Sample records for identify secreted proteins

  1. Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan

    PubMed Central

    Kaplan, Joshua M.

    2008-01-01

    Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling. PMID:19043554

  2. Comparative Proteome Analysis in Schizosaccharomyces pombe Identifies Metabolic Targets to Improve Protein Production and Secretion*

    PubMed Central

    Hung, Chien-Wen; Klein, Tobias; Cassidy, Liam; Linke, Dennis; Lange, Sabrina; Anders, Uwe; Bureik, Matthias; Heinzle, Elmar; Schneider, Konstantin; Tholey, Andreas

    2016-01-01

    Protein secretion in yeast is a complex process and its efficiency depends on a variety of parameters. We performed a comparative proteome analysis of a set of Schizosaccharomyces pombe strains producing the α-glucosidase maltase in increasing amounts to investigate the overall proteomic response of the cell to the burden of protein production along the various steps of protein production and secretion. Proteome analysis of these strains, utilizing an isobaric labeling/two dimensional LC-MALDI MS approach, revealed complex changes, from chaperones and secretory transport machinery to proteins controlling transcription and translation. We also found an unexpectedly high amount of changes in enzyme levels of the central carbon metabolism and a significant up-regulation of several amino acid biosyntheses. These amino acids were partially underrepresented in the cellular protein compared with the composition of the model protein. Additional feeding of these amino acids resulted in a 1.5-fold increase in protein secretion. Membrane fluidity was identified as a second bottleneck for high-level protein secretion and addition of fluconazole to the culture caused a significant decrease in ergosterol levels, whereas protein secretion could be further increased by a factor of 2.1. In summary, we show that high level protein secretion causes global changes of protein expression levels in the cell and that precursor availability and membrane composition limit protein secretion in this yeast. In this respect, comparative proteome analysis is a powerful tool to identify targets for an efficient increase of protein production and secretion in S. pombe. Data are available via ProteomeXchange with identifiers PXD002693 and PXD003016. PMID:27477394

  3. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.

    2014-08-07

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunitymore » to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.« less

  4. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast.

    PubMed

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L; Hallström, Björn M; Liu, Zihe; Petranovic, Dina; Uhlén, Mathias; Joensson, Haakan N; Andersson-Svahn, Helene; Nielsen, Jens

    2015-08-25

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.

  5. Analysis of secreted proteins from Aspergillus flavus.

    PubMed

    Medina, Martha L; Haynes, Paul A; Breci, Linda; Francisco, Wilson A

    2005-08-01

    MS/MS techniques in proteomics make possible the identification of proteins from organisms with little or no genome sequence information available. Peptide sequences are obtained from tandem mass spectra by matching peptide mass and fragmentation information to protein sequence information from related organisms, including unannotated genome sequence data. This peptide identification data can then be grouped and reconstructed into protein data. In this study, we have used this approach to study protein secretion by Aspergillus flavus, a filamentous fungus for which very little genome sequence information is available. A. flavus is capable of degrading the flavonoid rutin (quercetin 3-O-glycoside), as the only source of carbon via an extracellular enzyme system. In this continuing study, a proteomic analysis was used to identify secreted proteins from A. flavus when grown on rutin. The growth media glucose and potato dextrose were used to identify differentially expressed secreted proteins. The secreted proteins were analyzed by 1- and 2-DE and MS/MS. A total of 51 unique A. flavus secreted proteins were identified from the three growth conditions. Ten proteins were unique to rutin-, five to glucose- and one to potato dextrose-grown A. flavus. Sixteen secreted proteins were common to all three media. Fourteen identifications were of hypothetical proteins or proteins of unknown functions. To our knowledge, this is the first extensive proteomic study conducted to identify the secreted proteins from a filamentous fungus.

  6. Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Je Min, E-mail: jemin@knu.ac.kr; Department of Horticultural Science, Kyungpook National University, Daegu; Lee, Sang-Jik

    Highlights: • Yeast secretion trap (YST) is a valuable tool for mining secretome. • A total of 80 secreted proteins are newly identified via YST in pepper fruits. • The secreted proteins are differentially regulated during pepper development and ripening. • Transient GFP-fusion assay and in planta secretion trap can effectively validate the secretion of proteins. - Abstract: Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function inmore » fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening.« less

  7. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins During Ex Vivo Osteoblast Differentiation of Human Stromal Stem Cells*

    PubMed Central

    Kristensen, Lars P.; Chen, Li; Nielsen, Maria Overbeck; Qanie, Diyako W.; Kratchmarova, Irina; Kassem, Moustapha; Andersen, Jens S.

    2012-01-01

    It is well established that bone forming cells (osteoblasts) secrete proteins with autocrine, paracrine, and endocrine function. However, the identity and functional role for the majority of these secreted and differentially expressed proteins during the osteoblast (OB) differentiation process, is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC labeling to distinguish genuine secreted proteins from intracellular contaminants. We identified 466 potentially secreted proteins that were quantified at 5 time-points during 14-days ex vivo OB differentiation including 41 proteins known to be involved in OB functions. Among these, 315 proteins exhibited more than 2-fold up or down-regulation. The pulsed SILAC method revealed a strong correlation between the fraction of isotope labeling and the subset of proteins known to be secreted and involved in OB differentiation. We verified SILAC data using qRT-PCR analysis of 9 identified potential novel regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate cellular processes beyond bone formation. PMID:22801418

  8. Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234.

    PubMed

    Marie, Corinne; Deakin, William J; Viprey, Virginie; Kopciñska, Joanna; Golinowski, Wladyslaw; Krishnan, Hari B; Perret, Xavier; Broughton, William J

    2003-09-01

    The nitrogen-fixing symbiotic bacterium Rhizobium species NGR234 secretes, via a type III secretion system (TTSS), proteins called Nops (nodulation outer proteins). Abolition of TTSS-dependent protein secretion has either no effect or leads to a change in the number of nodules on selected plants. More dramatically, Nops impair nodule development on Crotalaria juncea roots, resulting in the formation of nonfixing pseudonodules. A double mutation of nopX and nopL, which code for two previously identified secreted proteins, leads to a phenotype on Pachyrhizus tuberosus differing from that of a mutant in which the TTSS is not functional. Use of antibodies and a modification of the purification protocol revealed that NGR234 secretes additional proteins in a TTSS-dependent manner. One of them was identified as NopA, a small 7-kDa protein. Single mutations in nopX and nopL were also generated to assess the involvement of each Nop in protein secretion and nodule formation. Mutation of nopX had little effect on NopL and NopA secretion but greatly affected the interaction of NGR234 with many plant hosts tested. NopL was not necessary for the secretion of any Nops but was required for efficient nodulation of some plant species. NopL may thus act as an effector protein whose recognition is dependent upon the hosts' genetic background.

  9. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system.

    PubMed

    Sato, Keiko; Yukitake, Hideharu; Narita, Yuka; Shoji, Mikio; Naito, Mariko; Nakayama, Koji

    2013-01-01

    The Gram-negative bacterium Porphyromonas gingivalis possesses a number of potential virulence factors for periodontopathogenicity. In particular, cysteine proteinases named gingipains are of interest given their abilities to degrade host proteins and process other virulence factors such as fimbriae. Gingipains are translocated on the cell surface or into the extracellular milieu by the Por secretion system (PorSS), which consists of a number of membrane or periplasmic proteins including PorK, PorL, PorM, PorN, PorO, PorP, PorQ, PorT, PorU, PorV (PG27, LptO), PorW and Sov. To identify proteins other than gingipains secreted by the PorSS, we compared the proteomes of P. gingivalis strains kgp rgpA rgpB (PorSS-proficient strain) and kgp rgpA rgpB porK (PorSS-deficient strain) using two-dimensional gel electrophoresis and peptide-mass fingerprinting. Sixteen spots representing 10 different proteins were present in the particle-free culture supernatant of the PorSS-proficient strain but were absent or faint in that of the PorSS-deficient strain. These identified proteins possessed the C-terminal domains (CTDs), which had been suggested to form the CTD protein family. These results indicate that the PorSS is used for secretion of a number of proteins other than gingipains and that the CTDs of the proteins are associated with the PorSS-dependent secretion. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus.

    PubMed

    Medina, Martha L; Kiernan, Urban A; Francisco, Wilson A

    2004-03-01

    Few studies have been conducted to identify the extracellular proteins and enzymes secreted by filamentous fungi, particularly with respect to dispensable metabolic pathways. Proteomic analysis has proven to be the most powerful method for identification of proteins in complex mixtures and is suitable for the study of the alteration of protein expression under different environmental conditions. The filamentous fungus Aspergillus flavus can degrade the flavonoid rutin as the only source of carbon via an extracellular enzyme system. In this study, a proteomic analysis was used to differentiate and identify the extracellular rutin-induced and non-induced proteins secreted by A. flavus. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. While 15 rutin-induced proteins and 7 non-induced proteins were identified, more than 90 protein spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced.

  11. Identification and characterization of secreted proteins in Eimeria tenella

    NASA Astrophysics Data System (ADS)

    Ramlee, Intan Azlinda; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2015-09-01

    Eimeria tenella is a protozoan parasite that causes coccidiosis, an economically important disease in the poultry industry. The characterization of proteins that are secreted by parasites have been shown to play important roles in parasite invasion and are considered to be potential control agents. In this study, 775 proteins potentially secreted by E. tenella were identified. These proteins were further filtered to remove mitochondrial proteins. Out of 763 putative secreted proteins, 259 proteins possess transmembrane domains while another 150 proteins have GPI (Glycosylphosphatidylinositol) anchors. Homology search revealed that 315 and 448 proteins have matches with known and hypothetical proteins in the database, respectively. Within this data set, previously characterized secretory proteins such as micronemes, rhoptry kinases and dense granules were detected.

  12. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases

    PubMed Central

    de Sain, Mara; Rep, Martijn

    2015-01-01

    A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity. PMID:26473835

  13. A Novel Mechanism for Protein Delivery by the Type 3 Secretion System for Extracellularly Secreted Proteins.

    PubMed

    Tejeda-Dominguez, Farid; Huerta-Cantillo, Jazmin; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando

    2017-03-28

    The type 3 secretion system (T3SS) is essential for bacterial virulence through delivering effector proteins directly into the host cytosol. Here, we identified an alternative delivery mechanism of virulence factors mediated by the T3SS, which consists of the association of extracellularly secreted proteins from bacteria with the T3SS to gain access to the host cytosol. Both EspC, a protein secreted as an enteropathogenic Escherichia coli (EPEC) autotransporter, and YopH, a protein detected on the surface of Yersinia , require a functional T3SS for host cell internalization; here we provide biophysical and molecular evidence to support the concept of the EspC translocation mechanism, which requires (i) an interaction between EspA and an EspC middle segment, (ii) an EspC translocation motif (21 residues that are shared with the YopH translocation motif), (iii) increases in the association and dissociation rates of EspC mediated by EspA interacting with EspD, and (iv) an interaction of EspC with the EspD/EspB translocon pore. Interestingly, this novel mechanism does not exclude the injection model (i.e., EspF) operating through the T3SS conduit; therefore, T3SS can be functioning as an internal conduit or as an external railway, which can be used to reach the translocator pore, and this mechanism appears to be conserved among different T3SS-dependent pathogens. IMPORTANCE The type 3 secretion system is essential for injection of virulence factors, which are delivered directly into the cytosol of the host cells for usurping and subverting host processes. Recent studies have shown that these effectors proteins indeed travel inside an "injectisome" conduit through a single step of translocation by connecting the bacterium and host cell cytoplasms. However, all findings are not compatible with this model. For example, both YopH, a protein detected on the surface of Yersinia , and EspC, an autotransporter protein secreted by enteropathogenic E. coli , require a

  14. A two-dimensional electrophoretic profile of the proteins secreted by Herbaspirillum seropedicae strain Z78.

    PubMed

    Chaves, Daniela Fojo Seixas; de Souza, Emanuel Maltempi; Monteiro, Rose Adele; de Oliveira Pedrosa, Fábio

    2009-11-02

    Herbaspirillum seropedicae is an endophytic bacterium that associates with rice, sugarcane and other economically important crops. Secreted proteins play a key role in the plant-bacterial interaction. Using 2D electrophoresis and peptide mass fingerprint mass spectrometry, 63 protein spots representing 41 different secreted proteins were identified during growth of H. seropedicae under nitrogen-sufficient conditions. In silico analysis showed that 25.4% of the proteins had signal peptides and 15.9% were predicted to be non-classically secreted. Among the most abundant were flagellar components and ABC-type transport system proteins. Nine secreted proteins had also been identified in the cellular proteome, suggesting that they also play a role in the extracellular environment. No type III secreted proteins were detected by comparison of the wild type strain with an hrcN mutant strain.

  15. Closely related dermatophyte species produce different patterns of secreted proteins.

    PubMed

    Giddey, Karin; Favre, Bertrand; Quadroni, Manfredo; Monod, Michel

    2007-02-01

    Dermatophytes are the most common infectious agents responsible for superficial mycosis in humans and animals. Various species in this group of fungi show overlapping characteristics. We investigated the possibility that closely related dermatophyte species with different behaviours secrete distinct proteins when grown in the same culture medium. Protein patterns from culture filtrates of several strains of the same species were very similar. In contrast, secreted protein profiles from various species were different, and so a specific signature could be associated with each of the six analysed species. In particular, protein patterns were useful to distinguish Trichophyton tonsurans from Trichophyton equinum, which cannot be differentiated by ribosomal DNA sequencing. The secreted proteases Sub2, Sub6 and Sub7 of the subtilisin family, as well as Mep3 and Mep4 of the fungalisin family were identified. SUB6, SUB7, MEP3 and MEP4 genes were cloned and sequenced. Although the protein sequence of each protease was highly conserved across species, their level of secretion by the various species was not equivalent. These results suggest that a switch of habitat could be related to a differential expression of genes encoding homologous secreted proteins.

  16. Diverse C-Terminal Sequences Involved in Flavobacterium johnsoniae Protein Secretion

    PubMed Central

    Kulkarni, Surashree S.; Zhu, Yongtao; Brendel, Colton J.

    2017-01-01

    ABSTRACT Flavobacterium johnsoniae and many related bacteria secrete proteins across the outer membrane using the type IX secretion system (T9SS). Proteins secreted by T9SSs have amino-terminal signal peptides for export across the cytoplasmic membrane by the Sec system and carboxy-terminal domains (CTDs) targeting them for secretion across the outer membrane by the T9SS. Most but not all T9SS CTDs belong to the family TIGR04183 (type A CTDs). We functionally characterized diverse CTDs for secretion by the F. johnsoniae T9SS. Attachment of the CTDs from F. johnsoniae RemA, AmyB, and ChiA to the foreign superfolder green fluorescent protein (sfGFP) that had a signal peptide at the amino terminus resulted in secretion across the outer membrane. In each case, approximately 80 to 100 amino acids from the extreme carboxy termini were needed for efficient secretion. Several type A CTDs from distantly related members of the phylum Bacteroidetes functioned in F. johnsoniae, supporting the secretion of sfGFP by the F. johnsoniae T9SS. F. johnsoniae SprB requires the T9SS for secretion but lacks a type A CTD. It has a conserved C-terminal domain belonging to the family TIGR04131, which we refer to as a type B CTD. The CTD of SprB was required for its secretion, but attachment of C-terminal regions of SprB of up to 1,182 amino acids to sfGFP failed to result in secretion. Additional features outside the C-terminal region of SprB may be required for its secretion. IMPORTANCE Type IX protein secretion systems (T9SSs) are common in but limited to members of the phylum Bacteroidetes. Most proteins that are secreted by T9SSs have conserved carboxy-terminal domains that belong to the protein domain family TIGR04183 (type A CTDs) or TIGR04131 (type B CTDs). Here, we identify features of T9SS CTDs of F. johnsoniae that are required for protein secretion and demonstrate that type A CTDs from distantly related members of the phylum function with the F. johnsoniae T9SS to secrete the

  17. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein.

    PubMed

    Wartenberg, Dirk; Lapp, Katrin; Jacobsen, Ilse D; Dahse, Hans-Martin; Kniemeyer, Olaf; Heinekamp, Thorsten; Brakhage, Axel A

    2011-11-01

    Surface-associated and secreted proteins represent primarily exposed components of Aspergillus fumigatus during host infection. Several secreted proteins are known to be involved in defense mechanisms or immune evasion, thus, probably contributing to pathogenicity. Furthermore, several secreted antigens were identified as possible biomarkers for the verification of diseases caused by Aspergillus species. Nevertheless, there is only limited knowledge about the composition of the secretome and about molecular functions of particular proteins. To identify secreted proteins potentially essential for virulence, the core secretome of A. fumigatus grown in minimal medium was determined. Two-dimensional gel electrophoretic separation and subsequent MALDI-TOF-MS/MS analyses resulted in the identification of 64 different proteins. Additionally, secretome analyses of A. fumigatus utilizing elastin, collagen or keratin as main carbon and nitrogen source were performed. Thereby, the alkaline serine protease Alp1 was identified as the most abundant protein and hence presumably represents an important protease during host infection. Interestingly, the Asp-hemolysin (Asp-HS), which belongs to the protein family of aegerolysins and which was often suggested to be involved in fungal virulence, was present in the secretome under all growth conditions tested. In addition, a second, non-secreted protein with an aegerolysin domain annotated as Asp-hemolysin-like (HS-like) protein can be found to be encoded in the genome of A. fumigatus. Generation and analysis of Asp-HS and HS-like deletion strains revealed no differences in phenotype compared to the corresponding wild-type strain. Furthermore, hemolysis and cytotoxicity was not altered in both single-deletion and double-deletion mutants lacking both aegerolysin genes. All mutant strains showed no attenuation in virulence in a mouse infection model for invasive pulmonary aspergillosis. Overall, this study provides a comprehensive

  18. Loss of Cln3 impacts protein secretion in the social amoeba Dictyostelium.

    PubMed

    Huber, Robert J

    2017-07-01

    Neuronal ceroid lipofuscinosis (NCL), also referred to as Batten disease, is the most common form of childhood neurodegeneration. Mutations in CLN3 cause the most prevalent subtype of the disease, which manifests during early childhood and is currently untreatable. The precise function of the CLN3 protein is still not known, which has inhibited the development of targeted therapies. In the social amoeba Dictyostelium discoideum, loss of the CLN3 homolog, Cln3, reduces adhesion during early development, which delays streaming and aggregation. The results of the present study indicate that this phenotype may be at least partly due to aberrant protein secretion in cln3 - cells. It is well-established that Cln3 localizes primarily to the contractile vacuole (CV) system in Dictyostelium, and to a lesser extent, compartments of the endocytic pathway. Intriguingly, the CV system has been linked to the secretion of proteins that do not contain a signal peptide for secretion (i.e., unconventional protein secretion). Proteins that do contain a signal peptide are secreted via a conventional mechanism involving the endoplasmic reticulum, transport through the Golgi, and secretion via vesicle release. In this study, Cln3 was observed to co-localize with the Golgi marker wheat germ agglutinin suggesting that Cln3 participates in both secretion mechanisms. Chimeras of wild-type (WT) and cln3 - cells displayed delayed streaming and aggregation, and interestingly, cln3 - cells starved in conditioned media (CM) harvested from starving WT cells showed near normal timing of streaming and aggregation suggesting aberrant protein secretion in Cln3-deficient cells. Based on these observations, LC-MS/MS was used to reveal the protein content of CM from starved cells (mass spectrometry data are available via ProteomeXchange with identifier PXD004897). A total of 450 proteins were detected in WT and cln3 - CM, of which 3 were absent in cln3 - CM. Moreover, 12 proteins that were present in

  19. Extracellular secretion of recombinant proteins

    DOEpatents

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  20. Immunoproteomic and bioinformatic approaches to identify secreted Leishmania amazonensis, L. braziliensis, and L. infantum proteins with specific reactivity using canine serum.

    PubMed

    Lima, B S S; Fialho, L C; Pires, S F; Tafuri, W L; Andrade, H M

    2016-06-15

    Leishmania spp have a wide range of hosts, and each host can harbor several Leishmania species. Dogs, for example, are frequently infected by Leishmania infantum, where they constitute its main reservoir, but they also serve as hosts for L. braziliensis and L. amazonensis. Serological tests for antibody detection are valuable tools for diagnosis of L. infantum infection due to the high levels of antibodies induced, unlike what is observed in L. amazonensis and L. braziliensis infections. Likewise, serology-based antigen-detection can be useful as an approach to diagnose any Leishmania species infection using different corporal fluid samples. Immunogenic and secreted proteins constitute powerful targets for diagnostic methods in antigen detection. As such, we performed immunoproteomic (2-DE, western blot and mass spectrometry) and bioinformatic screening to search for reactive and secreted proteins from L. amazonensis, L. braziliensis, and L. infantum. Twenty-eight non-redundant proteins were identified, among which, six were reactive only in L. amazonensis extracts, 10 in L. braziliensis extracts, and seven in L. infantum extracts. After bioinformatic analysis, seven proteins were predicted to be secreted, two of which were reactive only in L. amazonensis extracts (52kDa PDI and the glucose-regulated protein 78), one in L. braziliensis extracts (pyruvate dehydrogenase E1 beta subunit) and three in L. infantum extracts (two conserved hypothetical proteins and elongation factor 1-beta). We propose that proteins can be suitable targets for diagnostic methods based on antigen detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis.

    PubMed

    Monteiro, Valdirene Neves; do Nascimento Silva, Roberto; Steindorff, Andrei Stecca; Costa, Fabio Teles; Noronha, Eliane Ferreira; Ricart, Carlos André Ornelas; de Sousa, Marcelo Valle; Vainstein, Marilene Henning; Ulhoa, Cirano José

    2010-10-01

    Trichoderma harzianum ALL42 were capable of overgrowing and degrading Rhizoctonia solani and Macrophomina phaseolina mycelia, coiling around the hyphae with formation of apressoria and hook-like structures. Hyphae of T. harzianum ALL42 did not show any coiling around Fusarium sp. hyphae suggesting that mycoparasitism may be different among the plant pathogens. In this study, a secretome analysis was used to identify some extracellular proteins secreted by T. harzianum ALL42 after growth on cell wall of M. phaseolina, Fusarium sp., and R. solani. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. A total of 60 T. harzianum ALL42 secreted proteins excised from the gel were analyzed from the three growth conditions. While seven cell wall-induced proteins were identified, more than 53 proteins spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced. Endochitinase, β-glucosidase, α-mannosidase, acid phosphatase, α-1,3-glucanase, and proteases were identified in the gel and also detected in the supernatant of culture.

  2. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation.

    PubMed Central

    Bahrani, F K; Sansonetti, P J; Parsot, C

    1997-01-01

    The type III Mxi-Spa secretion machinery of Shigella flexneri is responsible for secretion of Ipa proteins, which are involved in the entry of bacteria into epithelial cells. Ipa proteins accumulate within bacteria growing in laboratory media, and their secretion is activated upon contact of bacteria with eukaryotic cells. In this study, we have identified a group of chemical compounds, including Congo red, Evans blue, and direct orange, which are able to induce secretion of Ipa proteins by bacteria suspended in phosphate-buffered saline. Parameters of kinetics of activation of Ipa secretion by Congo red were determined by measuring by enzyme-linked immunosorbent assay the amount of IpaC secreted and by investigating the increase in susceptibility of Ipa proteins to proteinase K degradation. Ipa secretion occurred at 37 degrees C, was obtained with 5 to 10 microM Congo red, and was complete within 30 min. In addition, activation of Ipa secretion by Congo red was observed with bacteria harvested throughout the exponential phase of growth but not with bacteria in the stationary phase. The interactions of Congo red and Congo red-related compounds with the Mxi-Spa secretion apparatus might be specific hydrophobic interactions similar to those involved in binding of Congo red to amyloid proteins. PMID:9316999

  3. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions

    PubMed Central

    Guérin, Jeremy; Bigot, Sarah; Schneider, Robert; Buchanan, Susan K.; Jacob-Dubuisson, Françoise

    2017-01-01

    Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effectors. Structural studies have indicated that TpsA proteins mainly form elongated β helices that may be followed by specific functional domains. TpsB proteins belong to the Omp85 superfamily. Open questions remain on the mechanism of protein secretion in the absence of ATP or an electrochemical gradient across the outer membrane. The remarkable dynamics of the TpsB transporters and the progressive folding of their TpsA partners at the bacterial surface in the course of translocation are thought to be key elements driving the secretion process. PMID:28536673

  4. Regulation of Effector Delivery by Type III Secretion Chaperone Proteins in Erwinia amylovora.

    PubMed

    Castiblanco, Luisa F; Triplett, Lindsay R; Sundin, George W

    2018-01-01

    Type III secretion (TTS) chaperones are critical for the delivery of many effector proteins from Gram-negative bacterial pathogens into host cells, functioning in the stabilization and hierarchical delivery of the effectors to the type III secretion system (TTSS). The plant pathogen Erwinia amylovora secretes at least four TTS effector proteins: DspE, Eop1, Eop3, and Eop4. DspE specifically interacts with the TTS chaperone protein DspF, which stabilizes the effector protein in the cytoplasm and promotes its efficient translocation through the TTSS. However, the role of E. amylovora chaperones in regulating the delivery of other secreted effectors is unknown. In this study, we identified functional interactions between the effector proteins DspE, Eop1, and Eop3 with the TTS chaperones DspF, Esc1 and Esc3 in yeast. Using site-directed mutagenesis, secretion, and translocation assays, we demonstrated that the three TTS chaperones have additive roles for the secretion and translocation of DspE into plant cells whereas DspF negatively affects the translocation of Eop1 and Eop3. Collectively, these results indicate that TTS chaperone proteins exhibit a cooperative behavior to orchestrate the effector secretion and translocation dynamics in E. amylovora .

  5. Protein secretion through autotransporter and two-partner pathways.

    PubMed

    Jacob-Dubuisson, Françoise; Fernandez, Rachel; Coutte, Loic

    2004-11-11

    Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.

  6. Profiling of proteins secreted in the bovine oviduct reveals diverse functions of this luminal microenvironment.

    PubMed

    Pillai, Viju Vijayan; Weber, Darren M; Phinney, Brett S; Selvaraj, Vimal

    2017-01-01

    The oviductal microenvironment is a site for key events that involve gamete maturation, fertilization and early embryo development. Secretions into the oviductal lumen by either the lining epithelium or by transudation of plasma constituents are known to contain elements conducive for reproductive success. Although previous studies have identified some of these factors involved in reproduction, knowledge of secreted proteins in the oviductal fluid remains rudimentary with limited definition of function even in extensively studied species like cattle. In this study, we used a shotgun proteomics approach followed by bioinformatics sequence prediction to identify secreted proteins present in the bovine oviductal fluid (ex vivo) and secretions from the bovine oviductal epithelial cells (in vitro). From a total of 2087 proteins identified, 266 proteins could be classified as secreted, 109 (41%) of which were common for both in vivo and in vitro conditions. Pathway analysis indicated different classes of proteins that included growth factors, metabolic regulators, immune modulators, enzymes, and extracellular matrix components. Functional analysis revealed mechanisms in the oviductal lumen linked to immune homeostasis, gamete maturation, fertilization and early embryo development. These results point to several novel components that work together with known elements mediating functional homeostasis, and highlight the diversity of machinery associated with oviductal physiology and early events in cattle fertility.

  7. Visualizing and quantifying protein secretion using a Renilla luciferase-GFP fusion protein.

    PubMed

    Liu, J; Wang, Y; Szalay, A A; Escher, A

    2000-01-01

    We have shown previously that an engineered form of Renilla luciferase (SRUC) can be secreted as a functional enzyme by mammalian cells, and that fusing wild-type Renilla luciferase with the green fluorescent protein from Aequorea victoria (GFP) yields a chimeric protein retaining light-emission properties similar to that of unfused Renilla luciferase and GFP. In the work presented here, SRUC was fused with GFP to determine whether it could be used to both visualize and quantify protein secretion in mammalian cells. Simian COS-7 and Chinese hamster ovary (CHO) cells were transiently transfected with gene constructs encoding a secreted or an intracellular version of a Renilla luciferase-GFP fusion protein. Renilla luciferase activity was measured from COS-7 cell lysates and culture media, and GFP activity was detected in CHO cells using fluorescence microscopy. Data indicated that the SRUC-GFP fusion protein was secreted as a chimeric protein that had both Renilla luciferase and GFP activity. This fusion protein could be a useful marker for the study of protein secretion in mammalian cells. Copyright 2000 John Wiley & Sons, Ltd.

  8. Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii

    PubMed Central

    de Carvalho, João Carlos Monteiro; Mayfield, Stephen Patrick

    2018-01-01

    Efficient protein secretion is a desirable trait for any recombinant protein expression system, together with simple, low-cost, and defined media, such as the typical media used for photosynthetic cultures of microalgae. However, low titers of secreted heterologous proteins are usually obtained, even with the most extensively studied microalga Chlamydomonas reinhardtii, preventing their industrial application. In this study, we aimed to expand and evaluate secretory signal peptides (SP) for heterologous protein secretion in C. reinhardtii by comparing previously described SP with untested sequences. We compared the SPs from arylsulfatase 1 and carbonic anhydrase 1, with those of untried SPs from binding protein 1, an ice-binding protein, and six sequences identified in silico. We identified over 2000 unique SPs using the SignalP 4.0 software. mCherry fluorescence was used to compare the protein secretion of up to 96 colonies for each construct, non-secretion construct, and parental wild-type cc1690 cells. Supernatant fluorescence varied according to the SP used, with a 10-fold difference observed between the highest and lowest secretors. Moreover, two SPs identified in silico secreted the highest amount of mCherry. Our results demonstrate that the SP should be carefully selected and that efficient sequences can be coded in the C. reinhardtii genome. The SPs described here expand the portfolio available for research on heterologous protein secretion and for biomanufacturing applications. PMID:29408937

  9. A new potential secretion pathway for recombinant proteins in Bacillus subtilis.

    PubMed

    Wang, Guangqiang; Xia, Yongjun; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Haiqin; Ai, Lianzhong; Chen, Wei

    2015-11-10

    Secretion of cytoplasmic expressed proteins into growth media has significant advantages. Due to the lack of an outer membrane, Bacillus subtilis is considered as a desirable 'cell factory' for the secretion of recombinant proteins. However, bottlenecks in the classical pathway for the secretion of recombinant proteins limit its use on a wide scale. In this study, we attempted to use four typical non-classically secreted proteins as signals to export three recombinant model proteins to the culture medium. All four non-classically secreted proteins can direct the export of the intrinsically disordered nucleoskeletal-like protein (Nsp). Two of them can guide the secretion of alkaline phosphatase (PhoA). One can lead the secretion of the thermostable β-galactosidase BgaB, which cannot be secreted with the aid of typical Sec-dependent signal peptides. Our results show that the non-classically secreted proteins lead the recombinant proteins to the culture medium, and thus non-classical protein secretion pathways can be exploited as a novel secretion pathway for recombinant proteins.

  10. Prediction of Body Fluids where Proteins are Secreted into Based on Protein Interaction Network

    PubMed Central

    Hu, Le-Le; Huang, Tao; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Determining the body fluids where secreted proteins can be secreted into is important for protein function annotation and disease biomarker discovery. In this study, we developed a network-based method to predict which kind of body fluids human proteins can be secreted into. For a newly constructed benchmark dataset that consists of 529 human-secreted proteins, the prediction accuracy for the most possible body fluid location predicted by our method via the jackknife test was 79.02%, significantly higher than the success rate by a random guess (29.36%). The likelihood that the predicted body fluids of the first four orders contain all the true body fluids where the proteins can be secreted into is 62.94%. Our method was further demonstrated with two independent datasets: one contains 57 proteins that can be secreted into blood; while the other contains 61 proteins that can be secreted into plasma/serum and were possible biomarkers associated with various cancers. For the 57 proteins in first dataset, 55 were correctly predicted as blood-secrete proteins. For the 61 proteins in the second dataset, 58 were predicted to be most possible in plasma/serum. These encouraging results indicate that the network-based prediction method is quite promising. It is anticipated that the method will benefit the relevant areas for both basic research and drug development. PMID:21829572

  11. Unconventional Protein Secretion in Animal Cells.

    PubMed

    Ng, Fanny; Tang, Bor Luen

    2016-01-01

    All eukaryotic cells secrete a range of proteins in a constitutive or regulated manner through the conventional or canonical exocytic/secretory pathway characterized by vesicular traffic from the endoplasmic reticulum, through the Golgi apparatus, and towards the plasma membrane. However, a number of proteins are secreted in an unconventional manner, which are insensitive to inhibitors of conventional exocytosis and use a route that bypasses the Golgi apparatus. These include cytosolic proteins such as fibroblast growth factor 2 (FGF2) and interleukin-1β (IL-1β), and membrane proteins that are known to also traverse to the plasma membrane by a conventional process of exocytosis, such as α integrin and the cystic fibrosis transmembrane conductor (CFTR). Mechanisms underlying unconventional protein secretion (UPS) are actively being analyzed and deciphered, and these range from an unusual form of plasma membrane translocation to vesicular processes involving the generation of exosomes and other extracellular microvesicles. In this chapter, we provide an overview on what is currently known about UPS in animal cells.

  12. Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps

    Treesearch

    Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen

    2003-01-01

    Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...

  13. High-Yield Secretion of Multiple Client Proteins in Aspergillus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segato, F.; Damasio, A. R. L.; Goncalves, T. A.

    2012-07-15

    Production of pure and high-yield client proteins is an important technology that addresses the need for industrial applications of enzymes as well as scientific experiments in protein chemistry and crystallization. Fungi are utilized in industrial protein production because of their ability to secrete large quantities of proteins. In this study, we engineered a high-expression-secretion vector, pEXPYR that directs proteins towards the extracellular medium in two Aspergillii host strains, examine the effect of maltose-induced over-expression and protein secretion as well as time and pH-dependent protein stability in the medium. We describe five client proteins representing a core set of hemicellulose degradingmore » enzymes that accumulated up to 50-100 mg/L of protein. Using a recyclable genetic marker that allows serial insertion of multiple genes, simultaneous hyper-secretion of three client proteins in a single host strain was accomplished.« less

  14. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    PubMed Central

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  15. Genome-wide analysis of gene expression and protein secretion of Babesia canis during virulent infection identifies potential pathogenicity factors.

    PubMed

    Eichenberger, Ramon M; Ramakrishnan, Chandra; Russo, Giancarlo; Deplazes, Peter; Hehl, Adrian B

    2017-06-13

    Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite's exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.

  16. Proteomic analysis of secreted proteins by human bronchial epithelial cells in response to cadmium toxicity.

    PubMed

    Chen, De-Ju; Xu, Yan-Ming; Zheng, Wei; Huang, Dong-Yang; Wong, Wing-Yan; Tai, William Chi-Shing; Cho, Yong-Yeon; Lau, Andy T Y

    2015-09-01

    For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Protein secretion and surface display in Gram-positive bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique M.

    2012-01-01

    The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions. PMID:22411983

  18. Unconventional Secretion of Heat Shock Proteins in Cancer

    PubMed Central

    Santos, Tiago Góss; Martins, Vilma Regina; Hajj, Glaucia Noeli Maroso

    2017-01-01

    Heat shock proteins (HSPs) are abundant cellular proteins involved with protein homeostasis. They have both constitutive and inducible isoforms, whose expression levels are further increased by stress conditions, such as temperature elevation, reduced oxygen levels, infection, inflammation and exposure to toxic substances. In these situations, HSPs exert a pivotal role in offering protection, preventing cell death and promoting cell recovery. Although the majority of HSPs functions are exerted in the cytoplasm and organelles, several lines of evidence reveal that HSPs are able to induce cell responses in the extracellular milieu. HSPs do not possess secretion signal peptides, and their secretion was subject to widespread skepticism until the demonstration of the role of unconventional secretion forms such as exosomes. Secretion of HSPs may confer immune system modulation and be a cell-to-cell mediated form of increasing stress resistance. Thus, there is a wide potential for secreted HSPs in resistance of cancer therapy and in the development new therapeutic strategies. PMID:28468249

  19. Modelling the metabolism of protein secretion through the Tat route in Streptomyces lividans.

    PubMed

    Valverde, José R; Gullón, Sonia; Mellado, Rafael P

    2018-06-14

    variability analysis predicts a large potential for protein overproduction. This work provides a detailed look to metabolic changes associated to Tat-dependent protein secretion reproducing experimental observations and identifying changes that are specific to each secretory route, presenting a novel, improved, more accurate and strain-independent model of S. lividans, thus opening the way for enhanced metabolic engineering of protein overproduction in S. lividans.

  20. A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing

    PubMed Central

    Pagliaccia, Deborah; Shi, Jinxia; Pang, Zhiqian; Hawara, Eva; Clark, Kelley; Thapa, Shree P.; De Francesco, Agustina D.; Liu, Jianfeng; Tran, Thien-Toan; Bodaghi, Sohrab; Folimonova, Svetlana Y.; Ancona, Veronica; Mulchandani, Ashok; Coaker, Gitta; Wang, Nian; Vidalakis, Georgios; Ma, Wenbo

    2017-01-01

    The citrus industry is facing an unprecedented crisis due to Huanglongbing (HLB, aka citrus greening disease), a bacterial disease associated with the pathogen Candidatus Liberibacter asiaticus (CLas) that affects all commercial varieties. Transmitted by the Asian citrus psyllid (ACP), CLas colonizes citrus phloem, leading to reduced yield and fruit quality, and eventually tree decline and death. Since adequate curative measures are not available, a key step in HLB management is to restrict the spread of the disease by identifying infected trees and removing them in a timely manner. However, uneven distribution of CLas cells in infected trees and the long latency for disease symptom development makes sampling of trees for CLas detection challenging. Here, we report that a CLas secreted protein can be used as a biomarker for detecting HLB infected citrus. Proteins secreted from CLas cells can presumably move along the phloem, beyond the site of ACP inoculation and CLas colonized plant cells, thereby increasing the chance of detecting infected trees. We generated a polyclonal antibody that effectively binds to the secreted protein and developed serological assays that can successfully detect CLas infection. This work demonstrates that antibody-based diagnosis using a CLas secreted protein as the detection marker for infected trees offers a high-throughput and economic approach that complements the approved quantitative polymerase chain reaction-based methods to enhance HLB management programs. PMID:29403441

  1. Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display

    PubMed Central

    Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna

    2013-01-01

    Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310

  2. Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation.

    PubMed

    Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-01

    Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.

  3. Identification of secreted bacterial proteins by noncanonical amino acid tagging

    PubMed Central

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.

    2014-01-01

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637

  4. Engineering Signal Peptides for Enhanced Protein Secretion from Lactococcus lactis

    PubMed Central

    Ng, Daphne T. W.

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts. PMID:23124224

  5. Engineering signal peptides for enhanced protein secretion from Lactococcus lactis.

    PubMed

    Ng, Daphne T W; Sarkar, Casim A

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts.

  6. A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi

    PubMed Central

    2013-01-01

    Background Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes. Results We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing. Conclusions Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms. PMID:24252298

  7. A protein secretion system linked to bacteroidete gliding motility and pathogenesis

    PubMed Central

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji

    2009-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  8. Regulation of Protein Secretion Through Controlled Aggregation in the Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Rivera, Victor M.; Wang, Xiurong; Wardwell, Scott; Courage, Nancy L.; Volchuk, Allen; Keenan, Terence; Holt, Dennis A.; Gilman, Michael; Orci, Lelio; Cerasoli, Frank; Rothman, James E.; Clackson, Tim

    2000-02-01

    A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.

  9. Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins

    PubMed Central

    Wilkinson, Tom L.

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113. PMID:23460852

  10. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins.

    PubMed

    Rao, Sohail A K; Carolan, James C; Wilkinson, Tom L

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113.

  11. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    PubMed

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  12. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices

    PubMed Central

    2018-01-01

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture. PMID:29552635

  13. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices.

    PubMed

    Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M

    2018-03-12

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.

  14. Secreted Proteins Defy the Expression Level–Evolutionary Rate Anticorrelation

    PubMed Central

    Feyertag, Felix; Berninsone, Patricia M.; Alvarez-Ponce, David

    2017-01-01

    The rates of evolution of the proteins of any organism vary across orders of magnitude. A primary factor influencing rates of protein evolution is expression. A strong negative correlation between expression levels and evolutionary rates (the so-called E–R anticorrelation) has been observed in virtually all studied organisms. This effect is currently attributed to the abundance-dependent fitness costs of misfolding and unspecific protein–protein interactions, among other factors. Secreted proteins are folded in the endoplasmic reticulum, a compartment where chaperones, folding catalysts, and stringent quality control mechanisms promote their correct folding and may reduce the fitness costs of misfolding. In addition, confinement of secreted proteins to the extracellular space may reduce misinteractions and their deleterious effects. We hypothesize that each of these factors (the secretory pathway quality control and extracellular location) may reduce the strength of the E–R anticorrelation. Indeed, here we show that among human proteins that are secreted to the extracellular space, rates of evolution do not correlate with protein abundances. This trend is robust to controlling for several potentially confounding factors and is also observed when analyzing protein abundance data for 6 human tissues. In addition, analysis of mRNA abundance data for 32 human tissues shows that the E–R correlation is always less negative, and sometimes nonsignificant, in secreted proteins. Similar observations were made in Caenorhabditis elegans and in Escherichia coli, and to a lesser extent in Drosophila melanogaster, Saccharomyces cerevisiae and Arabidopsis thaliana. Our observations contribute to understand the causes of the E–R anticorrelation. PMID:28007979

  15. Recombinant protein secretion in Pseudozyma flocculosa and Pseudozyma antarctica with a novel signal peptide.

    PubMed

    Cheng, Yali; Avis, Tyler J; Bolduc, Sébastien; Zhao, Yingyi; Anguenot, Raphaël; Neveu, Bertrand; Labbé, Caroline; Belzile, François; Bélanger, Richard R

    2008-12-01

    Secretion of recombinant proteins aims to reproduce the correct posttranslational modifications of the expressed protein while simplifying its recovery. In this study, secretion signal sequences from an abundantly secreted 34-kDa protein (P34) from Pseudozyma flocculosa were cloned. The efficiency of these sequences in the secretion of recombinant green fluorescent protein (GFP) was investigated in two Pseudozyma species and compared with other secretion signal sequences, from S. cerevisiae and Pseudozyma spp. The results indicate that various secretion signal sequences were functional and that the P34 signal peptide was the most effective secretion signal sequence in both P. flocculosa and P. antarctica. The cells correctly processed the secretion signal sequences, including P34 signal peptide, and mature GFP was recovered from the culture medium. This is the first report of functional secretion signal sequences in P. flocculosa. These sequences can be used to test the secretion of other recombinant proteins and for studying the secretion pathway in P. flocculosa and P. antarctica.

  16. N-glycans in liver-secreted and immunoglogulin-derived protein fractions

    PubMed Central

    Bekesova, S.; Kosti, O.; Chandler, K.B.; Wu, J.; Madej, H.L.; Brown, K.C.; Simonyan, V.; Goldman, R.

    2013-01-01

    N-glycosylation of proteins provides a rich source of information on liver disease progression because majority of serum glycoproteins, with the exception of immunoglobulins, are secreted by the liver. In this report, we present results of an optimized workflow for MALDI-TOF analysis of permethylated N-glycans detached from serum proteins and separated into liver secreted and immunoglobulin fractions. We have compared relative intensities of N-glycans in 23 healthy controls and 23 cirrhosis patients. We were able to detect 82 N-glycans associated primarily with liver secreted glycoproteins, 54 N-glycans in the protein G bound fraction and 52 N-glycans in the fraction bound to protein A. The N-glycan composition of the fractions differed substantially, independent of liver disease. The relative abundance of approximately 53% N-glycans in all fractions was significantly altered in the cirrhotic liver. The removal of immunoglobulins allowed detection of an increase in a series of high mannose and hybrid N-glycans associated with the liver secreted protein fraction. PMID:22326963

  17. Epididymal secreted protein Crisp-1 and sperm function.

    PubMed

    Roberts, Kenneth P; Ensrud, Kathy M; Wooters, Joseph L; Nolan, Michael A; Johnston, Daniel S; Hamilton, David W

    2006-05-16

    Crisp-1 is a member of the cysteine-rich secretory protein family. This family of proteins is characterized by the presence of 16 conserved cysteine residues, the characteristic from which the family name is derived. Members of the Crisp protein family are found in the secretions of the reproductive tract and salivary glands, including venom toxins from several species of snakes and lizards. The Crisp proteins are modular, each containing an amino terminal pathogenesis-related (PR)-like domain and a carboxyl terminal cysteine-rich domain (CRD) connected by a hinge region. Sequence and structural similarities to proteins with known functions suggest that the Crisp family of proteins may act by regulating cellular ion channels. Rat Crisp-1 is synthesized as two distinct isoforms (referred to as Proteins D and E) by the epididymal epithelium and both are secreted into the luminal fluid where they interact with spermatozoa. Our laboratory has correlated Crisp-1 binding to sperm with inhibiting the signaling cascades that initiate capacitation while others have shown that blocking Crisp-1 binding sites on oocytes interferes with sperm-egg fusion. We hypothesize that the D and E populations of rat Crisp-1 have different interactions with sperm that modulate these distinct biological activities. Through tandem mass spectrometry (MS/MS) and monosaccharide composition analyses, we have identified at least one difference between the D and E forms as an additional single O-linked N-acetyl galactosamine on an amino terminal threonine residue in Protein E. This post-translational modification appears to account for the unique 'E' epitope bound by monoclonal antibody 4E9 developed in our laboratory, and may also lead to differential processing and localization of Protein E on sperm, when compared to Protein D. These findings are the first step in distinguishing the molecular basis of the biological activities of the D and E forms of rat Crisp-1. The epididymal

  18. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    PubMed

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  19. Differential secretion pathways of proteins fused to the Escherichia coli maltose binding protein (MBP) in Pichia pastoris.

    PubMed

    Moua, Pachai S; Gonzalez, Alfonso; Oshiro, Kristin T; Tam, Vivian; Li, Zhiguo Harry; Chang, Jennifer; Leung, Wilson; Yon, Amy; Thor, Der; Venkatram, Sri; Franz, Andreas H; Risser, Douglas D; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2016-08-01

    The Escherichia coli maltose binding protein (MBP) is an N-terminal fusion partner that was shown to enhance the secretion of some heterologous proteins from the yeast Pichia pastoris, a popular host for recombinant protein expression. The amount of increase in secretion was dependent on the identity of the cargo protein, and the fusions were proteolyzed prior to secretion, limiting its use as a purification tag. In order to overcome these obstacles, we used the MBP as C-terminal partner for several cargo peptides. While the Cargo-MBP proteins were no longer proteolyzed in between these two moieties when the MBP was in this relative position, the secretion efficiency of several fusions was lower than when MBP was located at the opposite end of the cargo protein (MBP-Cargo). Furthermore, fluorescence analysis suggested that the MBP-EGFP and EGFP-MBP proteins followed different routes within the cell. The effect of several Pichia pastoris beta-galactosidase supersecretion (bgs) strains, mutants showing enhanced secretion of select reporters, was also investigated on both MBP-EGFP and EGFP-MBP. While the secretion efficiency, proteolysis and localization of the MBP-EGFP was influenced by the modified function of Bgs13, EGFP-MBP behavior was not affected in the bgs strain. Taken together, these results indicate that the location of the MBP in a fusion affects the pathway and trans-acting factors regulating secretion in P. pastoris. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Robust signal peptides for protein secretion in Yarrowia lipolytica: identification and characterization of novel secretory tags.

    PubMed

    Celińska, Ewelina; Borkowska, Monika; Białas, Wojciech; Korpys, Paulina; Nicaud, Jean-Marc

    2018-06-01

    Upon expression of a given protein in an expression host, its secretion into the culture medium or cell-surface display is frequently advantageous in both research and industrial contexts. Hence, engineering strategies targeting folding, trafficking, and secretion of the proteins gain considerable interest. Yarrowia lipolytica has emerged as an efficient protein expression platform, repeatedly proved to be a competitive secretor of proteins. Although the key role of signal peptides (SPs) in secretory overexpression of proteins and their direct effect on the final protein titers are widely known, the number of reports on manipulation with SPs in Y. lipolytica is rather scattered. In this study, we assessed the potential of ten different SPs for secretion of two heterologous proteins in Y. lipolytica. Genomic and transcriptomic data mining allowed us to select five novel, previously undescribed SPs for recombinant protein secretion in Y. lipolytica. Their secretory potential was assessed in comparison with known, widely exploited SPs. We took advantage of Golden Gate approach, for construction of expression cassettes, and micro-volume enzymatic assays, for functional screening of large libraries of recombinant strains. Based on the adopted strategy, we identified novel secretory tags, characterized their secretory capacity, indicated the most potent SPs, and suggested a consensus sequence of a potentially robust synthetic SP to expand the molecular toolbox for engineering Y. lipolytica.

  1. Secreted Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.

    PubMed

    Feyertag, Felix; Berninsone, Patricia M; Alvarez-Ponce, David

    2017-03-01

    The rates of evolution of the proteins of any organism vary across orders of magnitude. A primary factor influencing rates of protein evolution is expression. A strong negative correlation between expression levels and evolutionary rates (the so-called E-R anticorrelation) has been observed in virtually all studied organisms. This effect is currently attributed to the abundance-dependent fitness costs of misfolding and unspecific protein-protein interactions, among other factors. Secreted proteins are folded in the endoplasmic reticulum, a compartment where chaperones, folding catalysts, and stringent quality control mechanisms promote their correct folding and may reduce the fitness costs of misfolding. In addition, confinement of secreted proteins to the extracellular space may reduce misinteractions and their deleterious effects. We hypothesize that each of these factors (the secretory pathway quality control and extracellular location) may reduce the strength of the E-R anticorrelation. Indeed, here we show that among human proteins that are secreted to the extracellular space, rates of evolution do not correlate with protein abundances. This trend is robust to controlling for several potentially confounding factors and is also observed when analyzing protein abundance data for 6 human tissues. In addition, analysis of mRNA abundance data for 32 human tissues shows that the E-R correlation is always less negative, and sometimes nonsignificant, in secreted proteins. Similar observations were made in Caenorhabditis elegans and in Escherichia coli, and to a lesser extent in Drosophila melanogaster, Saccharomyces cerevisiae and Arabidopsis thaliana. Our observations contribute to understand the causes of the E-R anticorrelation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae.

    PubMed

    Liu, Lifang; Feizi, Amir; Österlund, Tobias; Hjort, Carsten; Nielsen, Jens

    2014-06-24

    The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus.

  3. Human Rhinovirus 16 Causes Golgi Apparatus Fragmentation without Blocking Protein Secretion

    PubMed Central

    Mousnier, Aurelie; Swieboda, Dawid; Pinto, Anaïs; Guedán, Anabel; Rogers, Andrew V.; Walton, Ross; Johnston, Sebastian L.

    2014-01-01

    ABSTRACT The replication of picornaviruses has been described to cause fragmentation of the Golgi apparatus that blocks the secretory pathway. The inhibition of major histocompatibility complex class I upregulation and cytokine, chemokine and interferon secretion may have important implications for host defense. Previous studies have shown that disruption of the secretory pathway can be replicated by expression of individual nonstructural proteins; however the situation with different serotypes of human rhinovirus (HRV) is unclear. The expression of 3A protein from HRV14 or HRV2 did not cause Golgi apparatus disruption or a block in secretion, whereas other studies showed that infection of cells with HRV1A did cause Golgi apparatus disruption which was replicated by the expression of 3A. HRV16 is the serotype most widely used in clinical HRV challenge studies; consequently, to address the issue of Golgi apparatus disruption for HRV16, we have systematically and quantitatively examined the effect of HRV16 on both Golgi apparatus fragmentation and protein secretion in HeLa cells. First, we expressed each individual nonstructural protein and examined their cellular localization and their disruption of endoplasmic reticulum and Golgi apparatus architecture. We quantified their effects on the secretory pathway by measuring secretion of the reporter protein Gaussia luciferase. Finally, we examined the same outcomes following infection of cells with live virus. We demonstrate that expression of HRV16 3A and 3AB and, to a lesser extent, 2B caused dispersal of the Golgi structure, and these three nonstructural proteins also inhibited protein secretion. The infection of cells with HRV16 also caused significant Golgi apparatus dispersal; however, this did not result in the inhibition of protein secretion. IMPORTANCE The ability of replicating picornaviruses to influence the function of the secretory pathway has important implications for host defense. However, there appear to

  4. A gatekeeper chaperone complex directs translocator secretion during Type Three Secretion

    DOE PAGES

    Archuleta, Tara L.; Spiller, Benjamin W.; Kubori, Tomoko

    2014-11-06

    Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ~20 individual protein components thatmore » form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Thus, structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors.« less

  5. Proteomic Analysis Reveals Aberrant O-GlcNAcylation of Extracellular Proteins from Breast Cancer Cell Secretion.

    PubMed

    Netsirisawan, Pukkavadee; Chokchaichamnankit, Daranee; Srisomsap, Chantragan; Svasti, Jisnuson; Champattanachai, Voraratt

    2015-01-01

    O-GlcNAcylation is a unique intracellular protein modification; however, few extracellular O-GlcNAc-modified proteins have been discovered. We have previously demonstrated that many cellular proteins were aberrant in O-GlcNAcylation in breast cancer tissues. In the present study, therefore, we investigated whether O-GlcNAc-modified proteins were abnormally secreted from breast cancer cells. Intracellular and extracellular proteins were prepared from cell lysates of breast cancer cells (MCF-7 and MDA-MB-231) and normal breast cells (HMEC) and from their serum-free media (SFM), respectively. O-GlcNAcylation level was examined by immunoblotting. O-GlcNAc-Modified proteins were identified using two-dimensional gel electrophoresis and Liquid Chromatography-tandem Mass Spectrometry. O-GlcNAcylation level was significantly increased in the extracellular compartment of both types of cancer cells compared to normal cells. Interestingly, O-GlcNAc patterns differed between intracellular and extracellular proteins. Proteomic analysis revealed that many O-GlcNAc spots in MCF-7 secretions were abnormally increased in comparison to those in HMEC secretions. Among these, transitional endoplasmic reticulum ATPase (TER ATPase) and heat-shock 70 kDa (HSP70) were confirmed to be O-GlcNAc-modified. The levels of O-GlcNAc-HSP70 and O-GlcNAc-TER ATPase were higher in SFM from MCF-7 cells than in that from HMEC. O-GlcNAcomic study of the extracellular compartments reveals aberrant O-GlcNAc-secreted proteins, which may be of interest as potential biomarkers in breast cancer. Copyright© 2015, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  6. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells*

    PubMed Central

    Dai, Feihan F.; Bhattacharjee, Alpana; Liu, Ying; Batchuluun, Battsetseg; Zhang, Ming; Wang, Xinye Serena; Huang, Xinyi; Luu, Lemieux; Zhu, Dan; Gaisano, Herbert; Wheeler, Michael B.

    2015-01-01

    GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H+-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca2+ influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion. PMID:26272612

  7. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes.

    PubMed

    Tytgat, Tom; Vanholme, Bartel; De Meutter, Jan; Claeys, Myriam; Couvreur, Marjolein; Vanhoutte, Isabelle; Gheysen, Greetje; Van Criekinge, Wim; Borgonie, Gaetan; Coomans, August; Gheysen, Godelieve

    2004-08-01

    By performing cDNA AFLP on pre- and early parasitic juveniles, we identified genes encoding a novel type of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in the cyst nematode Heterodera schachtii. The proteins consist of three domains, a signal peptide for secretion, a mono-ubiquitin domain, and a short C-terminal positively charged domain. A gfp-fusion of this protein is targeted to the nucleolus in tobacco BY-2 cells. We hypothesize that the C-terminal peptide might have a regulatory function during syncytium formation in plant roots.

  8. A protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interaction.

    PubMed

    Zumoffen, C M; Gil, R; Caille, A M; Morente, C; Munuce, M J; Ghersevich, S A

    2013-05-01

    Is lactoferrin (LF) (detected in oviductal secretion) able to bind to oocytes and sperm and modulate gamete interaction? LF binds to zona pellucida (ZP) and spermatozoa (depending upon the capacitation stage and acrosome status) and inhibits gamete interaction in vitro. Proteins from human oviductal tissue secretion modulate gamete interaction and parameters of sperm function in vitro and some of them bind to sperm, but they remain to be isolated and identified. Proteins were isolated from human oviductal tissue secretion using their sperm membrane binding ability. One of the isolated proteins was identified as human LF and immunolocalized in tubal tissues. LF expression was analyzed in native oviductal fluid and oviduct epithelial cells (at different phases of the menstrual cycle: proliferative, periovulatory and secretory). In addition, the LF binding sites on spermatozoa (at different capacitation and acrosome reaction stages) and on ZP and the dose-dependent effect of LF on gamete interaction were investigated. All experiments were performed at least three times. Tubal tissues obtained from premenopausal patients (scheduled for hysterectomy, n = 23) were cultured in DMEM/Ham's F12 medium and conditioned media (CM) were collected. Motile spermatozoa were obtained by swim-up from normozoospermic semen samples from healthy donors (n = 4). An affinity chromatography with sperm membrane extracts was used to isolate proteins from CM. Isolated proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophresis and further identified by nano liquid chromatography tandem mass spectrometry peptide sequencing. The presence of LF in oviductal tissue was investigated by immunohistochemistry and immunofluorescence and was detected in native oviductal fluid and oviduct epithelial cells homogenates by western blot. LF binding sites on gametes were investigated by incubating gametes with the protein coupled to fluorescein isothiocyanate (FITC). The acrosome

  9. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjaerulff, Soren; Jensen, Martin Roland

    2005-10-28

    In the fission yeast Schizosaccharomyces pombe, there are relatively few signal peptides available and most reports of their activity have not been comparative. Using sequence information from the S. pombe genome database we have identified three putative signal peptides, designated Cpy, Amy and Dpp, and compared their ability to support secretion of green fluorescent protein (GFP). In the comparison we also included the two well-described secretion signals derived from the precursors of, respectively, the Saccharomyces cerevisiae {alpha}-factor and the S. pombe P-factor. The capability of the tested signal peptides to direct secretion of GFP varied greatly. The {alpha}-factor signal didmore » not confer secretion to GFP and all the produced GFP was trapped intracellular. In contrast, the Cpy signal peptide supported efficient secretion of GFP with yields approximating 10 mg/L. We also found that the use of an attenuated version of the S. cerevisiae URA3 marker substantially increases vector copy number and expression yield in fission yeast.« less

  10. Apocrine Secretion in Drosophila Salivary Glands: Subcellular Origin, Dynamics, and Identification of Secretory Proteins

    PubMed Central

    Farkaš, Robert; Ďatková, Zuzana; Mentelová, Lucia; Löw, Péter; Beňová-Liszeková, Denisa; Beňo, Milan; Sass, Miklós; Řehulka, Pavel; Řehulková, Helena; Raška, Otakar; Kováčik, Lubomír; Šmigová, Jana; Raška, Ivan; Mechler, Bernard M.

    2014-01-01

    In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal β-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity. PMID:24732043

  11. Analysis and Characterization of Proteins Associated with Outer Membrane Vesicles Secreted by Cronobacter spp.

    PubMed Central

    Kothary, Mahendra H.; Gopinath, Gopal R.; Gangiredla, Jayanthi; Rallabhandi, Prasad V.; Harrison, Lisa M.; Yan, Qiong Q.; Chase, Hannah R.; Lee, Boram; Park, Eunbi; Yoo, YeonJoo; Chung, Taejung; Finkelstein, Samantha B.; Negrete, Flavia J.; Patel, Isha R.; Carter, Laurenda; Sathyamoorthy, Venugopal; Fanning, Séamus; Tall, Ben D.

    2017-01-01

    Little is known about secretion of outer membrane vesicles (OMVs) by Cronobacter. In this study, OMVs isolated from Cronobacter sakazakii, Cronobacter turicensis, and Cronobacter malonaticus were examined by electron microscopy (EM) and their associated outer membrane proteins (OMP) and genes were analyzed by SDS-PAGE, protein sequencing, BLAST, PCR, and DNA microarray. EM of stained cells revealed that the OMVs are secreted as pleomorphic micro-vesicles which cascade from the cell's surface. SDS-PAGE analysis identified protein bands with molecular weights of 18 kDa to >100 kDa which had homologies to OMPs such as GroEL; OmpA, C, E, F, and X; MipA proteins; conjugative plasmid transfer protein; and an outer membrane auto-transporter protein (OMATP). PCR analyses showed that most of the OMP genes were present in all seven Cronobacter species while a few genes (OMATP gene, groEL, ompC, mipA, ctp, and ompX) were absent in some phylogenetically-related species. Microarray analysis demonstrated sequence divergence among the OMP genes that was not captured by PCR. These results support previous findings that OmpA and OmpX may be involved in virulence of Cronobacter, and are packaged within secreted OMVs. These results also suggest that other OMV-packaged OMPs may be involved in roles such as stress response, cell wall and plasmid maintenance, and extracellular transport. PMID:28232819

  12. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae

    PubMed Central

    2014-01-01

    Background The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Results Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. Conclusion In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus. PMID:24961398

  13. Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement.

    PubMed

    Kravchenko-Balasha, Nataly; Shin, Young Shik; Sutherland, Alex; Levine, R D; Heath, James R

    2016-05-17

    Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.

  14. Serum Albumin Stimulates Protein Kinase G-dependent Microneme Secretion in Toxoplasma gondii.

    PubMed

    Brown, Kevin M; Lourido, Sebastian; Sibley, L David

    2016-04-29

    Microneme secretion is essential for motility, invasion, and egress in apicomplexan parasites. Although previous studies indicate that Ca(2+) and cGMP control microneme secretion, little is known about how these pathways are naturally activated. Here we have developed genetically encoded indicators for Ca(2+) and microneme secretion to better define the signaling pathways that regulate these processes in Toxoplasma gondii We found that microneme secretion was triggered in vitro by exposure to a single host protein, serum albumin. The natural agonist serum albumin induced microneme secretion in a protein kinase G-dependent manner that correlated with increased cGMP levels. Surprisingly, serum albumin acted independently of elevated Ca(2+) and yet it was augmented by artificial agonists that raise Ca(2+), such as ethanol. Furthermore, although ethanol elevated intracellular Ca(2+), it alone was unable to trigger secretion without the presence of serum or serum albumin. This dichotomy was recapitulated by zaprinast, a phosphodiesterase inhibitor that elevated cGMP and separately increased Ca(2+) in a protein kinase G-independent manner leading to microneme secretion. Taken together, these findings reveal that microneme secretion is centrally controlled by protein kinase G and that this pathway is further augmented by elevation of intracellular Ca(2.) © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Characterization of Trichuris muris secreted proteins and extracellular vesicles provides new insights into host–parasite communication

    PubMed Central

    Eichenberger, Ramon M.; Talukder, Md Hasanuzzaman; Field, Matthew A.; Wangchuk, Phurpa; Giacomin, Paul; Loukas, Alex; Sotillo, Javier

    2018-01-01

    ABSTRACT Whipworms are parasitic nematodes that live in the gut of more than 500 million people worldwide. Owing to the difficulty in obtaining parasite material, the mouse whipworm Trichuris muris has been extensively used as a model to study human whipworm infections. These nematodes secrete a multitude of compounds that interact with host tissues where they orchestrate a parasitic existence. Herein we provide the first comprehensive characterization of the excretory/secretory products of T. muris. We identify 148 proteins secreted by T. muris and show for the first time that the mouse whipworm secretes exosome-like extracellular vesicles (EVs) that can interact with host cells. We use an Optiprep® gradient to purify the EVs, highlighting the suitability of this method for purifying EVs secreted by a parasitic nematode. We also characterize the proteomic and genomic content of the EVs, identifying >350 proteins, 56 miRNAs (22 novel) and 475 full-length mRNA transcripts mapping to T. muris gene models. Many of the miRNAs putatively mapped to mouse genes are involved in regulation of inflammation, implying a role in parasite-driven immunomodulation. In addition, for the first time to our knowledge, colonic organoids have been used to demonstrate the internalization of parasite EVs by host cells. Understanding how parasites interact with their host is crucial to develop new control measures. This first characterization of the proteins and EVs secreted by T. muris provides important information on whipworm–host communication and forms the basis for future studies. PMID:29410780

  16. The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart.

    PubMed

    Doroudgar, Shirin; Glembotski, Christopher C

    2011-04-01

    Intercellular communication depends on many factors, including proteins released via the classical or non-classical secretory pathways, many of which must be properly folded to be functional. Owing to their adverse effects on the secretion machinery, stresses such as ischemia can impair the folding of secreted proteins. Paradoxically, cells rely on secreted proteins to mount a response designed to resist stress-induced damage. This review examines this paradox using proteins secreted from the heart, cardiokines, as examples, and focuses on how the ischemic heart maintains or even increases the release of select cardiokines that regulate important cellular processes in the heart, including excitation-contraction coupling, hypertrophic growth, myocardial remodeling and stem cell function, in ways that moderate ischemic damage and enhance cardiac repair. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Somatostatin inhibits cholecystokinin-induced pancreatic protein secretion via cholinergic pathways.

    PubMed

    Brodish, R J; Kuvshinoff, B W; McFadden, D W; Fink, A S

    1995-05-01

    Although somatostatin is a potent inhibitor of pancreatic exocrine secretion in vivo, its mechanism of action remains unclear. The influence of extrapancreatic nerves and intrapancreatic cholinergic activity on somatostatin-induced inhibition of pancreatic exocrine secretion was studied in conscious dogs. Chronic pancreatic fistulae were created in six mongrel dogs, and a second group of six dogs also underwent complete pancreatic denervation. The pancreatic responses to graded doses of cholecystokinin (12.5-200 ng/kg/h) and bethanechol (57-916 micrograms/kg/h), both alone and during background infusion of somatostatin-14 (800 pm/kg/h), were determined in all dogs. The cholecystokinin dose-response with a somatostatin-14 background was then repeated with the addition of atropine (10 micrograms/kg/h). In both groups of animals, cholecystokinin elicited a dose-dependent increase in pancreatic protein secretion that was inhibited significantly by somatostatin-14. Regardless of the status of extrapancreatic nerves, atropine further inhibited cholecystokinin-induced protein secretion beyond that evoked by somatostatin-14. In both innervated and denervated animals, cholinergic stimulation with bethanechol elicited a dose-dependent increase in pancreatic protein secretion that was unaffected by somatostatin-14. We conclude that extrapancreatic nerves do not mediate the inhibitory effects of somatostatin-14. Somatostatin-14 appears to inhibit cholecystokinin-induced pancreatic secretion by an intrapancreatic cholinergic mechanism.

  18. Antisense RNA to the first N-glycosylation gene, ALG7, inhibits protein N-glycosylation and secretion by Xenopus oocytes.

    PubMed

    Kukuruzinska, M A; Apekin, V; Lamkin, M S; Hiltz, A; Rodriguez, A; Lin, C C; Paz, M A; Oppenheim, F G

    1994-02-15

    N-Glycosylation has been shown to affect the rate of glycoprotein transport through the secretory pathway. In order to identify the critical components in the N-glycosylation pathway that directly influence protein secretion, we have studied the effects of downregulation of the first gene in the dolichol pathway, ALG7, on the synthesis, glycosylation and secretion of native and heterologous proteins by Xenopus laevis oocytes. Our strategy involved the use of ALG7 antisense RNA (asRNA) to lower the effective abundance of the ALG7 protein in oocytes. The results showed that there was an inverse dose-response relationship between ALG7 asRNA and the amount of glycosylated and secreted proteins. These effects were also observed for heterologously expressed rat parotid amylase. Since ALG7 asRNA did not inhibit overall protein synthesis, we conclude that downregulation of ALG7 expression directly lowered protein export.

  19. Odorant-Binding Protein: Localization to Nasal Glands and Secretions

    NASA Astrophysics Data System (ADS)

    Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.

    1986-07-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.

  20. Edwardsiella tarda EscE (Orf13 Protein) Is a Type III Secretion System-Secreted Protein That Is Required for the Injection of Effectors, Secretion of Translocators, and Pathogenesis in Fish.

    PubMed

    Lu, Jin Fang; Wang, Wei Na; Wang, Gai Ling; Zhang, He; Zhou, Ying; Gao, Zhi Peng; Nie, Pin; Xie, Hai Xia

    2016-01-01

    The type III secretion system (T3SS) of Edwardsiella tarda is crucial for its intracellular survival and pathogenesis in fish. The orf13 gene (escE) of E. tarda is located 84 nucleotides (nt) upstream of esrC in the T3SS gene cluster. We found that EscE is secreted and translocated in a T3SS-dependent manner and that amino acids 2 to 15 in the N terminus were required for a completely functional T3SS in E. tarda. Deletion of escE abolished the secretion of T3SS translocators, as well as the secretion and translocation of T3SS effectors, but did not influence their intracellular protein levels in E. tarda. Complementation of the escE mutant with a secretion-incompetent EscE derivative restored the secretion of translocators and effectors. Interestingly, the effectors that were secreted and translocated were positively correlated with the EscE protein level in E. tarda. The escE mutant was attenuated in the blue gourami fish infection model, as its 50% lethal dose (LD50) increased to 4 times that of the wild type. The survival rate of the escE mutant-strain-infected fish was 69%, which was much higher than that of the fish infected with the wild-type bacteria (6%). Overall, EscE represents a secreted T3SS regulator that controls effector injection and translocator secretion, thus contributing to E. tarda pathogenesis in fish. The homology of EscE within the T3SSs of other bacterial species suggests that the mechanism of secretion and translocation control used by E. tarda may be commonly used by other bacterial pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. A lower isoelectric point increases signal sequence-mediated secretion of recombinant proteins through a bacterial ABC transporter.

    PubMed

    Byun, Hyunjong; Park, Jiyeon; Kim, Sun Chang; Ahn, Jung Hoon

    2017-12-01

    Efficient protein production for industrial and academic purposes often involves engineering microorganisms to produce and secrete target proteins into the culture. Pseudomonas fluorescens has a TliDEF ATP-binding cassette transporter, a type I secretion system, which recognizes C-terminal LARD3 signal sequence of thermostable lipase TliA. Many proteins are secreted by TliDEF in vivo when recombined with LARD3, but there are still others that cannot be secreted by TliDEF even when LARD3 is attached. However, the factors that determine whether or not a recombinant protein can be secreted through TliDEF are still unknown. Here, we recombined LARD3 with several proteins and examined their secretion through TliDEF. We found that the proteins secreted via LARD3 are highly negatively charged with highly-acidic isoelectric points (pI) lower than 5.5. Attaching oligo-aspartate to lower the pI of negatively-charged recombinant proteins improved their secretion, and attaching oligo-arginine to negatively-charged proteins blocked their secretion by LARD3. In addition, negatively supercharged green fluorescent protein (GFP) showed improved secretion, whereas positively supercharged GFP did not secrete. These results disclosed that proteins' acidic pI and net negative charge are major factors that determine their secretion through TliDEF. Homology modeling for TliDEF revealed that TliD dimer forms evolutionarily-conserved positively-charged clusters in its pore and substrate entrance site, which also partially explains the pI dependence of the TliDEF-dependent secretions. In conclusion, lowering the isoelectric point improved LARD3-mediated protein secretion, both widening the range of protein targets for efficient production via secretion and signifying an important aspect of ABC transporter-mediated secretions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Quantitation of secreted proteins using mCherry fusion constructs and a fluorescent microplate reader.

    PubMed

    Duellman, Tyler; Burnett, John; Yang, Jay

    2015-03-15

    Traditional assays for secreted proteins include methods such as Western blot and enzyme-linked immunosorbent assay (ELISA) detection of the protein in the cell culture medium. We describe a method for the detection of a secreted protein based on fluorescent measurement of an mCherry fusion reporter. This microplate reader-based mCherry fluorescence detection method has a wide dynamic range of 4.5 orders of magnitude and a sensitivity that allows detection of 1 to 2fmol fusion protein. Comparison with the Western blot detection method indicated greater linearity, wider dynamic range, and a similar lower detection threshold for the microplate-based fluorescent detection assay of secreted fusion proteins. An mCherry fusion protein of matrix metalloproteinase-9 (MMP-9), a secreted glycoprotein, was created and expressed by transfection of human embryonic kidney (HEK) 293 cells. The cell culture medium was assayed for the presence of the fluorescent signal up to 32 h after transfection. The secreted MMP-9-mCherry fusion protein was detected 6h after transfection with a linear increase in signal intensity over time. Treatment with chloroquine, a drug known to inhibit the secretion of many proteins, abolished the MMP-9-mCherry secretion, demonstrating the utility of this method in a biological experiment. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Proteins altered by elevated levels of palmitate or glucose implicated in impaired glucose-stimulated insulin secretion

    PubMed Central

    Sol, E-ri M; Hovsepyan, Meri; Bergsten, Peter

    2009-01-01

    Background Development of type 2 diabetes mellitus (T2DM) is characterized by aberrant insulin secretory patterns, where elevated insulin levels at non-stimulatory basal conditions and reduced hormonal levels at stimulatory conditions are major components. To delineate mechanisms responsible for these alterations we cultured INS-1E cells for 48 hours at 20 mM glucose in absence or presence of 0.5 mM palmitate, when stimulatory secretion of insulin was reduced or basal secretion was elevated, respectively. Results After culture, cells were protein profiled by SELDI-TOF-MS and 2D-PAGE. Differentially expressed proteins were discovered and identified by peptide mass fingerprinting. Complimentary protein profiles were obtained by the two approaches with SELDI-TOF-MS being more efficient in separating proteins in the low molecular range and 2D-PAGE in the high molecular range. Identified proteins included alpha glucosidase, calmodulin, gars, glucose-6-phosphate dehydrogenase, heterogenous nuclear ribonucleoprotein A3, lon peptidase, nicotineamide adenine dinucleotide hydrogen (NADH) dehydrogenase, phosphoglycerate kinase, proteasome p45, rab2, pyruvate kinase and t-complex protein. The observed glucose-induced differential protein expression pattern indicates enhanced glucose metabolism, defense against reactive oxygen species, enhanced protein translation, folding and degradation and decreased insulin granular formation and trafficking. Palmitate-induced changes could be related to altered exocytosis. Conclusion The identified altered proteins indicate mechanism important for altered β-cell function in T2DM. PMID:19607692

  4. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors.

    PubMed

    Catanzariti, Ann-Maree; Dodds, Peter N; Lawrence, Gregory J; Ayliffe, Michael A; Ellis, Jeffrey G

    2006-01-01

    Rust fungi, obligate biotrophs that cause disease and yield losses in crops such as cereals and soybean (Glycine max), obtain nutrients from the host through haustoria, which are specialized structures that develop within host cells. Resistance of flax (Linum usitatissimum) to flax rust (Melampsora lini) involves the induction of a hypersensitive cell death response at haustoria formation sites, governed by gene-for-gene recognition between host resistance and pathogen avirulence genes. We identified genes encoding haustorially expressed secreted proteins (HESPs) by screening a flax rust haustorium-specific cDNA library. Among 429 unigenes, 21 HESPs were identified, one corresponding to the AvrL567 gene. Three other HESPs cosegregated with the independent AvrM, AvrP4, and AvrP123 loci. Expression of these genes in flax induced resistance gene-mediated cell death with the appropriate specificity, confirming their avirulence activity. AvrP4 and AvrP123 are Cys-rich proteins, and AvrP123 contains a Kazal Ser protease inhibitor signature, whereas AvrM contains no Cys residues. AvrP4 and AvrM induce cell death when expressed intracellularly, suggesting their translocation into plant cells during infection. However, secreted AvrM and AvrP4 also induce necrotic responses, with secreted AvrP4 more active than intracellular AvrP4, possibly as a result of enhanced formation of endoplasmic reticulum-dependent disulfide bonds. Addition of an endoplasmic reticulum retention signal inhibited AvrM-induced necrosis, suggesting that both AvrM and AvrP4 can reenter the plant cell after secretion in the absence of the pathogen.

  5. Crystal structure of the Yersinia type III secretion protein YscE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Jason; Austin, Brian P.; Waugh, David S.

    2010-12-06

    The plague-causing bacterium Yersinia pestis utilizes a contact-dependent (type III) secretion system (T3SS) to transport virulence factors from the bacterial cytosol directly into the interior of mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. The type III secretion apparatus is composed of 20-25 different Yersinia secretion (Ysc) proteins. We report here the structure of YscE, the smallest Ysc protein, which is a dimer in solution. The probable mode of oligomerization is discussed.

  6. Ehrlichia chaffeensis Tandem Repeat Proteins and Ank200 are Type 1 Secretion System Substrates Related to the Repeats-in-Toxin Exoprotein Family

    PubMed Central

    Wakeel, Abdul; den Dulk-Ras, Amke; Hooykaas, Paul J. J.; McBride, Jere W.

    2011-01-01

    Ehrlichia chaffeensis has type 1 and 4 secretion systems (T1SS and T4SS), but the substrates have not been identified. Potential substrates include secreted tandem repeat protein (TRP) 47, TRP120, and TRP32, and the ankyrin repeat protein, Ank200, that are involved in molecular host–pathogen interactions including DNA binding and a network of protein–protein interactions with host targets associated with signaling, transcriptional regulation, vesicle trafficking, and apoptosis. In this study we report that E. chaffeensis TRP47, TRP32, TRP120, and Ank200 were not secreted in the Agrobacterium tumefaciens Cre recombinase reporter assay routinely used to identify T4SS substrates. In contrast, all TRPs and the Ank200 proteins were secreted by the Escherichia coli complemented with the hemolysin secretion system (T1SS), and secretion was reduced in a T1SS mutant (ΔTolC), demonstrating that these proteins are T1SS substrates. Moreover, T1SS secretion signals were identified in the C-terminal domains of the TRPs and Ank200, and a detailed bioinformatic analysis of E. chaffeensis TRPs and Ank200 revealed features consistent with those described in the repeats-in-toxins (RTX) family of exoproteins, including glycine- and aspartate-rich tandem repeats, homology with ATP-transporters, a non-cleavable C-terminal T1SS signal, acidic pIs, and functions consistent with other T1SS substrates. Using a heterologous E. coli T1SS, this investigation has identified the first Ehrlichia T1SS substrates supporting the conclusion that the T1SS and corresponding substrates are involved in molecular host–pathogen interactions that contribute to Ehrlichia pathobiology. Further investigation of the relationship between Ehrlichia TRPs, Ank200, and the RTX exoprotein family may lead to a greater understanding of the importance of T1SS substrates and specific functions of T1SS in the pathobiology of obligately intracellular bacteria. PMID:22919588

  7. The Rab11 Effector Protein FIP1 Regulates Adiponectin Trafficking and Secretion

    PubMed Central

    Moreno-Navarrete, Jose Maria; Fernandez-Real, Jose Manuel; Mora, Silvia

    2013-01-01

    Adiponectin is an adipokine secreted by white adipocytes involved in regulating insulin sensitivity in peripheral tissues. Secretion of adiponectin in adipocytes relies on the endosomal system, however, the intracellular machinery involved in mediating adiponectin release is unknown. We have previously reported that intracellular adiponectin partially compartmentalizes with rab 5 and rab11, markers for the early/sorting and recycling compartments respectively. Here we have examined the role of several rab11 downstream effector proteins (rab11 FIPs) in regulating adiponectin trafficking and secretion. Overexpression of wild type rab11 FIP1, FIP3 and FIP5 decreased the amount of secreted adiponectin expressed in HEK293 cells, whereas overexpression of rab11 FIP2 or FIP4 had no effect. Furthermore shRNA-mediated depletion of FIP1 enhanced adiponectin release whereas knock down of FIP5 decreased adiponectin secretion. Knock down of FIP3 had no effect. In 3T3L1 adipocytes, endogenous FIP1 co-distributed intracellularly with endogenous adiponectin and FIP1 depletion enhanced adiponectin release without altering insulin-mediated trafficking of the glucose transporter Glut4. While adiponectin receptors internalized with transferrin receptors, there were no differences in transferrin receptor recycling between wild type and FIP1 depleted adipocytes. Consistent with its inhibitory role, FIP1 expression was decreased during adipocyte differentiation, by treatment with thiazolidinediones, and with increased BMI in humans. In contrast, FIP1 expression increased upon exposure of adipocytes to TNFα. In all, our findings identify FIP1 as a novel protein involved in the regulation of adiponectin trafficking and release. PMID:24040321

  8. Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2.

    PubMed

    Konopatskaya, Olga; Matthews, Sharon A; Harper, Matthew T; Gilio, Karen; Cosemans, Judith M E M; Williams, Christopher M; Navarro, Maria N; Carter, Deborah A; Heemskerk, Johan W M; Leitges, Michael; Cantrell, Doreen; Poole, Alastair W

    2011-07-14

    Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.

  9. Secretion and extracellular space travel of Wnt proteins.

    PubMed

    Gross, Julia Christina; Boutros, Michael

    2013-08-01

    Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii.

    PubMed

    Ramos-Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-09-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP) n , wherein n = 10 or 20]. The yields of the (SP) n -fused Venus were higher than Venus without the glycomodule by up to 12-fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus-(SP) n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP) n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP) n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system.

    PubMed

    Imai, Saki; Kusakabe, Takahiro; Xu, Jian; Li, Zhiqing; Shirai, Shintaro; Mon, Hiroaki; Morokuma, Daisuke; Lee, Jae Man

    2015-11-01

    Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.

  12. Characterization of the Ruler Protein Interaction Interface on the Substrate Specificity Switch Protein in the Yersinia Type III Secretion System*

    PubMed Central

    Ho, Oanh; Rogne, Per; Edgren, Tomas; Wolf-Watz, Hans; Login, Frédéric H.; Wolf-Watz, Magnus

    2017-01-01

    Many pathogenic Gram-negative bacteria use the type III secretion system (T3SS) to deliver effector proteins into eukaryotic host cells. In Yersinia, the switch to secretion of effector proteins is induced first after intimate contact between the bacterium and its eukaryotic target cell has been established, and the T3SS proteins YscP and YscU play a central role in this process. Here we identify the molecular details of the YscP binding site on YscU by means of nuclear magnetic resonance (NMR) spectroscopy. The binding interface is centered on the C-terminal domain of YscU. Disrupting the YscU-YscP interaction by introducing point mutations at the interaction interface significantly reduced the secretion of effector proteins and HeLa cell cytotoxicity. Interestingly, the binding of YscP to the slowly self-cleaving YscU variant P264A conferred significant protection against autoproteolysis. The YscP-mediated inhibition of YscU autoproteolysis suggests that the cleavage event may act as a timing switch in the regulation of early versus late T3SS substrates. We also show that YscUC binds to the inner rod protein YscI with a dissociation constant (Kd) of 3.8 μm and with 1:1 stoichiometry. The significant similarity among different members of the YscU, YscP, and YscI families suggests that the protein-protein interactions discussed in this study are also relevant for other T3SS-containing Gram-negative bacteria. PMID:28039361

  13. Characterization of the Ruler Protein Interaction Interface on the Substrate Specificity Switch Protein in the Yersinia Type III Secretion System.

    PubMed

    Ho, Oanh; Rogne, Per; Edgren, Tomas; Wolf-Watz, Hans; Login, Frédéric H; Wolf-Watz, Magnus

    2017-02-24

    Many pathogenic Gram-negative bacteria use the type III secretion system (T3SS) to deliver effector proteins into eukaryotic host cells. In Yersinia , the switch to secretion of effector proteins is induced first after intimate contact between the bacterium and its eukaryotic target cell has been established, and the T3SS proteins YscP and YscU play a central role in this process. Here we identify the molecular details of the YscP binding site on YscU by means of nuclear magnetic resonance (NMR) spectroscopy. The binding interface is centered on the C-terminal domain of YscU. Disrupting the YscU-YscP interaction by introducing point mutations at the interaction interface significantly reduced the secretion of effector proteins and HeLa cell cytotoxicity. Interestingly, the binding of YscP to the slowly self-cleaving YscU variant P264A conferred significant protection against autoproteolysis. The YscP-mediated inhibition of YscU autoproteolysis suggests that the cleavage event may act as a timing switch in the regulation of early versus late T3SS substrates. We also show that YscU C binds to the inner rod protein YscI with a dissociation constant ( K d ) of 3.8 μm and with 1:1 stoichiometry. The significant similarity among different members of the YscU, YscP, and YscI families suggests that the protein-protein interactions discussed in this study are also relevant for other T3SS-containing Gram-negative bacteria. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Ram; Heffron, Fred; McDermott, Jason E.

    2009-04-24

    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates, effector proteins, are not. We have used a machine learning approach to identify new secreted effectors. The method integrates evolutionary measures, such as the pattern of homologs in a range of other organisms, and sequence-based features, such as G+C content, amino acid composition and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from Salmonella typhimurium and validated on a corresponding set of effectors from Pseudomonas syringae, aftermore » eliminating effectors with detectable sequence similarity. The method was able to identify all of the known effectors in P. syringae with a specificity of 84% and sensitivity of 82%. The reciprocal validation, training on P. syringae and validating on S. typhimurium, gave similar results with a specificity of 86% when the sensitivity level was 87%. These results show that type III effectors in disparate organisms share common features. We found that maximal performance is attained by including an N-terminal sequence of only 30 residues, which agrees with previous studies indicating that this region contains the secretion signal. We then used the method to define the most important residues in this putative secretion signal. Finally, we present novel predictions of secreted effectors in S. typhimurium, some of which have been experimentally validated, and apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis. This approach is a novel and effective way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.« less

  15. PopF1 and PopF2, Two Proteins Secreted by the Type III Protein Secretion System of Ralstonia solanacearum, Are Translocators Belonging to the HrpF/NopX Family†

    PubMed Central

    Meyer, Damien; Cunnac, Sébastien; Guéneron, Mareva; Declercq, Céline; Van Gijsegem, Frédérique; Lauber, Emmanuelle; Boucher, Christian; Arlat, Matthieu

    2006-01-01

    Ralstonia solanacearum GMI1000 is a gram-negative plant pathogen which contains an hrp gene cluster which codes for a type III protein secretion system (TTSS). We identified two novel Hrp-secreted proteins, called PopF1 and PopF2, which display similarity to one another and to putative TTSS translocators, HrpF and NopX, from Xanthomonas spp. and rhizobia, respectively. They also show similarities with TTSS translocators of the YopB family from animal-pathogenic bacteria. Both popF1 and popF2 belong to the HrpB regulon and are required for the interaction with plants, but PopF1 seems to play a more important role in virulence and hypersensitive response (HR) elicitation than PopF2 under our experimental conditions. PopF1 and PopF2 are not necessary for the secretion of effector proteins, but they are required for the translocation of AvrA avirulence protein into tobacco cells. We conclude that PopF1 and PopF2 are type III translocators belonging to the HrpF/NopX family. The hrpF gene of Xanthomonas campestris pv. campestris partially restored HR-inducing ability to popF1 popF2 mutants of R. solanacearum, suggesting that translocators of R. solanacearum and Xanthomonas are functionally conserved. Finally, R. solanacearum strain UW551, which does not belong to the same phylotype as GMI1000, also possesses two putative translocator proteins. However, although one of these proteins is clearly related to PopF1 and PopF2, the other seems to be different and related to NopX proteins, thus showing that translocators might be variable in R. solanacearum. PMID:16788199

  16. Molecular characterization of Helja, an extracellular jacalin-related protein from Helianthus annuus: Insights into the relationship of this protein with unconventionally secreted lectins.

    PubMed

    Pinedo, Marcela; Orts, Facundo; Carvalho, André de Oliveira; Regente, Mariana; Soares, Julia Ribeiro; Gomes, Valdirene Moreira; de la Canal, Laura

    2015-07-01

    Jacalin-related lectins (JRLs) encompass cytosolic, nuclear and vacuolar members displaying the jacalin domain in one or more copies or in combination with unrelated domains. Helianthus annuus jacalin (Helja) is a mannose-specific JRL previously identified in the apoplast of Helianthus annuus seedlings, and this protein has been proposed to follow unconventional secretion. Here, we describe the full-length Helja cDNA sequence, which presents a unique jacalin domain (merolectin) and the absence of a signal peptide, confirming that the protein cannot follow the classical ER-dependent secretory pathway. Helja mRNA is present in seeds, cotyledons, roots and hypocotyls, but no transcripts were detected in the leaves. Searches for sequence similarity showed that Helja is barely similar to other JRLs present in H. annuus databases and less than 45% identical to other monocot or dicot JRLs. Strikingly, most of the merolectins recovered through data mining using Helja as a query were predicted as apoplastic, although most of these proteins lack the signal peptide required for classical secretion. Thus, Helja is the first bait identified to recover putative unconventionally secreted lectins. Because the recovered JRLs are widely distributed among the plant kingdom, an as yet unknown role for jacalin lectins in the apoplast is emerging. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Symbiotic implications of type III protein secretion machinery in Rhizobium.

    PubMed

    Viprey, V; Del Greco, A; Golinowski, W; Broughton, W J; Perret, X

    1998-06-01

    The symbiotic plasmid of Rhizobium sp. NGR234 carries a cluster of genes that encodes components of a bacterial type III secretion system (TTSS). In both animal and plant pathogens, the TTSS is an essential component of pathogenicity. Here, we show that secretion of at least two proteins (y4xL and NolX) is controlled by the TTSS of NGR234 and occurs after the induction with flavonoids. Polar mutations in two TTSS genes, rhcN and the nod-box controlled regulator of transcription y4xl, block the secretion of both proteins and strongly affect the ability of NGR234 to nodulate a variety of tropical legumes including Pachyrhizus tuberosus and Tephrosia vogelii.

  18. RIC-7 Promotes Neuropeptide Secretion

    PubMed Central

    Hao, Yingsong; Hu, Zhitao; Sieburth, Derek; Kaplan, Joshua M.

    2012-01-01

    Secretion of neurotransmitters and neuropeptides is mediated by exocytosis of distinct secretory organelles, synaptic vesicles (SVs) and dense core vesicles (DCVs) respectively. Relatively little is known about factors that differentially regulate SV and DCV secretion. Here we identify a novel protein RIC-7 that is required for neuropeptide secretion in Caenorhabditis elegans. The RIC-7 protein is expressed in all neurons and is localized to presynaptic terminals. Imaging, electrophysiology, and behavioral analysis of ric-7 mutants indicates that acetylcholine release occurs normally, while neuropeptide release is significantly decreased. These results suggest that RIC-7 promotes DCV–mediated secretion. PMID:22275875

  19. The Ruler Protein EscP of the Enteropathogenic Escherichia coli Type III Secretion System Is Involved in Calcium Sensing and Secretion Hierarchy Regulation by Interacting with the Gatekeeper Protein SepL

    PubMed Central

    Shaulov, Lihi; Gershberg, Jenia; Deng, Wanyin; Finlay, B. Brett

    2017-01-01

    ABSTRACT The type III secretion system (T3SS) is a multiprotein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. To ensure that effector proteins are efficiently translocated into the host cell, bacteria must be able to sense their contact with the host cell. In this study, we found that EscP, which was previously shown to function as the ruler protein of the enteropathogenic Escherichia coli T3SS, is also involved in the switch from the secretion of translocator proteins to the secretion of effector proteins. In addition, we demonstrated that EscP can interact with the gatekeeper protein SepL and that the EscP-SepL complex dissociates upon a calcium concentration drop. We suggest a model in which bacterial contact with the host cell is accompanied by a drop in the calcium concentration that causes SepL-EscP complex dissociation and triggers the secretion of effector proteins. PMID:28049143

  20. Secretory carrier membrane protein 5 is an autophagy inhibitor that promotes the secretion of α-synuclein via exosome.

    PubMed

    Yang, Yi; Qin, Meiling; Bao, Puhua; Xu, Wangchao; Xu, Jin

    2017-01-01

    Autophagy-lysosomal pathway is a cellular protective system to remove aggregated proteins and damaged organelles. Meanwhile, exosome secretion has emerged as a mode to selectively clear the neurotoxic proteins, such as α-synuclein. Mounting evidence suggests that these two cellular processes are coordinated to facilitate the clearance of toxic cellular waste; however the regulators for the transition between these two processes are unclear. Here we show that SCAMP5, a secretory carrier membrane protein significantly induced in the brains of Huntington's disease patients, is quickly and transiently induced by protein stress and autophagic stimulation, and is regulated by the master autophagy transcriptional regulator TFEB. Ironically, SCAMP5 inhibits autophagy flux by blocking the fusion of autophagosomes and lysosomes. Although autophagy is blocked, SCAMP5 does not cause significant protein aggregation in cells. Instead, it promotes the Golgi fragmentation and stimulates the unconventional secretion of the co-localizing α-synuclein via exosome as an exosome component. Therefore, we have identified SCAMP5 as a novel coordinator of autophagy and exosome secretion, which is induced upon protein stress to channel the efficient clearance of toxic proteins via the exosomes rather than autophagy-lysosomal pathway.

  1. An In Vivo Screen of Secreted Proteins Identifies Adiponectin as a Regulator of Murine Cutaneous Wound Healing

    PubMed Central

    Salathia, Neeraj S; Shi, Jian; Zhang, Jay; Glynne, Richard J

    2013-01-01

    Skin wounds comprise a serious medical issue for which few pharmacological interventions are available. Moreover, the inflammatory, angiogenic, and proliferative facets of a typical response to a wound each have broader relevance in other pathological conditions. Here we describe a genomics-driven approach to identify secreted proteins that modulate wound healing in a mouse ear punch model. We show that adiponectin, when injected into the wound edge, accelerates wound healing. Notably, adiponectin injection causes upregulation of keratin gene transcripts within hours of treatment, and subsequently promotes collagen organization, formation of pilosebaceous units, and proliferation of cells in the basal epithelial cell layer and pilosebaceous units of healing tissue. The globular domain of adiponectin is sufficient to mediate accelerated dorsal skin wound closure, and the effects are lost in mice that are homozygous null for the adiponectin receptor 1 gene. These findings extend recent observations of a protective role of adiponectin in other tissue injury settings, suggest modulation of AdipoR1 for the clinical management of wounds, and demonstrate a new approach to the identification of regulators of a wound healing response. PMID:23096717

  2. Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function

    PubMed Central

    Filloux, Alain

    2011-01-01

    Protein secretion systems are molecular nanomachines used by Gram-negative bacteria to thrive within their environment. They are used to release enzymes that hydrolyze complex carbon sources into usable compounds, or to release proteins that capture essential ions such as iron. They are also used to colonize and survive within eukaryotic hosts, causing acute or chronic infections, subverting the host cell response and escaping the immune system. In this article, the opportunistic human pathogen Pseudomonas aeruginosa is used as a model to review the diversity of secretion systems that bacteria have evolved to achieve these goals. This diversity may result from a progressive transformation of cell envelope complexes that initially may not have been dedicated to secretion. The striking similarities between secretion systems and type IV pili, flagella, bacteriophage tail, or efflux pumps is a nice illustration of this evolution. Differences are also needed since various secretion configurations call for diversity. For example, some proteins are released in the extracellular medium while others are directly injected into the cytosol of eukaryotic cells. Some proteins are folded before being released and transit into the periplasm. Other proteins cross the whole cell envelope at once in an unfolded state. However, the secretion system requires conserved basic elements or features. For example, there is a need for an energy source or for an outer membrane channel. The structure of this review is thus quite unconventional. Instead of listing secretion types one after each other, it presents a melting pot of concepts indicating that secretion types are in constant evolution and use basic principles. In other words, emergence of new secretion systems could be predicted the way Mendeleïev had anticipated characteristics of yet unknown elements. PMID:21811488

  3. Enhancing the Biological Relevance of Secretome-Based Proteomics by Linking Tumor Cell Proliferation and Protein Secretion.

    PubMed

    Gregori, Josep; Méndez, Olga; Katsila, Theodora; Pujals, Mireia; Salvans, Cándida; Villarreal, Laura; Arribas, Joaquin; Tabernero, Josep; Sánchez, Alex; Villanueva, Josep

    2014-07-15

    Secretome profiling has become a methodology of choice for the identification of tumor biomarkers. We hypothesized that due to the dynamic nature of secretomes cellular perturbations could affect their composition but also change the global amount of protein secreted per cell. We confirmed our hypothesis by measuring the levels of secreted proteins taking into account the amount of proteome produced per cell. Then, we established a correlation between cell proliferation and protein secretion that explained the observed changes in global protein secretion. Next, we implemented a normalization correcting the statistical results of secretome studies by the global protein secretion of cells into a generalized linear model (GLM). The application of the normalization to two biological perturbations on tumor cells resulted in drastic changes in the list of statistically significant proteins. Furthermore, we found that known epithelial-to-mesenchymal transition (EMT) effectors were only statistically significant when the normalization was applied. Therefore, the normalization proposed here increases the sensitivity of statistical tests by increasing the number of true-positives. From an oncology perspective, the correlation between protein secretion and cellular proliferation suggests that slow-growing tumors could have high-protein secretion rates and consequently contribute strongly to tumor paracrine signaling.

  4. Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors

    PubMed Central

    Karlskås, Ingrid Lea; Maudal, Kristina; Axelsson, Lars; Rud, Ida; Eijsink, Vincent G. H.; Mathiesen, Geir

    2014-01-01

    We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species. PMID:24614815

  5. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hanna; Park, Minhee; Shin, Nara

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Specific enzyme for HMGB1 phosphorylation and its secretion is proposed. Black-Right-Pointing-Pointer Inhibition of PKC-{zeta} leads to significant reduction of the secreted HMGB1. Black-Right-Pointing-Pointer Phosphorylation of specific site of HMGB1 redirects its secretion in cancer cells. Black-Right-Pointing-Pointer Activation of PKC-{zeta} in cancers explains the enhanced HMGB1 secretion. -- Abstract: High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequentmore » secretion from cancer cells. To identify the specific enzyme and important sites for HMGB1 phosphorylation, we screened the protein kinase C (PKC) family in a colon cancer cell line (HCT116) for HMGB1 binding by pull-down experiments using a 3XFLAG-HMGB1 construct. Strong interactions between atypical PKCs (PKC-{zeta}, {lambda}, and {iota}) and cytoplasmic HMGB1 were observed in HCT116 cells. We further identified the most critical PKC isotype that regulates HMGB1 secretion is PKC-{zeta} by using PKC inhibitors and siRNA experiments. The serine residues at S39, S53 and S181 of HMGB1 were related to enhancing HMGB1 secretion. We also demonstrated overexpression and activation of PKC-{zeta} in colon cancer tissues. Our findings suggest that PKC-{zeta} is involved in the phosphorylation of HMGB1, and the phosphorylation of specific serine residues in the nuclear localization signal regions is related to enhanced HMGB1 secretion in colon cancer cells.« less

  6. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation.

    PubMed

    Li, Yanjun; Peng, Xiaowei; Chen, Hongzhang

    2013-10-01

    Although submerged fermentation (SmF) accounts for most of current enzyme industries, it has been reported that solid-state fermentation (SSF) can produce higher enzyme yields in laboratory scale. In order to understand the reasons contributing to high enzyme production in SSF, this study compared the cellulase activities and secretomes of Neurospora sitophila cultured in SSF and SmF using steam exploded wheat straw as carbon source and enzyme inducer. The total amounts of protein and biomass (glucosamine content) in SSF were respectively 30 and 2.8 times of those in SmF. The CMCase, FPA and β-glucoside activities in SSF were 53-181 times of those in SmF. Both in SSF and SmF, N. sitophila secreted the most critical cellulases and hemicellulases known for Trichoderma reesei, although a β-xylosidase was exclusively identified in SSF. Six endoglucanases were identified in N. sitophila secretion with the high CMCase activity. The non-enzyme proteins in SSF were involved in fungal mycelia growth and conidiation; while those in SmF were more related to glycometabolism and stress tolerance. This revealed that SSF more likely serves as a natural habitat for filamentous fungi to facilitate the enzyme secretion. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Secretion of small proteins is species-specific within Aspergillus sp.

    PubMed

    Valette, Nicolas; Benoit-Gelber, Isabelle; Falco, Marcos Di; Wiebenga, Ad; de Vries, Ronald P; Gelhaye, Eric; Morel-Rouhier, Mélanie

    2017-03-01

    Small secreted proteins (SSP) have been defined as proteins containing a signal peptide and a sequence of less than 300 amino acids. In this analysis, we have compared the secretion pattern of SSPs among eight aspergilli species in the context of plant biomass degradation and have highlighted putative interesting candidates that could be involved in the degradative process or in the strategies developed by fungi to resist the associated stress that could be due to the toxicity of some aromatic compounds or reactive oxygen species released during degradation. Among these candidates, for example, some stress-related superoxide dismutases or some hydrophobic surface binding proteins (HsbA) are specifically secreted according to the species . Since these latter proteins are able to recruit lytic enzymes to the surface of hydrophobic solid materials and promote their degradation, a synergistic action of HsbA with the degradative system may be considered and need further investigations. These SSPs could have great applications in biotechnology by optimizing the efficiency of the enzymatic systems for biomass degradation. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins.

    PubMed

    Staats, Charley Christian; Junges, Angela; Guedes, Rafael Lucas Muniz; Thompson, Claudia Elizabeth; de Morais, Guilherme Loss; Boldo, Juliano Tomazzoni; de Almeida, Luiz Gonzaga Paula; Andreis, Fábio Carrer; Gerber, Alexandra Lehmkuhl; Sbaraini, Nicolau; da Paixão, Rana Louise de Andrade; Broetto, Leonardo; Landell, Melissa; Santi, Lucélia; Beys-da-Silva, Walter Orlando; Silveira, Carolina Pereira; Serrano, Thaiane Rispoli; de Oliveira, Eder Silva; Kmetzsch, Lívia; Vainstein, Marilene Henning; de Vasconcelos, Ana Tereza Ribeiro; Schrank, Augusto

    2014-09-29

    Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.

  9. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    PubMed Central

    Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

  10. Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection

    PubMed Central

    Dolezal, Pavel; Aili, Margareta; Tong, Janette; Jiang, Jhih-Hang; Marobbio, Carlo M.; Lee, Sau fung; Schuelein, Ralf; Belluzzo, Simon; Binova, Eva; Mousnier, Aurelie; Frankel, Gad; Giannuzzi, Giulia; Palmieri, Ferdinando; Gabriel, Kipros; Naderer, Thomas; Hartland, Elizabeth L.; Lithgow, Trevor

    2012-01-01

    The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionella nucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms. PMID:22241989

  11. The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages.

    PubMed

    Evavold, Charles L; Ruan, Jianbin; Tan, Yunhao; Xia, Shiyu; Wu, Hao; Kagan, Jonathan C

    2018-01-16

    The interleukin-1 (IL-1) family cytokines are cytosolic proteins that exhibit inflammatory activity upon release into the extracellular space. These factors are released following various cell death processes, with pyroptosis being a common mechanism. Recently, it was recognized that phagocytes can achieve a state of hyperactivation, which is defined by their ability to secrete IL-1 while retaining viability, yet it is unclear how IL-1 can be secreted from living cells. Herein, we report that the pyroptosis regulator gasdermin D (GSDMD) was necessary for IL-1β secretion from living macrophages that have been exposed to inflammasome activators, such as bacteria and their products or host-derived oxidized lipids. Cell- and liposome-based assays demonstrated that GSDMD pores were required for IL-1β transport across an intact lipid bilayer. These findings identify a non-pyroptotic function for GSDMD, and raise the possibility that GSDMD pores represent conduits for the secretion of cytosolic cytokines under conditions of cell hyperactivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Computational Identification and Comparative Analysis of Secreted and Transmembrane Proteins in Six Burkholderia Species.

    PubMed

    Nguyen, Thao Thi; Lee, Hyun-Hee; Park, Jungwook; Park, Inmyoung; Seo, Young-Su

    2017-04-01

    As a step towards discovering novel pathogenesis-related proteins, we performed a genome scale computational identification and characterization of secreted and transmembrane (TM) proteins, which are mainly responsible for bacteria-host interactions and interactions with other bacteria, in the genomes of six representative Burkholderia species. The species comprised plant pathogens ( B. glumae BGR1, B. gladioli BSR3), human pathogens ( B. pseudomallei K96243, B. cepacia LO6), and plant-growth promoting endophytes ( Burkholderia sp. KJ006, B. phytofirmans PsJN). The proportions of putative classically secreted proteins (CSPs) and TM proteins among the species were relatively high, up to approximately 20%. Lower proportions of putative type 3 non-classically secreted proteins (T3NCSPs) (~10%) and unclassified non-classically secreted proteins (NCSPs) (~5%) were observed. The numbers of TM proteins among the three clusters (plant pathogens, human pathogens, and endophytes) were different, while the distribution of these proteins according to the number of TM domains was conserved in which TM proteins possessing 1, 2, 4, or 12 TM domains were the dominant groups in all species. In addition, we observed conservation in the protein size distribution of the secreted protein groups among the species. There were species-specific differences in the functional characteristics of these proteins in the various groups of CSPs, T3NCSPs, and unclassified NCSPs. Furthermore, we assigned the complete sets of the conserved and unique NCSP candidates of the collected Burkholderia species using sequence similarity searching. This study could provide new insights into the relationship among plant-pathogenic, human-pathogenic, and endophytic bacteria.

  13. A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function

    PubMed Central

    Tomalka, Amanda G.; Stopford, Charles M.; Lee, Pei-Chung; Rietsch, Arne

    2012-01-01

    Summary Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the P. aeruginosa translocator protein PopD as a model to identify its export signals. The amino-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone-binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells. PMID:23121689

  14. MatureP: prediction of secreted proteins with exclusive information from their mature regions.

    PubMed

    Orfanoudaki, Georgia; Markaki, Maria; Chatzi, Katerina; Tsamardinos, Ioannis; Economou, Anastassios

    2017-06-12

    More than a third of the cellular proteome is non-cytoplasmic. Most secretory proteins use the Sec system for export and are targeted to membranes using signal peptides and mature domains. To specifically analyze bacterial mature domain features, we developed MatureP, a classifier that predicts secretory sequences through features exclusively computed from their mature domains. MatureP was trained using Just Add Data Bio, an automated machine learning tool. Mature domains are predicted efficiently with ~92% success, as measured by the Area Under the Receiver Operating Characteristic Curve (AUC). Predictions were validated using experimental datasets of mutated secretory proteins. The features selected by MatureP reveal prominent differences in amino acid content between secreted and cytoplasmic proteins. Amino-terminal mature domain sequences have enhanced disorder, more hydroxyl and polar residues and less hydrophobics. Cytoplasmic proteins have prominent amino-terminal hydrophobic stretches and charged regions downstream. Presumably, secretory mature domains comprise a distinct protein class. They balance properties that promote the necessary flexibility required for the maintenance of non-folded states during targeting and secretion with the ability of post-secretion folding. These findings provide novel insight in protein trafficking, sorting and folding mechanisms and may benefit protein secretion biotechnology.

  15. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family.

    PubMed

    Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N

    2010-10-27

    Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  16. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins.

    PubMed

    Takahara, Terunao; Inoue, Kuniko; Arai, Yumika; Kuwata, Keiko; Shibata, Hideki; Maki, Masatoshi

    2017-10-13

    Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6 ), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that M APK1- i nteracting and s pindle- s tabilizing (MISS)- l ike (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of se creted a lkaline p hosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Strain Breeding Enhanced Heterologous Cellobiohydrolase Secretion by Saccharomyces cerevisiae in a Protein Specific Manner.

    PubMed

    Kroukamp, Heinrich; den Haan, Riaan; la Grange, Daniël C; Sibanda, Ntsako; Foulquié-Moreno, Maria R; Thevelein, Johan M; van Zyl, Willem H

    2017-10-01

    The yeast Saccharomyces cerevisiae has a long association with alcoholic fermentation industries and has received renewed interest as a biocatalyst for second-generation bioethanol production. Rational engineering strategies are used to create yeast strains for consolidated bioprocessing of lignocellulosic biomass. Although significant progress is made in this regard with the expression of different cellulolytic activities in yeast, cellobiohydrolase (CBH) titers remain well below ideal levels. Through classical breeding, S. cerevisiae strains with up to twofold increased CBH secretion titers is obtained in strains expressing a single gene copy. An increase of up to 3.5-fold in secreted cellobiohydrolase activity is subsequently shown for strains expressing the heterologous gene on a high copy episomal vector. To our knowledge, this is the first report of classical breeding being used to enhance heterologous protein secretion and also the most significant enhancement of CBH secretion in yeast yet reported. This enhanced secretion phenotype is specific for cellobiohydrolase I secretion, indicating that reporter protein properties might be a major determining factor for efficient protein secretion in yeast. By exploring the latent potential of different S. cerevisiae strains, the authors show that the allele pool of various strains is a valuable engineering resource to enhance secretion in yeast. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Protein Secretion Is Required for Pregnancy-Associated Plasma Protein-A to Promote Lung Cancer Growth In Vivo

    PubMed Central

    Pan, Hong; Hanada, Sayaka; Zhao, Jun; Mao, Li; Ma, Mark Zhi-Qing

    2012-01-01

    Pregnancy-associated plasma protein-A (PAPPA) has been reported to regulate the activity of insulin-like growth factor (IGF) signal pathway through proteolytic degradation of IGF binding proteins (IGFBPs) thereby increasing the local concentration of free IGFs available to receptors. In this study we found that PAPPA is secreted from two out of seven lung cancer cell lines examined. None of immortalized normal bronchial epithelial cells (HBE) tested secrets PAPPA. There is no correlation between expression level and secretion of PAPPA in these cells. A cell line over-expressing PAPPA accompanied with secretion shows no notable changes in proliferation under cell culture conditions in vitro, but displays significantly augmentation of tumor growth in vivo in a xenograft model. In contrast, a cell line over-expressing PAPPA without secretion exhibits reduction of tumor growth both in vitro and in vivo. Down-regulation of PAPPA expression and secretion by RNAi knockdown decreases tumor growth after implanted in vivo. The tumor promoting activity of PAPPA appears to be mediated mainly through augmentation of the IGF signaling pathway as indicated by notable increases in downstream Akt kinase phosphorylation in tumor samples. Our results indicate that PAPPA secretion may play an important role in lung cancer growth and progression. PMID:23152806

  19. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles

    DOE PAGES

    Fan, Yao; Tan, Kemin; Chhor, Gekleng; ...

    2015-07-03

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (~10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for twomore » alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown.« less

  20. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family

    PubMed Central

    2010-01-01

    Background Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein. PMID:20979600

  1. The Effect of α-Mating Factor Secretion Signal Mutations on Recombinant Protein Expression in Pichia pastoris

    PubMed Central

    Lin-Cereghino, Geoff P.; Stark, Carolyn M.; Kim, Daniel; Chang, Jennifer; Shaheen, Nadia; Poerwanto, Hansel; Agari, Kimiko; Moua, Pachai; Low, Lauren K.; Tran, Namphuong; Huang, Amy D.; Nattestad, Maria; Oshiro, Kristin T.; Chang, John William; Chavan, Archana; Tsai, Jerry W.; Lin-Cereghino, Joan

    2013-01-01

    The methylotrophic yeast, Pichia pastoris, has been genetically engineered to produce many heterologous proteins for industrial and research purposes. In order to secrete proteins for easier purification from the extracellular medium, the coding sequence of recombinant proteins are initially fused to the Saccharomyces cerevisiae α-mating factor secretion signal leader. Extensive site-directed mutagenesis of the prepro region of the α-mating factor secretion signal sequence was performed in order to determine the effects of various deletions and substitutions on expression. Though some mutations clearly dampened protein expression, deletion of amino acids 57-70, corresponding to the predicted 3rd alpha helix of α-mating factor secretion signal, increased secretion of reporter proteins horseradish peroxidase and lipase at least 50% in small-scale cultures. These findings raise the possibility that the secretory efficiency of the leader can be further enhanced in the future. PMID:23454485

  2. Large-Scale Gene Disruption in Magnaporthe oryzae Identifies MC69, a Secreted Protein Required for Infection by Monocot and Dicot Fungal Pathogens

    PubMed Central

    Saitoh, Hiromasa; Fujisawa, Shizuko; Mitsuoka, Chikako; Ito, Akiko; Hirabuchi, Akiko; Ikeda, Kyoko; Irieda, Hiroki; Yoshino, Kae; Yoshida, Kentaro; Matsumura, Hideo; Tosa, Yukio; Win, Joe; Kamoun, Sophien; Takano, Yoshitaka; Terauchi, Ryohei

    2012-01-01

    To search for virulence effector genes of the rice blast fungus, Magnaporthe oryzae, we carried out a large-scale targeted disruption of genes for 78 putative secreted proteins that are expressed during the early stages of infection of M. oryzae. Disruption of the majority of genes did not affect growth, conidiation, or pathogenicity of M. oryzae. One exception was the gene MC69. The mc69 mutant showed a severe reduction in blast symptoms on rice and barley, indicating the importance of MC69 for pathogenicity of M. oryzae. The mc69 mutant did not exhibit changes in saprophytic growth and conidiation. Microscopic analysis of infection behavior in the mc69 mutant revealed that MC69 is dispensable for appressorium formation. However, mc69 mutant failed to develop invasive hyphae after appressorium formation in rice leaf sheath, indicating a critical role of MC69 in interaction with host plants. MC69 encodes a hypothetical 54 amino acids protein with a signal peptide. Live-cell imaging suggested that fluorescently labeled MC69 was not translocated into rice cytoplasm. Site-directed mutagenesis of two conserved cysteine residues (Cys36 and Cys46) in the mature MC69 impaired function of MC69 without affecting its secretion, suggesting the importance of the disulfide bond in MC69 pathogenicity function. Furthermore, deletion of the MC69 orthologous gene reduced pathogenicity of the cucumber anthracnose fungus Colletotrichum orbiculare on both cucumber and Nicotiana benthamiana leaves. We conclude that MC69 is a secreted pathogenicity protein commonly required for infection of two different plant pathogenic fungi, M. oryzae and C. orbiculare pathogenic on monocot and dicot plants, respectively. PMID:22589729

  3. Purification of FLAG-tagged Secreted Proteins from Mammalian Cells

    PubMed Central

    Itakura, Eisuke; Chen, Changchun; de Bono, Mario

    2017-01-01

    This protocol describes a method for purifying glycosylated FLAG-tagged secreted proteins with disulfide bonds from mammalian cells. The purified products can be used for various applications, such as ligand binding assays. PMID:29075655

  4. Fluoride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion.

    PubMed

    Sharma, Ramaswamy; Tsuchiya, Masahiro; Bartlett, John D

    2008-09-01

    Exposure to excessive amounts of fluoride (F(-)) causes dental fluorosis in susceptible individuals; however, the mechanism of F(-)-induced toxicity is unclear. Previously, we have shown that high-dose F(-) activates the unfolded protein response (UPR) in ameloblasts that are responsible for dental enamel formation. The UPR is a signaling pathway responsible for either alleviating endoplasmic reticulum (ER) stress or for inducing apoptosis of the stressed cells. In this study we determined if low-dose F(-) causes ER stress and activates the UPR, and we also determined whether F(-) interferes with the secretion of proteins from the ER. We stably transfected the ameloblast-derived LS8 cell line with secreted alkaline phosphatase (SEAP) and determined activity and localization of SEAP and F(-)-mediated induction of UPR proteins. Also, incisors from mice given drinking water containing various concentrations of F(-) were examined for eucaryotic initiation factor-2, subunit alpha (eIF2alpha) phosphorylation. We found that F(-) decreases the extracellular secretion of SEAP in a linear, dose-dependent manner. We also found a corresponding increase in the intracellular accumulation of SEAP after exposure to F(-). These changes are associated with the induction of UPR proteins such as the molecular chaperone BiP and phosphorylation of the UPR sensor PKR-like ER kinase, and its substrate, eIF2alpha. Importantly, F(-)-induced phosphorylation of eIF2alphawas confirmed in vivo. These data suggest that F(-) initiates an ER stress response in ameloblasts that interferes with protein synthesis and secretion. Consequently, ameloblast function during enamel development may be impaired, and this may culminate in dental fluorosis.

  5. Fluoride Induces Endoplasmic Reticulum Stress and Inhibits Protein Synthesis and Secretion

    PubMed Central

    Sharma, Ramaswamy; Tsuchiya, Masahiro; Bartlett, John D.

    2008-01-01

    Background Exposure to excessive amounts of fluoride (F−) causes dental fluorosis in susceptible individuals; however, the mechanism of F−-induced toxicity is unclear. Previously, we have shown that high-dose F− activates the unfolded protein response (UPR) in ameloblasts that are responsible for dental enamel formation. The UPR is a signaling pathway responsible for either alleviating endoplasmic reticulum (ER) stress or for inducing apoptosis of the stressed cells. Objectives In this study we determined if low-dose F− causes ER stress and activates the UPR, and we also determined whether F− interferes with the secretion of proteins from the ER. Methods We stably transfected the ameloblast-derived LS8 cell line with secreted alkaline phosphatase (SEAP) and determined activity and localization of SEAP and F−-mediated induction of UPR proteins. Also, incisors from mice given drinking water containing various concentrations of F− were examined for eucaryotic initiation factor-2, subunit alpha (eIF2α) phosphorylation. Results We found that F− decreases the extracellular secretion of SEAP in a linear, dose-dependent manner. We also found a corresponding increase in the intracellular accumulation of SEAP after exposure to F−. These changes are associated with the induction of UPR proteins such as the molecular chaperone BiP and phosphorylation of the UPR sensor PKR-like ER kinase, and its substrate, eIF2α. Importantly, F−-induced phosphorylation of eIF2αwas confirmed in vivo. Conclusions These data suggest that F− initiates an ER stress response in ameloblasts that interferes with protein synthesis and secretion. Consequently, ameloblast function during enamel development may be impaired, and this may culminate in dental fluorosis. PMID:18795154

  6. Non-Cationic Proteins Are Associated with HIV Neutralizing Activity in Genital Secretions of Female Sex Workers.

    PubMed

    Birse, Kenzie D M; Cole, Amy L; Hirbod, Taha; McKinnon, Lyle; Ball, Terry B; Westmacott, Garrett R; Kimani, Joshua; Plummer, Frank; Cole, Alexander M; Burgener, Adam; Broliden, Kristina

    2015-01-01

    Cationic proteins found in cervicovaginal secretions (CVS) are known to contribute to the early antiviral immune response against HIV-infection in vitro. We here aimed to define additional antiviral factors that are over-expressed in CVS from female sex workers at high risk of infection. CVS were collected from Kenyan HIV-seronegative (n = 34) and HIV-seropositive (n = 12) female sex workers, and were compared with those from HIV-seronegative low-risk women (n = 12). The highly exposed seronegative (HESN) sex workers were further divided into those with less (n = 22) or more (n = 12) than three years of documented sex work. Cationic protein-depleted CVS were assessed for HIV-neutralizing activity by a PBMC-based HIV-neutralizing assay, and then characterized by proteomics. HIV neutralizing activity was detected in all unprocessed CVS, however only CVS from the female sex worker groups maintained its HIV neutralizing activity after cationic protein-depletion. Differentially abundant proteins were identified in the cationic protein-depleted secretions including 26, 42, and 11 in the HESN>3 yr, HESN<3 yr, and HIV-positive groups, respectively. Gene ontology placed these proteins into functional categories including proteolysis, oxidation-reduction, and epidermal development. The proteins identified in this study include proteins previously associated with the HESN phenotype in other cohorts as well as novel proteins not yet associated with anti-HIV activities. While cationic proteins appear to contribute to the majority of the intrinsic HIV neutralizing activity in the CVS of low-risk women, a broader range of non-cationic proteins were associated with HIV neutralizing activity in HESN and HIV-positive female sex workers. These results indicate that novel protein factors found in CVS of women with high-risk sexual practices may have inherent antiviral activity, or are involved in other aspects of anti-HIV host defense, and warrant further exploration into their mode

  7. Proteins Exported via the PrsD-PrsE Type I Secretion System and the Acidic Exopolysaccharide Are Involved in Biofilm Formation by Rhizobium leguminosarum

    PubMed Central

    Russo, Daniela M.; Williams, Alan; Edwards, Anne; Posadas, Diana M.; Finnie, Christine; Dankert, Marcelo; Downie, J. Allan; Zorreguieta, Angeles

    2006-01-01

    The type I protein secretion system of Rhizobium leguminosarum bv. viciae encoded by the prsD and prsE genes is responsible for secretion of the exopolysaccharide (EPS)-glycanases PlyA and PlyB. The formation of a ring of biofilm on the surface of the glass in shaken cultures by both the prsD and prsE secretion mutants was greatly affected. Confocal laser scanning microscopy analysis of green-fluorescent-protein-labeled bacteria showed that during growth in minimal medium, R. leguminosarum wild type developed microcolonies, which progress to a characteristic three-dimensional biofilm structure. However, the prsD and prsE secretion mutants were able to form only an immature biofilm structure. A mutant disrupted in the EPS-glycanase plyB gene showed altered timing of biofilm formation, and its structure was atypical. A mutation in an essential gene for EPS synthesis (pssA) or deletion of several other pss genes involved in EPS synthesis completely abolished the ability of R. leguminosarum to develop a biofilm. Extracellular complementation studies of mixed bacterial cultures confirmed the role of the EPS and the modulation of the biofilm structure by the PrsD-PrsE secreted proteins. Protein analysis identified several additional proteins secreted by the PrsD-PrsE secretion system, and N-terminal sequencing revealed peptides homologous to the N termini of proteins from the Rap family (Rhizobium adhering proteins), which could have roles in cellular adhesion in R. leguminosarum. We propose a model for R. leguminosarum in which synthesis of the EPS leads the formation of a biofilm and several PrsD-PrsE secreted proteins are involved in different aspects of biofilm maturation, such as modulation of the EPS length or mediating attachment between bacteria. PMID:16740954

  8. Comparative analysis of secretomes from Ectomycorrhizal fungi with an emphasis on small-secreted proteins

    DOE PAGES

    Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.; ...

    2015-11-18

    Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict andmore » analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. As a result, ECM fungi shared lifestyle-specific SSPs

  9. Comparative analysis of secretomes from Ectomycorrhizal fungi with an emphasis on small-secreted proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.

    Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict andmore » analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. As a result, ECM fungi shared lifestyle-specific SSPs

  10. Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins

    PubMed Central

    Pellegrin, Clement; Morin, Emmanuelle; Martin, Francis M.; Veneault-Fourrey, Claire

    2015-01-01

    Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict and analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. ECM fungi shared lifestyle-specific SSPs likely involved in

  11. Type III secretion system effector proteins: double agents in bacterial disease and plant defense.

    PubMed

    Alfano, James R; Collmer, Alan

    2004-01-01

    Many phytopathogenic bacteria inject virulence effector proteins into plant cells via a Hrp type III secretion system (TTSS). Without the TTSS, these pathogens cannot defeat basal defenses, grow in plants, produce disease lesions in hosts, or elicit the hypersensitive response (HR) in nonhosts. Pathogen genome projects employing bioinformatic methods to identify TTSS Hrp regulon promoters and TTSS pathway targeting signals suggest that phytopathogenic Pseudomonas, Xanthomonas, and Ralstonia spp. harbor large arsenals of effectors. The Hrp TTSS employs customized cytoplasmic chaperones, conserved export components in the bacterial envelope (also used by the TTSS of animal pathogens), and a more specialized set of TTSS-secreted proteins to deliver effectors across the plant cell wall and plasma membrane. Many effectors can act as molecular double agents that betray the pathogen to plant defenses in some interactions and suppress host defenses in others. Investigations of the functions of effectors within plant cells have demonstrated the plasma membrane and nucleus as subcellular sites for several effectors, revealed some effectors to possess cysteine protease or protein tyrosine phosphatase activity, and provided new clues to the coevolution of bacterium-plant interactions.

  12. Structural characterization of the α-mating factor prepro-peptide for secretion of recombinant proteins in Pichia pastoris.

    PubMed

    Chahal, Sabreen; Wei, Peter; Moua, Pachai; Park, Sung Pil James; Kwon, Janet; Patel, Arth; Vu, Anthony T; Catolico, Jason A; Tsai, Yu Fang Tina; Shaheen, Nadia; Chu, Tiffany T; Tam, Vivian; Khan, Zill-E-Huma; Joo, Hyun Henry; Xue, Liang; Lin-Cereghino, Joan; Tsai, Jerry W; Lin-Cereghino, Geoff P

    2017-01-20

    The methylotrophic yeast Pichia pastoris has been used extensively for expressing recombinant proteins because it combines the ease of genetic manipulation, the ability to provide complex posttranslational modifications and the capacity for efficient protein secretion. The most successful and commonly used secretion signal leader in Pichia pastoris has been the alpha mating factor (MATα) prepro secretion signal. However, limitations exist as some proteins cannot be secreted efficiently, leading to strategies to enhance secretion efficiency by modifying the secretion signal leader. Based on a Jpred secondary structure prediction and knob-socket modeling of tertiary structure, numerous deletions and duplications of the MATα prepro leader were engineered to evaluate the correlation between predicted secondary structure and the secretion level of the reporters horseradish peroxidase (HRP) and Candida antarctica lipase B. In addition, circular dichroism analyses were completed for the wild type and several mutant pro-peptides to evaluate actual differences in secondary structure. The results lead to a new model of MATα pro-peptide signal leader, which suggests that the N and C-termini of MATα pro-peptide need to be presented in a specific orientation for proper interaction with the cellular secretion machinery and for efficient protein secretion. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The subcommissural organ of the rat secretes Reissner's fiber glycoproteins and CSF-soluble proteins reaching the internal and external CSF compartments

    PubMed Central

    Vio, Karin; Rodríguez, Sara; Yulis, Carlos R; Oliver, Cristian; Rodríguez, Esteban M

    2008-01-01

    Background The subcommissural organ (SCO) is a highly conserved brain gland present throughout the vertebrate phylum; it secretes glycoproteins into the cerebrospinal fluid (CSF), where they aggregate to form Reissner's fiber (RF). SCO-spondin is the major constituent protein of RF. Evidence exists that the SCO also secretes proteins that remain soluble in the CSF. The aims of the present investigation were: (i) to identify and partially characterize the SCO-secretory compounds present in the SCO gland itself and in the RF of the Sprague-Dawley rat and non-hydrocephalic hyh mouse, and in the CSF of rat; (ii) to make a comparative analysis of the proteins present in these three compartments; (iii) to identify the proteins secreted by the SCO into the CSF at different developmental periods. Methods The proteins of the SCO secreted into the CSF were studied (i) by injecting specific antibodies into ventricular CSF in vivo; (ii) by immunoblots of SCO, RF and CSF samples, using specific antibodies against the SCO secretory proteins (AFRU and anti-P15). In addition, the glycosylated nature of SCO-compounds was analysed by concanavalin A and wheat germ agglutinin binding. To analyse RF-glycoproteins, RF was extracted from the central canal of juvenile rats and mice; to investigate the CSF-soluble proteins secreted by the SCO, CSF samples were collected from the cisterna magna of rats at different stages of development (from E18 to PN30). Results Five glycoproteins were identified in the rat SCO with apparent molecular weights of 630, 450, 390, 320 and 200 kDa. With the exception of the 200-kDa compound, all other compounds present in the rat SCO were also present in the mouse SCO. The 630 and 390 kDa compounds of the rat SCO have affinity for concanavalin A but not for wheat germ agglutinin, suggesting that they correspond to precursor forms. Four of the AFRU-immunoreactive compounds present in the SCO (630, 450, 390, 320 kDa) were absent from the RF and CSF. These may be

  14. Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties

    PubMed Central

    Fessart, Delphine; Domblides, Charlotte; Avril, Tony; Eriksson, Leif A; Begueret, Hugues; Pineau, Raphael; Malrieux, Camille; Dugot-Senant, Nathalie; Lucchesi, Carlo; Chevet, Eric; Delom, Frederic

    2016-01-01

    The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.13887.001 PMID:27240165

  15. Protein-Phospholipid Interactions in Nonclassical Protein Secretion: Problem and Methods of Study

    PubMed Central

    Prudovsky, Igor; Kumar, Thallapuranam Krishnaswamy Suresh; Sterling, Sarah; Neivandt, David

    2013-01-01

    Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF) 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i) Phenomenon of nonclassical protein release and its biological significance; (ii) Composition of the FGF1 multiprotein release complex (MRC); (iii) The relationship between FGF1 export and acidic phospholipid externalization; (iv) Interactions of FGF1 MRC components with acidic phospholipids; (v) Methods to study the transmembrane translocation of proteins; (vi) Membrane models to study nonclassical protein release. PMID:23396106

  16. NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages.

    PubMed

    Saad, Maged M; Kobayashi, Hajime; Marie, Corinne; Brown, Ian R; Mansfield, John W; Broughton, William J; Deakin, William J

    2005-02-01

    Rhizobium sp. strain NGR234 possesses a functional type three secretion system (TTSS), through which a number of proteins, called nodulation outer proteins (Nops), are delivered to the outside of the cell. A major constraint to the identification of Nops is their low abundance in the supernatants of NGR234 strains grown in culture. To overcome this limitation, a more sensitive proteomics-based strategy was developed. Secreted proteins from wild-type NGR234 were separated by two-dimensional gel electrophoresis, and the gel was compared to similar gels containing the proteins from a TTSS mutant (NGROmegarhcN). To identify the proteins, spots unique to the NGR234 gels were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and the data were compared to the sequence of the symbiotic plasmid of NGR234. A nonpolar mutant of one of these proteins was generated called NopB. NopB is required for Nop secretion but inhibits the interaction with Pachyrhizus tuberosus and augments nodulation of Tephrosia vogelii. Flavonoids and a functional TTSS are required for the formation of some surface appendages on NGR234. In situ immunogold labeling and isolation of these pili showed that they contain NopB.

  17. NopB, a Type III Secreted Protein of Rhizobium sp. Strain NGR234, Is Associated with Pilus-Like Surface Appendages

    PubMed Central

    Saad, Maged M.; Kobayashi, Hajime; Marie, Corinne; Brown, Ian R.; Mansfield, John W.; Broughton, William J.; Deakin, William J.

    2005-01-01

    Rhizobium sp. strain NGR234 possesses a functional type three secretion system (TTSS), through which a number of proteins, called nodulation outer proteins (Nops), are delivered to the outside of the cell. A major constraint to the identification of Nops is their low abundance in the supernatants of NGR234 strains grown in culture. To overcome this limitation, a more sensitive proteomics-based strategy was developed. Secreted proteins from wild-type NGR234 were separated by two-dimensional gel electrophoresis, and the gel was compared to similar gels containing the proteins from a TTSS mutant (NGRΩrhcN). To identify the proteins, spots unique to the NGR234 gels were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and the data were compared to the sequence of the symbiotic plasmid of NGR234. A nonpolar mutant of one of these proteins was generated called NopB. NopB is required for Nop secretion but inhibits the interaction with Pachyrhizus tuberosus and augments nodulation of Tephrosia vogelii. Flavonoids and a functional TTSS are required for the formation of some surface appendages on NGR234. In situ immunogold labeling and isolation of these pili showed that they contain NopB. PMID:15659692

  18. Proteomics of Dense Core Secretory Vesicles Reveal Distinct Protein Categories for Secretion of Neuroeffectors for Cell-Cell Communication

    PubMed Central

    Wegrzyn, Jill L.; Bark, Steven J.; Funkelstein, Lydiane; Mosier, Charles; Yap, Angel; Kazemi-Esfarjani, Parasa; La Spada, Albert; Sigurdson, Christina; O’Connor, Daniel T.; Hook, Vivian

    2010-01-01

    Regulated secretion of neurotransmitters and neurohumoural factors from dense core secretory vesicles provides essential neuroeffectors for cell-cell communication in the nervous and endocrine systems. This study provides comprehensive proteomic characterization of the categories of proteins in chromaffin dense core secretory vesicles that participate in cell-cell communication from the adrenal medulla. Proteomic studies were conducted by nano-HPLC Chip MS/MS tandem mass spectrometry. Results demonstrate that these secretory vesicles contain proteins of distinct functional categories consisting of neuropeptides and neurohumoural factors, protease systems, neurotransmitter enzymes and transporters, receptors, enzymes for biochemical processes, reduction/oxidation regulation, ATPases, protein folding, lipid biochemistry, signal transduction, exocytosis, calcium regulation, as well as structural and cell adhesion proteins. The secretory vesicle proteomic data identified 371 distinct proteins in the soluble fraction and 384 distinct membrane proteins, for a total of 686 distinct secretory vesicle proteins. Notably, these proteomic analyses illustrate the presence of several neurological disease-related proteins in these secretory vesicles, including huntingtin interacting protein, cystatin C, ataxin 7, and prion protein. Overall, these findings demonstrate that multiple protein categories participate in dense core secretory vesicles for production, storage, and secretion of bioactive neuroeffectors for cell-cell communication in health and disease. PMID:20695487

  19. Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1), a Hybrid Proline-Rich Protein from Arabidopsis

    PubMed Central

    Pitzschke, Andrea; Xue, Hui; Persak, Helene; Datta, Sneha; Seifert, Georg J.

    2016-01-01

    Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions. PMID:26771603

  20. Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1), a Hybrid Proline-Rich Protein from Arabidopsis.

    PubMed

    Pitzschke, Andrea; Xue, Hui; Persak, Helene; Datta, Sneha; Seifert, Georg J

    2016-01-12

    Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions.

  1. Bidirectional Modulation of Adipogenesis by the Secreted Protein Ccdc80/DRO1/URB*

    PubMed Central

    Tremblay, Frédéric; Revett, Tracy; Huard, Christine; Zhang, Ying; Tobin, James F.; Martinez, Robert V.; Gimeno, Ruth E.

    2009-01-01

    Adipocyte-secreted proteins play important roles in metabolic regulation through autocrine, paracrine, and endocrine mechanisms. Using transcriptional profiling, we identified coiled-coil domain containing 80 (Ccdc80; also known as DRO1 and URB) as a novel secreted protein highly expressed in white adipose tissue. In 3T3-L1 cells Ccdc80 is expressed and secreted in a biphasic manner with high levels in postconfluent preadipocytes and terminally differentiated adipocytes. To determine whether Ccdc80 regulates adipocyte differentiation, Ccdc80 expression was manipulated using both knockdown and overexpression approaches. Small hairpin RNA-mediated silencing of Ccdc80 in 3T3-L1 cells inhibits adipocyte differentiation. This phenotype was partially reversed by treating the knockdown cells with Ccdc80-containing conditioned medium from differentiated 3T3-L1 cells. Molecular studies indicate that Ccdc80 is required for the full inhibition of T-cell factor-mediated transcriptional activity, down-regulation of Wnt/β-catenin target genes during clonal expansion, and the subsequent induction of C/EBPα and peroxisome proliferator-activated receptor γ. Surprisingly, overexpression of Ccdc80 in 3T3-L1 cells also inhibits adipocyte differentiation without affecting the repression of the Wnt/β-catenin signaling pathway. Taken together, these data suggest that Ccdc80 plays dual roles in adipogenesis by mechanisms that involve at least in part down-regulation of Wnt/β-catenin signaling and induction of C/EBPα and peroxisome proliferator-activated receptor γ. PMID:19141617

  2. Subcellular location of secretory proteins retained in the liver during the ethanol-induced inhibition of hepatic protein secretion in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volentine, G.D.; Tuma, D.J.; Sorrell, M.F.

    1986-01-01

    Ethanol administration inhibits the secretion of proteins by the liver, resulting in their hepatocellular retention. Experiments were designed in this study to determine the subcellular location of the retained secretory proteins. Ethanol was administered acutely to nonfasted rats by gastric intubation, whereas control animals received an isocaloric dose of glucose. Two hours after intubation, when maximum blood ethanol levels (45 mM) were observed, (/sup 3/H)leucine and (/sup 14/C)fucose were injected simultaneously into the dorsal vein of the penis. The labelling of secretory proteins was determined in the liver and plasma at various time periods after label injection. Ethanol treatment decreasedmore » the secretion of both leucine- and fucose-labeled proteins into the plasma. This inhibition of secretion was accompanied by a corresponding increase in the hepatic retention of both leucine- and fucose-labeled immunoprecipitable secretory proteins. At the time of maximum inhibition of secretion, leucine labeled secretory proteins located in the Golgi apparatus represented about 50% of the accumulated secretory proteins in the livers of the ethanol-treated rats, whereas the remainder was essentially equally divided among the rough and smooth endoplasmic reticulum and cytosol. Because fucose is incorporated into secretory proteins almost exclusively in the Golgi complex, fucose-labeled proteins accumulated in the livers of the ethanol-treated rats mainly in the Golgi apparatus, with the remainder located in the cytosol. These results show that ethanol administration causes an impaired movement of secretory proteins along the secretory pathway, and that secretory proteins accumulate mainly, but not exclusively, in the Golgi apparatus.« less

  3. Dramatic secretion of recombinant protein expressed in tobacco cells with a designer glycopeptide tag is highly impacted by medium composition.

    PubMed

    Zhang, Ningning; Dolan, Maureen; Wu, Di; Phillips, Gregory C; Xu, Jianfeng

    2016-12-01

    Cell growth medium composition has profound impacts on the O -glycosylation of a "designer" arabinogalactan protein-based module; full glycosylation is essential in directing efficient extracellular secretion of the tagged recombinant protein. Expression of recombinant proteins in plant cells as fusion with a de novo designed hydroxyproline (Hyp)-O-glycosylated peptide (HypGP) tag, termed HypGP engineering technology, resulted in dramatically increased secreted protein yields. This is due to the function of the HypGP tag as a molecular carrier in promoting efficient transport of conjoined proteins into culture media. To optimize the cell culture to achieve the best secreted protein yields, the medium effects on the cell growth and protein secretion were investigated using as a model system the tobacco BY-2 cell expressing enhanced green fluorescence protein (EGFP) fused with a (SP) 32 tag (32 tandem repeats of "Ser-Pro" motif). The (SP) 32 tag was found to undergo two-stage Hyp-O-glycosylation in plant cells with the dramatic secretion of the conjoined EGFP correlating with the triggering of the second-stage glycosylation. The BY-2 cell culture in SH medium generated a high secreted protein yield (125 mg/L) with a low cell biomass accumulation (~7.5 gDW/L). In contrast, very low secreted protein yields (~1.5 mg/L) with a high cell biomass accumulation (13.5 gDW/L) were obtained in MS medium. The macronutrients, specifically, the nitrogen supply greatly impacted the glycosylation of the (SP) 32 tag and subsequent protein secretion. Modified MS medium with reduced nitrogen levels boosted the secreted EGFP yields to 168 mg/L. This study demonstrates the profound impacts of medium composition on the secreted yields of a HypGP-tagged protein, and provides a basis for medium design to achieve the highest productivity of the HypGP engineering technology.

  4. Correlating levels of type III secretion and secreted proteins with fecal shedding of Escherichia coli O157:H7 in cattle

    USDA-ARS?s Scientific Manuscript database

    The locus of enterocyte effacement (LEE) encodes a type III secretion system (T3SS) for secreting factors that enable Escherichia coli O157:H7 to produce attaching and effacing lesions (A/E) on epithelial cells. The importance of LEE-encoded proteins in intestinal colonization of cattle is well-stud...

  5. Apparent Inhibition of β-Fructosidase Secretion by Tunicamycin May Be Explained by Breakdown of the Unglycosylated Protein during Secretion 1

    PubMed Central

    Faye, Loïc; Chrispeels, Maarten J.

    1989-01-01

    Suspension-cultured carrot (Daucus carota) cells synthesize and secrete β-fructosidase, a glycoprotein with asparagine-linked glycans. Treatment of the cells with tunicamycin completely inhibits the apparent secretion of β-fructosidase as measured by the accumulation of the radioactive protein in the cell wall or the culture medium. In the past, such a result has been interpreted as an inhibition of secretion by tunicamycin, but we suggest another explanation based on the following results. In the presence of tunicamycin, unglycosylated β-fructosidase is synthesized and is associated with an endoplasmic-reticulum-rich microsomal fraction. Pulse-chase experiments show that the unglycosylated β-fructosidase does not remain in the cells and appears to be secreted in the same way as glycosylated β-fructosidase; however, no radioactive, unglycosylated β-fructosidase accumulates extracellularly (cell wall or medium). Protoplasts obtained from carrot cells secrete β-fructosidase protein and activity, and treatment of the protoplasts with tunicamycin results in the synthesis of unglycosylated β-fructosidase. In the presence of tunicamycin, there is no accumulation of β-fructosidase activity or unglycosylated β-fructosidase polypeptide in the protoplast incubation medium. These results are consistent with the interpretation that the glycans of β-fructosidase are necessary for its stability, and that in these suspension-cultured cells, the unglycosylated enzyme is degraded during the last stage(s) of secretion, or immediately after its arrival in the wall. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:16666631

  6. Carbachol-induced in vitro secretion of certain human submandibular proteins investigated by mass-spectrometry.

    PubMed

    Cabras, Tiziana; Castagnola, Massimo; Inzitari, Rosanna; Ekström, Jörgen; Isola, Michela; Riva, Alessandro; Messana, Irene

    2008-11-01

    To investigate protein content of saliva produced in vitro by samples of human submandibular gland following stimulation with the muscarinic agent carbachol. Tissue samples, obtained at surgery from seven patients and showing normal morphological appearance, were tested for 30 min: in absence of carbachol and atropine; in presence of carbachol (10 microM); in presence of carbachol (10 microM) and atropine (20 microM); or in presence of just atropine (20 microM). Medium was analysed by high-performance liquid chromatography-mass-spectrometry. Neither before nor during surgery were the patients exposed to drug treatments that were likely to influence the in vitro secretion. Proline-rich proteins (PRP)-1 and -3, peptide PC and PB, statherin, cystatins SN, S1 and S2 were invariably found in control gland tissue medium. Mean concentrations of these proteins/peptides in the medium were non-proportionally elevated following carbachol exposure to the gland tissues. Difference between basal release and carbachol-induced secretion achieved statistical significance as to all the proteins/peptides under study but for statherin. Atropine alone or atropine plus carbachol caused no significant changes compared to the basal release of proteins/peptides. In vitro studies on salivary glands make it possible to study protein secretion from individual glands and thus, to reveal the contribution of the various types of gland to protein/peptide content of whole saliva. The disproportional responses to carbachol may imply that the proteins/peptides are not confined to the same cells or to the same intracellular locations and are therefore not secreted as packages at parasympathetic cholinergic activity.

  7. Systematic Identification and Characterization of Novel Human Skin-Associated Genes Encoding Membrane and Secreted Proteins

    PubMed Central

    Buhren, Bettina Alexandra; Martinez, Cynthia; Schrumpf, Holger; Gasis, Marcia; Grether-Beck, Susanne; Krutmann, Jean

    2013-01-01

    Through bioinformatics analyses of a human gene expression database representing 105 different tissues and cell types, we identified 687 skin-associated genes that are selectively and highly expressed in human skin. Over 50 of these represent uncharacterized genes not previously associated with skin and include a subset that encode novel secreted and plasma membrane proteins. The high levels of skin-associated expression for eight of these novel therapeutic target genes were confirmed by semi-quantitative real time PCR, western blot and immunohistochemical analyses of normal skin and skin-derived cell lines. Four of these are expressed specifically by epidermal keratinocytes; two that encode G-protein-coupled receptors (GPR87 and GPR115), and two that encode secreted proteins (WFDC5 and SERPINB7). Further analyses using cytokine-activated and terminally differentiated human primary keratinocytes or a panel of common inflammatory, autoimmune or malignant skin diseases revealed distinct patterns of regulation as well as disease associations that point to important roles in cutaneous homeostasis and disease. Some of these novel uncharacterized skin genes may represent potential biomarkers or drug targets for the development of future diagnostics or therapeutics. PMID:23840300

  8. Regulation of hyaluronan secretion into rabbit synovial joints in vivo by protein kinase C

    PubMed Central

    Anggiansah, C L; Scott, D; Poli, A; Coleman, P J; Badrick, E; Mason, R M; Levick, J R

    2003-01-01

    Hyaluronan (HA) is important for joint cavitation, lubrication, volume regulation and synovial fluid drainage but little is known about the regulation of joint HA synthesis/secretion in vivo. We investigated whether HA secretion into joints in vivo can be regulated by protein kinase C (PKC). Secretion into the knee joint cavity of anaesthetised rabbits was measured over 6 h by washout and chromatography. Joints received intra-articular injections of Ringer vehicle (control) or an activator of classical PKC isoforms, phorbol-12-myristate-13-acetate (PMA), at 20–2000 ng ml−1. The effects of PKC inhibition by bisindolylmaleimide (BIM) and protein synthesis inhibition by cycloheximide (CX) on basal and stimulated HA secretion were also studied. The endogenous HA mass, 181 ± 8 μg (n = 26, mean ± s.e.m.), and basal secretion rate, 4.4 ± 0.4 μg h−1, indicated a turnover time of 41 h. Secretion rate showed a dose-dependent response to PMA (n = 30), rising 5-fold to 21.7 ± 5.0 μg h−1 (n = 5) at 2000 ng ml−1 PMA (P < 0.0001, one-way ANOVA). PMA-induced stimulation was partially suppressed by CX (HA secretion: 5.8 ± 1.7 μg h−1, n = 8, P < 0.01) and totally blocked by BIM (HA secretion: 3.2 ± 0.6 μg h−1, n = 9, P < 0.001). Basal HA secretion was unaffected by CX over 6 h (4.2 ± 0.7 μg h−1, n = 8) but was reduced by 29 % by BIM (3.1 ± 0.6 μg h−1, n = 10, P = 0.03). It is concluded that: (1) PKC can stimulate HA secretion into joints in vivo through mechanisms involving protein synthesis de novo as well as phosphorylation; (2) basal HA secretion is only partially PKC dependent; and (3) hyaluronan synthase turnover time is > 6 h in vivo, which is slower than in vitro (< 2–3 h). PMID:12766248

  9. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide.

    PubMed

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%-92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp.

  10. Common and Distinct Capsid and Surface Protein Requirements for Secretion of Complete and Genome-free Hepatitis B Virions.

    PubMed

    Ning, Xiaojun; Luckenbaugh, Laurie; Liu, Kuancheng; Bruss, Volker; Sureau, Camille; Hu, Jianming

    2018-05-09

    During the morphogenesis of hepatitis B virus (HBV), an enveloped virus, two types of virions are secreted: (1) a minor population of complete virions containing a mature nucleocapsid with the characteristic, partially double-stranded, relaxed circular DNA genome and (2) a major population containing an empty capsid with no DNA or RNA (empty virions). Secretion of both types of virions requires interactions between the HBV capsid or core protein (HBc) and the viral surface or envelope proteins. We have studied the requirements from both HBc and envelope proteins for empty virion secretion, in comparison with those for secretion of complete virions. Substitutions within the N-terminal domain of HBc that block secretion of DNA-containing virions reduced but did not prevent secretion of empty virions. The HBc C-terminal domain was not essential for empty virion secretion. Among the three viral envelope proteins, the smallest, S, alone was sufficient for empty virion secretion at a basal level. The largest protein, L, essential for complete virion secretion, was not required for, but could stimulate empty virion secretion. Also, substitutions in L that eliminate secretion of complete virions reduced but did not eliminate empty virion secretion. S mutations that block secretion of the hepatitis D virus (HDV), an HBV satellite, did not block secretion of either empty or complete HBV virions. Together, these results indicate that both common and distinct signals on empty capsids vs. mature nucleocapsids interact with the S and L proteins during the formation of complete vs. empty virions. IMPORTANCE Hepatitis B virus (HBV) is a major cause of severe liver diseases including cirrhosis and cancer. In addition to the complete infectious virion particle, which contains an outer envelope layer and an interior capsid that, in turn, encloses a DNA genome, HBV infected cells also secrete non-infectious, incomplete viral particles in large excess over the complete virions. In

  11. A Repulsive Electrostatic Mechanism for Protein Export through the Type III Secretion Apparatus

    PubMed Central

    Rathinavelan, Thenmalarchelvi; Zhang, Lingling; Picking, Wendy L.; Weis, David D.; De Guzman, Roberto N.; Im, Wonpil

    2010-01-01

    Abstract Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus, which is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. The trajectories reveal a screwlike rotation motion during the export of nativelike helix-turn-helix conformations. Interestingly, the channel interior with excessive electronegative potential creates an energy barrier for MxiH to enter the channel, whereas the same may facilitate the ejection of the effectors into host cells. Structurally known basal regions and ATPase underneath the basal region also have electronegative interiors. Effector proteins also have considerable electronegative potential patches on their surfaces. From these observations, we propose a repulsive electrostatic mechanism for protein translocation through the type III secretion apparatus. Based on this mechanism, the ATPase activity and/or proton motive force could be used to energize the protein translocation through these nanomachines. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported. PMID:20141759

  12. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    PubMed

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  13. A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands.

    PubMed

    DeMartini, Daniel G; Errico, John M; Sjoestroem, Sebastian; Fenster, April; Waite, J Herbert

    2017-06-01

    The adaptive attachment of marine mussels to a wide range of substrates in a high-energy, saline environment has been explored for decades and is a significant driver of bioinspired wet adhesion research. Mussel attachment relies on a fibrous holdfast known as the byssus, which is made by a specialized appendage called the foot. Multiple adhesive and structural proteins are rapidly synthesized, secreted and moulded by the foot into holdfast threads. About 10 well-characterized proteins, namely the mussel foot proteins (Mfps), the preCols and the thread matrix proteins, are reported as representing the bulk of these structures. To explore how robust this proposition is, we sequenced the transcriptome of the glandular tissues that produce and secrete the various holdfast components using next-generation sequencing methods. Surprisingly, we found around 15 highly expressed genes that have not previously been characterized, but bear key similarities to the previously defined mussel foot proteins, suggesting additional contribution to byssal function. We verified the validity of these transcripts by polymerase chain reaction, cloning and Sanger sequencing as well as confirming their presence as proteins in the byssus. These newly identified proteins greatly expand the palette of mussel holdfast biochemistry and provide new targets for investigation into bioinspired wet adhesion. © 2017 The Author(s).

  14. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  15. SNARE-encoding genes VdSec22 and VdSso1 mediate protein secretion required for full virulence in Verticillium dahliae

    USDA-ARS?s Scientific Manuscript database

    Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle fusion components that included 22 soluble N-ethylmaleimide...

  16. Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein

    PubMed Central

    Alcoforado Diniz, Juliana

    2015-01-01

    ABSTRACT The type VI secretion system (T6SS) is widespread in Gram-negative bacteria and can deliver toxic effector proteins into eukaryotic cells or competitor bacteria. Antibacterial T6SSs are increasingly recognized as key mediators of interbacterial competition and may contribute to the outcome of many polymicrobial infections. Multiple antibacterial effectors can be delivered by these systems, with diverse activities against target cells and distinct modes of secretion. Polymorphic toxins containing Rhs repeat domains represent a recently identified and as-yet poorly characterized class of T6SS-dependent effectors. Previous work had revealed that the potent antibacterial T6SS of the opportunistic pathogen Serratia marcescens promotes intraspecies as well as interspecies competition (S. L. Murdoch, K. Trunk, G. English, M. J. Fritsch, E. Pourkarimi, and S. J. Coulthurst, J Bacteriol 193:6057–6069, 2011, http://dx.doi.org/10.1128/JB.05671-11). In this study, two new Rhs family antibacterial effectors delivered by this T6SS have been identified. One of these was shown to act as a DNase toxin, while the other contains a novel, cytoplasmic-acting toxin domain. Importantly, using S. marcescens, it has been demonstrated for the first time that Rhs proteins, rather than other T6SS-secreted effectors, can be the primary determinant of intraspecies competition. Furthermore, a new family of accessory proteins associated with T6SS effectors has been identified, exemplified by S. marcescens EagR1, which is specifically required for deployment of its associated Rhs effector. Together, these findings provide new insight into how bacteria can use the T6SS to deploy Rhs-family effectors and mediate different types of interbacterial interactions. IMPORTANCE Infectious diseases caused by bacterial pathogens represent a continuing threat to health and economic prosperity. To counter this threat, we must understand how such organisms survive and prosper. The type VI secretion

  17. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  18. THE SECRETION OF DIGESTIVE ENZYMES AND CAECAL SIZE ARE DETERMINED BY DIETARY PROTEIN IN THE CRICKET Gryllus bimaculatus.

    PubMed

    Woodring, Joseph; Weidlich, Sandy

    2016-11-01

    In Gryllus bimaculatus, the size of the caecum decreases in the latter half of each instar to a stable minimal size with a steady minimal rate of digestive enzyme secretion until feeding resumes after ecdysis. The higher the percent protein in the newly ingested food, the faster and larger the caecum grows, and as a consequent the higher the secretion rate of trypsin and amylase. When hard boiled eggs (40% protein) are eaten the caecum is 2× larger, the trypsin secretion is almost 3× greater, and amylase 2.5× greater then when fed the same amount of apples (1.5% protein). Only dietary protein increases amylase secretion, whereas dietary carbohydrates have no effect on amylase secretion. The minimal caecal size and secretion rate must be supported by utilization of hemolymph amino acids, but the growth of the caecum and increasing enzymes secretions after the molt depend upon an amino acid source in the lumen. This simple regulation of digestive enzyme secretion is ideal for animals that must stop feeding in order to molt. This basic control system does not preclude additional regulation mechanisms, such as prandal, which is also indicated for G. bimaculatus, or even paramonal regulation. © 2016 Wiley Periodicals, Inc.

  19. Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum.

    PubMed

    Claustre, Jean; Toumi, Férial; Trompette, Aurélien; Jourdan, Gérard; Guignard, Henri; Chayvialle, Jean Alain; Plaisancié, Pascale

    2002-09-01

    The hypothesis that dietary proteins or their hydrolysates may regulate intestinal mucin discharge was investigated in the isolated vascularly perfused rat jejunum using an enzyme-linked immunosorbent assay for rat intestinal mucins. On luminal administration, casein hydrolysate [0.05-5% (wt/vol)] stimulated mucin secretion in rat jejunum (maximal response at 417% of controls). Lactalbumin hydrolysate (5%) also evoked mucin discharge. In contrast, casein, and a mixture of amino acids was without effect. Chicken egg albumin and its hydrolysate or meat hydrolysate also did not modify mucin release. Interestingly, casein hydrolysate-induced mucin secretion was abolished by intra-arterial TTX or naloxone (an opioid antagonist). beta-Casomorphin-7, an opioid peptide released from beta-casein on milk ingestion, induced a strong mucin secretion (response at 563% of controls) that was inhibited by naloxone. Intra-arterial beta-casomorphin-7 also markedly increased mucin secretion (410% of controls). In conclusion, two enzymatic milk protein hydrolysates (casein and lactalbumin hydrolysates) and beta-casomorphin-7, specifically, induced mucin release in rat jejunum. The casein hydrolysate-induced mucin secretion is triggered by a neural pathway and mediated by opioid receptor activation.

  20. NMR identification of the binding surfaces involved in the Salmonella and Shigella Type III secretion tip-translocon protein-protein interactions.

    PubMed

    McShan, Andrew C; Kaur, Kawaljit; Chatterjee, Srirupa; Knight, Kevin M; De Guzman, Roberto N

    2016-08-01

    The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097-1107. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Apparent inhibition of. beta. -fructosidase secretion by tunicamycin may be explained by breakdown of the unglycosylated protein during secretion. [Daucus carota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faye, L.; Chrispeels, M.J.

    1989-03-01

    Suspension-cultured carrot (Daucus carota) cells synthesize and secrete {beta}-fructosidase, a glycoprotein with asparagine-linked glycans. Treatment of the cells with tunicamycin completely inhibits the apparent secretion of {beta}-fructosidase as measured by the accumulation of the {sup 35}S-labelled protein in the cell wall or the culture medium. In the past, such a result has been interpreted as an inhibition of secretion by tunicamycin, but we suggest another explanation based on the following results. In the presence of tunicamycin, unglycosylated {beta}-fructosidase is synthesized and is associated with an endoplasmic-reticulum-rich microsomal fraction. Pulse-chase experiments show that the unglycosylated {beta}-fructosidase does not remain in themore » cells and appears to be secreted in the same way as glycosylated {beta}-fructosidase; however, no radioactive, unglycosylated {beta}-fructosidase accumulates extracellularly (cell wall or medium). Protoplasts obtained from carrot cells secrete {beta}-fructosidase protein and activity, and treatment of the protoplasts with tunicamycin results in the synthesis of unglycosylated {beta}-fructosidase. In the presence of tunicamycin, there is no accumulation of {beta}-fructosidase activity or unglycosylated {beta}-fructosidase polypeptide in the protoplast incubation medium. These results are consistent with the interpretation that the glycans of {beta}-fructosidase are necessary for its stability, and that in these suspension-cultured cells, the unglycosylated enzyme is degraded during the last stage(s) of secretion, or immediately after its arrival in the wall.« less

  2. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system.

    PubMed

    Vincent, Carr D; Friedman, Jonathan R; Jeong, Kwang Cheol; Sutherland, Molly C; Vogel, Joseph P

    2012-07-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella type IV secretion system substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. © 2012 Blackwell Publishing Ltd.

  3. Modulating Endoplasmic Reticulum-Golgi Cargo Receptors for Improving Secretion of Carrier-Fused Heterologous Proteins in the Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Hoang, Huy-Dung; Maruyama, Jun-ichi

    2014-01-01

    Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi. PMID:25362068

  4. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions.

    PubMed

    Hempel, Kristina; Herbst, Florian-Alexander; Moche, Martin; Hecker, Michael; Becher, Dörte

    2011-04-01

    Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.

  5. Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis

    DOE PAGES

    Plett, Jonathan M.; Yin, Hengfu; Mewalal, Ritesh; ...

    2017-03-23

    During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as ‘effectors’, i.e., small secreted proteins (SSPs) that cause phenotypical and physiological changes in another organism. To date, protein-based effectors have been described in aphids, nematodes, fungi and bacteria. Using RNA sequencing of Populus trichocarpa roots in mutualistic symbiosis with the ectomycorrhizal fungus Laccaria bicolor, we sought to determine if host plants also contain genes encoding effector-like proteins. We identified 417 plant-encoded putative SSPs that were significantly regulated during this interaction, including 161 SSPs specific to P. trichocarpa andmore » 15 SSPs exhibiting expansion in Populus and closely related lineages. We demonstrate that a subset of these SSPs can enter L. bicolor hyphae, localize to the nucleus and affect hyphal growth and morphology. Finally, we conclude that plants encode proteins that appear to function as effector proteins that may regulate symbiotic associations.« less

  6. Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plett, Jonathan M.; Yin, Hengfu; Mewalal, Ritesh

    During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as ‘effectors’, i.e., small secreted proteins (SSPs) that cause phenotypical and physiological changes in another organism. To date, protein-based effectors have been described in aphids, nematodes, fungi and bacteria. Using RNA sequencing of Populus trichocarpa roots in mutualistic symbiosis with the ectomycorrhizal fungus Laccaria bicolor, we sought to determine if host plants also contain genes encoding effector-like proteins. We identified 417 plant-encoded putative SSPs that were significantly regulated during this interaction, including 161 SSPs specific to P. trichocarpa andmore » 15 SSPs exhibiting expansion in Populus and closely related lineages. We demonstrate that a subset of these SSPs can enter L. bicolor hyphae, localize to the nucleus and affect hyphal growth and morphology. Finally, we conclude that plants encode proteins that appear to function as effector proteins that may regulate symbiotic associations.« less

  7. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    PubMed

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of <3%, we identified 111 candidates from conditioned medium, including 44 proteins that have signal peptides or are described as secreted proteins in the UniProt database. As validation, we confirmed that one of these proteins, insulin-like growth factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  8. Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion

    PubMed Central

    Vadassery, Jyothilakshmi; Scholz, Sandra S.; Mithöfer, Axel

    2012-01-01

    In plant cells, diverse environmental changes often induce transient elevation in the intracellular calcium concentrations, which are involved in signaling pathways leading to the respective cellular reactions. Therefore, these calcium elevations need to be deciphered into specific downstream responses. Calmodulin-like-proteins (CMLs) are calcium-sensing proteins present only in higher plants. They are involved in signaling processes induced by both abiotic as well as biotic stress factors. However, the role of CMLs in the interaction of plants with herbivorous insects is almost unknown. Here we show that in Arabidopsis thaliana a number of CMLs genes (CML9, 11,12,16,17 and 23) are upregulated due to treatments with oral secretion of larvae of the herbivorous insect Spodoptera littoralis. We identified that these genes belong to two groups that respond with different kinetics to the treatment with oral secretion. Our data indicate that signaling networks involving multiple CMLs very likely have important functions in plant defense against insect herbivores, in addition to their involvement in many other stress-induced processes in plants. PMID:22902684

  9. Proteomic Identification of Novel Secreted Antibacterial Toxins of the Serratia marcescens Type VI Secretion System*

    PubMed Central

    Fritsch, Maximilian J.; Trunk, Katharina; Diniz, Juliana Alcoforado; Guo, Manman; Trost, Matthias; Coulthurst, Sarah J.

    2013-01-01

    It has recently become apparent that the Type VI secretion system (T6SS) is a complex macromolecular machine used by many bacterial species to inject effector proteins into eukaryotic or bacterial cells, with significant implications for virulence and interbacterial competition. “Antibacterial” T6SSs, such as the one elaborated by the opportunistic human pathogen, Serratia marcescens, confer on the secreting bacterium the ability to rapidly and efficiently kill rival bacteria. Identification of secreted substrates of the T6SS is critical to understanding its role and ability to kill other cells, but only a limited number of effectors have been reported so far. Here we report the successful use of label-free quantitative mass spectrometry to identify at least eleven substrates of the S. marcescens T6SS, including four novel effector proteins which are distinct from other T6SS-secreted proteins reported to date. These new effectors were confirmed as antibacterial toxins and self-protecting immunity proteins able to neutralize their cognate toxins were identified. The global secretomic study also unexpectedly revealed that protein phosphorylation-based post-translational regulation of the S. marcescens T6SS differs from that of the paradigm, H1-T6SS of Pseudomonas aeruginosa. Combined phosphoproteomic and genetic analyses demonstrated that conserved PpkA-dependent threonine phosphorylation of the T6SS structural component Fha is required for T6SS activation in S. marcescens and that the phosphatase PppA can reverse this modification. However, the signal and mechanism of PpkA activation is distinct from that observed previously and does not appear to require cell–cell contact. Hence this study has not only demonstrated that new and species-specific portfolios of antibacterial effectors are secreted by the T6SS, but also shown for the first time that PpkA-dependent post-translational regulation of the T6SS is tailored to fit the needs of different bacterial

  10. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekiert, Damian C.; Cox, Jeffery S.

    Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed "type VII." How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here in this paper, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), whichmore » adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE-PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Furthermore, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways.« less

  11. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion

    DOE PAGES

    Ekiert, Damian C.; Cox, Jeffery S.

    2014-10-01

    Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed "type VII." How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here in this paper, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), whichmore » adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE-PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Furthermore, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways.« less

  12. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOEpatents

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  13. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, III, Sydnor T.; Dominguez, Miguel A.; DeLisa, Matthew P.

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  14. Identification of the DotL Coupling Protein Subcomplex of the Legionella Dot/Icm Type IV Secretion System

    PubMed Central

    Vincent, Carr D.; Friedman, Jonathan R.; Jeong, Kwang Cheol; Sutherland, Molly C.; Vogel, Joseph P.

    2012-01-01

    Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella T4SS substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. PMID:22694730

  15. Profile of Secreted Hydrolases, Associated Proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the Degradation of Hemicellulose

    PubMed Central

    Currie, D. H.; Guss, A. M.; Herring, C. D.; Giannone, R. J.; Johnson, C. M.; Lankford, P. K.; Brown, S. D.; Hettich, R. L.

    2014-01-01

    Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared to be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars. PMID:24907337

  16. Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose.

    PubMed

    Currie, D H; Guss, A M; Herring, C D; Giannone, R J; Johnson, C M; Lankford, P K; Brown, S D; Hettich, R L; Lynd, L R

    2014-08-01

    Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared to be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Profile of Secreted Hydrolases, Associated Proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the Degradation of Hemicellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Devin; Guss, Adam M; Herring, Christopher

    2014-01-01

    Thermoanaerobacterium saccharolyticum, a Gram-positive thermophilic anaerobic bacterium, grows robustly on insoluble hemicellulose, which requires a specialized suite of secreted and transmembrane proteins. We report here the characterization of proteins secreted by this organism. Cultures were grown on hemicellulose, glucose, xylose, starch, and xylan in pH-controlled bioreactors, and samples were analyzed via spotted microarrays and liquid chromatography-mass spectrometry. Key hydrolases and transporters employed by T. saccharolyticum for growth on hemicellulose were, for the most part, hitherto uncharacterized and existed in two clusters (Tsac_1445 through Tsac_1464 for xylan/xylose and Tsac_1344 through Tsac_1349 for starch). A phosphotransferase system subunit, Tsac_0032, also appeared tomore » be exclusive to growth on glucose. Previously identified hydrolases that showed strong conditional expression changes included XynA (Tsac_1459), XynC (Tsac_0897), and a pullulanase, Apu (Tsac_1342). An omnipresent transcript and protein making up a large percentage of the overall secretome, Tsac_0361, was tentatively identified as the primary S-layer component in T. saccharolyticum, and deletion of the Tsac_0361 gene resulted in gross morphological changes to the cells. The view of hemicellulose degradation revealed here will be enabling for metabolic engineering efforts in biofuel-producing organisms that degrade cellulose well but lack the ability to catabolize C5 sugars« less

  18. 76 FR 63316 - Prospective Grant of Exclusive License: Secreted Frizzled Related Protein-1 (sFRP-1) and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Exclusive License: Secreted Frizzled Related Protein-1 (sFRP-1) and derivatives thereof and their Use In... belonging to the patent families having HHS Reference Numbers E-160-1997/0,/1,/2 and/3; E-014-2000/0; and E... Related Protein-1 (sFRP-1). sFRP-1, also known as SARP-2 (Secreted Apoptosis Related Protein-2). The IP...

  19. Septal secretion of protein A in Staphylococcus aureus requires SecA and lipoteichoic acid synthesis

    PubMed Central

    Yu, Wenqi; Missiakas, Dominique

    2018-01-01

    Surface proteins of Staphylococcus aureus are secreted across septal membranes for assembly into the bacterial cross-wall. This localized secretion requires the YSIRK/GXXS motif signal peptide, however the mechanisms supporting precursor trafficking are not known. We show here that the signal peptide of staphylococcal protein A (SpA) is cleaved at the YSIRK/GXXS motif. A SpA signal peptide mutant defective for YSIRK/GXXS cleavage is also impaired for septal secretion and co-purifies with SecA, SecDF and LtaS. SecA depletion blocks precursor targeting to septal membranes, whereas deletion of secDF diminishes SpA secretion into the cross-wall. Depletion of LtaS blocks lipoteichoic acid synthesis and abolishes SpA precursor trafficking to septal membranes. We propose a model whereby SecA directs SpA precursors to lipoteichoic acid-rich septal membranes for YSIRK/GXXS motif cleavage and secretion into the cross-wall. PMID:29757141

  20. On the presence of prostatic secretion protein in rat seminal fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borgstroem, E.; Pousette, A.; Bjoerk, P.

    1981-01-01

    The copulating plug collected from the tip of the penis from rats immediately after decapitation contains a protein very similar and probably identical to PSP (prostatic secretion protein); this protein has earlier been purified from rat prostatic cytosol and characterized. The protein present in the copulating plug interacts with (3H)estramustine and binds to the antibody raised against rat PSP. The concentration of the protein in the copulating plug is 400 ng/mg of total protein, when measured using the radioimmunoassay technique developed earlier for measurement of PSP in rat prostate. The (3H)estramustine-protein complex formed in a preparation of the copulating plugmore » has an apparent molecular weight of about 50,000 and a sedimentation coefficient of about 3S when analyzed using sucrose density gradient centrifugation. The complex was retained on Concanavalin-A Sepharose indicating that the protein is a glycoprotein. Binding of the complex was also observed on hydroxylapatite and DEAE-Sephadex columns, from which it was eluted at 0.18 M KCl. Light microscope autoradiograms of rat sperms incubated with 125I-labeled PSP indicated that PSP is bound to all parts of the sperms. A macromolecule interacting with the PSP-antibodies is also present in human seminal fluid but at a concentration considerably lower than in rat seminal fluid. The present study shows that a macromolecule probably identical to prostatic secretion protein is present in the copulating plug from the rat. The biological role of this protein in normal male fertility is discussed.« less

  1. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis.

    PubMed

    Cai, Dongbo; Wang, Hao; He, Penghui; Zhu, Chengjun; Wang, Qin; Wei, Xuetuan; Nomura, Christopher T; Chen, Shouwen

    2017-04-24

    Signal peptide peptidases play an important role in the removal of remnant signal peptides in the cell membrane, a critical step for extracellular protein production. Although these proteins are likely a central component for extracellular protein production, there has been a lack of research on whether protein secretion could be enhanced via overexpression of signal peptide peptidases. In this study, both nattokinase and α-amylase were employed as prototypical secreted target proteins to evaluate the function of putative signal peptide peptidases (SppA and TepA) in Bacillus licheniformis. We observed dramatic decreases in the concentrations of both target proteins (45 and 49%, respectively) in a sppA deficient strain, while the extracellular protein yields of nattokinase and α-amylase were increased by 30 and 67% respectively in a strain overexpressing SppA. In addition, biomass, specific enzyme activities and the relative gene transcriptional levels were also enhanced due to the overexpression of sppA, while altering the expression levels of tepA had no effect on the concentrations of the secreted target proteins. Our results confirm that SppA, but not TepA, plays an important functional role for protein secretion in B. licheniformis. Our results indicate that the sppA overexpression strain, B. licheniformis BL10GS, could be used as a promising host strain for the industrial production of heterologous secreted proteins.

  2. Investment in secreted enzymes during nutrient-limited growth is utility dependent.

    PubMed

    Cezairliyan, Brent; Ausubel, Frederick M

    2017-09-12

    Pathogenic bacteria secrete toxins and degradative enzymes that facilitate their growth by liberating nutrients from the environment. To understand bacterial growth under nutrient-limited conditions, we studied resource allocation between cellular and secreted components by the pathogenic bacterium Pseudomonas aeruginosa during growth on a protein substrate that requires extracellular digestion by secreted proteases. We identified a quantitative relationship between the rate of increase of cellular biomass under nutrient-limiting growth conditions and the rate of increase in investment in secreted proteases. Production of secreted proteases is stimulated by secreted signals that convey information about the utility of secreted proteins during nutrient-limited growth. Growth modeling using this relationship recapitulated the observed kinetics of bacterial growth on a protein substrate. The proposed regulatory strategy suggests a rationale for quorum-sensing-dependent stimulation of the production of secreted enzymes whereby investment in secreted enzymes occurs in proportion to the utility they confer. Our model provides a framework that can be applied toward understanding bacterial growth in many environments where growth rate is limited by the availability of nutrients.

  3. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain.

    PubMed

    Burkhart, Annette; Andresen, Thomas Lars; Aigner, Achim; Thomsen, Louiza Bohn; Moos, Torben

    2017-07-01

    Treatment of chronic disorders affecting the central nervous system (CNS) is complicated by the inability of drugs to cross the blood-brain barrier (BBB). Non-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various transfection vectors, with regard to increasing the transfection efficiency without disrupting the BBB integrity. Lipofectamine 3000™ was the most potent vector compared to polyethylenimine (PEI) and Turbofect. When co-cultured with astrocytes, the genetically modified RBECs secreted recombinant EPO into the cell culture medium both luminally and abluminally, and despite lower levels of EPO reaching the abluminal chamber, the amount of recombinant EPO was sufficient to evolve a biological effect on astrocytes cultured at the abluminal side in terms of upregulated gene expression of brain-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB.

  4. a Computational Approach to Explore Protein Translocation Through Type III Secretion Apparatus

    NASA Astrophysics Data System (ADS)

    Rathinavelan, Thenmalarchelvi; Im, Wonpil

    2010-01-01

    Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus (TTSA) that is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. Interestingly, the electronegative channel interior creates an energy barrier for MxiH to enter the channel, while the same may facilitate the ejection of the effectors into host cells. Structurally-known basal regions and ATPase underneath the basal region have also such electronegative interior, while effector proteins have considerable electronegative patches on their surfaces. Based on these observations, we propose a repulsive electrostatic mechanism for protein translocation through the TTSA. This mechanism is supported by the suggestion that an ATPase is required for protein translocation through these nanomachines, which may provide the energy to overcome the initial electrostatic energy barrier. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported.

  5. Candida albicans Iff11, a secreted protein required for cell wall structure and virulence.

    PubMed

    Bates, Steven; de la Rosa, José M; MacCallum, Donna M; Brown, Alistair J P; Gow, Neil A R; Odds, Frank C

    2007-06-01

    The Candida albicans cell wall is the immediate point of contact with the host and is implicated in the host-fungal interaction and virulence. To date, a number of cell wall proteins have been identified and associated with virulence. Analysis of the C. albicans genome has identified the IFF gene family as encoding the largest family of cell wall-related proteins. This family is also conserved in a range of other Candida species. Iff11 differs from other family members in lacking a GPI anchor, and we have demonstrated it to be O glycosylated and secreted in C. albicans. A null mutant lacking IFF11 was hypersensitive to cell wall-damaging agents, suggesting a role in cell wall organization. In a murine model of systemic infection the null mutant was highly attenuated in virulence, and survival-standardized infections suggest it is required to establish an infection. This work provides the first evidence of the importance of this gene family in the host-fungal interaction and virulence.

  6. Maltose-Binding Protein Enhances Secretion of Recombinant Human Granzyme B Accompanied by In Vivo Processing of a Precursor MBP Fusion Protein

    PubMed Central

    Dälken, Benjamin; Jabulowsky, Robert A.; Oberoi, Pranav; Benhar, Itai; Wels, Winfried S.

    2010-01-01

    Background The apoptosis-inducing serine protease granzyme B (GrB) is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. Methods and Findings We investigated the influence of bacterial maltose-binding protein (MBP) fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. Conclusions Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins. PMID:21203542

  7. Isthmin is a novel secreted protein expressed as part of the Fgf-8 synexpression group in the Xenopus midbrain-hindbrain organizer.

    PubMed

    Pera, Edgar M; Kim, James I; Martinez, Sarah L; Brechner, Mariel; Li, Su Yu; Wessely, Oliver; De Robertis, E M

    2002-08-01

    Patterning of the central nervous system is regulated by a signaling center located at the midbrain-hindbrain boundary (MHB), or isthmus organizer. Fibroblast growth factors secreted from the MHB are required and sufficient to direct the ordered growth and regionalization of the midbrain and anterior hindbrain. In an unbiased secretion cloning screen of Xenopus gastrula embryos we identified a novel gene, which we designated as Isthmin (xIsm) due to its prominent expression at the MHB. xIsm encodes a secreted protein of 449 amino acids containing one copy of the thrombospondin type 1 repeat (TSR). We also found orthologous Isthmin genes in human (hIsm) and mouse (mIsm), as well as a gene encoding an Isthmin-like human unknown protein (hIsm-l). The conservation of a unique carboxy-terminal region between hIsm and hIsm-l suggests that Isthmin is the founding member of a new family of secreted proteins. xIsm was strongly expressed maternally in the Xenopus egg and showed zygotic expression in the ventral blastopore lip, notochord, and MHB. Additional expression domains were detected in neural crest, ear vesicle, and developing blood islands. Interestingly, xIsm was co-expressed with Fibroblast growth factor-8 (xFgf-8) at multiple sites including the MHB, indicating that these two genes are part of a synexpression group which also includes sprouty and sef homologs.

  8. Root Secreted Metabolites and Proteins Are Involved in the Early Events of Plant-Plant Recognition Prior to Competition

    PubMed Central

    Badri, Dayakar V.; De-la-Peña, Clelia; Lei, Zhentian; Manter, Daniel K.; Chaparro, Jacqueline M.; Guimarães, Rejane L.; Sumner, Lloyd W.; Vivanco, Jorge M.

    2012-01-01

    The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root secreted metabolites and proteins involved in early plant neighbor recognition by using Arabidopsis thaliana Col-0 ecotype (Col) as our focal plant co-cultured in vitro with different neighbors [A. thaliana Ler ecotype (Ler) or Capsella rubella (Cap)]. Principal component and cluster analyses revealed that both root secreted secondary metabolites and proteins clustered separately between the plants grown individually (Col-0, Ler and Cap grown alone) and the plants co-cultured with two homozygous individuals (Col-Col, Ler-Ler and Cap-Cap) or with different individuals (Col-Ler and Col-Cap). In particularly, we observed that a greater number of defense- and stress- related proteins were secreted when our control plant, Col, was grown alone as compared to when it was co-cultured with another homozygous individual (Col-Col) or with a different individual (Col-Ler and Col-Cap). However, the total amount of defense proteins in the exudates of the co-cultures was higher than in the plant alone. The opposite pattern of expression was identified for stress-related proteins. These data suggest that plants can sense and respond to the presence of different plant neighbors and that the level of relatedness is perceived upon initial interaction. Furthermore, the role of secondary metabolites and defense- and stress-related proteins widely involved in plant-microbe associations and abiotic responses warrants reassessment for plant-plant interactions. PMID:23056382

  9. Cell Wall and Secreted Proteins of Candida albicans: Identification, Function, and Expression

    PubMed Central

    Chaffin, W. Lajean; López-Ribot, José Luis; Casanova, Manuel; Gozalbo, Daniel; Martínez, José P.

    1998-01-01

    The cell wall is essential to nearly every aspect of the biology and pathogenicity of Candida albicans. Although it was intially considered an almost inert cellular structure that protected the protoplast against osmotic offense, more recent studies have demonstrated that it is a dynamic organelle. The major components of the cell wall are glucan and chitin, which are associated with structural rigidity, and mannoproteins. The protein component, including both mannoprotein and nonmannoproteins, comprises some 40 or more moieties. Wall proteins may differ in their expression, secretion, or topological location within the wall structure. Proteins may be modified by glycosylation (primarily addition of mannose residues), phosphorylation, and ubiquitination. Among the secreted enzymes are those that are postulated to have substrates within the cell wall and those that find substrates in the extracellular environment. Cell wall proteins have been implicated in adhesion to host tissues and ligands. Fibrinogen, complement fragments, and several extracellular matrix components are among the host proteins bound by cell wall proteins. Proteins related to the hsp70 and hsp90 families of conserved stress proteins and some glycolytic enzyme proteins are also found in the cell wall, apparently as bona fide components. In addition, the expression of some proteins is associated with the morphological growth form of the fungus and may play a role in morphogenesis. Finally, surface mannoproteins are strong immunogens that trigger and modulate the host immune response during candidiasis. PMID:9529890

  10. Progranulin, a Major Secreted Protein of Mouse Adipose-Derived Stem Cells, Inhibits Light-Induced Retinal Degeneration

    PubMed Central

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina. PMID:24233842

  11. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration.

    PubMed

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru; Hara, Hideaki

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina.

  12. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis.

    PubMed

    Tsuzuki, Syusaku; Handa, Yoshihiro; Takeda, Naoya; Kawaguchi, Masayoshi

    2016-04-01

    Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plants and fungi. To provide novel insights into the molecular mechanisms of AM symbiosis, we screened and investigated genes of the AM fungus Rhizophagus irregularis that contribute to the infection of host plants. R. irregularis genes involved in the infection were explored by RNA-sequencing (RNA-seq) analysis. One of the identified genes was then characterized by a reverse genetic approach using host-induced gene silencing (HIGS), which causes RNA interference in the fungus via the host plant. The RNA-seq analysis revealed that 19 genes are up-regulated by both treatment with strigolactone (SL) (a plant symbiotic signal) and symbiosis. Eleven of the 19 genes were predicted to encode secreted proteins and, of these, SL-induced putative secreted protein 1 (SIS1) showed the largest induction under both conditions. In hairy roots of Medicago truncatula, SIS1 expression is knocked down by HIGS, resulting in significant suppression of colonization and formation of stunted arbuscules. These results suggest that SIS1 is a putative secreted protein that is induced in a wide spatiotemporal range including both the presymbiotic and symbiotic stages and that SIS1 positively regulates colonization of host plants by R. irregularis.

  13. Visualization and characterization of individual type III protein secretion machines in live bacteria

    PubMed Central

    Lara-Tejero, María; Bewersdorf, Jörg; Galán, Jorge E.

    2017-01-01

    Type III protein secretion machines have evolved to deliver bacterially encoded effector proteins into eukaryotic cells. Although electron microscopy has provided a detailed view of these machines in isolation or fixed samples, little is known about their organization in live bacteria. Here we report the visualization and characterization of the Salmonella type III secretion machine in live bacteria by 2D and 3D single-molecule switching superresolution microscopy. This approach provided access to transient components of this machine, which previously could not be analyzed. We determined the subcellular distribution of individual machines, the stoichiometry of the different components of this machine in situ, and the spatial distribution of the substrates of this machine before secretion. Furthermore, by visualizing this machine in Salmonella mutants we obtained major insights into the machine’s assembly. This study bridges a major resolution gap in the visualization of this nanomachine and may serve as a paradigm for the examination of other bacterially encoded molecular machines. PMID:28533372

  14. HpARI Protein Secreted by a Helminth Parasite Suppresses Interleukin-33.

    PubMed

    Osbourn, Megan; Soares, Dinesh C; Vacca, Francesco; Cohen, E Suzanne; Scott, Ian C; Gregory, William F; Smyth, Danielle J; Toivakka, Matilda; Kemter, Andrea M; le Bihan, Thierry; Wear, Martin; Hoving, Dennis; Filbey, Kara J; Hewitson, James P; Henderson, Holly; Gonzàlez-Cìscar, Andrea; Errington, Claire; Vermeren, Sonja; Astier, Anne L; Wallace, William A; Schwarze, Jürgen; Ivens, Alasdair C; Maizels, Rick M; McSorley, Henry J

    2017-10-17

    Infection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H. polygyrus Alarmin Release Inhibitor (HpARI), an IL-33-suppressive 26-kDa protein, containing three predicted complement control protein (CCP) modules. In vivo, recombinant HpARI abrogated IL-33, group 2 innate lymphoid cell (ILC2) and eosinophilic responses to Alternaria allergen administration, and diminished eosinophilic responses to Nippostrongylus brasiliensis, increasing parasite burden. HpARI bound directly to both mouse and human IL-33 (in the cytokine's activated state) and also to nuclear DNA via its N-terminal CCP module pair (CCP1/2), tethering active IL-33 within necrotic cells, preventing its release, and forestalling initiation of type 2 allergic responses. Thus, HpARI employs a novel molecular strategy to suppress type 2 immunity in both infection and allergy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes.

    PubMed

    Reboul, Emmanuelle; Borel, Patrick

    2011-10-01

    Our understanding of the molecular mechanisms responsible for fat-soluble vitamin uptake and transport at the intestinal level has advanced considerably over the past decade. On one hand, it has long been considered that vitamin D and E as well as β-carotene (the main provitamin A carotenoid in human diet) were absorbed by a passive diffusion process, although this could not explain the broad inter-individual variability in the absorption efficiency of these molecules. On the other hand, it was assumed that preformed vitamin A (retinol) and vitamin K1 (phylloquinone) absorption occurred via energy-dependent processes, but the transporters involved have not yet been identified. The recent discovery of intestinal proteins able to facilitate vitamin E and carotenoid uptake and secretion by the enterocyte has spurred renewed interest in studying the fundamental mechanisms involved in the absorption of these micronutrients. The proteins identified so far are cholesterol transporters such as SR-BI (scavenger receptor class B type I), CD36 (cluster determinant 36), NPC1L1 (Niemann-Pick C1-like 1) or ABCA1 (ATP-Binding Cassette A1) displaying a broad substrate specificity, but it is likely that other membrane proteins are also involved. After overviewing the metabolism of fat-soluble vitamins and carotenoids in the human upper gastrointestinal lumen, we will focus on the putative or identified proteins participating in the intestinal uptake, intracellular transport and basolateral secretion of these fat-soluble vitamins and carotenoids, and outline the uncertainties that need to be explored in the future. Identifying the proteins involved in intestinal uptake and transport of fat-soluble vitamins and carotenoids across the enterocyte is of great importance, especially as some of them are already targets for the development of drugs able to slow cholesterol absorption. Indeed, these drugs may also interfere with lipid vitamin uptake. A better understanding of the molecular

  16. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity

    PubMed Central

    Wu, Lindsay E.; Samocha-Bonet, Dorit; Whitworth, P. Tess; Fazakerley, Daniel J.; Turner, Nigel; Biden, Trevor J.; James, David E.; Cantley, James

    2014-01-01

    A critical feature of obesity is enhanced insulin secretion from pancreatic β-cells, enabling the majority of individuals to maintain glycaemic control despite adiposity and insulin resistance. Surprisingly, the factors coordinating this adaptive β-cell response with adiposity have not been delineated. Here we show that fatty acid binding protein 4 (FABP4/aP2) is an adipokine released from adipocytes under obesogenic conditions, such as hypoxia, to augment insulin secretion. The insulinotropic action of FABP4 was identified using an in vitro system that recapitulates adipocyte to β-cell endocrine signalling, with glucose-stimulated insulin secretion (GSIS) as a functional readout, coupled with quantitative proteomics. Exogenous FABP4 potentiated GSIS in vitro and in vivo, and circulating FABP4 levels correlated with GSIS in humans. Insulin inhibited FABP4 release from adipocytes in vitro, in mice and in humans, consistent with feedback regulation. These data suggest that FABP4 and insulin form an endocrine loop coordinating the β-cell response to obesity. PMID:24944906

  17. Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins

    PubMed Central

    Maccani, Andreas; Landes, Nils; Stadlmayr, Gerhard; Maresch, Daniel; Leitner, Christian; Maurer, Michael; Gasser, Brigitte; Ernst, Wolfgang; Kunert, Renate; Mattanovich, Diethard

    2014-01-01

    Chinese hamster ovary (CHO) cells are currently the workhorse of the biopharmaceutical industry. However, yeasts such as Pichia pastoris are about to enter this field. To compare their capability for recombinant protein secretion, P. pastoris strains and CHO cell lines producing human serum albumin (HSA) and the 3D6 single chain Fv-Fc anti-HIV-1 antibody (3D6scFv-Fc) were cultivated in comparable fed batch processes. In P. pastoris, the mean biomass-specific secretion rate (qp) was 40-fold lower for 3D6scFv-Fc compared to HSA. On the contrary, qp was similar for both proteins in CHO cells. When comparing both organisms, the mean qp of the CHO cell lines was 1011-fold higher for 3D6scFv-Fc and 26-fold higher for HSA. Due to the low qp of the 3D6scFv-Fc producing strain, the space-time yield (STY) was 9.6-fold lower for P. pastoris. In contrast, the STY of the HSA producer was 9.2-fold higher compared to CHO cells because of the shorter process time and higher biomass density. The results indicate that the protein secretion machinery of P. pastoris is much less efficient and the secretion rate strongly depends on the complexity of the recombinant protein. However, process efficiency of the yeast system allows higher STYs for less complex proteins. PMID:24390926

  18. The Evolution of the Secreted Regulatory Protein Progranulin.

    PubMed

    Palfree, Roger G E; Bennett, Hugh P J; Bateman, Andrew

    2015-01-01

    Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide

  19. Correlating levels of type III secretion and secreted proteins with fecal shedding of Escherichia coli O157:H7 in cattle.

    PubMed

    Sharma, V K; Sacco, R E; Kunkle, R A; Bearson, S M D; Palmquist, D E

    2012-04-01

    The locus of enterocyte effacement (LEE) of Escherichia coli O157:H7 (O157) encodes a type III secretion system (T3SS) for secreting LEE-encoded and non-LEE-encoded virulence proteins that promote the adherence of O157 to intestinal epithelial cells and the persistence of this food-borne human pathogen in bovine intestines. In this study, we compared hha sepB and hha mutants of O157 for LEE transcription, T3SS activity, adherence to HEp-2 cells, persistence in bovine intestines, and the ability to induce changes in the expression of proinflammatory cytokines. LEE transcription was upregulated in the hha sepB and hha mutant strains compared to that in the wild-type strain, but the secretion of virulence proteins in the hha sepB mutant was severely compromised. This reduced secretion resulted in reduced adherence of the hha sepB mutant to Hep-2 cells, correlating with a significantly shorter duration and lower magnitude of fecal shedding in feces of weaned (n = 4 per group) calves inoculated with this mutant strain. The levels of LEE transcription, T3SS activity, and adherence to HEp-2 cells were much lower in the wild-type strain than in the hha mutant, but no significant differences were observed in the duration or the magnitude of fecal shedding in calves inoculated with these strains. Examination of the rectoanal junction (RAJ) tissues from three groups of calves showed no adherent O157 bacteria and similar proinflammatory cytokine gene expression, irrespective of the inoculated strain, with the exception that interleukin-1β was upregulated in calves inoculated with the hha sepB mutant. These results indicate that the T3SS is essential for intestinal colonization and prolonged shedding, but increased secretion of virulence proteins did not enhance the duration and magnitude of fecal shedding of O157 in cattle or have any significant impact on the cytokine gene expression in RAJ tissue compared with that in small intestinal tissue from the same calves.

  20. Type VI Secretion System in Pseudomonas aeruginosa

    PubMed Central

    Hachani, Abderrahman; Lossi, Nadine S.; Hamilton, Alexander; Jones, Cerith; Bleves, Sophie; Albesa-Jové, David; Filloux, Alain

    2011-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium causing chronic infections in cystic fibrosis patients. Such infections are associated with an active type VI secretion system (T6SS), which consists of about 15 conserved components, including the AAA+ ATPase, ClpV. The T6SS secretes two categories of proteins, VgrG and Hcp. Hcp is structurally similar to a phage tail tube component, whereas VgrG proteins show similarity to the puncturing device at the tip of the phage tube. In P. aeruginosa, three T6SSs are known. The expression of H1-T6SS genes is controlled by the RetS sensor. Here, 10 vgrG genes were identified in the PAO1 genome, among which three are co-regulated with H1-T6SS, namely vgrG1a/b/c. Whereas VgrG1a and VgrG1c were secreted in a ClpV1-dependent manner, secretion of VgrG1b was ClpV1-independent. We show that VgrG1a and VgrG1c form multimers, which confirmed the VgrG model predicting trimers similar to the tail spike. We demonstrate that Hcp1 secretion requires either VgrG1a or VgrG1c, which may act independently to puncture the bacterial envelope and give Hcp1 access to the surface. VgrG1b is not required for Hcp1 secretion. Thus, VgrG1b does not require H1-T6SS for secretion nor does H1-T6SS require VgrG1b for its function. Finally, we show that VgrG proteins are required for secretion of a genuine H1-T6SS substrate, Tse3. Our results demonstrate that VgrG proteins are not only secreted components but are essential for secretion of other T6SS substrates. Overall, we emphasize variability in behavior of three P. aeruginosa VgrGs, suggesting that, although very similar, distinct VgrGs achieve specific functions. PMID:21325275

  1. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  2. HK2 Proximal Tubule Epithelial Cells Synthesize and Secrete Plasma Proteins Predominantly Through the Apical Surface.

    PubMed

    Zhao, Ke-Wei; Murray, Elsa J Brochmann; Murray, Samuel S

    2017-04-01

    Renal proximal tubule epithelial cells (PTECs) are known to reabsorb salts and small plasma proteins filtered through Bowman's capsule. Following acute kidney injury, PTECs assume some characteristics of hepatocytes in producing various plasma proteins. We now demonstrate that even at a resting state, a PTEC cell line, HK2 expresses mRNAs for and synthesizes and secretes plasma proteins in a complex with complement C3, an α 2 -macroglobulin family chaperone, including albumin, transferrin, α 1 -antitrypsin, α 1 -antichymotrypsin, α 2 -HS-glycoprotein, ceruloplasmin, haptoglobin, C1-inhibitor, secreted phosphoprotein-24, and insulin-like growth factor-1. When grown on transwell inserts, HK2 cells predominantly secrete (∼90%) plasma proteins into the apical side and a smaller fraction into the basolateral side as determined by ELISA assays. When cultured in the presence of exogenous cytokines such as IL1β, IL6, TNFα, BMP2, or TGFβ1, HK2 cell mRNA expressions for plasma proteins were variably affected whereas basolateral secretions were elevated to or in excess of those of the apical level. In addition, HK2 cells produce proTGFβ1 with its intact N-terminal latency associated peptide and latent-TGF-β-binding proteins. The complex cannot be dissociated under conditions of SDS, heating, and electrophoresis. Moreover, HK2 cells maintain their ability to quickly uptake exogenously added serum proteins from the culture medium, as if they are recognized differently by the endocytic receptors. These results provide new insight into the hepatization of PTECs. In addition to their unique uptake of plasma proteins and salts from the filtrate, they are a source of urinary proteins under normal conditions as wells as in chronic and acute kidney diseases. J. Cell. Biochem. 118: 924-933, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins.

    PubMed

    Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J

    2016-03-01

    The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    PubMed

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases.

    PubMed

    Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning

    2007-10-18

    Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and code examples are available at

  6. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases

    PubMed Central

    Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning

    2007-01-01

    Background Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. Results We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. Conclusion We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and

  7. Inter- and intra-population variability of the protein content of femoral gland secretions from a lacertid lizard

    PubMed Central

    Fumagalli, Marco; Scali, Stefano; Zuffi, Marco A L; Cagnone, Maddalena; Salvini, Roberta; Sacchi, Roberto

    2017-01-01

    Abstract Femoral glands of male lizards produce waxy secretions that are involved in inter- and intraspecific chemical communication. The main components of these secretions are proteins and lipids, the latter having been extensively studied and already associated to male quality. On the opposite, the composition and role of proteins are nearly unknown, the only available information coming from few studies on iguanids. These studies got the conclusion that proteins might have a communicative function, notably they could signal individual identity. A generalization of these findings requires the extension of protein analysis to other lizard families, and the primary detection of some patterns of individual variability. Using the common wall lizard Podarcis muralis as a model species, the protein fraction of the femoral pore secretions was investigated to provide the first characterization of this component in a lacertid lizard and to explore its source of variability, as a first step to support the hypothesized communicative role. Samples of proteins from femoral secretions were collected from 6 Italian populations and subjected to 1-dimensional electrophoresis. The binary vector of the band presence/absence was used to define the individual profiles. Protein fraction is found to have a structured pattern, with both an individual and a population component. Although the former supports the potential communicative role of proteins, the latter offers a double interpretation, phylogenetic or environmental, even though the phylogenetic effect seems more likely given the climatic resemblance of the considered sites. Further studies are necessary to shed light on both these issues. PMID:29492027

  8. Analysis of an acyl-CoA binding protein in Aspergillus oryzae that undergoes unconventional secretion.

    PubMed

    Kwon, Hee Su; Kawaguchi, Kouhei; Kikuma, Takashi; Takegawa, Kaoru; Kitamoto, Katsuhiko; Higuchi, Yujiro

    2017-11-04

    Acyl-CoA binding protein (ACBP) plays important roles in the metabolism of lipids in eukaryotic cells. In the industrially important filamentous fungus Aspergillus oryzae, although we have previously demonstrated that the A. oryzae ACBP (AoACBP) localizes to punctate structures and exhibits long-range motility, which is dependent on autophagy-related proteins, the physiological role of AoACBP remains elusive. Here, we describe identification and characterization of another ACBP from A. oryzae; we named this ACBP as AoAcb2 and accordingly renamed AoACBP as AoAcb1. The deduced amino acid sequence of AoAcb2 lacked a signal peptide. Phylogenetic analysis classified AoAcb2 into a clade that was same as the ACBP Acb1 of the model yeast Saccharomyces cerevisiae, but was different from that of AoAcb1. In contrast to punctate localization of AoAcb1, AoAcb2 was found to be dispersedly distributed in the cytoplasm, as was previously observed for the S. cerevisiae Acb1. Since we could not generate an Aoacb2 disruptant, we created an Aoacb2 conditional mutant that exhibited less growth under Aoacb2-repressed condition, suggesting that Aoacb2 is an essential gene for growth. Moreover, we observed that A. oryzae AoAcb2, but not A. oryzae AoAcb1, was secreted under carbon-starved condition, suggesting that AoAcb2 might be secreted via the unconventional protein secretion (UPS) pathway, just like S. cerevisiae Acb1. We also demonstrated that the unconventional secretion of AoAcb2 was dependent on the t-SNARE AoSso1, but was independent of the autophagy-related protein AoAtg1, suggesting that the unconventional secretion of AoAcb2, unlike that of S. cerevisiae Acb1, via the UPS pathway, is not regulated by the autophagy machinery. Thus, the filamentous fungus A. oryzae harbors two types of ACBPs, one of which appears to be essential for growth and undergoes unconventional secretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata.

    PubMed

    Hatano, Naoya; Hamada, Tatsuro

    2012-08-03

    The Nepenthes species are carnivorous plants that have evolved a specialized leaf organ, the 'pitcher', to attract, capture, and digest insects. The digested insects provide nutrients for growth, allowing these plants to grow even in poor soil. Several proteins have been identified in the pitcher fluid, including aspartic proteases (nepenthesin I and II) and pathogenesis-related (PR) proteins (β-1,3-glucanase, class IV chitinase, and thaumatin-like protein). In this study, we collected and concentrated pitcher fluid to identify minor proteins. In addition, we tried to identify the protein secreted in response to trapping the insect. To make a similar situation in which the insect falls into the pitcher, chitin which was a major component of the insect exoskeleton was added to the fluid in the pitcher. Three PR proteins, class III peroxidase (Prx), β-1,3-glucanase, and class III chitinase, were newly identified. Prx was induced after the addition of chitin to the pitcher fluid. Proteins in the pitcher fluid of the carnivorous plant Nepenthes alata probably have two roles in nutrient supply: digestion of prey and the antibacterial effect. These results suggest that the system for digesting prey has evolved from the defense system against pathogens in the carnivorous plant Nepenthes. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Casein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway

    PubMed Central

    2012-01-01

    Background The secretion of heterologous animal proteins in filamentous fungi is usually limited by bottlenecks in the vesicle-mediated secretory pathway. Results Using the secretion of bovine chymosin in Aspergillus awamori as a model, we found a drastic increase (40 to 80-fold) in cells grown with casein or casein phosphopeptides (CPPs). CPPs are rich in phosphoserine, but phosphoserine itself did not increase the secretion of chymosin. The stimulatory effect is reduced about 50% using partially dephosphorylated casein and is not exerted by casamino acids. The phosphopeptides effect was not exerted at transcriptional level, but instead, it was clearly observed on the secretion of chymosin by immunodetection analysis. Proteomics studies revealed very interesting metabolic changes in response to phosphopeptides supplementation. The oxidative metabolism was reduced, since enzymes involved in fermentative processes were overrepresented. An oxygen-binding hemoglobin-like protein was overrepresented in the proteome following phosphopeptides addition. Most interestingly, the intracellular pre-protein enzymes, including pre-prochymosin, were depleted (most of them are underrepresented in the intracellular proteome after the addition of CPPs), whereas the extracellular mature form of several of these secretable proteins and cell-wall biosynthetic enzymes was greatly overrepresented in the secretome of phosphopeptides-supplemented cells. Another important 'moonlighting' protein (glyceraldehyde-3-phosphate dehydrogenase), which has been described to have vesicle fusogenic and cytoskeleton formation modulating activities, was clearly overrepresented in phosphopeptides-supplemented cells. Conclusions In summary, CPPs cause the reprogramming of cellular metabolism, which leads to massive secretion of extracellular proteins. PMID:22234238

  11. Casein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway.

    PubMed

    Kosalková, Katarina; García-Estrada, Carlos; Barreiro, Carlos; Flórez, Martha G; Jami, Mohammad S; Paniagua, Miguel A; Martín, Juan F

    2012-01-10

    The secretion of heterologous animal proteins in filamentous fungi is usually limited by bottlenecks in the vesicle-mediated secretory pathway. Using the secretion of bovine chymosin in Aspergillus awamori as a model, we found a drastic increase (40 to 80-fold) in cells grown with casein or casein phosphopeptides (CPPs). CPPs are rich in phosphoserine, but phosphoserine itself did not increase the secretion of chymosin. The stimulatory effect is reduced about 50% using partially dephosphorylated casein and is not exerted by casamino acids. The phosphopeptides effect was not exerted at transcriptional level, but instead, it was clearly observed on the secretion of chymosin by immunodetection analysis. Proteomics studies revealed very interesting metabolic changes in response to phosphopeptides supplementation. The oxidative metabolism was reduced, since enzymes involved in fermentative processes were overrepresented. An oxygen-binding hemoglobin-like protein was overrepresented in the proteome following phosphopeptides addition. Most interestingly, the intracellular pre-protein enzymes, including pre-prochymosin, were depleted (most of them are underrepresented in the intracellular proteome after the addition of CPPs), whereas the extracellular mature form of several of these secretable proteins and cell-wall biosynthetic enzymes was greatly overrepresented in the secretome of phosphopeptides-supplemented cells. Another important 'moonlighting' protein (glyceraldehyde-3-phosphate dehydrogenase), which has been described to have vesicle fusogenic and cytoskeleton formation modulating activities, was clearly overrepresented in phosphopeptides-supplemented cells. In summary, CPPs cause the reprogramming of cellular metabolism, which leads to massive secretion of extracellular proteins.

  12. High-yield secretion of recombinant proteins expressed in tobacco cell culture with a designer glycopeptide tag: Process development.

    PubMed

    Zhang, Ningning; Gonzalez, Maria; Savary, Brett; Xu, Jianfeng

    2016-03-01

    Low-yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline-O-glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY-2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of "Ser-Pro" dipeptide, or (SP)32 , to study cell growth and protein secretion, culture scale-up, and establishment of perfusion cultures for continuous production. The BY-2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32 -tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY-2 cells cultured in a 5-L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day(-1) , generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Novel ESAT-6 Secretion System-Secreted Protein EsxX of Community-Associated Staphylococcus aureus Lineage ST398 Contributes to Immune Evasion and Virulence.

    PubMed

    Dai, Yingxin; Wang, Yanan; Liu, Qian; Gao, Qianqian; Lu, Huiying; Meng, Hongwei; Qin, Juanxiu; Hu, Mo; Li, Min

    2017-01-01

    The ESAT-6 secretion system (ESS) has been reported to contribute to the virulence and pathogenicity of several Staphylococcus aureus strains such as USA300 and Newman. However, the role of the ESS in community-associated S. aureus (CA-SA) lineage ST398 in China is not well understood. By comparing the ess locus of ST398 with the published S. aureus sequence in the NCBI database, we found one gene in the ess locus encoding a novel WXG superfamily protein that is highly conserved only in ST398. LC-MS/MS and Western blot analysis revealed that this protein is a novel secreted protein controlled by the ST398 ESS, and we named the protein EsxX. Although EsxX was not under the control of the accessory gene regulator like many other virulence factors and had no influence on several phenotypes of ST398, such as growth, hemolysis, and biofilm formation, it showed important impacts on immune evasion and virulence in ST398. An esxX deletion mutant led to significantly reduced resistance to neutrophil killing and decreased virulence in murine skin and blood infection models, indicating its essential contribution to the evasion of innate host defense and virulence to support the pathogenesis of ST398 infections. The function of this novel secreted protein EsxX might help us better understand the role of the ESS in the virulence and epidemic success of the CA-SA lineage ST398.

  14. Secreted dual reporter assay with Gaussia luciferase and the red fluorescent protein mCherry

    PubMed Central

    Wider, Diana

    2017-01-01

    The availability of a wide range of reporter proteins, which can easily be quantitated, has had a major impact on many fields of biomedical research. In some experiments with tissue culture cells, it is necessary to control for differences in transfection efficiency and in other expression parameters. This requirement has been very conveniently met with the popular dual luciferase assay. Its disadvantages are the requirement for cell lysis, the inability to analyze the same cells repeatedly, and the cost, at least in its most commonly used commercial format. Here we describe a novel dual reporter assay with the naturally secreted luciferase from Gaussia princeps as the main reporter protein and a secreted version of the red fluorescent protein mCherry as internal standard. After first measuring mCherry fluorescence in the medium, an enzyme buffer with coelenterazine as substrate is added to the same sample to trigger a glow-type luminescence of the luciferase. The simple and cheap assay can easily be adapted to a variety of experimental situations. As a case in point, we have developed a panel of Gaussia luciferase reporter genes for transcriptional activation assays with estrogen and glucocorticoid response elements, and with response elements for fusion proteins with the Gal4 DNA binding domain for use in mammalian cells. Our secreted dual reporter assay should be an attractive alternative to the currently available commercial kits. PMID:29220385

  15. Secreted dual reporter assay with Gaussia luciferase and the red fluorescent protein mCherry.

    PubMed

    Wider, Diana; Picard, Didier

    2017-01-01

    The availability of a wide range of reporter proteins, which can easily be quantitated, has had a major impact on many fields of biomedical research. In some experiments with tissue culture cells, it is necessary to control for differences in transfection efficiency and in other expression parameters. This requirement has been very conveniently met with the popular dual luciferase assay. Its disadvantages are the requirement for cell lysis, the inability to analyze the same cells repeatedly, and the cost, at least in its most commonly used commercial format. Here we describe a novel dual reporter assay with the naturally secreted luciferase from Gaussia princeps as the main reporter protein and a secreted version of the red fluorescent protein mCherry as internal standard. After first measuring mCherry fluorescence in the medium, an enzyme buffer with coelenterazine as substrate is added to the same sample to trigger a glow-type luminescence of the luciferase. The simple and cheap assay can easily be adapted to a variety of experimental situations. As a case in point, we have developed a panel of Gaussia luciferase reporter genes for transcriptional activation assays with estrogen and glucocorticoid response elements, and with response elements for fusion proteins with the Gal4 DNA binding domain for use in mammalian cells. Our secreted dual reporter assay should be an attractive alternative to the currently available commercial kits.

  16. Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger.

    PubMed

    Krijgsheld, Pauline; Nitsche, Benjamin M; Post, Harm; Levin, Ana M; Müller, Wally H; Heck, Albert J R; Ram, Arthur F J; Altelaar, A F Maarten; Wösten, Han A B

    2013-04-05

    Aspergillus niger is a cell factory for the production of enzymes. This fungus secretes proteins in the central part and at the periphery of the colony. The sporulating zone of the colony overlapped with the nonsecreting subperipheral zone, indicating that sporulation inhibits protein secretion. Indeed, strain ΔflbA that is affected early in the sporulation program secreted proteins throughout the colony. In contrast, the ΔbrlA strain that initiates but not completes sporulation did not show altered spatial secretion. The secretome of 5 concentric zones of xylose-grown ΔflbA colonies was assessed by quantitative proteomics. In total 138 proteins with a signal sequence for secretion were identified in the medium of ΔflbA colonies. Of these, 18 proteins had never been reported to be part of the secretome of A. niger, while 101 proteins had previously not been identified in the culture medium of xylose-grown wild type colonies. Taken together, inactivation of flbA results in spatial changes in secretion and in a more complex secretome. The latter may be explained by the fact that strain ΔflbA has a thinner cell wall compared to the wild type, enabling efficient release of proteins. These results are of interest to improve A. niger as a cell factory.

  17. Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway.

    PubMed

    Abdallah, Basem M; Alzahrani, Abdullah M; Kassem, Moustapha

    2018-05-01

    Secreted Clusterin (sCLU, also known as Apolipoprotein J) is an anti-apoptotic glycoprotein involved in the regulation of cell proliferation, lipid transport, extracellular tissue remodeling and apoptosis. sCLU is expressed and secreted by mouse bone marrow-derived skeletal (stromal or mesenchymal) stem cells (mBMSCs), but its functional role in MSC biology is not known. In this study, we demonstrated that Clusterin mRNA expression and protein secretion in conditioned medium increased during adipocyte differentiation and decreased during osteoblast differentiation of mBMSCs. Treatment of mBMSC cultures with recombinant sCLU protein increased cell proliferation and exerted an inhibitory effect on the osteoblast differentiation while stimulated adipocyte differentiation in a dose-dependent manner. siRNA-mediated silencing of Clu expression in mBMSCs reduced adipocyte differentiation and stimulated osteoblast differentiation of mBMSCs. Furthermore, the inhibitory effect of sCLU on the osteoblast differentiation of mBMSCs was mediated by the suppression of extracellular signal-regulated kinase (ERK1/2) phosphorylation. In conclusion, we identified sCLU as a regulator of mBMSCs lineage commitment to osteoblasts versus adipocytes through a mechanism mediated by ERK1/2 signaling. Inhibiting sCLU is a possible therapeutic approach for enhancing osteoblast differentiation and consequently bone formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Temperature-Induced Protein Secretion by Leishmania mexicana Modulates Macrophage Signalling and Function

    PubMed Central

    Hassani, Kasra; Antoniak, Elisabeth; Jardim, Armando; Olivier, Martin

    2011-01-01

    Protozoan parasites of genus Leishmania are the causative agents of leishmaniasis. These digenetic microorganisms undergo a marked environmental temperature shift (TS) during transmission from the sandfly vector (ambient temperature, 25–26°C) to the mammalian host (37°C). We have observed that this TS induces a rapid and dramatic increase in protein release from Leishmania mexicana (cutaneous leishmaniasis) within 4 h. Proteomic identification of the TS-induced secreted proteins revealed 72 proteins, the majority of which lack a signal peptide and are thus thought to be secreted via nonconventional mechanisms. Interestingly, this protein release is accompanied by alterations in parasite morphology including an augmentation in the budding of exovesicles from its surface. Here we show that the exoproteome of L. mexicana upon TS induces cleavage and activation of the host protein tyrosine phosphatases, specifically SHP-1 and PTP1-B, in a murine bone-marrow-derived macrophage cell line. Furthermore, translocation of prominent inflammatory transcription factors, namely NF-κB and AP-1 is altered. The exoproteome also caused inhibition of nitric oxide production, a crucial leishmanicidal function of the macrophage. Overall, our results provide strong evidence that within early moments of interaction with the mammalian host, L. mexicana rapidly releases proteins and exovesicles that modulate signalling and function of the macrophage. These modulations can result in attenuation of the inflammatory response and deactivation of the macrophage aiding the parasite in the establishment of infection. PMID:21559274

  19. Reduced glucose-induced insulin secretion in low-protein-fed rats is associated with altered pancreatic islets redox status.

    PubMed

    Cappelli, Ana Paula G; Zoppi, Claudio C; Silveira, Leonardo R; Batista, Thiago M; Paula, Flávia M; da Silva, Priscilla M R; Rafacho, Alex; Barbosa-Sampaio, Helena C; Boschero, Antonio C; Carneiro, Everardo M

    2018-01-01

    In the present study, we investigated the relationship between early life protein malnutrition-induced redox imbalance, and reduced glucose-stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal-protein-diet (17%-protein, NP) or to a low-protein-diet (6%-protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H 2 O 2 ), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn-superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre-incubated with H 2 O 2 and/or N-acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H 2 O 2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre-incubated with H 2 O 2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N-acetylcysteine. © 2017 Wiley Periodicals, Inc.

  20. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells.

    PubMed

    Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D

    2014-10-01

    Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA.

    PubMed

    Lai, Ruenn Chai; Tan, Soon Sim; Yeo, Ronne Wee Yeh; Choo, Andre Boon Hwa; Reiner, Agnes T; Su, Yan; Shen, Yang; Fu, Zhiyan; Alexander, Lezhava; Sze, Siu Kwan; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cell (MSC), a widely used adult stem cell candidate for regenerative medicine, has been shown to exert some of its therapeutic effects through the secretion of extracellular vesicles (EVs). These homogenously sized EVs of 100-150 ηm exhibited many exosome-like biophysical and biochemical properties and carry both proteins and RNAs. Recently, exosome-associated proteins in this MSC EV preparation were found to segregate primarily to those EVs that bind cholera toxin B chain (CTB), a GM1 ganglioside-specific ligand, and pulse-chase experiments demonstrated that these EVs have endosomal origin and carried many of the exosome-associated markers. Here, we report that only a fraction of the MSC EV proteome was found in CTB-bound EVs. Using Annexin V (AV) and Shiga toxin B subunit (ST) with affinities for phosphatidylserine and globotriaosylceramide, respectively, AV- and a ST-binding EV were identified. CTB-, AV- and ST-binding EVs all carried actin. However, the AV-binding EVs carried low or undetectable levels of the exosome-associated proteins. Only the ST-binding EVs carried RNA and EDA-containing fibronectin. Proteins in AV-binding EVs were also different from those released by apoptotic MSCs. CTB- and AV-binding activities were localized to the plasma membrane and cytoplasm of MSCs, while ST-binding activity was localized to the nucleus. Together, this study demonstrates that cells secrete many types of EVs. Specifically, MSCs secrete at least 3 types. They can be differentially isolated based on their affinities for membrane lipid-binding ligands. As the subcellular sites of the binding activities of these ligands and cargo load are different for each EV type, they are likely to have a different biogenesis pathway and possibly different functions.

  2. The secretion and biological function of tumor suppressor maspin as an exosome cargo protein.

    PubMed

    Dean, Ivory; Dzinic, Sijana H; Bernardo, M Margarida; Zou, Yi; Kimler, Vickie; Li, Xiaohua; Kaplun, Alexander; Granneman, James; Mao, Guangzhao; Sheng, Shijie

    2017-01-31

    Maspin is an epithelial-specific tumor suppressor shown to exert its biological effects as an intracellular, cell membrane-associated, and secreted free molecule. A recent study suggests that upon DNA-damaging g-irradiation, tumor cells can secrete maspin as an exosome-associated protein. To date, the biological significance of exosomal secretion of maspin is unknown. The current study aims at addressing whether maspin is spontaneously secreted as an exosomal protein to regulate tumor/stromal interactions. We prepared exosomes along with cell extracts and vesicle-depleted conditioned media (VDCM) from normal epithelial (CRL2221, MCF-10A and BEAS-2B) and cancer (LNCaP, PC3 and SUM149) cell lines. Atomic force microscopy and dynamic light scattering analysis revealed similar size distribution patterns and surface zeta potentials between the normal cells-derived and tumor cells-derived exosomes. Electron microscopy revealed that maspin was encapsulated by the exosomal membrane as a cargo protein. While western blotting revealed that the level of exosomal maspin from tumor cell lines was disproportionally lower relative to the levels of corresponding intracellular and VDCM maspin, as compared to that from normal cell lines, maspin knockdown in MCF-10A cells led to maspin-devoid exosomes, which exhibited significantly reduced suppressive effects on the chemotaxis activity of recipient NIH3T3 fibroblast cells. These data are the first to demonstrate the potential of maspin delivered by exosomes to block tumor-induced stromal response, and support the clinical application of exosomal maspin in cancer diagnosis and treatment.

  3. Expression, Extracellular Secretion, and Immunogenicity of the Plasmodium falciparum Sporozoite Surface Protein 2 in Salmonella Vaccine Strains

    PubMed Central

    Gómez-Duarte, Oscar G.; Pasetti, Marcela F.; Santiago, Araceli; Sztein, Marcelo B.; Hoffman, Stephen L.; Levine, Myron M.

    2001-01-01

    Deleting transmembrane α-helix motifs from Plasmodium falciparum sporozoite surface protein (SSP-2) allowed its secretion from Salmonella enterica serovar Typhimurium SL3261 and S. enterica serovar Typhi CVD 908-htrA by the Hly type I secretion system. In mice immunized intranasally, serovar Typhimurium constructs secreting SSP-2 stimulated greater gamma interferon splenocyte responses than did nonsecreting constructs (P = 0.04). PMID:11160021

  4. PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System

    PubMed Central

    Veith, Paul D.; Butler, Catherine A.; Nor Muhammad, Nor A.; Chen, Yu-Yen; Slakeski, Nada; Peng, Benjamin; Zhang, Lianyi; Dashper, Stuart G.; Cross, Keith J.; Cleal, Steven M.; Moore, Caroline; Reynolds, Eric C.

    2016-01-01

    Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a β-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS. PMID:27711252

  5. Expression, Purification, and Biophysical Characterization of a Secreted Anthrax Decoy Fusion Protein in Nicotiana benthamiana.

    PubMed

    Karuppanan, Kalimuthu; Duhra-Gill, Sifti; Kailemia, Muchena J; Phu, My L; Lebrilla, Carlito B; Dandekar, Abhaya M; Rodriguez, Raymond L; Nandi, Somen; McDonald, Karen A

    2017-01-04

    Anthrax toxin receptor-mediated drug development for blocking anthrax toxin action has received much attention in recent decades. In this study, we produced a secreted anthrax decoy fusion protein comprised of a portion of the human capillary morphogenesis gene-2 ( CMG2 ) protein fused via a linker to the fragment crystallizable (Fc) domain of human immunoglobulin G1 in Nicotiana benthamiana plants using a transient expression system. Using the Cauliflower Mosaic Virus ( CaMV ) 35S promoter and co-expression with the p19 gene silencing suppressor, we were able to achieve a high level of recombinant CMG2-Fc-Apo (rCMG2-Fc-Apo) protein accumulation. Production kinetics were observed up to eight days post-infiltration, and maximum production of 826 mg/kg fresh leaf weight was observed on day six. Protein A affinity chromatography purification of the rCMG2-Fc-Apo protein from whole leaf extract and apoplast wash fluid showed the homodimeric form under non-reducing gel electrophoresis and mass spectrometry analysis confirmed the molecular integrity of the secreted protein. The N -glycosylation pattern of purified rCMG2-Fc-Apo protein was analysed; the major portion of N -glycans consists of complex type structures in both protein samples. The most abundant (>50%) N -glycan structure was GlcNAc₂(Xy l )Man₃(Fuc)GlcNAc₂ in rCMG2-Fc-Apo recovered from whole leaf extract and apoplast wash fluid. High mannose N -glycan structures were not detected in the apoplast wash fluid preparation, which confirmed the protein secretion. Altogether, these findings demonstrate that high-level production of rCMG2-Fc-Apo can be achieved by transient production in Nicotiana benthamiana plants with apoplast targeting.

  6. Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI.

    PubMed

    An, Yi; Wang, Jiawei; Li, Chen; Leier, André; Marquez-Lago, Tatiana; Wilksch, Jonathan; Zhang, Yang; Webb, Geoffrey I; Song, Jiangning; Lithgow, Trevor

    2018-01-01

    Bacterial effector proteins secreted by various protein secretion systems play crucial roles in host-pathogen interactions. In this context, computational tools capable of accurately predicting effector proteins of the various types of bacterial secretion systems are highly desirable. Existing computational approaches use different machine learning (ML) techniques and heterogeneous features derived from protein sequences and/or structural information. These predictors differ not only in terms of the used ML methods but also with respect to the used curated data sets, the features selection and their prediction performance. Here, we provide a comprehensive survey and benchmarking of currently available tools for the prediction of effector proteins of bacterial types III, IV and VI secretion systems (T3SS, T4SS and T6SS, respectively). We review core algorithms, feature selection techniques, tool availability and applicability and evaluate the prediction performance based on carefully curated independent test data sets. In an effort to improve predictive performance, we constructed three ensemble models based on ML algorithms by integrating the output of all individual predictors reviewed. Our benchmarks demonstrate that these ensemble models outperform all the reviewed tools for the prediction of effector proteins of T3SS and T4SS. The webserver of the proposed ensemble methods for T3SS and T4SS effector protein prediction is freely available at http://tbooster.erc.monash.edu/index.jsp. We anticipate that this survey will serve as a useful guide for interested users and that the new ensemble predictors will stimulate research into host-pathogen relationships and inspiration for the development of new bioinformatics tools for predicting effector proteins of T3SS, T4SS and T6SS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Identification and functional analysis of secreted effectors from phytoparasitic nematodes.

    PubMed

    Rehman, Sajid; Gupta, Vijai K; Goyal, Aakash K

    2016-03-21

    Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant

  8. The Evolution of the Secreted Regulatory Protein Progranulin

    PubMed Central

    Palfree, Roger G. E.; Bennett, Hugh P. J.; Bateman, Andrew

    2015-01-01

    Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide

  9. Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines

    PubMed Central

    Case, R. M.; Conigrave, A. D.; Novak, I.; Young, J. A.

    1980-01-01

    1. A method is described for the isolation and vascular perfusion in vitro of the mandibular gland of the rabbit. The perfusate is a physiological salt solution containing glucose as the only metabolic substrate. 2. During perfusion with solutions containing acetylcholine, the gland secretes vigorously at a rate and in a manner similar to that seen in vivo. Although the gland becomes oedematous during perfusion, the extent of this oedema appears to have no influence on secretory ability: the perfused glands were capable of functioning for at least 4 h, and often for more than 6 h. 3. Acetylcholine evoked a small secretory response at a concentration of 8 × 10-9 mol l-1 and a maximum response at 8 × 10-7 mol l-1. Eserine (2 × 10-5 mol l-1) evoked secretory responses comparable to those evoked by acetylcholine in a concentration of 8 × 10-9 mol l-1. Secretion, whether unstimulated or evoked by acetylcholine or eserine, could be blocked completely by atropine. 4. During prolonged stimulation with acetylcholine, the fluid secretory response declined rapidly over a period of about 15 min from an initial high value to a much lower plateau value. After 3 or more hours of stimulation, the secretory response began once more to decline, this time towards zero. If, before the second period of decline begins, stimulation is interrupted for about 30 min, the gland recovers its initial responsiveness to further stimulation with acetylcholine. 5. The Na, K, Cl and HCO3 concentrations and the osmolality of acetylcholine evoked saliva exhibited flow-dependency similar to that seen in vivo. The concentrations of Na and Cl, but not K and HCO3, increased by about 25 mmol l-1 during periods of prolonged stimulation with acetylcholine even though the salivary secretory rate was constant. The concentrations of K and HCO3, but not Na and Cl, increased progressively as the concentration of infused acetylcholine was increased. 6. Salivary protein secretion increased with increasing

  10. Lipids and proteins in the Rathke's gland secretions of the North American mud turtle (Kinosternon subrubrum)

    USGS Publications Warehouse

    Seifert, W.E.; Gotte, S.W.; Leto, T.L.; Weldon, P.J.

    1994-01-01

    Lipids and proteins in the Rathke's gland secretions of the North American mud turtle (Kinosternon subrubrum, Kinosternidae) were analyzed by gas chromatography-mass spectrometry (GC-MS) and SDS-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Analysis by GC-MS indicates 2,3-dihydroxypropanal and C3–C24 free or esterified fatty acids. Analysis by SDS-PAGE indicates a major protein component with an approximate molecular mass of 60 kDa and minor components ranging from ca. 23 to 34 kDa. The major component of K. subrubrum glandular secretions exhibits a mobility that matches that of the Kemp's ridley sea turtle (Lepidochelys kempi, Cheloniidae), suggesting that these proteins are evolutionarily conserved.

  11. The Apoplastic Secretome of Trichoderma virens During Interaction With Maize Roots Shows an Inhibition of Plant Defence and Scavenging Oxidative Stress Secreted Proteins

    PubMed Central

    Nogueira-Lopez, Guillermo; Greenwood, David R.; Middleditch, Martin; Winefield, Christopher; Eaton, Carla; Steyaert, Johanna M.; Mendoza-Mendoza, Artemio

    2018-01-01

    In Nature, almost every plant is colonized by fungi. Trichoderma virens is a biocontrol fungus which has the capacity to behave as an opportunistic plant endophyte. Even though many plants are colonized by this symbiont, the exact mechanisms by which Trichoderma masks its entrance into its plant host remain unknown, but likely involve the secretion of different families of proteins into the apoplast that may play crucial roles in the suppression of plant immune responses. In this study, we investigated T. virens colonization of maize roots under hydroponic conditions, evidencing inter- and intracellular colonization by the fungus and modifications in root morphology and coloration. Moreover, we show that upon host penetration, T. virens secretes into the apoplast an arsenal of proteins to facilitate inter- and intracellular colonization of maize root tissues. Using a gel-free shotgun proteomics approach, 95 and 43 secretory proteins were identified from maize and T. virens, respectively. A reduction in the maize secretome (36%) was induced by T. virens, including two major groups, glycosyl hydrolases and peroxidases. Furthermore, T. virens secreted proteins were mainly involved in cell wall hydrolysis, scavenging of reactive oxygen species and secondary metabolism, as well as putative effector-like proteins. Levels of peroxidase activity were reduced in the inoculated roots, suggesting a strategy used by T. virens to manipulate host immune responses. The results provide an insight into the crosstalk in the apoplast which is essential to maintain the T. virens-plant interaction. PMID:29675028

  12. Identification and characterization of a type III secretion-associated chaperone in the type III secretion system 1 of Vibrio parahaemolyticus.

    PubMed

    Akeda, Yukihiro; Okayama, Kanna; Kimura, Tomomi; Dryselius, Rikard; Kodama, Toshio; Oishi, Kazunori; Iida, Tetsuya; Honda, Takeshi

    2009-07-01

    Vibrio parahaemolyticus causes human gastroenteritis. Genomic sequencing of this organism has revealed that it has two sets of type III secretion systems, T3SS1 and T3SS2, both of which are important for its pathogenicity. However, the mechanism of protein secretion via T3SSs is unknown. A characteristic of many effectors is that they require specific chaperones for efficient delivery via T3SSs; however, no chaperone has been experimentally identified in the T3SSs of V. parahaemolyticus. In this study, we identified candidate T3SS1-associated chaperones from genomic sequence data and examined their roles in effector secretion/translocation and binding to their cognate substrates. From these experiments, we concluded that there is a T3S-associated chaperone, VecA, for a cytotoxic T3SS1-dependent effector, VepA. Further analysis using pulldown and secretion assays characterized the chaperone-binding domain encompassing the first 30-100 amino acids and an amino terminal secretion signal encompassing the first 5-20 amino acids on VepA. These findings will provide a strategy to clarify how the T3SS1 of V. parahaemolyticus secretes its specific effectors.

  13. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans

    PubMed Central

    Liégeois, Samuel; Benedetto, Alexandre; Garnier, Jean-Marie; Schwab, Yannick; Labouesse, Michel

    2006-01-01

    Polarized intracellular trafficking in epithelia is critical in development, immunity, and physiology to deliver morphogens, defensins, or ion pumps to the appropriate membrane domain. The mechanisms that control apical trafficking remain poorly defined. Using Caenorhabditis elegans, we characterize a novel apical secretion pathway involving multivesicularbodies and the release of exosomes at the apical plasma membrane. By means of two different genetic approaches, we show that the membrane-bound V0 sector of the vacuolar H+-ATPase (V-ATPase) acts in this pathway, independent of its contribution to the V-ATPase proton pump activity. Specifically, we identified mutations in the V0 “a” subunit VHA-5 that affect either the V0-specific function or the V0+V1 function of the V-ATPase. These mutations allowed us to establish that the V0 sector mediates secretion of Hedgehog-related proteins. Our data raise the possibility that the V0 sector mediates exosome and morphogen release in mammals. PMID:16785323

  14. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi.

    PubMed

    Martín, Juan F

    2014-09-10

    Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of

  15. Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontag, Ryan L.; Nakayasu, Ernesto S.; Brown, Roslyn N.

    Many pathogenic bacteria of the familyEnterobacteriaceaeuse type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from theEnterobacteriaceaeintracellular pathogensSalmonella entericaserovar Typhimurium andCitrobacter rodentium. We identified 54 high-confidence host interactors for theSalmonellaeffectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for theCitrobactereffectors EspT,more » NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfHSalmonellaprotein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCEDuring infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets ofSalmonellaandCitrobactereffectors, which will help elucidate their mechanisms of action.« less

  16. Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host.

    PubMed

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Dinakaran, Vasudevan; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-01-01

    Brucella spp. are facultative intracellular pathogens that cause brucellosis in various mammals including humans. Brucella survive inside the host cells by forming vacuoles and subverting host defence systems. This study was aimed to predict the secretion systems and the secretomes of Brucella spp. from 39 complete genome sequences available in the databases. Furthermore, an attempt was made to identify the type IV secretion effectors and their interactions with host proteins. We predicted the secretion systems of Brucella by the KEGG pathway and SecReT4. Brucella secretomes and type IV effectors (T4SEs) were predicted through genome-wide screening using JVirGel and S4TE, respectively. Protein-protein interactions of Brucella T4SEs with their hosts were analyzed by HPIDB 2.0. Genes coding for Sec and Tat pathways of secretion and type I (T1SS), type IV (T4SS) and type V (T5SS) secretion systems were identified and they are conserved in all the species of Brucella. In addition to the well-known VirB operon coding for the type IV secretion system (T4SS), we have identified the presence of additional genes showing homology with T4SS of other organisms. On the whole, 10.26 to 14.94% of total proteomes were found to be either secreted (secretome) or membrane associated (membrane proteome). Approximately, 1.7 to 3.0% of total proteomes were identified as type IV secretion effectors (T4SEs). Prediction of protein-protein interactions showed 29 and 36 host-pathogen specific interactions between Bos taurus (cattle)-B. abortus and Ovis aries (sheep)-B. melitensis, respectively. Functional characterization of the predicted T4SEs and their interactions with their respective hosts may reveal the secrets of host specificity of Brucella.

  17. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins.

    PubMed

    Tomczynska, Iga; Stumpe, Michael; Mauch, Felix

    2018-04-19

    Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co-immunoprecipitation (Co-IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co-IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co-localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH-sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR-1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase-mediated vesicular secretion of antimicrobial PR-1, PDF1.2 and possibly other defence-related compounds. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  18. Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation

    PubMed Central

    Lakkaraju, Asvin K. K.; Thankappan, Ratheeshkumar; Mary, Camille; Garrison, Jennifer L.; Taunton, Jack; Strub, Katharina

    2012-01-01

    Mammalian cells secrete a large number of small proteins, but their mode of translocation into the endoplasmic reticulum is not fully understood. Cotranslational translocation was expected to be inefficient due to the small time window for signal sequence recognition by the signal recognition particle (SRP). Impairing the SRP pathway and reducing cellular levels of the translocon component Sec62 by RNA interference, we found an alternate, Sec62-dependent translocation path in mammalian cells required for the efficient translocation of small proteins with N-terminal signal sequences. The Sec62-dependent translocation occurs posttranslationally via the Sec61 translocon and requires ATP. We classified preproteins into three groups: 1) those that comprise ≤100 amino acids are strongly dependent on Sec62 for efficient translocation; 2) those in the size range of 120–160 amino acids use the SRP pathway, albeit inefficiently, and therefore rely on Sec62 for efficient translocation; and 3) those larger than 160 amino acids depend on the SRP pathway to preserve a transient translocation competence independent of Sec62. Thus, unlike in yeast, the Sec62-dependent translocation pathway in mammalian cells serves mainly as a fail-safe mechanism to ensure efficient secretion of small proteins and provides cells with an opportunity to regulate secretion of small proteins independent of the SRP pathway. PMID:22648169

  19. Characterization of NopP, a Type III Secreted Effector of Rhizobium sp. Strain NGR234

    PubMed Central

    Ausmees, Nora; Kobayashi, Hajime; Deakin, William J.; Marie, Corinne; Krishnan, Hari B.; Broughton, William J.; Perret, Xavier

    2004-01-01

    The type three secretion system (TTSS) encoded by pNGR234a, the symbiotic plasmid of Rhizobium sp. strain NGR234, is responsible for the flavonoid- and NodD1-dependent secretion of nodulation outer proteins (Nops). Abolition of secretion of all or specific Nops significantly alters the nodulation ability of NGR234 on many of its hosts. In the closely related strain Rhizobium fredii USDA257, inactivation of the TTSS modifies the host range of the mutant so that it includes the improved Glycine max variety McCall. To assess the impact of individual TTSS-secreted proteins on symbioses with legumes, various attempts were made to identify nop genes. Amino-terminal sequencing of peptides purified from gels was used to characterize NopA, NopL, and NopX, but it failed to identify SR3, a TTSS-dependent product of USDA257. By using phage display and antibodies that recognize SR3, the corresponding protein of NGR234 was identified as NopP. NopP, like NopL, is an effector secreted by the TTSS of NGR234, and depending on the legume host, it may have a deleterious or beneficial effect on nodulation or it may have little effect. PMID:15231809

  20. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking.

    PubMed

    Shohdy, Nadim; Efe, Jem A; Emr, Scott D; Shuman, Howard A

    2005-03-29

    Legionella pneumophila invades and replicates intracellularly in human and protozoan hosts. The bacteria use the Icm/Dot type IVB secretion system to translocate effectors that inhibit phagosome maturation and modulate host vesicle trafficking pathways. To understand how L. pneumophila modulates organelle trafficking in host cells, we carried out pathogen effector protein screening in yeast, identifying L. pneumophila genes that produced membrane trafficking [vacuole protein sorting (VPS)] defects in yeast. We identified four L. pneumophila DNA fragments that perturb sorting of vacuolar proteins. Three encode ORFs of unknown function that are translocated via the Icm/Dot transporter from Legionella into macrophages. VPS inhibitor protein (Vip) A is a coiled-coil protein, VipD is a patatin domain-containing protein, and VipF contains an acetyltransferase domain. Processing studies in yeast indicate that VipA, VipD, and VipF inhibit lysosomal protein trafficking by different mechanisms; overexpressing VipA has an effect on carboxypeptidase Y trafficking, whereas VipD interferes with multivesicular body formation at the late endosome and endoplasmic reticulum-to-Golgi body transport. Such differences highlight the multiple strategies L. pneumophila effectors use to subvert host trafficking processes. Using yeast as an effector gene discovery tool allows for a powerful, genetic approach to both the identification of virulence factors and the study of their function.

  1. Rac Regulates Giardia lamblia Encystation by Coordinating Cyst Wall Protein Trafficking and Secretion.

    PubMed

    Krtková, Jana; Thomas, Elizabeth B; Alas, Germain C M; Schraner, Elisabeth M; Behjatnia, Habib R; Hehl, Adrian B; Paredez, Alexander R

    2016-08-23

    Encystation of the common intestinal parasite Giardia lamblia involves the production, trafficking, and secretion of cyst wall material (CWM). However, the molecular mechanism responsible for the regulation of these sequential processes remains elusive. Here, we examined the role of GlRac, Giardia's sole Rho family GTPase, in the regulation of endomembrane organization and cyst wall protein (CWP) trafficking. Localization studies indicated that GlRac is associated with the endoplasmic reticulum (ER) and the Golgi apparatus-like encystation-specific vesicles (ESVs). Constitutive GlRac signaling increased levels of the ER marker PDI2, induced ER swelling, reduced overall CWP1 production, and promoted the early maturation of ESVs. Quantitative analysis of cells expressing constitutively active hemagglutinin (HA)-tagged GlRac (HA-Rac(CA)) revealed fewer but larger ESVs than control cells. Consistent with the phenotype of premature maturation of ESVs in HA-Rac(CA)-expressing cells, constitutive GlRac signaling resulted in increased CWP1 secretion and, conversely, morpholino depletion of GlRac blocked CWP1 secretion. Wild-type cells unexpectedly secreted large quantities of CWP1 into the medium, and free CWP1 was used cooperatively during cyst formation. These results, in part, could account for the previously reported observation that G. lamblia encysts more efficiently at high cell densities. These studies of GlRac show that it regulates encystation at several levels, and our findings support its coordinating role as a regulator of CWP trafficking and secretion. The central role of GlRac in regulating membrane trafficking and the cytoskeleton, both of which are essential to Giardia parasitism, further suggests its potential as a novel target for drug development to treat giardiasis. The encystation process is crucial for the transmission of giardiasis and the life cycle of many protists. Encystation for Giardia lamblia involves the assembly of a protective cyst wall

  2. Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system

    PubMed Central

    Zhou, Xiaohui; Addwebi, Tarek; Davis, Margaret A.; Orfe, Lisa; Call, Douglas R.; Guard, Jean; Besser, Thomas E.

    2011-01-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of S. Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low (n = 7), medium (n = 18) and high (n = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene spvB or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive in vivo and caused more and earlier mortalities, whereas the latter were significantly less invasive in vivo, causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on Salmonella pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of S. Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of S. Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins. PMID:21292746

  3. Virulence of Erwinia amylovora, a prevalent apple pathogen: Outer membrane proteins and type III secreted effectors increase fitness and compromise plant defenses.

    PubMed

    Holtappels, Michelle; Noben, Jean-Paul; Valcke, Roland

    2016-09-01

    Until now, no data are available on the outer membrane (OM) proteome of Erwinia amylovora, a Gram-negative plant pathogen, causing fire blight in most of the members of the Rosaceae family. Since the OM forms the interface between the bacterial cell and its environment it is in direct contact with the host. Additionally, the type III secretion system, embedded in the OM, is a pathogenicity factor of E. amylovora. To assess the influence of the OM composition and the secretion behavior on virulence, a 2D-DIGE analysis and gene expression profiling were performed on a high and lower virulent strain, both in vitro and in planta. Proteome data showed an increase in flagellin for the lower virulent strain in vitro, whereas, in planta several interesting proteins were identified as being differently expressed between both the strains. Further, gene expression of nearly all type III secreted effectors was elevated for the higher virulent strain, both in vitro and in planta. As a first, we report that several characteristics of virulence can be assigned to the OM proteome. Moreover, we demonstrate that secreted proteins prove to be the important factors determining differences in virulence between the strains, otherwise regarded as homogeneous on a genome level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Efficient extracellular production of type I secretion pathway-dependent Pseudomonas fluorescens lipase in recombinant Escherichia coli by heterologous ABC protein exporters.

    PubMed

    Eom, Gyeong Tae; Lee, Seung Hwan; Oh, Young Hoon; Choi, Ji Eun; Park, Si Jae; Song, Jae Kwang

    2014-10-01

    Heterologous ABC protein exporters, the apparatus of type I secretion pathway in Gram-negative bacteria, were used for extracellular production of Pseudomonas fluorescens lipase (TliA) in recombinant Escherichia coli. The effect of the expression of different ABC protein exporter gene clusters (P. fluorescens tliDEF, Pseudomonas aeruginosa aprDEF, Erwinia chrysanthemi prtDEF, and Serratia marcescens lipBCD genes) was examined on the secretion of TliA at growth temperatures of 20, 25, 30 and 35 °C. TliA secretion in recombinant E. coli XL10-Gold varied depending upon type of ABC protein exporter and culture temperature. E. coli expressing S. marcescens lipBCD genes showed the highest secretion level of TliA (122.8 U ml(-1)) when cultured at 25 °C. Thus, optimized culture conditions for efficient extracellular production of lipase in recombinant E. coli can be designed by changing the type of ABC protein exporter and the growth temperature.

  5. β-Cell–Specific Protein Kinase A Activation Enhances the Efficiency of Glucose Control by Increasing Acute-Phase Insulin Secretion

    PubMed Central

    Kaihara, Kelly A.; Dickson, Lorna M.; Jacobson, David A.; Tamarina, Natalia; Roe, Michael W.; Philipson, Louis H.; Wicksteed, Barton

    2013-01-01

    Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose. PMID:23349500

  6. The Small GTPase MoSec4 Is Involved in Vegetative Development and Pathogenicity by Regulating the Extracellular Protein Secretion in Magnaporthe oryzae

    PubMed Central

    Zheng, Huakun; Chen, Simiao; Chen, Xiaofeng; Liu, Shuyan; Dang, Xie; Yang, Chengdong; Giraldo, Martha C.; Oliveira-Garcia, Ely; Zhou, Jie; Wang, Zonghua; Valent, Barbara

    2016-01-01

    The Rab GTPase proteins play important roles in the membrane trafficking, and consequently protein secretion and development of eukaryotic organisms. However, little is known about the function of Rab GTPases in Magnaporthe oryzae. To further explore the function of Rab GTPases, we deleted the ortholog of the yeast Sec4p protein in M. oryzae, namely MoSEC4. The ΔMosec4 mutant is defective in polarized growth and conidiation, and it displays decreased appressorium turgor pressure and attenuated pathogenicity. Notably, the biotrophic invasive hyphae produced in rice cells are more bulbous and compressed in the ΔMosec4 mutant. Further studies showed that deletion of the MoSEC4 gene resulted in decreased secretion of extracellular enzymes and mislocalization of the cytoplasmic effector PWL2-mCherry-NLS. In accordance with a role in secretion, the GFP-MoSec4 fusion protein mainly accumulates at tips of growing vegetative hyphae. Our results suggest that the MoSec4 protein plays important roles in the secretion of extracellular proteins and consequently hyphal development and pathogenicity in the rice blast fungus. PMID:27729922

  7. Characterization of Gonadotrope Secretoproteome Identifies Neurosecretory Protein VGF-derived Peptide Suppression of Follicle-stimulating Hormone Gene Expression*

    PubMed Central

    Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Sealfon, Stuart C.

    2016-01-01

    Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gαs knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gαs knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gαs. In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. PMID:27466366

  8. The Secreted Protein Rv1860 of Mycobacterium tuberculosis Stimulates Human Polyfunctional CD8+ T Cells

    PubMed Central

    Kumar, Naveen; Biswas, Sunetra; Jumani, Rajiv S.; Jain, Chandni; Rani, Rajni; Aggarwal, Bharti; Singh, Jaya; Kotnur, Mohan Rao; Sridharan, Anand

    2016-01-01

    We previously reported that Rv1860 protein from Mycobacterium tuberculosis stimulated CD4+ and CD8+ T cells secreting gamma interferon (IFN-γ) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulent M. tuberculosis. We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latently M. tuberculosis-infected individuals dominated by CD8+ T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8+ PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studied M. tuberculosis antigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4+ T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8+ T-cell-stimulating antigens has the potential to prevent progression of latent M. tuberculosis infection to TB disease. PMID:26843486

  9. The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" encodes an afp-like prophage possibly used for protein secretion.

    PubMed

    Penz, Thomas; Horn, Matthias; Schmitz-Esser, Stephan

    2010-01-01

    The recently sequenced genome of the obligate intracellular amoeba symbiont 'Candidatus Amoebophilus asiaticus' is unique among prokaryotic genomes due to its extremely large fraction of genes encoding proteins harboring eukaryotic domains such as ankyrin-repeats, TPR/SEL1 repeats, leucine-rich repeats, as well as F- and U-box domains, most of which likely serve in the interaction with the amoeba host. Here we provide evidence for the presence of additional proteins which are presumably presented extracellularly and should thus also be important for host cell interaction. Surprisingly, we did not find homologues of any of the well-known protein secretion systems required to translocate effector proteins into the host cell in the A. asiaticus genome, and the type six secretion systems seems to be incomplete. Here we describe the presence of a putative prophage in the A. asiaticus genome, which shows similarity to the antifeeding prophage from the insect pathogen Serratia entomophila. In S. entomophila this system is used to deliver toxins into insect hosts. This putative antifeeding-like prophage might thus represent the missing protein secretion apparatus in A. asiaticus.

  10. A Catalog of Proteins Expressed in the AG Secreted Fluid during the Mature Phase of the Chinese Mitten Crabs (Eriocheir sinensis)

    PubMed Central

    He, Lin; Li, Qing; Liu, Lihua; Wang, Yuanli; Xie, Jing; Yang, Hongdan; Wang, Qun

    2015-01-01

    The accessory gland (AG) is an important component of the male reproductive system of arthropods, its secretions enhance fertility, some AG proteins bind to the spermatozoa and affect its function and properties. Here we report the first comprehensive catalog of the AG secreted fluid during the mature phase of the Chinese mitten crab (Eriocheir sinensis). AG proteins were separated by one-dimensional gel electrophoresis and analyzed by reverse phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Altogether, the mass spectra of 1173 peptides were detected (1067 without decoy and contaminants) which allowed for the identification of 486 different proteins annotated upon the NCBI database (http://www.ncbi.nlm.nih.gov/) and our transcritptome dataset. The mass spectrometry proteomics data have been deposited at the ProteomeXchange with identifier PXD000700. An extensive description of the AG proteome will help provide the basis for a better understanding of a number of reproductive mechanisms, including potentially spermatophore breakdown, dynamic functional and morphological changes in sperm cells and sperm acrosin enzyme vitality. Thus, the comprehensive catalog of proteins presented here can serve as a valuable reference for future studies of sperm maturation and regulatory mechanisms involved in crustacean reproduction. PMID:26305468

  11. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins.

    PubMed

    Walz, Alexander; Mujer, Cesar V; Connolly, Joseph P; Alefantis, Tim; Chafin, Ryan; Dake, Clarissa; Whittington, Jessica; Kumar, Srikanta P; Khan, Akbar S; DelVecchio, Vito G

    2007-07-27

    The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2-) during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites), lipoprotein signal peptides (13 have SpII sites), and N-terminal membrane helices (9 have transmembrane helices). The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa) of protective antigen (PA) were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and accumulation may be relevant in elucidation of the

  12. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins

    PubMed Central

    Walz, Alexander; Mujer, Cesar V; Connolly, Joseph P; Alefantis, Tim; Chafin, Ryan; Dake, Clarissa; Whittington, Jessica; Kumar, Srikanta P; Khan, Akbar S; DelVecchio, Vito G

    2007-01-01

    Background The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2-) during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. Results A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites), lipoprotein signal peptides (13 have SpII sites), and N-terminal membrane helices (9 have transmembrane helices). The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa) of protective antigen (PA) were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. Conclusion This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and accumulation may be

  13. Secretion of the endoplasmic reticulum stress protein, GRP78, into the BALF is increased in cigarette smokers.

    PubMed

    Aksoy, Mark O; Kim, Victor; Cornwell, William D; Rogers, Thomas J; Kosmider, Beata; Bahmed, Karim; Barrero, Carlos; Merali, Salim; Shetty, Neena; Kelsen, Steven G

    2017-05-02

    Identification of biomarkers of cigarette smoke -induced lung damage and early COPD is an area of intense interest. Glucose regulated protein of 78 kD (i.e., GRP78), a multi-functional protein which mediates cell responses to oxidant stress, is increased in the lungs of cigarette smokers and in the serum of subjects with COPD. We have suggested that secretion of GRP78 by lung cells may explain the increase in serum GRP78 in COPD. To assess GRP78 secretion by the lung, we assayed GRP78 in bronchoalveolar lavage fluid (BALF) in chronic smokers and non-smokers. We also directly assessed the acute effect of cigarette smoke material on GRP78 secretion in isolated human airway epithelial cells (HAEC). GRP78 was measured in BALF of smokers (S; n = 13) and non-smokers (NS; n = 11) by Western blotting. GRP78 secretion by HAEC was assessed by comparing its concentration in cell culture medium and cell lysates. Cells were treated for 24 h with either the volatile phase of cigarette smoke (cigarette smoke extract (CSE) or the particulate phase (cigarette smoke condensate (CSC)). GRP78 was present in the BALF of both NS and S but levels were significantly greater in S (p = 0.04). GRP78 was secreted constitutively in HAEC. CSE 15% X 24 h increased GRP78 in cell-conditioned medium without affecting its intracellular concentration. In contrast, CSC X 24 h increased intracellular GRP78 expression but did not affect GRP78 secretion. Brefeldin A, an inhibitor of classical Golgi secretion pathways, did not inhibit GRP78 secretion indicating that non-classical pathways were involved. The present study indicates that GRP78 is increased in BALF in cigarette smokers; that HAEC secrete GRP78; and that GRP78 secretion by HAEC is augmented by cigarette smoke particulates. Enhanced secretion of GRP78 by lung cells makes it a potential biomarker of cigarette smoke-induced lung injury.

  14. Hormone synthesis and secretion by rat parathyroid glands in tissue culture.

    PubMed

    Au, W Y; Poland, A P; Stern, P H; Raisz, L G

    1970-09-01

    Rat parathyroid glands maintained in organ culture secrete biologically active parathyroid hormone (PTH) and synthesize and secrete labeled proteins from (3)H- or (14)C-labeled amino acids added to the medium. The amounts of biological activity and labeled protein in the medium are both inversely proportional to the calcium concentration. Some of the labeled low molecular weight protein was identified as PTH which had been synthesized and secreted in culture by preliminary isolation on Sephadex G-100 columns and further purification using an antibody to bovine PTH which cross-reacted with rat PTH. The cross-reacting antibody inhibited the biological effects of rat PTH and caused hypocalcemia in intact rats. The antibody bound some of the labeled low molecular weight protein of the medium at neutral pH so that it migrated as a large molecular weight complex on Sephadex. Biologically active, labeled PTH was recovered by dissociation of this complex in acid and rechromatography.

  15. Hormone synthesis and secretion by rat parathyroid glands in tissue culture

    PubMed Central

    Au, William Y. W.; Poland, Alan P.; Stern, Paula H.; Raisz, Lawrence G.

    1970-01-01

    Rat parathyroid glands maintained in organ culture secrete biologically active parathyroid hormone (PTH) and synthesize and secrete labeled proteins from 3H- or 14C-labeled amino acids added to the medium. The amounts of biological activity and labeled protein in the medium are both inversely proportional to the calcium concentration. Some of the labeled low molecular weight protein was identified as PTH which had been synthesized and secreted in culture by preliminary isolation on Sephadex G-100 columns and further purification using an antibody to bovine PTH which cross-reacted with rat PTH. The cross-reacting antibody inhibited the biological effects of rat PTH and caused hypocalcemia in intact rats. The antibody bound some of the labeled low molecular weight protein of the medium at neutral pH so that it migrated as a large molecular weight complex on Sephadex. Biologically active, labeled PTH was recovered by dissociation of this complex in acid and rechromatography. PMID:5449703

  16. Deoxycholate-Enhanced Shigella Virulence Is Regulated by a Rare π-Helix in the Type Three Secretion System Tip Protein IpaD.

    PubMed

    Bernard, Abram R; Jessop, T Carson; Kumar, Prashant; Dickenson, Nicholas E

    2017-12-12

    Type three secretion systems (T3SS) are specialized nanomachines that support infection by injecting bacterial proteins directly into host cells. The Shigella T3SS has uniquely evolved to sense environmental levels of the bile salt deoxycholate (DOC) and upregulate virulence in response to DOC. In this study, we describe a rare i + 5 hydrogen bonding secondary structure element (π-helix) within the type three secretion system tip protein IpaD that plays a critical role in DOC-enhanced virulence. Specifically, engineered mutations within the π-helix altered the pathogen's response to DOC, with one mutant construct in particular exhibiting an unprecedented reduction in virulence following DOC exposure. Fluorescence polarization binding assays showed that these altered DOC responses are not the result of differences in affinity between IpaD and DOC, but rather differences in the DOC-dependent T3SS tip maturation resulting from binding of IpaD to translocator/effector protein IpaB. Together, these findings begin to uncover the complex mechanism of DOC-enhanced Shigella virulence while identifying an uncommon structural element that may provide a much needed target for non-antibiotic treatment of Shigella infection.

  17. Detergent Isolation Stabilizes and Activates the Shigella Type III Secretion System Translocator Protein IpaC.

    PubMed

    Bernard, Abram R; Duarte, Shari M; Kumar, Prashant; Dickenson, Nicholas E

    2016-07-01

    Shigella rely on a type III secretion system as the primary virulence factor for invasion and colonization of human hosts. Although there are an estimated 90 million Shigella infections, annually responsible for more than 100,000 deaths worldwide, challenges isolating and stabilizing many type III secretion system proteins have prevented a full understanding of the Shigella invasion mechanism and additionally slowed progress toward a much needed Shigella vaccine. Here, we show that the non-denaturing zwitterionic detergent N, N-dimethyldodecylamine N-oxide (LDAO) and non-ionic detergent n-octyl-oligo-oxyethylene efficiently isolated the hydrophobic Shigella translocator protein IpaC from the co-purified IpaC/IpgC chaperone-bound complex. Both detergents resulted in monomeric IpaC that exhibits strong membrane binding and lysis characteristics while the chaperone-bound complex does not, suggesting that the stabilizing detergents provide a means of following IpaC "activation" in vitro. Additionally, biophysical characterization found that LDAO provides significant thermal and temporal stability to IpaC, protecting it for several days at room temperature and brief exposure to temperatures reaching 90°C. In summary, this work identified and characterized conditions that provide stable, membrane active IpaC, providing insight into key interactions with membranes and laying a strong foundation for future vaccine formulation studies taking advantage of the native immunogenicity of IpaC and the stability provided by LDAO. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Urea synthesis in patients with chronic pancreatitis: relation to glucagon secretion and dietary protein intake.

    PubMed

    Hamberg, O; Andersen, V; Sonne, J; Larsen, S; Vilstrup, H

    2001-12-01

    Up-regulation of urea synthesis by amino acids and dietary protein intake may be impaired in patients with chronic pancreatitis (CP) due to the reduced glucagon secretion. Conversely, urea synthesis may be increased as a result of the chronic inflammation. The aims of the study were to determine urea synthesis kinetics in CP patients in relation to glucagon secretion (study I) and during an increase in protein intake (study II). In study I, urea synthesis rate, calculated as urinary excretion rate corrected for accumulation in total body water and intestinal loss, was measured during infusion of alanine in 7 CP patients and 5 control subjects on spontaneous protein intake. The functional hepatic nitrogen clearance (FHNC), i.e. urea synthesis expressed independent of changes in plasma amino acid concentration, was calculated as the slope of the linear relation between urea synthesis rate and plasma alpha -amino nitrogen concentration. In study II, 6 of the patients of study I had urea synthesis and FHNC determined before and after a period of 14 days of supplementation with a protein-enriched liquid (dietary sequence randomized). Study I: Alanine infusion increased urea synthesis rate by a factor of 10 in the control subjects, and by a factor of 5 in the CP patients (P<0.01). FHNC was 31.9+/-2.4 l/h in the control subjects and 16.5+/-2.0 l/h (P<0.05) in the CP patients. The glucagon response to alanine infusion (AUC) was reduced by 75 % in the CP patients. The reduction in FHNC paralleled the reduced glucagon response (r(2)=0.55, P<0.01). Study II: The spontaneous protein intake was 0.75+/-0.14 g/(kg x day) and increased during the high protein period to 1.77+/-0.12 g/(kg x day). This increased alanine stimulated urea synthesis by a factor of 1.3 (P<0.05), FHNC from 13.5+/-2.6 l/h to 19.4+/-3.1 l/h (P<0.01), and the glucagon response to alanine infusion (AUC) by a factor of 1.8 (P<0.05). Urea synthesis rate and FHNC are markedly reduced in CP patients. This is

  19. Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein.

    PubMed

    Bosque, Alberto; Dietz, Lisa; Gallego-Lleyda, Ana; Sanclemente, Manuel; Iturralde, María; Naval, Javier; Alava, María Angeles; Martínez-Lostao, Luis; Thierse, Hermann-Josef; Anel, Alberto

    2016-05-17

    We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion.

  20. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    PubMed

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  1. P2 receptor stimulation induces amyloid precursor protein production and secretion in rat cortical astrocytes.

    PubMed

    Tran, Minh D

    2011-04-04

    Amyloid precursor protein (APP) is ubiquitously expressed in a variety of tissues but is predominantly expressed in the brain. The expression of APP has been well studied in neurons but little is known about its presence in astrocytes. The study presented here shows that purinergic signaling is involved in the production and secretion of APP in primary cultures of rat cortical astrocytes. Extracellular ATP caused an increase in APP production and release in a time- and concentration-dependent manner and was inhibited by antagonists of P2 receptors. Further agonist and antagonist studies revealed involvement of P2Y2 and P2Y4 receptors in nucleotide-stimulated production and release of APP. In addition, signaling studies with various protein kinase inhibitors demonstrated that blockade of mitogen-activated protein kinases, but not Akt, inhibited nucleotide-stimulated APP expression and release. These results indicate that APP production and secretion can be regulated by activation of P2Y2/4 receptors coupled to protein kinase signaling pathways and suggest that astrocytes can be a potential source of APP. Published by Elsevier Ireland Ltd.

  2. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of α-lactalbumin, β-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young.

  3. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of ??-lactalbumin, ??-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young. ?? 2001 Elsevier Science Inc.

  4. The effect of guar gum on carbohydrate-, fat- and protein-stimulated gut hormone secretion: modification of postprandial gastric inhibitory polypeptide and gastrin responses.

    PubMed

    Morgan, L M; Tredger, J A; Madden, A; Kwasowski, P; Marks, V

    1985-05-01

    The effect of incorporating guar gum into predominantly single-component meals of carbohydrate, fat or protein on liquid gastric emptying and on the secretion of gastric inhibitory polypeptide (GIP), gastrin and motilin, was studied in healthy human volunteers. Volunteers were given either 80 ml Hycal (carbohydrate meal), 150 g cooked lean minced beef (protein meal) or 200 ml double cream (fat meal) either with or without 5 or 6 g guar gum. Liquid gastric emptying was monitored in the fat and protein meals by taking 1.5 g paracetamol, consumed in water, with the meals and monitoring its appearance in circulation. Postprandial insulin and GIP levels were both significantly reduced by addition of guar gum to the carbohydrate meal. Postprandial GIP secretion was also reduced by addition of guar gum to the protein meal, but protein-stimulated gastrin secretion was enhanced by guar gum. There was a significant negative correlation between peak circulating gastrin levels and the corresponding GIP levels. Postprandial GIP secretion and plasma motilin levels were unaffected by addition of guar gum to the fat meal. 5 and 10 g guar gum/l solutions in water possessed buffering capacities between pH 2.75 and 5.5. Guar gum at 5 g/l caused no detectable change in liquid gastric-emptying time. The observed augmentation of gastrin secretion by guar gum following a protein meal could be due either to the buffering capacity of guar gum or to the attenuation of GIP secretion. It is possible that the chronic use of guar gum could be associated with changes in gastric acid secretion.

  5. Crystal Structure of a Soluble Fragment of the Membrane Fusion Protein HlyD in a Type I Secretion System of Gram-Negative Bacteria.

    PubMed

    Kim, Jin-Sik; Song, Saemee; Lee, Minho; Lee, Seunghwa; Lee, Kangseok; Ha, Nam-Chul

    2016-03-01

    The protein toxin HlyA of Escherichia coli is exported without a periplasmic intermediate by the type I secretion system (T1SS). The T1SS is composed of an inner membrane ABC transporter HlyB, an outer-membrane channel protein TolC, and a membrane fusion protein HlyD. However, the assembly of the T1SS remains to be elucidated. In this study, we determine the crystal structure of a part of the C-terminal periplasmic domain of HlyD. The long α-helical domain consisting of three α helices and a lipoyl domain was identified in the crystal structure. Based on the HlyD structure, we modeled the hexameric assembly of HlyD with a long α-helical barrel, which formed a complex with TolC in an intermeshing cogwheel-to-cogwheel manner, as observed in tripartite RND-type drug efflux pumps. These observations provide a structural blueprint for understanding the type I secretion system in pathogenic Gram-negative bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Secretion of a recombinant protein without a signal peptide by the exocrine glands of transgenic rabbits

    PubMed Central

    Iski, Gergely; Lipták, Nándor; Gócza, Elen; Kues, Wilfried A.; Bősze, Zsuzsanna

    2017-01-01

    Transgenic rabbits carrying mammary gland specific gene constructs are extensively used for excreting recombinant proteins into the milk. Here, we report refined phenotyping of previously generated Venus transposon-carrying transgenic rabbits with particular emphasis on the secretion of the reporter protein by exocrine glands, such as mammary, salivary, tear and seminal glands. The Sleeping Beauty (SB) transposon transgenic construct contains the Venus fluorophore cDNA, but without a signal peptide for the secretory pathway, driven by the ubiquitous CAGGS (CAG) promoter. Despite the absence of a signal peptide, the fluorophore protein was readily detected in milk, tear, saliva and seminal fluids. The expression pattern was verified by Western blot analysis. Mammary gland epithelial cells of SB-CAG-Venus transgenic lactating does also showed Venus-specific expression by tissue histology and fluorescence microscopy. In summary, the SB-CAG-Venus transgenic rabbits secrete the recombinant protein by different glands. This finding has relevance not only for the understanding of the biological function of exocrine glands, but also for the design of constructs for expression of recombinant proteins in dairy animals. PMID:29077768

  7. Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD.

    PubMed

    Johnson, Steven; Roversi, Pietro; Espina, Marianela; Olive, Andrew; Deane, Janet E; Birket, Susan; Field, Terry; Picking, William D; Blocker, Ariel J; Galyov, Edouard E; Picking, Wendy L; Lea, Susan M

    2007-02-09

    Bacteria expressing type III secretion systems (T3SS) have been responsible for the deaths of millions worldwide, acting as key virulence elements in diseases ranging from plague to typhoid fever. The T3SS is composed of a basal body, which traverses both bacterial membranes, and an external needle through which effector proteins are secreted. We report multiple crystal structures of two proteins that sit at the tip of the needle and are essential for virulence: IpaD from Shigella flexneri and BipD from Burkholderia pseudomallei. The structures reveal that the N-terminal domains of the molecules are intramolecular chaperones that prevent premature oligomerization, as well as sharing structural homology with proteins involved in eukaryotic actin rearrangement. Crystal packing has allowed us to construct a model for the tip complex that is supported by mutations designed using the structure.

  8. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  9. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    PubMed Central

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana

    2016-01-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  10. ELKS active zone proteins as multitasking scaffolds for secretion

    PubMed Central

    Held, Richard G.

    2018-01-01

    Synaptic vesicle exocytosis relies on the tethering of release ready vesicles close to voltage-gated Ca2+ channels and specific lipids at the future site of fusion. This enables rapid and efficient neurotransmitter secretion during presynaptic depolarization by an action potential. Extensive research has revealed that this tethering is mediated by an active zone, a protein dense structure that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Although roles of individual active zone proteins in exocytosis are in part understood, the molecular mechanisms that hold the protein scaffold at the active zone together and link it to the presynaptic plasma membrane have remained unknown. This is largely due to redundancy within and across scaffolding protein families at the active zone. Recent studies, however, have uncovered that ELKS proteins, also called ERC, Rab6IP2 or CAST, act as active zone scaffolds redundant with RIMs. This redundancy has led to diverse synaptic phenotypes in studies of ELKS knockout mice, perhaps because different synapses rely to a variable extent on scaffolding redundancy. In this review, we first evaluate the need for presynaptic scaffolding, and we then discuss how the diverse synaptic and non-synaptic functional roles of ELKS support the hypothesis that ELKS provides molecular scaffolding for organizing vesicle traffic at the presynaptic active zone and in other cellular compartments. PMID:29491150

  11. VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System

    PubMed Central

    Cianfanelli, Francesca R.; Alcoforado Diniz, Juliana; Guo, Manman; De Cesare, Virginia; Trost, Matthias; Coulthurst, Sarah J.

    2016-01-01

    The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently (‘specialised’) or non-covalently (‘cargo’ effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a ‘core’ T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the

  12. The Barley Powdery Mildew Candidate Secreted Effector Protein CSEP0105 Inhibits the Chaperone Activity of a Small Heat Shock Protein1[OPEN

    PubMed Central

    Ahmed, Ali Abdurehim; Pedersen, Carsten; Schultz-Larsen, Torsten; Kwaaitaal, Mark; Jørgensen, Hans Jørgen Lyngs; Thordal-Christensen, Hans

    2015-01-01

    Pathogens secrete effector proteins to establish a successful interaction with their host. Here, we describe two barley (Hordeum vulgare) powdery mildew candidate secreted effector proteins, CSEP0105 and CSEP0162, which contribute to pathogen success and appear to be required during or after haustorial formation. Silencing of either CSEP using host-induced gene silencing significantly reduced the fungal haustorial formation rate. Interestingly, both CSEPs interact with the barley small heat shock proteins, Hsp16.9 and Hsp17.5, in a yeast two-hybrid assay. Small heat shock proteins are known to stabilize several intracellular proteins, including defense-related signaling components, through their chaperone activity. CSEP0105 and CSEP0162 localized to the cytosol and the nucleus of barley epidermal cells, whereas Hsp16.9 and Hsp17.5 are cytosolic. Intriguingly, only those specific CSEPs changed localization and became restricted to the cytosol when coexpressed with Hsp16.9 and Hsp17.5, confirming the CSEP-small heat shock protein interaction. As predicted, Hsp16.9 showed chaperone activity, as it could prevent the aggregation of Escherichia coli proteins during thermal stress. Remarkably, CSEP0105 compromised this activity. These data suggest that CSEP0105 promotes virulence by interfering with the chaperone activity of a barley small heat shock protein essential for defense and stress responses. PMID:25770154

  13. Characterization of Gonadotrope Secretoproteome Identifies Neurosecretory Protein VGF-derived Peptide Suppression of Follicle-stimulating Hormone Gene Expression.

    PubMed

    Choi, Soon Gang; Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Salton, Stephen R J; Sealfon, Stuart C

    2016-09-30

    Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gα s knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gα s knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gα s In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. AGR2, an Endoplasmic Reticulum Protein, Is Secreted into the Gastrointestinal Mucus

    PubMed Central

    Bergström, Joakim H.; Berg, Katarina A.; Rodríguez-Piñeiro, Ana M.; Stecher, Bärbel; Johansson, Malin E. V.; Hansson, Gunnar C.

    2014-01-01

    The MUC2 mucin is the major constituent of the two mucus layers in colon. Mice lacking the disulfide isomerase-like protein Agr2 have been shown to be more susceptible to colon inflammation. The Agr2−/− mice have less filled goblet cells and were now shown to have a poorly developed inner colon mucus layer. We could not show AGR2 covalently bound to recombinant MUC2 N- and C-termini as have previously been suggested. We found relatively high concentrations of Agr2 in secreted mucus throughout the murine gastrointestinal tract, suggesting that Agr2 may play extracellular roles. In tissue culture (CHO-K1) cells, AGR2 is normally not secreted. Replacement of the single Cys in AGR2 with Ser (C81S) allowed secretion, suggesting that modification of this Cys might provide a mechanism for circumventing the KTEL endoplasmic reticulum retention signal. In conclusion, these results suggest that AGR2 has both intracellular and extracellular effects in the intestine. PMID:25111734

  15. A Proteomic Study of Pectin Degrading Enzymes Secreted by Botrytis cinerea Grown in Liquid Culture

    PubMed Central

    Shah, Punit; Gutierrez-Sanchez, Gerardo; Orlando, Ron; Bergmann, Carl

    2009-01-01

    Botrytis cinerea is a pathogenic filamentous fungus which infects more than 200 plant species. The enzymes secreted by B. cinerea play an important role in the successful colonization of a host plant. Some of the secreted enzymes are involved in the degradation of pectin, a major component of the plant cell wall. A total of 126 proteins secreted by B. cinerea were identified by growing the fungus on highly or partially esterified pectin, or on sucrose in liquid culture. Sixty-seven common proteins were identified in each of the growth conditions, of which 50 proteins exhibited a Signal P motif. Thirteen B. cinerea proteins with functions related to pectin degradation were identified in both pectin growth conditions, while only four were identified in sucrose. Our results indicate it is unlikely that the activation of B. cinerea from the dormant state to active infection is solely dependent on changes in the degree of esterification of the pectin component of the plant cell wall. Further, these results suggest that future studies of the B. cinerea secretome in infections of ripe and unripe fruits will provide important information that will describe the mechanisms that the fungus employs to access nutrients and decompose tissues. PMID:19526562

  16. Yersinia pestis Yop secretion protein F: purification, characterization, and protective efficacy against bubonic plague.

    PubMed

    Swietnicki, Wieslaw; Powell, Bradford S; Goodin, Jeremy

    2005-07-01

    Yersinia pestis is a gram-negative human pathogen that uses a type III secretion system to deliver virulence factors into human hosts. The delivery is contact-dependent and it has been proposed that polymerization of Yop secretion protein F (YscF) is used to puncture mammalian cell membranes to facilitate delivery of Yersinia outer protein effectors into host cells. To evaluate the potential immunogenicity and protective efficacy of YscF against Y. pestis, we used a purified recombinant YscF protein as a potential vaccine candidate in a mouse subcutaneous infection model. YscF was expressed and purified from Escherichia coli by immobilized metal-ion affinity chromatography and protein identity was confirmed by ion trap mass spectrometry. The recombinant protein was highly alpha-helical and formed relatively stable aggregates under physiological conditions. The properties were consistent with behavior expected for the native YscF, suggesting that the antigen was properly folded. Ten mice were inoculated subcutaneously, administered booster injections after one month, and challenged with 130 LD(50) of wild type Y. pestis CO92. Six animals in the vaccinated group but none in the control group survived the challenge. The vaccinated animals produced high levels of specific antibodies against YscF as determined by Western blot. The data were statistically significant (P = 0.053 by two-tailed Fisher's test), suggesting that the YscF protein can provide a protective immune response against lethal plague challenge during subcutaneous plague infection.

  17. The RNA- and TRIM25-Binding Domains of Influenza Virus NS1 Protein Are Essential for Suppression of NLRP3 Inflammasome-Mediated Interleukin-1β Secretion.

    PubMed

    Moriyama, Miyu; Chen, I-Yin; Kawaguchi, Atsushi; Koshiba, Takumi; Nagata, Kyosuke; Takeyama, Haruko; Hasegawa, Hideki; Ichinohe, Takeshi

    2016-04-01

    Inflammasomes are cytosolic multimolecular protein complexes that stimulate the activation of caspase-1 and the release of mature forms of interleukin-1β (IL-1β) and IL-18. We previously demonstrated that the influenza A virus M2 protein stimulates IL-1β secretion following activation of the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. The nonstructural protein 1 (NS1) of influenza virus inhibits caspase-1 activation and IL-1β secretion. However, the precise mechanism by which NS1 inhibits IL-1β secretion remains unknown. Here, we showed that J774A.1 macrophages stably expressing the NS1 protein inhibited IL-1β secretion after infection with recombinant influenza virus lacking the NS1 gene. Coimmunoprecipitation assay revealed that the NS1 protein interacts with NLRP3. Importantly, the NS1 protein inhibited the NLRP3/ASC-induced single-speck formation required for full activation of inflammasomes. The NS1 protein of other influenza virus strains, including a recent pandemic strain, also inhibited inflammasome-mediated IL-1β secretion. The NS1 RNA-binding domain (basic residues 38 and 41) and TRIM25-binding domain (acidic residues 96 and 97) were required for suppression of NLRP3 inflammasome-mediated IL-1β secretion. These results shed light on a mechanism by which the NS1 protein of influenza virus suppresses NLRP3 inflammasome-mediated IL-1β secretion. Innate immune sensing of influenza virus via pattern recognition receptors not only plays a key role in generating type I interferons but also triggers inflammatory responses. We previously demonstrated that the influenza A virus M2 protein activates the NLRP3 inflammasome, leading to the secretion of interleukin-1β (IL-1β) and IL-18 following the activation of caspase-1. Although the nonstructural protein 1 (NS1) of influenza virus inhibits IL-1β secretion, the precise mechanism by which it achieves this remains to be defined. Here

  18. The RNA- and TRIM25-Binding Domains of Influenza Virus NS1 Protein Are Essential for Suppression of NLRP3 Inflammasome-Mediated Interleukin-1β Secretion

    PubMed Central

    Moriyama, Miyu; Chen, I-Yin; Kawaguchi, Atsushi; Koshiba, Takumi; Nagata, Kyosuke; Takeyama, Haruko; Hasegawa, Hideki

    2016-01-01

    ABSTRACT Inflammasomes are cytosolic multimolecular protein complexes that stimulate the activation of caspase-1 and the release of mature forms of interleukin-1β (IL-1β) and IL-18. We previously demonstrated that the influenza A virus M2 protein stimulates IL-1β secretion following activation of the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. The nonstructural protein 1 (NS1) of influenza virus inhibits caspase-1 activation and IL-1β secretion. However, the precise mechanism by which NS1 inhibits IL-1β secretion remains unknown. Here, we showed that J774A.1 macrophages stably expressing the NS1 protein inhibited IL-1β secretion after infection with recombinant influenza virus lacking the NS1 gene. Coimmunoprecipitation assay revealed that the NS1 protein interacts with NLRP3. Importantly, the NS1 protein inhibited the NLRP3/ASC-induced single-speck formation required for full activation of inflammasomes. The NS1 protein of other influenza virus strains, including a recent pandemic strain, also inhibited inflammasome-mediated IL-1β secretion. The NS1 RNA-binding domain (basic residues 38 and 41) and TRIM25-binding domain (acidic residues 96 and 97) were required for suppression of NLRP3 inflammasome-mediated IL-1β secretion. These results shed light on a mechanism by which the NS1 protein of influenza virus suppresses NLRP3 inflammasome-mediated IL-1β secretion. IMPORTANCE Innate immune sensing of influenza virus via pattern recognition receptors not only plays a key role in generating type I interferons but also triggers inflammatory responses. We previously demonstrated that the influenza A virus M2 protein activates the NLRP3 inflammasome, leading to the secretion of interleukin-1β (IL-1β) and IL-18 following the activation of caspase-1. Although the nonstructural protein 1 (NS1) of influenza virus inhibits IL-1β secretion, the precise mechanism by which it achieves this remains

  19. Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1).

    PubMed

    Endres, Marcel; Kneitz, Susanne; Orth, Martin F; Perera, Ruwan K; Zernecke, Alma; Butt, Elke

    2016-09-27

    The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines.By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines.In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown.Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression.The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.

  20. Highly active promoters and native secretion signals for protein production during extremely low growth rates in Aspergillus niger.

    PubMed

    Wanka, Franziska; Arentshorst, Mark; Cairns, Timothy C; Jørgensen, Thomas; Ram, Arthur F J; Meyer, Vera

    2016-08-20

    The filamentous ascomycete Aspergillus niger is used in many industrial processes for the production of enzymes and organic acids by batch and fed-batch cultivation. An alternative technique is continuous cultivation, which promises improved yield and optimized pipeline efficiency. In this work, we have used perfusion (retentostat) cultivation to validate two promoters that are suitable for A. niger continuous cultivation of industrially relevant products. Firstly, promoters of genes encoding either an antifungal protein (Panafp) or putative hydrophobin (PhfbD) were confirmed as active throughout retentostat culture by assessing mRNA and protein levels using a luciferase (mluc) reporter system. This demonstrated the anafp promoter mediates a high but temporally variable expression profile, whereas the hfbD promoter mediates a semi-constant, moderate-to-high protein expression during retentostat culture. In order to assess whether these promoters were suitable to produce heterologous proteins during retentostat cultivation, the secreted antifungal protein (AFP) from Aspergillus giganteus, which has many potential biotechnological applications, was expressed in A. niger during retentostat cultivation. Additionally, this assay was used to concomitantly validate that native secretion signals encoded in anafp and hfbD genes can be harnessed for secretion of heterologous proteins. Afp mRNA and protein abundance were comparable to luciferase measurements throughout retentostat cultivation, validating the use of Panafp and PhfbD for perfusion cultivation. Finally, a gene encoding the highly commercially relevant thermal hysteresis protein (THP) was expressed in this system, which did not yield detectable protein. Both hfbD and anafp promoters are suitable for production of useful products in A. niger during perfusion cultivation. These findings provide a platform for further optimisations for high production of heterologous proteins with industrial relevance.

  1. Leishmania mexicana: promastigotes and amastigotes secrete protein phosphatases and this correlates with the production of inflammatory cytokines in macrophages.

    PubMed

    Escalona-Montaño, A R; Ortiz-Lozano, D M; Rojas-Bernabé, A; Wilkins-Rodriguez, A A; Torres-Guerrero, H; Mondragón-Flores, R; Mondragón-Gonzalez, R; Becker, I; Gutiérrez-Kobeh, L; Aguirre-Garcia, M M

    2016-09-01

    Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1β, IL-12p70 and IL-10 in human macrophages.

  2. The Xylella fastidiosa PD1063 Protein Is Secreted in Association with Outer Membrane Vesicles

    PubMed Central

    Pierce, Brittany K.; Voegel, Tanja; Kirkpatrick, Bruce C.

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629

  3. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters.

    PubMed

    Seppälä, Susanna; Solomon, Kevin V; Gilmore, Sean P; Henske, John K; O'Malley, Michelle A

    2016-12-20

    Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive and rather extreme environment. Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. We report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass degrading, extracellular enzymes

  4. Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago truncatula Secreted Peptidome.

    PubMed

    Patel, Neha; Mohd-Radzman, Nadiatul A; Corcilius, Leo; Crossett, Ben; Connolly, Angela; Cordwell, Stuart J; Ivanovici, Ariel; Taylor, Katia; Williams, James; Binos, Steve; Mariani, Michael; Payne, Richard J; Djordjevic, Michael A

    2018-01-01

    Multigene families encoding diverse secreted peptide hormones play important roles in plant development. A need exists to efficiently elucidate the structures and post-translational-modifications of these difficult-to-isolate peptide hormones in planta so that their biological functions can be determined. A mass spectrometry and bioinformatics approach was developed to comprehensively analyze the secreted peptidome of Medicago hairy root cultures and xylem sap. We identified 759 spectra corresponding to the secreted products of twelve peptide hormones including four CEP ( C -TERMINALLY E NCODED P EPTIDE), two CLE ( CL V3/ E NDOSPERM SURROUNDING REGION RELATED) and six XAP ( X YLEM SAP A SSOCIATED P EPTIDE) peptides. The MtCEP1, MtCEP2, MtCEP5 and MtCEP8 peptides identified differed in post-translational-modifications. Most were hydroxylated at conserved proline residues but some MtCEP1 derivatives were tri-arabinosylated. In addition, many CEP peptides possessed unexpected N - and C -terminal extensions. The pattern of these extensions suggested roles for endo- and exoproteases in CEP peptide maturation. Longer than expected, hydroxylated and homogeneously modified mono- and tri-arabinosylated CEP peptides corresponding to their in vivo structures were chemically synthesized to probe the effect of these post-translational-modifications on function. The ability of CEP peptides to elevate root nodule number was increased by hydroxylation at key positions. MtCEP1 peptides with N -terminal extensions or with tri-arabinosylation modification, however, were unable to impart increased nodulation. The MtCLE5 and MtCLE17 peptides identified were of precise size, and inhibited main root growth and increased lateral root number. Six XAP peptides, each beginning with a conserved DY sulfation motif, were identified including MtXAP1a, MtXAP1b, MtXAP1c, MtXAP3, MtXAP5 and MtXAP7. MtXAP1a and MtXAP5 inhibited lateral root emergence. Transcriptional analyses demonstrated peptide

  5. A screen of cell-surface molecules identifies leucine-rich repeat proteins as key mediators of synaptic target selection in the Drosophila neuromuscular system

    PubMed Central

    Kurusu, Mitsuhiko; Cording, Amy; Taniguchi, Misako; Menon, Kaushiki; Suzuki, Emiko; Zinn, Kai

    2008-01-01

    Summary In Drosophila embryos and larvae, a small number of identified motor neurons innervate body wall muscles in a highly stereotyped pattern. Although genetic screens have identified many proteins that are required for axon guidance and synaptogenesis in this system, little is known about the mechanisms by which muscle fibers are defined as targets for specific motor axons. To identify potential target labels, we screened 410 genes encoding cell-surface and secreted proteins, searching for those whose overexpression on all muscle fibers causes motor axons to make targeting errors. Thirty such genes were identified, and a number of these were members of a large gene family encoding proteins whose extracellular domains contain leucine-rich repeat (LRR) sequences, which are protein interaction modules. By manipulating gene expression in muscle 12, we showed that four LRR proteins participate in the selection of this muscle as the appropriate synaptic target for the RP5 motor neuron. PMID:18817735

  6. Protein malnutrition after weaning disrupts peripheral clock and daily insulin secretion in mice.

    PubMed

    Borck, Patricia Cristine; Batista, Thiago Martins; Vettorazzi, Jean Franciesco; Camargo, Rafael Ludemann; Boschero, Antonio Carlos; Vieira, Elaine; Carneiro, Everardo Magalhães

    2017-12-01

    Changes in nutritional state may alter circadian rhythms through alterations in expression of clock genes. Protein deficiency has a profound effect on body metabolism, but the effect of this nutrient restriction after weaning on biological clock has not been explored. Thus, this study aims to investigate whether the protein restriction affects the daily oscillation in the behavior and metabolic rhythms, as well as expression of clock genes in peripheral tissues. Male C57BL/6 J mice, after weaning, were fed a normal-protein (NP) diet or a low-protein (LP) diet for 8 weeks. Mice fed an LP diet did not show difference in locomotor activity and energy expenditure, but the food intake was increased, with parallel increased expression of the orexigenic neuropeptide Npy and disruption of the anorexigenic Pomc oscillatory pattern in the hypothalamus. LP mice showed disruption in the daily rhythmic patterns of plasma glucose, triglycerides and insulin. Also, the rhythmic expression of clock genes in peripheral tissues and pancreatic islets was altered in LP mice. In pancreatic islets, the disruption of clock genes was followed by impairment of daily glucose-stimulated insulin secretion and the expression of genes involved in exocytosis. Pharmacological activation of REV-ERBα could not restore the insulin secretion in LP mice. The present study demonstrates that protein restriction, leading to development of malnutrition, alters the peripheral clock and metabolic outputs, suggesting that this nutrient provides important entraining cues to regulate the daily fluctuation of biological clock. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.

    PubMed Central

    He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A

    1991-01-01

    The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-copy-number cosmid pCPP19 by complementing several transposon-induced mutations. The cloned out genes were clustered in a 12-kilobase chromosomal DNA region, complemented all existing out mutations in Er. chrysanthemi EC16, and enabled Escherichia coli strains to efficiently secrete the extracellular pectic enzymes produced from cloned Er. chrysanthemi genes, while retaining the periplasmic marker protein beta-lactamase. DNA sequencing of a 2.4-kilobase EcoRI fragment within the out cluster revealed four genes arranged colinearly and sharing substantial similarity with the Klebsiella pneumoniae genes pulH, pulI, pulJ, and pulK, which are necessary for pullulanase secretion. However, K. pneumoniae cells harboring the cloned Er. chrysanthemi pelE gene were unable to secrete the Erwinia pectate lyase. Furthermore, the Er. chrysanthemi Out system was unable to secrete an extracellular pectate lyase encoded by a gene from a closely related plant pathogen. Erwinia carotovora ssp. carotovora. The results suggest that these enterobacteria secrete polysaccharidases by a conserved mechanism whose protein-recognition capacities have diverged. Images PMID:1992458

  8. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.

    PubMed

    He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A

    1991-02-01

    The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-copy-number cosmid pCPP19 by complementing several transposon-induced mutations. The cloned out genes were clustered in a 12-kilobase chromosomal DNA region, complemented all existing out mutations in Er. chrysanthemi EC16, and enabled Escherichia coli strains to efficiently secrete the extracellular pectic enzymes produced from cloned Er. chrysanthemi genes, while retaining the periplasmic marker protein beta-lactamase. DNA sequencing of a 2.4-kilobase EcoRI fragment within the out cluster revealed four genes arranged colinearly and sharing substantial similarity with the Klebsiella pneumoniae genes pulH, pulI, pulJ, and pulK, which are necessary for pullulanase secretion. However, K. pneumoniae cells harboring the cloned Er. chrysanthemi pelE gene were unable to secrete the Erwinia pectate lyase. Furthermore, the Er. chrysanthemi Out system was unable to secrete an extracellular pectate lyase encoded by a gene from a closely related plant pathogen. Erwinia carotovora ssp. carotovora. The results suggest that these enterobacteria secrete polysaccharidases by a conserved mechanism whose protein-recognition capacities have diverged.

  9. Self-Chaperoning of the Type III Secretion System needle tip proteins IpaD and BipD

    PubMed Central

    Johnson, Steven; Roversi, Pietro; Espina, Marianela; Olive, Andrew; Deane, Janet E.; Birket, Susan; Field, Terry; Picking, William D.; Blocker, Ariel; Galyov, Edouard E.; Picking, Wendy L.; Lea, Susan M.

    2007-01-01

    Bacteria expressing type III secretion systems (T3SS) have been responsible for the deaths of millions worldwide, acting as key virulence elements in diseases ranging from plague to typhoid fever. The T3SS is composed of a basal body, which traverses both bacterial membranes, and an external needle through which effector proteins are secreted. We report multiple crystal structures of two proteins that sit at the tip of the needle and are essential for virulence; IpaD from Shigella flexneri and BipD from Burkholderia pseudomallei. The structures reveal that the N-terminal domains of the molecules are intra-molecular chaperones that prevent premature oligomerization, as well as sharing structural homology with proteins involved in eukaryotic actin rearrangement. Crystal packing has allowed us to construct a model for the tip complex that is supported by mutations designed using the structure. PMID:17077085

  10. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum

    PubMed Central

    2014-01-01

    Background Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production. Results The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency, we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis. However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall resistance to protein secretion. Conclusion There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production using the CORYNEX® system. PMID:24731213

  11. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna.

    PubMed

    Nasser, Fatima; Lynch, Iseult

    2016-03-30

    Nanoparticles (NPs) are defined as having at least one external dimension between 1 and 100 nm. Due to their small size, NPs have a large surface area to volume ratio giving them unique characteristics that differ from bulk material of the same chemical composition. As a result these novel materials have found numerous applications in medical and industrial fields with the result that environmental exposure to NPs is increasingly likely. Similarly, increased reliance on plastic, which degrades extremely slowly in the environment, is resulting in increased accumulation of micro-/nano-plastics in fresh and marine waters, whose ecotoxicological impacts are as yet poorly understood. Although NPs are well known to adsorb macromolecules from their environment, forming a biomolecule corona which changes the NP identity and how it interacts with organisms, significantly less research has been performed on the ecological corona (eco-corona). Secretion of biomolecules is a well established predator-prey response in aquatic food chains, raising the question of whether NPs interact with secreted proteins, and the impact of such interaction on NP uptake and ecotoxicity. We report here initial studies, including optimisation of protocols using carboxylic-acid and amino modified spherical polystyrene NPs, to assess interaction of NPs with biomolecules secreted by Daphnia magna and the impact of these interactions on NP uptake, retention and toxicity towards Daphnia magna. Daphnia magna are an important environmental indicator species who may be especially sensitive to nanoparticles (NPs) as a result of being filter-feeders. This paper demonstrates for the first time that proteins released by Daphnia magna create an eco-corona around polystyrene NPs which causes heightened uptake of the NPs and consequently increases toxicity. The secreted protein eco-corona also causes the NPs to be less efficiently removed from the gut of D. magna and NPs remaining in the gut of D. magna

  12. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immunogenic proteins for humans.

    PubMed

    Abdeladhim, Maha; Jochim, Ryan C; Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M C; Valenzuela, Jesus G

    2012-01-01

    Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi-a model sand fly for Leishmania-vector-host molecular interactions-is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas.

  13. Aberrant chimeric RNA GOLM1-MAK10 encoding a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma

    PubMed Central

    Zhang, Hao; Lin, Wan; Kannan, Kalpana; Luo, Liming; Li, Jing; Chao, Pei-Wen; Wang, Yan; Chen, Yu-Ping; Gu, Jiang; Yen, Laising

    2013-01-01

    It is increasingly recognized that chimeric RNAs may exert a novel layer of cellular complexity that contributes to oncogenesis and cancer progression, and could be utilized as molecular biomarkers and therapeutic targets. To date yet no fusion chimeric RNAs have been identified in esophageal cancer, the 6th most frequent cause of cancer death in the world. While analyzing the expression of 32 recurrent cancer chimeric RNAs in esophageal squamous cell carcinoma (ESCC) from patients and cancer cell lines, we identified GOLM1-MAK10, as a highly cancer-enriched chimeric RNA in ESCC. In situ hybridization revealed that the expression of the chimera is largely restricted to cancer cells in patient tumors, and nearly undetectable in non-neoplastic esophageal tissue from normal subjects. The aberrant chimera closely correlated with histologic differentiation and lymph node metastasis. Furthermore, we demonstrate that chimera GOLM1-MAK10 encodes a secreted fusion protein. Mechanistic studies reveal that GOLM1-MAK10 is likely derived from transcription read-through/splicing rather than being generated from a fusion gene. Collectively, these findings provide novel insights into the molecular mechanism involved in ESCC and provide a novel potential target for future therapies. The secreted fusion protein translated from GOLM1-MAK10 could also serve as a unique protein signature detectable by standard non-invasive assays. These observations are critical as there is no clinically useful molecular signature available for detecting this deadly disease or monitoring the treatment response. PMID:24243830

  14. Transient Expression of Chimeric Fluorescent Reporter Proteins in Pollen Tubes to Study Protein Polar Secretion and Dynamics.

    PubMed

    Zhong, Guitao; Liu, Ronghe; Zhuang, Menglong; Wang, Hao

    2017-01-01

    Transient expression of chimeric fluorescent reporter proteins by biolistic bombardment is a quick and useful procedure for studying subcellular protein localization and dynamics in plants. It is especially beneficial in specific plant cells which are not suitable for protoplast-based and Agrobacterium-mediated protein transient expression. Polar protein secretion and vesicular trafficking play essential functions for cell polarization and tip growth. The growing pollen tube is regarded as an ideal model plant cell system to study the machinery and regulation of polar protein trafficking and targeting. A large amount of newly synthesized proteins are packed and polarly transported to the apical region to support the rapid and highly polarized tip growth. Here, we described a detailed step-by-step protocol for the transient expression of chimeric fluorescent reporter proteins in growing Arabidopsis and tobacco pollen tubes to study polar transportation logistics and mechanisms. In addition, we have optimized the Arabidopsis and tobacco in vitro pollen germination medium and the conditions to maximize the efficiency of protein expression. As a proof of concept, we have used this protocol to express actin microfilament and late endosomal fluorescent markers in Arabidopsis and tobacco pollen tubes.

  15. A secreted protein is an endogenous chemorepellant in Dictyostelium discoideum

    PubMed Central

    Phillips, Jonathan E.; Gomer, Richard H.

    2012-01-01

    Chemorepellants may play multiple roles in physiological and pathological processes. However, few endogenous chemorepellants have been identified, and how they function is unclear. We found that the autocrine signal AprA, which is produced by growing Dictyostelium discoideum cells and inhibits their proliferation, also functions as a chemorepellant. Wild-type cells at the edge of a colony show directed movement outward from the colony, whereas cells lacking AprA do not. Cells show directed movement away from a source of recombinant AprA and dialyzed conditioned media from wild-type cells, but not dialyzed conditioned media from aprA− cells. The secreted protein CfaD, the G protein Gα8, and the kinase QkgA are necessary for the chemorepellant activity of AprA as well as its proliferation-inhibiting activity, whereas the putative transcription factor BzpN is dispensable for the chemorepellant activity of AprA but necessary for inhibition of proliferation. Phospholipase C and PI3 kinases 1 and 2, which are necessary for the activity of at least one other chemorepellant in Dictyostelium, are not necessary for recombinant AprA chemorepellant activity. Starved cells are not repelled by recombinant AprA, suggesting that aggregation-phase cells are not sensitive to the chemorepellant effect. Cell tracking indicates that AprA affects the directional bias of cell movement, but not cell velocity or the persistence of cell movement. Together, our data indicate that the endogenous signal AprA acts as an autocrine chemorepellant for Dictyostelium cells. PMID:22711818

  16. Discovery of the type VII ESX-1 secretion needle?

    PubMed

    Ates, Louis S; Brosch, Roland

    2017-01-01

    Mycobacterium tuberculosis, the etiological agent of human tuberculosis, harbours five ESAT-6/type VII secretion (ESX/T7S) systems. The first esx gene clusters were identified during the genome-sequencing project of M. tuberculosis H37Rv. Follow-up studies revealed additional genes playing important roles in ESX/T7S systems. Among the latter genes, one can find those that encode Pro-Glu (PE) and Pro-Pro-Glu (PPE) proteins as well as a gene cluster that is encoded >260 kb upstream of the esx-1 locus and encodes ESX-1 secretion-associated proteins EspA (Rv3616c), EspC (Rv3615c) and EspD (Rv3614c). The espACD cluster has been suggested to have an important function in ESX-1 secretion since EspA-EspC and EsxA-EsxB are mutually co-dependent on each other for secretion. However, the molecular mechanism of this co-dependence and interaction between the substrates remained unknown. In this issue of Molecular Microbiology, Lou and colleagues show that EspC forms high-molecular weight polymerization complexes that resemble selected components of type II, III and/or IV secretion systems of Gram-negative bacteria. Indeed, EspC-multimeric complexes form filamentous structures that could well represent a secretion needle of ESX-1 type VII secretion systems. This exciting observation opens new avenues for research to discover and characterize ESX/T7S components and elucidates the co-dependence of EsxA/B secretion with EspA/C. © 2016 John Wiley & Sons Ltd.

  17. A microfluidic in-line ELISA for measuring secreted protein under perfusion.

    PubMed

    Luan, Qiyue; Cahoon, Stacey; Wu, Agnes; Bale, Shyam Sundhar; Yarmush, Martin; Bhushan, Abhinav

    2017-11-11

    Recent progress in the development of microfluidic microphysiological systems such as 'organs-on-chips' and microfabricated cell culture is geared to simulate organ-level physiology. These tissue models leverage microengineering technologies that provide capabilities of presenting cultured cells with input signals in a more physiologically relevant context such as perfused flow. Proteins that are secreted from cells have important information about the health of the cells. Techniques to quantify cellular proteins include mass spectrometry to ELISA (enzyme-linked immunosorbent assay). Although our capability to perturb the cells in the microphysiological systems with varying inputs is well established, we lack the tools to monitor in-line the cellular responses. User intervention for sample collection and off-site is cumbersome, causes delays in obtaining results, and is especially expensive because of collection, storage, and offline processing of the samples, and in many case, technically impractical to carry out because of limitated sample volumes. To address these shortcomings, we report the development of an ELISA that is carried out in-line under perfusion within a microfluidic device. Using this assay, we measured the albumin secreted from perfused hepatocytes without and under stimulation by IL-6. Since the method is based on a sandwich ELISA, we envision broad application of this technology to not just organs-on-chips but also to characterizing the temporal release and measurement of soluble factors and response to drugs.

  18. Gq protein mediates UVB-induced cyclooxygenase-2 expression by stimulating HB-EGF secretion from HaCaT human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, MiRan; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr

    Ultraviolet (UV) radiation induces cyclooxygenase-2 expression to produce cellular responses including aging and carcinogenesis in skin. We hypothesised that heterotrimeric G proteins mediate UV-induced COX-2 expression by stimulating secretion of soluble HB-EGF (sHB-EGF). In this study, we aimed to elucidate the role and underlying mechanism of the {alpha} subunit of Gq protein (G{alpha}q) in UVB-induced HB-EGF secretion and COX-2 induction. We found that expression of constitutively active G{alpha}q (G{alpha}qQL) augmented UVB-induced HB-EGF secretion, which was abolished by knockdown of G{alpha}q with shRNA in HaCaT human keratinocytes. G{alpha}q was found to mediate the UVB-induced HB-EGF secretion by sequential activation of phospholipasemore » C (PLC), protein kinase C{delta} (PKC{delta}), and matrix metaloprotease-2 (MMP-2). Moreover, G{alpha}qQL mediated UVB-induced COX-2 expression in an HB-EGF-, EGFR-, and p38-dependent manner. From these results, we concluded that G{alpha}q mediates UV-induced COX-2 expression through activation of EGFR by HB-EGF, of which ectodomain shedding was stimulated through sequential activation of PLC, PKC{delta} and MMP-2 in HaCaT cells.« less

  19. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms.

    PubMed

    Wilson, Marlena M; Anderson, D Eric; Bernstein, Harris D

    2015-01-01

    Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM) and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.

  20. Genetic mapping of secretion and functional determinants of the Vibrio cholerae TcpF colonization factor.

    PubMed

    Krebs, Shelly J; Kirn, Thomas J; Taylor, Ronald K

    2009-06-01

    Colonization of the human small intestine by Vibrio cholerae requires the type IV toxin-coregulated pilus (TCP). TcpF, which is encoded within the tcp operon, is secreted from the bacterial cell by the TCP apparatus and is also essential for colonization. Bacteria lacking tcpF are deficient in colonization, and anti-TcpF antibodies are protective in the infant mouse cholera model. In order to elucidate the regions of the protein that are required for secretion through the TCP apparatus and for its function in colonization, random mutagenesis of tcpF was performed. Analysis of these mutants suggests that multiple regions throughout the protein influence extracellular secretion and that determinants near the C terminus are important for the function of TcpF in colonization. The TcpF proteins of certain environmental V. cholerae isolates with 31% to 66% identity to pathogenic V. cholerae TcpF showed higher similarity in regions identified as secretion determinants but diverged in regions found to be important for colonization. These environmental TcpF proteins are secreted from the pathogenic strain; however, they do not mediate colonization in the infant mouse model. Here we provide genetic evidence pointing toward regions of TcpF that influence secretion, as well as regions that play an important role in in vivo colonization.

  1. DBSecSys: a database of Burkholderia mallei secretion systems.

    PubMed

    Memišević, Vesna; Kumar, Kamal; Cheng, Li; Zavaljevski, Nela; DeShazer, David; Wallqvist, Anders; Reifman, Jaques

    2014-07-16

    Bacterial pathogenicity represents a major public health concern worldwide. Secretion systems are a key component of bacterial pathogenicity, as they provide the means for bacterial proteins to penetrate host-cell membranes and insert themselves directly into the host cells' cytosol. Burkholderia mallei is a Gram-negative bacterium that uses multiple secretion systems during its host infection life cycle. To date, the identities of secretion system proteins for B. mallei are not well known, and their pathogenic mechanisms of action and host factors are largely uncharacterized. We present the Database of Burkholderia malleiSecretion Systems (DBSecSys), a compilation of manually curated and computationally predicted bacterial secretion system proteins and their host factors. Currently, DBSecSys contains comprehensive experimentally and computationally derived information about B. mallei strain ATCC 23344. The database includes 143 B. mallei proteins associated with five secretion systems, their 1,635 human and murine interacting targets, and the corresponding 2,400 host-B. mallei interactions. The database also includes information about 10 pathogenic mechanisms of action for B. mallei secretion system proteins inferred from the available literature. Additionally, DBSecSys provides details about 42 virulence attenuation experiments for 27 B. mallei secretion system proteins. Users interact with DBSecSys through a Web interface that allows for data browsing, querying, visualizing, and downloading. DBSecSys provides a comprehensive, systematically organized resource of experimental and computational data associated with B. mallei secretion systems. It provides the unique ability to study secretion systems not only through characterization of their corresponding pathogen proteins, but also through characterization of their host-interacting partners.The database is available at https://applications.bhsai.org/dbsecsys.

  2. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters

    DOE PAGES

    Seppala, Susanna; Solomon, Kevin V.; Gilmore, Sean P.; ...

    2016-12-20

    Here, engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive andmore » rather extreme environment. Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. In conclusion, we report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass

  3. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger.

    PubMed

    Dai, Ziyu; Aryal, Uma K; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D; Magnuson, Jon K; Adney, William S; Beckham, Gregg T; Brunecky, Roman; Himmel, Michael E; Decker, Stephen R; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E

    2013-12-01

    Dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl α-1,3-mannosyltransferase (also known as "asparagine-linked glycosylation 3", or ALG3) is involved in early N-linked glycan synthesis and thus is essential for formation of N-linked protein glycosylation. In this study, we examined the effects of alg3 gene deletion (alg3Δ) on growth, development, pigment production, protein secretion and recombinant Trichoderma reesei cellobiohydrolase (rCel7A) expressed in Aspergillus niger. The alg3Δ delayed spore germination in liquid cultures of complete medium (CM), potato dextrose (PD), minimal medium (MM) and CM with addition of cAMP (CM+cAMP), and resulted in significant reduction of hyphal growth on CM, potato dextrose agar (PDA), and CM+cAMP and spore production on CM. The alg3Δ also led to a significant accumulation of red pigment on both liquid and solid CM cultures. The relative abundances of 54 of the total 215 proteins identified in the secretome were significantly altered as a result of alg3Δ, 63% of which were secreted at higher levels in alg3Δ strain than the parent. The rCel7A expressed in the alg3Δ mutant was smaller in size than that expressed in both wild-type and parental strains, but still larger than T. reesei Cel7A. The circular dichroism (CD)-melt scans indicated that change in glycosylation of rCel7A does not appear to impact the secondary structure or folding. Enzyme assays of Cel7A and rCel7A on nanocrystalline cellulose and bleached kraft pulp demonstrated that the rCel7As have improved activities on hydrolyzing the nanocrystalline cellulose. Overall, the results suggest that alg3 is critical for growth, sporulation, pigment production, and protein secretion in A. niger, and demonstrate the feasibility of this alternative approach to evaluate the roles of N-linked glycosylation in glycoprotein secretion and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins.

    PubMed

    Delic, Marizela; Göngrich, Rebecca; Mattanovich, Diethard; Gasser, Brigitte

    2014-07-20

    Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.

  5. Isthmin 1 Is a Secreted Protein Expressed in Skin, Mucosal Tissues, and NK, NKT, and Th17 Cells

    PubMed Central

    Valle-Rios, Ricardo; Maravillas-Montero, José L.; Burkhardt, Amanda M.; Martinez, Cynthia; Buhren, Bettina Alexandra; Homey, Bernhard; Gerber, Peter Arne; Robinson, Octavio; Hevezi, Peter

    2014-01-01

    Using a comprehensive microarray database of human gene expression, we identified that in mammals, a secreted protein known as isthmin 1 (ISM1) is expressed in skin, mucosal tissues, and selected lymphocyte populations. ISM1 was originally identified in Xenopus brain during development, and it encodes a predicted ∼50-kDa protein containing a signal peptide, a thrombospondin domain, and an adhesion-associated domain. We confirmed the pattern of expression of ISM1 in both human and mouse tissues. ISM1 is expressed by DX5+ lung lymphocytes that include NK and NKT-like cells, and is also expressed by some CD4+ T cells upon activation but its expression increases significantly when CD4+ T cells were polarized to the Th17 lineage in vitro. The presence of IFN-γ during CD4+ T cell polarization inhibits ISM1 expression. Given that ISM1 has been reported to have anti-angiogenic properties, these observations suggest that ISM1 is a mediator of lymphocyte effector functions and may participate in both innate and acquired immune responses. PMID:24956034

  6. Isthmin 1 is a secreted protein expressed in skin, mucosal tissues, and NK, NKT, and th17 cells.

    PubMed

    Valle-Rios, Ricardo; Maravillas-Montero, José L; Burkhardt, Amanda M; Martinez, Cynthia; Buhren, Bettina Alexandra; Homey, Bernhard; Gerber, Peter Arne; Robinson, Octavio; Hevezi, Peter; Zlotnik, Albert

    2014-10-01

    Using a comprehensive microarray database of human gene expression, we identified that in mammals, a secreted protein known as isthmin 1 (ISM1) is expressed in skin, mucosal tissues, and selected lymphocyte populations. ISM1 was originally identified in Xenopus brain during development, and it encodes a predicted ∼50-kDa protein containing a signal peptide, a thrombospondin domain, and an adhesion-associated domain. We confirmed the pattern of expression of ISM1 in both human and mouse tissues. ISM1 is expressed by DX5(+) lung lymphocytes that include NK and NKT-like cells, and is also expressed by some CD4(+) T cells upon activation but its expression increases significantly when CD4(+) T cells were polarized to the Th17 lineage in vitro. The presence of IFN-γ during CD4(+) T cell polarization inhibits ISM1 expression. Given that ISM1 has been reported to have anti-angiogenic properties, these observations suggest that ISM1 is a mediator of lymphocyte effector functions and may participate in both innate and acquired immune responses.

  7. UV-C Adaptation of Shigella: Morphological, Outer Membrane Proteins, Secreted Proteins, and Lipopolysaccharides Effects.

    PubMed

    Chourabi, Kalthoum; Campoy, Susana; Rodriguez, Jesus A; Kloula, Salma; Landoulsi, Ahmed; Chatti, Abdelwaheb

    2017-11-01

    Water UV disinfection remains extremely important, particularly in developing countries where drinking and reclaimed crop irrigation water may spread devastating infectious diseases. Enteric bacterial pathogens, among which Shigella, are possible contaminants of drinking and bathing water and foods. To study the effect of UV light on Shigella, four strains were exposed to different doses in a laboratory-made irradiation device, given that the ultraviolet radiation degree of inactivation is directly related to the UV dose applied to water. Our results showed that the UV-C rays are effective against all the tested Shigella strains. However, UV-C doses appeared as determinant factors for Shigella eradication. On the other hand, Shigella-survived strains changed their outer membrane protein profiles, secreted proteins, and lipopolysaccharides. Also, as shown by electron microscopy transmission, morphological alterations were manifested by an internal cytoplasm disorganized and membrane envelope breaks. Taken together, the focus of interest of our study is to know the adaptive mechanism of UV-C resistance of Shigella strains.

  8. Biophysical Characterization of the Type III Secretion Tip Proteins and the Tip Proteins Attached to Bacterium-Like Particles

    PubMed Central

    Choudhari, Shyamal P.; Chen, Xiaotong; Kim, Jae Hyun; van Roosmalen, Maarten L.; Greenwood, Jamie C.; Joshi, Sangeeta B.; Picking, William D.; Leenhouts, Kees; Middaugh, C. Russell; Picking, Wendy L.

    2014-01-01

    Bacterium-like particles (BLPs), derived from Lactococcus lactis, offer a self-adjuvanting delivery vehicle for subunit protein vaccines. Proteins can be specifically loaded onto the BLPs via a peptidoglycan anchoring domain (PA). In this study, the tip proteins IpaD, SipD and LcrV belonging to type three secretion systems of Shigella flexneri, Salmonella enterica and Yersinia enterocolitica, respectively, were fused to the PA and loaded onto the BLPs. Herein, we biophysically characterized these nine samples and condensed the spectroscopic results into three-index empirical phase diagrams (EPDs). The EPDs show distinctions between the IpaD/SipD and LcrV subfamilies of tip proteins, based on their physical stability, even upon addition of the PA. Upon attachment to the BLPs, the BLPs become defining moiety in the spectroscopic measurements, leaving the tip proteins to have a subtle yet modulating effect on the structural integrity of the tip proteins-BLPs binding. In summary, this work provides a comprehensive view of physical stability of the tip proteins and tip protein-BLPs and serves as a baseline for screening of excipients to increase the stability of the tip protein-BLPs for future vaccine formulation. PMID:24916512

  9. Type-IVC Secretion System: A Novel Subclass of Type IV Secretion System (T4SS) Common Existing in Gram-Positive Genus Streptococcus

    PubMed Central

    Chen, Chen; Gao, George F.

    2012-01-01

    A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. Type IV secretion system (T4SS) is one of versatile secretion systems essential for the virulence and even survival of some bacteria species, and they enable the secretion of protein and DNA substrates across the cell envelope. T4SS was once believed to be present only in Gram-negative bacteria. In this study, we present evidence of a new subclass of T4SS, Type-IVC secretion system and indicate its common existence in the Gram-positive bacterial genus Streptococcus. We further identified that VirB1, VirB4, VirB6 and VirD4 are the minimal key components of this system. Using genome comparisons and evolutionary relationship analysis, we proposed that Type-IVC secretion system is movable via transposon factors and mediates the conjugative transfer of DNA, enhances bacterial pathogenicity, and could cause large-scale outbreaks of infections in humans. PMID:23056296

  10. Updating the Salivary Gland Transcriptome of Phlebotomus papatasi (Tunisian Strain): The Search for Sand Fly-Secreted Immunogenic Proteins for Humans

    PubMed Central

    Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M. C.; Valenzuela, Jesus G.

    2012-01-01

    Introduction Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi–a model sand fly for Leishmania-vector-host molecular interactions–is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. Methods and Findings A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Conclusions Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas. PMID:23139741

  11. Yarrowia lipolytica vesicle-mediated protein transport pathways

    PubMed Central

    Swennen, Dominique; Beckerich, Jean-Marie

    2007-01-01

    Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii). These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular transport shows that 40% of Y

  12. Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels

    PubMed Central

    Fló, Martín; Margenat, Mariana; Pellizza, Leonardo; Durán, Rosario; Salceda, Emilio; Alvarez, Beatriz

    2017-01-01

    We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain Kunitz families present in animal venoms, the E. granulosus family could include peptidase inhibitors as well as channel blockers. Using enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close paralogs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (Kv); and also pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions from other parasite stages, notably from adult worms and metacestodes. Interestingly, data from genome projects reveal that at least eight additional monodomain Kunitz proteins are encoded in the genome; that particular EgKUs are up-regulated in various stages; and that analogous Kunitz families exist in other medically important cestodes, but not in trematodes. Members of this expanded family of secreted cestode proteins thus have the potential to block, through high affinity interactions, the function of host counterparts (either peptidases or cation channels) and contribute to the establishment and persistence of infection. From a more general perspective, our results confirm that multigene families of Kunitz inhibitors from parasite secretions and animal venoms display a similar functional diversity and thus, that host-parasite co-evolution may also drive the emergence of a new function associated with the Kunitz scaffold. PMID:28192542

  13. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals.

    PubMed

    Savijoki, K; Kahala, M; Palva, A

    1997-02-28

    A secretion cassette, based on the expression and secretion signals of a S-layer protein (SlpA) from Lactobacillus brevis, was constructed. E. coli beta-lactamase (Bla) was used as the reporter protein to determine the functionality of the S-layer signals for heterologous expression and secretion in Lactococcus lactis, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus gasseri and Lactobacillus casei using a low-copy-number plasmid derived from pGK12. In all hosts tested, the bla gene was expressed under the slpA signals and all Bla activity was secreted to the culture medium. The Lb. brevis S-layer promoters were very efficiently recognized in L. lactis, Lb. brevis and Lb. plantarum, whereas in Lb. gasseri the slpA promoter region appeared to be recognized at a lower level and in Lb. casei the level of transcripts was below the detection limit. The production of Bla was mainly restricted to the exponential phase of growth. The highest yield of Bla was obtained with L. lactis and Lb. brevis. Without pH control, substantial degradation of Bla occurred during prolonged cultivations with all lactic acid bacteria (LAB) tested. When growing L. lactis and Lb. brevis under pH control, the Bla activity could be stabilized also at the stationary phase. L. lactis produced up to 80 mg/l of Bla which to our knowledge represents the highest amount of a heterologous protein secreted by LAB so far. The short production phase implied a very high rate of secretion with a calculated value of 5 x 10(5) Bla molecules/cell per h. Such a high rate was also observed with Lb. plantarum, whereas in Lb. brevis the competition between the wild type slpA gene and the secretion construct probably lowered the rate of Bla production. The results obtained indicate wide applicability of the Lb. brevis slpA signals for efficient protein production and secretion in LAB.

  14. Proteomic Analysis of Kveim Reagent Identifies Targets of Cellular Immunity in Sarcoidosis

    PubMed Central

    Parker, Robert; Siddiqui, Nazneen; Potiphar, Lee; Goldin, Rob; Timms, John F.; Wells, Athol U.; Kon, Onn M.; Wickremasinghe, Melissa; Mitchell, Donald; Weeks, Mark E.; Lalvani, Ajit

    2017-01-01

    Background Kveim-reagent (Kv) skin testing was a historical method of diagnosing sarcoidosis. Intradermal injection of treated sarcoidosis spleen tissue resulted in a granuloma response at injection site by 4–6 weeks. Previous work indicates proteins as the possible trigger of this reaction. We aimed to identify Kv-specific proteins and characterise the ex vivo response of Peripheral Blood Mononuclear Cells (PBMCs) from sarcoidosis, tuberculosis and healthy control patients when stimulated with both Kv and selected Kv-specific proteins. Methods Kv extracts were separated by 1D-SDS-PAGE and 2D-DIGE and then underwent mass spectrometric analysis for protein identification. Sarcoidosis and control PBMCs were first stimulated with Kv and then with three selected recombinant protein candidates which were identified from the proteomic analysis. PBMC secreted cytokines were subsequently measured by Multiplex Cytokine Assay. Results We observed significantly increased IFN-γ and TNF-α secretion from Kv-stimulated PBMCs of sarcoidosis patients vs. PBMCs from healthy volunteers (IFN-γ: 207.2 pg/mL vs. 3.86 pg/mL, p = 0.0018; TNF-α: 2375 pg/mL vs. 42.82 pg/mL, p = 0.0003). Through proteomic approaches we then identified 74 sarcoidosis tissue-specific proteins. Of these, 3 proteins (vimentin, tubulin and alpha-actinin-4) were identified using both 1D-SDS-PAGE and 2D-DIGE. Data are available via ProteomeXchange with identifier PXD005150. Increased cytokine secretion was subsequently observed with vimentin stimulation of sarcoidosis PBMCs vs. tuberculosis PBMCs (IFN-γ: 396.6 pg/mL vs 0.1 pg/mL, p = 0.0009; TNF-α: 1139 pg/mL vs 0.1 pg/mL, p<0.0001). This finding was also observed in vimentin stimulation of sarcoidosis PBMCs compared to PBMCs from healthy controls (IFN-γ: 396.6 pg/mL vs. 0.1 pg/mL, p = 0.014; TNF-α: 1139 pg/mL vs 42.29 pg/mL, p = 0.027). No difference was found in cytokine secretion between sarcoidosis and control PBMCs when stimulated with either tubulin

  15. Secretome Analysis of Vibrio cholerae Type VI Secretion System Reveals a New Effector-Immunity Pair

    PubMed Central

    Altindis, Emrah; Dong, Tao; Catalano, Christy

    2015-01-01

    ABSTRACT The type VI secretion system (T6SS) is a dynamic macromolecular organelle that many Gram-negative bacteria use to inhibit or kill other prokaryotic or eukaryotic cells. The toxic effectors of T6SS are delivered to the prey cells in a contact-dependent manner. In Vibrio cholerae, the etiologic agent of cholera, T6SS is active during intestinal infection. Here, we describe the use of comparative proteomics coupled with bioinformatics to identify a new T6SS effector-immunity pair. This analysis was able to identify all previously identified secreted substrates of T6SS except PAAR (proline, alanine, alanine, arginine) motif-containing proteins. Additionally, this approach led to the identification of a new secreted protein encoded by VCA0285 (TseH) that carries a predicted hydrolase domain. We confirmed that TseH is toxic when expressed in the periplasm of Escherichia coli and V. cholerae cells. The toxicity observed in V. cholerae was suppressed by coexpression of the protein encoded by VCA0286 (TsiH), indicating that this protein is the cognate immunity protein of TseH. Furthermore, exogenous addition of purified recombinant TseH to permeabilized E. coli cells caused cell lysis. Bioinformatics analysis of the TseH protein sequence suggest that it is a member of a new family of cell wall-degrading enzymes that include proteins belonging to the YD repeat and Rhs superfamilies and that orthologs of TseH are likely expressed by species belonging to phyla as diverse as Bacteroidetes and Proteobacteria. PMID:25759499

  16. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.

    PubMed

    Jung, Woongsic; Campbell, Robert L; Gwak, Yunho; Kim, Jong Im; Davies, Peter L; Jin, EonSeon

    2016-01-01

    Many microorganisms in Antarctica survive in the cold environment there by producing ice-binding proteins (IBPs) to control the growth of ice around them. An IBP from the Antarctic freshwater microalga, Chloromonas sp., was identified and characterized. The length of the Chloromonas sp. IBP (ChloroIBP) gene was 3.2 kb with 12 exons, and the molecular weight of the protein deduced from the ChloroIBP cDNA was 34.0 kDa. Expression of the ChloroIBP gene was up- and down-regulated by freezing and warming conditions, respectively. Western blot analysis revealed that native ChloroIBP was secreted into the culture medium. This protein has fifteen cysteines and is extensively disulfide bonded as shown by in-gel mobility shifts between oxidizing and reducing conditions. The open-reading frame of ChloroIBP was cloned and over-expressed in Escherichia coli to investigate the IBP's biochemical characteristics. Recombinant ChloroIBP produced as a fusion protein with thioredoxin was purified by affinity chromatography and formed single ice crystals of a dendritic shape with a thermal hysteresis activity of 0.4±0.02°C at a concentration of 5 mg/ml. In silico structural modeling indicated that the three-dimensional structure of ChloroIBP was that of a right-handed β-helix. Site-directed mutagenesis of ChloroIBP showed that a conserved region of six parallel T-X-T motifs on the β-2 face was the ice-binding region, as predicted from the model. In addition to disulfide bonding, hydrophobic interactions between inward-pointing residues on the β-1 and β-2 faces, in the region of ice-binding motifs, were crucial to maintaining the structural conformation of ice-binding site and the ice-binding activity of ChloroIBP.

  17. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.

    PubMed Central

    Jung, Woongsic; Gwak, Yunho; Kim, Jong Im; Davies, Peter L.; Jin, EonSeon

    2016-01-01

    Many microorganisms in Antarctica survive in the cold environment there by producing ice-binding proteins (IBPs) to control the growth of ice around them. An IBP from the Antarctic freshwater microalga, Chloromonas sp., was identified and characterized. The length of the Chloromonas sp. IBP (ChloroIBP) gene was 3.2 kb with 12 exons, and the molecular weight of the protein deduced from the ChloroIBP cDNA was 34.0 kDa. Expression of the ChloroIBP gene was up- and down-regulated by freezing and warming conditions, respectively. Western blot analysis revealed that native ChloroIBP was secreted into the culture medium. This protein has fifteen cysteines and is extensively disulfide bonded as shown by in-gel mobility shifts between oxidizing and reducing conditions. The open-reading frame of ChloroIBP was cloned and over-expressed in Escherichia coli to investigate the IBP’s biochemical characteristics. Recombinant ChloroIBP produced as a fusion protein with thioredoxin was purified by affinity chromatography and formed single ice crystals of a dendritic shape with a thermal hysteresis activity of 0.4±0.02°C at a concentration of 5 mg/ml. In silico structural modeling indicated that the three-dimensional structure of ChloroIBP was that of a right-handed β-helix. Site-directed mutagenesis of ChloroIBP showed that a conserved region of six parallel T-X-T motifs on the β-2 face was the ice-binding region, as predicted from the model. In addition to disulfide bonding, hydrophobic interactions between inward-pointing residues on the β-1 and β-2 faces, in the region of ice-binding motifs, were crucial to maintaining the structural conformation of ice-binding site and the ice-binding activity of ChloroIBP. PMID:27097164

  18. A Novel Secreted Protein, MYR1, Is Central to Toxoplasma ’s Manipulation of Host Cells

    DOE PAGES

    Franco, Magdalena; Panas, Michael W.; Marino, Nicole D.; ...

    2016-02-02

    ABSTRACT The intracellular protozoanToxoplasma gondiidramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc–GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification ofMYR1(Mycregulation1;TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion ofMYR1revealed that in additionmore » to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability ofToxoplasmatachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocatesToxoplasmaeffectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient inMYR1were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in howToxoplasmadelivers effector proteins to the infected host cell and that this is crucial to virulence. IMPORTANCEToxoplasma gondiiis an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell withToxoplasmatachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but

  19. Identifying Protein-Calorie Malnutrition Workshop.

    ERIC Educational Resources Information Center

    Walker, Susan S.; Barker, Ellen M.

    Instructional materials are provided for a workshop to enable participants to assist in identifying patients at risk with protein-calorie malnutrition and in corrrecting this nutritional deficiency. Representative topics are nutrients; protein, mineral, and vitamin sources, functions, and deficiency symptoms; malnutrition; nutritional deficiency…

  20. A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein.

    PubMed

    Holzman, L B; Marks, R M; Dixit, V M

    1990-11-01

    We have previously described the cloning of a group of novel cellular immediate-early response genes whose expression in human umbilical vein endothelial cells is induced by tumor necrosis factor alpha in the presence of cycloheximide. These genes are likely to participate in mediating the response of the vascular endothelium to proinflammatory cytokines. In this study, we further characterized one of these novel gene products named B61. Sequence analysis of cDNA clones encoding B61 revealed that its protein product has no significant homology to previously described proteins. Southern analysis suggested that B61 is an evolutionarily conserved single-copy gene. B61 is primarily a hydrophilic molecule but contains both a hydrophobic N-terminal and a hydrophobic C-terminal region. The N-terminal region is typical of a signal peptide, which is consistent with the secreted nature of the protein. The mature form of the predicted protein consists of 187 amino acid residues and has a molecular weight of 22,000. Immunoprecipitation of metabolically labeled human umbilical vein endothelial cell preparations revealed that B61 is a 25-kilodalton secreted protein which is markedly induced by tumor necrosis factor.

  1. A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein.

    PubMed Central

    Holzman, L B; Marks, R M; Dixit, V M

    1990-01-01

    We have previously described the cloning of a group of novel cellular immediate-early response genes whose expression in human umbilical vein endothelial cells is induced by tumor necrosis factor alpha in the presence of cycloheximide. These genes are likely to participate in mediating the response of the vascular endothelium to proinflammatory cytokines. In this study, we further characterized one of these novel gene products named B61. Sequence analysis of cDNA clones encoding B61 revealed that its protein product has no significant homology to previously described proteins. Southern analysis suggested that B61 is an evolutionarily conserved single-copy gene. B61 is primarily a hydrophilic molecule but contains both a hydrophobic N-terminal and a hydrophobic C-terminal region. The N-terminal region is typical of a signal peptide, which is consistent with the secreted nature of the protein. The mature form of the predicted protein consists of 187 amino acid residues and has a molecular weight of 22,000. Immunoprecipitation of metabolically labeled human umbilical vein endothelial cell preparations revealed that B61 is a 25-kilodalton secreted protein which is markedly induced by tumor necrosis factor. Images PMID:2233719

  2. Mutant Copper-Zinc Superoxide Dismutase (SOD1) Induces Protein Secretion Pathway Alterations and Exosome Release in Astrocytes

    PubMed Central

    Basso, Manuela; Pozzi, Silvia; Tortarolo, Massimo; Fiordaliso, Fabio; Bisighini, Cinzia; Pasetto, Laura; Spaltro, Gabriella; Lidonnici, Dario; Gensano, Francesco; Battaglia, Elisa; Bendotti, Caterina; Bonetto, Valentina

    2013-01-01

    Amyotrophic lateral sclerosis is the most common motor neuron disease and is still incurable. The mechanisms leading to the selective motor neuron vulnerability are still not known. The interplay between motor neurons and astrocytes is crucial in the outcome of the disease. We show that mutant copper-zinc superoxide dismutase (SOD1) overexpression in primary astrocyte cultures is associated with decreased levels of proteins involved in secretory pathways. This is linked to a general reduction of total secreted proteins, except for specific enrichment in a number of proteins in the media, such as mutant SOD1 and valosin-containing protein (VCP)/p97. Because there was also an increase in exosome release, we can deduce that astrocytes expressing mutant SOD1 activate unconventional secretory pathways, possibly as a protective mechanism. This may help limit the formation of intracellular aggregates and overcome mutant SOD1 toxicity. We also found that astrocyte-derived exosomes efficiently transfer mutant SOD1 to spinal neurons and induce selective motor neuron death. We conclude that the expression of mutant SOD1 has a substantial impact on astrocyte protein secretion pathways, contributing to motor neuron pathology and disease spread. PMID:23592792

  3. Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria

    PubMed Central

    2012-01-01

    Summary: Flagellar and translocation-associated type III secretion (T3S) systems are present in most Gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria. PMID:22688814

  4. Secretome Identifies Tenascin-X as a Potent Marker of Ovarian Cancer

    PubMed Central

    Kramer, Marianne; Pierredon, Sandra; Ribaux, Pascale; Tille, Jean-Christophe; Cohen, Marie

    2015-01-01

    CA-125 has been a valuable marker for the follow-up of ovarian cancer patients but it is not sensitive enough to be used as diagnostic marker. We had already used secretomic methods to identify proteins differentially secreted by serous ovarian cancer cells compared to healthy ovarian cells. Here, we evaluated the secretion of these proteins by ovarian cancer cells during the follow-up of one patient. Proteins that correlated with CA-125 levels were screened using serum samples from ovarian cancer patients as well as benign and healthy controls. Tenascin-X secretion was shown to correlate with CA-125 value in the initial case study. The immunohistochemical detection of increased amount of tenascin-X in ovarian cancer tissues compared to healthy tissues confirms the potent interest in tenascin-X as marker. We then quantified the tenascin-X level in serum of patients and identified tenascin-X as potent marker for ovarian cancer, showing that secretomic analysis is suitable for the identification of protein biomarkers when combined with protein immunoassay. Using this method, we determined tenascin-X as a new potent marker for serous ovarian cancer. PMID:26090390

  5. A Dynamic Study of Protein Secretion and Aggregation in the Secretory Pathway

    PubMed Central

    Mossuto, Maria Francesca; Sannino, Sara; Mazza, Davide; Fagioli, Claudio; Vitale, Milena; Yoboue, Edgar Djaha; Anelli, Tiziana

    2014-01-01

    Precise coordination of protein biogenesis, traffic and homeostasis within the early secretory compartment (ESC) is key for cell physiology. As a consequence, disturbances in these processes underlie many genetic and chronic diseases. Dynamic imaging methods are needed to follow the fate of cargo proteins and their interactions with resident enzymes and folding assistants. Here we applied the Halotag labelling system to study the behavior of proteins with different fates and roles in ESC: a chaperone, an ERAD substrate and an aggregation-prone molecule. Exploiting the Halo property of binding covalently ligands labelled with different fluorochromes, we developed and performed non-radioactive pulse and chase assays to follow sequential waves of proteins in ESC, discriminating between young and old molecules at the single cell level. In this way, we could monitor secretion and degradation of ER proteins in living cells. We can also follow the biogenesis, growth, accumulation and movements of protein aggregates in the ESC. Our data show that protein deposits within ESC grow by sequential apposition of molecules up to a given size, after which novel seeds are detected. The possibility of using ligands with distinct optical and physical properties offers a novel possibility to dynamically follow the fate of proteins in the ESC. PMID:25279560

  6. A dynamic study of protein secretion and aggregation in the secretory pathway.

    PubMed

    Mossuto, Maria Francesca; Sannino, Sara; Mazza, Davide; Fagioli, Claudio; Vitale, Milena; Yoboue, Edgar Djaha; Sitia, Roberto; Anelli, Tiziana

    2014-01-01

    Precise coordination of protein biogenesis, traffic and homeostasis within the early secretory compartment (ESC) is key for cell physiology. As a consequence, disturbances in these processes underlie many genetic and chronic diseases. Dynamic imaging methods are needed to follow the fate of cargo proteins and their interactions with resident enzymes and folding assistants. Here we applied the Halotag labelling system to study the behavior of proteins with different fates and roles in ESC: a chaperone, an ERAD substrate and an aggregation-prone molecule. Exploiting the Halo property of binding covalently ligands labelled with different fluorochromes, we developed and performed non-radioactive pulse and chase assays to follow sequential waves of proteins in ESC, discriminating between young and old molecules at the single cell level. In this way, we could monitor secretion and degradation of ER proteins in living cells. We can also follow the biogenesis, growth, accumulation and movements of protein aggregates in the ESC. Our data show that protein deposits within ESC grow by sequential apposition of molecules up to a given size, after which novel seeds are detected. The possibility of using ligands with distinct optical and physical properties offers a novel possibility to dynamically follow the fate of proteins in the ESC.

  7. Label-free detection of protein molecules secreted from an organ-on-a-chip model for drug toxicity assays

    NASA Astrophysics Data System (ADS)

    Morales, Andres W.; Zhang, Yu S.; Aleman, Julio; Alerasool, Parissa; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2016-03-01

    Clinical attrition is about 30% from failure of drug candidates due to toxic side effects, increasing the drug development costs significantly and slowing down the drug discovery process. This partly originates from the fact that the animal models do not accurately represent human physiology. Hence there is a clear unmet need for developing drug toxicity assays using human-based models that are complementary to traditional animal models before starting expensive clinical trials. Organ-on-a-chip techniques developed in recent years have generated a variety of human organ models mimicking different human physiological conditions. However, it is extremely challenging to monitor the transient and long-term response of the organ models to drug treatments during drug toxicity tests. First, when an organ-on-a-chip model interacts with drugs, a certain amount of protein molecules may be released into the medium due to certain drug effects, but the amount of the protein molecules is limited, since the organ tissue grown inside microfluidic bioreactors have minimum volume. Second, traditional fluorescence techniques cannot be utilized for real-time monitoring of the concentration of the protein molecules, because the protein molecules are continuously secreted from the tissue and it is practically impossible to achieve fluorescence labeling in the dynamically changing environment. Therefore, direct measurements of the secreted protein molecules with a label-free approach is strongly desired for organs-on-a-chip applications. In this paper, we report the development of a photonic crystal-based biosensor for label-free assays of secreted protein molecules from a liver-on-a-chip model. Ultrahigh detection sensitivity and specificity have been demonstrated.

  8. The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE

    PubMed Central

    Treerat, Puthayalai; Alwis, Priyangi; D’Cruze, Tanya; Cullinane, Meabh; Vadivelu, Jamunarani; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2015-01-01

    Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness. PMID:26624293

  9. The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE.

    PubMed

    Treerat, Puthayalai; Alwis, Priyangi; D'Cruze, Tanya; Cullinane, Meabh; Vadivelu, Jamunarani; Devenish, Rodney J; Prescott, Mark; Adler, Ben; Boyce, John D

    2015-01-01

    Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness.

  10. Direct analysis of the secretions of the potato cyst nematode Globodera rostochiensis.

    PubMed

    Robertson, L; Robertson, W M; Jones, J T

    1999-08-01

    Secretions were induced from second (invasive) stage juveniles (J2s) of the potato cyst nematode Globodera rostochiensis by exposing them to 5-methoxy-N,N-dimethyl tryptamine oxalate (DMT). Secretions were collected from J2s in sufficient quantity to allow direct analysis. Gel electrophoresis followed by monochromatic silver staining demonstrated the presence of at least 10 proteins. The presence of several enzymes, including superoxide dismutase and proteases, was demonstrated using Western blots and activity assays. Antisera raised against the secretions recognized bands on Western blots consistent in molecular mass with those identified on silver stained gels. The antisera recognized structures implicated in the production of secretions including the subventral gland cells and surface of J2s.

  11. MST4 kinase phosphorylates ACAP4 protein to orchestrate apical membrane remodeling during gastric acid secretion.

    PubMed

    Yuan, Xiao; Yao, Phil Y; Jiang, Jiying; Zhang, Yin; Su, Zeqi; Yao, Wendy; Wang, Xueying; Gui, Ping; Mullen, McKay; Henry, Calmour; Ward, Tarsha; Wang, Wenwen; Brako, Larry; Tian, Ruijun; Zhao, Xuannv; Wang, Fengsong; Cao, Xinwang; Wang, Dongmei; Liu, Xing; Ding, Xia; Yao, Xuebiao

    2017-09-29

    Digestion in the stomach depends on acidification of the lumen. Histamine-elicited acid secretion is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. Our recent study revealed the functional role of PKA-MST4-ezrin signaling axis in histamine-elicited acid secretion. However, it remains uncharacterized how the PKA-MST4-ezrin signaling axis operates the insertion of H,K-ATPases into the apical plasma membranes of gastric parietal cells. Here we show that MST4 phosphorylates ACAP4, an ARF6 GTPase-activating protein, at Thr 545 Histamine stimulation activates MST4 and promotes MST4 interaction with ACAP4. ACAP4 physically interacts with MST4 and is a cognate substrate of MST4 during parietal cell activation. The phosphorylation site of ACAP4 by MST4 was mapped to Thr 545 by mass spectrometric analyses. Importantly, phosphorylation of Thr 545 is essential for acid secretion in parietal cells because either suppression of ACAP4 or overexpression of non-phosphorylatable ACAP4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, persistent overexpression of MST4 phosphorylation-deficient ACAP4 results in inhibition of gastric acid secretion and blockage of tubulovesicle fusion to the apical membranes. Significantly, phosphorylation of Thr 545 enables ACAP4 to interact with ezrin. Given the location of Thr 545 between the GTPase-activating protein domain and the first ankyrin repeat, we reason that MST4 phosphorylation elicits a conformational change that enables ezrin-ACAP4 interaction. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ACAP4 signaling cascade to polarized acid secretion in gastric parietal cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The 2.5 Å Structure of the Enterococcus Conjugation Protein TraM resembles VirB8 Type IV Secretion Proteins*

    PubMed Central

    Goessweiner-Mohr, Nikolaus; Grumet, Lukas; Arends, Karsten; Pavkov-Keller, Tea; Gruber, Christian C.; Gruber, Karl; Birner-Gruenberger, Ruth; Kropec-Huebner, Andrea; Huebner, Johannes; Grohmann, Elisabeth; Keller, Walter

    2013-01-01

    Conjugative plasmid transfer is the most important means of spreading antibiotic resistance and virulence genes among bacteria and therefore presents a serious threat to human health. The process requires direct cell-cell contact made possible by a multiprotein complex that spans cellular membranes and serves as a channel for macromolecular secretion. Thus far, well studied conjugative type IV secretion systems (T4SS) are of Gram-negative (G−) origin. Although many medically relevant pathogens (e.g., enterococci, staphylococci, and streptococci) are Gram-positive (G+), their conjugation systems have received little attention. This study provides structural information for the transfer protein TraM of the G+ broad host range Enterococcus conjugative plasmid pIP501. Immunolocalization demonstrated that the protein localizes to the cell wall. We then used opsonophagocytosis as a novel tool to verify that TraM was exposed on the cell surface. In these assays, antibodies generated to TraM recruited macrophages and enabled killing of pIP501 harboring Enteroccocus faecalis cells. The crystal structure of the C-terminal, surface-exposed domain of TraM was determined to 2.5 Å resolution. The structure, molecular dynamics, and cross-linking studies indicated that a TraM trimer acts as the biological unit. Despite the absence of sequence-based similarity, TraM unexpectedly displayed a fold similar to the T4SS VirB8 proteins from Agrobacterium tumefaciens and Brucella suis (G−) and to the transfer protein TcpC from Clostridium perfringens plasmid pCW3 (G+). Based on the alignments of secondary structure elements of VirB8-like proteins from mobile genetic elements and chromosomally encoded T4SS from G+ and G− bacteria, we propose a new classification scheme of VirB8-like proteins. PMID:23188825

  13. Novel Mitochondria-Targeted Heat-Soluble Proteins Identified in the Anhydrobiotic Tardigrade Improve Osmotic Tolerance of Human Cells

    PubMed Central

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D.; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called “anhydrobiosis”. Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments. PMID:25675104

  14. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells.

    PubMed

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments.

  15. Identification of Novel Listeria monocytogenes Secreted Virulence Factors following Mutational Activation of the Central Virulence Regulator, PrfA▿ †

    PubMed Central

    Port, Gary C.; Freitag, Nancy E.

    2007-01-01

    Upon bacterial entry into the cytosol of infected mammalian host cells, the central virulence regulator PrfA of Listeria monocytogenes becomes activated and induces the expression of numerous factors which contribute to bacterial pathogenesis. The mechanism or signal by which PrfA becomes activated during the course of infection has not yet been determined; however, several amino acid substitutions within PrfA (known as PrfA* mutations) that appear to lock the protein into a constitutively activated state have been identified. In this study, the PrfA activation statuses of several L. monocytogenes mutant strains were subjected to direct isogenic comparison and the mutant with the highest activity, the prfA(L140F) mutant, was identified. The prfA(L140F) strain was subsequently used as a tool to identify gene products secreted as a result of PrfA activation. By use of two-dimensional gel electrophoresis followed by liquid chromatography-electrospray ionization-tandem mass spectroscopy analyses, 15 proteins were identified as up-regulated in the prfA(L140F) secretome, while the secretion of two proteins was found to be reduced. Although some of the proteins identified were known to be subject to direct regulation by PrfA, the majority have not previously been associated with PrfA regulation and their expression or secretion may be influenced indirectly by a PrfA-dependent regulatory pathway. Plasmid insertion inactivation of the genes encoding four novel secreted products indicated that three of the four have significant roles in L. monocytogenes virulence. The use of mutationally activated prfA alleles therefore provides a useful approach towards identifying gene products that contribute to L. monocytogenes pathogenesis. PMID:17938228

  16. Efficient IgM assembly and secretion require the plasma cell induced endoplasmic reticulum protein pERp1

    PubMed Central

    van Anken, Eelco; Pena, Florentina; Hafkemeijer, Nicole; Christis, Chantal; Romijn, Edwin P.; Grauschopf, Ulla; Oorschot, Viola M. J.; Pertel, Thomas; Engels, Sander; Ora, Ari; Lástun, Viorica; Glockshuber, Rudi; Klumperman, Judith; Heck, Albert J. R.; Luban, Jeremy; Braakman, Ineke

    2009-01-01

    Plasma cells daily secrete their own mass in antibodies, which fold and assemble in the endoplasmic reticulum (ER). To reach these levels, cells require pERp1, a novel lymphocyte-specific small ER-resident protein, which attains expression levels as high as BiP when B cells differentiate into plasma cells. Although pERp1 has no homology with known ER proteins, it does contain a CXXC motif typical for oxidoreductases. In steady state, the CXXC cysteines are locked by two parallel disulfide bonds with a downstream C(X)6C motif, and pERp1 displays only modest oxidoreductase activity. pERp1 emerged as a dedicated folding factor for IgM, associating with both heavy and light chains and promoting assembly and secretion of mature IgM. PMID:19805154

  17. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data

    PubMed Central

    Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina

    2016-01-01

    The Golgi Apparatus (GA) is a major collection and dispatch station for numerous proteins destined for secretion, plasma membranes and lysosomes. The dysfunction of GA proteins can result in neurodegenerative diseases. Therefore, accurate identification of protein subGolgi localizations may assist in drug development and understanding the mechanisms of the GA involved in various cellular processes. In this paper, a new computational method is proposed for identifying cis-Golgi proteins from trans-Golgi proteins. Based on the concept of Common Spatial Patterns (CSP), a novel feature extraction technique is developed to extract evolutionary information from protein sequences. To deal with the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted. A feature selection method called Random Forest-Recursive Feature Elimination (RF-RFE) is employed to search the optimal features from the CSP based features and g-gap dipeptide composition. Based on the optimal features, a Random Forest (RF) module is used to distinguish cis-Golgi proteins from trans-Golgi proteins. Through the jackknife cross-validation, the proposed method achieves a promising performance with a sensitivity of 0.889, a specificity of 0.880, an accuracy of 0.885, and a Matthew’s Correlation Coefficient (MCC) of 0.765, which remarkably outperforms previous methods. Moreover, when tested on a common independent dataset, our method also achieves a significantly improved performance. These results highlight the promising performance of the proposed method to identify Golgi-resident protein types. Furthermore, the CSP based feature extraction method may provide guidelines for protein function predictions. PMID:26861308

  18. Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identiWcation of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins

    Treesearch

    Amber Vanden Wymelenberg; Patrick Minges; Grzegorz Sabat; Diego Martinez; Andrea Aerts; Asaf Salamov; Igor Grigoriev; Harris Shapiro; Nik Putnam; Paula Belinky; Carlos Dosoretz; Jill Gaskell; Phil Kersten; Dan Cullen

    2006-01-01

    The white-rot basidiomycete Phanerochaete chrysosporium employs extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose, and lignin. Analysis of a total of 10,048 v2.1 gene models predicts 769 secreted proteins, a substantial increase over the 268 models identified in the earlier database (v1.0). Within the v2.1 ‘computational...

  19. Salmonella-secreted Virulence Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffron, Fred; Niemann, George; Yoon, Hyunjin

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellentmore » reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.« less

  20. Identifying Key Attributes for Protein Beverages.

    PubMed

    Oltman, A E; Lopetcharat, K; Bastian, E; Drake, M A

    2015-06-01

    This study identified key attributes of protein beverages and evaluated effects of priming on liking of protein beverages. An adaptive choice-based conjoint study was conducted along with Kano analysis to gain insight on protein beverage consumers (n = 432). Attributes evaluated included label claim, protein type, amount of protein, carbohydrates, sweeteners, and metabolic benefits. Utility scores for levels and importance scores for attributes were determined. Subsequently, two pairs of clear acidic whey protein beverages were manufactured that differed by age of protein source or the amount of whey protein per serving. Beverages were evaluated by 151 consumers on two occasions with or without priming statements. One priming statement declared "great flavor," the other priming statement declared 20 g protein per serving. A two way analysis of variance was applied to discern the role of each priming statement. The most important attribute for protein beverages was sweetener type, followed by amount of protein, followed by type of protein followed by label claim. Beverages with whey protein, naturally sweetened, reduced sugar and ≥15 g protein per serving were most desired. Three consumer clusters were identified, differentiated by their preferences for protein type, sweetener and amount of protein. Priming statements positively impacted concept liking (P < 0.05) but had no effect on overall liking (P > 0.05). Consistent with trained panel profiles of increased cardboard flavor with higher protein content, consumers liked beverages with 10 g protein more than beverages with 20 g protein (6.8 compared with 5.7, P < 0.05). Protein beverages must have desirable flavor for wide consumer appeal. © 2015 Institute of Food Technologists®

  1. Pichia anomala DBVPG 3003 Secretes a Ubiquitin-Like Protein That Has Antimicrobial Activity▿

    PubMed Central

    De Ingeniis, Jessica; Raffaelli, Nadia; Ciani, Maurizio; Mannazzu, Ilaria

    2009-01-01

    The yeast strain Pichia anomala DBVPG 3003 secretes a killer toxin (Pikt) that has antifungal activity against Brettanomyces/Dekkera sp. yeasts. Pikt interacts with β-1,6-glucan, consistent with binding to the cell wall of sensitive targets. In contrast to that of toxin K1, secreted by Saccharomyces cerevisiae, Pikt killer activity is not mediated by an increase in membrane permeability. Purification of the toxin yielded a homogeneous protein of about 8 kDa, which showed a marked similarity to ubiquitin in terms of molecular mass and N-terminal sequences. Pikt is also specifically recognized by anti-bovine ubiquitin antibodies and, similar to ubiquitin-like peptides, is not absorbed by DEAE-cellulose. However, Pikt differs from ubiquitin in its sensitivity to proteolytic enzymes. Therefore, Pikt appears to be a novel ubiquitin-like peptide that has killer activity. PMID:19114528

  2. Secretion of CyaA-PrtB and HlyA-PrtB fusion proteins in Escherichia coli: involvement of the glycine-rich repeat domain of Erwinia chrysanthemi protease B.

    PubMed Central

    Létoffé, S; Wandersman, C

    1992-01-01

    Protease B from Erwinia chrysanthemi was shown previously to have a C-terminal secretion signal located downstream of a domain that contains six glycine-rich repeats. This domain is conserved in all known bacterial proteins secreted by the signal peptide-independent pathway. The role of these repeats in the secretion process is controversial. We compared the secretion processes of various heterologous polypeptides fused either directly to the signal or separated from it by the glycine-rich domain. Although the repeats are not involved in the secretion of small truncated protease B carboxy-terminal peptides, they are required for the secretion of higher-molecular-weight fusion proteins. Secretion efficiency was also dependent on the size of the passenger polypeptide. Images PMID:1629152

  3. Transporter-mediated biofuel secretion.

    PubMed

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  4. Transporter-mediated biofuel secretion

    PubMed Central

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-01-01

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as “plug-and-play” biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance. PMID:23613592

  5. A screen for over-secretion of proteins by yeast based on a dual component cellular phosphatase and immuno-chromogenic stain for exported bacterial alkaline phosphatase reporter

    PubMed Central

    2013-01-01

    Background To isolate over-secretors, we subjected to saturation mutagenesis, a strain of P.pastoris exporting E. coli alkaline phosphatase (EAP) fused to the secretory domain of the yeast α factor pheromone through cellular PHO1/KEX2 secretory processing signals as the α-sec-EAP reporter protein. Direct chromogenic staining for α-sec-EAP activity is non-specific as its NBT/BCIP substrate cross-reacts with cellular phosphatases which can be inhibited with Levulinic acid. However, the parental E(P) strain only exports detectable levels of α-sec-EAP at 69 hours and not within the 36 hour period post-seeding required for effective screening with the consequent absence of a reference for secretion. We substituted the endogenous cellular phosphatase activity as a comparative reference for secretion rate and levels as well as for colony alignment while elevating specificity and sensitivity of detection of the exported protein with other innovative modifications of the immuno-chromogenic staining application for screening protein export mutants. Results Raising the specificity and utility of staining for α-sec-EAP activity required 5 modifications including some to published methods. These included, exploitation of endogenous phosphatase activity, reduction of the cell/protein burden, establishment of the direct relation between concentrations of transcriptional inducer and exported membrane immobilized protein and concentrations of protein exported into growth media, amplification of immuno-specificity and sensitivity of detection of α-sec-EAP reporter enzyme signal and restriction of staining to optimal concentrations of antisera and time periods. The resultant immuno-chromogenic screen allows for the detection of early secretion and as little as 1.3 fold over-secretion of α-sec-EAP reporter protein by E(M) mutants in the presence of 10 fold -216 fold higher concentrations of HSA. Conclusions The modified immuno-chromogenic screen is sensitive, specific and has

  6. Proteomic Analysis of Exosomes and Exosome-Free Conditioned Media From Human Osteosarcoma Cell Lines Reveals Secretion of Proteins Related to Tumor Progression.

    PubMed

    Jerez, Sofía; Araya, Héctor; Thaler, Roman; Charlesworth, M Cristine; López-Solís, Remigio; Kalergis, Alexis M; Céspedes, Pablo F; Dudakovic, Amel; Stein, Gary S; van Wijnen, Andre J; Galindo, Mario

    2017-02-01

    Osteosarcomas are the most prevalent bone tumors in pediatric patients, but can also occur later in life. Bone tumors have the potential to metastasize to lung and occasionally other vital organs. To understand how osteosarcoma cells interact with their micro-environment to support bone tumor progression and metastasis, we analyzed secreted proteins and exosomes from three human osteosarcoma cell lines. Exosome isolation was validated by transmission electron microscopy (TEM) and immuno-blotting for characteristic biomarkers (CD63, CD9, and CD81). Exosomal and soluble proteins (less than 100 kDa) were identified by mass spectrometry analysis using nanoLC-MS/MS and classified by functional gene ontology clustering. We identified a secretome set of >3,000 proteins for both fractions, and detected proteins that are either common or unique among the three osteosarcoma cell lines. Protein ontology comparison of proteomes from exosomes and exosome-free fractions revealed differences in the enrichment of functional categories associated with different biological processes, including those related to tumor progression (i.e., angiogenesis, cell adhesion, and cell migration). The secretome characteristics of osteosarcoma cells are consistent with the pathological properties of tumor cells with metastatic potential. J. Cell. Biochem. 118: 351-360, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. The N-terminus of IpaB provides a potential anchor to the Shigella type III secretion system tip complex protein IpaD

    PubMed Central

    Dickenson, Nicholas E.; Arizmendi, Olivia; Patil, Mrinalini K.; Toth, Ronald T.; Middaugh, C. Russell; Picking, William D.; Picking, Wendy L.

    2014-01-01

    The type III secretion system (T3SS) is an essential virulence factor for Shigella flexneri, providing a conduit through which host-altering effectors are injected directly into a host cell to promote uptake. The type III secretion apparatus (T3SA) is comprised of a basal body, external needle, and regulatory tip complex. The nascent needle is a polymer of MxiH capped by a pentamer of invasion plasmid antigen D (IpaD). Exposure to bile salts (e.g. deoxycholate) causes a conformational change in IpaD and promotes recruitment of IpaB to the needle tip. It has been proposed that IpaB senses contact with host cell membranes, recruiting IpaC and inducing full secretion of T3SS effectors. While the steps of T3SA maturation and their external triggers have been identified, details of specific protein interactions and mechanisms have remained difficult to study due to the hydrophobic nature of the IpaB and IpaC translocator proteins. Here we explored the ability for a series of soluble N-terminal IpaB peptides to interact with IpaD. We found that DOC is required for the interaction and that a region of IpaB between residues 11–27 is required for maximum binding, which was confirmed in vivo. Furthermore, intramolecular FRET measurements indicated that movement of the IpaD distal domain away from the protein core accompanied the binding of IpaB11-226. Together these new findings provide important new insight into the interactions and potential mechanisms that define the maturation of the Shigella T3SA needle tip complex and provide a foundation for further studies probing T3SS activation. PMID:24236510

  8. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    PubMed Central

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  9. Characterization of the Porphyromonas gingivalis Type IX Secretion Trans-envelope PorKLMNP Core Complex*

    PubMed Central

    Vincent, Maxence S.; Canestrari, Mickaël J.; Leone, Philippe; Stathopulos, Julien; Ize, Bérengère; Zoued, Abdelrahim; Cambillau, Christian; Kellenberger, Christine; Roussel, Alain

    2017-01-01

    The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis. Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts. PMID:28057754

  10. Characterization of the Interaction between the Salmonella Type III Secretion System Tip Protein SipD and the Needle Protein PrgI by Paramagnetic Relaxation Enhancement*

    PubMed Central

    Rathinavelan, Thenmalarchelvi; Tang, Chun; De Guzman, Roberto N.

    2011-01-01

    Many Gram-negative bacteria that cause major diseases and mortality worldwide require the type III secretion system (T3SS) to inject virulence proteins into their hosts and cause infections. A structural component of the T3SS is the needle apparatus, which consists of a base, an external needle, and a tip complex. In Salmonella typhimurium, the external needle is assembled by the polymerization of the needle protein PrgI. On top of this needle sits a tip complex, which is partly formed by the tip protein SipD. How SipD interacts with PrgI during the assembly of the T3SS needle apparatus remains unknown. The central region of PrgI forms an α-helical hairpin, whereas SipD has a long central coiled-coil, which is a defining structural feature of other T3SS tip proteins as well. Using NMR paramagnetic relaxation enhancement, we have identified a specific region on the SipD coiled-coil that interacts directly with PrgI. We present a model of how SipD might dock at the tip of the needle based on our paramagnetic relaxation enhancement results, thus offering new insight about the mechanism of assembly of the T3SS needle apparatus. PMID:21138848

  11. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence.

    PubMed

    Zhang, Zhanquan; Qin, Guozheng; Li, Boqiang; Tian, Shiping

    2014-06-01

    Pathogenic fungi usually secrete a series of virulence factors to the extracellular environment to facilitate infection. Rab GTPases play a central role in the secretory pathway. To explore the function of Rab/GTPase in filamentous fungi, we knocked out a Rab/GTPase family gene, Bcsas1, in Botrytis cinerea, an aggressive fungal pathogen that infects more than 200 plant species. A detailed analysis was conducted on the virulence and the secretory capability of the mutants. The results indicated that knockout of Bcsas1 inhibited hyphal development and reduced sporulation of B. cinerea on potato dextrose agar plates resulting in reduced virulence on various fruit hosts. Knocking out the Bcsas1 gene led to an accumulation of transport vesicles at the hyphal tip, significantly reduced extracellular protein content, and lowered the activity of polygalacturonase and xylanase in the extracellular medium. However, mutation of Bcsas1 did not affect the expression of genes encoding polygalacturonase and xylanase, suggesting the secretion of these two family enzymes was suppressed in the mutant. Moreover, a comparative analysis of the secretome provided further evidence that the disruption of Bcsas1 in mutant strains significantly depressed the secretion of polysaccharide hydrolases and proteases. The results indicate that Bcsas1, the Rab8/SEC4-like gene, plays a crucial role in development, protein secretion, and virulence of B. cinerea.

  12. PITPNC1 recruits RAB1B to the Golgi network to drive malignant secretion

    PubMed Central

    Halberg, Nils; Sengelaub, Caitlin A.; Navrazhina, Kristina; Molina, Henrik; Uryu, Kunihiro; Tavazoie, Sohail F.

    2017-01-01

    SUMMARY Enhanced secretion of tumorigenic effector proteins is a feature of malignant cells. The molecular and cellular mechanisms underlying this feature are poorly defined. We identify PITPNC1 as a gene amplified in a large fraction of human breast cancer and over-expressed in metastatic breast, melanoma and colon cancer. Biochemical, molecular, and cell-biological studies reveal that PITPNC1 promotes malignant secretion by binding Golgi resident PI4P and localizing RAB1B to the Golgi. RAB1B localization to the Golgi allows for the recruitment of GOLPH3 to the trans-Golgi, which facilitates Golgi extension and enhanced vesicular release. PITPNC1-mediated vesicular release drives metastasis by increasing the secretion of pro-invasive and pro-angiogenic mediators HTRA1, MMP1, FAM3C, PDGFA, and ADAM10. We establish PITPNC1 as a PI4P-binding protein that enhances vesicular secretion capacity in malignancy. PMID:26977884

  13. Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.

    PubMed

    Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao

    2005-01-01

    We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.

  14. Single-Cell Detection of Secreted Aβ and sAPPα from Human IPSC-Derived Neurons and Astrocytes.

    PubMed

    Liao, Mei-Chen; Muratore, Christina R; Gierahn, Todd M; Sullivan, Sarah E; Srikanth, Priya; De Jager, Philip L; Love, J Christopher; Young-Pearse, Tracy L

    2016-02-03

    Secreted factors play a central role in normal and pathological processes in every tissue in the body. The brain is composed of a highly complex milieu of different cell types and few methods exist that can identify which individual cells in a complex mixture are secreting specific analytes. By identifying which cells are responsible, we can better understand neural physiology and pathophysiology, more readily identify the underlying pathways responsible for analyte production, and ultimately use this information to guide the development of novel therapeutic strategies that target the cell types of relevance. We present here a method for detecting analytes secreted from single human induced pluripotent stem cell (iPSC)-derived neural cells and have applied the method to measure amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα), analytes central to Alzheimer's disease pathogenesis. Through these studies, we have uncovered the dynamic range of secretion profiles of these analytes from single iPSC-derived neuronal and glial cells and have molecularly characterized subpopulations of these cells through immunostaining and gene expression analyses. In examining Aβ and sAPPα secretion from single cells, we were able to identify previously unappreciated complexities in the biology of APP cleavage that could not otherwise have been found by studying averaged responses over pools of cells. This technique can be readily adapted to the detection of other analytes secreted by neural cells, which would have the potential to open new perspectives into human CNS development and dysfunction. We have established a technology that, for the first time, detects secreted analytes from single human neurons and astrocytes. We examine secretion of the Alzheimer's disease-relevant factors amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα) and present novel findings that could not have been observed without a single-cell analytical platform. First, we

  15. Nicotinic acid increases adiponectin secretion from differentiated bovine preadipocytes through G-protein coupled receptor signaling.

    PubMed

    Kopp, Christina; Hosseini, Afshin; Singh, Shiva P; Regenhard, Petra; Khalilvandi-Behroozyar, Hamed; Sauerwein, Helga; Mielenz, Manfred

    2014-11-18

    The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum) is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA) is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A) ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX) to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001) and the mRNA abundances of GPR109A (p ≤ 0.05) and chemerin (p ≤ 0.01). Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001). The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows.

  16. Nicotinic Acid Increases Adiponectin Secretion from Differentiated Bovine Preadipocytes through G-Protein Coupled Receptor Signaling

    PubMed Central

    Kopp, Christina; Hosseini, Afshin; Singh, Shiva P.; Regenhard, Petra; Khalilvandi-Behroozyar, Hamed; Sauerwein, Helga; Mielenz, Manfred

    2014-01-01

    The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum) is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA) is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A) ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX) to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001) and the mRNA abundances of GPR109A (p ≤ 0.05) and chemerin (p ≤ 0.01). Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001). The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows. PMID:25411802

  17. Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes.

    PubMed

    Zhang, Jing; Lu, Shaohua; Zhou, Ye; Meng, Kun; Chen, Zhipeng; Cui, Yizhi; Shi, Yunfeng; Wang, Tong; He, Qing-Yu

    2017-07-01

    Exosomes are deliverers of critically functional proteins, capable of transforming target cells in numerous cancers, including hepatocellular carcinoma (HCC). We hypothesize that the motility of HCC cells can be featured by comparative proteome of exosomes. Hence, we performed the super-SILAC-based MS analysis on the exosomes secreted by three human HCC cell lines, including the non-motile Hep3B cell, and the motile 97H and LM3 cells. More than 1400 exosomal proteins were confidently quantified in each MS analysis with highly biological reproducibility. We justified that 469 and 443 exosomal proteins represented differentially expressed proteins (DEPs) in the 97H/Hep3B and LM3/Hep3B comparisons, respectively. These DEPs focused on sugar metabolism-centric canonical pathways per ingenuity pathway analysis, which was consistent with the gene ontology analysis on biological process enrichment. These pathways included glycolysis I, gluconeogenesis I and pentose phosphate pathways; and the DEPs enriched in these pathways could form a tightly connected network. By analyzing the relative abundance of proteins and translating mRNAs, we found significantly positive correlation between exosomes and cells. The involved exosomal proteins were again focusing on sugar metabolism. In conclusion, motile HCC cells tend to preferentially export more sugar metabolism-associated proteins via exosomes that differentiate them from non-motile HCC cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Expression Analysis of the Theileria parva Subtelomere-Encoded Variable Secreted Protein Gene Family

    PubMed Central

    Schmied, Stéfanie; Affentranger, Sarah; Parvanova, Iana; Kang'a, Simon; Nene, Vishvanath; Katzer, Frank; McKeever, Declan; Müller, Joachim; Bishop, Richard; Pain, Arnab; Dobbelaere, Dirk A. E.

    2009-01-01

    Background The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs) form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. Methodology/Principal Findings We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. Conclusions Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential

  19. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase.

    PubMed

    Walker, Michael J; Rylett, Caroline M; Keen, Jeff N; Audsley, Neil; Sajid, Mohammed; Shirras, Alan D; Isaac, R Elwyn

    2006-05-02

    In Drosophila melanogaster, the male seminal fluid contains proteins that are important for reproductive success. Many of these proteins are synthesised by the male accessory glands and are secreted into the accessory gland lumen, where they are stored until required. Previous studies on the identification of Drosophila accessory gland products have largely focused on characterisation of male-specific accessory gland cDNAs from D. melanogaster and, more recently, Drosophila simulans. In the present study, we have used a proteomics approach without any sex bias to identify proteins in D. melanogaster accessory gland secretions. Thirteen secreted accessory gland proteins, including seven new accessory gland proteins, were identified by 2D-gel electrophoresis combined with mass spectrometry of tryptic fragments. They included protein-folding and stress-response proteins, a hormone, a lipase, a serpin, a cysteine-rich protein and two peptidases, a pro-enzyme form of a cathepsin K-like cysteine peptidase and a gamma-glutamyl transpeptidase. Enzymatic studies established that accessory gland secretions contain a cysteine peptidase zymogen that can be activated at low pH. This peptidase may have a role in the processing of female and other male-derived proteins, but is unlikely to be involved in the processing of the sex peptide. gamma-Glutamyl transpeptidases are type II integral membrane proteins; however, the identified AG gamma-glutamyl transpeptidase (GGT-1) is unusual in that it is predicted to be a soluble secreted protein, a prediction that is supported by biochemical evidence. GGT-1 is possibly involved in maintaining a protective redox environment for sperm. The strong gamma-glutamyl transpeptidase activity found in the secretions provides an explanation for the observation that glutamic acid is the most abundant free amino acid in accessory gland secretions of D. melanogaster. We have applied biochemical approaches, not used previously, to characterise

  20. Suppression or activation of immune responses by predicted secreted proteins of the soybean rust pathogen Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    Rust fungi, such as Phakopsora pachyrhizi, are major threats to crop production. They form specialized haustoria that are intimately associated with plant cells. These haustoria have roles in acquiring nutrients and secreting effector proteins that manipulate host immune systems. Functional characte...

  1. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells.

    PubMed

    Nyman, Tuula A; Lorey, Martina B; Cypryk, Wojciech; Matikainen, Sampsa

    2017-05-01

    The immune system is our defense system against microbial infections and tissue injury, and understanding how it works in detail is essential for developing drugs for different diseases. Mass spectrometry-based proteomics can provide in-depth information on the molecular mechanisms involved in immune responses. Areas covered: Summarized are the key immunology findings obtained with MS-based proteomics in the past five years, with a focus on inflammasome activation, global protein secretion, mucosal immunology, immunopeptidome and T cells. Special focus is on extracellular vesicle-mediated protein secretion and its role in immune responses. Expert commentary: Proteomics is an essential part of modern omics-scale immunology research. To date, MS-based proteomics has been used in immunology to study protein expression levels, their subcellular localization, secretion, post-translational modifications, and interactions in immune cells upon activation by different stimuli. These studies have made major contributions to understanding the molecular mechanisms involved in innate and adaptive immune responses. New developments in proteomics offer constantly novel possibilities for exploring the immune system. Examples of these techniques include mass cytometry and different MS-based imaging approaches which can be widely used in immunology.

  2. Broadly Protective Shigella Vaccine Based on Type III Secretion Apparatus Proteins

    PubMed Central

    Martinez-Becerra, Francisco J.; Kissmann, Julian M.; Diaz-McNair, Jovita; Choudhari, Shyamal P.; Quick, Amy M.; Mellado-Sanchez, Gabriela; Clements, John D.

    2012-01-01

    Shigella spp. are food- and waterborne pathogens that cause severe diarrheal and dysenteric disease associated with high morbidity and mortality. Individuals most often affected are children under 5 years of age in the developing world. The existence of multiple Shigella serotypes and the heterogenic distribution of pathogenic strains, as well as emerging antibiotic resistance, require the development of a broadly protective vaccine. All Shigella spp. utilize a type III secretion system (TTSS) to initiate infection. The type III secretion apparatus (TTSA) is the molecular needle and syringe that form the energized conduit between the bacterial cytoplasm and the host cell to transport effector proteins that manipulate cellular processes to benefit the pathogen. IpaB and IpaD form a tip complex atop the TTSA needle and are required for pathogenesis. Because they are common to all virulent Shigella spp., they are ideal candidate antigens for a subunit-based, broad-spectrum vaccine. We examined the immunogenicity and protective efficacy of IpaB and IpaD, alone or combined, coadministered with a double mutant heat-labile toxin (dmLT) from Escherichia coli, used as a mucosal adjuvant, in a mouse model of intranasal immunization and pulmonary challenge. Robust systemic and mucosal antibody- and T cell-mediated immunities were induced against both proteins, particularly IpaB. Mice immunized in the presence of dmLT with IpaB alone or IpaB combined with IpaD were fully protected against lethal pulmonary infection with Shigella flexneri and Shigella sonnei. We provide the first demonstration that the Shigella TTSAs IpaB and IpaD are promising antigens for the development of a cross-protective Shigella vaccine. PMID:22202122

  3. Role of adipose secreted factors and kisspeptin in the metabolic control of gonadotropin secretion and puberty

    USDA-ARS?s Scientific Manuscript database

    Factors secreted by adipose tissue continue to be discovered. Evidence indicates a strong link between neural influences and adipocyte expression and secretion of a wide array of cytokines, neurotrophic factors, growth factors, binding proteins, and neuropeptides. These “adipokines” are linked to im...

  4. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    PubMed Central

    2012-01-01

    Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed

  5. Bacterial Translocation Ratchets: Shared Physical Principles with Different Molecular Implementations: How bacterial secretion systems bias Brownian motion for efficient translocation of macromolecules.

    PubMed

    Hepp, Christof; Maier, Berenike

    2017-10-01

    Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  6. Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells.

    PubMed

    Zhou, Yan; Tao, Jing; Yu, Hao; Ni, Jinjing; Zeng, Lingbing; Teng, Qihui; Kim, Kwang Sik; Zhao, Guo-Ping; Guo, Xiaokui; Yao, Yufeng

    2012-03-01

    Type VI secretion systems (T6SSs) are involved in the pathogenicity of several gram-negative bacteria. Based on sequence analysis, we found that a cluster of Escherichia coli virulence factors (EVF) encoding a putative T6SS exists in the genome of the meningitis-causing E. coli K1 strain RS218. The T6SS-associated deletion mutants exhibited significant defects in binding to and invasion of human brain microvascular endothelial cells (HBMEC) compared with the parent strain. Hcp family proteins (the hallmark of T6SS), including Hcp1 and Hcp2, were localized in the bacterial outer membrane, but the involvements of Hcp1 and Hcp2 have been shown to differ in E. coli-HBMEC interaction. The deletion mutant of hcp2 showed defects in the bacterial binding to and invasion of HBMEC, while Hcp1 was secreted in a T6SS-dependent manner and induced actin cytoskeleton rearrangement, apoptosis, and the release of interleukin-6 (IL-6) and IL-8 in HBMEC. These findings demonstrate that the T6SS is functional in E. coli K1, and two Hcp family proteins participate in different steps of E. coli interaction with HBMEC in a coordinate manner, e.g., binding to and invasion of HBMEC, the cytokine and chemokine release followed by cytoskeleton rearrangement, and apoptosis in HBMEC. This is the first demonstration of the role of T6SS in meningitis-causing E. coli K1, and T6SS-associated Hcp family proteins are likely to contribute to the pathogenesis of E. coli meningitis.

  7. Die another day: molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins

    USDA-ARS?s Scientific Manuscript database

    Bacterial pathogens inject type III secreted effector (T3SE) proteins into their hosts where they display dual roles depending on the host genotype. T3SEs promote bacterial virulence in susceptible hosts, and elicit immunity in resistant hosts. T3SEs are typically recognized when they modify a host ...

  8. Visualization of glucagon secretion from pancreatic α cells by bioluminescence video microscopy: Identification of secretion sites in the intercellular contact regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokawa, Satoru; School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650; Suzuki, Takahiro

    We have firstly visualized glucagon secretion using a method of video-rate bioluminescence imaging. The fusion protein of proglucagon and Gaussia luciferase (PGCG-GLase) was used as a reporter to detect glucagon secretion and was efficiently expressed in mouse pancreatic α cells (αTC1.6) using a preferred human codon-optimized gene. In the culture medium of the cells expressing PGCG-GLase, luminescence activity determined with a luminometer was increased with low glucose stimulation and KCl-induced depolarization, as observed for glucagon secretion. From immunochemical analyses, PGCG-GLase stably expressed in clonal αTC1.6 cells was correctly processed and released by secretory granules. Luminescence signals of the secreted PGCG-GLase frommore » the stable cells were visualized by video-rate bioluminescence microscopy. The video images showed an increase in glucagon secretion from clustered cells in response to stimulation by KCl. The secretory events were observed frequently at the intercellular contact regions. Thus, the localization and frequency of glucagon secretion might be regulated by cell-cell adhesion. - Highlights: • The fused protein of proglucagon to Gaussia luciferase was used as a reporter. • The fusion protein was highly expressed using a preferred human-codon optimized gene. • Glucagon secretion stimulated by depolarization was determined by luminescence. • Glucagon secretion in α cells was visualized by bioluminescence imaging. • Glucagon secretion sites were localized in the intercellular contact regions.« less

  9. A simple SDS-PAGE protein pattern from pitcher secretions as a new tool to distinguish Nepenthes species (Nepenthaceae).

    PubMed

    Biteau, Flore; Nisse, Estelle; Miguel, Sissi; Hannewald, Paul; Bazile, Vincent; Gaume, Laurence; Mignard, Benoit; Hehn, Alain; Bourgaud, Frederic

    2013-12-01

    Carnivorous plants have always fascinated scientists because these plants are able to attract, capture, and digest animal prey using their remarkable traps that contain digestive secretions. Nepenthes is one of the largest genera of carnivorous plants, with 120 species described thus far. Despite an outstanding diversity of trap designs, many species are often confused with each other and remain difficult to classify because they resemble pitchers or of the occurrence of interspecific hybrids. Here, we propose a new method to easily distinguish Nepenthes species based on a SDS PAGE protein pattern analysis of their pitcher secretions. Intraspecific comparisons were performed among specimens growing in different environmental conditions to ascertain the robustness of this method. Our results show that, at the juvenile stage and in the absence of prey in the pitcher, an examined species is characterized by a specific and stable profile, whatever the environmental conditions. The method we describe here can be used as a reliable tool to easily distinguish between Nepenthes species and to help with potential identification based on the species-specific protein pattern of their pitcher secretions, which is complementary to the monograph information.

  10. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology.

    PubMed

    Ittig, Simon J; Schmutz, Christoph; Kasper, Christoph A; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R; Nigg, Erich A; Arrieumerlou, Cécile

    2015-11-23

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. © 2015 Ittig et al.

  11. Secretion of the Streptomyces tyrosinase is mediated through its trans-activator protein, MelC1.

    PubMed

    Leu, W M; Chen, L Y; Liaw, L L; Lee, Y H

    1992-10-05

    The tyrosinase of Streptomyces antibioticus is encoded by the second open reading frame, melC2 of the melanin operon (melC). The upstream open reading frame melC1 specifies a 146-amino acid protein with a typical NH2-terminal signal-peptide characteristic of a secretory protein. The MelC1 protein is involved in the transfer of copper ion to apotyrosinase MelC2 via binary complex formation (Lee, Y.-H. W., Chen, B.-F., Wu, S.-Y., Leu, W.-M., Lin, J.-J., Chen, C. W., and Lo, S. J. (1988) Gene (Amst.) 65, 71-81; Chen, L.-Y., Leu, W.-M., Wang, K.-T., and Lee, Y.-H.W. (1992) J. Biol. Chem. 267, 20100-20107). To investigate whether the export of tyrosinase is also dependent on MelC1, a mutational study of its signal-peptide sequence was performed. Four different mutants were obtained. Mutation at the positively charged region (mutant M-6LE, Arg6-Arg7----Leu6-Glu7) or the hydrophobic region (mutant M-16D, Val16----Asp16) led to Mel- phenotypes. These lesions caused a severe 7-10-fold reduction of the export of both the MelC1 and MelC2 proteins and a concomitant accumulation of the two proteins in the cytosolic fraction. The cell-associated tyrosinase activity in M-6LE but not in the M-16D mutant was dramatically reduced to 4% of the activity found in the wild type strain, suggesting that the basic NH2 terminus of MelC1 is also important for the trans-activation function of this protein. Nevertheless, the defects on the trans-activation and/or secretory functions of MelC1 in mutants M-6LE and M-16D are not due to the impairment of the formation of the MelC1.MelC2 complex. The translation of melanin operon genes in these two mutants also decreased. In contrast, the tyrosinase activity and the secretion of MelC2 were not affected if the mutations occurred at the putative cleavage site of the signal peptidase (e.g. mutant M-29SM, Arg29-Ala30----Ser29-Met30 or mutant 29-SMG, Arg29-Ala30-Asp31----Ser29-Med30-Gly31+ ++). Additionally, tyrosinase activity and its export were

  12. Novel isoprenylated proteins identified by an expression library screen.

    PubMed

    Biermann, B J; Morehead, T A; Tate, S E; Price, J R; Randall, S K; Crowell, D N

    1994-10-14

    Isoprenylated proteins are involved in eukaryotic cell growth and signal transduction. The protein determinant for prenylation is a short carboxyl-terminal motif containing a cysteine, to which the isoprenoid is covalently attached via thioether linkage. To date, isoprenylated proteins have almost all been identified by demonstrating the attachment of an isoprenoid to previously known proteins. Thus, many isoprenylated proteins probably remain undiscovered. To identify novel isoprenylated proteins for subsequent biochemical study, colony blots of a Glycine max cDNA expression library were [3H]farnesyl-labeled in vitro. Proteins identified by this screen contained several different carboxyl termini that conform to consensus farnesylation motifs. These proteins included known farnesylated proteins (DnaJ homologs) and several novel proteins, two of which contained six or more tandem repeats of a hexapeptide having the consensus sequence (E/G)(G/P)EK(P/K)K. Thus, plants contain a diverse array of genes encoding farnesylated proteins, and our results indicate that fundamental differences in the identities of farnesylated proteins may exist between plants and other eukaryotes. Expression library screening by direct labeling can be adapted to identify isoprenylated proteins from other organisms, as well as proteins with other post-translational modifications.

  13. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    PubMed

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  14. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    PubMed Central

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  15. Excess Secretion of Gel-Forming Mucins and Associated Innate Defense Proteins with Defective Mucin Un-Packaging Underpin Gallbladder Mucocele Formation in Dogs

    PubMed Central

    Kesimer, Mehmet; Cullen, John; Cao, Rui; Radicioni, Giorgia; Mathews, Kyle G.; Seiler, Gabriela; Gookin, Jody L.

    2015-01-01

    Mucosal protection of the gallbladder is vital yet we know very little about the mechanisms involved. In domestic dogs, an emergent syndrome referred to as gallbladder mucocele formation is characterized by excessive secretion of abnormal mucus that results in obstruction and rupture of the gallbladder. The cause of gallbladder mucocele formation is unknown. In these first mechanistic studies of this disease, we investigated normal and mucocele-forming dog gallbladders to determine the source, identity, biophysical properties, and protein associates of the culprit mucins with aim to identify causes for abnormal mucus behavior. We established that mucocele formation involves an adoptive excess secretion of gel forming mucins with abnormal properties by the gallbladder epithelium. The mucus is characterized by a disproportionally significant increase in Muc5ac relative to Muc5b, defective mucin un-packaging, and mucin-interacting innate defense proteins that are capable of dramatically altering the physical and functional properties of mucus. These findings provide an explanation for abnormal mucus behavior and based on similarity to mucus observed in the airways of people with cystic fibrosis, suggest that abnormal mechanisms for maintenance of gallbladder epithelial hydration may be an instigating factor for mucocele formation in dogs. PMID:26414376

  16. Diverse functions of secreted frizzled-related proteins in the osteoblastogenesis of human multipotent mesenchymal stromal cells.

    PubMed

    Yamada, Azusa; Iwata, Takanori; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2013-04-01

    Osteoinductive pretreatment of human mesenchymal stromal cells (hMSCs) has been widely accepted in bone tissue engineering before the use of cell transplantation; however, the mechanisms by which osteoinductive medium (OIM) enhances osteoblastic differentiation are not well understood. Using periodontal ligament-derived hMSCs, we identified key signalling molecules for osteoblastogenesis. Alkaline phosphatase activity induced by OIM, which contains ascorbic acid, β-glycerophosphate, and dexamethasone, was decreased by XAV939, which is an inhibitor of canonical WNT signalling, in a dose-dependent manner. A quantitative RT-PCR array demonstrated the upregulation of secreted frizzled-related protein (SFRP) 3 and the downregulation of SFRP4 during osteoinduction. Functional studies showed that SFRP3 promoted and SFRP4 suppressed the osteoblastic differentiation of hMSCs. In addition, SFRP3 inhibited non-canonical WNT signalling by binding WNT5A, which is a representative non-canonical WNT protein. These results indicate the involvement of the WNT signalling pathway during the osteoblastic differentiation of hMSCs. SFRPs oppositely control osteoblastogenesis through canonical and non-canonical pathways and may be useful for directing the lineage of hMSCs in cytotherapeutic use. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes

    PubMed Central

    Conde-Vancells, Javier; Rodriguez-Suarez, Eva; Embade, Nieves; Gil, David; Matthiesen, Rune; Valle, Mikel; Elortza, Felix; Lu, Shelly C.; Mato, Jose M.; Falcon-Perez, Juan M.

    2009-01-01

    Synopsis Exosomes constitute a discrete population of nanometer-sized (30-150 nm) vesicles formed in endocytic compartments and released to the extracellular environment by different cell types. In this work we demonstrated by electron microscopic, western blotting and proteomic analyses that primary hepatocytes secrete exosome-like vesicles containing proteins involved in metabolizing lipoproteins, endogenous compounds as well as xenobiotics. These new findings contribute to improve our knowledge about biology's hepatocyte and may have important diagnostic, prognosis and therapeutic implications in liver diseases Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study we described and characterized for first time exosome secretion in non-tumoral hepatocytes, and using a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we

  18. Regulators of G-protein signaling 4 in adrenal gland: localization, regulation, and role in aldosterone secretion.

    PubMed

    Romero, Damian G; Zhou, Ming Yi; Yanes, Licy L; Plonczynski, Maria W; Washington, Tanganika R; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P

    2007-08-01

    Regulators of G-protein signaling (RGS proteins) interact with Galpha subunits of heterotrimeric G-proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G-protein-coupled receptor (GPCR)-ligand interaction. Angiotensin II (Ang II) interacts with its GPCR in adrenal zona glomerulosa cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. On screening for adrenal zona glomerulosa-specific genes, we found that RGS4 was exclusively localized in the zona glomerulosa of the rat adrenal cortex. We studied RGS4 expression and regulation in the rat adrenal gland, including the signaling pathways involved, as well as the role of RGS4 in steroidogenesis in human adrenocortical H295R cells. We reported that RGS4 mRNA expression in the rat adrenal gland was restricted to the adrenal zonal glomerulosa and upregulated by low-salt diet and Ang II infusion in rat adrenal glands in vivo. In H295R cells, Ang II caused a rapid and transient increase in RGS4 mRNA levels mediated by the calcium/calmodulin/calmodulin-dependent protein kinase and protein kinase C pathways. RGS4 overexpression by retroviral infection in H295R cells decreased Ang II-stimulated aldosterone secretion. In reporter assays, RGS4 decreased Ang II-mediated aldosterone synthase upregulation. In summary, RGS4 is an adrenal gland zona glomerulosa-specific gene that is upregulated by aldosterone secretagogues, in vivo and in vitro, and functions as a negative feedback of Ang II-triggered intracellular signaling. Alterations in RGS4 expression levels or functions may be involved in deregulations of Ang II signaling and abnormal aldosterone secretion.

  19. Label-free detection of protein biomolecules secreted from a heart-on-a-chip model for drug cardiotoxicity evaluation

    NASA Astrophysics Data System (ADS)

    DeLuna, Frank; Zhang, Yu Shrike; Bustamante, Gilbert; Li, Le; Lauderdale, Matthew; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2018-02-01

    Efficient methods for the accurate analysis of drug toxicities are in urgent demand as failures of newly discovered drug candidates due to toxic side effects have resulted in about 30% of clinical attrition. The high failure rate is partly due to current inadequate models to study drug side effects, i.e., common animal models may fail due to its misrepresentation of human physiology. Therefore, much effort has been allocated in the development of organ-on-a-chip models which offer a variety of human organ models mimicking a multitude of human physiological conditions. However, it is extremely challenging to analyze the transient and long-term response of the organ models to drug treatments during drug toxicity tests, as the proteins secreted from the organ-on-a-chip model are minute due to its volumetric size, and current methods for detecting said biomolecules are not suitable for real-time monitoring. As protein biomolecules are being continuously secreted from the human organ model, fluorescence techniques are practically impossible to achieve real-time fluorescence labeling in the dynamically changing environment, thus making a label-free approach highly desirable for the organ-on-achip applications. In this paper, we report the use of a photonic-crystal biosensor integrated with a microfluidic system for sensitive label-free bioassays of secreted protein biomolecules from a heart-on-the-chip model created with cardiomyocytes derived from human induced pluripotent stem cells.

  20. Recombinant interferon-gamma secreted by Chinese hamster ovary-320 cells cultivated in suspension in protein-free media is protected against extracellular proteolysis by the expression of natural protease inhibitors and by the addition of plant protein hydrolysates to the culture medium.

    PubMed

    Mols, J; Peeters-Joris, C; Wattiez, R; Agathos, S N; Schneider, Y-J

    2005-01-01

    Biosafety requirements increasingly restrict the cultivation of mammalian cells producing therapeutic glycoproteins to conditions that are devoid of any compound of animal origin. On cultivation in serum-free media, the proteases inhibitors, usually found in serum, cannot protect secreted recombinant proteins against unwanted endogenous proteolysis. Chinese hamster ovary (CHO) cells, secreting recombinant human interferon-gamma (CHO-320 cell line) and cultivated in suspension in an original protein-free medium, expressed at least two members of the matrix metalloproteinases (MMP), either at the cell surface (proMMP-14 and MMP-14) or secreted (proMMP-9). In addition, tissue- and urinary-type plasminogen activators were also secreted in such culture conditions. At the cell surface, dipeptidyl peptidase IV and tripeptidyl peptidase II (TPPII) activities were also detected, and their activities decreased during time course of batch cultures. The proteolytic activities of these proteins were counterbalanced by (1) their expression as zymogens (proMMP-9, proMMP-14), (2) the expression of their natural inhibitors, tissue inhibitors of metalloproteinases-1 and -2 and plasminogen activator inhibitor-1 (PAI-1), or (3) the addition of plant protein hydrolysates to the culture medium, acting as a nonspecific source of TPPII inhibitors. This study points out that, even in protein-free media, recombinant proteins secreted by CHO cells are actively protected against physiological and unwanted extracellular proteolysis either by endogenous or by exogenous inhibitors.

  1. De Novo Assembly of Mud Loach (Misgurnus anguillicaudatus) Skin Transcriptome to Identify Putative Genes Involved in Immunity and Epidermal Mucus Secretion

    PubMed Central

    Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin

    2013-01-01

    Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary

  2. De novo assembly of mud loach (Misgurnus anguillicaudatus) skin transcriptome to identify putative genes involved in immunity and epidermal mucus secretion.

    PubMed

    Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin

    2013-01-01

    Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary

  3. Adaptive changes of pancreatic protease secretion to a short-term vegan diet: influence of reduced intake and modification of protein.

    PubMed

    Walkowiak, Jaroslaw; Mądry, Edyta; Lisowska, Aleksandra; Szaflarska-Popławska, Anna; Grzymisławski, Marian; Stankowiak-Kulpa, Hanna; Przysławski, Juliusz

    2012-01-01

    In our previous study, we demonstrated that abstaining from meat, for 1 month, by healthy omnivores (lacto-ovovegetarian model) resulted in a statistical decrease in pancreatic secretion as measured by faecal elastase-1 output. However, no correlation between relative and non-relative changes of energy and nutrient consumption and pancreatic secretion was documented. Therefore, in the present study, we aimed to assess the changes of exocrine pancreatic secretion with a more restrictive dietetic modification, by applying a vegan diet. A total of twenty-one healthy omnivores (sixteen females and five males) participated in the prospective study lasting for 6 weeks. The nutrient intake and faecal output of pancreatic enzymes (elastase-1, chymotrypsin and lipase) were assessed twice during the study. Each assessment period lasted for 7 d: the first before the transition to the vegan diet (omnivore diet) and the second during the last week of the study (vegan diet). The dietary modification resulted in a significant decrease in faecal elastase-1 (P < 0·05) and chymotrypsin output (P < 0·04). The lipase excretion remained unchanged. The decrease in proteolytic enzymes was documented to be positively correlated with a decreased protein intake (P < 0·05). In addition, elastase-1 and chymotrypsin outputs were also related to the changes of protein type, plant v. animal (P < 0·04 and P < 0·03, respectively). It was concluded that significant reduction and modification of protein intake due to a short-term vegan diet resulted in an adaptation of pancreatic protease secretion in healthy volunteers.

  4. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werb, Z.; Aggeler, J.

    1978-04-01

    We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continuedmore » presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.« less

  5. Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots.

    PubMed

    Franta, Zdeněk; Vogel, Heiko; Lehmann, Rüdiger; Rupp, Oliver; Goesmann, Alexander; Vilcinskas, Andreas

    2016-01-01

    Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.

  6. Spatiotemporal Monitoring of Pseudomonas syringae Effectors via Type III Secretion Using Split Fluorescent Protein Fragments[OPEN

    PubMed Central

    2017-01-01

    Pathogenic gram-negative bacteria cause serious diseases in animals and plants. These bacterial pathogens use the type III secretion system (T3SS) to deliver effector proteins into host cells; these effectors then localize to different subcellular compartments to attenuate immune responses by altering biological processes of the host cells. The fluorescent protein (FP)-based approach to monitor effectors secreted from bacteria into the host cells is not possible because the folded FP prevents effector delivery through the T3SS. Therefore, we optimized an improved variant of self-assembling split super-folder green fluorescent protein (sfGFPOPT) system to investigate the spatiotemporal dynamics of effectors delivered through bacterial T3SS into plant cells. In this system, effectors are fused to 11th β-strand of super-folder GFP (sfGFP11), and when delivered into plant cells expressing sfGFP1-10 β-strand (sfGFP1-10OPT), the two proteins reconstitute GFP fluorescence. We generated a number of Arabidopsis thaliana transgenic lines expressing sfGFP1-10OPT targeted to various subcellular compartments to facilitate localization of sfGFP11-tagged effectors delivered from bacteria. We demonstrate the efficacy of this system using Pseudomonas syringae effectors AvrB and AvrRps4 in Nicotiana benthamiana and transgenic Arabidopsis plants. The versatile split sfGFPOPT system described here will facilitate a better understanding of bacterial invasion strategies used to evade plant immune responses. PMID:28619883

  7. A Small Secreted Virulence-Related Protein Is Essential for the Necrotrophic Interactions of Sclerotinia sclerotiorum with Its Host Plants

    PubMed Central

    Lyu, Xueliang; Shen, Cuicui; Fu, Yanping; Xie, Jiatao; Jiang, Daohong; Li, Guoqing; Cheng, Jiasen

    2016-01-01

    Small, secreted proteins have been found to play crucial roles in interactions between biotrophic/hemi-biotrophic pathogens and plants. However, little is known about the roles of these proteins produced by broad host-range necrotrophic phytopathogens during infection. Here, we report that a cysteine-rich, small protein SsSSVP1 in the necrotrophic phytopathogen Sclerotinia sclerotiorum was experimentally confirmed to be a secreted protein, and the secretion of SsSSVP1 from hyphae was followed by internalization and cell-to-cell movement independent of a pathogen in host cells. SsSSVP1∆SP could induce significant plant cell death and targeted silencing of SsSSVP1 resulted in a significant reduction in virulence. Through yeast two-hybrid (Y2H), coimmunoprecipitation (co-IP) and bimolecular fluorescence complementation (BiFC) assays, we demonstrated that SsSSVP1∆SP interacted with QCR8, a subunit of the cytochrome b-c1 complex of mitochondrial respiratory chain in plants. Double site-directed mutagenesis of two cysteine residues (C38 and C44) in SsSSVP1∆SP had significant effects on its homo-dimer formation, SsSSVP1∆SP-QCR8 interaction and plant cell death induction, indicating that partial cysteine residues surely play crucial roles in maintaining the structure and function of SsSSVP1. Co-localization and BiFC assays showed that SsSSVP1∆SP might hijack QCR8 to cytoplasm before QCR8 targeting into mitochondria, thereby disturbing its subcellular localization in plant cells. Furthermore, virus induced gene silencing (VIGS) of QCR8 in tobacco caused plant abnormal development and cell death, indicating the cell death induced by SsSSVP1∆SP might be caused by the SsSSVP1∆SP-QCR8 interaction, which had disturbed the QCR8 subcellular localization and hence disabled its biological functions. These results suggest that SsSSVP1 is a potential effector which may manipulate plant energy metabolism to facilitate the infection of S. sclerotiorum. Our findings

  8. Secreted frizzled related protein 3 (SFRP3) is required for tumorigenesis of PAX3-FOXO1-positive alveolar rhabdomyosarcoma

    PubMed Central

    Kephart, Julie J.G.; Tiller, Rosanne G.J.; Crose, Lisa E.S.; Slemmons, Katherine K.; Chen, Po-Han; Hinson, Ashley R.; Bentley, Rex C.; Chi, Jen-Tsan Ashley; Linardic, Corinne M.

    2015-01-01

    Purpose Rhabdomyosarcoma is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a 5-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3-FOXO1. As PAX3-FOXO1 has proven chemically intractable, the current study aims to identify targetable proteins that are downstream from or cooperate with PAX3-FOXO1 to support tumorigenesis. Experimental Design Microarray analysis of the transcriptomes of human skeletal muscle myoblasts expressing PAX3-FOXO1 revealed alteration of several Wnt pathway gene members, including secreted frizzled related protein 3 (SFRP3), a secreted Wnt pathway inhibitor. Loss-of-function using shRNAs against SFRP3 were used to interrogate the role of SFRP3 in human aRMS cell lines in vitro and conditional murine xenograft systems in vivo. The combination of SFRP3 genetic suppression and the chemotherapeutic agent vincristine was also examined. Results In vitro, suppression of SFRP3 inhibited aRMS cell growth, reduced proliferation accompanied by a G1 arrest and induction of p21, and induced apoptosis. In vivo, doxycycline-inducible suppression of SFRP3 reduced aRMS tumor growth and weight by more than three-fold, in addition to increasing myogenic differentiation and β-catenin signaling. The combination of SFRP3 suppression and vincristine was more effective at reducing aRMS cell growth in vitro than either treatment alone, and ablated tumorigenesis in vivo. Conclusions SFRP3 is necessary for the growth of human aRMS cells both in vitro and in vivo and is a promising new target for investigation in aRMS. PMID:26071485

  9. Secreted Frizzled-Related Protein 3 (SFRP3) Is Required for Tumorigenesis of PAX3-FOXO1-Positive Alveolar Rhabdomyosarcoma.

    PubMed

    Kephart, Julie J G; Tiller, Rosanne G J; Crose, Lisa E S; Slemmons, Katherine K; Chen, Po-Han; Hinson, Ashley R; Bentley, Rex C; Chi, Jen-Tsan Ashley; Linardic, Corinne M

    2015-11-01

    Rhabdomyosarcoma (RMS) is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a five-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3-FOXO1. As PAX3-FOXO1 has proven chemically intractable, this study aims to identify targetable proteins that are downstream from or cooperate with PAX3-FOXO1 to support tumorigenesis. Microarray analysis of the transcriptomes of human skeletal muscle myoblasts expressing PAX3-FOXO1 revealed alteration of several Wnt pathway gene members, including secreted frizzled related protein 3 (SFRP3), a secreted Wnt pathway inhibitor. Loss-of-function using shRNAs against SFRP3 was used to interrogate the role of SFRP3 in human aRMS cell lines in vitro and conditional murine xenograft systems in vivo. The combination of SFRP3 genetic suppression and the chemotherapeutic agent vincristine was also examined. In vitro, suppression of SFRP3 inhibited aRMS cell growth, reduced proliferation accompanied by a G1 arrest and induction of p21, and induced apoptosis. In vivo, doxycycline-inducible suppression of SFRP3 reduced aRMS tumor growth and weight by more than three-fold, in addition to increasing myogenic differentiation and β-catenin signaling. The combination of SFRP3 suppression and vincristine was more effective at reducing aRMS cell growth in vitro than either treatment alone, and ablated tumorigenesis in vivo. SFRP3 is necessary for the growth of human aRMS cells both in vitro and in vivo and is a promising new target for investigation in aRMS. ©2015 American Association for Cancer Research.

  10. Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis.

    PubMed

    Skoczinski, Pia; Volkenborn, Kristina; Fulton, Alexander; Bhadauriya, Anuseema; Nutschel, Christina; Gohlke, Holger; Knapp, Andreas; Jaeger, Karl-Erich

    2017-09-25

    Bacillus subtilis produces and secretes proteins in amounts of up to 20 g/l under optimal conditions. However, protein production can be challenging if transcription and cotranslational secretion are negatively affected, or the target protein is degraded by extracellular proteases. This study aims at elucidating the influence of a target protein on its own production by a systematic mutational analysis of the homologous B. subtilis model protein lipase A (LipA). We have covered the full natural diversity of single amino acid substitutions at 155 positions of LipA by site saturation mutagenesis excluding only highly conserved residues and qualitatively and quantitatively screened about 30,000 clones for extracellular LipA production. Identified variants with beneficial effects on production were sequenced and analyzed regarding B. subtilis growth behavior, extracellular lipase activity and amount as well as changes in lipase transcript levels. In total, 26 LipA variants were identified showing an up to twofold increase in either amount or activity of extracellular lipase. These variants harbor single amino acid or codon substitutions that did not substantially affect B. subtilis growth. Subsequent exemplary combination of beneficial single amino acid substitutions revealed an additive effect solely at the level of extracellular lipase amount; however, lipase amount and activity could not be increased simultaneously. Single amino acid and codon substitutions can affect LipA secretion and production by B. subtilis. Several codon-related effects were observed that either enhance lipA transcription or promote a more efficient folding of LipA. Single amino acid substitutions could improve LipA production by increasing its secretion or stability in the culture supernatant. Our findings indicate that optimization of the expression system is not sufficient for efficient protein production in B. subtilis. The sequence of the target protein should also be considered as an

  11. Effect of adrenal hormones on thyroid secretion and thyroid hormones on adrenal secretion in the sheep.

    PubMed Central

    Falconer, I R; Jacks, F

    1975-01-01

    1. Previous work has shown that after stressful stimuli, sheep initially secrete increased amounts of thyroid hormone, at a time when adrenal secretion is also elevated. 2. This study was designed to evaluate (a) any short-term activation or inhibition of thyroid secretion by exogenous cortisol or ACTH administered in quantities comparable to those secreted after stress in sheep and (b) any short-term effect that exogenous thyroxine or triiodothyronine may have on the concentration of plasma cortisol in the sheep. 3. Thyroid activity was measured by determination of plasma protein bound 125I (PB125I) and total 125I in thyroid vein and mixed venous (jugular) blood. Plasma cortisol and thyroxine concentrations were measured by a competitive protein-binding assay at intervals for up to 5 hr after commencement of the experiment. 4. No evidence of an activation of thyroid secretion was found during cortisol or ACTH infusion, as monitored by thyroid vein PB125I. Similarly there was no evidence of any inhibition of thyroid function, as measured by continued secretion of thyroid hormones into thyroid vein blood. 5. No effect on plasma cortisol concentration due to thyroid hormone treatment was observed. 6. It was concluded that (a) elevated circulating corticosteroids in physiological concentrations have no short-term effects on thyroid activity in the sheep and (b) the short-term alterations in thyroid and adrenal cortical secretion observed during stress in the sheep could not be attributed to direct interaction of elevated thyroid hormone concentrations with adrenal cortical secretion. PMID:170400

  12. Effect of beta-antagonists on isoprenaline-induced secretion of fluid, amylase and protein by the parotid gland of the red kangaroo, Macropus rufus.

    PubMed

    Beal, A M

    2000-02-01

    Selective and non-selective beta-adrenoceptor antagonists were used to block the increases in fluid, protein and amylase secretion caused by sympathomimetic stimulation of the parotid gland of red kangaroos during intracarotid infusion of isoprenaline. ICI118551 at antagonist/agonist ratios up to 300:1 caused increasing but incomplete blockade of fluid secretion, and protein/amylase release. Atenolol at antagonist/agonist ratios up to 300:1 was only marginally more potent than ICI118551 at blocking the fluid, protein and amylase responses. Propranolol at antagonist/agonist ratios of 30:1 was as effective at blocking fluid and protein secretion as the highest ratios of either atenolol or ICI118551. Simultaneous administration of atenolol (30:1) with ICI118551 (30:1) was not as potent as propranolol (30:1). Thus, the beta-adrenoceptor/s in the acini of the kangaroo parotid gland appear to have antagonist-binding affinities atypical of those found for eutherian tissues. The data are consistent with the gland possessing either a single anomalous beta-adrenoceptor or functional beta(2)-receptors in addition to the beta(1)-receptors which are characteristic of eutherian salivary glands.

  13. DsbA Plays a Critical and Multifaceted Role in the Production of Secreted Virulence Factors by the Phytopathogen Erwinia carotovora subsp. atroseptica*S⃞

    PubMed Central

    Coulthurst, Sarah J.; Lilley, Kathryn S.; Hedley, Peter E.; Liu, Hui; Toth, Ian K.; Salmond, George P. C.

    2008-01-01

    Erwinia carotovora subsp. atroseptica is an enterobacterial phytopathogen causing economically significant soft rot disease. Pathogenesis is mediated by multiple secreted virulence factors, many of which are secreted by the type II (Out) secretion system. DsbA catalyzes the introduction of disulfide bonds into periplasmic and secreted proteins. In this study, the extracellular proteome (secretome) of wild type E. carotovora subsp. atroseptica SCRI1043, and dsbA and out mutants, was analyzed by spectral counting mass spectrometry. This revealed that dsbA inactivation had a huge impact on the secretome and identified diverse DsbA- and Out-dependent secreted proteins, representing known, predicted, and novel candidate virulence factors. Further characterization of the dsbA mutant showed that secreted enzyme activities, motility, production of the quorumsensing signal, and virulence were absent or substantially reduced. The impact of DsbA on secreted virulence factor production was mediated at multiple levels, including impacting on the Out secretion system and the virulence gene regulatory network. Transcriptome analyses revealed that the abundance of a broad, but defined, set of transcripts, including many virulence factors, was altered in the dsbA mutant, identifying a new virulence regulon responsive to extracytoplasmic conditions. In conclusion, DsbA plays a crucial, multifaceted role in the pathogenesis of E. carotovora subsp. atroseptica. PMID:18562317

  14. Hcp Family Proteins Secreted via the Type VI Secretion System Coordinately Regulate Escherichia coli K1 Interaction with Human Brain Microvascular Endothelial Cells

    PubMed Central

    Zhou, Yan; Tao, Jing; Yu, Hao; Ni, Jinjing; Zeng, Lingbing; Teng, Qihui; Kim, Kwang Sik; Zhao, Guo-Ping

    2012-01-01

    Type VI secretion systems (T6SSs) are involved in the pathogenicity of several Gram-negative bacteria. Based on sequence analysis, we found that a cluster of Escherichia coli virulence factors (EVF) encoding a putative T6SS exists in the genome of the meningitis-causing E. coli K1 strain RS218. The T6SS-associated deletion mutants exhibited significant defects in binding to and invasion of human brain microvascular endothelial cells (HBMEC) compared with the parent strain. Hcp family proteins (the hallmark of T6SS), including Hcp1 and Hcp2, were localized in the bacterial outer membrane, but the involvements of Hcp1 and Hcp2 have been shown to differ in E. coli-HBMEC interaction. The deletion mutant of hcp2 showed defects in the bacterial binding to and invasion of HBMEC, while Hcp1 was secreted in a T6SS-dependent manner and induced actin cytoskeleton rearrangement, apoptosis, and the release of interleukin-6 (IL-6) and IL-8 in HBMEC. These findings demonstrate that the T6SS is functional in E. coli K1, and two Hcp family proteins participate in different steps of E. coli interaction with HBMEC in a coordinate manner, e.g., binding to and invasion of HBMEC, the cytokine and chemokine release followed by cytoskeleton rearrangement, and apoptosis in HBMEC. This is the first demonstration of the role of T6SS in meningitis-causing E. coli K1, and T6SS-associated Hcp family proteins are likely to contribute to the pathogenesis of E. coli meningitis. PMID:22184413

  15. Molecular Determinants and Dynamics of Hepatitis C Virus Secretion

    PubMed Central

    Coller, Kelly E.; Heaton, Nicholas S.; Berger, Kristi L.; Cooper, Jacob D.; Saunders, Jessica L.; Randall, Glenn

    2012-01-01

    The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells. PMID:22241992

  16. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris

    PubMed Central

    Li, Lei; Li, Rui-Fang; Ming, Zhen-Hua; Lu, Guang-Tao; Tang, Ji-Liang

    2017-01-01

    Many bacterial pathogens employ the type III secretion system (T3SS) to translocate effector proteins into eukaryotic cells to overcome host defenses. To date, most of our knowledge about the T3SS molecular architecture comes from the studies on animal pathogens. In plant pathogens, nine Hrc proteins are believed to be structural components of the T3SS, of which HrcC and HrcJ form the outer and inner rings of the T3SS, respectively. Here, we demonstrated that a novel outer membrane-bound protein (HpaM) of Xanthomonas campestris pv. campestris is critical for the type III secretion and is structurally and functionally conserved in phytopathogenic Xanthomonas spp. We showed that the C-terminus of HpaM extends into the periplasm to interact physically with HrcJ and the middle part of HpaM interacts physically with HrcC. It is clear that the outer and inner rings compose the main basal body of the T3SS apparatus in animal pathogens. Therefore, we presume that HpaM may act as a T3SS structural component, or play a role in assisting assembling or affecting the stability of the T3SS apparatus. HpaM is a highly prevalent and specific protein in Xanthomonas spp., suggesting that the T3SS of Xanthomonas is distinctive in some aspects from other pathogens. PMID:28198457

  17. The dynamics of secretion during sea urchin embryonic skeleton formation.

    PubMed

    Wilt, Fred H; Killian, Christopher E; Hamilton, Patricia; Croker, Lindsay

    2008-05-01

    Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.

  18. The Dynamics of Secretion during Sea Urchin Embryonic Skeleton Formation

    PubMed Central

    Wilt, Fred H.; Killian, Christopher E.; Hamilton, Patricia; Croker, Lindsay

    2008-01-01

    Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes. PMID:18355808

  19. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity

    PubMed Central

    Verdeguer, Francisco; Soustek, Meghan S.; Hatting, Maximilian; Blättler, Sharon M.; McDonald, Devin; Barrow, Joeva J.

    2015-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  20. Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion.

    PubMed

    Soares, Juliana Mikaelly Dias; Pereira Leal, Ana Ediléia Barbosa; Silva, Juliane Cabral; Almeida, Jackson R G S; de Oliveira, Helinando Pequeno

    2017-01-01

    The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogue. To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases. According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes controlIn addition to their typical antioxidant properties, flavonoids contribute to the insulin secretionThe modulation of insulin secretion is induced by flavonoids according to different mechanisms. Abbreviations used: K ATP channels: ATP-sensitive K + channels, GLUT4: Glucose transporter 4, ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, L-VDCCs: L-type voltage-dependent Ca +2 channels, GLUT1: Glucose transporter 1, AMPK: Adenosine monophosphate-activated protein kinase, PTP1B: Protein tyrosine phosphatase 1B, GLUT2: Glucose transporter 2, cAMP: Cyclic adenosine monophosphate, PKA: Protein kinase A, PTK: Protein tyrosine kinase, CaMK II: Ca 2+ /calmodulin

  1. Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower

    PubMed Central

    Losada, Juan M.; Herrero, María

    2012-01-01

    Background and Aims Stigmatic receptivity plays a clear role in pollination dynamics; however, little is known about the factors that confer to a stigma the competence to be receptive for the germination of pollen grains. In this work, a developmental approach is used to evaluate the acquisition of stigmatic receptivity and its relationship with a possible change in arabinogalactan-proteins (AGPs). Methods Flowers of the domestic apple, Malus × domestica, were assessed for their capacity to support pollen germination at different developmental stages. Stigmas from these same stages were characterized morphologically and different AGP epitopes detected by immunocytochemistry. Key Results Acquisition of stigmatic receptivity and the secretion of classical AGPs from stigmatic cells occurred concurrently and following the same spatial distribution. While in unpollinated stigmas AGPs appeared unaltered, in cross-pollinated stigmas AGPs epitopes vanished as pollen tubes passed by. Conclusions The concurrent secretion of AGPs with the acquisition of stigmatic receptivity, together with the differential response in unpollinated and cross-pollinated pistils point out a role of AGPs in supporting pollen tube germination and strongly suggest that secretion of AGPs is associated with the acquisition of stigma receptivity. PMID:22652420

  2. Association of Factor V Secretion with Protein Kinase B Signaling in Platelets from Horses with Atypical Equine Thrombasthenia.

    PubMed

    Norris, J W; Pombo, M; Shirley, E; Blevins, G; Tablin, F

    2015-01-01

    Two congenital bleeding diatheses have been identified in Thoroughbred horses: Glanzmann thrombasthenia (GT) and a second, novel diathesis associated with abnormal platelet function in response to collagen and thrombin stimulation. Platelet dysfunction in horses with this second thrombasthenia results from a secretory defect. Two affected and 6 clinically normal horses. Ex vivo study. Washed platelets were examined for (1) expression of the αIIb-β3 integrin; (2) fibrinogen binding capacity in response to ADP and thrombin; (3) secretion of dense and α-granules; (4) activation of the mammalian target of rapamycin (mTOR)-protein kinase B (AKT) signaling pathway; and (5) cellular distribution of phosphatidylinositol-4-phosphate-3-kinase, class 2B (PIK3C2B) and SH2 containing inositol-5'-phosphatase 1 (SHIP1). Platelets from affected horses expressed normal amounts of αIIb-β3 integrin and bound fibrinogen normally in response to ADP, but bound 80% less fibrinogen in response to thrombin. α-granules only released 50% as much Factor V as control platelets, but dense granules released their contents normally. Protein kinase B (AKT) phosphorylation was reduced after thrombin activation, but mTOR Complex 2 (mTORC2) and phosphoinositide-dependent kinase 1 (PDK1) signaling were normal. SH2-containing inositol-5'-phosphatase 1 (SHIP1) did not localize to the cytoskeleton of affected platelets and was decreased overall consistent with reduced AKT phosphorylation. Defects in fibrinogen binding, granule secretion, and signal transduction are unique to this thrombasthenia, which we designate as atypical equine thrombasthenia. Copyright © The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  3. Phenolic Compounds from Fermented Berry Beverages Modulated Gene and Protein Expression To Increase Insulin Secretion from Pancreatic β-Cells in Vitro.

    PubMed

    Johnson, Michelle H; de Mejia, Elvira Gonzalez

    2016-03-30

    Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p < 0.05) glucose-stimulated insulin secretion from pancreatic β-cells (iNS-1E) both when applied directly and following simulated absorption through Caco-2 cells (by 233 and 100 μIU insulin/mL, respectively). ANC 50%Blu-Bla and ANC 100%Bla upregulated the gene for incretin hormone GLP-1 (fold-change 3.0 ± 1.4 and 2.0 ± 0.3, respectively) and genes in the insulin secretory pathway including insulin-like growth factor 1 receptor (iGF1R, 2.3 ± 0.6 and 1.6 ± 0.3, respectively), and increased (p < 0.05) the protein expression of insulin-like growth factor 2 (IGF-II), insulin-like growth factor binding proteins (IGFBP-2 and 3), and vascular endothelial growth factor (VEGF) in iNS-1E cells. Taken together, anthocyanins, predominantly delphinidin-3-arabinoside, from fermented berry beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.

  4. Expression and Secretion of Cyan Fluorescent Protein (CFP) in B. subtilis using the Chitinase Promoter from Bacillus pumilus SG2

    PubMed Central

    Shali, Abbas; Rigi, Garshasb; Pornour, Majid; Ahmadian, Gholamreza

    2017-01-01

    Background: Improved cyan fluorescent protein (ICFP) is a monochromic, green fluorescent protein (GFP) derivative produced by Aequorea macrodactyla in a process similar to GFP. This protein has strong absorption spectra at wavelengths 426-446 nm. ICFP can be used in cell, organelle or intracellular protein labeling, investigating the protein-protein interactions as well as assessing the promoter activities. Methods: In our previous study, the promoters of two chitinases (ChiS and ChiL) from Bacillus pumilus SG2 were assessed in B. subtilis and their regulatory elements were characterized. In the present study, icfp was cloned downstream of several truncated promoters obtained in the former study, and ICFP expression was evaluated in B. subtilis. Results: Extracellular expression and secretion of ICFP were analyzed under the control of different truncated versions of ChiSL promoters grown on different media. Results from SDS-PAGE and fluorimetric analyses showed that there were different expression rates of CFP; however, the UPChi-ICFP3 construct exhibited a higher level of expression and secretion in the culture medium. Conclusion: Our presented results revealed that inserting this truncated form of Chi promoter upstream of the ICFP, as a reporter gene, in B. subtilis led to an approximately ten fold increase in ICFP expression. PMID:28088132

  5. Quantitative visualization of synchronized insulin secretion from 3D-cultured cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Takahiro; Kanamori, Takao; Inouye, Satoshi

    Quantitative visualization of synchronized insulin secretion was performed in an isolated rat pancreatic islet and a spheroid of rat pancreatic beta cell line using a method of video-rate bioluminescence imaging. Video-rate images of insulin secretion from 3D-cultured cells were obtained by expressing the fusion protein of insulin and Gaussia luciferase (Insulin-GLase). A subclonal rat INS-1E cell line stably expressing Insulin-GLase, named iGL, was established and a cluster of iGL cells showed oscillatory insulin secretion that was completely synchronized in response to high glucose. Furthermore, we demonstrated the effect of an antidiabetic drug, glibenclamide, on synchronized insulin secretion from 2D- andmore » 3D-cultured iGL cells. The amount of secreted Insulin-GLase from iGL cells was also determined by a luminometer. Thus, our bioluminescence imaging method could generally be used for investigating protein secretion from living 3D-cultured cells. In addition, iGL cell line would be valuable for evaluating antidiabetic drugs. - Highlights: • An imaging method for protein secretion from 3D-cultured cells was established. • The fused protein of insulin to GLase, Insulin-GLase, was used as a reporter. • Synchronous insulin secretion was visualized in rat islets and spheroidal beta cells. • A rat beta cell line stably expressing Insulin-GLase, named iGL, was established. • Effect of an antidiabetic drug on insulin secretion was visualized in iGL cells.« less

  6. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE PAGES

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan; ...

    2016-04-20

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  7. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  8. A Bacterial Pathogen uses Distinct Type III Secretion Systems to Alternate between Host Kingdom

    USDA-ARS?s Scientific Manuscript database

    Gram-negative bacterial pathogens of eukaryotes often secrete proteins directly into host cells via a needle-like protein channel called a ‘type III secretion system’ (T3SS). Bacteria that are adapted to either animal or plant hosts use phylogenetically distinct T3SSs for secreting proteins. Here, ...

  9. Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots

    PubMed Central

    Franta, Zdeněk; Vogel, Heiko; Lehmann, Rüdiger; Rupp, Oliver; Goesmann, Alexander; Vilcinskas, Andreas

    2016-01-01

    Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions. PMID:27119084

  10. Gel-based and gel-free proteomic analysis of Nicotiana tabacum trichomes identifies proteins involved in secondary metabolism and in the (a)biotic stress response.

    PubMed

    Van Cutsem, Emmanuel; Simonart, Géraldine; Degand, Hervé; Faber, Anne-Marie; Morsomme, Pierre; Boutry, Marc

    2011-02-01

    Nicotiana tabacum leaves are covered by trichomes involved in the secretion of large amounts of secondary metabolites, some of which play a major role in plant defense. However, little is known about the metabolic pathways that operate in these structures. We undertook a proteomic analysis of N. tabacum trichomes in order to identify their protein complement. Efficient trichome isolation was obtained by abrading frozen leaves. After homogenization, soluble proteins and a microsomal fraction were prepared by centrifugation. Gel-based and gel-free proteomic analyses were then performed. 2-DE analysis of soluble proteins led to the identification of 1373 protein spots, which were digested and analyzed by MS/MS, leading to 680 unique identifications. Both soluble proteins and microsomal fraction were analyzed by LC MALDI-MS/MS after trypsin digestion, leading to 858 identifications, many of which had not been identified after 2-DE, indicating that the two methods complement each other. Many enzymes putatively involved in secondary metabolism were identified, including enzymes involved in the synthesis of terpenoid precursors and in acyl sugar production. Several transporters were also identified, some of which might be involved in secondary metabolite transport. Various (a)biotic stress response proteins were also detected, supporting the role of trichomes in plant defense. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biomarker Candidates of Chlamydophila pneumoniae Proteins and Protein Fragments Identified by Affinity-Proteomics Using FTICR-MS and LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Susnea, Iuliana; Bunk, Sebastian; Wendel, Albrecht; Hermann, Corinna; Przybylski, Michael

    2011-04-01

    We report here an affinity-proteomics approach that combines 2D-gel electrophoresis and immunoblotting with high performance mass spectrometry to the identification of both full length protein antigens and antigenic fragments of Chlamydophila pneumoniae (C. pneumoniae). The present affinity-mass spectrometry approach effectively utilized high resolution FTICR mass spectrometry and LC-tandem-MS for protein identification, and enabled the identification of several new highly antigenic C. pneumoniae proteins that were not hitherto reported or previously detected only in other Chlamydia species, such as Chlamydia trachomatis. Moreover, high resolution affinity-MS provided the identification of several neo-antigenic protein fragments containing N- and C-terminal, and central domains such as fragments of the membrane protein Pmp21 and the secreted chlamydial proteasome-like factor (Cpaf), representing specific biomarker candidates.

  12. Secreted HSP Vaccine for Malaria Prophylaxis

    DTIC Science & Technology

    2016-10-26

    AWARD NUMBER: W81XWH-13-2-0098 TITLE: Secreted HSP Vaccine for Malaria Prophylaxis PRINCIPAL INVESTIGATOR: Dr. Natasa Strbo CONTRACTING ORGANIZATION...Secreted HSP Vaccine for Malaria Prophylaxis 4. TITLE AND SUBTITLE NATASA STRBO, M.D., D.SC NAME(S) AND E-M tzA UNIVERS]TY OF MTAMI 1600 NW 1OTH AVENUE ROOM...Here we developed malaria vaccine that relies on secreted gp96-lg chaperon-ing Plasmodium falciparum antigenic sporozoite proteins CSP and AMA1. The

  13. A panel of recombinant monoclonal antibodies against zebrafish neural receptors and secreted proteins suitable for wholemount immunostaining.

    PubMed

    Staudt, Nicole; Müller-Sienerth, Nicole; Fane-Dremucheva, Alla; Yusaf, Shahnaz P; Millrine, David; Wright, Gavin J

    2015-01-02

    Cell surface receptors and secreted proteins play important roles in neural recognition processes, but because their site of action can be a long distance from neuron cell bodies, antibodies that label these proteins are valuable to understand their function. The zebrafish embryo is a popular vertebrate model for neurobiology, but suffers from a paucity of validated antibody reagents. Here, we use the entire ectodomain of neural zebrafish cell surface or secreted proteins expressed in mammalian cells to select monoclonal antibodies to ten different antigens. The antibodies were characterised by Western blotting and the sensitivity of their epitopes to formalin fixation was determined. The rearranged antigen binding regions of the antibodies were amplified and cloned which enabled expression in a recombinant form from a single plasmid. All ten antibodies gave specific staining patterns within formalin-treated embryonic zebrafish brains, demonstrating that this generalised approach is particularly efficient to elicit antibodies that stain native antigen in fixed wholemount tissue. Finally, we show that additional tags can be easily added to the recombinant antibodies for convenient multiplex staining. The antibodies and the approaches described here will help to address the lack of well-defined antibody reagents in zebrafish research. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. De novo Analysis of the Epiphytic Transcriptome of the Cucurbit Powdery Mildew Fungus Podosphaera xanthii and Identification of Candidate Secreted Effector Proteins

    PubMed Central

    Vela-Corcía, David; Bautista, Rocío; de Vicente, Antonio; Spanu, Pietro D.; Pérez-García, Alejandro

    2016-01-01

    The cucurbit powdery mildew fungus Podosphaera xanthii is a major limiting factor for cucurbit production worldwide. Despite the fungus’s agronomic and economic importance, very little is known about fundamental aspects of P. xanthii biology, such as obligate biotrophy or pathogenesis. To design more durable control strategies, genomic information about P. xanthii is needed. Powdery mildews are fungal pathogens with large genomes compared with those of other fungi, which contain vast amounts of repetitive DNA sequences, much of which is composed of retrotransposons. To reduce genome complexity, in this work we aimed to obtain and analyse the epiphytic transcriptome of P. xanthii as a starting point for genomic research. Total RNA was isolated from epiphytic fungal material, and the corresponding cDNA library was sequenced using a 454 GS FLX platform. Over 676,562 reads were obtained and assembled into 37,241 contigs. Annotation data identified 8,798 putative genes with different orthologues. As described for other powdery mildew fungi, a similar set of missing core ascomycete genes was found, which may explain obligate biotrophy. To gain insight into the plant-pathogen relationships, special attention was focused on the analysis of the secretome. After this analysis, 137 putative secreted proteins were identified, including 53 candidate secreted effector proteins (CSEPs). Consistent with a putative role in pathogenesis, the expression profile observed for some of these CSEPs showed expression maxima at the beginning of the infection process at 24 h after inoculation, when the primary appressoria are mostly formed. Our data mark the onset of genomics research into this very important pathogen of cucurbits and shed some light on the intimate relationship between this pathogen and its host plant. PMID:27711117

  15. De novo Analysis of the Epiphytic Transcriptome of the Cucurbit Powdery Mildew Fungus Podosphaera xanthii and Identification of Candidate Secreted Effector Proteins.

    PubMed

    Vela-Corcía, David; Bautista, Rocío; de Vicente, Antonio; Spanu, Pietro D; Pérez-García, Alejandro

    2016-01-01

    The cucurbit powdery mildew fungus Podosphaera xanthii is a major limiting factor for cucurbit production worldwide. Despite the fungus's agronomic and economic importance, very little is known about fundamental aspects of P. xanthii biology, such as obligate biotrophy or pathogenesis. To design more durable control strategies, genomic information about P. xanthii is needed. Powdery mildews are fungal pathogens with large genomes compared with those of other fungi, which contain vast amounts of repetitive DNA sequences, much of which is composed of retrotransposons. To reduce genome complexity, in this work we aimed to obtain and analyse the epiphytic transcriptome of P. xanthii as a starting point for genomic research. Total RNA was isolated from epiphytic fungal material, and the corresponding cDNA library was sequenced using a 454 GS FLX platform. Over 676,562 reads were obtained and assembled into 37,241 contigs. Annotation data identified 8,798 putative genes with different orthologues. As described for other powdery mildew fungi, a similar set of missing core ascomycete genes was found, which may explain obligate biotrophy. To gain insight into the plant-pathogen relationships, special attention was focused on the analysis of the secretome. After this analysis, 137 putative secreted proteins were identified, including 53 candidate secreted effector proteins (CSEPs). Consistent with a putative role in pathogenesis, the expression profile observed for some of these CSEPs showed expression maxima at the beginning of the infection process at 24 h after inoculation, when the primary appressoria are mostly formed. Our data mark the onset of genomics research into this very important pathogen of cucurbits and shed some light on the intimate relationship between this pathogen and its host plant.

  16. A novel transgenic chimaeric mouse system for the rapid functional evaluation of genes encoding secreted proteins

    PubMed Central

    Kakitani, Makoto; Oshima, Takeshi; Horikoshi, Kaori; Yoshitome, Tetsuo; Ueda, Akiko; Kajikawa, Miwa; Iba, Yumi; Ozone, Yoshinao; Ijima, Yuki; Yoshino, Tohko; Itoh, Mikiko; Seki, Sachiko; Aoki, Ayako; Ishihara, Toshie; Shionoya, Michiyo; Makino, Utako; Kitada, Rina; Ohguma, Atsuko; Ohta, Takami; Yoshida, Yoshimasa; Kudoh, Hiroe; Hanaoka, Kazunori; Sibuya, Kazunori; Ishida, Isao; Kakeda, Minoru; Yagi, Mikio; Yoneya, Takashi; Tomizuka, Kazuma

    2005-01-01

    A major challenge of the post-genomic era is the functional characterization of anonymous open reading frames (ORFs) identified by the Human Genome Project. In this context, there is a strong requirement for the development of technologies that enhance our ability to analyze gene functions at the level of the whole organism. Here, we describe a rapid and efficient procedure to generate transgenic chimaeric mice that continuously secrete a foreign protein into the systemic circulation. The transgene units were inserted into the genomic site adjacent to the endogenous immunoglobulin (Ig) κ locus by homologous recombination, using a modified mouse embryonic stem (ES) cell line that exhibits a high frequency of homologous recombination at the Igκ region. The resultant ES clones were injected into embryos derived from a B-cell-deficient host strain, thus producing chimaerism-independent, B-cell-specific transgene expression. This feature of the system eliminates the time-consuming breeding typically implemented in standard transgenic strategies and allows for evaluating the effect of ectopic transgene expression directly in the resulting chimaeric mice. To demonstrate the utility of this system we showed high-level protein expression in the sera and severe phenotypes in human EPO (hEPO) and murine thrombopoietin (mTPO) transgenic chimaeras. PMID:15914664

  17. Phosphatidic Acid-Mediated Signaling Regulates Microneme Secretion in Toxoplasma.

    PubMed

    Bullen, Hayley E; Jia, Yonggen; Yamaryo-Botté, Yoshiki; Bisio, Hugo; Zhang, Ou; Jemelin, Natacha Klages; Marq, Jean-Baptiste; Carruthers, Vern; Botté, Cyrille Y; Soldati-Favre, Dominique

    2016-03-09

    The obligate intracellular lifestyle of apicomplexan parasites necessitates an invasive phase underpinned by timely and spatially controlled secretion of apical organelles termed micronemes. In Toxoplasma gondii, extracellular potassium levels and other stimuli trigger a signaling cascade culminating in phosphoinositide-phospholipase C (PLC) activation, which generates the second messengers diacylglycerol (DAG) and IP3 and ultimately results in microneme secretion. Here we show that a delicate balance between DAG and its downstream product, phosphatidic acid (PA), is essential for controlling microneme release. Governing this balance is the apicomplexan-specific DAG-kinase-1, which interconverts PA and DAG, and whose depletion impairs egress and causes parasite death. Additionally, we identify an acylated pleckstrin-homology (PH) domain-containing protein (APH) on the microneme surface that senses PA during microneme secretion and is necessary for microneme exocytosis. As APH is conserved in Apicomplexa, these findings highlight a potentially widely used mechanism in which key lipid mediators regulate microneme exocytosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation.

    PubMed

    Scheidegger, F; Ellner, Y; Guye, P; Rhomberg, T A; Weber, H; Augustin, H G; Dehio, C

    2009-07-01

    The zoonotic pathogen Bartonella henselae (Bh) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh. Spheroids generated from Bh-infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh-induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella- induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.

  19. A Phytase-Based Reporter System for Identification of Functional Secretion Signals in Bifidobacteria

    PubMed Central

    Osswald, Annika; Westermann, Christina; Sun, Zhongke; Riedel, Christian U.

    2015-01-01

    Health-promoting effects have been attributed to a number of Bifidobacterium sp. strains. These effects as well as the ability to colonise the host depend on secreted proteins. Moreover, rational design of protein secretion systems bears the potential for the generation of novel probiotic bifidobacteria with improved health-promoting or therapeutic properties. To date, there is only very limited data on secretion signals of bifidobacteria available. Using in silico analysis, we demonstrate that all bifidobacteria encode the major components of Sec-dependent secretion machineries but only B. longum strains harbour Tat protein translocation systems. A reporter plasmid for secretion signals in bifidobacteria was established by fusing the coding sequence of the signal peptide of a sialidase of Bifidobacterium bifidum S17 to the phytase gene appA of E. coli. The recombinant strain showed increased phytase activity in spent culture supernatants and reduced phytase levels in crude extracts compared to the control indicating efficient phytase secretion. The reporter plasmid was used to screen seven predicted signal peptides in B. bifidum S17 and B. longum E18. The tested signal peptides differed substantially in their efficacy to mediate protein secretion in different host strains. An efficient signal peptide was used for expression and secretion of a therapeutically relevant protein in B. bifidum S17. Expression of a secreted cytosine deaminase led to a 100-fold reduced sensitivity of B. bifidum S17 to 5-fluorocytosine compared to the non-secreted cytosine deaminase suggesting efficient conversion of 5-fluorocytosine to the cytotoxic cancer drug 5-fluorouracil by cytosine deaminase occurred outside the bacterial cell. Selection of appropriate signal peptides for defined protein secretion might improve therapeutic efficacy as well as probiotic properties of bifidobacteria. PMID:26086721

  20. Genome-wide screen for modulation of hepatic apolipoprotein A-I (ApoA-I) secretion.

    PubMed

    Miles, Rebecca R; Perry, William; Haas, Joseph V; Mosior, Marian K; N'Cho, Mathias; Wang, Jian W J; Yu, Peng; Calley, John; Yue, Yong; Carter, Quincy; Han, Bomie; Foxworthy, Patricia; Kowala, Mark C; Ryan, Timothy P; Solenberg, Patricia J; Michael, Laura F

    2013-03-01

    Control of plasma cholesterol levels is a major therapeutic strategy for management of coronary artery disease (CAD). Although reducing LDL cholesterol (LDL-c) levels decreases morbidity and mortality, this therapeutic intervention only translates into a 25-40% reduction in cardiovascular events. Epidemiological studies have shown that a high LDL-c level is not the only risk factor for CAD; low HDL cholesterol (HDL-c) is an independent risk factor for CAD. Apolipoprotein A-I (ApoA-I) is the major protein component of HDL-c that mediates reverse cholesterol transport from tissues to the liver for excretion. Therefore, increasing ApoA-I levels is an attractive strategy for HDL-c elevation. Using genome-wide siRNA screening, targets that regulate hepatocyte ApoA-I secretion were identified through transfection of 21,789 siRNAs into hepatocytes whereby cell supernatants were assayed for ApoA-I. Approximately 800 genes were identified and triaged using a convergence of information, including genetic associations with HDL-c levels, tissue-specific gene expression, druggability assessments, and pathway analysis. Fifty-nine genes were selected for reconfirmation; 40 genes were confirmed. Here we describe the siRNA screening strategy, assay implementation and validation, data triaging, and example genes of interest. The genes of interest include known and novel genes encoding secreted enzymes, proteases, G-protein-coupled receptors, metabolic enzymes, ion transporters, and proteins of unknown function. Repression of farnesyltransferase (FNTA) by siRNA and the enzyme inhibitor manumycin A caused elevation of ApoA-I secretion from hepatocytes and from transgenic mice expressing hApoA-I and cholesterol ester transfer protein transgenes. In total, this work underscores the power of functional genetic assessment to identify new therapeutic targets.

  1. Interaction of Proteins Identified in Human Thyroid Cells

    PubMed Central

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  2. Protein synthesis and secretion by the epididymis of the brushtail possum, Trichosurus vulpecula.

    PubMed

    Lamont, A E; Clarke, H; Cooper, N J; Holland, M K; Breed, W G

    1998-09-01

    In this study of brushtail possums, proteins present in epididymal fluid and not present in blood plasma and those that become associated with spermatozoa as they pass along the tract were investigated. At least 19 proteins were present in epididymal fluid in the various regions of the tract that were not detected in serum. Some of these may be present on the sperm plasmalemma. Six proteins were extracted from caput spermatozoa (M(r) 117,000, 103,000, 87,500, 85,000, 62,000 and 33,000) that did not appear in the caudal sperm extracts. Eight proteins (M(r) 50,000, 49,000, 32,000, 27,000, 26,500, 25,000, 24,500 and 18,000) were localized to caudal sperm extracts. These findings suggest that some sperm proteins are lost or modified, whereas others are added to the sperm plasma membrane during epididymal transit. In vitro incorporation of [35S]methionine by the epididymal tissue showed that the distal caput and corpus are the most active regions in the synthesis and secretion of proteins. Four caudal epididymal proteins (M(r) 72,000, 31,000, 26,500 and 21,000) were partially sequenced. Those of M(r) 31,000 and 26,500 had the same N-terminal amino acid sequence suggesting post-translational modification of the same protein; they showed homology to a retinoic acid-binding protein. The protein of M(r) 72,000 was found to be homologous to alpha-fetoprotein, whereas the protein of M(r) 21,000 showed no significant homology to any protein in the database. These results show that the lumen of the epididymis has many proteins that are not present in the blood, some of which appear to become associated with spermatozoa during epididymal transit.

  3. Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis.

    PubMed

    Chen, Po Ting; Shaw, Jei-Fu; Chao, Yun-Peng; David Ho, Tuan-Hua; Yu, Su-May

    2010-05-12

    Bacillus subtilis is most commonly employed for secretion of recombinant proteins. To circumvent the problems caused by using plasmids, the T7 expression system known for its high efficiency was rebuilt in B. subtilis. Accordingly, a markerless and replicon-free method was developed for genomic insertion of DNAs. By the act of homologous recombination via the guide DNA, a suicidal vector carrying the gene of interest was integrated into genomic loci of bacteria. Removal of the inserted selection marker and replicon flanked by FRT sites was mediated by the FLP recombinase. By using the mentioned system, B. subtilis strain PT5 was constructed to harbor a genomic copy of the spac promoter-regulated T7 gene 1 located at wprA (encoding the cell wall-associated protease). Similarly, the T7 promoter-driven nattokinase or endoglucanase E1 of Thermomonospora fusca genes were also integrated into mpr (encoding an extracellular protease) of strain PT5. Consequently, the integrant PT5/Mmp-T7N or PT5/MT1-E1 resulted in a "clean" producer strain deprived of six proteases. After 24 h, the strain receiving induction was able to secret nattokinase and endoglucanase E1 with the volumetric activity reaching 10860 CU/mL and 8.4 U/mL, respectively. This result clearly indicates the great promise of the proposed approach for high secretion of recombinant proteins in B. subtilis.

  4. Flk prevents premature secretion of the anti-σ factor FlgM into the periplasm

    PubMed Central

    Aldridge, Phillip; Karlinsey, Joyce E.; Becker, Eric; Chevance, Fabienne F.V.; Hughes, Kelly T.

    2012-01-01

    Summary The flk locus of Salmonella typhimurium was identified as a regulator of flagellar gene expression in strains defective in P- and l-ring formation. Flk acts as a regulator of flagellar gene expression by modulating the protein levels of the anti-σ28 factor FlgM. Evidence is presented which suggests that Flk is a cytoplasmic-facing protein anchored to the inner membrane by a single, C-terminal transmembrane-spanning domain (TMS). The specific amino acid sequence of the TMS is not essential for Flk activity, but membrane anchoring is essential. Membrane fractionation and visualization of protein fusions of green fluorescent protein derivatives to Flk suggested that the Flk protein is present in the membrane as punctate spots in number that are much greater than the number of flagellar basal structures. The turnover of the anti-σ28 factor FlgM was increased in flk mutant strains. Using FlgM–β-lactamase fusions we show the increased turnover of FlgM in flk null mutations is due to FlgM secretion into the periplasm where it is degraded. Our data suggest that Flk inhibits FlgM secretion by acting as a braking system for the flagellar-associated type III secretion system. A model is presented to explain a role for Flk in flagellar assembly and gene regulatory processes. PMID:16629666

  5. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  6. Relationship between serum secreted frizzled-related protein 4 levels and the first-phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance.

    PubMed

    Liu, Fang; Qu, Hua; Li, Yingjie; Tang, Qian; Yang, Zesong; Wang, Hang; Deng, Huacong

    2015-01-01

    Recent evidence suggests that serum secreted frizzled-related protein (SFRP) 4 may affect β-cell function. In a cross-sectional clinical study, 56 subjects with type 2 diabetes mellitus (T2DM), 52 subjects with impaired glucose tolerance (IGT) and 42 normal glucose tolerance (NGT) subjects were enrolled to investigate the relationship between SFRP4 levels and the first-phase of glucose-stimulated insulin secretion, glucose metabolism and inflammation. Intravenous glucose tolerance tests were conducted, and acute insulin response (AIR), the area under the curve of the first-phase (0-10 min) insulin secretion (AUC), and the glucose disposition index (GDI) were calculated. The serum levels of SFRP4, IL-1β, plasma glucose, serum lipid, and glycated hemoglobin (HbA1c) were measured. Levels of serum SFRP4 and IL-1β in the T2DM group and IGT group were significantly higher than those in the NGT group (P < 0.01). The AIR, AUC and GDI between the three groups showed a progressive decrease from the NGT to IGT groups with the lowest value in the T2DM groups (P < 0.01). The serum SFRP4 levels were negatively correlated with AIR, AUC, GDI and HOMA-β (P < 0.01) and were positively correlated with fasting plasma glucose, HbA1c, hs-CRP, and IL-1β (P < 0.01). Our study provides evidence that the concentrations of serum SFRP4 in T2DM and IGT subjects were increased and were correlated closely with glycose metabolic disorder, the first-phase of glucose-stimulated insulin secretion and chronic low-grade inflammation. SFRP4 may participate in the development of type 2 diabetes mellitus.

  7. Creation of a Human Secretome: A Novel Composite Library of Human Secreted Proteins: Validation Using Ovarian Cancer Gene Expression Data and a Virtual Secretome Array.

    PubMed

    Vathipadiekal, Vinod; Wang, Victoria; Wei, Wei; Waldron, Levi; Drapkin, Ronny; Gillette, Michael; Skates, Steven; Birrer, Michael

    2015-11-01

    To generate a comprehensive "Secretome" of proteins potentially found in the blood and derive a virtual Affymetrix array. To validate the utility of this database for the discovery of novel serum-based biomarkers using ovarian cancer transcriptomic data. The secretome was constructed by aggregating the data from databases of known secreted proteins, transmembrane or membrane proteins, signal peptides, G-protein coupled receptors, or proteins existing in the extracellular region, and the virtual array was generated by mapping them to Affymetrix probeset identifiers. Whole-genome microarray data from ovarian cancer, normal ovarian surface epithelium, and fallopian tube epithelium were used to identify transcripts upregulated in ovarian cancer. We established the secretome from eight public databases and a virtual array consisting of 16,521 Affymetrix U133 Plus 2.0 probesets. Using ovarian cancer transcriptomic data, we identified candidate blood-based biomarkers for ovarian cancer and performed bioinformatic validation by demonstrating rediscovery of known biomarkers including CA125 and HE4. Two novel top biomarkers (FGF18 and GPR172A) were validated in serum samples from an independent patient cohort. We present the secretome, comprising the most comprehensive resource available for protein products that are potentially found in the blood. The associated virtual array can be used to translate gene-expression data into cancer biomarker discovery. A list of blood-based biomarkers for ovarian cancer detection is reported and includes CA125 and HE4. FGF18 and GPR172A were identified and validated by ELISA as being differentially expressed in the serum of ovarian cancer patients compared with controls. ©2015 American Association for Cancer Research.

  8. The role of secreted heat shock protein-90 (Hsp90) in wound healing - how could it shape future therapeutics?

    PubMed

    Guo, Jiacong; Chang, Cheng; Li, Wei

    2017-08-01

    Defects in tissue repair or wound healing pose a clinical, economic and social problem worldwide. Despite decades of studies, there have been few effective therapeutic treatments. Areas covered: We discuss the possible reasons for why growth factor therapy did not succeed. We point out the lack of human disorder-relevant animal models as another blockade for therapeutic development. We summarize the recent discovery of secreted heat shock protein-90 (Hsp90) as a novel wound healing agent. Expert commentary: Wound healing is a highly complex and multistep process that requires participations of many cell types, extracellular matrices and soluble molecules to work together in a spatial and temporal fashion within the wound microenvironment. The time that wounds remain open directly correlates with the clinical mortality associated with wounds. This time urgency makes the healing process impossible to regenerate back to the unwounded stage, rather forces it to take many shortcuts in order to protect life. Therefore, for therapeutic purpose, it is crucial to identify so-called 'driver genes' for the life-saving phase of wound closure. Keratinocyte-secreted Hsp90α was discovered in 2007 and has shown the promise by overcoming several key hurdles that have blocked the effectiveness of growth factors during wound healing.

  9. Interacting partners of macrophage-secreted cathepsin B contribute to HIV-induced neuronal apoptosis

    PubMed Central

    CANTRES-ROSARIO, Yisel M.; HERNANDEZ, Natalia; NEGRON, Karla; PEREZ-LASPIUR, Juliana; LESZYK, John; SHAFFER, Scott A.; MELENDEZ, Loyda M.

    2015-01-01

    Objective HIV-1 infection of macrophages increases cathepsin B secretion and induces neuronal apoptosis, but the molecular mechanism remains unclear. Design We identified macrophage secreted cathepsin B protein interactions extracellularly and their contribution to neuronal death in vitro. Methods Cathepsin B was immunoprecipitated from monocyte-derived macrophage supernatants after 12 days post-infection. The cathepsin B interactome was quantified by label-free tandem mass spectrometry and compared to uninfected supernatants. Proteins identified were validated by western blot. Neurons were exposed to macrophage-conditioned media in presence or absence of antibodies against cathepsin B and interacting proteins. Apoptosis was measured using TUNEL labeling. Immunohistochemistry of post-mortem brain tissue samples from healthy, HIV-infected, and Alzheimer’s disease patients was performed to observe the ex vivo expression of the proteins identified. Results Nine proteins co-immunoprecipitated differentially with cathepsin B between uninfected and HIV-infected macrophages. Serum amyloid p component (SAPC) -cathepsin B interaction increased in HIV-infected macrophage supernatants, while matrix metalloprotease 9 (MMP-9) -cathepsin B interaction decreased. Pre-treatment of HIV-infected macrophage-conditioned media with antibodies against cathepsin B and SAPC decreased neuronal apoptosis. The addition of MMP-9 antibodies was not protective. SAPC was over-expressed in post-mortem brain tissue from HIV-positive neurocognitive impaired patients compared to HIV positive with normal cognition and healthy controls, while MMP-9 expression was similar in all tissues. Conclusions Inhibiting SAPC-cathepsin B interaction protects against HIV–induced neuronal death and may help to find alternative treatments for HIV-associated neurocognitive disorders. PMID:26208400

  10. Cestode parasites release extracellular vesicles with microRNAs and immunodiagnostic protein cargo.

    PubMed

    Ancarola, María Eugenia; Marcilla, Antonio; Herz, Michaela; Macchiaroli, Natalia; Pérez, Matías; Asurmendi, Sebastián; Brehm, Klaus; Poncini, Carolina; Rosenzvit, Mara; Cucher, Marcela

    2017-09-01

    Intercellular communication is crucial in multiple aspects of cell biology. This interaction can be mediated by several mechanisms including extracellular vesicle (EV) transfer. EV secretion by parasites has been reported in protozoans, trematodes and nematodes. Here we report that this mechanism is present in three different species of cestodes, Taenia crassiceps, Mesocestoides corti and Echinococcus multilocularis. To confirm this we determined, in vitro, the presence of EVs in culture supernatants by transmission electron microscopy. Interestingly, while T. crassiceps and M. corti metacestodes secrete membranous structures into the culture media, similar vesicles were observed in the interface of the germinal and laminated layers of E. multilocularis metacestodes and were hardly detected in culture supernatants. We then determined the protein cargo in the EV-enriched secreted fractions of T. crassiceps and M. corti conditioned media by LC-MS/MS. Among the identified proteins, eukaryotic vesicle-enriched proteins were identified as expected, but also proteins used for cestode disease diagnosis, proteins related to neurotransmission, lipid binding proteins as well as host immunoglobulins and complement factors. Finally, we confirmed by capillary electrophoresis the presence of intravesicular RNA for both parasites and detected microRNAs by reverse transcription-PCR. This is the first report of EV secretion in cestode parasites and of an RNA secretion mechanism. These findings will provide valuable data not only for basic cestode biology but also for the rational search for new diagnostic targets. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  11. Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the aryl hydrocarbon receptor (AHR)-mediated impairment of immunoglobulin secretion in human primary B cells.

    PubMed

    Zhou, Jiajun; Zhang, Qiang; Henriquez, Joseph E; Crawford, Robert B; Kaminski, Norbert E

    2018-05-31

    The aryl hydrocarbon receptor (AHR) is a cytosolic ligand-activated transcription factor involved in xenobiotic sensing, cell cycle regulation and cell development. In humans, the activation of AHR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a high affinity AHR-ligand, impairs the secretion of immunoglobulin M (IgM) to suppress humoral immunity. However, the mechanisms bridging the activation of AHR and the impairment of IgM secretion by human primary B cells remain poorly understood. Recent transcriptomic analysis revealed upregulation of lymphocyte-specific protein tyrosine kinase (LCK) in AHR activated human primary B cells. LCK is a well-characterized tyrosine kinase that phosphorylates critical signaling proteins involved in activation and cytokine production in T cells. Conversely, the role of LCK in human primary B cells is not well understood. In the current studies, we have verified the transcriptomic finding by detecting AHR-mediated upregulation of LCK protein in human primary B cells. We also confirmed the role of AHR in the upregulation of LCK by using a specific AHR antagonist, which abolished the AHR-mediated increase of LCK. Furthermore, we have confirmed the role of LCK in the AHR-mediated suppression of IgM by using LCK specific inhibitors, which restored IgM secretion by human B cells in the presence of TCDD. Collectively, the current studies demonstrate a novel role of LCK in IgM secretion and provide new insights into the mechanism for AHR-mediated impairment of immunoglobulin secretion by human primary B cells.

  12. Secretory expression of a heterologous protein, Aiio-AIO6BS, in Bacillus subtilis via a non-classical secretion pathway.

    PubMed

    Pan, Xingliang; Yang, Yalin; Liu, Xuewei; Li, Dong; Li, Juan; Guo, Xiaoze; Zhou, Zhigang

    2016-09-16

    The quenching enzyme AIO6 (AiiO-AIO6) has been reported as a feed additive preparation for application in aquaculture and biological control of pathogenic Aeromonas hydrophila. We developed an economical strategy to express AIO6BS (AiiO-AIO6BS, codon optimized AIO6 in Bacillus subtilis) in Bacillus subtilis for facilitating its widespread application. Promoter p43 without the signal peptide was used for secretory expression of AIO6BS in B. subtilis. Western blotting analysis demonstrated that AIO6BS was successfully expressed and secreted into the cell culture. Expression analysis of AIO6BS in the single or double mutant of the lytC and lytD genes for cell autolysis in B. subtilis 1A751 and cell autolysis-resistant engineered strain LM2531 derived from the wild type 168 indicated that the release of the heterologous protein AIO6BS was not simply mediated by cell lysis. Expression level of AIO6BS did not change in the mutants of B. subtilis that harbored mutations in the secA, tatAC, or ecsA genes compared with that in the parent wild type strain. These results suggested the AIO6BS protein was likely secreted via a non-classical secretion pathway. The expression analysis of the various N- or C-terminal truncated gene products indicated that AIO6BS probably acts as an export signal to direct its self-secretion across the cell membrane. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic beta cell.

    PubMed

    Kowluru, Anjaneyulu

    2008-01-15

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.

  14. A single amino acid substitution in the variable region of the light chain specifically blocks immunoglobulin secretion.

    PubMed Central

    Dul, J L; Argon, Y

    1990-01-01

    Although immunoglobulin light chains are usually secreted in association with heavy chains, free light chains can be secreted by lymphocytes. To identify the structural features of light chains that are essential for their secretion, we mutated a conserved sequence in the variable domain of a lambda I light chain. The effects of the mutations on secretion were assayed by transient expression in COS-1 cells. One mutant (AV60), which replaced Ala-60 with Val, was secreted as efficiently as wild-type lambda I by transfected COS-1 cells. This result was not surprising because secreted lambda II chains contain valine in this position. However, a second lambda I mutant (AV60FS62), which replaced Phe-62 with Ser as well as Ala-60 with Val, was not secreted. This mutant was arrested in the endoplasmic reticulum, as judged by immunofluorescence and by its association with a lumenal endoplasmic reticulum protein, immunoglobulin heavy chain binding protein (BiP). The defect in secretion was not due to gross misfolding of the lambda I chain, since cells cotransfected with AV60FS62 and an immunoglobulin heavy chain gene produced functional antigen-binding antibodies. These assembled IgM molecules were still not secreted. Hence, the replacement of Phe-62 with Ser specifically affects a determinant on the lambda I light chain that is necessary for the intracellular transport of this molecule. Images PMID:2122454

  15. Gliding Motility and Por Secretion System Genes Are Widespread among Members of the Phylum Bacteroidetes

    PubMed Central

    Zhu, Yongtao

    2013-01-01

    The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, “Gramella forsetii,” Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility. PMID:23123910

  16. Ethanol inhibits thrombin-induced secretion by human platelets at a site distinct from phospholipase C or protein kinase C.

    PubMed Central

    Benistant, C; Rubin, R

    1990-01-01

    Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization. Images p495-a PMID:2117442

  17. The Coxiella Burnetii type IVB secretion system (T4BSS) component DotA is released/secreted during infection of host cells and during in vitro growth in a T4BSS-dependent manner.

    PubMed

    Luedtke, Brandon E; Mahapatra, Saugata; Lutter, Erika I; Shaw, Edward I

    2017-06-01

    Coxiella burnetii is a Gram-negative intracellular pathogen and is the causative agent of the zoonotic disease Q fever. To cause disease, C. burnetii requires a functional type IVB secretion system (T4BSS) to transfer effector proteins required for the establishment and maintenance of a membrane-bound parasitophorous vacuole (PV) and further modulation of host cell process. However, it is not clear how the T4BSS interacts with the PV membrane since neither a secretion pilus nor an extracellular pore forming apparatus has not been described. To address this, we used the acidified citrate cysteine medium (ACCM) along with cell culture infection and immunological techniques to identify the cellular and extracellular localization of T4BSS components. Interestingly, we found that DotA and IcmX were secreted/released in a T4BSS-dependent manner into the ACCM. Analysis of C. burnetii-infected cell lines revealed that DotA colocalized with the host cell marker CD63 (LAMP3) at the PV membrane. In the absence of bacterial protein synthesis, DotA also became depleted from the PV membrane. These data are the first to identify the release/secretion of C. burnetii T4BSS components during axenic growth and the interaction of a T4BSS component with the PV membrane during infection of host cells. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. A lanthipeptide library used to identify a protein-protein interaction inhibitor.

    PubMed

    Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A

    2018-04-01

    In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

  19. CfPDIP1, a novel secreted protein of Colletotrichum falcatum, elicits defense responses in sugarcane and triggers hypersensitive response in tobacco.

    PubMed

    Ashwin, N M R; Barnabas, Leonard; Ramesh Sundar, Amalraj; Malathi, Palaniyandi; Viswanathan, Rasappa; Masi, Antonio; Agrawal, Ganesh Kumar; Rakwal, Randeep

    2018-07-01

    Colletotrichum falcatum, a hemibiotrophic fungal pathogen, causes one of the major devastating diseases of sugarcane-red rot. C. falcatum secretes a plethora of molecular signatures that might play a crucial role during its interaction with sugarcane. Here, we report the purification and characterization of a novel secreted protein of C. falcatum that elicits defense responses in sugarcane and triggers hypersensitive response (HR) in tobacco. The novel protein purified from the culture filtrate of C. falcatum was identified by MALDI TOF/TOF MS and designated as C. falcatum plant defense-inducing protein 1 (CfPDIP1). Temporal transcriptional profiling showed that the level of CfPDIP1 expression was greater in incompatible interaction than the compatible interaction until 120 h post-inoculation (hpi). EffectorP, an in silico tool, has predicted CfPDIP1 as a potential effector. Functional characterization of full length and two other domain deletional variants (CfPDIP1ΔN1-21 and CfPDIP1ΔN1-45) of recombinant CfPDIP1 proteins has indicated that CfPDIP1ΔN1-21 variant elicited rapid alkalinization and induced a relatively higher production of hydrogen peroxide (H 2 O 2 ) in sugarcane suspension culture. However, in Nicotiana tabacum, all the three forms of recombinant CfPDIP1 proteins triggered HR along with the induction of H 2 O 2 production and callose deposition. Further characterization using detached leaf bioassay in sugarcane revealed that foliar priming with CfPDIP1∆1-21 has suppressed the extent of lesion development, even though the co-infiltration of CfPDIP1∆1-21 with C. falcatum on unprimed leaves increased the extent of lesion development than control. Besides, the foliar priming has induced systemic expression of major defense-related genes with the concomitant reduction of pathogen biomass and thereby suppression of red rot severity in sugarcane. Comprehensively, the results have suggested that the novel protein, CfPDIP1, has the potential to

  20. Structure and Protein-Protein Interaction Studies on Chlamydia trachomatis Protein CT670 (YscO Homolog)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzini, Emily; Singer, Alexander; Singh, Bhag

    2010-07-28

    Comparative genomic studies have identified many proteins that are found only in various Chlamydiae species and exhibit no significant sequence similarity to any protein in organisms that do not belong to this group. The CT670 protein of Chlamydia trachomatis is one of the proteins whose genes are in one of the type III secretion gene clusters but whose cellular functions are not known. CT670 shares several characteristics with the YscO protein of Yersinia pestis, including the neighboring genes, size, charge, and secondary structure, but the structures and/or functions of these proteins remain to be determined. Although a BLAST search withmore » CT670 did not identify YscO as a related protein, our analysis indicated that these two proteins exhibit significant sequence similarity. In this paper, we report that the CT670 crystal, solved at a resolution of 2 {angstrom}, consists of a single coiled coil containing just two long helices. Gel filtration and analytical ultracentrifugation studies showed that in solution CT670 exists in both monomeric and dimeric forms and that the monomer predominates at lower protein concentrations. We examined the interaction of CT670 with many type III secretion system-related proteins (viz., CT091, CT665, CT666, CT667, CT668, CT669, CT671, CT672, and CT673) by performing bacterial two-hybrid assays. In these experiments, CT670 was found to interact only with the CT671 protein (YscP homolog), whose gene is immediately downstream of ct670. A specific interaction between CT670 and CT671 was also observed when affinity chromatography pull-down experiments were performed. These results suggest that CT670 and CT671 are putative homologs of the YcoO and YscP proteins, respectively, and that they likely form a chaperone-effector pair.« less

  1. Comparative and bioinformatics analyses of pathogenic bacterial secretomes identified by mass spectrometry in Burkholderia species.

    PubMed

    Nguyen, Thao Thi; Chon, Tae-Soo; Kim, Jaehan; Seo, Young-Su; Heo, Muyoung

    2017-07-01

    Secreted proteins (secretomes) play crucial roles during bacterial pathogenesis in both plant and human hosts. The identification and characterization of secretomes in the two plant pathogens Burkholderia glumae BGR1 and B. gladioli BSR3, which cause diseases in rice such as seedling blight, panicle blight, and grain rot, are important steps to not only understand the disease-causing mechanisms but also find remedies for the diseases. Here, we identified two datasets of secretomes in B. glumae BGR1 and B. gladioli BSR3, which consist of 118 and 111 proteins, respectively, using mass spectrometry approach and literature curation. Next, we characterized the functional properties, potential secretion pathways and sequence information properties of secretomes of two plant pathogens in a comparative analysis by various computational approaches. The ratio of potential non-classically secreted proteins (NCSPs) to classically secreted proteins (CSPs) in B. glumae BGR1 was greater than that in B. gladioli BSR3. For CSPs, the putative hydrophobic regions (PHRs) which are essential for secretion process of CSPs were screened in detail at their N-terminal sequences using hidden Markov model (HMM)-based method. Total 31 pairs of homologous proteins in two bacterial secretomes were indicated based on the global alignment (identity ≥ 70%). Our results may facilitate the understanding of the species-specific features of secretomes in two plant pathogenic Burkholderia species.

  2. LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion.

    PubMed

    Wulff-Strobel, Christine R; Williams, Andrew W; Straley, Susan C

    2002-01-01

    LcrQ is a regulatory protein unique to Yersinia. Previous study in Yersinia pseudotuberculosis and Yersinia enterocolitica prompted the model in which LcrQ negatively regulates the expression of a set of virulence proteins called Yops, and its secretion upon activation of the Yop secretion (Ysc) type III secretion system permits full induction of Yops expression. In this study, we tested the hypothesis that LcrQ's effects on Yops expression might be indirect. Excess LcrQ was found to exert an inhibitory effect specifically at the level of Yops secretion, independent of production, and a normal inner Ysc gate protein LcrG was required for this activity. However, overexpression of LcrQ did not prevent YopH secretion, suggesting that LcrQ's effects at the Ysc discriminate among the Yops. We tested this idea by determining the effects of deletion or overexpression of LcrQ, YopH and their common chaperone SycH on early Yop secretion through the Ysc. Together, our findings indicated that LcrQ is not a negative regulator directly, but it acts in partnership with SycH at the Ysc gate to control the entry of a set of Ysc secretion substrates. A hierarchy of YopH secretion before YopE appears to be imposed by SycH in conjunction with both LcrQ and YopH. LcrQ and SycH in addition influenced the deployment of LcrV, a component of the Yops delivery mechanism. Accordingly, LcrQ appears to be a central player in determining the substrate specificity of the Ysc.

  3. Comparison of soy-protein and egg albumin on endogenously secreted zinc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberleas, D.; Smith, J.C.

    1986-03-05

    Male albino rats (Charles River) were maintained on a basal soy-protein diet, unsupplemented with Zn and with 1.6% Ca for 4 weeks (Ca)(Phy)/(Zn) = 9.4(molar). Animals were subdivided in 2 expts. between soy-protein 0.8% Ca, 11.24 mg Zn/Kg diet (4.2(molar)) or 1.6% Ca, 11.21 mg Zn/Kg (9.4(molar)) and egg albumin 0.8% Ca, 0.46 mg Zn/Kg diet and 1.6% Ca, 0.37 mg Zn/Kg diet at which time each animal was injected with 10 ..mu..Ci /sup 65/Zn. Daily fecal collections were made for 14 days and ratios of /sup 65/Zn Soy:Egg alb. calculated. The very low concentration of Zn in the eggmore » albumin diet restricted the pancreatic secretion of Zn and the differential effect of phytate on these diets was not apparent as shown earlier with soy and casein diets. This was also reflected in the growth rates of the exptl. groups in that the egg albumin fed rats gained -4.4 and -9.0 g/wk; soy fed rats gained 28.0 and 17.3 g/wk.« less

  4. Induction of cross-priming of naive CD8+ T lymphocytes by recombinant bacillus Calmette-Guerin that secretes heat shock protein 70-major membrane protein-II fusion protein.

    PubMed

    Mukai, Tetsu; Maeda, Yumi; Tamura, Toshiki; Matsuoka, Masanori; Tsukamoto, Yumiko; Makino, Masahiko

    2009-11-15

    Because Mycobacterium bovis bacillus Calmette-Guérin (BCG) unconvincingly activates human naive CD8(+) T cells, a rBCG (BCG-70M) that secretes a fusion protein comprising BCG-derived heat shock protein (HSP)70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed to potentiate the ability of activating naive CD8(+) T cells through dendritic cells (DC). BCG-70M secreted HSP70-MMP-II fusion protein in vitro, which stimulated DC to produce IL-12p70 through TLR2. BCG-70M-infected DC activated not only memory and naive CD8(+) T cells, but also CD4(+) T cells of both types to produce IFN-gamma. The activation of these naive T cells by BCG-70M was dependent on the MHC and CD86 molecules on BCG-70M-infected DC, and was significantly inhibited by pretreatment of DC with chloroquine. Both brefeldin A and lactacystin significantly inhibited the activation of naive CD8(+) T cells by BCG-70M through DC. Thus, the CD8(+) T cell activation may be induced by cross-presentation of Ags through a TAP- and proteosome-dependent cytosolic pathway. When naive CD8(+) T cells were stimulated by BCG-70M-infected DC in the presence of naive CD4(+) T cells, CD62L(low)CD8(+) T cells and perforin-producing CD8(+) T cells were efficiently produced. MMP-II-reactive CD4(+) and CD8(+) memory T cells were efficiently produced in C57BL/6 mice by infection with BCG-70M. These results indicate that BCG-70M activated DC, CD4(+) T cells, and CD8(+) T cells, and the combination of HSP70 and MMP-II may be useful for inducing better T cell activation.

  5. Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered.

    PubMed

    Barret, Matthieu; Egan, Frank; Fargier, Emilie; Morrissey, John P; O'Gara, Fergal

    2011-06-01

    Bacteria encode multiple protein secretion systems that are crucial for interaction with the environment and with hosts. In recent years, attention has focused on type VI secretion systems (T6SSs), which are specialized transporters widely encoded in Proteobacteria. The myriad of processes associated with these secretion systems could be explained by subclasses of T6SS, each involved in specialized functions. To assess diversity and predict function associated with different T6SSs, comparative genomic analysis of 34 Pseudomonas genomes was performed. This identified 70 T6SSs, with at least one locus in every strain, except for Pseudomonas stutzeri A1501. By comparing 11 core genes of the T6SS, it was possible to identify five main Pseudomonas phylogenetic clusters, with strains typically carrying T6SSs from more than one clade. In addition, most strains encode additional vgrG and hcp genes, which encode extracellular structural components of the secretion apparatus. Using a combination of phylogenetic and meta-analysis of transcriptome datasets it was possible to associate specific subsets of VgrG and Hcp proteins with each Pseudomonas T6SS clade. Moreover, a closer examination of the genomic context of vgrG genes in multiple strains highlights a number of additional genes associated with these regions. It is proposed that these genes may play a role in secretion or alternatively could be new T6S effectors.

  6. Role of calcium signaling in epithelial bicarbonate secretion.

    PubMed

    Jung, Jinsei; Lee, Min Goo

    2014-06-01

    Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemann, George; Brown, Roslyn N.; Gustin, Jean K.

    The intracellular pathogen Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis in the world. This pathogen has two type-III secretion systems (TTSS) necessary for virulence that are encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) and are expressed during extracellular or intracellular infectious states, respectively, to deliver virulence factors (effectors) to the host cell cytoplasm. While many have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this mass spectrometry-based proteomics study, we identified effector proteins secreted under minimal acidic medium growth conditions that induced themore » SPI-2 TTSS and its effectors, and compared the secretome from the parent strain to the secretome from strains missing either essential (SsaK) or regulatory components (SsaL) of the SPI-2 secretion apparatus. We identified 75% of the known TTSS effector repertoire. Excluding translocon components, 95% of the known effectors were biased for identification in the ssaL mutant background, which demonstrated that SsaL regulates SPI-2 type III secretion. To confirm secretion to animal cells, we made translational fusions of several of the best candidates to the calmodulin-dependent adenylate cyclase of Bordetella pertussis and assayed cAMP levels of infected J774 macrophage-like cells. From these infected cells we identified six new TTSS effectors and two others that are secreted independent of TTSS. Our results substantiate reports of additional secretion systems encoded by Salmonella other than TTSS.« less

  8. Small ubiquitin-related modifier is secreted and shows cytokine-like activity.

    PubMed

    Hosono, Hidetaka; Yokosawa, Hideyoshi

    2008-05-01

    Small ubiquitin-related modifier (SUMO) is a type I ubiquitin-like protein family member and is covalently attached to various target proteins. Through this post-translational modification, SUMO plays important roles in various cellular events. Here, we show that SUMO is secreted from cultured cells in an endoplasmic reticulum (ER)/Golgi-independent manner and that this secretion occurs without covalent binding to target proteins or chain formation. Overexpression experiments using C-terminally truncated mutants of SUMO revealed that the secretion requires the C-terminal sequence. Recombinant SUMO-3 protein was capable of binding to and promoting the proliferation of cultured cells. Thus, we propose that SUMO functions as a cytokine-like molecule extracellularly.

  9. Evidence of reversible bradycardia and arrhythmias caused by immunogenic proteins secreted by T. cruzi in isolated rat hearts.

    PubMed

    Rodríguez-Angulo, Héctor O; Toro-Mendoza, Jhoan; Marques, Juan A; Concepción, Juan L; Bonfante-Cabarcas, Rafael; Higuerey, Yoliver; Thomas, Luz E; Balzano-Nogueira, Leandro; López, José R; Mijares, Alfredo

    2015-02-01

    Chagas cardiomyopathy, caused by the protozoan Trypanosoma cruzi, is characterized by alterations in intracellular ion, heart failure and arrhythmias. Arrhythmias have been related to sudden death, even in asymptomatic patients, and their molecular mechanisms have not been fully elucidated. The aim of this study is to demonstrate the effect of proteins secreted by T. cruzi on healthy, isolated beating rat heart model under a non-damage-inducing protocol. We established a non-damage-inducing recirculation-reoxygenation model where ultrafiltrate fractions of conditioned medium control or conditioned infected medium were perfused at a standard flow rate and under partial oxygenation. Western blotting with chagasic patient serum was performed to determine the antigenicity of the conditioned infected medium fractions. We observed bradycardia, ventricular fibrillation and complete atrioventricular block in hearts during perfusion with >50 kDa conditioned infected culture medium. The preincubation of conditioned infected medium with chagasic serum abolished the bradycardia and arrhythmias. The proteins present in the conditioned infected culture medium of >50 kDa fractions were recognized by the chagasic patient sera associated with arrhythmias. These results suggest that proteins secreted by T. cruzi are involved in Chagas disease arrhythmias and may be a potential biomarker in chagasic patients.

  10. Evidence of Reversible Bradycardia and Arrhythmias Caused by Immunogenic Proteins Secreted by T. cruzi in Isolated Rat Hearts

    PubMed Central

    Rodríguez-Angulo, Héctor O.; Toro-Mendoza, Jhoan; Marques, Juan A.; Concepción, Juan L.; Bonfante-Cabarcas, Rafael; Higuerey, Yoliver; Thomas, Luz E.; Balzano-Nogueira, Leandro; López, José R.; Mijares, Alfredo

    2015-01-01

    Rationale Chagas cardiomyopathy, caused by the protozoan Trypanosoma cruzi, is characterized by alterations in intracellular ion, heart failure and arrhythmias. Arrhythmias have been related to sudden death, even in asymptomatic patients, and their molecular mechanisms have not been fully elucidated. Objective The aim of this study is to demonstrate the effect of proteins secreted by T. cruzi on healthy, isolated beating rat heart model under a non-damage-inducing protocol. Methods and Results We established a non-damage-inducing recirculation-reoxygenation model where ultrafiltrate fractions of conditioned medium control or conditioned infected medium were perfused at a standard flow rate and under partial oxygenation. Western blotting with chagasic patient serum was performed to determine the antigenicity of the conditioned infected medium fractions. We observed bradycardia, ventricular fibrillation and complete atrioventricular block in hearts during perfusion with >50 kDa conditioned infected culture medium. The preincubation of conditioned infected medium with chagasic serum abolished the bradycardia and arrhythmias. The proteins present in the conditioned infected culture medium of >50 kDa fractions were recognized by the chagasic patient sera associated with arrhythmias. Conclusions These results suggest that proteins secreted by T. cruzi are involved in Chagas disease arrhythmias and may be a potential biomarker in chagasic patients. PMID:25647069

  11. Transcriptomic analyses of the secreted proteins from the salivary glands of the wheat midge larvae

    USDA-ARS?s Scientific Manuscript database

    Both the wheat midge (Sitodiplosis mosellana) and the Hessian fly (Mayetiola destructor) belong to a group of insects called gall midges (Diptera: Cecidomyiidae) and both are destructive pests of wheat. From Hessian fly larvae, a large number of genes have been identified to encode Secreted Salivary...

  12. Intersectin goes nuclear: secret life of an endocytic protein.

    PubMed

    Alvisi, Gualtiero; Paolini, Lucia; Contarini, Andrea; Zambarda, Chiara; Di Antonio, Veronica; Colosini, Antonella; Mercandelli, Nicole; Timmoneri, Martina; Palù, Giorgio; Caimi, Luigi; Ricotta, Doris; Radeghieri, Annalisa

    2018-04-27

    Intersectin 1-short (ITSN1-s) is a 1220 amino acid ubiquitously expressed scaffold protein presenting a multidomain structure that allows to spatiotemporally regulate the functional interaction of a plethora of proteins. Besides its well-established role in endocytosis, ITSN1-s is involved in the regulation of cell signaling and is implicated in tumorigenesis processes, although the signaling pathways involved are still poorly understood. Here, we identify ITSN1-s as a nucleocytoplasmic trafficking protein. We show that, by binding to importin (IMP)α, a small fraction of ITSN1-s localizes in the cell nucleus at the steady state, where it preferentially associates with the nuclear envelope and interacts with lamin A/C. However, upon pharmacological ablation of chromosome region maintenance 1 (CRM-1)-dependent nuclear export pathway, the protein accumulates into the nucleus, thus revealing its moonlighting nature. Analysis of deletion mutants revealed that the coiled coil (CC) and Src homology (SH3) regions play the major role in its nucleocytoplasmic shuttling. While no evidence of nuclear localization signal (NLS) was detected in the CC region, a functional bipartite NLS was identified within the SH3D region of ITSN1-s (RKKNPGGWWEGELQARGKKRQIGW-1127), capable of conferring energy-dependent nuclear accumulation to reporter proteins and whose mutational ablation affects nuclear import of the whole SH3 region. Thus, ITSN1-s is an endocytic protein, which shuttles between the nucleus and the cytoplasm in a CRM-1- and IMPα-dependent fashion. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines

    PubMed Central

    Cotesta, Simona; Perruccio, Francesca; Knapp, Britta; Fu, Yue; Studer, Christian; Pries, Verena; Riedl, Ralph; Helliwell, Stephen B.; Petrovic, Katarina T.; Movva, N. Rao; Sanglard, Dominique; Tao, Jianshi; Hoepfner, Dominic

    2016-01-01

    Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point. PMID:27855158

  14. Normal and abnormal secretion by haemopoietic cells

    PubMed Central

    STINCHCOMBE, JANE C; GRIFFITHS, GILLIAN M

    2001-01-01

    The secretory lysosomes found in haemopoietic cells provide a very efficient mechanism for delivering the effector proteins of many immune cells in response to antigen recognition. Although secretion shows some similarities to the secretion of specialized granules in other secretory cell types, some aspects of secretory lysosome release appear to be unique to melanocytes and cells of the haemopoietic lineage. Mast cells and platelets have provided excellent models for studying secretion, but recent advances in characterizing the immunological synapse allow a very fine dissection of the secretory process in T lymphocytes. These studies show that secretory lysosomes are secreted from the centre of the talin ring at the synapse. Proper secretion requires a series of Rab and cytoskeletal elements which play critical roles in the specialized secretion of lysosomes in haemopoietic cells. PMID:11380687

  15. Analysis of eight out genes in a cluster required for pectic enzyme secretion by Erwinia chrysanthemi: sequence comparison with secretion genes from other gram-negative bacteria.

    PubMed Central

    Lindeberg, M; Collmer, A

    1992-01-01

    Many extracellular proteins produced by Erwinia chrysanthemi require the out gene products for transport across the outer membrane. In a previous report (S. Y. He, M. Lindeberg, A. K. Chatterjee, and A. Collmer, Proc. Natl. Acad. Sci. USA 88:1079-1083, 1991) cosmid pCPP2006, sufficient for secretion of Erwinia chrysanthemi extracellular proteins by Escherichia coli, was partially sequenced, revealing four out genes sharing high homology with pulH through pulK from Klebsiella oxytoca. The nucleotide sequence of eight additional out genes reveals homology with pulC through pulG, pulL, pulM, pulO, and other genes involved in secretion by various gram-negative bacteria. Although signal sequences and hydrophobic regions are generally conserved between Pul and Out proteins, four out genes contain unique inserts, a pulN homolog is not present, and outO appears to be transcribed separately from outC through outM. The sequenced region was subcloned, and an additional 7.6-kb region upstream was identified as being required for secretion in E. coli. out gene homologs were found on Erwinia carotovora cosmid clone pAKC651 but were not detected in E. coli. The outC-through-outM operon is weakly induced by polygalacturonic acid and strongly expressed in the early stationary phase. The out and pul genes are highly similar in sequence, hydropathic properties, and overall arrangement but differ in both transcriptional organization and the nature of their induction. Images PMID:1429461

  16. Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function.

    PubMed

    Schué, Mathieu; Maurin, Damien; Dhouib, Rabeb; Bakala N'Goma, Jean-Claude; Delorme, Vincent; Lambeau, Gérard; Carrière, Frédéric; Canaan, Stéphane

    2010-06-01

    Cutinases are extracellular enzymes that are able to degrade cutin, a polyester protecting plant leaves and many kinds of lipids. Although cutinases are mainly found in phytopathogenic fungi or bacteria, 7 genes related to the cutinase family have been predicted in the genome of Mycobacterium tuberculosis. These genes may encode proteins that are involved in the complex lipid metabolism of the bacterium. Here, we report on the biochemical characterization of two secreted proteins of M. tuberculosis, Rv1984c and Rv3452, belonging to the cutinase family. Although their amino acid sequence shows 50% identity with that of the well-characterized cutinase from Fusarium solani pisi, and a high level of homology has been found to exist between these two enzymes, they show distinct substrate specificities. Rv1984c preferentially hydrolyzes medium-chain carboxylic esters and monoacylglycerols, whereas Rv3452 behaves like a phospholipase A(2), and it is able to induce macrophage lysis. The tetrahydrolipstatin inhibitor, a specific lipase inhibitor, abolishes the activity of both enzymes. Site-directed mutagenesis was performed to identify the catalytic triad of Rv1984c. Structural models for Rv1984c and Rv3452 were built, based on the crystal structure of F. solani cutinase, with a view to investigating the contribution of specific residues to the substrate specificity. Our findings open new prospects for investigating the physiological roles of cutinase-like proteins in the lipid metabolism and virulence of M. tuberculosis.

  17. Structural Characterization and Oligomerization of the TssL Protein, a Component Shared by Bacterial Type VI and Type IVb Secretion Systems*

    PubMed Central

    Durand, Eric; Zoued, Abdelrahim; Spinelli, Silvia; Watson, Paul J. H.; Aschtgen, Marie-Stéphanie; Journet, Laure; Cambillau, Christian; Cascales, Eric

    2012-01-01

    The Type VI secretion system (T6SS) is a macromolecular system distributed in Gram-negative bacteria, responsible for the secretion of effector proteins into target cells. The T6SS has a broad versatility as it can target both eukaryotic and prokaryotic cells. It is therefore involved in host pathogenesis or killing neighboring bacterial cells to colonize a new niche. At the architecture level, the T6SS core apparatus is composed of 13 proteins, which assemble in two subcomplexes. One of these subcomplexes, composed of subunits that share structural similarities with bacteriophage tail and baseplate components, is anchored to the cell envelope by the membrane subcomplex. This latter is constituted of at least three proteins, TssL, TssM, and TssJ. The crystal structure of the TssJ outer membrane lipoprotein and its interaction with the inner membrane TssM protein have been recently reported. TssL and TssM share sequence homology and characteristics with two components of the Type IVb secretion system (T4bSS), IcmH/DotU and IcmF, respectively. In this study, we report the crystal structure of the cytoplasmic domain of the TssL inner membrane protein from the enteroaggregative Escherichia coli Sci-1 T6SS. It folds as a hook-like structure composed of two three-helix bundles. Two TssL molecules associate to form a functional complex. Although the TssL trans-membrane segment is the main determinant of self-interaction, contacts between the cytoplasmic domains are required for TssL function. Based on sequence homology and secondary structure prediction, we propose that the TssL structure is the prototype for the members of the TssL and IcmH/DotU families. PMID:22371492

  18. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity.

    PubMed

    Buck, Amy H; Coakley, Gillian; Simbari, Fabio; McSorley, Henry J; Quintana, Juan F; Le Bihan, Thierry; Kumar, Sujai; Abreu-Goodger, Cei; Lear, Marissa; Harcus, Yvonne; Ceroni, Alessandro; Babayan, Simon A; Blaxter, Mark; Ivens, Alasdair; Maizels, Rick M

    2014-11-25

    In mammalian systems RNA can move between cells via vesicles. Here we demonstrate that the gastrointestinal nematode Heligmosomoides polygyrus, which infects mice, secretes vesicles containing microRNAs (miRNAs) and Y RNAs as well as a nematode Argonaute protein. These vesicles are of intestinal origin and are enriched for homologues of mammalian exosome proteins. Administration of the nematode exosomes to mice suppresses Type 2 innate responses and eosinophilia induced by the allergen Alternaria. Microarray analysis of mouse cells incubated with nematode exosomes in vitro identifies Il33r and Dusp1 as suppressed genes, and Dusp1 can be repressed by nematode miRNAs based on a reporter assay. We further identify miRNAs from the filarial nematode Litomosoides sigmodontis in the serum of infected mice, suggesting that miRNA secretion into host tissues is conserved among parasitic nematodes. These results reveal exosomes as another mechanism by which helminths manipulate their hosts and provide a mechanistic framework for RNA transfer between animal species.

  19. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity

    PubMed Central

    Buck, Amy H.; Coakley, Gillian; Simbari, Fabio; McSorley, Henry J.; Quintana, Juan F.; Le Bihan, Thierry; Kumar, Sujai; Abreu-Goodger, Cei; Lear, Marissa; Harcus, Yvonne; Ceroni, Alessandro; Babayan, Simon A.; Blaxter, Mark; Ivens, Alasdair; Maizels, Rick M.

    2014-01-01

    In mammalian systems RNA can move between cells via vesicles. Here we demonstrate that the gastrointestinal nematode Heligmosomoides polygyrus, which infects mice, secretes vesicles containing microRNAs (miRNAs) and Y RNAs as well as a nematode Argonaute protein. These vesicles are of intestinal origin and are enriched for homologues of mammalian exosome proteins. Administration of the nematode exosomes to mice suppresses Type 2 innate responses and eosinophilia induced by the allergen Alternaria. Microarray analysis of mouse cells incubated with nematode exosomes in vitro identifies Il33r and Dusp1 as suppressed genes, and Dusp1 can be repressed by nematode miRNAs based on a reporter assay. We further identify miRNAs from the filarial nematode Litomosoides sigmodontis in the serum of infected mice, suggesting that miRNA secretion into host tissues is conserved among parasitic nematodes. These results reveal exosomes as another mechanism by which helminths manipulate their hosts and provide a mechanistic framework for RNA transfer between animal species. PMID:25421927

  20. Identification of genes encoding the type IX secretion system and secreted proteins in Flavobacterium columnare IA-S-4

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...

  1. Secreted protein extract analyses present the plant pathogen Alternaria alternata as a suitable industrial enzyme toolbox.

    PubMed

    García-Calvo, L; Ullán, R V; Fernández-Aguado, M; García-Lino, A M; Balaña-Fouce, R; Barreiro, C

    2018-04-15

    byproducts and analogous substrates. Moreover, the proteomic analysis of the secretome of a natural isolate of Alternaria sp. grown in the presence of one of the most used vegetal substrates on the biofuels industry (sugar beet pulp) sheds light on the extracellular enzymatic machinery of this fungal plant pathogen, and can be potentially applied to developing new industrial enzymatic tools. This work is, to our knowledge, the first to analyze in depth the secreted enzyme extract of the plant pathogen Alternaria when grown on a lignocellulosic substrate, identifying its proteins by means of MALDI-TOF/TOF mass spectrometry and characterizing its feruloyl esterase, cellulase and xylanolytic activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Excessive fluoride induces endoplasmic reticulum stress and interferes enamel proteinases secretion.

    PubMed

    Wei, Wei; Gao, Yanhui; Wang, Cheng; Zhao, Lijun; Sun, Dianjun

    2013-06-01

    Protein retention in the enamel layer during tooth formation is well known to be associated with dental fluorosis but the underlying mechanism is unclear. The functions of the endoplasmic reticulum (ER) correlate directly with secreted protein metabolism. We used an ameloblast-derived cell line to determine whether excessive amounts of fluoride cause ER stress, and whether this interferes with the secretion of enamel matrix proteinases. ER stress activates a signaling network called the unfolded protein response (UPR). Here, we used real-time RT-PCR and immunofluorescence to study the effect of fluoride on the expression, translation, and secretion of UPR transcription factors in ameloblast-like cells. Measurement of both the gene and protein expression of UPR transcription factors indicated that high-dose fluoride increases the expression of UPR transcription factors in a dose-dependent manner. We also used ELISA to detect and quantify the enamel proteinases secreted by ameloblasts. We found a corresponding decrease in extracellular secretion of the enamel proteinases matrix metalloproteinase-20 and kallikrein-4, after exposure to fluoride. Furthermore, correlation analysis indicated that the expression of UPR transcription factors showed a strong inverse correlation with that of enamel proteinases. The results suggest that high-dose fluoride initiates an ER stress response in ameloblasts and induces the UPR, which interferes with the synthesis and secretion of enamel proteinases. Taken together, these results suggest that excessive ingestion of fluoride during tooth formation can decrease the secretion of proteinases, thus causing protein retention in the enamel layer, indicating that the ER stress response may be responsible for dental fluorosis. Copyright © 2011 Wiley Periodicals, Inc.

  3. Expressed proteins of Herbaspirillum seropedicae in maize (DKB240) roots-bacteria interaction revealed using proteomics.

    PubMed

    Ferrari, Cibele Santos; Amaral, Fernanda Plucani; Bueno, Jessica Cavalheiro Ferreira; Scariot, Mirella Christine; Valentim-Neto, Pedro Alexandre; Arisi, Ana Carolina Maisonnave

    2014-11-01

    Several molecular tools have been used to clarify the basis of plant-bacteria interaction; however, the mechanism behind the association is still unclear. In this study, we used a proteomic approach to investigate the root proteome of Zea mays (cv. DKB240) inoculated with Herbaspirillum seropedicae strain SmR1 grown in vitro and harvested 7 days after inoculation. Eighteen differentially accumulated proteins were observed in root samples, ten of which were identified by MALDI-TOF mass spectrometry peptide mass fingerprint. Among the identified proteins, we observed three proteins present exclusively in inoculated root samples and six upregulated proteins and one downregulated protein relative to control. Differentially expressed maize proteins were identified as hypothetical protein ZEAMMB73_483204, hypothetical protein ZEAMMB73_269466, and tubulin beta-7 chain. The following were identified as H. seropedicae proteins: peroxiredoxin protein, EF-Tu elongation factor protein, cation transport ATPase, NADPH:quinone oxidoreductase, dinitrogenase reductase, and type III secretion ATP synthase. Our results presented the first evidence of type III secretion ATP synthase expression during H. seropedicae-maize root interaction.

  4. The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.

    PubMed

    Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro

    2017-07-14

    The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca 2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca 2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca 2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    PubMed Central

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  6. Unconventional secretion of FABP4 by endosomes and secretory lysosomes.

    PubMed

    Villeneuve, Julien; Bassaganyas, Laia; Lepreux, Sebastien; Chiritoiu, Marioara; Costet, Pierre; Ripoche, Jean; Malhotra, Vivek; Schekman, Randy

    2018-02-05

    An appreciation of the functional properties of the cytoplasmic fatty acid binding protein 4 (FABP4) has advanced with the recent demonstration that an extracellular form secreted by adipocytes regulates a wide range of physiological functions. Little, however, is known about the mechanisms that mediate the unconventional secretion of FABP4. Here, we demonstrate that FABP4 secretion is mediated by a membrane-bounded compartment, independent of the conventional endoplasmic reticulum-Golgi secretory pathway. We show that FABP4 secretion is also independent of GRASP proteins, autophagy, and multivesicular bodies but involves enclosure within endosomes and secretory lysosomes. We highlight the physiological significance of this pathway with the demonstration that an increase in plasma levels of FABP4 is inhibited by chloroquine treatment of mice. These findings chart the pathway of FABP4 secretion and provide a potential therapeutic means to control metabolic disorders associated with its dysregulated secretion. © 2018 Villeneuve et al.

  7. Pregnancy and labor increase the capacity of human myometrial cells to secrete parathyroid hormone-related protein.

    PubMed

    Shenberger, J S; Dixon, P S; Choate, J; Helal, K; Shew, R L; Barth, W

    2001-02-16

    Parathyroid hormone-related protein (PTHrP), a oncofetal gene product possessing smooth muscle relaxant properties, has been found in rat and human uterine smooth muscle cells (USMC) where it is postulated to regulate myometrial tone and/or blood flow. Studies investigating the gestational regulation of PTHrP in human USMC have not been performed. This study was conducted to determine if pregnancy alters the capacity of USMC to secrete or respond to PTHrP. USMC cultures were established from 8 hysterectomy specimens (H) and 7 non-laboring (NP) and 5 laboring term pregnant uterine biopsies (LP). PTHrP secretion was measured at baseline and in response to TGF-beta1 using a immunoradiometric assay. The USMC response to PTHrP was assessed by incubating cultures with human (1-34)PTHrP and measuring cellular cAMP by radioimmunoassay. We found that cultures from the groups did not differ with respect to basal PTHrP secretion. TGF-beta1, on the other hand, produced dose-dependent increases in secreted PTHrP in each group such that LP>NP>H at 12 hrs and LP>NP and H 24 hrs. Maximal responses were found at 24 hrs in cells treated with 10 ng/ml TGF-beta1 (LP: 2034+/-366 vs NP: 1485+/-427; H: 1250+/-202 fmol/mg). Incubation of cultures with PTHrP produced dose-dependent increases in cAMP production, with 10(-7) M increasing levels by 64%. Neither pregnancy nor labor significantly affected the cAMP response. These findings indicate that the human myometrium has the capacity to increase PTHrP secretion during pregnancy and labor through a TGF-beta-dependent pathway. Such findings are consistent with a role of PTHrP in enhancing uterine blood flow.

  8. Low cost of gastric acid secretion during digestion in ball pythons.

    PubMed

    Nørgaard, Simon; Andreassen, Kim; Malte, Christian Lind; Enok, Sanne; Wang, Tobias

    2016-04-01

    Due to their large metabolic responses to digestion (specific dynamic action, SDA), snakes represent an interesting animal group to identify the underlying mechanisms for the postprandial rise in metabolism. The SDA response results from the energetic costs of many different processes ranging over prey handling, secretions by the digestive system, synthesis of enzymes, plasticity of most visceral organs, as well as protein synthesis and nitrogen excretion. The contribution of the individual mechanisms, however, remains elusive. Gastric acid secretion has been proposed to account for more than half of the SDA response, while other studies report much lower contributions of the gastric processes. To investigate the energetic cost of gastric acid secretion, ball pythons (Python regius) were fed meals with added amounts of bone meal (up to 25 g bone meal kg(-1) snake) to achieve a five-fold rise in the buffer capacity of the meals. Direct measurements within the stomach lumen showed similar reduction in gastric pH when buffer capacity was increased, but we found no effects on the rise in oxygen consumption over the first three days of digestion. There was, however, a slower return of oxygen consumption to resting baseline. We conclude that gastric acid secretion only contributes modestly to the SDA response and propose that post-absorptive processes, such as increased protein synthesis, are likely to underlie the SDA response. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The bioactive effects of casein proteins on enteroendocrine cell health, proliferation and incretin hormone secretion.

    PubMed

    Gillespie, Anna L; Green, Brian D

    2016-11-15

    Previous studies suggest that casein exerts various anti-diabetic effects. However, it is not known which casein proteins are bioactive, nor their effects on enteroendocrine cells. This study evaluated the effects of intact whole casein, intact individual proteins (alpha, beta and kappa casein) and hydrolysates on an enteroendocrine cell line. High content analysis accurately monitored changes in cell health and intracellular glucagon-like peptide-1 (GLP-1) content. Cheese ripening duration and GLP-1 secretory responses were also considered. Beta casein significantly stimulated enteroendocrine cell proliferation and all caseins were potent GLP-1 secretagogues (except kappa casein). Interestingly the GLP-1 secretory activity was almost always lost or significantly reduced upon hydrolysis with proteolytic enzymes. Only pepsin-derived beta casein hydrolysates had significantly increased potency compared with the intact protein, but this was diminished with prolonged hydrolysis. In conclusion casein proteins are not detrimental to enteroendocrine cells, and alpha and beta casein are particularly beneficial stimulating proliferation and GLP-1 secretion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFα

    PubMed Central

    Wunderle, Lina; Knopf, Julia D.; Kühnle, Nathalie; Morlé, Aymeric; Hehn, Beate; Adrain, Colin; Strisovsky, Kvido; Freeman, Matthew; Lemberg, Marius K.

    2016-01-01

    Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes. PMID:27264103

  11. Effects of amino acid substitutions in hepatitis B virus surface protein on virion secretion, antigenicity, HBsAg and viral DNA.

    PubMed

    Xiang, Kuan-Hui; Michailidis, Eleftherios; Ding, Hai; Peng, Ya-Qin; Su, Ming-Ze; Li, Yao; Liu, Xue-En; Dao Thi, Viet Loan; Wu, Xian-Fang; Schneider, William M; Rice, Charles M; Zhuang, Hui; Li, Tong

    2017-02-01

    As important virological markers, serum hepatitis B surface antigen (HBsAg) and hepatitis B virus (HBV) DNA levels show large fluctuations among chronic hepatitis B patients. The aim of this study was to reveal the potential impact and mechanisms of amino acid substitutions in small hepatitis B surface proteins (SHBs) on serum HBsAg and HBV DNA levels. Serum samples from 230 untreated chronic hepatitis B patients with genotype C HBV were analyzed in terms of HBV DNA levels, serological markers of HBV infection and SHBs sequences. In vitro functional analysis of the identified SHBs mutants was performed. Among 230 SHBs sequences, there were 39 (16.96%) sequences with no mutation detected (wild-type) and 191 (83.04%) with single or multiple mutations. SHBs consist of 226 amino acids, of which 104 (46.02%) had mutations in our study. Some mutations (e.g., sE2G, sL21S, sR24K, sT47A/K, sC69stop (sC69∗), sL95W, sL98V, and sG145R) negatively correlated with serum HBsAg levels. HBsAg and HBV DNA levels from this group of patients had a positive correlation (r=0.61, p<0.001). In vitro analysis showed that these mutations reduced extracellular HBsAg and HBV DNA levels by restricting virion secretion and antibody binding capacity. Virion secretion could be rescued for sE2G, sC69∗, and sG145R by co-expression of wild-type HBsAg. The serum HBsAg levels were lower in untreated CHB patients with novel SHBs mutations outside the major antigenic region than those without mutations. Underlying mechanisms include impairment of virion secretion and lower binding affinity to antibodies used for HBsAg measurements. The hepatitis B surface antigen (HBsAg) is a major viral protein of the hepatitis B virus (HBV) secreted into patient blood serum and its quantification value serves as an important marker for the evaluation of chronic HBV infection and antiviral response. We found a few new amino acid substitutions in HBsAg associated with lower serum HBsAg and HBV DNA levels. These

  12. Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wan-Yi; Miller, Keith D.; Coolbaugh, Michael

    In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain intein tag for purification via a chitin agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a smallmore » change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and b-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the DI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.« less

  13. Selection, characterization, and application of DNA aptamers for detection of Mycobacterium tuberculosis secreted protein MPT64.

    PubMed

    Sypabekova, Marzhan; Bekmurzayeva, Aliya; Wang, Ronghui; Li, Yanbin; Nogues, Claude; Kanayeva, Damira

    2017-05-01

    Rapid detection of Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), is important for global control of this disease. Aptamers have emerged as a potential rival for antibodies in therapeutics, diagnostics and biosensing due to their inherent characteristics. The aim of the current study was to select and characterize single-stranded DNA aptamers against MPT64 protein, one of the predominant secreted proteins of Mtb pathogen. Aptamers specific to MPT64 protein were selected in vitro using systematic evolution of ligands through exponential enrichment (SELEX) method. The selection was started with a pool of ssDNA library with randomized 40-nucleotide region. A total of 10 cycles were performed and seventeen aptamers with unique sequences were identified by sequencing. Dot Blot analysis was performed to monitor the SELEX process and to conduct the preliminary tests on the affinity and specificity of aptamers. Enzyme linked oligonucleotide assay (ELONA) showed that most of the aptamers were specific to the MPT64 protein with a linear correlation of R 2  = 0.94 for the most selective. Using Surface Plasmon Resonance (SPR), dissociation equilibrium constant K D of 8.92 nM was obtained. Bioinformatics analysis of the most specific aptamers revealed the existence of a conserved as well as distinct sequences and possible binding site on MPT64. The specificity was determined by testing non-target ESAT-6 and CFP-10. Negligible cross-reactivity confirmed the high specificity of the selected aptamer. The selected aptamer was further tested on clinical sputum samples using ELONA and had sensitivity and specificity of 91.3% and 90%, respectively. Microscopy, culture positivity and nucleotide amplification methods were used as reference standards. The aptamers studied could be further used for the development of medical diagnostic tools and detection assays for Mtb. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets

    PubMed Central

    Spiess, Christoph; Meyer, Anne S.; Reissmann, Stefanie; Frydman, Judith

    2010-01-01

    Chaperonins are key components of the cellular chaperone machinery. These large, cylindrical complexes contain a central cavity that binds to unfolded polypeptides and sequesters them from the cellular environment. Substrate folding then occurs in this central cavity in an ATP-dependent manner. The eukaryotic chaperonin TCP-1 ring complex (TRiC, also called CCT) is indispensable for cell survival because the folding of an essential subset of cytosolic proteins requires TRiC, and this function cannot be substituted by other chaperones. This specificity indicates that TRiC has evolved structural and mechanistic features that distinguish it from other chaperones. Although knowledge of this unique complex is in its infancy, we review recent advances that open the way to understanding the secrets of its folding chamber. PMID:15519848

  15. DBSecSys 2.0: a database of Burkholderia mallei and Burkholderia pseudomallei secretion systems.

    PubMed

    Memišević, Vesna; Kumar, Kamal; Zavaljevski, Nela; DeShazer, David; Wallqvist, Anders; Reifman, Jaques

    2016-09-20

    Burkholderia mallei and B. pseudomallei are the causative agents of glanders and melioidosis, respectively, diseases with high morbidity and mortality rates. B. mallei and B. pseudomallei are closely related genetically; B. mallei evolved from an ancestral strain of B. pseudomallei by genome reduction and adaptation to an obligate intracellular lifestyle. Although these two bacteria cause different diseases, they share multiple virulence factors, including bacterial secretion systems, which represent key components of bacterial pathogenicity. Despite recent progress, the secretion system proteins for B. mallei and B. pseudomallei, their pathogenic mechanisms of action, and host factors are not well characterized. We previously developed a manually curated database, DBSecSys, of bacterial secretion system proteins for B. mallei. Here, we report an expansion of the database with corresponding information about B. pseudomallei. DBSecSys 2.0 contains comprehensive literature-based and computationally derived information about B. mallei ATCC 23344 and literature-based and computationally derived information about B. pseudomallei K96243. The database contains updated information for 163 B. mallei proteins from the previous database and 61 additional B. mallei proteins, and new information for 281 B. pseudomallei proteins associated with 5 secretion systems, their 1,633 human- and murine-interacting targets, and 2,400 host-B. mallei interactions and 2,286 host-B. pseudomallei interactions. The database also includes information about 13 pathogenic mechanisms of action for B. mallei and B. pseudomallei secretion system proteins inferred from the available literature or computationally. Additionally, DBSecSys 2.0 provides details about 82 virulence attenuation experiments for 52 B. mallei secretion system proteins and 98 virulence attenuation experiments for 61 B. pseudomallei secretion system proteins. We updated the Web interface and data access layer to speed-up users

  16. The Group B Streptococcus–Secreted Protein CIP Interacts with C4, Preventing C3b Deposition via the Lectin and Classical Complement Pathways

    PubMed Central

    Pietrocola, Giampiero; Rindi, Simonetta; Rosini, Roberto; Buccato, Scilla

    2016-01-01

    The group B Streptococcus (GBS) is a leading cause of neonatal invasive disease. GBS bacteria are surrounded by a thick capsular polysaccharide that is a potent inhibitor of complement deposition via the alternative pathway. Several of its surface molecules can however activate the classical and lectin complement pathways, rendering this species still vulnerable to phagocytic killing. In this study we have identified a novel secreted protein named complement interfering protein (CIP) that downregulates complement activation via the classical and lectin pathways, but not the alternative pathway. The CIP protein showed high affinity toward C4b and inhibited its interaction with C2, presumably preventing the formation of the C4bC2a convertase. Addition of recombinant CIP to GBS cip-negative bacteria resulted in decreased deposition of C3b on their surface and in diminished phagocytic killing in a whole-blood assay. Our data reveal a novel strategy exploited by GBS to counteract innate immunity and could be valuable for the development of anti-infective agents against this important pathogen. PMID:26608922

  17. Deposition of anal-sac secretions by captive wolves (Canis lupus)

    USGS Publications Warehouse

    Asa, C.S.; Peterson, E.K.; Seal, U.S.; Mech, L.D.

    1985-01-01

    Deposition of anal-sac secretions by captive wolves was investigated by a labelling technique using protein-bound iodine125 and food dye. Wolves deposited secretions on some but not all scats. Adult males, especially the alpha male, deposited anal-sac secretions more frequently while defecating than did females or juveniles. Secretions sometimes also were deposited independently of defecation, suggesting a dual role in communication by these substances.

  18. The New Kid on the Block: A Specialized Secretion System during Bacterial Sporulation.

    PubMed

    Morlot, Cécile; Rodrigues, Christopher D A

    2018-02-02

    The transport of proteins across the bacterial cell envelope is mediated by protein complexes called specialized secretion systems. These nanomachines exist in both Gram-positive and Gram-negative bacteria and have been categorized into different types based on their structural components and function. Interestingly, multiple studies suggest the existence of a protein complex in endospore-forming bacteria that appears to be a new type of specialized secretion system. This protein complex is called the SpoIIIA-SpoIIQ complex and is an exception to the categorical norm since it appears to be a hybrid composed of different parts from well-defined specialized secretion systems. Here we summarize and discuss the current understanding of this complex and its potential role as a specialized secretion system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    PubMed Central

    Ren, Jun; Zhou, Wei; Wang, Jianxin

    2014-01-01

    Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945

  20. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds

    PubMed Central

    Borland, Helena; Vilhardt, Frederik

    2017-01-01

    A mechanistic link between neuron-to-neuron transmission of secreted amyloid and propagation of protein malconformation cytopathology and disease has recently been uncovered in animal models. An enormous interest in the unconventional secretion of amyloids from neurons has followed. Amphisomes and late endosomes are the penultimate maturation products of the autophagosomal and endosomal pathways, respectively, and normally fuse with lysosomes for degradation. However, under conditions of perturbed membrane trafficking and/or lysosomal deficiency, prelysosomal compartments may instead fuse with the plasma membrane to release any contained amyloid. After a brief introduction to the endosomal and autophagosomal pathways, we discuss the evidence for autophagosomal secretion (exophagy) of amyloids, with a comparative emphasis on Aβ1–42 and α-synuclein, as luminal and cytosolic amyloids, respectively. The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors, mainly for Parkinson’s disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds. PMID:28124989

  1. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    PubMed

    O'Donoghue, Anthony J; Knudsen, Giselle M; Beekman, Chapman; Perry, Jenna A; Johnson, Alexander D; DeRisi, Joseph L; Craik, Charles S; Bennett, Richard J

    2015-06-16

    Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.

  2. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome

    PubMed Central

    O’Donoghue, Anthony J.; Knudsen, Giselle M.; Beekman, Chapman; Perry, Jenna A.; Johnson, Alexander D.; DeRisi, Joseph L.; Craik, Charles S.; Bennett, Richard J.

    2015-01-01

    Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host. PMID:25944934

  3. Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants.

    PubMed

    Brautaset, Trygve; Williams, Mark D; Dillingham, Richard D; Kaufmann, Christine; Bennaars, Assumpta; Crabbe, Edward; Flickinger, Michael C

    2003-07-01

    The thermotolerant, restrictive methylotroph Bacillus methanolicus MGA3 (ATCC 53907) can secrete 55 g of glutamate per liter (maximum yield, 0.36 g/g) at 50 degrees C with methanol as a carbon source and a source of ammonia in fed-batch bioreactors. A homoserine dehydrogenase mutant, 13A52-8A66, secreting up to 35 g of L-lysine per liter in fed-batch fermentations had minimal 2-oxoglutarate dehydrogenase activity [7.3 nmol min(-1) (mg of protein)(-1)], threefold-increased pyruvate carboxylase activity [535 nmol min(-1) (mg of protein)(-1)], and elevated citrate synthase (CS) activity [292 nmol min(-1) (mg of protein)(-1)] and simultaneously secreted glutamate (20 to 30 g per liter) and L-lysine. The flow of carbon from oxaloacetate is split between transamination to aspartate and formation of citrate. To investigate the regulation of this branch point, the B. methanolicus gene citY encoding a CSII protein with activity at 50 degrees C was cloned from 13A52-8A66 into a CS-deficient Escherichia coli K2-1-4 strain. A citY-deficient B. methanolicus mutant, NCS-L-7, was also isolated from the parent strain of 13A52-8A66 by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, followed by selection with monofluoroacetate disks on glutamate plates. Characterization of these strains confirmed that citY in strain 13A52-8A66 was not altered and that B. methanolicus possessed several forms of CS. Analysis of citY cloned from NCS-L-7 showed that the reduced CS activity resulted from a frameshift mutation. The level of glutamate secreted by NCS-L-7 was reduced sevenfold and the ratio of L-lysine to glutamate secreted was increased 4.5-fold compared to the wild type in fed-batch cultures with glutamate feeding. This indicates that glutamate secretion in L-lysine-overproducing mutants can be altered in favor of increased L-lysine secretion by regulating in vivo CS activity.

  4. Role of the Bacillus methanolicus Citrate Synthase II Gene, citY, in Regulating the Secretion of Glutamate in l-Lysine-Secreting Mutants

    PubMed Central

    Brautaset, Trygve; Williams, Mark D.; Dillingham, Richard D.; Kaufmann, Christine; Bennaars, Assumpta; Crabbe, Edward; Flickinger, Michael C.

    2003-01-01

    The thermotolerant, restrictive methylotroph Bacillus methanolicus MGA3 (ATCC 53907) can secrete 55 g of glutamate per liter (maximum yield, 0.36 g/g) at 50°C with methanol as a carbon source and a source of ammonia in fed-batch bioreactors. A homoserine dehydrogenase mutant, 13A52-8A66, secreting up to 35 g of l-lysine per liter in fed-batch fermentations had minimal 2-oxoglutarate dehydrogenase activity [7.3 nmol min−1 (mg of protein)−1], threefold-increased pyruvate carboxylase activity [535 nmol min−1 (mg of protein)−1], and elevated citrate synthase (CS) activity [292 nmol min−1 (mg of protein)−1] and simultaneously secreted glutamate (20 to 30 g per liter) and l-lysine. The flow of carbon from oxaloacetate is split between transamination to aspartate and formation of citrate. To investigate the regulation of this branch point, the B. methanolicus gene citY encoding a CSII protein with activity at 50°C was cloned from 13A52-8A66 into a CS-deficient Escherichia coli K2-1-4 strain. A citY-deficient B. methanolicus mutant, NCS-L-7, was also isolated from the parent strain of 13A52-8A66 by N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis, followed by selection with monofluoroacetate disks on glutamate plates. Characterization of these strains confirmed that citY in strain 13A52-8A66 was not altered and that B. methanolicus possessed several forms of CS. Analysis of citY cloned from NCS-L-7 showed that the reduced CS activity resulted from a frameshift mutation. The level of glutamate secreted by NCS-L-7 was reduced sevenfold and the ratio of l-lysine to glutamate secreted was increased 4.5-fold compared to the wild type in fed-batch cultures with glutamate feeding. This indicates that glutamate secretion in l-lysine-overproducing mutants can be altered in favor of increased l-lysine secretion by regulating in vivo CS activity. PMID:12839772

  5. Construction of a reporter system to study Burkholderia mallei type III secretion and identification of the BopA effector protein function in intracellular survival.

    PubMed

    Whitlock, Gregory C; Estes, D Mark; Young, Glenn M; Young, Briana; Torres, Alfredo G

    2008-12-01

    Burkholderia mallei, the aetiological agent of glanders disease, is a Gram-negative facultative intracellular bacterium. Despite numerous studies, the detailed mechanism of its pathogenesis is almost unknown. The presence of a type III secretion system (TTSS) is one of the known mechanisms associated with virulence. An intact TTSS indicates that B. mallei is able to secrete proteins in response to different environmental conditions, which could play an important role in pathogenesis. Therefore, characterization of the TTSS and identification of the secreted proteins associated with bacterial pathogenesis could provide crucial information for the development of a candidate vaccine. In the current study, we used an enzymatic reporter system to establish some of the conditions enabling TTS. Construction of the TTSS bopA mutant revealed that BopA is important for B. mallei invasion and intracellular survival. Overall, our study elucidates how BopA can aid in the optimization of TTS and defines the function of TTS effectors in bacterial intracellular survival and invasion.

  6. Heat shock protein 70 secretion by neonatal tracheal tissue during mechanical ventilation: association with indices of tissue function and modeling.

    PubMed

    Chong, Euming; Dysart, Kevin C; Chidekel, Aaron; Locke, Robert; Shaffer, Thomas H; Miller, Thomas L

    2009-04-01

    Mechanical ventilation (MV) of the neonatal airway alters mechanical properties and activates tissue-modeling pathways. Heat shock protein (HSP70) is a marker of tissue injury and modulates inflammation, which may influence subsequent pulmonary tissue modeling by matrix metalloproteinases (MMPs). HSP70 secretion is up-regulated in MV airway tissues and associated with changes in airway elasticity and secretion of MMPs. Proximal tracheal segments were isolated in 13 newborn lambs and were either MV for 4 h or SHAM. At baseline and hourly, tracheal segments were flushed and tracheal elasticity was determined. Tracheal wash fluid was assayed for HSP70 by ELISA and for MMPs by substrate zymography. HSP70 secretion increased from baseline to a peak at 1 h in both groups (p < 0.01), greater in the MV group (p < 0.05), and returned to baseline values by 2 h. This response was in contrast to the progressive decrease in tracheal elasticity (p < 0.05). The HSP70 elevation pattern was noted in MMP-2, but beyond 1 h, MMP-2 returned to baseline values in MV group but remained elevated in SHAM (p < 0.05). HSP70 secretion is associated with the degree of biophysical tracheal injury as well as the time course of MMP-2 secretion by tracheal tissues.

  7. Secreted proteases of Trypanosoma brucei gambiense: possible targets for sleeping sickness control?

    PubMed

    Bossard, Géraldine; Cuny, Gérard; Geiger, Anne

    2013-01-01

    Human African trypanosomiasis (HAT) is caused by trypanosomes of the species Trypanosoma brucei and belongs to the neglected tropical diseases. Presently, WHO has listed 36 countries as being endemic for sleeping sickness. No vaccine is available, and disease treatment is difficult and has life-threatening side effects. Therefore, there is a crucial need to search for new therapeutic targets against the parasite. Trypanosome excreted-secreted proteins could be promising targets, as the total secretome was shown to inhibit, in vitro, host dendritic cell maturation and their ability to induce lymphocytic allogenic responses. The secretome was found surprisingly rich in various proteins and unexpectedly rich in diverse peptidases, covering more than ten peptidase families or subfamilies. Given their abundance, one may speculate that they would play a genuine role not only in classical "housekeeping" tasks but also in pathogenesis. The paper reviews the deleterious role of proteases from trypanosomes, owing to their capacity to degrade host circulating or structural proteins, as well as proteic hormones, causing severe damage and preventing host immune response. In addition, proteases account for a number of drug targets, such drugs being used to treat severe diseases such AIDS. This review underlines the importance of secreted proteins and especially of secreted proteases as potential targets in HAT-fighting strategies. It points out the need to conduct further investigations on the specific role of each of these various proteases in order to identify those playing a central role in sleeping sickness and would be suitable for drug targeting. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  8. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion.

    PubMed

    Venkatesh, Humsa S; Johung, Tessa B; Caretti, Viola; Noll, Alyssa; Tang, Yujie; Nagaraja, Surya; Gibson, Erin M; Mount, Christopher W; Polepalli, Jai; Mitra, Siddhartha S; Woo, Pamelyn J; Malenka, Robert C; Vogel, Hannes; Bredel, Markus; Mallick, Parag; Monje, Michelle

    2015-05-07

    Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Insulin secretion and GLUT-2 expression in undernourished neonate rats.

    PubMed

    Lopes Da Costa, Célia; Sampaio De Freitas, Marta; Sanchez Moura, Anibal

    2004-04-01

    In previous studies, we verified increased insulin sensitivity in adult male offspring of lactating rats readjusting to lack of insulin secretion reduction brought about by protein restriction during lactation. The present study aims to evaluate the effects of maternal protein undernutrition during lactation on glucose-induced insulin secretion and GLUT-2 expression in beta-cells of neonate male and female rats. Lactating Wistar rats were given a protein-free diet during the first 10 days and a normal diet (22% of protein) until weaning. The neonates were separated at birth by sex and diet and studied at 4, 8 and 21 days of lactation. Glucose-induced insulin secretion by pancreatic islets was analyzed by radioimmunoassay and GLUT-2 expression in beta-cells by Western blot. Glucose-induced insulin secretion of the undernourished groups was higher than in the control groups except among females. When comparing the male and female groups and the control and undernourished groups, female neonates showed significantly greater insulin secretion than the male group. Also it was noted that undernutrition induced greater GLUT-2 expression. For instance, comparing the undernourished male and female neonates there was an increase in female GLUT-2 expression on day 4. On the other hand, in undernourished male neonates a GLUT-2 expression increased later in lactation. In conclusion, during a short term, maternal undernutrition induces an increase of the glucose-induced insulin secretion only in male neonates and is associated with an increase in GLUT-2 expression in the beta-cell.

  10. Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes.

    PubMed

    Hussey, Richard S; Huang, Guozhong; Allen, Rex

    2011-01-01

    Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.

  11. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function

    PubMed Central

    Lasica, Anna M.; Ksiazek, Miroslaw; Madej, Mariusz; Potempa, Jan

    2017-01-01

    Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is

  12. Secretion profiles of fungi as potential tools for metal ecotoxicity assessment: a study of enzymatic system in Trametes versicolor.

    PubMed

    Lebrun, Jérémie D; Demont-Caulet, Nathalie; Cheviron, Nathalie; Laval, Karine; Trinsoutrot-Gattin, Isabelle; Mougin, Christian

    2011-01-01

    The relationship between the expression of extracellular enzymatic system and a metal stress is scarce in fungi, hence limiting the possible use of secretion profiles as tools for metal ecotoxicity assessment. In the present study, we investigated the effect of Zn, Cu, Pb and Cd, tested alone or in equimolar cocktail, on the secretion profiles at enzymatic and protein levels in Trametesversicolor. For that purpose, extracellular hydrolases (acid phosphatase, β-glucosidase, β-galactosidase and N-acetyl-β-glucosaminidase) and ligninolytic oxidases (laccase, Mn-peroxidase) were monitored in liquid cultures. Fungal secretome was analyzed by electrophoresis and laccase secretion was characterized by western-blot and mass spectrometry analyses. Our results showed that all hydrolase activities were inhibited by the metals tested alone or in cocktail, whereas oxidase activities were specifically stimulated by Cu, Cd and metal cocktail. At protein level, metal exposure modified the electrophoretic profiles of fungal secretome and affected the diversity of secreted proteins. Two laccase isoenzymes, LacA and LacB, identified by mass spectrometry were differentially glycosylated according to the metal exposure. The amount of secreted LacA and LacB was strongly correlated with the stimulation of laccase activity by Cu, Cd and metal cocktail. These modifications of extracellular enzymatic system suggest that fungal oxidases could be used as biomarkers of metal exposure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Improvements in the Protein Identifier Cross-Reference service.

    PubMed

    Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A

    2012-07-01

    The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.

  14. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    PubMed Central

    Li, Yi-Ping; Kang, Hye Na; Babiuk, Lorne A; Liu, Qiang

    2006-01-01

    AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-γ secreting cells, and cytotoxic T lymphocyte assays. RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations. PMID:17131474

  15. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum.

    PubMed

    Paper, Janet M; Scott-Craig, John S; Adhikari, Neil D; Cuomo, Christina A; Walton, Jonathan D

    2007-09-01

    High-throughput MS/MS was used to identify proteins secreted by Fusarium graminearum (Gibberella zeae) during growth on 13 media in vitro and in planta during infection of wheat heads. In vitro secreted proteins were collected from the culture filtrates, and in planta proteins were collected by vacuum infiltration. A total of 289 proteins (229 in vitro and 120 in planta) were identified with high statistical confidence. Forty-nine of the in planta proteins were not found in any of the in vitro conditions. The majority (91-100%) of the in vitro proteins had predicted signal peptides, but only 56% of the in planta proteins. At least 13 of the nonsecreted proteins found only in planta were single-copy housekeeping enzymes, including enolase, triose phosphate isomerase, phosphoglucomutase, calmodulin, aconitase, and malate dehydrogenase. The presence of these proteins in the in planta but not in vitro secretome might indicate that significant fungal lysis occurs during pathogenesis. On the other hand, several of the proteins lacking signal peptides that were found in planta have been reported to be potent immunogens secreted by animal pathogenic fungi, and therefore could be important in the interaction between F. graminearum and its host plants.

  16. Impact of neutrophil-secreted myeloid related proteins 8 and 14 (MRP 8/14) on leishmaniasis progression.

    PubMed

    Contreras, Irazú; Shio, Marina T; Cesaro, Annabelle; Tessier, Philippe A; Olivier, Martin

    2013-01-01

    The myeloid-related proteins (MRPs) 8/14 are small proteins mainly produced by neutrophils, which have been reported to induce NO production in macrophages. On the other hand, Leishmania survives and multiplies within phagocytes by inactivating several of their microbicidal functions. Whereas MRPs are rapidly released during the innate immune response, their role in the regulation of Leishmaniasis is still unknown. In vitro experiments revealed that Leishmania infection alters MRP-induced signaling, leading to inhibition of macrophage functions (NO, TNF-α). In contrast, MRP-primed cells showed normal signaling activation and NO production in response to Leishmania infection. Using a murine air-pouch model, we observed that infection with L. major induced leukocyte recruitment and MRP secretion comparable to LPS-treated mice. Depletion of MRPs significantly reduced these inflammatory events and augmented both parasite load and footpad swelling during the first 8 weeks post-infection, as also observed in MRP KO mice. On the contrary, mouse treatment with recombinant MRPs (rMRPs) had the opposite effect. Collectively, our results suggest that rapid secretion of MRPs by neutrophils at the site of infection may protect uninfected macrophages and favor a more efficient innate inflammatory response against Leishmania infection. In summary, our study reveals the critical role played by MRPs in the regulation of Leishmania infection and how this pathogen can subvert its action.

  17. Impact of Neutrophil-Secreted Myeloid Related Proteins 8 and 14 (MRP 8/14) on Leishmaniasis Progression

    PubMed Central

    Contreras, Irazú; Shio, Marina T.; Cesaro, Annabelle; Tessier, Philippe A.; Olivier, Martin

    2013-01-01

    The myeloid-related proteins (MRPs) 8/14 are small proteins mainly produced by neutrophils, which have been reported to induce NO production in macrophages. On the other hand, Leishmania survives and multiplies within phagocytes by inactivating several of their microbicidal functions. Whereas MRPs are rapidly released during the innate immune response, their role in the regulation of Leishmaniasis is still unknown. In vitro experiments revealed that Leishmania infection alters MRP-induced signaling, leading to inhibition of macrophage functions (NO, TNF-α). In contrast, MRP-primed cells showed normal signaling activation and NO production in response to Leishmania infection. Using a murine air-pouch model, we observed that infection with L. major induced leukocyte recruitment and MRP secretion comparable to LPS-treated mice. Depletion of MRPs significantly reduced these inflammatory events and augmented both parasite load and footpad swelling during the first 8 weeks post-infection, as also observed in MRP KO mice. On the contrary, mouse treatment with recombinant MRPs (rMRPs) had the opposite effect. Collectively, our results suggest that rapid secretion of MRPs by neutrophils at the site of infection may protect uninfected macrophages and favor a more efficient innate inflammatory response against Leishmania infection. In summary, our study reveals the critical role played by MRPs in the regulation of Leishmania infection and how this pathogen can subvert its action. PMID:24086787

  18. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion.

    PubMed

    Branco, Renato Chaves Souto; Camargo, Rafael Ludemann; Batista, Thiago Martins; Vettorazzi, Jean Franciesco; Borck, Patrícia Cristine; Dos Santos-Silva, Junia Carolina Rebelo; Boschero, Antonio Carlos; Zoppi, Cláudio Cesar; Carneiro, Everardo Magalhães

    2017-09-01

    Taurine (Tau) restores β-cell function in obesity; however, its action is lost in malnourished obese rodents. Here, we investigated the mechanisms involved in the lack of effects of Tau in this model. C57BL/6 mice were fed a control diet (CD) (14% protein) or a protein-restricted diet (RD) (6% protein) for 6 wk. Afterward, mice received a high-fat diet (HFD) for 8 wk [CD + HFD (CH) and RD + HFD (RH)] with or without 5% Tau supplementation after weaning on their drinking water [CH + Tau (CHT) and RH + Tau (RHT)]. The HFD increased insulin secretion through mitochondrial metabolism in CH and RH. Tau prevented all those alterations in CHT only. The expression of the taurine transporter (Tau-T), as well as Tau content in pancreatic islets, was increased in CH but had no effect on RH. Protein malnutrition programs β cells and impairs Tau-induced restoration of mitochondrial metabolism and biogenesis. This may be associated with modulation of the expression of Tau-T in pancreatic islets, which may be responsible for the absence of effect of Tau in protein-malnourished obese mice.-Branco, R. C. S., Camargo, R. L., Batista, T. M., Vettorazzi, J. F., Borck, P. C., dos Santos-Silva, J. C. R., Boschero, A. C., Zoppi, C. C., Carneiro, E. M. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion. © FASEB.

  19. Secretion of prebeta HDL increases with the suppression of cholesteryl ester transfer protein in Hep G2 cells.

    PubMed

    Sawada, S; Sugano, M; Makino, N; Okamoto, H; Tsuchida, K

    1999-10-01

    Prebeta HDL are small, protein rich lipoproteins that are predominantly composed of apo A-I, without apo A-II. Prebeta HDL are secreted from the liver as nascent HDL and/or are produced in the incubated plasma by cholesteryl ester transfer protein (CETP). However, the role of CETP in the secretion of HDL from the liver has yet to be determined. In the present study, we examined the effect of the suppression of hepatic CETP by antisense oligodeoxynucleotides (ODNs) against CETP targeted to the liver on the secretion of apo A-I using a Hep G2 cell culture. The ODNs against CETP were coupled to asialoglycoprotein (ASOR) carrier molecules, which serve as an important method for the regulation of liver gene expression. Hep G2 cells were cultured in DMEM supplemented with 10 FBS. After 2 days, the medium was changed to DMEM with EGF and the cells were divided into three groups. The control group received saline, while the sense group was mixed with the sense ODNs complex and the antisense group was mixed with the antisense ODNs complex, respectively, for 2 days. Both the hepatic CETP mRNA and the CETP mass in the medium in the antisense group decreased significantly more than in the sense and the control groups (CETP mass: 1.697 + /- 0.410 ng/mg cell protein vs. 2.367 + /- 0.22 and 2.360 + /- 0.139, n = 3 in each determination). In contrast, both the hepatic apo A-I mRNA and the apo A-I mass in the medium in the antisense group were significantly higher than those in the sense and the control groups (apo A-I mass; 1.877 + /- 0.215 micro/mg cell protein vs. 1.213 + /- 0.282 and 1.097 + /- 0.144, n = 3 in each determination). The increase in apo A-I was mainly due to the increase in prebeta apo A-I. These findings may partly explain why HDL and apo A-I increase in patients with CETP deficiency, while also indicating the possibility that the original level of prebeta HDL is sufficient in such patients.

  20. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague-Dawley rats.

    PubMed

    Heden, Timothy D; Morris, E Matthew; Kearney, Monica L; Liu, Tzu-Wen; Park, Young-Min; Kanaley, Jill A; Thyfault, John P

    2014-04-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague-Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ∼27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ∼39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h(-1)) than in LF- (7.60 ± 0.57 mmol·h(-1)) fed animals. Hepatic TAG content was ∼2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g(-1) tissue) than in LF- (0.50 ± 0.16 nmol·g(-1) tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression.