). These chemical biomarkers are under evaluation in combination with imaging biomarkers to predict early onset and the burden of disease. Summary Prognostic biomarkers may be used in clinical knee osteoarthritis to identify subgroups in whom the disease progresses at different rates. This could facilitate our understanding of the pathogenesis and allow us to differentiate phenotypes within a heterogeneous knee osteoarthritis population. Ultimately, such findings may help facilitate the development of disease-modifying osteoarthritis drugs (DMOADs). PMID:23169101

  11. Cardiovascular risk assessment of dyslipidemic children: analysis of biomarkers to identify monogenic dyslipidemia[S

    PubMed Central

    Medeiros, Ana Margarida; Alves, Ana Catarina; Aguiar, Pedro; Bourbon, Mafalda

    2014-01-01

    The distinction between a monogenic dyslipidemia and a polygenic/environmental dyslipidemia is important for the cardiovascular risk assessment, counseling, and treatment of these patients. The present work aims to perform the cardiovascular risk assessment of dyslipidemic children to identify useful biomarkers for clinical criteria improvement in clinical settings. Main cardiovascular risk factors were analyzed in a cohort of 237 unrelated children with clinical diagnosis of familial hypercholesterolemia (FH). About 40% carried at least two cardiovascular risk factors and 37.6% had FH, presenting mutations in LDLR and APOB. FH children showed significant elevated atherogenic markers and lower concentration of antiatherogenic particles. Children without a molecular diagnosis of FH had higher levels of TGs, apoC2, apoC3, and higher frequency of BMI and overweight/obesity, suggesting that environmental factors can be the underlying cause of their hypercholesterolem≥ia. An apoB/apoA1 ratio ≥0.68 was identified as the best biomarker (area under the curve = 0.835) to differentiate FH from other dyslipidemias. The inclusion in clinical criteria of a higher cut-off point for LDL cholesterol or an apoB/apoA1 ratio ≥0.68 optimized the criteria sensitivity and specificity. The correct identification, at an early age, of all children at-risk is of great importance so that specific interventions can be implemented. apoB/apoA1 can improve the identification of FH patients. PMID:24627126

  12. Inflammatory Biomarkers Predict Heart Failure Severity and Prognosis in Patients With Heart Failure With Preserved Ejection Fraction: A Holistic Proteomic Approach.

    PubMed

    Hage, Camilla; Michaëlsson, Erik; Linde, Cecilia; Donal, Erwan; Daubert, Jean-Claude; Gan, Li-Ming; Lund, Lars H

    2017-02-01

    Underlying mechanisms in heart failure (HF) with preserved ejection fraction remain unknown. We investigated cardiovascular plasma biomarkers in HF with preserved ejection fraction and their correlation to diastolic dysfunction, functional class, pathophysiological processes, and prognosis. In 86 stable patients with HF and EF ≥45% in the Karolinska Rennes (KaRen) biomarker substudy, biomarkers were quantified by a multiplex immunoassay. Orthogonal projection to latent structures by partial least square analysis was performed on 87 biomarkers and 240 clinical variables, ranking biomarkers associated with New York Heart Association (NYHA) Functional class and the composite outcome (all-cause mortality and HF hospitalization). Biomarkers significantly correlated with outcome were analyzed by multivariable Cox regression and correlations with echocardiographic measurements performed. The orthogonal partial least square outcome-predicting biomarker pattern was run against the Ingenuity Pathway Analysis (IPA) database, containing annotated data from the public domain. The orthogonal partial least square analyses identified 32 biomarkers correlated with NYHA class and 28 predicting outcomes. Among outcome-predicting biomarkers, growth/differentiation factor-15 was the strongest and an additional 7 were also significant in Cox regression analyses when adjusted for age, sex, and N-terminal probrain natriuretic peptide: adrenomedullin (hazard ratio per log increase 2.53), agouti-related protein; (1.48), chitinase-3-like protein 1 (1.35), C-C motif chemokine 20 (1.35), fatty acid-binding protein (1.33), tumor necrosis factor receptor 1 (2.29), and TNF-related apoptosis-inducing ligand (0.34). Twenty-three of them correlated with diastolic dysfunction (E/e') and 5 with left atrial volume index. The IPA suggested that increased inflammation, immune activation with decreased necrosis and apoptosis preceded poor outcome. In HF with preserved ejection fraction, novel biomarkers

  13. Chitinase enzyme activity in CSF is a powerful biomarker of Alzheimer disease.

    PubMed

    Watabe-Rudolph, M; Song, Z; Lausser, L; Schnack, C; Begus-Nahrmann, Y; Scheithauer, M-O; Rettinger, G; Otto, M; Tumani, H; Thal, D R; Attems, J; Jellinger, K A; Kestler, H A; von Arnim, C A F; Rudolph, K L

    2012-02-21

    DNA damage accumulation in brain is associated with the development of Alzheimer disease (AD), but newly identified protein markers of DNA damage have not been evaluated in the diagnosis of AD and other forms of dementia. Here, we analyzed the level of novel biomarkers of DNA damage and telomere dysfunction (chitinase activity, N-acetyl-glucosaminidase activity, stathmin, and EF-1α) in CSF of 94 patients with AD, 41 patients with non-AD dementia, and 40 control patients without dementia. Enzymatic activity of chitinase (chitotriosidase activity) and stathmin protein level were significantly increased in CSF of patients with AD and non-AD dementia compared with that of no dementia control patients. As a single marker, chitinase activity was most powerful for distinguishing patients with AD from no dementia patients with an accuracy of 85.8% using a single threshold. Discrimination was even superior to clinically standard CSF markers that showed an accuracy of 78.4% (β-amyloid) and 77.6% (tau). Combined analysis of chitinase with other markers increased the accuracy to a maximum of 91%. The biomarkers of DNA damage were also increased in CSF of patients with non-AD dementia compared with no dementia patients, and the new biomarkers improved the diagnosis of non-AD dementia as well as the discrimination of AD from non-AD dementia. Taken together, the findings in this study provide experimental evidence that DNA damage markers are significantly increased in AD and non-AD dementia. The biomarkers identified outperformed the standard CSF markers for diagnosing AD and non-AD dementia in the cohort investigated.

  14. The Urine Proteome as a Biomarker of Radiation Injury: Submitted to Proteomics- Clinical Applications Special Issue: "Renal and Urinary Proteomics (Thongboonkerd)"

    PubMed

    Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E

    2008-06-18

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury.

  15. The use of multiplexed MRM for the discovery of biomarkers to differentiate iron-deficiency anemia from anemia of inflammation.

    PubMed

    Domanski, Dominik; Cohen Freue, Gabriela V; Sojo, Luis; Kuzyk, Michael A; Ratkay, Leslie; Parker, Carol E; Goldberg, Y Paul; Borchers, Christoph H

    2012-06-27

    In this study we demonstrate the use of a multiplexed MRM-based assay to distinguish among normal (NL) and iron-metabolism disorder mouse models, particularly, iron-deficiency anemia (IDA), inflammation (INFL), and inflammation and anemia (INFL+IDA). Our initial panel of potential biomarkers was based on the analysis of 14 proteins expressed by candidate genes involved in iron transport and metabolism. Based on this study, we were able to identify a panel of 8 biomarker proteins: apolipoprotein A4 (APO4), transferrin, transferrin receptor 1, ceruloplasmin, haptoglobin, lactoferrin, hemopexin, and matrix metalloproteinase-8 (MMP8) that clearly distinguish among the normal and disease models. Within this set of proteins, transferrin showed the best individual classification accuracy over all samples (72%) and within the NL group (94%). Compared to the best single-protein biomarker, transferrin, the use of the composite 8-protein biomarker panel improved the classification accuracy from 94% to 100% in the NL group, from 50% to 72% in the INFL group, from 66% to 96% in the IDA group, and from 79% to 83% in the INFL+IDA group. Based on these findings, validation of the utility of this potentially important biomarker panel in human samples in an effort to differentiate IDA, inflammation, and combinations thereof, is now warranted. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  17. Proteogenomic studies on cancer drug resistance: towards biomarker discovery and target identification.

    PubMed

    Fu, Shuyue; Liu, Xiang; Luo, Maochao; Xie, Ke; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua

    2017-04-01

    Chemoresistance is a major obstacle for current cancer treatment. Proteogenomics is a powerful multi-omics research field that uses customized protein sequence databases generated by genomic and transcriptomic information to identify novel genes (e.g. noncoding, mutation and fusion genes) from mass spectrometry-based proteomic data. By identifying aberrations that are differentially expressed between tumor and normal pairs, this approach can also be applied to validate protein variants in cancer, which may reveal the response to drug treatment. Areas covered: In this review, we will present recent advances in proteogenomic investigations of cancer drug resistance with an emphasis on integrative proteogenomic pipelines and the biomarker discovery which contributes to achieving the goal of using precision/personalized medicine for cancer treatment. Expert commentary: The discovery and comprehensive understanding of potential biomarkers help identify the cohort of patients who may benefit from particular treatments, and will assist real-time clinical decision-making to maximize therapeutic efficacy and minimize adverse effects. With the development of MS-based proteomics and NGS-based sequencing, a growing number of proteogenomic tools are being developed specifically to investigate cancer drug resistance.

  18. Multiomics Data Triangulation for Asthma Candidate Biomarkers and Precision Medicine.

    PubMed

    Pecak, Matija; Korošec, Peter; Kunej, Tanja

    2018-06-01

    Asthma is a common complex disorder and has been subject to intensive omics research for disease susceptibility and therapeutic innovation. Candidate biomarkers of asthma and its precision treatment demand that they stand the test of multiomics data triangulation before they can be prioritized for clinical applications. We classified the biomarkers of asthma after a search of the literature and based on whether or not a given biomarker candidate is reported in multiple omics platforms and methodologies, using PubMed and Web of Science, we identified omics studies of asthma conducted on diverse platforms using keywords, such as asthma, genomics, metabolomics, and epigenomics. We extracted data about asthma candidate biomarkers from 73 articles and developed a catalog of 190 potential asthma biomarkers (167 human, 23 animal data), comprising DNA loci, transcripts, proteins, metabolites, epimutations, and noncoding RNAs. The data were sorted according to 13 omics types: genomics, epigenomics, transcriptomics, proteomics, interactomics, metabolomics, ncRNAomics, glycomics, lipidomics, environmental omics, pharmacogenomics, phenomics, and integrative omics. Importantly, we found that 10 candidate biomarkers were apparent in at least two or more omics levels, thus promising potential for further biomarker research and development and precision medicine applications. This multiomics catalog reported herein for the first time contributes to future decision-making on prioritization of biomarkers and validation efforts for precision medicine in asthma. The findings may also facilitate meta-analyses and integrative omics studies in the future.

  19. Blood Biomarkers of Chronic Inflammation in Gulf War Illness.

    PubMed

    Johnson, Gerhard J; Slater, Billie C S; Leis, Linda A; Rector, Thomas S; Bach, Ronald R

    2016-01-01

    More than twenty years following the end of the 1990-1991 Gulf War it is estimated that approximately 300,000 veterans of this conflict suffer from an unexplained chronic, multi-system disorder known as Gulf War Illness (GWI). The etiology of GWI may be exposure to chemical toxins, but it remains only partially defined, and its case definition is based only on symptoms. Objective criteria for the diagnosis of GWI are urgently needed for diagnosis and therapeutic research. This study was designed to determine if blood biomarkers could provide objective criteria to assist diagnosis of GWI. A surveillance study of 85 Gulf War Veteran volunteers identified from the Department of Veterans Affairs Minnesota Gulf War registry was performed. All subjects were deployed to the Gulf War. Fifty seven subjects had GWI defined by CDC criteria, and 28 did not have symptomatic criteria for a diagnosis of GWI. Statistical analyses were performed on peripheral blood counts and assays of 61 plasma proteins using the Mann-Whitney rank sum test to compare biomarker distributions and stepwise logistic regression to formulate a diagnostic model. Lymphocyte, monocyte, neutrophil, and platelet counts were higher in GWI subjects. Six serum proteins associated with inflammation were significantly different in GWI subjects. A diagnostic model of three biomarkers-lymphocytes, monocytes, and C reactive protein-had a predicted probability of 90% (CI 76-90%) for diagnosing GWI when the probability of having GWI was above 70%. The results of the current study indicate that inflammation is a component of the pathobiology of GWI. Analysis of the data resulted in a model utilizing three readily measurable biomarkers that appears to significantly augment the symptom-based case definition of GWI. These new observations are highly relevant to the diagnosis of GWI, and to therapeutic trials.

  20. [Neuroimaging and Blood Biomarkers in Functional Prognosis after Stroke].

    PubMed

    Branco, João Paulo; Costa, Joana Santos; Sargento-Freitas, João; Oliveira, Sandra; Mendes, Bruno; Laíns, Jorge; Pinheiro, João

    2016-11-01

    Stroke remains one of the leading causes of morbidity and mortality around the world and it is associated with an important long-term functional disability. Some neuroimaging resources and certain peripheral blood or cerebrospinal fluid proteins can give important information about etiology, therapeutic approach, follow-up and functional prognosis in acute ischemic stroke patients. However, among the scientific community, there is currently more interest in the stroke vital prognosis over the functional prognosis. Predicting the functional prognosis during acute phase would allow more objective rehabilitation programs and better management of the available resources. The aim of this work is to review the potential role of acute phase neuroimaging and blood biomarkers as functional recovery predictors after ischemic stroke. Review of the literature published between 2005 and 2015, in English, using the terms "ischemic stroke", "neuroimaging" e "blood biomarkers". We included nine studies, based on abstract reading. Computerized tomography, transcranial doppler ultrasound and diffuse magnetic resonance imaging show potential predictive value, based on the blood flow study and the evaluation of stroke's volume and localization, especially when combined with the National Institutes of Health Stroke Scale. Several biomarkers have been studied as diagnostic, risk stratification and prognostic tools, namely the S100 calcium binding protein B, C-reactive protein, matrix metalloproteinases and cerebral natriuretic peptide. Although some biomarkers and neuroimaging techniques have potential predictive value, none of the studies were able to support its use, alone or in association, as a clinically useful functionality predictor model. All the evaluated markers were considered insufficient to predict functional prognosis at three months, when applied in the first hours after stroke. Additional studies are necessary to identify reliable predictive markers for functional

  1. The diagnostic and prognostic importance of oxidative stress biomarkers and acute phase proteins in Urinary Tract Infection (UTI) in camels.

    PubMed

    El-Deeb, Wael M; Buczinski, Sébastien

    2015-01-01

    The present study aimed to investigate the diagnostic and prognostic importance of oxidative stress biomarkers and acute phase proteins in urinary tract infection (UTI) in camels. We describe the clinical, bacteriological and biochemical findings in 89 camels. Blood and urine samples from diseased (n = 74) and control camels (n = 15) were submitted to laboratory investigations. The urine analysis revealed high number of RBCS and pus cells. The concentrations of serum and erythrocytic malondialdehyde (sMDA & eMDA), Haptoglobin (Hp), serum amyloid A (SAA), Ceruloplasmin (Cp), fibrinogen (Fb), albumin, globulin and interleukin 6 (IL-6) were higher in diseased camels when compared to healthy ones. Catalase, super oxide dismutase and glutathione levels were lower in diseased camels when compared with control group. Forty one of 74 camels with UTI were successfully treated. The levels of malondialdehyde, catalase, super oxide dismutase, glutathione, Hp, SAA, Fb, total protein, globulin and IL-6 were associated with the odds of treatment failure. The MDA showed a great sensitivity (Se) and specificity (Sp) in predicting treatment failure (Se 85%/Sp 100%) as well as the SAA (Se 92%/Sp 87%) and globulin levels (Se 85%/Sp 100%) when using the cutoffs that maximizes the sum of Se + Sp. Multivariate logistic regression analysis revealed that two models had a high accuracy to predict failure with the first model including sex, sMDA and Hp as covariates (area under the receiver operating characteristic curve (AUC) = 0.92) and a second model using sex, SAA and Hp (AUC = 0.89). Conclusively, the oxidative stress biomarkers and acute phase proteins could be used as diagnostic and prognostic biomarkers in camel UTI management. Efforts should be forced to investigate such biomarkers in other species with UTI.

  2. Proteomic evaluation of sheep serum proteins

    PubMed Central

    2012-01-01

    Background The applications of proteomic strategies to ovine medicine remain limited. The definition of serum proteome may be a good tool to identify useful protein biomarkers for recognising sub-clinical conditions and overt disease in sheep. Findings from bovine species are often directly translated for use in ovine medicine. In order to characterize normal protein patterns and improve knowledge of molecular species-specific characteristics, we generated a two-dimensional reference map of sheep serum. The possible application of this approach was tested by analysing serum protein patterns in ewes with mild broncho-pulmonary disease, which is very common in sheep and in the peripartum period which is a stressful time, with a high incidence of infectious and parasitic diseases. Results This study generated the first reference 2-DE maps of sheep serum. Overall, 250 protein spots were analyzed, and 138 identified. Compared with healthy sheep, serum protein profiles of animals with rhino-tracheo-bronchitis showed a significant decrease in protein spots identified as transthyretin, apolipoprotein A1 and a significant increase in spots identified as haptoglobin, endopin 1b and alpha1B glycoprotein. In the peripartum period, haptoglobin, alpha-1-acid glycoprotein, apolipoprotein A1 levels rose, while transthyretin content dropped. Conclusions This study describes applications of proteomics in putative biomarker discovery for early diagnosis as well as for monitoring the physiological and metabolic situations critical for ovine welfare. PMID:22630135

  3. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-Based Untargeted Quantitative Proteomic Approach To Identify Change of the Plasma Proteins by Salbutamol Abuse in Beef Cattle.

    PubMed

    Zhang, Kai; Tang, Chaohua; Liang, Xiaowei; Zhao, Qingyu; Zhang, Junmin

    2018-01-10

    Salbutamol, a selective β 2 -agonist, endangers the safety of animal products as a result of illegal use in food animals. In this study, an iTRAQ-based untargeted quantitative proteomic approach was applied to screen potential protein biomarkers in plasma of cattle before and after treatment with salbutamol for 21 days. A total of 62 plasma proteins were significantly affected by salbutamol treatment, which can be used as potential biomarkers to screen for the illegal use of salbutamol in beef cattle. Enzyme-linked immunosorbent assay measurements of five selected proteins demonstrated the reliability of iTRAQ-based proteomics in screening of candidate biomarkers among the plasma proteins. The plasma samples collected before and after salbutamol treatment were well-separated by principal component analysis (PCA) using the differentially expressed proteins. These results suggested that an iTRAQ-based untargeted quantitative proteomic strategy combined with PCA pattern recognition methods can discriminate differences in plasma protein profiles collected before and after salbutamol treatment.

  4. Towards an animal model of ovarian cancer: cataloging chicken blood proteins using combinatorial peptide ligand libraries coupled with shotgun proteomic analysis for translational research.

    PubMed

    Ma, Yingying; Sun, Zeyu; de Matos, Ricardo; Zhang, Jing; Odunsi, Kunle; Lin, Biaoyang

    2014-05-01

    Epithelial ovarian cancer is the most deadly gynecological cancer around the world, with high morbidity in industrialized countries. Early diagnosis is key in reducing its morbidity rate. Yet, robust biomarkers, diagnostics, and animal models are still limited for ovarian cancer. This calls for broader omics and systems science oriented diagnostics strategies. In this vein, the domestic chicken has been used as an ovarian cancer animal model, owing to its high rate of developing spontaneous epithelial ovarian tumors. Chicken blood has thus been considered a surrogate reservoir from which cancer biomarkers can be identified. However, the presence of highly abundant proteins in chicken blood has compromised the applicability of proteomics tools to study chicken blood owing to a lack of immunodepletion methods. Here, we demonstrate that a combinatorial peptide ligand library (CPLL) can efficiently remove highly abundant proteins from chicken blood samples, consequently doubling the number of identified proteins. Using an integrated CPLL-1DGE-LC-MSMS workflow, we identified a catalog of 264 unique proteins. Functional analyses further suggested that most proteins were coagulation and complement factors, blood transport and binding proteins, immune- and defense-related proteins, proteases, protease inhibitors, cellular enzymes, or cell structure and adhesion proteins. Semiquantitative spectral counting analysis identified 10 potential biomarkers from the present chicken ovarian cancer model. Additionally, many human homologs of chicken blood proteins we have identified have been independently suggested as diagnostic biomarkers for ovarian cancer, further triangulating our novel observations reported here. In conclusion, the CPLL-assisted proteomic workflow using the chicken ovarian cancer model provides a feasible platform for translational research to identify ovarian cancer biomarkers and understand ovarian cancer biology. To the best of our knowledge, we report here

  5. Systems Biology Approaches for Discovering Biomarkers for Traumatic Brain Injury

    PubMed Central

    Feala, Jacob D.; AbdulHameed, Mohamed Diwan M.; Yu, Chenggang; Dutta, Bhaskar; Yu, Xueping; Schmid, Kara; Dave, Jitendra; Tortella, Frank

    2013-01-01

    Abstract The rate of traumatic brain injury (TBI) in service members with wartime injuries has risen rapidly in recent years, and complex, variable links have emerged between TBI and long-term neurological disorders. The multifactorial nature of TBI secondary cellular response has confounded attempts to find cellular biomarkers for its diagnosis and prognosis or for guiding therapy for brain injury. One possibility is to apply emerging systems biology strategies to holistically probe and analyze the complex interweaving molecular pathways and networks that mediate the secondary cellular response through computational models that integrate these diverse data sets. Here, we review available systems biology strategies, databases, and tools. In addition, we describe opportunities for applying this methodology to existing TBI data sets to identify new biomarker candidates and gain insights about the underlying molecular mechanisms of TBI response. As an exemplar, we apply network and pathway analysis to a manually compiled list of 32 protein biomarker candidates from the literature, recover known TBI-related mechanisms, and generate hypothetical new biomarker candidates. PMID:23510232

  6. Identification of Trypanosome Proteins in Plasma from African Sleeping Sickness Patients Infected with T. b. rhodesiense

    PubMed Central

    Enyaru, John C.; Carr, Steven A.; Pearson, Terry W.

    2013-01-01

    Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a ‘deep-mining” proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification. PMID:23951171

  7. Identification of Trypanosome proteins in plasma from African sleeping sickness patients infected with T. b. rhodesiense.

    PubMed

    Eyford, Brett A; Ahmad, Rushdy; Enyaru, John C; Carr, Steven A; Pearson, Terry W

    2013-01-01

    Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a 'deep-mining" proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification.

  8. Mercury Exposure: Protein Biomarkers of Mercury Exposure in Jaraqui Fish from the Amazon Region.

    PubMed

    Vieira, José Cavalcante Souza; Braga, Camila Pereira; de Oliveira, Grasieli; Padilha, Cilene do Carmo Federici; de Moraes, Paula Martin; Zara, Luiz Fabricio; Leite, Aline de Lima; Buzalaf, Marília Afonso Rabelo; Padilha, Pedro de Magalhães

    2018-05-01

    This study presents data on the extraction and characterization of proteins associated with mercury in the muscle and liver tissues of jaraqui (Semaprochilodus spp.) from the Madeira River in the Brazilian Amazon. Protein fractionation was carried out by two-dimensional electrophoresis (2D-PAGE). Mercury determination in tissues, pellets, and protein spots was performed by graphite furnace atomic absorption spectrometry (GFAAS). Proteins in the spots that showed mercury were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The highest mercury concentrations were found in liver tissues and pellets (426 ± 6 and 277 ± 4 μg kg -1 ), followed by muscle tissues and pellets (132 ± 4 and 86 ± 1 μg kg -1 , respectively). Mercury quantification in the protein spots allowed us to propose stoichiometric ratios in the range of 1-4 mercury atoms per molecule of protein in the protein spots. The proteins characterized in the analysis by ESI-MS/MS were keratin, type II cytoskeletal 8, parvalbumin beta, parvalbumin-2, ubiquitin-40S ribosomal S27a, 39S ribosomal protein L36 mitochondrial, hemoglobin subunit beta, and hemoglobin subunit beta-A/B. The results suggest that proteins such as ubiquitin-40S ribosomal protein S27a, which have specific domains, possibly zinc finger, can be used as biomarkers of mercury, whereas mercury and zinc present characteristics of soft acids.

  9. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates

    PubMed Central

    Jovčevska, Ivana; Zupanec, Neja; Urlep, Žiga; Vranič, Andrej; Matos, Boštjan; Stokin, Clara Limbaeck; Muyldermans, Serge; Myers, Michael P.; Buzdin, Anton A.; Petrov, Ivan; Komel, Radovan

    2017-01-01

    Glioblastoma multiforme is the most frequent primary malignancy of the central nervous system. Despite remarkable progress towards an understanding of tumor biology, there is no efficient treatment and patient outcome remains poor. Here, we present a unique anti-proteomic approach for selection of nanobodies specific for overexpressed glioblastoma proteins. A phage-displayed nanobody library was enriched in protein extracts from NCH644 and NCH421K glioblastoma cell lines. Differential ELISA screenings revealed seven nanobodies that target the following antigens: the ACTB/NUCL complex, VIM, NAP1L1, TUFM, DPYSL2, CRMP1, and ALYREF. Western blots showed highest protein up-regulation for ALYREF, CRMP1, and VIM. Moreover, bioinformatic analysis with the OncoFinder software against the complete “Cancer Genome Atlas” brain tumor gene expression dataset suggests the involvement of different proteins in the WNT and ATM pathways, and in Aurora B, Sem3A, and E-cadherin signaling. We demonstrate the potential use of NAP1L1, NUCL, CRMP1, ACTB, and VIM for differentiation between glioblastoma and lower grade gliomas, with DPYSL2 as a promising “glioma versus reference” biomarker. A small scale validation study confirmed significant changes in mRNA expression levels of VIM, DPYSL2, ACTB and TRIM28. This work helps to fill the information gap in this field by defining novel differences in biochemical profiles between gliomas and reference samples. Thus, selected genes can be used to distinguish glioblastoma from lower grade gliomas, and from reference samples. These findings should be valuable for glioblastoma patients once they are validated on a larger sample size. PMID:28498803

  10. MFAP4: a candidate biomarker for hepatic and pulmonary fibrosis?

    PubMed

    Mölleken, Christian; Poschmann, Gereon; Bonella, Francesco; Costabel, Ulrich; Sitek, Barbara; Stühler, Kai; Meyer, Helmut E; Schmiegel, Wolff H; Marcussen, Niels; Helmer, Michael; Nielsen, Ole; Hansen, Søren; Schlosser, Anders; Holmskov, Uffe; Sorensen, Grith Lykke

    2016-03-29

    Several comparable mechanisms have been identified for hepatic and pulmonary fibrosis. The human microfibrillar associated glycoprotein 4 (MFAP4), produced by activated myofibroblasts, is a ubiquitous protein playing a potential role in extracellular matrix (ECM) turnover and was recently identified as biomarker for hepatic fibrosis in hepatitis C patients. The current study aimed to evaluate serum levels of MFAP4 in patients with pulmonary fibrosis in order to test its potential as biomarker in clinical practice. A further aim was to determine whether MFAP4 deficiency in mice affects the formation of pulmonary fibrosis in the bleomycin model of lung fibrosis. 91 patients with idiopathic pulmonary fibrosis (IPF), 23 with hypersensitivity pneumonitis (HP) and 31 healthy subjects were studied. In the mouse model, C57BL/6 Mfap4+/+ and Mfap4-/- mice between 6-8 weeks of age were studied. Serum levels of MFAP4 were measured by ELISA in patients and in mice. Surfactant protein D (SP-D) and LDH were measured as comparison biomarkers in patients with pulmonary fibrosis. Morphometric assessment and the Sircol kit were used to determine the amount of collagen in the lung tissue in the mouse model. Serum levels of MFAP4 were not elevated in lung fibrosis - neither in the patients with IPF or HP nor in the animal model. Furthermore no significant correlations with pulmonary function tests of IPF patients could be found for MFAP4. MFAP4 levels were increased in BAL of bleomycin treated mice with pulmonary fibrosis. MFAP4 is not elevated in sera of patients with pulmonary fibrosis or bleomycin treated mice with pulmonary fibrosis. This may be due to different pathogenic mechanisms of liver and lung fibrogenesis. MFAP4 seems to be useful as serum biomarker for hepatic but not for lung fibrosis.

  11. Sparse Feature Selection Identifies H2A.Z as a Novel, Pattern-Specific Biomarker for Asymmetrically Self-Renewing Distributed Stem Cells

    PubMed Central

    Huh, Yang Hoon; Noh, Minsoo; Burden, Frank R.; Chen, Jennifer C.; Winkler, David A.; Sherley, James L.

    2015-01-01

    There is a long-standing unmet clinical need for biomarkers with high specificity for distributed stem cells (DSCs) in tissues, or for use in diagnostic and therapeutic cell preparations (e.g., bone marrow). Although DSCs are essential for tissue maintenance and repair, accurate determination of their numbers for medical applications has been problematic. Previous searches for biomarkers expressed specifically in DSCs were hampered by difficulty obtaining pure DSCs and by the challenges in mining complex molecular expression data. To identify DSC such useful and specific biomarkers, we combined a novel sparse feature selection method with combinatorial molecular expression data focused on asymmetric self-renewal, a conspicuous property of DSCs. The analysis identified reduced expression of the histone H2A variant H2A.Z as a superior molecular discriminator for DSC asymmetric self-renewal. Subsequent molecular expression studies showed H2A.Z to be a novel “pattern-specific biomarker” for asymmetrically self-renewing cells with sufficient specificity to count asymmetrically self-renewing DSCs in vitro and potentially in situ. PMID:25636161

  12. Biomarkers intersect with the exposome

    PubMed Central

    Rappaport, Stephen M.

    2016-01-01

    The exposome concept promotes use of omic tools for discovering biomarkers of exposure and biomarkers of disease in studies of diseased and healthy populations. A two-stage scheme is presented for profiling omic features in serum to discover molecular biomarkers and then for applying these biomarkers in follow-up studies. The initial component, referred to as an exposome-wide-association study (EWAS), employs metabolomics and proteomics to interrogate the serum exposome and, ultimately, to identify, validate and differentiate biomarkers of exposure and biomarkers of disease. Follow-up studies employ knowledge-driven designs to explore disease causality, prevention, diagnosis, prognosis and treatment. PMID:22672124

  13. Exploring the human seminal plasma proteome: an unexplored gold mine of biomarker for male infertility and male reproduction disorder.

    PubMed

    Gilany, Kambiz; Minai-Tehrani, Arash; Savadi-Shiraz, Elham; Rezadoost, Hassan; Lakpour, Niknam

    2015-01-01

    The human seminal fluid is a complex body fluid. It is not known how many proteins are expressed in the seminal plasma; however in analog with the blood it is possible up to 10,000 proteins are expressed in the seminal plasma. The human seminal fluid is a rich source of potential biomarkers for male infertility and reproduction disorder. In this review, the ongoing list of proteins identified from the human seminal fluid was collected. To date, 4188 redundant proteins of the seminal fluid are identified using different proteomics technology, including 2-DE, SDS-PAGE-LC-MS/MS, MudPIT. However, this was reduced to a database of 2168 non-redundant protein using UniProtKB/Swiss-Prot reviewed database. The core concept of proteome were analyzed including pI, MW, Amino Acids, Chromosome and PTM distribution in the human seminal plasma proteome. Additionally, the biological process, molecular function and KEGG pathway were investigated using DAVID software. Finally, the biomarker identified in different male reproductive system disorder was investigated using proteomics platforms so far. In this study, an attempt was made to update the human seminal plasma proteome database. Our finding showed that human seminal plasma studies used to date seem to have converged on a set of proteins that are repeatedly identified in many studies and that represent only a small fraction of the entire human seminal plasma proteome.

  14. Absolute quantitation of disease protein biomarkers in a single LC-MS acquisition using apolipoprotein F as an example.

    PubMed

    Kumar, Abhinav; Gangadharan, Bevin; Cobbold, Jeremy; Thursz, Mark; Zitzmann, Nicole

    2017-09-21

    LC-MS and immunoassay can detect protein biomarkers. Immunoassays are more commonly used but can potentially be outperformed by LC-MS. These techniques have limitations including the necessity to generate separate calibration curves for each biomarker. We present a rapid mass spectrometry-based assay utilising a universal calibration curve. For the first time we analyse clinical samples using the HeavyPeptide IGNIS kit which establishes a 6-point calibration curve and determines the biomarker concentration in a single LC-MS acquisition. IGNIS was tested using apolipoprotein F (APO-F), a potential biomarker for non-alcoholic fatty liver disease (NAFLD). Human serum and IGNIS prime peptides were digested and the IGNIS assay was used to quantify APO-F in clinical samples. Digestion of IGNIS prime peptides was optimised using trypsin and SMART Digest™. IGNIS was 9 times faster than the conventional LC-MS method for determining the concentration of APO-F in serum. APO-F decreased across NAFLD stages. Inter/intra-day variation and stability post sample preparation for one of the peptides was ≤13% coefficient of variation (CV). SMART Digest™ enabled complete digestion in 30 minutes compared to 24 hours using in-solution trypsin digestion. We have optimised the IGNIS kit to quantify APO-F as a NAFLD biomarker in serum using a single LC-MS acquisition.

  15. Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer's disease and other neurodegenerative diseases.

    PubMed

    Baldacci, Filippo; Lista, Simone; Cavedo, Enrica; Bonuccelli, Ubaldo; Hampel, Harald

    2017-04-01

    Neuroinflammation is a crucial mechanism in the pathophysiology of neurodegenerative diseases pathophysiology. Cerebrospinal fluid (CSF) YKL-40 - an indicator of microglial activation - has recently been identified by proteomic studies as a candidate biomarker for Alzheimer's disease (AD). Areas covered: We review the impact of CSF YKL-40 as a pathophysiological biomarker for AD and other neurodegenerative diseases. CSF YKL-40 concentrations have been shown to predict progression from prodromal mild cognitive impairment to AD dementia. Moreover, a positive association between CSF YKL-40 and other biomarkers of neurodegeneration - particularly total tau protein - has been reported during the asymptomatic preclinical stage of AD and other neurodegenerative diseases. Albeit preliminary, current data do not support an association between APOE-ε4 status and CSF YKL-40 concentrations. When interpreting the diagnostic/prognostic significance of CSF YKL-40 concentrations in neurodegenerative diseases, potential confounders - including age, metabolic and cardiovascular risk factors, diagnostic criteria for selecting cases/controls - need to be considered. Expert opinion/commentary: CSF YKL-40 represents a pathophysiological biomarker reflecting immune/inflammatory mechanisms in neurodegenerative diseases, associated with tau protein pathology. Besides being associated with tau pathology, CSF YKL-40 adds to the growing array of biomarkers reflecting distinct molecular brain mechanisms potentially useful for stratifying individuals for biomarker-guided, targeted anti-inflammatory therapies emerging from precision medicine.

  16. A comparative analysis of acute-phase proteins as inflammatory biomarkers in preclinical toxicology studies: implications for preclinical to clinical translation.

    PubMed

    Watterson, Claire; Lanevschi, Anne; Horner, Judith; Louden, Calvert

    2009-01-01

    Recently, in early clinical development, a few biologics and small molecules intended as antitumor or anti-inflammatory agents have caused a severe adverse pro-inflammatory systemic reaction also known as systemic inflammatory response syndrome (SIRS). This toxicity could result from expected pharmacological effects of a therapeutic antibody and/or from interaction with antigens expressed on cells/tissues other than the intended target. Clinical monitoring of SIRS is challenging because of the narrow diagnostic window to institute a successful intervening therapeutic strategy prior to acute circulatory collapse. Furthermore, for these classes of therapeutic agents, studies in animals have low predictive ability to identify potential human hazards. In vitro screens with human cells, though promising, need further development. Therefore, identification of improved preclinical diagnostic markers of SIRS will enable clinicians to select applicable markers for clinical testing and avoid potentially catastrophic events. There is limited preclinical toxicology data describing the interspecies performance of acute-phase proteins because the response time, type, and duration of major acute-phase proteins vary significantly between species. This review will attempt to address this intellectual gap, as well as the use and applicability of acute-phase proteins as preclinical to clinical translational biomarkers of SIRS.

  17. Automated 3D-Printed Unibody Immunoarray for Chemiluminescence Detection of Cancer Biomarker Proteins

    PubMed Central

    Tang, C. K.; Vaze, A.; Rusling, J. F.

    2017-01-01

    A low cost three-dimensional (3D) printed clear plastic microfluidic device was fabricated for fast, low cost automated protein detection. The unibody device features three reagent reservoirs, an efficient 3D network for passive mixing, and an optically transparent detection chamber housing a glass capture antibody array for measuring chemiluminescence output with a CCD camera. Sandwich type assays were built onto the glass arrays using a multi-labeled detection antibody-polyHRP (HRP = horseradish peroxidase). Total assay time was ~30 min in a complete automated assay employing a programmable syringe pump so that the protocol required minimal operator intervention. The device was used for multiplexed detection of prostate cancer biomarker proteins prostate specific antigen (PSA) and platelet factor 4 (PF-4). Detection limits of 0.5 pg mL−1 were achieved for these proteins in diluted serum with log dynamic ranges of four orders of magnitude. Good accuracy vs ELISA was validated by analyzing human serum samples. This prototype device holds good promise for further development as a point-of-care cancer diagnostics tool. PMID:28067370

  18. Urinary biomarkers may provide prognostic information for subclinical acute kidney injury after cardiac surgery.

    PubMed

    Albert, Christian; Albert, Annemarie; Kube, Johanna; Bellomo, Rinaldo; Wettersten, Nicholas; Kuppe, Hermann; Westphal, Sabine; Haase, Michael; Haase-Fielitz, Anja

    2018-06-01

    This study aimed to determine the biomarker-specific outcome patterns and short-and long-term prognosis of cardiac surgery-asoociated acute kidney injury (AKI) identified by standard criteria and/or urinary kidney biomarkers. Patients enrolled (N = 200), originated a German multicenter study (NCT00672334). Standard risk injury, failure, loss, and end-stage renal disease classification (RIFLE) criteria (including serum creatinine and urine output) and urinary kidney biomarker test result (neutrophil gelatinase-associated lipocalin, midkine, interleukin 6, and proteinuria) were used for diagnosis of postoperative AKI. Primary end point was acute renal replacement therapy or in-hospital mortality. Long-term end points among others included 5-year mortality. Patients with single-biomarker-positive subclinical AKI (RIFLE negative) were identified. We controlled for systemic inflammation using C-reactive protein test. Urinary biomarkers (neutrophil gelatinase-associated lipocalin, midkine, and interleukin 6) were identified as independent predictors of the primary end point. Neutrophil gelatinase-associated lipocalin, midkine, or interleukin 6 positivity or de novo/worsening proteinuria identified 21.1%, 16.9%, 30.5%, and 48.0% more cases, respectively, with likely subclinical AKI (biomarker positive/RIFLE negative) additionally to cases with RIFLE positivity alone. Patients with likely subclinical AKI (neutrophil gelatinase-associated lipocalin or interleukin 6 positive) had increased risk of primary end point (adjusted hazard ratio, 7.18; 95% confidence interval, 1.52-33.93 [P = .013] and hazard ratio, 6.27; 95% confidence interval, 1.12-35.21 [P = .037]), respectively. Compared with biomarker-negative/RIFLE-positive patients, neutrophil gelatinase-associated lipocalin positive/RIFLE-positive or midkine-positive/RIFLE-positive patients had increased risk of primary end point (odds ratio, 9.6; 95% confidence interval, 1.4-67.3 [P = .033] and odds ratio, 14

  19. Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts

    PubMed Central

    Thompson, Charles M.; Prins, John M.; George, Kathleen M.

    2010-01-01

    Objective Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. Data sources and extraction We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. Data synthesis A number of OP-based insecticides share common structural elements that result in predictable OP–protein adducts. The resultant OP–protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. Conclusions MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure. PMID:20056576

  20. Identifying pathological biomarkers: histochemistry still ranks high in the omics era

    PubMed Central

    Pellicciari, C.; Malatesta, M.

    2011-01-01

    In recent years, omic analyses have been proposed as possible approaches to diagnosis, in particular for tumours, as they should be able to provide quantitative tools to detect and measure abnormalities in gene and protein expression, through the evaluation of transcription and translation products in the abnormal vs normal tissues. Unfortunately, this approach proved to be much less powerful than expected, due to both intrinsic technical limits and the nature itself of the pathological tissues to be investigated, the heterogeneity deriving from polyclonality and tissue phenotype variability between patients being a major limiting factor in the search for unique omic biomarkers. Especially in the last few years, the application of refined techniques for investigating gene expression in situ has greatly increased the diagnostic/prognostic potential of histochemistry, while the progress in light microscopy technology and in the methods for imaging molecules in vivo have provided valuable tools for elucidating the molecular events and the basic mechanisms leading to a pathological condition. Histochemical techniques thus remain irreplaceable in pathologist's armamentarium, and it may be expected that even in the future histochemistry will keep a leading position among the methodological approaches for clinical pathology. PMID:22297448

  1. Cancer biomarker discovery for cholangiocarcinoma: the high-throughput approaches

    PubMed Central

    Silsirivanit, Atit; Sawanyawisuth, Kanlayanee; Riggins, Gregory J.; Wongkham, Chaisiri

    2015-01-01

    Cholangiocarcinoma (CCA) is difficult to diagnose at an early stage and most tumors are detected at late stage where surgery or other therapy is ineffective. Many advanced techniques are applied to diagnose CCA; however, most are expensive and have varying degrees of accuracy. A less invasive and simpler procedure such as serum markers would be of substantial clinical benefit for diagnosis, monitoring, and predicting outcome for CCA patients. Recent advances in “Omics” technologies offer remarkable opportunities for establishment of biomarker-related to diseases. In this review, the potential biomarkers obtained from proteomics and glycomic studies are evaluated. Several protein markers were discovered from patient specimen, using two dimensional-differential gel electrophoresis couple with liquid chromatography tandem mass spectrometry (2D-DIGE/LC-MS-MS), matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS), surface enhanced laser desorption/ionization (SELDI)-TOF-MS and capillary electrophoresis (CE)-MS, etc. Newly reported CCA-associated glycobiomarkers were identified using lectin-assisted, monoclonal antibody-assisted or specific-target strategies. The combination between carbohydrate binding-lectin and core protein-binding mAb significantly increased the values for detection of the glyco-biomarkers for CCA. Searching for specific and sensitive molecular markers to be used for population screening is worth being evaluated. This could lead to earlier diagnosis and improve outcome. Further investigation of those biomarker functions is also of value in order to better understand the tumor biology and use them as targets for future therapeutic agents. PMID:24616382

  2. Using a novel "Integrated Biomarker Proteomic" index to assess the effects of freshwater pollutants in European eel peripheral blood mononuclear cells.

    PubMed

    Roland, Kathleen; Kestemont, Patrick; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2016-03-30

    Using proteomic data as biomarkers of environmental pollution has the potential to be of a great interest in ecological risk assessment as they constitute early warning indicators of ecologically relevant effects on biological systems. To develop such specific and sensitive biomarkers, the use of a set of proteins is required and the identification of protein expression signatures (PES) may reflect the exposure to specific classes of pollutants. Using 2D-DIGE (Differential in Gel Electrophoresis) methodology, this study aimed at identifying specific PES on European eel (Anguilla anguilla) peripheral blood mononuclear cells (PBMC) after 48 h in vitro exposure to two sublethal concentrations of dichlorodiphenyltrichloroethane (p,p'-DDT) (10 μg/L and 1mg/L) or cadmium (Cd) (1 μg/L and 100 μg/L). The present results have been supplemented with data of a first in vitro study on cells exposed to perfluorooctane sulfonate (PFOS) (10 μg/L and 1mg/L). A total of thirty-four protein spots, belonging to 18 different identified proteins found in all conditions, have been selected as possible biomarkers to develop a synthetic Integrated Biomarker Proteomic (IBP) index. IBP follows a dose-response relationship with higher values at the highest tested concentration for each pollutant (Cd: 9.96; DDT: 7.44; PFOS: 7.94) compared to the lowest tested concentration (Cd: 3.81; DDT: 2.91; PFOS: 2.06). In a second step, star plot graphs have been applied to proteomic data in order to allow visual integration of a set of early warning responses measured with protein biomarkers. Such star plots permit to discriminate the type of pollutant inducing a proteomic response. We conclude that using IBP is relevant in environmental risk assessment, giving to this index the potential to be applied as a global index of proteome alteration in endangered species such as the European eel. In this study, 34 protein spots have been selected as possible biomarkers to develop a synthetic Integrated

  3. Lung cancer signature biomarkers: tissue specific semantic similarity based clustering of digital differential display (DDD) data.

    PubMed

    Srivastava, Mousami; Khurana, Pankaj; Sugadev, Ragumani

    2012-11-02

    The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used 'Gene Ontology semantic similarity score' to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1-4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1) are significantly down regulated

  4. Salivary zinc finger protein 510 peptide as a novel biomarker for detection of oral squamous cell carcinoma in early stages.

    PubMed

    Jou, Yu-Jen; Lin, Chia-Der; Lai, Chih-Ho; Tang, Chih-Hsin; Huang, Su-Hua; Tsai, Ming-Hsui; Chen, Shih-Yin; Kao, Jung-Yie; Lin, Cheng-Wen

    2011-07-15

    Oral squamous cell carcinoma (OSCC) is one of the most frequent malignancies worldwide. Early diagnosis can mean adequate treatment and increase survival. This study uses ClinProt technique to identify salivary biomarkers for early diagnosis of OSCC. A total of 77 salivary samples from both OSCC patients (n=47) and healthy donors (n=30) were analyzed with MALDI-TOF MS technology. Salivary peptides from OSCC patients were separated, using C8-functionalized magnetic beads. Three signals (2918.57 Da, 5592.64 Da, and 4372.66 Da) distinguished OSCC patients from controls. Among them, unique peptide 2918.57 Da, identified as a 24-mer peptide of zinc finger protein 510 (ZNF510), was found in 0% of saliva from healthy individuals, versus 25.0% and 60% from OSCC patients with T1+T2 and T3+T4 stages, respectively (P<0.001). ELISA analysis with rabbit anti-ZNF510 peptide sera shows a starkly higher 24-mer ZNF510 peptide level in saliva from OSCC patients than that in controls (P<0.001). Also, in immunohistochemical analysis of oral tissues, a significantly higher level of ZNF510 was observed in OSCC tissues than in the OSCC free control tissues. Analysis of areas under receiver-operating characteristic (ROC) curves in OSCC early (T1+T2) and late stages (T3+T4) shows greater than 0.95. Identifying 24-mer ZNF510 peptide as OSCC-related salivary biomarkers via proteomic approach proved useful in adjunct diagnosis for early detection rather than specific diagnosis marker for progression of OSCC patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Multiplexed LC-MS/MS analysis of horse plasma proteins to study doping in sport.

    PubMed

    Barton, Chris; Beck, Paul; Kay, Richard; Teale, Phil; Roberts, Jane

    2009-06-01

    The development of protein biomarkers for the indirect detection of doping in horse is a potential solution to doping threats such as gene and protein doping. A method for biomarker candidate discovery in horse plasma is presented using targeted analysis of proteotypic peptides from horse proteins. These peptides were first identified in a novel list of the abundant proteins in horse plasma. To monitor these peptides, an LC-MS/MS method using multiple reaction monitoring was developed to study the quantity of 49 proteins in horse plasma in a single run. The method was optimised and validated, and then applied to a population of race-horses to study protein variance within a population. The method was finally applied to longitudinal time courses of horse plasma collected after administration of an anabolic steroid to demonstrate utility for hypothesis-driven discovery of doping biomarker candidates.

  6. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    PubMed Central

    Ren, Jun; Zhou, Wei; Wang, Jianxin

    2014-01-01

    Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945

  7. Biomarkers in earthworms.

    PubMed

    Scott-Fordsmand, J J; Weeks, J M

    2000-01-01

    Earthworms are believed to be so-called key species within ecosystems and are often exposed to a wide range of anthropogenic compounds released to the terrestrial environment. As a consequence, they may suffer from the toxicity of these compounds. For these and other reasons, earthworms have been used extensively in ecotoxicological studies. In recent years the use of other biological responses (biomarkers) to estimate either exposure or resultant effects of chemicals has received increased attention. Biomarkers address the question of bioavailability by only responding to the bioactive fraction. They may incorporate effects following exposure to a mixture of chemicals. Biomarkers may also reduce extrapolation of results from the laboratory to the field, as they may be applicable under both conditions. The present review has drawn together current knowledge on potential biomarkers in earthworms and appraised them in relation to basic requirements needed for supplying information relevant to devising satisfactory risk assessment. A wide range of potential biomarkers have been measured in earthworms, including DNA alteration, induction of metal-binding proteins (MTs and MBP), depression of ChE activity and other enzymatic responses, energy reserve responses, responses in neural impulse conductivity, lysosomal membrane stability, immunological responses, changes in sperm numbers, histopathological changes, and behavioral changes. Both organic and inorganic compounds have been included; however, for each biomarker the main emphasis historically has been placed on only a few chemicals. Dose-response relationships were in some cases observed. Little information is available on the linkage of the biomarker response to effects at population or community levels. The influence of other factors, biotic and abiotic, on the biomarker responses and their temporal duration have been only sporadically reported.

  8. Using the direct-injection model of early uveal melanoma hepatic metastasis to identify TPS as a potentially useful serum biomarker.

    PubMed

    Barak, Vivian; Frenkel, Shahar; Valyi-Nagy, Klara; Leach, Lu; Apushkin, Marsha A; Lin, Amy Y; Kalickman, Inna; Baumann, Nikola A; Pe'er, Jacob; Maniotis, Andrew J; Folberg, Robert

    2007-10-01

    To develop a method to screen for serum biomarkers of early hepatic metastasis from uveal melanoma. Cytokeratin 18 (TPS) was identified from gene expression profiles as protein generated by highly invasive uveal melanoma cells. Sera were collected from two groups of 15 SCID mice 2 weeks after injection of either tissue culture medium or MUM2B human metastatic uveal melanoma cells into the mouse liver. Serum TPS levels were assayed in 53 healthy human controls, 64 uveal melanoma patients who were disease free for at least 10 years, and 37 patients with metastatic uveal melanoma. After 2 weeks, small hepatic nodules (0.1-2.8 mm; mean, 0.80 mm) developed in 11 of 15 mice injected with MUM2B cells. Serum TPS levels in media-injected mice (84.7 U/L) were substantially lower than levels in MUM2B-injected mice (601 mug/L). TPS levels were significantly higher (P < 0.0001) in patients with metastatic uveal melanoma (139.63 +/- 22.20) than in healthy controls (54.23 +/- 0.01) or in patients free of disease (69.29 +/- 9.76). Significant differences were found between TPS levels before and after the development of hepatic metastases (P < 0.01), and serum TPS levels became elevated in four patients at least 6 months before the detection of hepatic metastases by abdominal ultrasonography. The direct-injection model of uveal melanoma in the mouse liver may be used to screen for potential serum biomarkers of metastatic uveal melanoma.

  9. Biomarkers for early detection of Alzheimer disease.

    PubMed

    Barber, Robert C

    2010-09-01

    The existence of an effective biomarker for early detection of Alzheimer disease would facilitate improved diagnosis and stimulate therapeutic trials. Multidisciplinary clinical diagnosis of Alzheimer disease is time consuming and expensive and relies on experts who are rarely available outside of specialty clinics. Thus, many patients do not receive proper diagnosis until the disease has progressed beyond stages in which treatments are maximally effective. In the clinical trial setting, rapid, cost-effective screening of patients for Alzheimer disease is of paramount importance for the development of new treatments. Neuroimaging of cortical amyloid burden and volumetric changes in the brain and assessment of protein concentrations (eg, β-amyloid 1-42, total tau, phosphorylated tau) in cerebrospinal fluid are diagnostic tools that are not widely available. Known genetic markers do not provide sufficient discriminatory power between different forms of dementia to be useful in isolation. Recent studies using panels of biomarkers for diagnosis of Alzheimer disease or mild cognitive impairment have been promising, though no such studies have been cross-validated in independent samples of subjects. The ideal biomarker enabling early detection of Alzheimer disease has not yet been identified.

  10. Discovery of putative salivary biomarkers for Sjögren's syndrome using high resolution mass spectrometry and bioinformatics.

    PubMed

    Zoukhri, Driss; Rawe, Ian; Singh, Mabi; Brown, Ashley; Kublin, Claire L; Dawson, Kevin; Haddon, William F; White, Earl L; Hanley, Kathleen M; Tusé, Daniel; Malyj, Wasyl; Papas, Athena

    2012-03-01

    The purpose of the current study was to determine if saliva contains biomarkers that can be used as diagnostic tools for Sjögren's syndrome (SjS). Twenty seven SjS patients and 27 age-matched healthy controls were recruited for these studies. Unstimulated glandular saliva was collected from the Wharton's duct using a suction device. Two µl of salvia were processed for mass spectrometry analyses on a prOTOF 2000 matrix-assisted laser desorption/ionization orthogonal time of flight (MALDI O-TOF) mass spectrometer. Raw data were analyzed using bioinformatic tools to identify biomarkers. MALDI O-TOF MS analyses of saliva samples were highly reproducible and the mass spectra generated were very rich in peptides and peptide fragments in the 750-7,500 Da range. Data analysis using bioinformatic tools resulted in several classification models being built and several biomarkers identified. One model based on 7 putative biomarkers yielded a sensitivity of 97.5%, specificity of 97.8% and an accuracy of 97.6%. One biomarker was present only in SjS samples and was identified as a proteolytic peptide originating from human basic salivary proline-rich protein 3 precursor. We conclude that salivary biomarkers detected by high-resolution mass spectrometry coupled with powerful bioinformatic tools offer the potential to serve as diagnostic/prognostic tools for SjS.

  11. Novel Biomarkers of Abdominal Aortic Aneurysm Disease: Identifying Gaps and Dispelling Misperceptions

    PubMed Central

    Moris, Demetrios; Avgerinos, Efthymios; Makris, Marinos; Bakoyiannis, Chris; Pikoulis, Emmanuel; Georgopoulos, Sotirios

    2014-01-01

    Abdominal aortic aneurysm (AAA) is a prevalent and potentially life-threatening disease. Early detection by screening programs and subsequent surveillance has been shown to be effective at reducing the risk of mortality due to aneurysm rupture. The aim of this review is to summarize the developments in the literature concerning the latest biomarkers (from 2008 to date) and their potential screening and therapeutic values. Our search included human studies in English and found numerous novel biomarkers under research, which were categorized in 6 groups. Most of these studies are either experimental or hampered by their low numbers of patients. We concluded that currently no specific laboratory markers allow screeing for the disease and monitoring its progression or the results of treatment. Further studies and studies in larger patient groups are required in order to validate biomarkers as cost-effective tools in the AAA disease. PMID:24967416

  12. PODCAST: From Lost in Translation to Paradise Found: Enabling Protein Biomarker Method Transfer by Mass Spectrometry | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Translation of novel biomarkers into clinical care for the evaluation of therapeutic safety and efficacy has been slow, partly attributable to the cost and complexity of immunoassay development.  The potential for liquid chromatography-tandem mass spectrometry (LC-MS/MS) to streamline the translation of novel protein biomarkers is profound.  Drs. Henry Rodriguez and Andrew Hoofnagle discuss what the future may be for clinical proteomics. This is an American Association for Clinical Chemistry (AACC) podcast.

  13. Biomarkers in DILI: One More Step Forward

    PubMed Central

    Robles-Díaz, Mercedes; Medina-Caliz, Inmaculada; Stephens, Camilla; Andrade, Raúl J.; Lucena, M. Isabel

    2016-01-01

    Despite being relatively rare, drug-induced liver injury (DILI) is a serious condition, both for the individual patient due to the risk of acute liver failure, and for the drug development industry and regulatory agencies due to associations with drug development attritions, black box warnings, and postmarketing withdrawals. A major limitation in DILI diagnosis and prediction is the current lack of specific biomarkers. Despite refined usage of traditional liver biomarkers in DILI, reliable disease outcome predictions are still difficult to make. These limitations have driven the growing interest in developing new more sensitive and specific DILI biomarkers, which can improve early DILI prediction, diagnosis, and course of action. Several promising DILI biomarker candidates have been discovered to date, including mechanistic-based biomarker candidates such as glutamate dehydrogenase, high-mobility group box 1 protein and keratin-18, which can also provide information on the injury mechanism of different causative agents. Furthermore, microRNAs have received much attention lately as potential non-invasive DILI biomarker candidates, in particular miR-122. Advances in “omics” technologies offer a new approach for biomarker exploration studies. The ability to screen a large number of molecules (e.g., metabolites, proteins, or DNA) simultaneously enables the identification of ‘toxicity signatures,’ which may be used to enhance preclinical safety assessments and disease diagnostics. Omics-based studies can also provide information on the underlying mechanisms of distinct forms of DILI that may further facilitate the identification of early diagnostic biomarkers and safer implementation of personalized medicine. In this review, we summarize recent advances in the area of DILI biomarker studies. PMID:27597831

  14. Biomarkers of Rheumatoid Arthritis–Associated Interstitial Lung Disease

    PubMed Central

    Chen, Juan; Doyle, Tracy J.; Liu, Yongliang; Aggarwal, Rohit; Wang, Xiaoping; Shi, Yonghong; Ge, Sheng Xiang; Huang, Heqing; Lin, Qingyan; Liu, Wen; Cai, Yongjin; Koontz, Diane; Fuhrman, Carl R.; Golzarri, Maria F.; Liu, Yushi; Hatabu, Hiroto; Nishino, Mizuki; Araki, Tetsuro; Dellaripa, Paul F.; Oddis, Chester V.; Rosas, Ivan O.; Ascherman, Dana P.

    2015-01-01

    Objective Interstitial lung disease (ILD) is a relatively common extraarticular manifestation of rheumatoid arthritis (RA) that contributes significantly to disease burden and excess mortality. The purpose of this study was to identify peripheral blood markers of RA-associated ILD that can facilitate earlier diagnosis and provide insight regarding the pathogenesis of this potentially devastating disease complication. Methods Patients with RA who were enrolled in a well-characterized Chinese identification cohort or a US replication cohort were subclassified as having RA–no ILD, RA–mild ILD, or RA–advanced ILD, based on high-resolution computed tomography scans of the chest. Multiplex enzyme-linked immunosorbent assays (ELISAs) and Luminex xMAP technology were used to assess 36 cytokines/chemokines, matrix metalloproteinases (MMPs), and acute-phase proteins in the identification cohort. Unadjusted and adjusted logistic regression models were used to quantify the strength of association between RA-ILD and biomarkers of interest. Results MMP-7 and interferon-γ–inducible protein 10 (IP-10)/CXCL10 were identified by multiplex ELISA as potential biomarkers for RA-ILD in 133 RA patients comprising the Chinese identification cohort (50 RA–no ILD, 41 RA-ILD, 42 RA–indeterminate ILD). The findings were confirmed by standard solid-phase sandwich ELISA in the Chinese identification cohort as well as an independent cohort of US patients with RA and different stages of ILD (22 RA–no ILD, 49 RA-ILD, 15 RA–indeterminate ILD), with statistically significant associations in both unadjusted and adjusted logistic regression analyses. Conclusion Levels of MMP-7 and IP-10/CXCL10 are elevated in the serum of RA patients with ILD, whether mild or advanced, supporting their value as pathogenically relevant biomarkers that can contribute to noninvasive detection of this extraarticular disease complication. PMID:25302945

  15. Biomarker Qualification: Toward a Multiple Stakeholder Framework for Biomarker Development, Regulatory Acceptance, and Utilization.

    PubMed

    Amur, S; LaVange, L; Zineh, I; Buckman-Garner, S; Woodcock, J

    2015-07-01

    The discovery, development, and use of biomarkers for a variety of drug development purposes are areas of tremendous interest and need. Biomarkers can become accepted for use through submission of biomarker data during the drug approval process. Another emerging pathway for acceptance of biomarkers is via the biomarker qualification program developed by the Center for Drug Evaluation and Research (CDER, US Food and Drug Administration). Evidentiary standards are needed to develop and evaluate various types of biomarkers for their intended use and multiple stakeholders, including academia, industry, government, and consortia must work together to help develop this evidence. The article describes various types of biomarkers that can be useful in drug development and evidentiary considerations that are important for qualification. A path forward for coordinating efforts to identify and explore needed biomarkers is proposed for consideration. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  16. Prostate-Specific G-Protein Coupled Receptor, an Emerging Biomarker Regulating Inflammation and Prostate Cancer Invasion.

    PubMed

    Rodriguez, M; Siwko, S; Liu, M

    2016-01-01

    Prostate cancer is highly prevalent among men in developed countries, but a significant proportion of detected cancers remain indolent, never progressing into aggressive carcinomas. This highlights the need to develop refined biomarkers that can distinguish between indolent and potentially dangerous cases. The prostate-specific G-protein coupled receptor (PSGR, or OR51E2) is an olfactory receptor family member with highly specific expression in human prostate epithelium that is highly overexpressed in PIN and prostate cancer. PSGR has been functionally implicated in prostate cancer cell invasiveness, suggesting a potential role in the transition to metastatic PCa. Recently, transgenic mice overexpressing PSGR in the prostate were reported to develop an acute inflammatory response followed by emergence of low grade PIN, whereas mice with compound PSGR overexpression and loss of PTEN exhibited accelerated formation of invasive prostate adenocarcinoma. This article will review recent PSGR findings with a focus on its role as a potential prostate cancer biomarker and regulator of prostate cancer invasion and inflammation.

  17. USING ARRAY TECHNOLOGY TO IDENTIFY POTENTIAL BIOMARKERS FOR PYRETHROID INSECTICIDES.

    EPA Science Inventory

    Pyrethroid insecticides affect nervous system function by disruption of sodium channels in nerve membranes. FQPA requirements for assessing cumulative risk have increased the need for rapid and sensitive biomarkers of effect. This project aims to develop biochemical markers of n...

  18. Microspectroscopy of spectral biomarkers associated with human corneal stem cells

    PubMed Central

    Nakamura, Takahiro; Kelly, Jemma G.; Trevisan, Júlio; Cooper, Leanne J.; Bentley, Adam J.; Carmichael, Paul L.; Scott, Andrew D.; Cotte, Marine; Susini, Jean; Martin-Hirsch, Pierre L.; Kinoshita, Shigeru; Martin, Francis L.

    2010-01-01

    Purpose Synchrotron-based radiation (SRS) Fourier-transform infrared (FTIR) microspectroscopy potentially provides novel biomarkers of the cell differentiation process. Because such imaging gives a “biochemical-cell fingerprint” through a cell-sized aperture, we set out to determine whether distinguishing chemical entities associated with putative stem cells (SCs), transit-amplifying (TA) cells, or terminally-differentiated (TD) cells could be identified in human corneal epithelium. Methods Desiccated cryosections (10 μm thick) of cornea on barium fluoride infrared transparent windows were interrogated using SRS FTIR microspectroscopy. Infrared analysis was performed through the acquisition of point spectra or image maps. Results Point spectra were subjected to principal component analysis (PCA) to identify distinguishing chemical entities. Spectral image maps to highlight SCs, TA cells, and TD cells of the cornea were then generated. Point spectrum analysis using PCA highlighted remarkable segregation between the three cell classes. Discriminating chemical entities were associated with several spectral differences over the DNA/RNA (1,425–900 cm−1) and protein/lipid (1,800–1480 cm−1) regions. Prominent biomarkers of SCs compared to TA cells and/or TD cells were 1,040 cm−1, 1,080 cm−1, 1,107 cm−1, 1,225 cm−1, 1,400 cm−1, 1,525 cm−1, 1,558 cm−1, and 1,728 cm−1. Chemical entities associated with DNA/RNA conformation (1,080 cm−1 and 1,225 cm−1) were associated with SCs, whereas protein/lipid biochemicals (1,558 cm−1 and 1,728 cm−1) most distinguished TA cells and TD cells. Conclusions SRS FTIR microspectroscopy can be employed to identify differential spectral biomarkers of SCs, TA cells, and/or TD cells in human cornea. This nondestructive imaging technology is a novel approach to characterizing SCs in situ. PMID:20520745

  19. New Biomarkers of Coffee Consumption Identified by the Non-Targeted Metabolomic Profiling of Cohort Study Subjects

    PubMed Central

    Martin, Jean-François; Lyan, Bernard; Pujos-Guillot, Estelle; Fezeu, Leopold; Hercberg, Serge; Comte, Blandine; Galan, Pilar; Touvier, Mathilde; Manach, Claudine

    2014-01-01

    Coffee contains various bioactives implicated with human health and disease risk. To accurately assess the effects of overall consumption upon health and disease, individual intake must be measured in large epidemiological studies. Metabolomics has emerged as a powerful approach to discover biomarkers of intake for a large range of foods. Here we report the profiling of the urinary metabolome of cohort study subjects to search for new biomarkers of coffee intake. Using repeated 24-hour dietary records and a food frequency questionnaire, 20 high coffee consumers (183–540 mL/d) and 19 low consumers were selected from the French SU.VI.MAX2 cohort. Morning spot urine samples from each subject were profiled by high-resolution mass spectrometry. Partial least-square discriminant analysis of multidimensional liquid chromatography-mass spectrometry data clearly distinguished high consumers from low via 132 significant (p-value<0.05) discriminating features. Ion clusters whose intensities were most elevated in the high consumers were annotated using online and in-house databases and their identities checked using commercial standards and MS-MS fragmentation. The best discriminants, and thus potential markers of coffee consumption, were the glucuronide of the diterpenoid atractyligenin, the diketopiperazine cyclo(isoleucyl-prolyl), and the alkaloid trigonelline. Some caffeine metabolites, such as 1-methylxanthine, were also among the discriminants, however caffeine may be consumed from other sources and its metabolism is subject to inter-individual variation. Receiver operating characteristics curve analysis showed that the biomarkers identified could be used effectively in combination for increased sensitivity and specificity. Once validated in other cohorts or intervention studies, these specific single or combined biomarkers will become a valuable alternative to assessment of coffee intake by dietary survey and finally lead to a better understanding of the health

  20. Improvements in the Protein Identifier Cross-Reference service.

    PubMed

    Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A

    2012-07-01

    The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.