Sample records for identify therapeutic agents

  1. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  2. The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity.

    PubMed

    Reznikov, Leah R; Meyerholz, David K; Abou Alaiwa, Mahmoud H; Kuan, Shin-Ping; Liao, Yan-Shin J; Bormann, Nicholas L; Bair, Thomas B; Price, Margaret; Stoltz, David A; Welsh, Michael J

    2018-04-05

    Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity. As a comparison, we also utilized previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating airway hyperreactivity; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.

  3. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents.

    PubMed

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A; Clarke, Ian D; Barszczyk, Mark S; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W; Taylor, Michael D; Rutka, James T; Jones, Chris; Dirks, Peter B; Zadeh, Gelareh; Hawkins, Cynthia

    2014-10-01

    Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window. ©2014 American Association for Cancer Research.

  4. Potential therapeutic agents derived from the cannabinoid nucleus.

    PubMed

    Pars, H G; Howes, J F

    1977-01-01

    Drugs derived from Cannabis sativa (Cannabinceae) were used until the 1940's for their stimulant and depressant effects for treating somatic and psychiatric illnesses. Renewed interest in marihuana research began in the 1970's and again pointed to the therapeutic potential of cannabinoids. Safer and more useful therapeutic agents may be generated from cannabinoids similarly to morphine, lysergic acid diethylamide, and cocaine which have structurally related analgesics, oxytoxics, and local anesthetics respectively. It has been shown that the C-ring in cannabinoids can be substituted with a variety of nitrogen and sulfur-containing rings without loss of CNS (central nervous system) activity. Cannabinoids have been shown to inhibit prostaglandin synthesis, intensify pressor effects of endogenous amines like norepinephrine, and enhance the stimulant effects of amphetamine. Cannabinoids' therapeutic potential lies in the areas of analgesics and anticonvulsants, and for use as a sedative-hypnotic, an antiglaucoma agent, an antiasthmatic agent, an antidiarrheal agent, and possibly as an anticancer and immunosuppressant agent.

  5. Novel therapeutic agents for osteosarcoma.

    PubMed

    O'Day, Kathleen; Gorlick, Richard

    2009-04-01

    Osteosarcoma is the most common malignant primary bone tumor in childhood. Despite multiagent chemotherapy and aggressive surgical resection, 30% of patients with localized disease and 80% of patients with metastatic disease at diagnosis will relapse. Survival for these patients has remained unchanged over the past 20 years. A number of novel agents in various stages of development hold promise for improving therapy for patients with osteosarcoma. This article will focus on novel therapeutic approaches, including agents targeting signal-transduction pathways, inhibitors of the tumor microenvironment and immunomodulatory agents, as well as overcoming resistance mechanisms and the use of novel delivery mechanisms.

  6. Timing and Characteristics of Cumulative Evidence Available on Novel Therapeutic Agents Receiving Food and Drug Administration Accelerated Approval.

    PubMed

    Naci, Huseyin; Wouters, Olivier J; Gupta, Radhika; Ioannidis, John P A

    2017-06-01

    Policy Points: Randomized trials-the gold standard of evaluating effectiveness-constitute a small minority of existing evidence on agents given accelerated approval. One-third of randomized trials are in therapeutic areas outside of FDA approval and less than half evaluate the therapeutic benefits of these agents but use them instead as common backbone treatments. Agents receiving accelerated approval are often tested concurrently in several therapeutic areas. For most agents, no substantial time lag is apparent between the average start dates of randomized trials evaluating their effectiveness and those using them as part of background therapies. There appears to be a tendency for therapeutic agents receiving accelerated approval to quickly become an integral component of standard treatment, despite potential shortcomings in their evidence base. Therapeutic agents treating serious conditions are eligible for Food and Drug Administration (FDA) accelerated approval. The clinical evidence accrued on agents receiving accelerated approval has not been systematically evaluated. Our objective was to assess the timing and characteristics of available studies. We first identified clinical studies of novel therapeutic agents receiving accelerated approval. We then (1) categorized those studies as randomized or nonrandomized, (2) explored whether they evaluated the FDA-approved indications, and (3) documented the available treatment comparisons. We also meta-analyzed the difference in start times between randomized studies that (1) did or did not evaluate approved indications and (2) were or were not designed to evaluate the agent's effectiveness. In total, 37 novel therapeutic agents received accelerated approval between 2000 and 2013. Our search of ClinicalTrials.gov identified 7,757 studies, which included 1,258,315 participants. Only one-third of identified studies were randomized controlled trials. Of 1,631 randomized trials with advanced recruitment status, 906 were

  7. Anti-diabetic potential of peptides: Future prospects as therapeutic agents.

    PubMed

    Marya; Khan, Haroon; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2018-01-15

    Diabetes mellitus is a metabolic disorder in which the glucose level in blood exceeds beyond the normal level. Persistent hyperglycemia leads to diabetes late complication and obviously account for a large number of morbidity and mortality worldwide. Numerous therapeutic options are available for the treatment of diabetes including insulin for type I and oral tablets for type II, but its effective management is still a dream. To date, several options are under investigation in various research laboratories for efficacious and safer agents. Of them, peptides are currently amongst the most widely investigated potential therapeutic agents whose design and optimal uses are under development. A number of natural and synthetic peptides have so far been found with outstanding antidiabetic effect mediated through diverse mechanisms. The applications of new emerging techniques and drug delivery systems further offer opportunities to achieve the desired target outcomes. Some outstanding peptides in preclinical and clinical studies with better efficacy and safety profile have already been identified. Further detail studies on these peptides may therefore lead to significant clinically useful antidiabetic agents. Copyright © 2017. Published by Elsevier Inc.

  8. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  9. A virtual therapeutic environment with user projective agents.

    PubMed

    Ookita, S Y; Tokuda, H

    2001-02-01

    Today, we see the Internet as more than just an information infrastructure, but a socializing place and a safe outlet of inner feelings. Many personalities develop aside from real world life due to its anonymous environment. Virtual world interactions are bringing about new psychological illnesses ranging from netaddiction to technostress, as well as online personality disorders and conflicts in multiple identities that exist in the virtual world. Presently, there are no standard therapy models for the virtual environment. There are very few therapeutic environments, or tools especially made for virtual therapeutic environments. The goal of our research is to provide the therapy model and middleware tools for psychologists to use in virtual therapeutic environments. We propose the Cyber Therapy Model, and Projective Agents, a tool used in the therapeutic environment. To evaluate the effectiveness of the tool, we created a prototype system, called the Virtual Group Counseling System, which is a therapeutic environment that allows the user to participate in group counseling through the eyes of their Projective Agent. Projective Agents inherit the user's personality traits. During the virtual group counseling, the user's Projective Agent interacts and collaborates to recover and increase their psychological growth. The prototype system provides a simulation environment where psychologists can adjust the parameters and customize their own simulation environment. The model and tool is a first attempt toward simulating online personalities that may exist only online, and provide data for observation.

  10. Pharmacokinetic parameters explain the therapeutic activity of antimicrobial agents in a silkworm infection model.

    PubMed

    Paudel, Atmika; Panthee, Suresh; Urai, Makoto; Hamamoto, Hiroshi; Ohwada, Tomohiko; Sekimizu, Kazuhisa

    2018-01-25

    Poor pharmacokinetic parameters are a major reason for the lack of therapeutic activity of some drug candidates. Determining the pharmacokinetic parameters of drug candidates at an early stage of development requires an inexpensive animal model with few associated ethical issues. In this study, we used the silkworm infection model to perform structure-activity relationship studies of an antimicrobial agent, GPI0039, a novel nitrofuran dichloro-benzyl ester, and successfully identified compound 5, a nitrothiophene dichloro-benzyl ester, as a potent antimicrobial agent with superior therapeutic activity in the silkworm infection model. Further, we compared the pharmacokinetic parameters of compound 5 with a nitrothiophene benzyl ester lacking chlorine, compound 7, that exerted similar antimicrobial activity but had less therapeutic activity in silkworms, and examined the metabolism of these antimicrobial agents in human liver fractions in vitro. Compound 5 had appropriate pharmacokinetic parameters, such as an adequate half-life, slow clearance, large area under the curve, low volume of distribution, and long mean residence time, compared with compound 7, and was slowly metabolized by human liver fractions. These findings suggest that the therapeutic effectiveness of an antimicrobial agent in the silkworms reflects appropriate pharmacokinetic properties.

  11. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents

    PubMed Central

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-01-01

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included. PMID:27898016

  12. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents.

    PubMed

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-11-25

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included.

  13. Therapeutic interventions in sepsis: current and anticipated pharmacological agents

    PubMed Central

    Shukla, Prashant; Rao, G Madhava; Pandey, Gitu; Sharma, Shweta; Mittapelly, Naresh; Shegokar, Ranjita; Mishra, Prabhat Ranjan

    2014-01-01

    Sepsis is a clinical syndrome characterized by a multisystem response to a pathogenic assault due to underlying infection that involves a combination of interconnected biochemical, cellular and organ–organ interactive networks. After the withdrawal of recombinant human-activated protein C (rAPC), researchers and physicians have continued to search for new therapeutic approaches and targets against sepsis, effective in both hypo- and hyperinflammatory states. Currently, statins are being evaluated as a viable option in clinical trials. Many agents that have shown favourable results in experimental sepsis are not clinically effective or have not been clinically evaluated. Apart from developing new therapeutic molecules, there is great scope for for developing a variety of drug delivery strategies, such as nanoparticulate carriers and phospholipid-based systems. These nanoparticulate carriers neutralize intracorporeal LPS as well as deliver therapeutic agents to targeted tissues and subcellular locations. Here, we review and critically discuss the present status and new experimental and clinical approaches for therapeutic intervention in sepsis. PMID:24977655

  14. Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents.

    PubMed

    Adeyemi, Oluyomi Stephen; Sugi, Tatsuki; Han, Yongmei; Kato, Kentaro

    2018-02-01

    Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease that affects nearly one-third of the human population. The primary infection can be asymptomatic in healthy individuals but may prove fatal in immunocompromised individuals. Available treatment options for toxoplasmosis patients are limited, underscoring the urgent need to identify and develop new therapies. Non-biased screening of libraries of chemical compounds including the repurposing of well-characterized compounds is emerging as viable approach to achieving this goal. In the present investigation, we screened libraries of natural product and FDA-approved compounds to identify those that inhibited T. gondii growth. We identified 32 new compounds that potently inhibit T. gondii growth. Our findings are new and promising, and further strengthen the prospects of drug repurposing as well as the screening of a wide range of chemical compounds as a viable source of alternative anti-parasitic therapeutic agents.

  15. An overview of cytokines and cytokine antagonists as therapeutic agents.

    PubMed

    Donnelly, Raymond P; Young, Howard A; Rosenberg, Amy S

    2009-12-01

    Cytokine-based therapies have the potential to provide novel treatments for cancer, autoimmune diseases, and many types of infectious disease. However, to date, the full clinical potential of cytokines as drugs has been limited by a number of factors. To discuss these limitations and explore ways to overcome them, the FDA partnered with the New York Academy of Sciences in March 2009 to host a two-day forum to discuss more effective ways to harness the clinical potential of cytokines and cytokine antagonists as therapeutic agents. The first day was focused primarily on the use of recombinant cytokines as therapeutic agents for treatment of human diseases. The second day focused largely on the use of cytokine antagonists as therapeutic agents for treatment of human diseases. This issue of the Annals includes more than a dozen papers that summarize much of the information that was presented during this very informative two-day conference.

  16. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    DOE PAGES

    McKinlay, Alistair C.; Allan, Phoebe K.; Renouf, Catherine L.; ...

    2014-12-01

    The highly porous nature of metal-organic frameworks (MOFs) offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  17. 78 FR 77471 - Prospective Grant of Exclusive License for: Convection Enhanced Delivery of a Therapeutic Agent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ...-toxic macromolecular MRI contrast agents such as chelated Gd(III). These macromolecular imaging agents... Exclusive License for: Convection Enhanced Delivery of a Therapeutic Agent With a Surrogate Tracer for... Enhanced Delivery of Therapeutic Agents'', U.S. Provisional Patent Application 60/413,673 (filed September...

  18. Applications of inorganic nanoparticles as therapeutic agents

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hyeon, Taeghwan

    2014-01-01

    During the last decade, various functional nanostructured materials with interesting optical, magnetic, mechanical and chemical properties have been extensively applied to biomedical areas including imaging, diagnosis and therapy. In therapeutics, most research has focused on the application of nanoparticles as potential delivery vehicles for drugs and genes, because nanoparticles in the size range of 2-100 nm can interact with biological systems at the molecular level, and allow targeted delivery and passage through biological barriers. Recent investigations have even revealed that several kinds of nanomaterials are intrinsically therapeutic. Not only can they passively interact with cells, but they can also actively mediate molecular processes to regulate cell functions. This can be seen in the treatment of cancer via anti-angiogenic mechanisms as well as the treatment of neurodegenerative diseases by effectively controlling oxidative stress. This review will present recent applications of inorganic nanoparticles as therapeutic agents in the treatment of disease.

  19. Therapeutic strategies with oral fluoropyrimidine anticancer agent, S-1 against oral cancer.

    PubMed

    Harada, Koji; Ferdous, Tarannum; Ueyama, Yoshiya

    2017-08-01

    Oral cancer has been recognized as a tumor with low sensitivity to anticancer agents. However, introduction of S-1, an oral cancer agent is improving treatment outcome for patients with oral cancer. In addition, S-1, as a main drug for oral cancer treatment in Japan can be easily available for outpatients. In fact, S-1 exerts high therapeutic effects with acceptable side effects. Moreover, combined chemotherapy with S-1 shows higher efficacy than S-1 alone, and combined chemo-radiotherapy with S-1 exerts remarkable therapeutic effects. Furthermore, we should consider the combined therapy of S-1 and molecular targeting agents right now as these combinations were reportedly useful for oral cancer treatment. Here, we describe our findings related to S-1 that were obtained experimentally and clinically, and favorable therapeutic strategies with S-1 against oral cancer with bibliographic considerations.

  20. Cosmetic Preservatives as Therapeutic Corneal and Scleral Tissue Cross-Linking Agents

    PubMed Central

    Babar, Natasha; Kim, MiJung; Cao, Kerry; Shimizu, Yukari; Kim, Su-Young; Takaoka, Anna; Trokel, Stephen L.; Paik, David C.

    2015-01-01

    Purpose. Previously, aliphatic β-nitroalcohols (BNAs) have been studied as a means to chemically induce tissue cross-linking (TXL) of cornea and sclera. There are a number of related and possibly more potent agents, known as formaldehyde releasers (FARs), that are in commercial use as preservatives in cosmetics and other personal care products. The present study was undertaken in order to screen such compounds for potential clinical utility as therapeutic TXL agents. Methods. A chemical registry of 62 FARs was created from a literature review and included characteristics relevant to TXL such as molecular weight, carcinogenicity/mutagenicity, toxicity, hydrophobicity, and commercial availability. From this registry, five compounds [diazolidinyl urea (DAU), imidazolidinyl urea (IMU), sodium hydroxymethylglycinate (SMG), DMDM hydantoin (DMDM), 5-Ethyl-3,7-dioxa-1-azabicyclo [3.3.0] octane (OCT)] were selected for efficacy screening using two independent systems, an ex vivo rabbit corneal cross-linking simulation setup and incubation of cut scleral tissue pieces. Treatments were conducted at pH 7.4 or 8.5 for 30 minutes. Efficacy was evaluated using thermal denaturation temperature (Tm), and cell toxicity was studied using the trypan blue exclusion method. Results. Cross-linking effects in the five selected FARs were pH and concentration dependent. Overall, the Tm shifts were in agreement with both cornea and sclera. By comparison with BNAs previously reported upon, the FARs identified in this study were significantly more potent but with similar or better cytotoxicity. Conclusions. The FARs, a class of compounds well known to the cosmetic industry, may have utility as therapeutic TXL agents. The compounds studied thus far show promise and will be further tested. PMID:25634979

  1. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewari-Singh, Neera, E-mail: Neera.Tewari-Singh@ucdenver.edu; Jain, Anil K., E-mail: Anil.Jain@ucdenver.edu; Inturi, Swetha, E-mail: Swetha.Inturi@ucdenver.edu

    effective system to evaluate and optimize therapeutics. ► Show that doxycycline and dexamethasone reduce NM-caused ocular injuries ► Demonstrate that silibinin effectively reverses NM-caused ocular injury endpoints ► Suggest optimization of identified agents against ocular injuries by vesicants.« less

  2. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis

    PubMed Central

    Pandya, Rachna S.; Zhu, Haining; Li, Wei; Bowser, Robert; Friedlander, Robert M.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient’s life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression. PMID:23864030

  3. Functional kinomics identifies candidate therapeutic targets in head and neck cancer

    PubMed Central

    Moser, Russell; Xu, Chang; Kao, Michael; Annis, James; Lerma, Luisa Angelica; Schaupp, Christopher M.; Gurley, Kay E.; Jang, In Sock; Biktasova, Asel; Yarbrough, Wendell G.; Margolin, Adam A.; Grandori, Carla; Kemp, Christopher J.; Méndez, Eduardo

    2014-01-01

    Purpose To identify novel therapeutic drug targets for p53 mutant head and neck squamous cell carcinoma (HNSCC). Experimental Design RNAi kinome viability screens were performed on HNSCC cells including autologous pairs from primary tumor and recurrent/metastatic lesions, and in parallel on murine squamous cell carcinoma (MSCC) cells derived from tumors of inbred mice bearing germline mutations in Trp53, and p53 regulatory genes: Atm, Prkdc, and p19Arf. Cross-species analysis of cell lines stratified by p53 mutational status and metastatic phenotype was utilized to select 38 kinase targets. Both primary and secondary RNAi validation assays were performed on additional HNSCC cell lines to credential these kinase targets utilizing multiple phenotypic endpoints. Kinase targets were also examined via chemical inhibition utilizing a panel of kinase inhibitors. A preclinical study was conducted on the WEE1 kinase inhibitor, MK-1775. Results Our functional kinomics approach identified novel survival kinases in HNSCC involved in G2/M cell cycle checkpoint, SFK, PI3K and FAK pathways. RNAi mediated knockdown and chemical inhibition of the WEE1 kinase with a specific inhibitor, MK-1775, had a significant effect on both viability and apoptosis. Sensitivity to the MK-1775 kinase inhibitor is in part determined by p53 mutational status, and due to unscheduled mitotic entry. MK-1775 displays single-agent activity and potentiates the efficacy of cisplatin in a p53 mutant HNSCC xenograft model. Conclusions WEE1 kinase is a potential therapeutic drug target for HNSCC. This study supports the application of a functional kinomics strategy to identify novel therapeutic targets for cancer. PMID:25125259

  4. Functional kinomics identifies candidate therapeutic targets in head and neck cancer.

    PubMed

    Moser, Russell; Xu, Chang; Kao, Michael; Annis, James; Lerma, Luisa Angelica; Schaupp, Christopher M; Gurley, Kay E; Jang, In Sock; Biktasova, Asel; Yarbrough, Wendell G; Margolin, Adam A; Grandori, Carla; Kemp, Christopher J; Méndez, Eduardo

    2014-08-15

    To identify novel therapeutic drug targets for p53-mutant head and neck squamous cell carcinoma (HNSCC). RNAi kinome viability screens were performed on HNSCC cells, including autologous pairs from primary tumor and recurrent/metastatic lesions, and in parallel on murine squamous cell carcinoma (MSCC) cells derived from tumors of inbred mice bearing germline mutations in Trp53, and p53 regulatory genes: Atm, Prkdc, and p19(Arf). Cross-species analysis of cell lines stratified by p53 mutational status and metastatic phenotype was used to select 38 kinase targets. Both primary and secondary RNAi validation assays were performed on additional HNSCC cell lines to credential these kinase targets using multiple phenotypic endpoints. Kinase targets were also examined via chemical inhibition using a panel of kinase inhibitors. A preclinical study was conducted on the WEE1 kinase inhibitor, MK-1775. Our functional kinomics approach identified novel survival kinases in HNSCC involved in G2-M cell-cycle checkpoint, SFK, PI3K, and FAK pathways. RNAi-mediated knockdown and chemical inhibition of the WEE1 kinase with a specific inhibitor, MK-1775, had a significant effect on both viability and apoptosis. Sensitivity to the MK-1775 kinase inhibitor is in part determined by p53 mutational status, and due to unscheduled mitotic entry. MK-1775 displays single-agent activity and potentiates the efficacy of cisplatin in a p53-mutant HNSCC xenograft model. WEE1 kinase is a potential therapeutic drug target for HNSCC. This study supports the application of a functional kinomics strategy to identify novel therapeutic targets for cancer. ©2014 American Association for Cancer Research.

  5. A systematic approach to identify therapeutic effects of natural products based on human metabolite information.

    PubMed

    Noh, Kyungrin; Yoo, Sunyong; Lee, Doheon

    2018-06-13

    Natural products have been widely investigated in the drug development field. Their traditional use cases as medicinal agents and their resemblance of our endogenous compounds show the possibility of new drug development. Many researchers have focused on identifying therapeutic effects of natural products, yet the resemblance of natural products and human metabolites has been rarely touched. We propose a novel method which predicts therapeutic effects of natural products based on their similarity with human metabolites. In this study, we compare the structure, target and phenotype similarities between natural products and human metabolites to capture molecular and phenotypic properties of both compounds. With the generated similarity features, we train support vector machine model to identify similar natural product and human metabolite pairs. The known functions of human metabolites are then mapped to the paired natural products to predict their therapeutic effects. With our selected three feature sets, structure, target and phenotype similarities, our trained model successfully paired similar natural products and human metabolites. When applied to the natural product derived drugs, we could successfully identify their indications with high specificity and sensitivity. We further validated the found therapeutic effects of natural products with the literature evidence. These results suggest that our model can match natural products to similar human metabolites and provide possible therapeutic effects of natural products. By utilizing the similar human metabolite information, we expect to find new indications of natural products which could not be covered by previous in silico methods.

  6. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    PubMed

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-10-01

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment

    PubMed Central

    Zhang, Yilong; Jain, Rajul K.; Zhu, Min

    2015-01-01

    The hepatocyte growth factor (HGF): MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents—either as therapeutic proteins or small molecules that target the HGF/MET pathway—have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed. PMID:28536405

  8. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K [Idaho Falls, ID

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  9. Cyclodextrins as new formulation entities and therapeutic agents.

    PubMed

    Sikharam, Sreevalli; Egan, Talmage D; Kern, Steven E

    2005-08-01

    This review is focused on recent advances in the application of cyclodextrins to new drug formulations, with emphasis on the field of anesthesia. Cyclodextrins are well-known excipients in the pharmaceutical industry. Their recent application to the anesthetic induction agent propofol as a means of creating a non-lipid formulation may lead to their introduction into anesthesia pharmacology. The development of a novel cyclodextrin as specific reversal agent for the neuromuscular blocker rocuronium (that acts as an in-vivo scavenging system to bind free rocuronium in the circulation) will also increase the likelihood that cyclodextrins will have a greater clinical presence in anesthesiology in the future. Cyclodextrin-containing polymers are also finding a role in the delivery of nucleic acids and protein therapeutic agents. Recent developments in cyclodextrins as excipients for anesthetics may soon culminate in their introduction into anesthesiology, although more research is necessary to better define their potential.

  10. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    NASA Astrophysics Data System (ADS)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct

  11. Antioxidant Micronutrients: Therapeutic Counter Measures for Chemical Agents

    DTIC Science & Technology

    2011-03-01

    ANSI Std. Z39.18 W81XWH-08-2-0007 1 Mar 2010 - 28 Feb 2011Annual01-03-2011 Antioxidant Micronutrients : Therapeutic Counter Measures for Chemical...Agents Kedar Prasad, Ph.D. Premier Micronutrient Corporation Novato, CA 94949 The results of the first phase of HD study suggested that exposure to...Hypothesis of HD study: For the first phase of the study, our hypothesis is that oral supplementation with a mixture of dietary and endogenous

  12. Variables and Strategies in Development of Therapeutic Post-Transcriptional Gene Silencing Agents

    PubMed Central

    Sullivan, Jack M.; Yau, Edwin H.; Kolniak, Tiffany A.; Sheflin, Lowell G.; Taggart, R. Thomas; Abdelmaksoud, Heba E.

    2011-01-01

    Post-transcriptional gene silencing (PTGS) agents such as ribozymes, RNAi and antisense have substantial potential for gene therapy of human retinal degenerations. These technologies are used to knockdown a specific target RNA and its cognate protein. The disease target mRNA may be a mutant mRNA causing an autosomal dominant retinal degeneration or a normal mRNA that is overexpressed in certain diseases. All PTGS technologies depend upon the initial critical annealing event of the PTGS ligand to the target RNA. This event requires that the PTGS agent is in a conformational state able to support hybridization and that the target have a large and accessible single-stranded platform to allow rapid annealing, although such platforms are rare. We address the biocomplexity that currently limits PTGS therapeutic development with particular emphasis on biophysical variables that influence cellular performance. We address the different strategies that can be used for development of PTGS agents intended for therapeutic translation. These issues apply generally to the development of PTGS agents for retinal, ocular, or systemic diseases. This review should assist the interested reader to rapidly appreciate critical variables in PTGS development and facilitate initial design and testing of such agents against new targets of clinical interest. PMID:21785698

  13. [Application of basic research to development of diagnostics and therapeutic agents against inflammatory diseases].

    PubMed

    Izuhara, Kenji; Ohta, Shoichiro; Arima, Kazuhiko; Suzuki, Shoichi; Inamitsu, Masako; Yamamoto, Ken-ichi

    2013-10-01

    Biomarkers are generally important for the treatment of patients from the points of diagnosis of disease, assessment of cure, assessment of prognosis such as metastasis or recurrence, prevention of disease, and prediction of drug efficacy. Currently it is well accepted that allergic diseases such as bronchial asthma and atopic dermatitis are not single diseases, but syndromes encompassing different diseases entities. Therefore, it is important to cluster allergic disease patients to assess prognosis or the choice of therapeutic drugs, and useful biomarkers are required for these purposes. Periostin, an extracellular matrix protein, has recently emerged as a biomarker useful for clustering asthma patients. We further found that periostin plays an important role in allergic inflammation and based on this finding we are now developing therapeutic agents targeting periostin against allergic diseases. Since periostin is involved in the pathogenesis of various inflammatory diseases in addition to allergic diseases, such diagnostics and therapeutic agents can be applied to many inflammatory diseases. In this article, we describe the history of periostin research and our application of basic research to the development of diagnostics and therapeutic agents against inflammatory diseases.

  14. An assessment of the genetic toxicology of novel boron-containing therapeutic agents.

    PubMed

    Ciaravino, Vic; Plattner, Jacob; Chanda, Sanjay

    2013-06-01

    Boron-containing compounds are being studied as potential therapeutic agents. As part of the safety assessment of these therapeutic agents, a battery of genetic toxicology studies was conducted. The battery included a bacterial reverse mutation (Ames) assay, an in vitro chromosome aberration assay in peripheral human lymphocytes, and an in vivo rat micronucleus study. The following compounds represent some of the boron-containing compounds that have been advanced to human clinical trials in various therapeutic areas. The borinic picolinate, AN0128, is an antibacterial compound with anti-inflammatory activity that has been studied in clinical trials for acne and the treatment of mild to moderate atopic dermatitis. AN2690 (tavaborole) is a benzoxaborole in Phase 3 clinical trials for the topical treatment of onychomycosis, a fungal infection of the toenails and fingernails. Another benzoxaborole derivative, AN2728, a phosphodiesterase-4 (PDE4) inhibitor, is in Phase 2 clinical trials for the treatment of atopic dermatitis. AN2898, also a PDE4 inhibitor, has been studied in clinical trials for atopic dermatitis and psoriasis. AN3365 is a leucyl-tRNA synthetase inhibitor that has been in clinical development for the treatment of various Gram-negative bacterial infections. These five representative compounds were negative in the three genotoxicity assays. Furthermore, AN2690 has been studied in mouse and rat 2-year bioassays and was not found to have any carcinogenic potential. These results demonstrate that it is possible to design boron-based therapeutic agents with no genetic toxicology liabilities. Copyright © 2013 Wiley Periodicals, Inc.

  15. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.

    PubMed

    Zhou, Yinjian; Zhang, Chunling; Liang, Wei

    2014-11-10

    RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A Zebrafish Heart Failure Model for Assessing Therapeutic Agents.

    PubMed

    Zhu, Xiao-Yu; Wu, Si-Qi; Guo, Sheng-Ya; Yang, Hua; Xia, Bo; Li, Ping; Li, Chun-Qi

    2018-03-20

    Heart failure is a leading cause of death and the development of effective and safe therapeutic agents for heart failure has been proven challenging. In this study, taking advantage of larval zebrafish, we developed a zebrafish heart failure model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days postfertilization) were treated with verapamil at a concentration of 200 μM for 30 min, which were determined as optimum conditions for model development. Tested drugs were administered into zebrafish either by direct soaking or circulation microinjection. After treatment, zebrafish were randomly selected and subjected to either visual observation and image acquisition or record videos under a Zebralab Blood Flow System. The therapeutic effects of drugs on zebrafish heart failure were quantified by calculating the efficiency of heart dilatation, venous congestion, cardiac output, and blood flow dynamics. All 8 human heart failure therapeutic drugs (LCZ696, digoxin, irbesartan, metoprolol, qiliqiangxin capsule, enalapril, shenmai injection, and hydrochlorothiazide) showed significant preventive and therapeutic effects on zebrafish heart failure (p < 0.05, p < 0.01, and p < 0.001) in the zebrafish model. The larval zebrafish heart failure model developed and validated in this study could be used for in vivo heart failure studies and for rapid screening and efficacy assessment of preventive and therapeutic drugs.

  17. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  18. Therapeutic drug monitoring of anti-infective agents in critically ill patients.

    PubMed

    Jager, Nynke G L; van Hest, Reinier M; Lipman, Jeffrey; Taccone, Fabio S; Roberts, Jason A

    2016-07-01

    Initial adequate anti-infective therapy is associated with significantly improved clinical outcomes for patients with severe infections. However, in critically ill patients, several pathophysiological and/or iatrogenic factors may affect the pharmacokinetics of anti-infective agents leading to suboptimal drug exposure, in particular during the early phase of therapy. Therapeutic drug monitoring (TDM) may assist to overcome this problem. We discuss the available evidence on the use of TDM in critically ill patient populations for a number of anti-infective agents, including aminoglycosides, β-lactams, glycopeptides, antifungals and antivirals. Also, we present the available evidence on the practices of anti-infective TDM and describe the potential utility of TDM to improve treatment outcome in critically ill patients with severe infections. For aminoglycosides, glycopeptides and voriconazole, beneficial effects of TDM have been established on both drug effectiveness and potential side effects. However, for other drugs, therapeutic ranges need to be further defined to optimize treatment prescription in this setting.

  19. Perspectives on Phytochemicals as Antibacterial Agents: An Outstanding Contribution to Modern Therapeutics.

    PubMed

    Khatri, Savita; Kumar, Manish; Phougat, Neetu; Chaudhary, Renu; Chhillar, Anil Kumar

    2016-01-01

    Despite the considerable advancements in the development of antimicrobial agents, incidents of epidemics due to multi drug resistance in microorganisms have created a massive hazard to mankind. Due to increased resistance against conventional antibiotics, researchers and pharmaceutical industries are more concerned about novel therapeutic agents for the prevention of bacterial infections. Enormous wealth of traditional system of medicine gains importance in health therapies over again. With ancient credentials of potent medicinal plants, various herbal remedies came forward for the management of bacterial infections. The Ayurvedic approach facilitates the development of new therapeutic agents due to structural and functional diversity among phytochemicals. The abundance and diversity is responsible for the characterization of new lead structures from medicinal plants. Industrial interest has increased due to recent research advancements viz. synergistic and high-throughput screening approach for the evaluation of vast variety of phytochemicals. The review certainly emphasizes on the traditional medicines as alternatives to conventional chemotherapeutic drugs. The review briefly describes mode of action of various antibiotics and resistance mechanisms. This review focuses on the chemical diversity and various mechanisms of action of phytochemicals against bacterial pathogens.

  20. Natural products as reservoirs of novel therapeutic agents.

    PubMed

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it.

  1. Efficacy of Several Therapeutic Agents in a Murine Model of Dry Eye Syndrome

    PubMed Central

    Kilic, Servet; Kulualp, Kadri

    2016-01-01

    In the current study, we used 56 female BALB/c mice with induced dry eye syndrome to evaluate the therapeutic effects of formal saline (FS), sodium hyaluronate (SH), diclofenac sodium (DS), olopatadine (OP), retinoic acid (RA), fluoromethanole (FML), cyclosporine A (CsA), and doxycycline hyclate (DH). All subjects were kept in an evaporative ‘dry eye cabinet’ for the assessment of blink rate, tear production, tear break-up time, and impression cytology prior to (baseline) and during weeks 2, 4, and 6 of the study. The right eyes of all subjects were treated topically with 5 µL of the test agent twice daily during weeks 2 through 6. Impression cytology and tear break-up time differed between time points in all groups and differed between groups at weeks 4 and 6. Blink rate differed by time point only in the FS, FML, and DH groups. Tear production according to the phenol red cotton thread test differed by time point for all groups except RA, CsA, and DH and differed between groups only at week 6. Among the compounds tested in the present study, DS and CsA were the most effective therapeutic agents in our mouse model of dry eye syndrome; these agents likely exert their therapeutic effect through their antiinflammatory activity. PMID:27053565

  2. Protease inhibitors as potential therapeutic agents for AIDS.

    PubMed

    Jamjoom, G A

    1991-09-01

    A decade since the epidemic of the acquired immunodeficiency syndrome (AIDS) was first recognized, a wealth of information has accumulated on the molecular biology of the causative agents, the human immunodeficiency viruses (HIV). Of particular interest is knowledge of the viral enzymes involved in the formation of new virus particles. Such enzymes constitute attractive targets for efforts aimed at selecting agents that interfere with virus multiplication and subsequent spread and pathogenesis. Already, several agents that inhibit the viral reverse transcriptase (e.g., nucleoside analogs such as Zidovudine) have proved to have a beneficial effect on the course off the disease, but their prolonged use has been associated with significant toxicity and the emergence of resistant mutants. A second enzyme that has recently attracted attention is the virus-coded protease. This enzyme is involved in the cleavage of viral precursor polyproteins into the final products that constitute the mature virus particle. Protease inhibitors interfere with the process of virus maturation which is required for the formation of infective virus particles. Several custom-made inhibitors with a high selective action against HIV protease have been produced recently. They are nonhydrolyzable peptide analogs that mimic the cleavage sequences of the natural substrate of the enzyme during the transition state of the cleavage reaction. It is hoped that a similar selectivity in vivo may make protease inhibitors a promising new category of AIDS therapeutics.

  3. Natural products as reservoirs of novel therapeutic agents

    PubMed Central

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it. PMID:29805348

  4. Therapeutic potential of chalcones as cardiovascular agents.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar

    2016-03-01

    Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents.

    PubMed

    O'Neill, Hugh S; Herron, Caroline C; Hastings, Conn L; Deckers, Roel; Lopez Noriega, Adolfo; Kelly, Helena M; Hennink, Wim E; McDonnell, Ciarán O; O'Brien, Fergal J; Ruiz-Hernández, Eduardo; Duffy, Garry P

    2017-01-15

    Lysolipid-based thermosensitive liposomes (LTSL) embedded in a chitosan-based thermoresponsive hydrogel matrix (denoted Lipogel) represents a novel approach for the spatiotemporal release of therapeutic agents. The entrapment of drug-loaded liposomes in an injectable hydrogel permits local liposome retention, thus providing a prolonged release in target tissues. Moreover, release can be controlled through the use of a minimally invasive external hyperthermic stimulus. Temporal control of release is particularly important for complex multi-step physiological processes, such as angiogenesis, in which different signals are required at different times in order to produce a robust vasculature. In the present work, we demonstrate the ability of Lipogel to provide a flexible, easily modifiable release platform. It is possible to tune the release kinetics of different drugs providing a passive release of one therapeutic agent loaded within the gel and activating the release of a second LTSL encapsulated agent via a hyperthermic stimulus. In addition, it was possible to modify the drug dosage within Lipogel by varying the duration of hyperthermia. This can allow for adaption of drug dosing in real time. As an in vitro proof of concept with this system, we investigated Lipogels ability to recruit stem cells and then elevate their production of vascular endothelial growth factor (VEGF) by controlling the release of a pro-angiogenic drug, desferroxamine (DFO) with an external hyperthermic stimulus. Initial cell recruitment was accomplished by the passive release of hepatocyte growth factor (HGF) from the hydrogel, inducing a migratory response in cells, followed by the delayed release of DFO from thermosensitive liposomes, resulting in a significant increase in VEGF expression. This delayed release could be controlled up to 14days. Moreover, by changing the duration of the hyperthermic pulse, a fine control over the amount of DFO released was achieved. The ability to trigger

  6. Therapeutic drug monitoring of intracellular anti-infective agents.

    PubMed

    D'Avolio, Antonio; Pensi, Debora; Baietto, Lorena; Di Perri, Giovanni

    2014-12-01

    Many microorganisms, including viruses, some bacteria and fungi, replicate within the cells. Therefore, the efficacy of therapy and the selection of resistances could be related to intracellular concentration of the drugs and to their ability to cross biological membranes and penetrate into various tissue compartments. The efficacy of treatment may be limited by pharmacological factors. Dose-response relationship exists for many agents, and failure to maintain adequate concentrations may allow the development of viral or bacterial resistance, thereby decreasing the probability of response of current and subsequent therapies. The major target of antivirals and many other anti-infective agents is within infected cells. Therefore, clinical outcome ultimately should be related to intracellular drug concentrations. Intracellular pharmacokinetics provides information regarding drug disposition in a compartment where microorganism replication occurs and combined with plasma data may be useful in understanding therapeutic failure in relation to cellular resistance. With a focus on possible methodological biases, this review reports the current state of the art in intracellular, particularly in peripheral blood mononuclear cells, therapeutic drug monitoring of the following anti-infective drugs: antivirals, antifungals and antibiotics. Although measurement of intracellular concentrations needs to be still standardized focusing on each single drug, this review showed some relationships between intracellular concentrations of few anti-infective drugs and their efficacy and/or toxicity. Such relationships should be interpreted with caution, as intracellular concentrations reflect the total amount of drug within the cell and not the effective unbound fraction. The number of clinical studies in that area is, however, rather limited, and not always adequately designed. Then, intracellular drug determination has to be considered a test for research only and not to be carried out

  7. Efficacy of a Novel Class of RNA Interference Therapeutic Agents

    PubMed Central

    Matsumoto, Takahiro; D'Alessandro-Gabazza, Corina N.; Gil-Bernabe, Paloma; Boveda-Ruiz, Daniel; Naito, Masahiro; Kobayashi, Tetsu; Toda, Masaaki; Mizutani, Takayuki; Taguchi, Osamu; Morser, John; Eguchi, Yutaka; Kuroda, Masahiko; Ochiya, Takahiro; Hayashi, Hirotake; Gabazza, Esteban C.; Ohgi, Tadaaki

    2012-01-01

    RNA interference (RNAi) is being widely used in functional gene research and is an important tool for drug discovery. However, canonical double-stranded short interfering RNAs are unstable and induce undesirable adverse effects, and thus there is no currently RNAi-based therapy in the clinic. We have developed a novel class of RNAi agents, and evaluated their effectiveness in vitro and in mouse models of acute lung injury (ALI) and pulmonary fibrosis. The novel class of RNAi agents (nkRNA®, PnkRNA™) were synthesized on solid phase as single-stranded RNAs that, following synthesis, self-anneal into a unique helical structure containing a central stem and two loops. They are resistant to degradation and suppress their target genes. nkRNA and PnkRNA directed against TGF-β1mRNA ameliorate outcomes and induce no off-target effects in three animal models of lung disease. The results of this study support the pathological relevance of TGF-β1 in lung diseases, and suggest the potential usefulness of these novel RNAi agents for therapeutic application. PMID:22916145

  8. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization.

    PubMed

    Sawyer, Andrew J; Kyriakides, Themis R

    2016-02-01

    Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Molecular predictors of therapeutic response to specific anti-cancer agents

    DOEpatents

    Spellman, Paul T.; Gray, Joe W.; Sadanandam, Anguraj; Heiser, Laura M.; Gibb, William J.; Kuo, Wen-lin; Wang, Nicholas J.

    2016-11-29

    Herein is described the use of a collection of 50 breast cancer cell lines to match responses to 77 conventional and experimental therapeutic agents with transcriptional, proteomic and genomic subtypes found in primary tumors. Almost all compounds produced strong differential responses across the cell lines produced responses that were associated with transcriptional and proteomic subtypes and produced responses that were associated with recurrent genome copy number abnormalities. These associations can now be incorporated into clinical trials that test subtype markers and clinical responses simultaneously.

  10. Functional polymers as therapeutic agents: concept to market place.

    PubMed

    Dhal, Pradeep K; Polomoscanik, Steven C; Avila, Louis Z; Holmes-Farley, S Randall; Miller, Robert J

    2009-11-12

    Biologically active synthetic polymers have received considerable scientific interest and attention in recent years for their potential as promising novel therapeutic agents to treat human diseases. Although a significant amount of research has been carried out involving polymer-linked drugs as targeted and sustained release drug delivery systems and prodrugs, examples on bioactive polymers that exhibit intrinsic therapeutic properties are relatively less. Several appealing characteristics of synthetic polymers including high molecular weight, molecular architecture, and controlled polydispersity can all be utilized to discover a new generation of therapies. For example, high molecular weight bioactive polymers can be restricted to gastrointestinal tract, where they can selectively recognize, bind, and remove target disease causing substances from the body. The appealing features of GI tract restriction and stability in biological environment render these polymeric drugs to be devoid of systemic toxicity that are generally associated with small molecule systemic drugs. The present article highlights recent developments in the rational design and synthesis of appropriate functional polymers that have resulted in a number of promising polymer based therapies and biomaterials, including some marketed products.

  11. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents.

    PubMed

    Taherkhani, Samira; Mohammadi, Mahmood; Daoud, Jamal; Martel, Sylvain; Tabrizian, Maryam

    2014-05-27

    The targeted and effective delivery of therapeutic agents remains an unmet goal in the field of controlled release systems. Magnetococcus marinus MC-1 magnetotactic bacteria (MTB) are investigated as potential therapeutic carriers. By combining directional magnetotaxis-microaerophilic control of these self-propelled agents, a larger amount of therapeutics can be delivered surpassing the diffusion limits of large drug molecules toward hard-to-treat hypoxic regions in solid tumors. The potential benefits of these carriers emphasize the need to develop an adequate method to attach therapeutic cargos, such as drug-loaded nanoliposomes, without substantially affecting the cell's ability to act as delivery agents. In this study, we report on a strategy for the attachment of liposomes to MTB (MTB-LP) through carbodiimide chemistry. The attachment efficacy, motility, and magnetic response of the MTB-LP were investigated. Results confirm that a substantial number of nanoliposomes (∼70) are efficiently linked with MTB without compromising functionality and motility. Cytotoxicity assays using three different cell types (J774, NIH/3T3, and Colo205) reveal that liposomal attachments to MTB formulation improve the biocompatibility of MTB, whereas attachment does not interfere with liposomal uptake.

  12. Impact of Absorption and Transport on Intelligent Therapeutics and Nano-scale Delivery of Protein Therapeutic Agents

    PubMed Central

    Peppas, Nicholas A.; Carr, Daniel A

    2009-01-01

    The combination of materials design and advances in nanotechnology has led to the development of new therapeutic protein delivery systems. The pulmonary, nasal, buccal and other routes have been investigated as delivery options for protein therapy, but none result in improved patient compliances and patient quality of life as the oral route. For the oral administration of these new systems, an understanding of protein transport is essential because of the dynamic nature of the gastrointestinal tract and the barriers to transport that exist. Models have been developed to describe the transport between the gastrointestinal lumen and the bloodstream, and laboratory techniques like cell culture provide a means to investigate the absorption and transport of many therapeutic agents. Biomaterials, including stimuli-sensitive complexation hydrogels, have been investigated as promising carriers for oral delivery. However, the need to develop models that accurately predict protein blood concentration as a function of the material structure and properties still exists. PMID:20161384

  13. Recombinant mumps virus as a cancer therapeutic agent

    PubMed Central

    Ammayappan, Arun; Russell, Stephen J; Federspiel, Mark J

    2016-01-01

    Mumps virus belongs to the family of Paramyxoviridae and has the potential to be an oncolytic agent. Mumps virus Urabe strain had been tested in the clinical setting as a treatment for human cancer four decades ago in Japan. These clinical studies demonstrated that mumps virus could be a promising cancer therapeutic agent that showed significant antitumor activity against various types of cancers. Since oncolytic virotherapy was not in the limelight until the beginning of the 21st century, the interest to pursue mumps virus for cancer treatment slowly faded away. Recent success stories of oncolytic clinical trials prompted us to resurrect the mumps virus and to explore its potential for cancer treatment. We have obtained the Urabe strain of mumps virus from Osaka University, Japan, which was used in the earlier human clinical trials. In this report we describe the development of a reverse genetics system from a major isolate of this Urabe strain mumps virus stock, and the construction and characterization of several recombinant mumps viruses with additional transgenes. We present initial data demonstrating these recombinant mumps viruses have oncolytic activity against tumor cell lines in vitro and some efficacy in preliminary pilot animal tumor models. PMID:27556105

  14. Therapeutic efficacy of ferrofluid bound anticancer agent

    NASA Astrophysics Data System (ADS)

    Alexiou, Ch.; Arnold, W.; Hulin, P.; Klein, R.; Schmidt, A.; Bergemannand, Ch.; Parak, F. G.

    2001-09-01

    Ferrofluids coated with starch polymers can be used as biocompatible carriers in a new field of locoregional tumor therapy called "magnetic drug targeting". Bound to medical drugs, such magnetic nanoparticles can be enriched in a desired body compartment using an external magnetic field. In the present study, we confirm the concentration of ferrofluids in VX2 squamous cell carcinoma tissue of the rabbit using histological investigations and MR imaging. The therapeutic efficacy of "magnetic drug targeting" was studied using the rabbit VX2 squamous cell carcinoma model. Mitoxantrone coupled ferrofluids were injected intraarterially into the artery supplying the tumor (femoral artery). The magnetic field (1.7 Tesla) was focused to the tumor placed at the medial portion of the hind limb of New Zealand White rabbits. Complete tumor remissions could be seen without any negative side effects by using only 20% of the normal systemic dosage of the chemotherapeutic agent mitoxantrone. Figs 3, Refs 14.

  15. Targeted delivery of cancer-specific multimodal contrast agents for intraoperative detection of tumor boundaries and therapeutic margins

    NASA Astrophysics Data System (ADS)

    Xu, Ronald X.; Xu, Jeff S.; Huang, Jiwei; Tweedle, Michael F.; Schmidt, Carl; Povoski, Stephen P.; Martin, Edward W.

    2010-02-01

    Background: Accurate assessment of tumor boundaries and intraoperative detection of therapeutic margins are important oncologic principles for minimal recurrence rates and improved long-term outcomes. However, many existing cancer imaging tools are based on preoperative image acquisition and do not provide real-time intraoperative information that supports critical decision-making in the operating room. Method: Poly lactic-co-glycolic acid (PLGA) microbubbles (MBs) and nanobubbles (NBs) were synthesized by a modified double emulsion method. The MB and NB surfaces were conjugated with CC49 antibody to target TAG-72 antigen, a human glycoprotein complex expressed in many epithelial-derived cancers. Multiple imaging agents were encapsulated in MBs and NBs for multimodal imaging. Both one-step and multi-step cancer targeting strategies were explored. Active MBs/NBs were also fabricated for therapeutic margin assessment in cancer ablation therapies. Results: The multimodal contrast agents and the cancer-targeting strategies were tested on tissue simulating phantoms, LS174 colon cancer cell cultures, and cancer xenograft nude mice. Concurrent multimodal imaging was demonstrated using fluorescence and ultrasound imaging modalities. Technical feasibility of using active MBs and portable imaging tools such as ultrasound for intraoperative therapeutic margin assessment was demonstrated in a biological tissue model. Conclusion: The cancer-specific multimodal contrast agents described in this paper have the potential for intraoperative detection of tumor boundaries and therapeutic margins.

  16. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents.

    PubMed

    Conlon, J Michael; Mechkarska, Milena; Lukic, Miodrag L; Flatt, Peter R

    2014-07-01

    Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Experimental Study of Ultrasound Contrast Agent Mediated Heat Transfer for Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Razansky, D.; Adam, D. R.; Einziger, P. D.

    2006-05-01

    Ultrasound Contrast Agents (UCA) have been recently suggested as efficient enhancers of ultrasonic power deposition in tissue. The ultrasonic energy absorption by UCA, considered as disadvantageous in diagnostic imaging, might be valuable in therapeutic applications such as targeted hyperthermia or ablation treatments. The current study, based on theoretical predictions, was designed to experimentally measure the dissipation and heating effects of encapsulated UCA (Optison™) in a well-controlled and calibrated environment.

  18. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents

    PubMed Central

    Zhou, Zhiguo

    2013-01-01

    Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no clinical evaluation or human use except in fullerene-based cosmetic products for human skincare. This article summarizes recent advances in liposome formulation of fullerenes for the use in therapeutics and molecular imaging. PMID:24300561

  19. Next-Generation Therapeutics for Inflammatory Bowel Disease.

    PubMed

    Dulai, Parambir S; Sandborn, William J

    2016-09-01

    Tumor necrosis factor (TNF) antagonists are the cornerstone of therapy for moderately to severely active inflammatory bowel disease (IBD). Although our understanding of pharmacokinetics, pharmacodynamics, and treatment optimization for these agents has evolved considerably over the past decade, a substantial majority of individuals fail to respond or lose response to TNF-antagonists over time. A need therefore remains for efficacious treatment options in these patients. Alternative immunological targets have now been identified, and several novel therapeutic agents are in development for IBD. In this review article, we discuss these novel therapeutic agents, with a particular focus on those demonstrated to be efficacious in phase 2 and 3 clinical trials. We further discuss considerations to be made when integrating these agents into routine practice over the next decade.

  20. Next generation therapeutics for inflammatory bowel disease

    PubMed Central

    Dulai, Parambir S.; Sandborn, William J.

    2018-01-01

    Tumor necrosis factor (TNF)-antagonists are the cornerstone of therapy for moderately-severely active inflammatory bowel disease (IBD). Although our understanding of pharmacokinetics, pharmacodynamics, and treatment optimization for these agents has evolved considerably over the past decade, a substantial majority of individuals fail to respond or lose response to TNF-antagonists over time. A need therefore remains for efficacious treatment options in these patients. Alternative immunological targets have now been identified, and several novel therapeutic agents are in development for IBD. In this review article we discuss these novel therapeutic agents, with a particular focus on those demonstrated to be efficacious in phase 2 and 3 clinical trials. We further discuss considerations to be made when integrating these agents into routine practice over the next decade. PMID:27461274

  1. Solubilization of Therapeutic Agents in Micellar Nanomedicines

    PubMed Central

    Vuković, Lela; Madriaga, Antonett; Kuzmis, Antonina; Banerjee, Amrita; Tang, Alan; Tao, Kevin; Shah, Neil; Král, Petr; Onyuksel, Hayat

    2014-01-01

    We use atomistic molecular dynamics simulations to reveal the binding mechanisms of therapeutic agents in PEG-ylated micellar nanocarriers (SSM). In our experiments, SSM in buffer solutions can solubilize either ≈ 11 small bexarotene molecules or ≈ 6 (2 in low ionic strength buffer) human vasoactive intestinal peptide (VIP) molecules. Free energy calculations reveal that molecules of the poorly water soluble drug bexarotene can reside at the micellar ionic interface of the PEG corona, with their polar ends pointing out. Alternatively, they can reside in the alkane core center, where several bexarotene molecules can self-stabilize by forming a cluster held together by a network of hydrogen bonds. We also show that highly charged molecules, such as VIP, can be stabilized at the SSM ionic interface by Coulombic coupling between their positively charged residues and the negatively charged phosphate head-groups of the lipids. The obtained results illustrate that atomistic simulations can reveal drug solubilization character in nanocarriers and be used in efficient optimization of novel nanomedicines. PMID:24283508

  2. Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents

    PubMed Central

    Khoshnam, Seyed Esmaeil; Winlow, William; Farbood, Yaghoob; Moghaddam, Hadi Fathi; Farzaneh, Maryam

    2017-01-01

    Stroke is one of the leading causes of death and physical disability worldwide. The consequences of stroke injuries are profound and persistent, causing in considerable burden to both the individual patient and society. Current treatments for ischemic stroke injuries have proved inadequate, partly owing to an incomplete understanding of the cellular and molecular changes that occur following ischemic stroke. MicroRNAs (miRNA) are endogenously expressed RNA molecules that function to inhibit mRNA translation and have key roles in the pathophysiological processes contributing to ischemic stroke injuries. Potential therapeutic areas to compensate these pathogenic processes include promoting angiogenesis, neurogenesis and neuroprotection. Several miRNAs, and their target genes, are recognized to be involved in these recoveries and repair mechanisms. The capacity of miRNAs to simultaneously regulate several target genes underlies their unique importance in ischemic stroke therapeutics. In this Review, we focus on the role of miRNAs as potential diagnostic and prognostic biomarkers, as well as promising therapeutic agents in cerebral ischemic stroke. PMID:28480877

  3. Systematic screening identifies dual PI3K and mTOR inhibition as a conserved therapeutic vulnerability in osteosarcoma

    PubMed Central

    Gupte, Ankita; Baker, Emma K.; Wan, Soo-San; Stewart, Elizabeth; Loh, Amos; Shelat, Anang A.; Gould, Cathryn M.; Chalk, Alistair M.; Taylor, Scott; Lackovic, Kurt; Karlström, Åsa; Mutsaers, Anthony J.; Desai, Jayesh; Madhamshettiwar, Piyush B.; Zannettino, Andrew CW.; Burns, Chris; Huang, David CS.; Dyer, Michael A.; Simpson, Kaylene J.; Walkley, Carl R.

    2015-01-01

    Purpose Osteosarcoma (OS) is the most common cancer of bone occurring mostly in teenagers. Despite rapid advances in our knowledge of the genetics and cell biology of OS, significant improvements in patient survival have not been observed. The identification of effective therapeutics has been largely empirically based. The identification of new therapies and therapeutic targets are urgently needed to enable improved outcomes for OS patients. Experimental Design We have used genetically engineered murine models of human OS in a systematic, genome wide screen to identify new candidate therapeutic targets. We performed a genome wide siRNA screen, with or without doxorubicin. In parallel a screen of therapeutically relevant small molecules was conducted on primary murine and primary human OS derived cell cultures. All results were validated across independent cell cultures and across human and mouse OS. Results The results from the genetic and chemical screens significantly overlapped, with a profound enrichment of pathways regulated by PI3K and mTOR pathways. Drugs that concurrently target both PI3K and mTOR were effective at inducing apoptosis in primary OS cell cultures in vitro in both human and mouse OS, while specific PI3K or mTOR inhibitors were not effective. The results were confirmed with siRNA and small molecule approaches. Rationale combinations of specific PI3K and mTOR inhibitors could recapitulate the effect on OS cell cultures. Conclusions The approaches described here have identified dual inhibition of the PI3K/mTOR pathway as a sensitive, druggable target in OS and provide rationale for translational studies with these agents. PMID:25862761

  4. Ultrasound-mediated ocular delivery of therapeutic agents: a review.

    PubMed

    Lafond, Maxime; Aptel, Florent; Mestas, Jean-Louis; Lafon, Cyril

    2017-04-01

    Due to numerous anatomical and physiological barriers, ocular drug delivery remains a major limitation in the treatment of diseases such as glaucoma, macular degeneration or inflammatory diseases. To date, only invasive approaches provide clinically effective results. Ultrasound can be defined as the propagation of a high-frequency sound wave exposing the propagation media to mechanical and thermal effects. Ultrasound has been proposed as a non-invasive physical agent for increasing therapeutic agent delivery in various fields of medicine. Areas covered: An update on recent advances in transscleral and transcorneal ultrasound-mediated drug delivery is presented. Efficient drug delivery is achieved in vitro, ex vivo and in vivo for various types of materials. Numerous studies indicate that efficacy is related to cavitation. Although slight reversible effects can be observed on the corneal epithelium, efficient drug delivery can be performed without causing damage to the cornea. Expert opinion: Recent developments prove the potential of ultrasound-mediated ocular drug delivery. Cavitation appears to be a preponderant mechanism, opening a way to treatment monitoring by cavitation measurement. Even if no clinical studies have yet been performed, the promising results summarized here are promoting developments toward clinical applications, particularly in assessing the safety of the technique.

  5. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  6. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress GBM Tumor Growth.

    PubMed

    Lee, Jaehyun; Shin, Yong Jae; Lee, Kyoungmin; Cho, Hee Jin; Sa, Jason K; Lee, Sang-Yun; Kim, Seok-Hyung; Lee, Jeongwu; Yoon, Yeup; Nam, Do-Hyun

    2017-11-10

    Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3A mRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell-line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.

  7. Inhibition of protein N-myristoylation: a therapeutic protocol in developing anticancer agents.

    PubMed

    Das, U; Kumar, S; Dimmock, J R; Sharma, R K

    2012-07-01

    N-myristoyltransferase (NMT) is an essential eukaryotic enzyme which catalyzes the transfer of the myristoyl group to the terminal glycine residue of a number of proteins including those involved in signal transduction and apoptotic pathways. Myristoylation is crucial for the cellular proliferation process and is required for the growth and development in a number of organisms including many human pathogens and viruses. Targeting the myristoylation process thus has emerged as a novel therapeutic strategy for anticancer drug design. The expression/activity of NMT is considerably elevated in a number of cancers originating in the colon, stomach, gallbladder, brain and breast and attenuation of NMT levels has been shown to induce apoptosis in cancerous cell lines and reduce tumor volume in murine xenograft models for cancer. A focus of current therapeutic interventions in novel cancer treatments is therefore directed at developing specific NMT inhibitors. The inhibition of the myristoyl lipidation process with respect to cancer drug development lies in the fact that many proteins involved in oncogenesis such as src and various kinases require myristoylation to perform their cellular functions. Inhibiting NMT functions to control malignancy is a novel approach in the area of anticancer drug design and there are rapidly expanding discoveries of synthetic NMT inhibitors as potential chemotherapeutic agents to be employed in the warfare against cancer. The current review focuses on developments of various chemical NMT inhibitors with potential roles as anticancer agents.

  8. Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma.

    PubMed

    Estrada-Bernal, Adriana; Palanichamy, Kamalakannan; Ray Chaudhury, Abhik; Van Brocklyn, James R

    2012-04-01

    FTY720 is a sphingosine analogue that down regulates expression of sphingosine-1-phosphate receptors and causes apoptosis of multiple tumor cell types, including glioma cells. This study examined the effect of FTY720 on brain tumor stem cells (BTSCs) derived from human glioblastoma (GBM) tissue. FTY720 treatment of BTSCs led to rapid inactivation of ERK MAP kinase, leading to upregulation of the BH3-only protein Bim and apoptosis. In combination with temozolomide (TMZ), the current standard chemotherapeutic agent for GBM, FTY720 synergistically induced BTSC apoptosis. FTY720 also slowed growth of intracranial xenograft tumors in nude mice and augmented the therapeutic effect of TMZ, leading to enhanced survival. Furthermore, the combination of FTY720 and TMZ decreased the invasiveness of BTSCs in mouse brains. FTY720 is known to cross the blood-brain barrier and recently received Food and Drug Administration approval for treatment of relapsing multiple sclerosis. Thus, FTY720 is an excellent potential therapeutic agent for treatment of GBM.

  9. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents.

    PubMed

    Holub, Justin M

    2017-09-01

    Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Heparin Oligosaccharides as Potential Therapeutic Agents in Senile Dementia

    PubMed Central

    Ma, Qing; Cornelli, Umberto; Hanin, Israel; Jeske, Walter P.; Linhardt, Robert J.; Walenga, Jeanine M.; Fareed, Jawed; Lee, John M.

    2014-01-01

    Heparin is a glycosaminoglycan mixture currently used in prophylaxis and treatment of thrombosis. Heparin possesses non-anticoagulant properties, including modulation of various proteases, interactions with fibroblast growth factors, and anti-inflammatory actions. Senile dementia of Alzheimer’s type is accompanied by inflammatory responses contributing to irreversible changes in neuronal viability and brain function. Vascular factors are also involved in the pathogenesis of senile dementia. Inflammation, endogenous proteoglycans, and assembly of senile plagues and neurofibrillary tangles contribute directly and indirectly to further neuronal damage. Neuron salvage can be achieved by anti-inflammation and the competitive inhibition of proteoglycans accumulation. The complexity of the pathology of senile dementia provides numerous potential targets for therapeutic interventions designed to modulate inflammation and proteoglycan assembly. Heparin and related oligosaccharides are known to exhibit anti-inflammatory effects as well as inhibitory effects on proteoglycan assembly and may prove useful as neuroprotective agents. PMID:17504153

  11. Tackling obesity: new therapeutic agents for assisted weight loss

    PubMed Central

    Karam, JG; McFarlane, SI

    2010-01-01

    The pandemic of overweight and obesity continues to rise in an alarming rate in western countries and around the globe representing a major public health challenge in desperate need for new strategies tackling obesity. In the United States nearly two thirds of the population is overweight or obese. Worldwide the number of persons who are overweight or obese exceeded 1.6 billion. These rising figures have been clearly associated with increased morbidity and mortality. For example, in the Framingham study, the risk of death increases with each additional pound of weight gain even in the relatively younger population between 30 and 42 years of age. Overweight and obesity are also associated with increased co-morbid conditions such as diabetes, hypertension and cardiovascular disease as well as certain types of cancer. In this review we discuss the epidemic of obesity, highlighting the pathophysiologic mechanisms of weight gain. We also provide an overview of the assessment of overweight and obese individuals discussing possible secondary causes of obesity. In a detailed section we discuss the currently approved therapeutic interventions for obesity highlighting their mechanisms of action and evidence of their efficacy and safety as provided in clinical trials. Finally, we discuss novel therapeutic interventions that are in various stages of development with a special section on the weight loss effects of anti-diabetic medications. These agents are particularly attractive options for our growing population of obese diabetic individuals. PMID:21437080

  12. Immunologic responses to therapeutic biologic agents.

    PubMed

    Purcell, R T; Lockey, R F

    2008-01-01

    Recombinant protein technology and the subsequent development of biologic agents for pharmacotherapy have greatly improved the treatment of a wide variety of diseases in humans. These products are subject to reactions not previously seen in other drug classes. Additionally, subtle alteration in the manufacture or administration of a biologic agent may cause reactions in subjects who previously tolerated it. This review highlights the unique immunologic reactions that are associated with the more commonly used biologic agents.

  13. Prioritizing therapeutic targets using patient-derived xenograft models

    PubMed Central

    Lodhia, K.A; Hadley, A; Haluska, P; Scott, C.L

    2015-01-01

    Effective systemic treatment of cancer relies on the delivery of agents with optimal therapeutic potential. The molecular age of medicine has provided genomic tools that can identify a large number of potential therapeutic targets in individual patients, heralding the promise of personalized treatment. However, determining which potential targets actually drive tumor growth and should be prioritized for therapy is challenging. Indeed, reliable molecular matches of target and therapeutic agent have been stringently validated in the clinic for only a small number of targets. Patient-derived xenografts (PDX) are tumor models developed in immunocompromised mice using tumor procured directly from the patient. As patient surrogates, PDX models represent a powerful tool for addressing individualized therapy. Challenges include humanizing the immune system of PDX models and ensuring high quality molecular annotation, in order to maximise insights for the clinic. Importantly, PDX can be sampled repeatedly and in parallel, to reveal clonal evolution, which may predict mechanisms of drug resistance and inform therapeutic strategy design. PMID:25783201

  14. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals

    PubMed Central

    Ferguson, B. Scott; Hoggarth, David A.; Maliniak, Dan; Ploense, Kyle; White, Ryan J.; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J.; Eisenstein, Michael; Kippin, Tod; Plaxco, Kevin W.; Soh, H. Tom

    2014-01-01

    A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients’ health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics. In response, we have developed a real-time biosensor capable of continuously tracking a wide range of circulating drugs in living subjects. Our microfluidic electrochemical detector for in vivo continuous monitoring (MEDIC) requires no exogenous reagents, operates at room temperature, and can be reconfigured to measure different target molecules by exchanging probes in a modular manner. To demonstrate the system's versatility, we measured therapeutic in vivo concentrations of doxorubicin (a chemotherapeutic) and kanamycin (an antibiotic) in live rats and in human whole blood for several hours with high sensitivity and specificity at sub-minute temporal resolution. Importantly, we show that MEDIC can also obtain pharmacokineticparameters for individual animals in real-time. Accordingly, just as continuous glucose monitoring technology is currently revolutionizing diabetes care, we believe MEDIC could be a powerful enabler for personalized medicine by ensuring delivery of optimal drug doses for individual patients based on direct detection of physiological parameters. PMID:24285484

  15. Past, Current, and Future Developments of Therapeutic Agents for Treatment of Chronic Hepatitis B Virus Infection.

    PubMed

    Pei, Yameng; Wang, Chunting; Yan, S Frank; Liu, Gang

    2017-08-10

    For decades, treatment of hepatitis B virus (HBV) infection has been relying on interferon (IFN)-based therapies and nucleoside/nucleotide analogues (NAs) that selectively target the viral polymerase reverse transcriptase (RT) domain and thereby disrupt HBV viral DNA synthesis. We have summarized here the key steps in the HBV viral life cycle, which could potentially be targeted by novel anti-HBV therapeutics. A wide range of next-generation direct antiviral agents (DAAs) with distinct mechanisms of actions are discussed, including entry inhibitors, transcription inhibitors, nucleoside/nucleotide analogues, inhibitors of viral ribonuclease H (RNase H), modulators of viral capsid assembly, inhibitors of HBV surface antigen (HBsAg) secretion, RNA interference (RNAi) gene silencers, antisense oligonucleotides (ASOs), and natural products. Compounds that exert their antiviral activities mainly through host factors and immunomodulation, such as host targeting agents (HTAs), programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors, and Toll-like receptor (TLR) agonists, are also discussed. In this Perspective, we hope to provide an overview, albeit by no means being comprehensive, for the recent development of novel therapeutic agents for the treatment of chronic HBV infection, which not only are able to sustainably suppress viral DNA but also aim to achieve functional cure warranted by HBsAg loss and ultimately lead to virus eradication and cure of hepatitis B.

  16. Progranulin as a biomarker and potential therapeutic agent.

    PubMed

    Abella, Vanessa; Pino, Jesús; Scotece, Morena; Conde, Javier; Lago, Francisca; Gonzalez-Gay, Miguel Angel; Mera, Antonio; Gómez, Rodolfo; Mobasheri, Ali; Gualillo, Oreste

    2017-10-01

    Progranulin is a cysteine-rich secreted protein with diverse pleiotropic actions and participates in several processes, such as inflammation or tumorigenesis. Progranulin was first identified as a growth factor and, recently, it was characterised as an adipokine implicated in obesity, insulin resistance and rheumatic disease. At a central level, progranulin acts as a neurotropic and neuroprotective factor and protects from neural degeneration. In this review, we summarise the most recent research advances concerning the potential role of progranulin as a therapeutic target and biomarker in cancer, neurodegenerative and inflammatory diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Xenograft model for therapeutic drug testing in recurrent respiratory papillomatosis.

    PubMed

    Ahn, Julie; Bishop, Justin A; Akpeng, Belinda; Pai, Sara I; Best, Simon R A

    2015-02-01

    Identifying effective treatment for papillomatosis is limited by a lack of animal models, and there is currently no preclinical model for testing potential therapeutic agents. We hypothesized that xenografting of papilloma may facilitate in vivo drug testing to identify novel treatment options. A biopsy of fresh tracheal papilloma was xenografted into a NOD-scid-IL2Rgamma(null) (NSG) mouse. The xenograft began growing after 5 weeks and was serially passaged over multiple generations. Each generation showed a consistent log-growth pattern, and in all xenografts, the presence of the human papillomavirus (HPV) genome was confirmed by polymerase chain reaction (PCR). Histopathologic analysis demonstrated that the squamous architecture of the original papilloma was maintained in each generation. In vivo drug testing with bevacizumab (5 mg/kg i.p. twice weekly for 3 weeks) showed a dramatic therapeutic response compared to saline control. We report here the first successful case of serial xenografting of a tracheal papilloma in vivo with a therapeutic response observed with drug testing. In severely immunocompromised mice, the HPV genome and squamous differentiation of the papilloma can be maintained for multiple generations. This is a feasible approach to identify therapeutic agents in the treatment of recurrent respiratory papillomatosis. © The Author(s) 2014.

  18. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease

    PubMed Central

    Fassett, Robert G.; Coombes, Jeff S.

    2011-01-01

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin. PMID:21556169

  19. High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections

    PubMed Central

    Zhang, Lixin; Yan, Kezhi; Zhang, Yu; Huang, Ren; Bian, Jiang; Zheng, Chuansen; Sun, Haixiang; Chen, Zhihui; Sun, Nuo; An, Rong; Min, Fangui; Zhao, Weibo; Zhuo, Ying; You, Jianlan; Song, Yongjie; Yu, Zhenyan; Liu, Zhiheng; Yang, Keqian; Gao, Hong; Dai, Huanqin; Zhang, Xiaoli; Wang, Jian; Fu, Chengzhang; Pei, Gang; Liu, Jintao; Zhang, Si; Goodfellow, Michael; Jiang, Yuanying; Kuai, Jun; Zhou, Guochun; Chen, Xiaoping

    2007-01-01

    The high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity. Through screening of ≈20,000 microbial extracts, 12 hits were identified with broad-spectrum antifungal activity. Seven of them showed little cytotoxicity against human hepatoma cells. Fractionation of the active extracts revealed beauvericin (BEA) as the most potent component, because it dramatically synergized KTC activity against diverse fungal pathogens by a checkerboard assay. Significantly, in our immunocompromised mouse model, combinations of BEA (0.5 mg/kg) and KTC (0.5 mg/kg) prolonged survival of the host infected with Candida parapsilosis and reduced fungal colony counts in animal organs including kidneys, lungs, and brains. Such an effect was not achieved even with the high dose of 50 mg/kg KTC. These data support synergism between BEA and KTC and thereby a prospective strategy for antifungal therapy. PMID:17360571

  20. FGFR-targeted therapeutics for the treatment of breast cancer.

    PubMed

    De Luca, Antonella; Frezzetti, Daniela; Gallo, Marianna; Normanno, Nicola

    2017-03-01

    Breast cancer is a complex disease and several molecular drivers regulate its progression. Fibroblast growth factor receptor (FGFR) signaling is frequently deregulated in many cancers, including breast cancer. Due the involvement of the FGFR/FGF axis in the pathogenesis and progression of tumors, FGFR-targeted agents might represent a potential therapeutic option for breast cancer patients. Areas covered: This review offers an overview of targeted agents against FGFRs and their clinical development in breast cancer. The most relevant literature and the latest studies in the Clinicaltrial.com database have been discussed. Expert opinion: FGFR inhibition has been recently considered as a promising therapeutic option for different tumor types. However, preliminary results of clinical trials of FGFR inhibitors in breast cancer have been quite disappointing. In order to increase the clinical benefit of FGFR therapies in breast cancer, future studies should focus on: understanding the role of the various FGFR aberrations in cancer progression; identifying potential biomarkers to select patients that could benefit of FGFR inhibitors and developing therapeutic strategies that improve the efficacy of these agents and minimize toxicities.

  1. New Therapeutic Agent against Arterial Thrombosis: An Iridium(III)-Derived Organometallic Compound.

    PubMed

    Hsia, Chih-Wei; Velusamy, Marappan; Tsao, Jeng-Ting; Hsia, Chih-Hsuan; Chou, Duen-Suey; Jayakumar, Thanasekaran; Lee, Lin-Wen; Li, Jiun-Yi; Sheu, Joen-Rong

    2017-12-05

    Platelet activation plays a major role in cardio and cerebrovascular diseases, and cancer progression. Disruption of platelet activation represents an attractive therapeutic target for reducing the bidirectional cross talk between platelets and tumor cells. Platinum (Pt) compounds have been used for treating cancer. Hence, replacing Pt with iridium (Ir) is considered a potential alternative. We recently developed an Ir(III)-derived complex, [Ir(Cp*)1-(2-pyridyl)-3-(2-hydroxyphenyl)imidazo[1,5-a]pyridine Cl]BF₄ (Ir-11), which exhibited strong antiplatelet activity; hence, we assessed the therapeutic potential of Ir-11 against arterial thrombosis. In collagen-activated platelets, Ir-11 inhibited platelet aggregation, adenosine triphosphate (ATP) release, intracellular Ca 2+ mobilization, P-selectin expression, and OH · formation, as well as the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and Akt. Neither the adenylate cyclase inhibitor nor the guanylate cyclase inhibitor reversed the Ir-11-mediated antiplatelet effects. In experimental mice, Ir-11 prolonged the bleeding time and reduced mortality associated with acute pulmonary thromboembolism. Ir-11 plays a crucial role by inhibiting platelet activation through the inhibition of the PLCγ2-PKC cascade, and the subsequent suppression of Akt and MAPK activation, ultimately inhibiting platelet aggregation. Therefore, Ir-11 can be considered a new therapeutic agent against either arterial thrombosis or the bidirectional cross talk between platelets and tumor cells.

  2. CDK1 promotes nascent DNA synthesis and induces resistance of cancer cells to DNA-damaging therapeutic agents

    PubMed Central

    Liao, Hongwei; Ji, Fang; Geng, Xinwei; Xing, Meichun; Li, Wen; Chen, Zhihua; Shen, Huahao; Ying, Songmin

    2017-01-01

    Cyclin dependent kinase 1 (CDK1) is essential for cell viability and plays a vital role in many biological events including cell cycle control, DNA damage repair, and checkpoint activation. Here, we identify an unanticipated role for CDK1 in promoting nascent DNA synthesis during S-phase. We report that a short duration of CDK1 inhibition, which does not perturb cell cycle progression, triggers a replication-associated DNA damage response (DDR). This DDR is associated with a disruption of replication fork progression and leads to genome instability. Moreover, we show that compromised CDK1 activity dramatically increases the efficacy of chemotherapeutic agents that kill cancer cells through perturbing DNA replication, including Olaparib, an FDA approved PARP inhibitor. Our study has revealed an important role for CDK1 in the DNA replication program, and suggests that the therapeutic targeting CDK1 may be a novel approach for combination chemotherapy. PMID:29207595

  3. An integrated molecular analysis of lung adenocarcinomas identifies potential therapeutic targets among TTF1-negative tumors including DNA repair proteins and Nrf2

    PubMed Central

    Cardnell, Robert J.G.; Behrens, Carmen; Diao, Lixia; Fan, YouHong; Tang, Ximing; Tong, Pan; John D., Minna; Mills, Gordon B.; Heymach, John V.; Wistuba, Ignacio I.; Wang, Jing; Byers., Lauren A.

    2015-01-01

    Purpose Thyroid transcription factor-1 (TTF1) immunohistochemistry (IHC) is used clinically to differentiate primary lung adenocarcinomas (LUAD) from squamous lung cancers and metastatic adenocarcinomas from other primary sites. However, a subset of LUAD (15-20%) does not express TTF1 and TTF1-negative patients have worse clinical outcomes. As there are no established targeted agents with activity in TTF1-negative LUAD, we performed an integrated molecular analysis to identify potential therapeutic targets. Experimental Design Using two clinical LUAD cohorts (274 tumors), one from our institution (PROSPECT) and the TCGA, we interrogated proteomic profiles (by reverse-phase protein array (RPPA)), gene expression, and mutational data. Drug response data from 74 cell lines were used to validate potential therapeutic agents. Results Strong correlations were observed between TTF1 IHC and TTF1 measurements by RPPA (Rho=0.57, p<0.001) and gene expression (NKX2-1, Rho=0.61, p<0.001). Established driver mutations (e.g. BRAF and EGFR) were associated with high TTF1 expression. In contrast, TTF1-negative LUAD had a higher frequency of inactivating KEAP1 mutations (p=0.001). Proteomic profiling identified increased expression of DNA repair proteins (e.g., Chk1 and the DNA repair score) and suppressed PI3K/MAPK signaling among TTF1-negative tumors, with differences in total proteins confirmed at the mRNA level. Cell line analysis showed drugs targeting DNA repair to be more active in TTF1-low cell lines. Conclusions Combined genomic and proteomic analyses demonstrated infrequent alteration of validated lung cancer targets (including the absence of BRAF mutations in TTF1-negative LUAD), but identified novel potential targets for TTF1-negative LUAD includingKEAP1/Nrf2 and DNA repair pathways. PMID:25878335

  4. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer

    PubMed Central

    Thoppil, Roslin J; Bishayee, Anupam

    2011-01-01

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called “isoprenoids”) are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  5. Topical Botanical Agents for the Treatment of Psoriasis: A Systematic Review.

    PubMed

    Farahnik, Benjamin; Sharma, Divya; Alban, Joseph; Sivamani, Raja K

    2017-08-01

    Patients with psoriasis often enquire about the use of numerous botanical therapeutics. It is important for dermatologists to be aware of the current evidence regarding these agents. We conducted a systematic literature search using the PubMed, MEDLINE, and EMBASE databases for controlled and uncontrolled clinical trials that assessed the use of topical botanical therapeutics for psoriasis. The search included the following keywords: 'psoriasis' and 'plant' or 'herbal' or 'botanical'. We also reviewed citations within articles to identify additional relevant sources. We then further refined the results by route of administration and the topical botanical agents are reviewed herein. A total of 27 controlled and uncontrolled clinical trials addressing the use of topical botanical agents for psoriasis were assessed in this review. We found that the most highly studied and most efficacious topical botanical therapeutics were Mahonia aquifolium, indigo naturalis, aloe vera, and, to a lesser degree, capsaicin. The most commonly reported adverse effects were local skin irritation, erythema, pruritus, burning, and pain. However, the overall evidence for these therapeutics remains limited in quantity and quality. The literature addresses a large number of studies in regard to botanicals for the treatment of psoriasis. While most agents appear to be safe, further research is necessary before topical botanical agents can be consistently recommended to patients.

  6. Tumor Necrosis Factor-α, a Regulator and Therapeutic Agent on Breast Cancer.

    PubMed

    Liu, Dongwu; Wang, Xiaoqian; Chen, Zhiwei

    2016-01-01

    The cell-mediated immunity and cytotoxic agents play a significant role on tumor cell apoptosis. Tumor necrosis factor-α (TNF-α) is an intricate linker between inflammation and cancer through mediating the process of apoptosis and cell-mediated immunity. A variety of evidences have confirmed the critical role of TNF-α on tumor migration, proliferation, matrix degradation, tumor metastasis, invasion, and angiogenesis. Through binding to receptors, TNF-α participates in activating multiple cell signaling cascades that link inflammation, survival and evolution towards breast cancer. TNF-α is an important agent for tumor biotherapy, but its clinical application is limited for its severe fatal systemic toxicity. The poly-lactic acid microspheres (PLAM) with intratumoral cytokine release hold tremendous potential for the immunotherapy of breast cancer, and TNF-α antagonists may offer therapeutic potential in solid tumors. In addition, TNF-α is related with the blockage of estrogen and progesterone receptors. For breast cancer treatment, it is necessary to understand the molecular signaling pathways that mediate TNF-α and the aggressive behavior of negative breast cancer. The aim of present review is to summarize the effect of TNF-α on breast cancer cells.

  7. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents

    PubMed Central

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R.

    2016-01-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer’s. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. PMID:26762467

  8. State-of-the-Art Diagnosis and Treatment of Melanoma: Optimal Multidetector Computed Tomographic Practice to Identify Metastatic Disease and Review of Innovative Therapeutic Agents.

    PubMed

    Jones, Blake C; Lipson, Evan J; Childers, Brandon; Fishman, Elliot K; Johnson, Pamela T

    The incidence of melanoma has risen dramatically over the past several decades. Oncologists rely on the ability of radiologists to identify subtle radiographic changes representing metastatic and recurrent melanoma in uncommon locations on multidetector computed tomography (MDCT) as the front-line imaging surveillance tool. To accomplish this goal, MDCT acquisition and display must be optimized and radiologist interpretation and search patterns must be tailored to identify the unique and often subtle metastatic lesions of melanoma. This article describes MDCT acquisition and display techniques that optimize the visibility of melanoma lesions, such as high-contrast display windows and multiplanar reconstructions. In addition, innovative therapies for melanoma, such as immunotherapy and small-molecule therapy, have altered clinical management and outcomes and have also changed the spectrum of therapeutic complications that can be detected on MDCT. Recent advances in melanoma therapy and potential complications that the radiologist can identify on MDCT are reviewed.

  9. Recent patents therapeutic agents for cancer.

    PubMed

    Li, Xun; Xu, Wenfang

    2006-06-01

    Cancer is one of the most dreaded diseases with a complex pathogenesis, which threats human life greatly. Multidisciplinary scientific investigations are making best efforts to combat this disease and put to the identification of novel anticancer agents. Patent anticancer agents registered in China are therefore increasing dramatically during the past ten years, which will be reviewed briefly in this article. platinum complexes anthracycline analogs (including doxorubicin derivatives) quinoline analogs podophyllotoxins analogs taxane analogs camptothecin (CPT) analogs.

  10. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents.

    PubMed

    Ramesh, Suhas; Govender, Thavendran; Kruger, Hendrik G; de la Torre, Beatriz G; Albericio, Fernando

    2016-07-01

    The emergence of multidrug resistant bacteria has a direct impact on global public health because of the reduced potency of existing antibiotics against pathogens. Hence, there is a pressing need for new drugs with different modes of action that can kill microorganisms. Antimicrobial peptides (AMPs) can be regarded as an alternative tool for this purpose because they are proven to have therapeutic effects with broad-spectrum activities. There are some hurdles in using AMPs as clinical candidates such as toxicity, lack of stability and high budgets required for manufacturing. This can be overcome by developing shorter and more easily accessible AMPs, the so-called Short AntiMicrobial Peptides (SAMPs) that contain between two and ten amino acid residues. These are emerging as an attractive class of therapeutic agents with high potential for clinical use and possessing multifunctional activities. In this review we attempted to compile those SAMPs that have exhibited biological properties which are believed to hold promise for the future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  11. [ManNAc, a new therapeutic agent to reduce Angptl4-induced proteinuria in MCD].

    PubMed

    Clément, Lionel; Macé, Camille

    2016-01-01

    Current therapies used in minimal change disease (MCD) were originally designed to cure other diseases. They are only partially efficient, and present inconvenient side effects. Therefore, understanding the molecular mechanisms implicated in the pathogenesis of proteinuria in MCD could lead to new therapeutic strategies. A new experimental transgenic rat model of human MCD was generated. These NPHS2-Angptl4 transgenic rats over-express two different forms of the glycoprotein Angptl4 from the podocyte. The majority of the protein shows a lack of sialylation that is implicated in the pathogenesis of proteinuria. Supplementation of ManNAc, a precursor of sialic acid, significantly reduces albuminuria in those rats by increasing sialylation of the hyposialylated form of Angptl4. After treatment of the first episode of MCD with glucocorticoids in patients, ManNAc could be used as a maintenance drug, especially to reduce the frequency and intensity of relapse. ManNAc is a promising therapeutic agent for patients with MCD. © 2016 médecine/sciences – Inserm.

  12. Evaluation of real-time data obtained from gravimetric preparation of antineoplastic agents shows medication errors with possible critical therapeutic impact: Results of a large-scale, multicentre, multinational, retrospective study.

    PubMed

    Terkola, R; Czejka, M; Bérubé, J

    2017-08-01

    Medication errors are a significant cause of morbidity and mortality especially with antineoplastic drugs, owing to their narrow therapeutic index. Gravimetric workflow software systems have the potential to reduce volumetric errors during intravenous antineoplastic drug preparation which may occur when verification is reliant on visual inspection. Our aim was to detect medication errors with possible critical therapeutic impact as determined by the rate of prevented medication errors in chemotherapy compounding after implementation of gravimetric measurement. A large-scale, retrospective analysis of data was carried out, related to medication errors identified during preparation of antineoplastic drugs in 10 pharmacy services ("centres") in five European countries following the introduction of an intravenous workflow software gravimetric system. Errors were defined as errors in dose volumes outside tolerance levels, identified during weighing stages of preparation of chemotherapy solutions which would not otherwise have been detected by conventional visual inspection. The gravimetric system detected that 7.89% of the 759 060 doses of antineoplastic drugs prepared at participating centres between July 2011 and October 2015 had error levels outside the accepted tolerance range set by individual centres, and prevented these doses from reaching patients. The proportion of antineoplastic preparations with deviations >10% ranged from 0.49% to 5.04% across sites, with a mean of 2.25%. The proportion of preparations with deviations >20% ranged from 0.21% to 1.27% across sites, with a mean of 0.71%. There was considerable variation in error levels for different antineoplastic agents. Introduction of a gravimetric preparation system for antineoplastic agents detected and prevented dosing errors which would not have been recognized with traditional methods and could have resulted in toxicity or suboptimal therapeutic outcomes for patients undergoing anticancer treatment.

  13. Frondoside A potentiates the effects of conventional therapeutic agents in acute leukemia.

    PubMed

    Sajwani, F H; Collin, P; Adrian, T E

    2017-12-01

    Acute leukemia is the major cause of mortality in hematological malignancies. Despite improvement of survival with current chemotherapies, patients die from the disease or side-effects of treatment. Thus, new therapeutic agents are needed. Frondoside A is a triterpenoid glycoside originally isolated from the sea cucumber, Cucumaria frondosa that has potent antitumor effects in various cancers. The current study investigated the effects of frondoside A in acute leukemia cell lines alone and in combination with drugs used for this malignancy. This study is the first comparing the efficacy of frondoside A to available conventional drugs. The acute leukemia cell lines used were CCRF-CEM, HL-60 and THP-1. Cells were cultured and treated with different concentrations of vincristine sulphate, asparaginase and prednisolone alone and in combination with frondoside A. The inhibitory concentration 50 (IC 50 ) for each compound was determined for the cell lines. CCRF-CEM cells were very sensitive to frondoside A treatment while HL-60 and THP1 were less sensitive. Frondoside A markedly enhanced the anticancer effects of all of the conventional drugs. Synergistic effects were seen with most of the combinations. Frondoside A may be valuable in the treatment of acute leukemia, particularly when used in combination with current therapeutic drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Therapeutic drug monitoring of antitubercular agents for disseminated Mycobacterium tuberculosis during intermittent haemodialysis and continuous venovenous haemofiltration.

    PubMed

    Sin, J H; Elshaboury, R H; Hurtado, R M; Letourneau, A R; Gandhi, R G

    2018-04-01

    There is a lack of data regarding therapeutic drug monitoring (TDM) of antitubercular agents in the setting of continuous venovenous haemofiltration (CVVH). We describe TDM results of numerous antitubercular agents in a critically ill patient during CVVH and haemodialysis. A 49-year-old man was initiated on treatment for disseminated Mycobacterium tuberculosis. During hospital admission, the patient developed critical illness and required renal replacement therapy. TDM results and pharmacokinetic calculations showed adequate serum concentrations of rifampin, ethambutol and amikacin during CVVH and of rifampin, pyrazinamide, ethambutol and levofloxacin during intermittent haemodialysis. The presence of critical illness and renal replacement therapy can induce pharmacokinetic changes that may warrant vigilant TDM to ensure optimal therapy. To our knowledge, this is the first report to describe TDM for several antitubercular agents during CVVH in a critically patient with disseminated M. tuberculosis. © 2017 John Wiley & Sons Ltd.

  15. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    PubMed

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  16. Pancreatic Cancer Therapy Review: From Classic Therapeutic Agents to Modern Nanotechnologies.

    PubMed

    Rebelo, Ana; Molpeceres, Jesus; Rijo, Patrícia; Reis, Catarina Pinto

    2017-01-01

    Pancreatic cancer remains one of the most lethal cancers worldwide, with an extremely poor prognosis. This cancer is considered the 5th leading cause of cancer related death. The median survival after diagnosis is generally 2-8 months and five-year survival rate is less than 5%. In recent years, nanotechnology is emerging as a rising approach for drug delivery since it has opened up new landscapes in medicine through introduction of smart nanocarrier systems that can selectively deliver the therapeutic agent in a specific region and in appropriate levels, reducing the adverse side effects. This review covers the main delivery systems developed so far for anticancer drug delivery to the pancreas over a period of 20 years, from polymeric to lipidic-based nanosystems, with a particular emphasis on albumin as core material. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Whole-genome sequencing of an aggressive BRAF wild-type papillary thyroid cancer identified EML4-ALK translocation as a therapeutic target.

    PubMed

    Demeure, Michael J; Aziz, Meraj; Rosenberg, Richard; Gurley, Steven D; Bussey, Kimberly J; Carpten, John D

    2014-06-01

    Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In radioiodine resistant aggressive papillary thyroid cancers, there remain few effective therapeutic options. A 62-year-old man who underwent multiple operations for papillary thyroid cancer and whose metastases progressed despite standard treatments provided tumor tissue. We analyzed tumor and whole blood DNA by whole genome sequencing, achieving 80× or greater coverage over 94 % of the exome and 90 % of the genome. We determined somatic mutations and structural alterations. We found a total of 57 somatic mutations in 55 genes of the cancer genome. There was notably a lack of mutations in NRAS and BRAF, and no RET/PTC rearrangement. There was a mutation in the TRAPP oncogene and a loss of heterozygosity of the p16, p18, and RB1 tumor suppressor genes. The oncogenic driver for this tumor is a translocation involving the genes for anaplastic lymphoma receptor tyrosine kinase (ALK) and echinoderm microtubule associated protein like 4 (EML4). The EML4-ALK translocation has been reported in approximately 5 % of lung cancers, as well as in pediatric neuroblastoma, and is a therapeutic target for crizotinib. This is the first report of the whole genomic sequencing of a papillary thyroid cancer in which we identified an EML4-ALK translocation of a TRAPP oncogene mutation. These findings suggest that this tumor has a more distinct oncogenesis than BRAF mutant papillary thyroid cancer. Whole genome sequencing can elucidate an oncogenic context and expose potential therapeutic vulnerabilities in rare cancers.

  18. VIP as a potential therapeutic agent in gram negative sepsis.

    PubMed

    Ibrahim, Hiba; Barrow, Paul; Foster, Neil

    2012-12-01

    Gram negative sepsis remains a high cause of mortality and places a great burden on public health finance in both the developed and developing world. Treatment of sepsis, using antibiotics, is often ineffective since pathology associated with the disease occurs due to dysregulation of the immune system (failure to return to steady state conditions) which continues after the bacteria, which induced the immune response, have been cleared. Immune modulation is therefore a rational approach to the treatment of sepsis but to date no drug has been developed which is highly effective, cheap and completely safe to use. One potential therapeutic agent is VIP, which is a natural peptide and is highly homologous in all vertebrates. In this review we will discuss the effect of VIP on components of the immune system, relevant to gram negative sepsis, and present data from animal models. Furthermore we will hypothesise on how these studies could be improved in future and speculate on the possible different ways in which VIP could be used in clinical medicine.

  19. Targeting Histone Deacetylases in Malignant Melanoma: A Future Therapeutic Agent or Just Great Expectations?

    PubMed

    Garmpis, Nikolaos; Damaskos, Christos; Garmpi, Anna; Dimitroulis, Dimitrios; Spartalis, Eleftherios; Margonis, Georgios-Antonios; Schizas, Dimitrios; Deskou, Irini; Doula, Chrysoula; Magkouti, Eleni; Andreatos, Nikolaos; Antoniou, Efstathios A; Nonni, Afroditi; Kontzoglou, Konstantinos; Mantas, Dimitrios

    2017-10-01

    Malignant melanoma is the most aggressive type of skin cancer, with increasing frequency and mortality. Melanoma is characterized by rapid proliferation and metastases. Malignant transformation of normal melanocytes is associated with imbalance between oncogenes' action and tumor suppressor genes. Mutations or inactivation of these genes plays an important role in the pathogenesis of malignant melanoma. Many target-specific agents improved progression-free survival but unfortunately metastatic melanoma remains incurable, so new therapeutic strategies are needed. The balance of histones' acetylation affects cell cycle progression, differentiation and apoptosis. Histone deacetylases (HDAC) are associated with different types of cancer. Histone deacetylase inhibitors (HDACI) are enzymes that inhibit the action of HDAC, resulting in block of tumor cell proliferation. A small number of these enzymes has been studied regarding their anticancer effects in melanoma. The purpose of this article was to review the therapeutic effect of HDACI against malignant melanoma, enlightening the molecular mechanisms of their action. The MEDLINE database was used. The keywords/ phrases were; HDACI, melanoma, targeted therapies for melanoma. Our final conclusions were based on studies that didn't refer solely to melanoma due to their wider experimental data. Thirty-two articles were selected from the total number of the search's results. Only English articles published until March 2017 were used. Molecules, such as valproid acid (VPA), LBH589, LAQ824 (dacinostat), vorinostat, tubacin, sirtinol and tx-527, suberoyl bis-hydroxamic acid (SBHA), depsipeptide and Trichostatin A (TSA) have shown promising antineoplastic effects against melanoma. HDACI represent a promising agent for targeted therapy. More trials are required. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Quercetin as an Emerging Anti-Melanoma Agent: A Four-Focus Area Therapeutic Development Strategy.

    PubMed

    Harris, Zoey; Donovan, Micah G; Branco, Gisele Morais; Limesand, Kirsten H; Burd, Randy

    2016-01-01

    Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase - a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes feasible a target for polyphenol-based therapies. For example, quercetin (3,3',4',5,7-pentahydroxyflavone) is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables, and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated antiproliferative and proapoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anticancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review, we explore the potential of quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a "four-focus area strategy" to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to (i) modulate cellular bioreduction potential and associated signaling cascades, (ii) affect transcription of relevant genes, (iii) regulate epigenetic processes, and (iv) develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects.

  1. Mass Spectrometry to Identify New Biomarkers of Nerve Agent Exposure

    DTIC Science & Technology

    2010-04-01

    target for oganophosphorus agent (OP) binding to enzymes is the active site serine in the consensus sequence GlyXSerXGly of acetylcholinesterase. By...human plasma. Task 6. Use a second method, for example enzyme activity assays or immunoprecipitation, to confirm the identity of soman-labeled proteins...spectrometry identifies covalent binding of soman, sarin, chlorpyrifos oxon, diisopropyl fluorophosphate, and FP-biotin to tyrosines on tubulin: a potential

  2. Cannabinoids as therapeutic agents in cancer: current status and future implications

    PubMed Central

    Ganju, Ramesh K.

    2014-01-01

    The pharmacological importance of cannabinoids has been in study for several years. Cannabinoids comprise of (a) the active compounds of the Cannabis sativa plant, (b) endogenous as well as (c) synthetic cannabinoids. Though cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents. They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models. Cannabinoids regulate key cell signaling pathways that are involved in cell survival, invasion, angiogenesis, metastasis, etc. There is more focus on CB1 and CB2, the two cannabinoid receptors which are activated by most of the cannabinoids. In this review article, we will focus on a broad range of cannabinoids, their receptor dependent and receptor independent functional roles against various cancer types with respect to growth, metastasis, energy metabolism, immune environment, stemness and future perspectives in exploring new possible therapeutic opportunities. PMID:25115386

  3. The influence of polymeric excipients on the process of pharmaceutical availability of therapeutic agents from a model drug form. Part I. In formulations with controlled disintegration and release time.

    PubMed

    Nachajski, Michal Jakub; Zgoda, Marian Mikołaj

    2010-01-01

    Pre-formulation research was conducted on the application of Ex. Echinaceae aq. siccum in the production of a quickly disintegrating suspension tablet, a lozenge with kariostatic sugar alcohols (mannitol, sorbitol), and, above all, a solid drug form with controlled release of therapeutic agents included in the extract. Morphological parameters of tablets obtained in the course of experiment were estimated and the profiles of the release (diffusion) ofhydrophilic therapeutic agents into model receptor fluids with varying values of osmolarity (0.1 mol HCl approximately 200 mOsm/l, hypotonic hydrating fluid approximately 143 mOsm/l, and compensatory paediatric fluid approximately 272 mOsm/l) were examined. The study focused on the technological problem of determining the effect of hydrogel Carbopol structure on the ordering of diffusion ofhydrophilic therapeutic agents from a model drug form (a tablet) into model fluids with variable osmolarity.

  4. Choline and Geranate Deep Eutectic Solvent as a Broad-Spectrum Antiseptic Agent for Preventive and Therapeutic Applications.

    PubMed

    Zakrewsky, Michael; Banerjee, Amrita; Apte, Sanjana; Kern, Theresa L; Jones, Mattie R; Sesto, Rico E Del; Koppisch, Andrew T; Fox, David T; Mitragotri, Samir

    2016-06-01

    Antiseptic agents are the primary arsenal to disinfect skin and prevent pathogens spreading within the host as well as into the surroundings; however the Food and Drug Administration published a report in 2015 requiring additional validation of nearly all current antiseptic agents before their continued use can be allowed. This vulnerable position calls for urgent identification of novel antiseptic agents. Recently, the ability of a deep eutectic, Choline And Geranate (CAGE), to treat biofilms of Pseudomonas aeruginosa and Salmonella enterica was demonstrated. Here it is reported that CAGE exhibits broad-spectrum antimicrobial activity against a number of drug-resistant bacteria, fungi, and viruses including clinical isolates of Mycobacterium tuberculosis, Staphylococcus aureus, and Candida albicans as well as laboratory strains of Herpes Simplex Virus. Studies in human keratinocytes and mice show that CAGE affords negligible local or systemic toxicity, and an ≈180-14 000-fold improved efficacy/toxicity ratio over currently used antiseptic agents. Further, CAGE penetrates deep into the dermis and treats pathogens located in deep skin layers as confirmed by the ability of CAGE in vivo to treat Propionibacterium acnes infection. In combination, the results clearly demonstrate CAGE holds promise as a transformative platform antiseptic agent for preventive as well as therapeutic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.

    PubMed

    Rajagopal, Sriram; Kumar, R Ajaya; Deevi, Dhanvanthri S; Satyanarayana, Chitkala; Rajagopalan, R

    2003-01-01

    Andrographis paniculata plant extract is known to possess a variety of pharmacological activities. Andrographolide, the major constituent of the extract is implicated towards its pharmacological activity. We studied the cellular processes and targets modulated by andrographolide treatment in human cancer and immune cells. Andrographolide treatment inhibited the in vitro proliferation of different tumor cell lines, representing various types of cancers. The compound exerts direct anticancer activity on cancer cells by cell-cycle arrest at G0/G1 phase through induction of cell-cycle inhibitory protein p27 and decreased expression of cyclin-dependent kinase 4 (CDK4). Immunostimulatory activity of andrographolide is evidenced by increased proliferation of lymphocytes and production of interleukin-2. Andrographolide also enhanced the tumor necrosis factor-alpha production and CD marker expression, resulting in increased cytotoxic activity of lymphocytes against cancer cells, which may contribute for its indirect anticancer activity. The in vivo anticancer activity of the compound is further substantiated against B16F0 melanoma syngenic and HT-29 xenograft models. These results suggest that andrographolide is an interesting pharmacophore with anticancer and immunomodulatory activities and hence has the potential for being developed as a cancer therapeutic agent.

  6. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target

    PubMed Central

    Krzyzosiak, Wlodzimierz J.; Sobczak, Krzysztof; Wojciechowska, Marzena; Fiszer, Agnieszka; Mykowska, Agnieszka; Kozlowski, Piotr

    2012-01-01

    This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases. PMID:21908410

  7. Protein based therapeutic delivery agents: Contemporary developments and challenges.

    PubMed

    Yin, Liming; Yuvienco, Carlo; Montclare, Jin Kim

    2017-07-01

    As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma

    PubMed Central

    Sareddy, Gangadhara R.; Li, Xiaonan; Liu, Jinyou; Viswanadhapalli, Suryavathi; Garcia, Lauren; Gruslova, Aleksandra; Cavazos, David; Garcia, Mike; Strom, Anders M.; Gustafsson, Jan-Ake; Tekmal, Rajeshwar Rao; Brenner, Andrew; Vadlamudi, Ratna K.

    2016-01-01

    Glioblastomas (GBM), deadly brain tumors, have greater incidence in males than females. Epidemiological evidence supports a tumor suppressive role of estrogen; however, estrogen as a potential therapy for GBM is limited due to safety concerns. Since GBM express ERβ, a second receptor for estrogen, targeting ERβ with a selective agonist may be a potential novel GBM therapy. In the present study, we examined the therapeutic effect of the selective synthetic ERβ agonist LY500307 using in vitro and in vivo GBM models. Treatment with LY500307 significantly reduced the proliferation of GBM cells with no activity on normal astrocytes in vitro. ERβ agonists promoted apoptosis of GBM cells, and mechanistic studies using RNA sequencing revealed that LY500307 modulated several pathways related to apoptosis, cell cycle, and DNA damage response. Further, LY500307 sensitized GBM cells to several FDA-approved chemotherapeutic drugs including cisplatin, lomustine and temozolomide. LY500307 treatment significantly reduced the in vivo tumor growth and promoted apoptosis of GBM tumors in an orthotopic model and improved the overall survival of tumor-bearing mice in the GL26 syngeneic glioma model. Our results demonstrate that LY500307 has potential as a therapeutic agent for GBM. PMID:27126081

  9. Nutraceuticals as therapeutic agents for atherosclerosis.

    PubMed

    Moss, Joe W E; Williams, Jessica O; Ramji, Dipak P

    2018-05-01

    Atherosclerosis, a chronic inflammatory disorder of medium and large arteries and an underlying cause of cardiovascular disease (CVD), is responsible for a third of all global deaths. Current treatments for CVD, such as optimized statin therapy, are associated with considerable residual risk and several side effects in some patients. The outcome of research on the identification of alternative pharmaceutical agents for the treatment of CVD has been relatively disappointing with many promising leads failing at the clinical level. Nutraceuticals, products from food sources with health benefits beyond their nutritional value, represent promising agents in the prevention of CVD or as an add-on therapy with current treatments. This review will highlight the potential of several nutraceuticals, including polyunsaturated fatty acids, flavonoids and other polyphenols, as anti-CVD therapies based on clinical and pre-clinical mechanism-based studies. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents.

    PubMed

    Abed, Dhulfiqar Ali; Goldstein, Melanie; Albanyan, Haifa; Jin, Huijuan; Hu, Longqin

    2015-07-01

    The Keap1-Nrf2-ARE pathway is an important antioxidant defense mechanism that protects cells from oxidative stress and the Keap1-Nrf2 protein-protein interaction (PPI) has become an important drug target to upregulate the expression of ARE-controlled cytoprotective oxidative stress response enzymes in the development of therapeutic and preventive agents for a number of diseases and conditions. However, most known Nrf2 activators/ARE inducers are indirect inhibitors of Keap1-Nrf2 PPI and they are electrophilic species that act by modifying the sulfhydryl groups of Keap1׳s cysteine residues. The electrophilicity of these indirect inhibitors may cause "off-target" side effects by reacting with cysteine residues of other important cellular proteins. Efforts have recently been focused on the development of direct inhibitors of Keap1-Nrf2 PPI. This article reviews these recent research efforts including the development of high throughput screening assays, the discovery of peptide and small molecule direct inhibitors, and the biophysical characterization of the binding of these inhibitors to the target Keap1 Kelch domain protein. These non-covalent direct inhibitors of Keap1-Nrf2 PPI could potentially be developed into effective therapeutic or preventive agents for a variety of diseases and conditions.

  11. Potential therapeutic agents for circulatory diseases from Bauhinia glauca Benth.subsp. pernervosa. (Da Ye Guan Men).

    PubMed

    Tang, Yingzhan; Ling, Junhong; Zhang, Peng; Zhang, Xiangrong; Zhang, Na; Wang, Wenli; Li, Jiayuan; Li, Ning

    2015-08-15

    Because of platelets as critical factor in the formation of pathogenic thrombi, anti-platelet activities have been selected as therapeutic target for various circulatory diseases. In order to find potential therapeutic agents, bioassay-directed separation of Bauhinia glauca Benth.subsp. pernervosa. (called Da Ye Guan Men as a traditional Chinese medicine) was performed to get 29 main components (compounds 1-29) from the bioactive part of this herbal. It was the first time to focus on the composition with anti-platelet aggregation activities for this traditional Chinese medicine. The constituents, characterized from the effective extract, were established on the basis of extensive spectral data analysis. Then their anti-platelet aggregation effects were evaluated systematically. On the basis of the chemical profile and biological assay, it was suggested that the flavonoid composition (5 and 18) should be responsible for the anti-platelet aggregation of the herbal because of their significant activities. The primary structure and activity relationship was also discussed briefly. Copyright © 2015. Published by Elsevier Ltd.

  12. Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma

    PubMed Central

    2014-01-01

    Background Medulloblastoma is the most common type of malignant brain tumor that afflicts children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients do poorly with significant morbidity. Methods To identify new molecular targets, we performed an integrated genomic analysis using structural and functional methods. Gene expression profiling in 16 medulloblastoma patient samples and subsequent gene set enrichment analysis indicated that cell cycle-related kinases were associated with disease development. In addition a kinome-wide small interfering RNA (siRNA) screen was performed to identify kinases that, when inhibited, could prevent cell proliferation. The two genome-scale analyses were combined to identify key vulnerabilities in medulloblastoma. The inhibition of one of the identified targets was further investigated using RNAi and a small molecule inhibitor. Results Combining the two analyses revealed that mitosis-related kinases were critical determinants of medulloblastoma cell proliferation. RNA interference (RNAi)-mediated knockdown of WEE1 kinase and other mitotic kinases was sufficient to reduce medulloblastoma cell proliferation. These data prompted us to examine the effects of inhibiting WEE1 by RNAi and by a small molecule inhibitor of WEE1, MK-1775, in medulloblastoma cell lines. MK-1775 inhibited the growth of medulloblastoma cell lines, induced apoptosis and increased DNA damage at nanomolar concentrations. Further, MK-1775 was synergistic with cisplatin in reducing medulloblastoma cell proliferation and resulted in an associated increase in cell death. In vivo MK-1775 suppressed medulloblastoma tumor growth as a single agent. Conclusions Taken together, these findings highlight mitotic kinases and, in particular, WEE1 as a rational therapeutic target for medulloblastoma. PMID:24661910

  13. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.

    PubMed

    Conlon, J Michael; Al-Ghaferi, Nadia; Abraham, Bency; Leprince, Jérôme

    2007-08-01

    The emergence of strains of pathogenic microorganisms with resistance to commonly used antibiotics has necessitated a search for novel types of antimicrobial agents. Many frog species produce amphipathic alpha-helical peptides with broad spectrum antimicrobial activity in the skin but their therapeutic potential is limited by varying degrees of cytolytic activity towards eukaryotic cells. Methods for development of such peptides into anti-infective drugs are illustrated by the example of temporin-1DRa (HFLGTLVNLAK KIL.NH(2)). Studies with model alpha-helical peptides have shown that increase in cationicity promotes antimicrobial activity whereas increases in hydrophobicity, helicity and amphipathicity promote hemolytic activity and loss of selectivity for microorganisms. Analogs of temporin-1DRa in which each amino acid is replaced by L-lysine and D-lysine were synthesized and their cytolytic activities tested against a range of microorganisms and human erythrocytes. Small changes in structure produced marked changes in conformation, as determined by retention time on reversed-phase HPLC, and in biological activity. However, peptides containing the substitutions (Val(7) -->L-Lys), (Thr(5)-->D-Lys) and (Asn(8)-->D-Lys) retained the high solubility and potent, broad spectrum antimicrobial activity of the naturally occurring peptide but were appreciably (up to 10-fold) less hemolytic. In contrast, analogs in which Leu(9) and Ile(13) were replaced by the more hydrophobic cyclohexylglycine residue showed slightly increased antimicrobial potencies (up to 2-fold) but a 4-fold increase in hemolytic activity. The data suggest a strategy of selective increases in cationicity concomitant with decreases in helicity and hydrophobicity in the transformation of naturally-occurring antimicrobial peptides into non-toxic therapeutic agents.

  14. The significance of avian influenza virus mouse-adaptation and its application in characterizing the efficacy of new vaccines and therapeutic agents

    PubMed Central

    2017-01-01

    Due to the increased frequency of interspecies transmission of avian influenza viruses, studies designed to identify the molecular determinants that could lead to an expansion of the host range have been increased. A variety of mouse-based mammalian-adaptation studies of avian influenza viruses have provided insight into the genetic alterations of various avian influenza subtypes that may contribute to the generation of a pandemic virus. To date, the studies have focused on avian influenza subtypes H5, H6, H7, H9, and H10 which have recently caused human infection. Although mice cannot fully reflect the course of human infection with avian influenza, these mouse studies can be a useful method for investigating potential mammalian adaptive markers against newly emerging avian influenza viruses. In addition, due to the lack of appropriate vaccines against the diverse emerging influenza viruses, the generation of mouse-adapted lethal variants could contribute to the development of effective vaccines or therapeutic agents. Within this review, we will summarize studies that have demonstrated adaptations of avian influenza viruses that result in an altered pathogenicity in mice which may suggest the potential application of mouse-lethal strains in the development of influenza vaccines and/or therapeutics in preclinical studies. PMID:28775972

  15. The Promise of Neuroprotective Agents in Parkinson’s Disease

    PubMed Central

    Seidl, Stacey E.; Potashkin, Judith A.

    2011-01-01

    Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available. PMID:22125548

  16. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics.

    PubMed

    Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory

    2011-07-01

    Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.

  17. Thymbra capitata essential oil as potential therapeutic agent against Gardnerella vaginalis biofilm-related infections.

    PubMed

    Machado, Daniela; Gaspar, Carlos; Palmeira-de-Oliveira, Ana; Cavaleiro, Carlos; Salgueiro, Lígia; Martinez-de-Oliveira, José; Cerca, Nuno

    2017-04-01

    To evaluate the antibacterial activity of Thymbra capitata essential oil and its main compound, carvacrol, against Gardnerella vaginalis grown planktonically and as biofilms, and its effect of vaginal lactobacilli. Minimal inhibitory concentration, minimal lethal concentration determination and flow cytometry analysis were used to assess the antibacterial effect against planktonic cells. Antibiofilm activity was measured through quantification of biomass and visualization of biofilm structure by confocal laser scanning microscopy. T. capitata essential oil and carvacrol exhibited a potent antibacterial activity against G. vaginalis cells. Antibiofilm activity was more evident with the essential oil than carvacrol. Furthermore, vaginal lactobacilli were significantly more tolerant to the essential oil. T. capitata essential oil stands up as a promising therapeutic agent against G. vaginalis biofilm-related infections.

  18. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems

    PubMed Central

    Wu, Min; Frieboes, Hermann B.; Chaplain, Mark A.J.; McDougall, Steven R.; Cristini, Vittorio; Lowengrub, John

    2014-01-01

    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but leads to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the

  19. Characterization of Emodin as a Therapeutic Agent for Diabetic Cataract.

    PubMed

    Chang, Kun-Che; Li, Linfeng; Sanborn, Theresa M; Shieh, Biehuoy; Lenhart, Patricia; Ammar, David; LaBarbera, Daniel V; Petrash, J Mark

    2016-05-27

    Aldose reductase (AR) in the lens plays an important role in the pathogenesis of diabetic cataract (DC) by contributing to osmotic and oxidative stress associated with accelerated glucose metabolism through the polyol pathway. Therefore, inhibition of AR in the lens may hold the key to prevent DC formation. Emodin, a bioactive compound isolated from plants, has been implicated as a therapy for diabetes. However, its inhibitory activity against AR remains unclear. Our results showed that emodin has good selectively inhibitory activity against AR (IC50 = 2.69 ± 0.90 μM) but not other aldo-keto reductases and is stable at 37 °C for at least 7 days. Enzyme kinetic studies demonstrated an uncompetitive inhibition against AR with a corresponding inhibition constant of 2.113 ± 0.095 μM. In in vivo studies, oral administration of emodin reduced the incidence and severity of morphological markers of cataract in lenses of AR transgenic mice. Computational modeling of the AR-NADP(+)-emodin ternary complex indicated that the 3-hydroxy group of emodin plays an essential role by interacting with Ser302 through hydrogen bonding in the specificity pocket of AR. All the findings above provide encouraging evidence for emodin as a potential therapeutic agent to prevent cataract in diabetic patients.

  20. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives.

    PubMed

    Singh, Rajesh K; Kumar, Sahil; Prasad, D N; Bhardwaj, T R

    2018-05-10

    Cancer is considered as one of the most serious health problems today. The discovery of nitrogen mustard as an alkylating agent in 1942, opened a new era in the cancer chemotherapy. This valuable class of alkylating agent exerts its biological activity by binding to DNA, cross linking two strands, preventing DNA replication and ultimate cell death. At the molecular level, nitrogen lone pairs of nitrogen mustard generate a strained intermediate "aziridinium ion" which is very reactive towards DNA of tumor cell as well as normal cell resulting in various adverse side effects alogwith therapeutic implications. Over the last 75 years, due to its high reactivity and peripheral cytotoxicity, numerous modifications have been made in the area of nitrogen mustard to improve its efficacy as well as enhancing drug delivery specifically to tumor cells. This review mainly discusses the medicinal chemistry aspects in the development of various classes of nitrogen mustards (mechlorethamine, chlorambucil, melphalan, cyclophosphamide and steroidal based nitrogen mustards). The literature collection includes the historical and the latest developments in these areas. This comprehensive review also attempted to showcase the recent progress in the targeted delivery of nitrogen mustards that includes DNA directed nitrogen mustards, antibody directed enzyme prodrug therapy (ADEPT), gene directed enzyme prodrug therapy (GDEPT), nitrogen mustard activated by glutathione transferase, peptide based nitrogen mustards and CNS targeted nitrogen mustards. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. An analysis of the therapeutic benefits of genotyping in pediatric hematopoietic stem cell transplantation.

    PubMed

    Wright, Felicity A; Bebawy, Mary; O'Brien, Tracey A

    2015-01-01

    Hematopoietic stem cell transplantation is a high-risk procedure that is offered, with curative intent, to patients with malignant and nonmalignant disease. The clinical benefits of personalization of therapy by genotyping have been demonstrated by the reduction in transplant related mortality from donor-recipient HLA matching. However, defining the relationship between genotype and transplant conditioning agents is yet to be translated into clinical practice. A number of the therapeutic agents used in stem cell transplant preparative regimens have pharmacokinetic parameters that predict benefit of incorporating pharmacogenomic data into dosing strategies. Busulfan, cyclophosphamide, thio-TEPA and etoposide have well-described drug metabolism pathways, however candidate gene studies have identified there is a gap in the identification of pharmacogenomic data that can be used to improve transplant outcomes. Incorporating pharmacogenomics into pharmacokinetic modeling may demonstrate the therapeutic benefits of genotyping in transplant preparative regimen agents.

  2. [Weighing use and safety of therapeutic agents and feed additives (author's transl)].

    PubMed

    van der Wal, P

    1982-02-01

    (1) The pros and cons of using feed additives and therapeutic agents may be successfully weighed in the light of carefully considered consumer requirements. (2) The socio-economic interests of the producer and the welfare of the animal will also determine the response of the production apparatus to consumer requirements. (3) Consumption of the current amounts of products of animal origin and maintenance of price and quality will only be feasible in the event of rational large-scale production in which constituents used in nutrition, prophylaxis and therapeutics are highly important factors. (4) Using these ingredients should be preceded by accurate evaluation of their use and safety. Testing facilities, conduct of studies and reporting should be such as to make the results nationally and internationally acceptable to all those concerned. (5) In deciding whether feed constituents are acceptable in view of the established use and safety, compliance will have to be sought with those standards which are accepted in other fields of society. Measures which result in raising the price of food without actually helping to reduce the risks to the safety of man, animals and environment, are likely to be rejected by any well-informed consumer who is aware of the facts. (6) For accurate weighing of use and safety at a national level, possibilities are hardly adequate in Europe. Decisions reached within the framework of the European Community, also tuned to U.S.A.- conditions are rightly encouraged. A centrally managed professionally staffed and equipped test system in the European Community would appear to be indispensable.

  3. Potential Therapeutics for Vascular Cognitive Impairment and Dementia.

    PubMed

    Sun, Miao-Kun

    2017-10-16

    As the human lifespan increases, the number of people affected by age-related dementia is growing at an epidemic pace. Vascular pathology dramatically affects cognitive profiles, resulting in dementia and cognitive impairment. While vascular dementia itself constitutes a medical challenge, hypoperfusion/vascular risk factors enhance amyloid toxicity and other memory-damaging factors and hasten Alzheimer's disease (AD) and other memory disorders' progression, as well as negatively affect treatment outcome. Few therapeutic options are, however, currently available to improve the prognosis of patients with vascular dementia and cognitive impairment, mixed AD dementia with vascular pathology, or other memory disorders. Emerging evidence, however, indicates that, like AD and other memory disorders, synaptic impairment underlies much of the memory impairment in the cognitive decline of vascular cognitive impairment and vascular dementia. Effective rescues of the memory functions might be achieved through synaptic and memory therapeutics, targeting distinct molecular signaling pathways that support the formation of new synapses and maintaining their connections. Potential therapeutic agents include: 1) memory therapeutic agents that rescue synaptic and memory functions after the brain insults; 2) anti-pathologic therapeutics and an effective management of vascular risk factors; and 3) preventative therapeutic agents that achieve memory therapy through functional enhancement. Their development and potential as clinically effective memory therapeutics for vascular cognitive impairment and dementia are discussed in this review. These therapeutic agents are also likely to benefit patients with AD and/or other types of memory disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Therapeutic Plasma Transfusion in Bleeding Patients: A Systematic Review.

    PubMed

    Levy, Jerrold H; Grottke, Oliver; Fries, Dietmar; Kozek-Langenecker, Sibylle

    2017-04-01

    Plasma products, including fresh frozen plasma, are administered extensively in a variety of settings from massive transfusion to vitamin K antagonist reversal. Despite the widespread use of plasma as a hemostatic agent in bleeding patients, its effect in comparison with other available choices of hemostatic therapies is unclear. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, PubMed Central, and databases of ongoing trials for randomized controlled trials that assessed the efficacy and/or safety of therapeutic plasma as an intervention to treat bleeding patients compared with other interventions or placebo. Of 1243 unique publications retrieved in our initial search, no randomized controlled trials were identified. Four nonrandomized studies described the effect of therapeutic plasma in bleeding patients; however, data gathered from these studies did not allow for comparison with other therapeutic interventions primarily as a result of the low number of patients and the use of different (or lack of) comparators. We identified two ongoing trials investigating the efficacy and safety of therapeutic plasma, respectively; however, no data have been released as yet. Although plasma is used extensively in the treatment of bleeding patients, evidence from randomized controlled trials comparing its effect with those of other therapeutic interventions is currently lacking.

  5. Caspase-3 short hairpin RNAs: a potential therapeutic agent in neurodegeneration of aluminum-exposed animal model.

    PubMed

    Zhang, Qinli; Li, Na; Jiao, Xia; Qin, Xiujun; Kaur, Ramanjit; Lu, Xiaoting; Song, Jing; Wang, Linping; Wang, Junming; Niu, Qiao

    2014-01-01

    There is abundant evidence supporting the role of caspases in the development of neurodegenerative disease, including Alzheimer's disease (AD). Therefore, regulating the activity of caspases has been considered as a therapeutic target. However, all the efforts on AD therapy using pan-caspase inhibitors have failed because of uncontrolled adverse effects. Alternatively, the specific knockdown of caspase-3 gene through RNA interference (RNAi) could serve as a future potential therapeutic strategy. The aim of the present study is to down-regulate the expression of caspase-3 gene using lentiviral vector-mediated caspase-3 short hairpin RNA (LV-Caspase-3 shRNA). The effect of LV-Caspase-3 shRNA on apoptosis induced by aluminum (Al) was investigated in primary cultured cortical neurons and validated in C57BL/6J mice. The results indicated an increase in apoptosis and caspase-3 expression in primary cultured neurons and the cortex ofmice exposed to Al, which could be down-regulated by LV-Caspase-3 shRNA. Furthermore, LV-Caspase-3 shRNA reduced neural cell death and improved learning and memory in C57BL/6J mice treated with Al. Our results suggest that LV-caspase-3 shRNA is a potential therapeutic agent to prevent neurodegeneration and cognitive dysfunction in aluminum- exposed animal models. The findings provide a rational gene therapy strategy for AD.

  6. Identifying Potential Therapeutics for Osteoporosis by Exploiting the Relationship between Mevalonate Pathway and Bone Metabolism.

    PubMed

    Wan Hasan, Wan Nuraini; Chin, Kok-Yong; Jolly, James Jam; Abd Ghafar, Norzana; Soelaiman, Ima Nirwana

    2018-04-23

    Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling. This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential. Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans. mevalonate pathway can be exploited to develop effective antiosteoporosis agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Cyclic peptides as potential therapeutic agents for skin disorders.

    PubMed

    Namjoshi, Sarika; Benson, Heather A E

    2010-01-01

    There is an increasing understanding of the role of peptides in normal skin function and skin disease. With this knowledge, there is significant interest in the application of peptides as therapeutics in skin disease or as cosmeceuticals to enhance skin appearance. In particular, antimicrobial peptides and those involved in inflammatory processes provide options for the development of new therapeutic directions in chronic skin conditions such as psoriasis and dermatitis. To exploit their potential, it is essential that these peptides are delivered to their site of action in active form and in sufficient quantity to provide the desired effect. Many polymers permeate the skin poorly and are vulnerable to enzymatic degradation. Synthesis of cyclic peptide derivatives can substantially alter the physicochemical characteristics of the peptide with the potential to improve its skin permeation. In addition, cyclization can stabilize the peptide structure and thereby increase its stability. This review describes the role of cyclic peptides in the skin, examples of current cyclic peptide therapeutic products, and the potential for cyclic peptides as dermatological therapeutics and cosmeceuticals.

  8. A Novel Single-Strand RNAi Therapeutic Agent Targeting the (Pro)renin Receptor Suppresses Ocular Inflammation.

    PubMed

    Kanda, Atsuhiro; Ishizuka, Erdal Tan; Shibata, Atsushi; Matsumoto, Takahiro; Toyofuku, Hidekazu; Noda, Kousuke; Namba, Kenichi; Ishida, Susumu

    2017-06-16

    The receptor-associated prorenin system (RAPS) refers to the pathogenic mechanism whereby prorenin binding to the (pro)renin receptor [(P)RR] dually activates the tissue renin-angiotensin system (RAS) and RAS-independent intracellular signaling. Here we revealed significant upregulation of prorenin and soluble (P)RR levels in the vitreous fluid of patients with uveitis compared to non-inflammatory controls, together with a positive correlation between these RAPS components and monocyte chemotactic protein-1 among several upregulated cytokines. Moreover, we developed a novel single-strand RNAi agent, proline-modified short hairpin RNA directed against human and mouse (P)RR [(P)RR-PshRNA], and we determined its safety and efficacy in vitro and in vivo. Application of (P)RR-PshRNA in mice caused significant amelioration of acute (uveitic) and chronic (diabetic) models of ocular inflammation with no apparent adverse effects. Our findings demonstrate the significant implication of RAPS in the pathogenesis of human uveitis and the potential usefulness of (P)RR-PshRNA as a therapeutic agent to reduce ocular inflammation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model.

    PubMed

    Huang, Feng-Yun J; Lee, Te-Wei; Chang, Chih-Hsien; Chen, Liang-Cheng; Hsu, Wei-Hsin; Chang, Chien-Wen; Lo, Jem-Mau

    2015-01-01

    In this study, the (188)Re-labeled PEGylated nanoliposome ((188)Re-liposome) was prepared and evaluated as a therapeutic agent for glioma. The reporter cell line, F98(luc) was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of (188)Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered (188)Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the (188)Re-liposome-treated rats. By using bioluminescent imaging, the well-established reporter cell line (F98(luc)) showed a high relationship between cell number and its bioluminescent intensity (R(2)=0.99) in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of (188)Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the (188)Re-liposome-treated group than the control group (P<0.05). As a result, the lifespan of glioma-bearing rats treated with (188)Re-liposome was prolonged 10.67% compared to the control group. The radiotherapeutic evaluation by dosimetry and survival studies have demonstrated that passive targeting (188)Re-liposome via systemic administration can significantly prolong the lifespan of orthotopic glioma

  10. The renaissance of complement therapeutics

    PubMed Central

    Ricklin, Daniel; Mastellos, Dimitrios C.; Reis, Edimara S.; Lambris, John D.

    2018-01-01

    The increasing number of clinical conditions that involve a pathological contribution from the complement system — many of which affect the kidneys — has spurred a regained interest in therapeutic options to modulate this host defence pathway. Molecular insight, technological advances, and the first decade of clinical experience with the complement-specific drug eculizumab, have contributed to a growing confidence in therapeutic complement inhibition. More than 20 candidate drugs that target various stages of the complement cascade are currently being evaluated in clinical trials, and additional agents are in preclinical development. Such diversity is clearly needed in view of the complex and distinct involvement of complement in a wide range of clinical conditions, including rare kidney disorders, transplant rejection and haemodialysis-induced inflammation. The existing drugs cannot be applied to all complement-driven diseases, and each indication has to be assessed individually. Alongside considerations concerning optimal points of intervention and economic factors, patient stratification will become essential to identify the best complement-specific therapy for each individual patient. This Review provides an overview of the therapeutic concepts, targets and candidate drugs, summarizes insights from clinical trials, and reflects on existing challenges for the development of complement therapeutics for kidney diseases and beyond. PMID:29199277

  11. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    PubMed

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-06-17

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  12. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.

    PubMed

    Wu, Min; Frieboes, Hermann B; Chaplain, Mark A J; McDougall, Steven R; Cristini, Vittorio; Lowengrub, John S

    2014-08-21

    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the response

  13. New Insight in Improving Therapeutic Efficacy of Antipsychotic Agents: An Overview of Improved In Vitro and In Vivo Performance, Efficacy Upgradation and Future Prospects.

    PubMed

    Ei Thu, Hnin; Hussain, Zahid; Shuid, Ahmad Nazrun

    2018-01-01

    Psychotic disorders are recognized as severe mental disorders that rigorously affect patient's personality, critical thinking, and perceptional ability. High prevalence, global dissemination and limitations of conventional pharmacological approaches compel a significant burden to the patient, medical professionals and the healthcare system. To date, numerous orally administered therapies are available for the management of depressive disorders, schizophrenia, anxiety, bipolar disorders and autism spectrum problems. However, poor water solubility, erratic oral absorption, extensive first-pass metabolism, low oral bioavailability and short half-lives are the major factors which limit the pharmaceutical significance and therapeutic feasibility of these agents. In recent decades, nanotechnology-based delivery systems have gained remarkable attention of the researchers to mitigate the pharmaceutical issues related to the antipsychotic therapies and to optimize their oral drug delivery, therapeutic outcomes, and patient compliance. Therefore, the present review was aimed to summarize the available in vitro and in vivo evidences signifying the pharmaceutical importance of the advanced delivery systems in improving the aqueous solubility, transmembrane permeability, oral bioavailability and therapeutic outcome of the antipsychotic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. PPMP, a novel tubulin-depolymerizing agent against esophageal cancer in patient-derived tumor xenografts.

    PubMed

    Sheng, Yuqiao; Liu, Kangdong; Wu, Qiong; Oi, Naomi; Chen, Hanyong; Reddy, Kanamata; Jiang, Yanan; Yao, Ke; Li, Haitao; Li, Wei; Zhang, Yi; Saleem, Mohammad; Ma, Wei-Ya; Bode, Ann M; Dong, Ziming; Dong, Zigang

    2016-05-24

    Esophageal cancer is one of the least studied and deadliest cancers worldwide with a poor prognosis due to limited options for treatment. Chemotherapy agents such as the microtubule-targeting compounds are the mainstay of palliation for advanced esophageal cancer treatment. However, the toxicity and side effects of tubulin-binding agents (TBAs) have promoted the development of novel, more potent but less toxic TBAs. Herein, we identified 2-[4-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrazol-5-yl]-5-[(2-methylprop-2-en-1-yl)oxy] phenol (PPMP) as a novel TBA for esophageal cancer treatment. PPMP markedly inhibited tubulin polymerization, and decreased viability and anchorage-independent growth of esophageal cancer cell lines, effects that were accompanied by G2/M arrest and apoptosis. Importantly, we produced patient-derived esophageal cancer xenografts to evaluate the therapeutic effect of PPMP in a setting that best mimics the clinical context in patients with esophageal cancer. Overall, we identified PPMP as a novel microtubule-destabilizing compound and as a new therapeutic agent against esophageal carcinoma.

  15. Method for identifying mutagenic agents which induce large, multilocus deletions in DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, W.E.C.; Belouchi, A.; Dewyse, P.

    1993-07-13

    A method of identifying a mutagenic agent is described which includes a large, multilocus deletions in DNA in mammalian cells comprising: (i) exposing a class III heterozygous CHO cell line to a potential mutagenic agent under investigation, and allowing any mutation of the cell line to proceed, said cell line being characterized in that a restriction fragment length variation exists in on mutation it becomes resistant to 2,6-diaminopurine and in that the DNA sequence adjacent to the two alleles of the APRT gene such that the DNA sequence adjacent to one of the two alleles can be digested with themore » enzyme BclI but the DNA sequence variation adjacent to the other of the two alleles cannot be digested with BclI, (ii) isolating induced mutations of the cell line deficient in APRT function, (iii) isolating DNA from the induced mutants, (iv) digesting the isolated DNA with BclI enzyme to produce digested fragments including a 19 kb fragment and any 2 kb fragment, which fragments hybridize with the labeled probe derived from DNA fragment PDI, (v) separating any digested fragments, (vi) transferring the separated fragments of (v) to a solid support, (vii) hybridizing the supported separated fragments with a labeled probe derived from the clone DNA fragment PD 1, (viii) determining fragments having undergone loss of the 2 kb band identified by the probe, as an identification of parent mutants in which the loss occurred, and (ix) evaluating the mutating ability of the potential mutagenic agent.« less

  16. Co-culturing of Fungal Strains Against Botrytis cinerea as a Model for the Induction of Chemical Diversity and Therapeutic Agents

    PubMed Central

    Serrano, Rachel; González-Menéndez, Víctor; Rodríguez, Lorena; Martín, Jesús; Tormo, José R.; Genilloud, Olga

    2017-01-01

    New fungal SMs (SMs) have been successfully described to be produced by means of in vitro-simulated microbial community interactions. Co-culturing of fungi has proved to be an efficient way to induce cell–cell interactions that can promote the activation of cryptic pathways, frequently silent when the strains are grown in laboratory conditions. Filamentous fungi represent one of the most diverse microbial groups known to produce bioactive natural products. Triggering the production of novel antifungal compounds in fungi could respond to the current needs to fight health compromising pathogens and provide new therapeutic solutions. In this study, we have selected the fungus Botrytis cinerea as a model to establish microbial interactions with a large set of fungal strains related to ecosystems where they can coexist with this phytopathogen, and to generate a collection of extracts, obtained from their antagonic microbial interactions and potentially containing new bioactive compounds. The antifungal specificity of the extracts containing compounds induced after B. cinerea interaction was determined against two human fungal pathogens (Candida albicans and Aspergillus fumigatus) and three phytopathogens (Colletotrichum acutatum, Fusarium proliferatum, and Magnaporthe grisea). In addition, their cytotoxicity was also evaluated against the human hepatocellular carcinoma cell line (HepG2). We have identified by LC-MS the production of a wide variety of known compounds induced from these fungal interactions, as well as novel molecules that support the potential of this approach to generate new chemical diversity and possible new therapeutic agents. PMID:28469610

  17. Co-culturing of Fungal Strains Against Botrytis cinerea as a Model for the Induction of Chemical Diversity and Therapeutic Agents.

    PubMed

    Serrano, Rachel; González-Menéndez, Víctor; Rodríguez, Lorena; Martín, Jesús; Tormo, José R; Genilloud, Olga

    2017-01-01

    New fungal SMs (SMs) have been successfully described to be produced by means of in vitro -simulated microbial community interactions. Co-culturing of fungi has proved to be an efficient way to induce cell-cell interactions that can promote the activation of cryptic pathways, frequently silent when the strains are grown in laboratory conditions. Filamentous fungi represent one of the most diverse microbial groups known to produce bioactive natural products. Triggering the production of novel antifungal compounds in fungi could respond to the current needs to fight health compromising pathogens and provide new therapeutic solutions. In this study, we have selected the fungus Botrytis cinerea as a model to establish microbial interactions with a large set of fungal strains related to ecosystems where they can coexist with this phytopathogen, and to generate a collection of extracts, obtained from their antagonic microbial interactions and potentially containing new bioactive compounds. The antifungal specificity of the extracts containing compounds induced after B. cinerea interaction was determined against two human fungal pathogens ( Candida albicans and Aspergillus fumigatus ) and three phytopathogens ( Colletotrichum acutatum , Fusarium proliferatum , and Magnaporthe grisea ). In addition, their cytotoxicity was also evaluated against the human hepatocellular carcinoma cell line (HepG2). We have identified by LC-MS the production of a wide variety of known compounds induced from these fungal interactions, as well as novel molecules that support the potential of this approach to generate new chemical diversity and possible new therapeutic agents.

  18. Combination of topical agents and oxybutynin as a therapeutic modality for patients with both osmidrosis and hyperhidrosis.

    PubMed

    Varella, Andrea Yasbek Monteiro; Fukuda, Juliana Maria; Teivelis, Marcelo Passos; Pinheiro, Lucas Lembrança; Mendes, Cynthia de Almeida; Kauffman, Paulo; Campos, José Ribas Milanez de; Wolosker, Nelson

    2018-02-01

    The association of osmidrosis and hyperhidrosis often causes emotional and social problems that may impair the patients' quality of life. The purpose of our study was to analyze the therapeutic results of oxybutynin and topical agents in 89 patients with both osmidrosis and hyperhidrosis. We conducted an observational study at two specialized centers of hyperhidrosis between April 2007 and August 2013. Eighty-nine (89) patients with both osmidrosis and hyperhidrosis were treated with oxybutynin and topical agents. Patients were evaluated before treatment and at 3 and 6 weeks after treatment started, by using the Quality of Life Questionnaire and the Sweating Evolution Scale. Before treatment, 98% of the patients presented with poor or very poor quality of life. After six weeks of treatment, 70% stated their quality of life as being slightly better or much better (p<0.001) and nearly 70% of the patients experienced a moderate or great improvement in sweating and malodor. Improvement in osmidrosis was significantly greater when the axillary region was the first most disturbing site of hyperhidrosis. There was a significant improvement in quality of life and a reduction in sweating and malodor after six weeks of treatment with topical agents and oxybutynin in patients with both hyperhidrosis and osmidrosis. Therefore, clinical treatment should be considered before invasive techniques.

  19. Therapeutic Potential of Phytochemicals in Combination with Drugs for Cardiovascular Disorders.

    PubMed

    Shen, James Z; Ng, Ting L J; Ho, Wing S

    2017-01-01

    The incidence of cardiovascular disorders is increasing worldwide. Heart disease is the leading cause of death for both men and women. High blood pressure, high low-density lipoprotein cholesterol level, and smoking are key risk factors for heart disease. Other medical conditions such as diabetes, overweight, obesity and lifestyle can put people at a higher risk for coronary heart disease. The preventive measures based on the common drugs may help reduce the risk of cardiovascular diseases. The present review highlights the contributions of therapeutic potential of phytochemicals in management of cardiovascular diseases. However, the delivery efficiency of therapeutic agents can be enhanced in order to improve the efficacy of phytochemicals as a therapeutic agent. The oral administration of phytochemicals as therapeutic agents is a common approach. The review highlights the recent development of natural products for the complementary treatment of cardiovascular diseases. These findings indicate that the combination of therapeutic drugs and natural products may improve the treatment efficacy of therapeutic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia.

    PubMed

    Perez, Dominique R; Smagley, Yelena; Garcia, Matthew; Carter, Mark B; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S; Sklar, Larry A; Chigaev, Alexandre

    2016-06-07

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.

  1. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain-barrier divide

    PubMed Central

    Chacko, Ann-Marie; Li, Chunsheng; Pryma, Daniel A.; Brem, Steven; Coukos, George; Muzykantov, Vladimir R.

    2014-01-01

    Introduction Brain tumors are inherently difficult to treat in large part due to the cellular blood-brain barriers (BBB) that limit the delivery of therapeutics to the tumor tissue from the systemic circulation. Virtually no large-molecules, including antibody-based proteins, can penetrate the BBB. With antibodies fast becoming attractive ligands for highly specific molecular targeting to tumor antigens, a variety of methods are being investigated to enhance the access of these agents to intracranial tumors for imaging or therapeutic applications. Areas covered This review describes the characteristics of the BBB and the vasculature in brain tumors, described as the blood-brain tumor barrier (BBTB). Antibodies targeted to molecular markers of CNS tumors will be highlighted, and current strategies for enhancing the delivery of antibodies across these cellular barriers into the brain parenchyma to the tumor will be discussed. Non-invasive imaging approaches to assess BBB/BBTB permeability and/or antibody targeting will be presented as a means of guiding the optimal delivery of targeted agents to brain tumors. Expert Opinion Pre-clinical and clinical studies highlight the potential of several approaches in increasing brain tumor delivery across the blood-brain barrier divide. However, each carries its own risks and challenges. There is tremendous potential in using neuroimaging strategies to assist in understanding and defining the challenges to translating and optimizing molecularly-targeted antibody delivery to CNS tumors to improve clinical outcomes. PMID:23751126

  2. The Effectiveness of Various Salacca Vinegars as Therapeutic Agent for Management of Hyperglycemia and Dyslipidemia on Diabetic Rats

    PubMed Central

    Rukmi Putri, Widya Dwi; Puspitasari, Tiara; Kalsum, Umi; Dianawati, Dianawati

    2017-01-01

    The aim of this study was to explore the potency of salacca vinegar made from various Indonesian salacca fruit extracts as therapeutic agent for hyperglycemia and dyslipidemia for STZ-induced diabetic rats. The rats were grouped into untreated rats, STZ-induced diabetic rats without treatment, and STZ-induced diabetic rats treated with Pondoh salacca vinegar, Swaru salacca vinegar, Gula Pasir salacca vinegar, Madu salacca vinegar, or Madura salacca vinegar. Parameter observed included blood glucose, total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), triglyceride (TG), malondialdehyde (MDA), superoxide dismutase (SOD), and pancreas histopathology of the samples. The results demonstrated that all salacca vinegars were capable of reducing blood sugar (from 25.1 to 62%) and reducing LDL (from 9.5 to 14.8 mg/dL), TG (from 58.3 to 69.5 mg/dL), MDA (from 1.1 to 2.2 mg/dL), and TC (from 56.3 to 70.5 mg/dL) as well as increasing HDL blood sugar of STZ-induced diabetic Wistar rats (from 52.3 to 60 mg/dL). Various salacca vinegars were also capable of regenerating pancreatic cells. Nevertheless, the ability of Swaru salacca vinegar to manage hyperglycemia and dyslipidemia appeared to be superior to other salacca vinegars. Swaru salacca vinegar is a potential therapeutic agent to manage hyperglycemia and dyslipidemia of STZ-induced diabetic rats. PMID:28424779

  3. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1985-06-11

    This invention relates to the production of metal-binding compounds useful for the therapy of heavy metal poisoning, for biological mining and for decorporation of radionuclides. The present invention deals with an orderly and effective method of producing new therapeutically effective chelating agents. This method uses challenge biosynthesis for the production of chelating agents that are specific for a particular metal. In this approach, the desired chelating agents are prepared from microorganisms challenged by the metal that the chelating agent is designed to detoxify. This challenge induces the formation of specific or highly selective chelating agents. The present invention involves the use of the challenge biosynthetic method to produce new complexing/chelating agents that are therapeutically useful to detoxify uranium, plutonium, thorium and other toxic metals. The Pseudomonas aeruginosa family of organisms is the referred family of microorganisms to be used in the present invention to produce the new chelating agent because this family is known to elaborate strains resistant to toxic metals.

  4. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound.

    PubMed

    Sheeran, Paul S; Luois, Samantha; Dayton, Paul A; Matsunaga, Terry O

    2011-09-06

    Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications. © 2011 American Chemical Society

  5. Protein-Based Therapeutic Killing for Cancer Therapies.

    PubMed

    Serna, Naroa; Sánchez-García, Laura; Unzueta, Ugutz; Díaz, Raquel; Vázquez, Esther; Mangues, Ramón; Villaverde, Antonio

    2018-03-01

    The treatment of some high-incidence human diseases is based on therapeutic cell killing. In cancer this is mainly achieved by chemical drugs that are systemically administered to reach effective toxic doses. As an innovative alternative, cytotoxic proteins identified in nature can be adapted as precise therapeutic agents. For example, individual toxins and venom components, proapoptotic factors, and antimicrobial peptides from bacteria, animals, plants, and humans have been engineered as highly potent drugs. In addition to the intrinsic cytotoxic activities of these constructs, their biological fabrication by DNA recombination allows the recruitment, in single pharmacological entities, of diverse functions of clinical interest such as specific cell-surface receptor binding, self-activation, and self-assembling as nanoparticulate materials, with wide applicability in cell-targeted oncotherapy and theragnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pharmacokinetics of cotinine in rats: a potential therapeutic agent for disorders of cognitive function

    PubMed Central

    Li, Pei; Beck, Wayne D.; Callahan, Patrick M.; Terry, Alvin V.; Bartlett, Michael G.

    2016-01-01

    Background Attention has been paid to cotinine (COT), one of the major metabolites of nicotine (NIC), for its pro-cognitive effects and potential therapeutic activities against Alzheimer's Disease (AD) and other types of cognitive impairment. In order to facilitate pharmacological and toxicological studies on COT for its pro-cognitive activities, we conducted a pharmacokinetic (PK) study of COT in rats, providing important oral and intravenously (IV) PK information. Methods In this study, plasma samples were obtained up to 48 hours after COT was dosed to rats orally and IV at a dose of 3 mg/kg. Plasma samples were prepared and analyzed using a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) bioanalytical method, providing concentration profiles of COT and metabolites after oral and IV administrations. Results The data were fitted into a one-compartment model and a two-compartment model for the oral and IV groups, respectively, providing important PK information for COT including PK profiles, half-life, clearance and bioavailability. The results suggested fast absorption, slow elimination and high bioavailability of COT in rats. Conclusions Several important facts about the PK properties in rats suggested COT could be a potential pro-cognitive agent. Information about the pharmacokinetics of COT in rats revealed in this study is of great importance for the future studies on COT or potential COT analogues as agents for improving cognition. PMID:25933960

  7. Update on Huntington's disease: advances in care and emerging therapeutic options.

    PubMed

    Zielonka, Daniel; Mielcarek, Michal; Landwehrmeyer, G Bernhard

    2015-03-01

    Huntington's disease (HD) is the most common hereditary neurodegenerative disorder. Despite the fact that both the gene and the mutation causing this monogenetic disorder were identified more than 20 years ago, disease-modifying therapies for HD have not yet been established. While intense preclinical research and large cohort studies in HD have laid foundations for tangible improvements in understanding HD and caring for HD patients, identifying targets for therapeutic interventions and developing novel therapeutic modalities (new chemical entities and advanced therapies using DNA and RNA molecules as therapeutic agents) continues to be an ongoing process. The authors review recent achievements in HD research and focus on approaches towards disease-modifying therapies, ranging from huntingtin-lowering strategies to improving huntingtin clearance that may be promoted by posttranslational HTT modifications. The nature and number of upcoming clinical studies/trials in HD is a reason for hope for HD patients and their families. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Nucleotide excision repair is a potential therapeutic target in multiple myeloma

    PubMed Central

    Szalat, R; Samur, M K; Fulciniti, M; Lopez, M; Nanjappa, P; Cleynen, A; Wen, K; Kumar, S; Perini, T; Calkins, A S; Reznichenko, E; Chauhan, D; Tai, Y-T; Shammas, M A; Anderson, K C; Fermand, J-P; Arnulf, B; Avet-Loiseau, H; Lazaro, J-B; Munshi, N C

    2018-01-01

    Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM. PMID:28588253

  9. Systems approaches in osteoarthritis: Identifying routes to novel diagnostic and therapeutic strategies

    PubMed Central

    Mueller, Alan J.; Peffers, Mandy J.; Proctor, Carole J.

    2017-01-01

    ABSTRACT Systems orientated research offers the possibility of identifying novel therapeutic targets and relevant diagnostic markers for complex diseases such as osteoarthritis. This review demonstrates that the osteoarthritis research community has been slow to incorporate systems orientated approaches into research studies, although a number of key studies reveal novel insights into the regulatory mechanisms that contribute both to joint tissue homeostasis and its dysfunction. The review introduces both top‐down and bottom‐up approaches employed in the study of osteoarthritis. A holistic and multiscale approach, where clinical measurements may predict dysregulation and progression of joint degeneration, should be a key objective in future research. The review concludes with suggestions for further research and emerging trends not least of which is the coupled development of diagnostic tests and therapeutics as part of a concerted effort by the osteoarthritis research community to meet clinical needs. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1573–1588, 2017. PMID:28318047

  10. ADVANCED MOLECULAR DESIGN OF BIOPOLYMERS FOR TRANSMUCOSAL AND INTRACELLULAR DELIVERY OF CHEMOTHERAPEUTIC AGENTS AND BIOLOGICAL THERAPEUTICS

    PubMed Central

    Liechty, William B.; Caldorera-Moore, Mary; Phillips, Margaret A.; Schoener, Cody; Peppas, Nicholas A.

    2011-01-01

    Hydrogels have been instrumental in the development of polymeric systems for controlled release of therapeutic agents. These materials are attractive for transmucosal and intracellular drug delivery because of their facile synthesis, inherent biocompatibility, tunable physicochemical properties, and capacity to respond to various physiological stimuli. In this contribution, we outline a multifaceted hydrogel-based approach for expanding the range of therapeutics in oral formulations from classical small-molecule drugs to include proteins, chemotherapeutics, and nucleic acids. Through judicious materials selection and careful design of copolymer composition and molecular architecture, we can engineer systems capable of responding to distinct physiological cues, with tunable physicochemical properties that are optimized to load, protect, and deliver valuable macromolecular payloads to their intended site of action. These hydrogel carriers, including complexation hydrogels, tethered hydrogels, interpenetrating networks, nanoscale hydrogels, and hydrogels with decorated structures are investigated for their ability respond to changes in pH, to load and release insulin and fluorescein, and remain non-toxic to Caco-2 cells. Our results suggest these novel hydrogel networks have great potential for controlled delivery of proteins, chemotherapeutics, and nucleic acids. PMID:21699934

  11. Nasal-nanotechnology: revolution for efficient therapeutics delivery.

    PubMed

    Kumar, Amrish; Pandey, Aditya Nath; Jain, Sunil Kumar

    2016-01-01

    In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.

  12. Early investigational tubulin inhibitors as novel cancer therapeutics.

    PubMed

    Nepali, Kunal; Ojha, Ritu; Lee, Hsueh-Yun; Liou, Jing-Ping

    2016-08-01

    Microtubules represent one of the most logical and strategic molecular targets amongst the current targets for chemotherapy, alongside DNA. In the past decade, tubulin inhibitors as cancer therapeutics have been an area of focus due to the improved understanding and biological relevance of microtubules in cellular functions. Fueled by the objective of developing novel chemotherapeutics and with the aim of establishing the benefits of tubulin inhibition, several clinical trials have been conducted with others ongoing. At present, the antitubulin development pipeline contains an armful of agents under clinical investigation. This review focuses on novel tubulin inhibitors as cancer therapeutics. The article covers the agents which have completed the phase II studies along with the agents demonstrating promising results in phase I studies. Countless clinical trials evaluating the efficacy, safety and pharmacokinetics of novel tubulin inhibitors highlights the scientific efforts being paid to establish their candidature as cancer therapeutics. Colchicine binding site inhibitors as vascular disrupting agents (VDAs) and new taxanes appear to be the most likely agents for future clinical interest. Numerous agents have demonstrated clinical benefits in terms of efficacy and survival in phase I and II studies. However conclusive benefits can only be ascertained on the basis of phase III studies.

  13. Dendrimer advances for the central nervous system delivery of therapeutics.

    PubMed

    Xu, Leyuan; Zhang, Hao; Wu, Yue

    2014-01-15

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.

  14. Human Carboxylesterase 1 Stereoselectively Binds the Nerve Agent Cyclosarin and Spontaneously Hydrolyzes the Nerve Agent Sarin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmert, Andrew C.; Otto, Tamara C.; Wierdl, Monika

    Organophosphorus (OP) nerve agents are potent toxins that inhibit cholinesterases and produce a rapid and lethal cholinergic crisis. Development of protein-based therapeutics is being pursued with the goal of preventing nerve agent toxicity and protecting against the long-term side effects of these agents. The drug-metabolizing enzyme human carboxylesterase 1 (hCE1) is a candidate protein-based therapeutic because of its similarity in structure and function to the cholinesterase targets of nerve agent poisoning. However, the ability of wild-type hCE1 to process the G-type nerve agents sarin and cyclosarin has not been determined. We report the crystal structure of hCE1 in complex withmore » the nerve agent cyclosarin. We further use stereoselective nerve agent analogs to establish that hCE1 exhibits a 1700- and 2900-fold preference for the P{sub R} enantiomers of analogs of soman and cyclosarin, respectively, and a 5-fold preference for the P{sub S} isomer of a sarin analog. Finally, we show that for enzyme inhibited by racemic mixtures of bona fide nerve agents, hCE1 spontaneously reactivates in the presence of sarin but not soman or cyclosarin. The addition of the neutral oxime 2,3-butanedione monoxime increases the rate of reactivation of hCE1 from sarin inhibition by more than 60-fold but has no effect on reactivation with the other agents examined. Taken together, these data demonstrate that hCE1 is only reactivated after inhibition with the more toxic P{sub S} isomer of sarin. These results provide important insights toward the long-term goal of designing novel forms of hCE1 to act as protein-based therapeutics for nerve agent detoxification.« less

  15. Therapeutic targets and new directions for antibodies developed for ovarian cancer

    PubMed Central

    Bax, Heather J.; Josephs, Debra H.; Pellizzari, Giulia; Spicer, James F.; Montes, Ana; Karagiannis, Sophia N.

    2016-01-01

    ABSTRACT Antibody therapeutics against different target antigens are widely used in the treatment of different malignancies including ovarian carcinomas, but this disease still requires more effective agents. Improved understanding of the biological features, signaling pathways, and immunological escape mechanisms involved in ovarian cancer has emerged in the past few years. These advances, including an appreciation of the cross-talk between cancer cells and the patient's immune system, have led to the identification of new targets. In turn, potential antibody treatments with various mechanisms of action, including immune activation or toxin-delivery, that are directed at these targets have been developed. Here, we identify established as well as novel targets for antibodies in ovarian cancer, and discuss how they may provide fresh opportunities to identify interventions with enhanced therapeutic potential. PMID:27494775

  16. The effects of physical therapeutic agents on serum levels of stress hormones in patients with osteoarthritis

    PubMed Central

    Tönük, Şükrü Burak; Serin, Erdinc; Ayhan, Fikriye Figen; Yorgancioglu, Zeynep Rezan

    2016-01-01

    Abstract To investigate the effects of physical agents on the levels of stress hormones in patients with osteoarthritis (OA). Transcutaneous electrical nerve stimulation, hot packs, and therapeutic ultrasound were applied to the lumbar region and knees of patients with OA. Blood samples were taken for the measurement of the serum levels of glucose, insulin (INS), growth hormone (GH), prolactin (PRL), cortisol (COR), and plasma adrenocorticotropic hormone (ACTH) immediately before and after the 1st session, to investigate the acute effects of those physical agents on the endocrine system. The hormone levels were also measured every 5 sessions in a total of 10 sessions. The treatment response was also evaluated by using the visual analogue scale (VAS), Roland Morris Disability Questionnaire (RMDQ), and Western Ontario and McMaster Universities Arthritis Index (WOMAC) throughout the therapy period. After the 1st session, there was a decrease in INS levels and a mild decrease in PRL levels (P = 0.001 and P < 0.05, respectively). Throughout the 10-session therapy period, the INS levels increased, whereas the ACTH and COR levels decreased (P < 0.05 for all). The VAS-spine, RMDQ, VAS-knee, and WOMAC scores decreased (P = 0.001 for VAS-spine and P < 0.001 for all others). A positive correlation was detected between the changes in serum COR and WOMAC-pain score (P < 0.05). Although the combination therapy caused changes in INS level accompanied with steady glucose levels, the application of physical agents did not adversely affect the hormone levels. The decrease in ACTH and COR levels may be attributed to the analgesic effect of agents and may be an indicator of patient comfort through a central action. PMID:27583888

  17. Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model

    PubMed Central

    Huang, Feng-Yun J; Lee, Te-Wei; Chang, Chih-Hsien; Chen, Liang-Cheng; Hsu, Wei-Hsin; Chang, Chien-Wen; Lo, Jem-Mau

    2015-01-01

    Purpose In this study, the 188Re-labeled PEGylated nanoliposome (188Re-liposome) was prepared and evaluated as a therapeutic agent for glioma. Materials and methods The reporter cell line, F98luc was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of 188Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered 188Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the 188Re-liposome-treated rats. Results By using bioluminescent imaging, the well-established reporter cell line (F98luc) showed a high relationship between cell number and its bioluminescent intensity (R2=0.99) in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of 188Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the 188Re-liposome-treated group than the control group (P<0.05). As a result, the lifespan of glioma-bearing rats treated with 188Re-liposome was prolonged 10.67% compared to the control group. Conclusion The radiotherapeutic evaluation by dosimetry and survival studies have demonstrated that passive targeting 188Re-liposome via systemic administration can significantly prolong the

  18. Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets.

    PubMed

    Quick, Quincy A

    2018-01-26

    Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family. On the contrary, microtubules have traditionally been targeted by microtubule inhibiting agents, used for the treatment of diseases such as cancer, in spite of the deleterious toxicities associated with their clinical utility. The Research Collaboratory for Structural Bioinformatics (RCSB) was used here to identify therapeutic drugs targeting the plakin proteins, particularly the spectraplakins MACF1 and BPAG1, which contain microtubule-binding domains. RCSB analysis revealed that plakin proteins had 329 ligands, of which more than 50% were MACF1 and BPAG1 ligands and 10 were documented, clinically or experimentally, to have several therapeutic applications as anticancer, anti-inflammatory, and antibiotic agents.

  19. C60 Fullerene as Promising Therapeutic Agent for the Prevention and Correction of Skeletal Muscle Functioning at Ischemic Injury

    NASA Astrophysics Data System (ADS)

    Nozdrenko, D. M.; Zavodovskyi, D. O.; Matvienko, T. Yu.; Zay, S. Yu.; Bogutska, K. I.; Prylutskyy, Yu. I.; Ritter, U.; Scharff, P.

    2017-02-01

    The therapeutic effect of pristine C60 fullerene aqueous colloid solution (C60FAS) on the functioning of the rat soleus muscle at ischemic injury depending on the time of the general pathogenesis of muscular system and method of administration C60FAS in vivo was investigated. It was found that intravenous administration of C60FAS is the optimal for correction of speed macroparameters of contraction for ischemic muscle damage. At the same time, intramuscular administration of C60FAS shows pronounced protective effect in movements associated with the generation of maximum force responses or prolonged contractions, which increase the muscle fatigue level. Analysis of content concentration of creatine phosphokinase and lactate dehydrogenase enzymes in the blood of experimental animals indicates directly that C60FAS may be a promising therapeutic agent for the prevention and correction of ischemic-damaged skeletal muscle function.

  20. New approaches for identifying and testing potential new anti-asthma agents.

    PubMed

    Licari, Amelia; Castagnoli, Riccardo; Brambilla, Ilaria; Marseglia, Alessia; Tosca, Maria Angela; Marseglia, Gian Luigi; Ciprandi, Giorgio

    2018-01-01

    Asthma is a chronic disease with significant heterogeneity in clinical features, disease severity, pattern of underlying disease mechanisms, and responsiveness to specific treatments. While the majority of asthmatic patients are controlled by standard pharmacological strategies, a significant subgroup has limited therapeutic options representing a major unmet need. Ongoing asthma research aims to better characterize distinct clinical phenotypes, molecular endotypes, associated reliable biomarkers, and also to develop a series of new effective targeted treatment modalities. Areas covered: The expanding knowledge on the pathogenetic mechanisms of asthma has allowed researchers to investigate a range of new treatment options matched to patient profiles. The aim of this review is to provide a comprehensive and updated overview of the currently available, new and developing approaches for identifying and testing potential treatment options for asthma management. Expert opinion: Future therapeutic strategies for asthma require the identification of reliable biomarkers that can help with diagnosis and endotyping, in order to determine the most effective drug for the right patient phenotype. Furthermore, in addition to the identification of clinical and inflammatory phenotypes, it is expected that a better understanding of the mechanisms of airway remodeling will likely optimize asthma targeted treatment.

  1. A Drug-Repositioning Screening Identifies Pentetic Acid as a Potential Therapeutic Agent for Suppressing the Elastase-Mediated Virulence of Pseudomonas aeruginosa

    PubMed Central

    Gi, Mia; Jeong, Junhui; Lee, Keehoon; Lee, Kang-Mu; Toyofuku, Masanori; Yong, Dong Eun

    2014-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium of clinical significance, produces elastase as a predominant exoprotease. Here, we screened a library of chemical compounds currently used for human medication and identified diethylene triamine penta-acetic acid (DTPA, pentetic acid) as an agent that suppresses the production of elastase. Elastase activity found in the prototype P. aeruginosa strain PAO1 was significantly decreased when grown with a concentration as low as 20 μM DTPA. Supplementation with Zn2+ or Mn2+ ions restored the suppressive effect of DTPA, suggesting that the DTPA-mediated decrease in elastase activity is associated with ion-chelating activity. In DTPA-treated PAO1 cells, transcription of the elastase-encoding lasB gene and levels of the Pseudomonas quinolone signal (PQS), a molecule that mediates P. aeruginosa quorum sensing (QS), were significantly downregulated, reflecting the potential involvement of the PQS QS system in DTPA-mediated elastase suppression. Biofilm formation was also decreased by DTPA treatment. When A549 alveolar type II-like adenocarcinoma cells were infected with PAO1 cells in the presence of DTPA, A549 cell viability was substantially increased. Furthermore, the intranasal delivery of DTPA to PAO1-infected mice alleviated the pathogenic effects of PAO1 cells in the animals. Together, our results revealed a novel function for a known molecule that may help treat P. aeruginosa airway infection. PMID:25246397

  2. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    PubMed Central

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  3. Systems approaches in osteoarthritis: Identifying routes to novel diagnostic and therapeutic strategies.

    PubMed

    Mueller, Alan J; Peffers, Mandy J; Proctor, Carole J; Clegg, Peter D

    2017-08-01

    Systems orientated research offers the possibility of identifying novel therapeutic targets and relevant diagnostic markers for complex diseases such as osteoarthritis. This review demonstrates that the osteoarthritis research community has been slow to incorporate systems orientated approaches into research studies, although a number of key studies reveal novel insights into the regulatory mechanisms that contribute both to joint tissue homeostasis and its dysfunction. The review introduces both top-down and bottom-up approaches employed in the study of osteoarthritis. A holistic and multiscale approach, where clinical measurements may predict dysregulation and progression of joint degeneration, should be a key objective in future research. The review concludes with suggestions for further research and emerging trends not least of which is the coupled development of diagnostic tests and therapeutics as part of a concerted effort by the osteoarthritis research community to meet clinical needs. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1573-1588, 2017. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

  4. Nanomaterials incorporated ultrasound contrast agents for cancer theranostics

    PubMed Central

    Fu, Lei; Ke, Heng-Te

    2016-01-01

    Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics. Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound (US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents (UCAs) an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles (SPIOs), CuS nanoparticles, DNA, siRNA, gold nanoparticles (GNPs), gold nanorods (GNRs), gold nanoshell (GNS), graphene oxides (GOs), polypyrrole (PPy) nanocapsules, Prussian blue (PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics. PMID:27807499

  5. Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases.

    PubMed

    Ita, Kevin

    2017-06-01

    With the increasing proportion of the global geriatric population, it becomes obvious that neurodegenerative diseases will become more widespread. From an epidemiological standpoint, it is necessary to develop new therapeutic agents for the management of Alzheimer's disease, Parkinson's disease, multiple sclerosis and other neurodegenerative disorders. An important approach in this regard involves the use of the transdermal route. With transdermal drug delivery systems (TDDS), it is possible to modulate the pharmacokinetic profiles of these medications and improve patient compliance. Transdermal drug delivery has also been shown to be useful for drugs with short half-life and low or unpredictable bioavailability. In this review, several transdermal drug delivery enhancement technologies are being discussed in relation to the delivery of medications used for the management of neurodegenerative disorders.

  6. Therapeutic decision-making in elderly patients with acute myeloid leukemia: conventional intensive chemotherapy versus hypomethylating agent therapy.

    PubMed

    Oh, Sang-Bo; Park, Sung-Woo; Chung, Joo-Seop; Lee, Won-Sik; Lee, Ho-Seop; Cho, Su-Hee; Choi, Yoon-Suk; Lim, Sung-Nam; Shin, Ho-Jin

    2017-11-01

    Standards of care for elderly acute myeloid leukemia (AML) patients unfit for intensive chemotherapy remain undefined. We aimed to compare outcomes of hypomethylating agent (HMA) therapy and intensive chemotherapy (IC) in elderly AML patients and identify the subgroup of patients who are eligible for HMA therapy. We reviewed data on the outcomes of 86 AML patients aged ≥ 65 years, who had undergone treatment between 2010 and 2015. These treatments included IC (25 patients, 29.1%) or therapy using HMA including azacitidine or decitabine (61 patients, 70.9%). The overall response rates were 32 and 19.7%, respectively. Median overall survival (OS) (8 vs. 8 months) and progression-free survival (PFS) (6 vs. 7 months) durations were similar in the two groups. Patients in the HMA group with less than 10% peripheral blood (PB) blasts achieved significantly better OS duration than patients in the IC group (P = 0.043). Patients in the IC group with PB blasts and bone marrow blast of ≥ 10 and ≥ 50%, respectively, achieved better PFS durations than the corresponding patients in the HMA group (P = 0.038). Multivariate analysis identified the hematologic improvement-platelet (HI-P) as an independent prognostic factor for survival in the HMA group (P = 0.005). Our results showed that HMA therapy and IC were associated with similar survival duration in elderly AML patients. This study was noteworthy because it assessed prognostic factors that would help to select elderly patients who could expect actual benefits from undergoing the different therapeutic options available, especially HMA therapy.

  7. Systematic review of the economic evaluations of novel therapeutic agents in multiple myeloma: what is the reporting quality?

    PubMed

    Aguiar, P M; Lima, T M; Storpirtis, S

    2016-04-01

    Given the increasing healthcare costs and the recent introduction of novel agents in the treatment for multiple myeloma (MM), an incurable haematologic malignancy, more efficient use of existing resources is fundamental. The objective of this study was to systematically review economic evaluations of the use of novel agents in MM and assess their reporting quality. A literature search was performed in PubMed/Medline, Latin American and Caribbean Health Sciences Literature, Cost-Effectiveness Analysis Registry and the National Health Services Economic Evaluation Database for economic evaluations up to June 2015. The search strategy included Medical Subject Headings terms or text words related to MM, economic evaluations and drugs. Full economic evaluations of bortezomib, thalidomide or lenalidomide in patients with MM that were published in English, Portuguese or Spanish were included. Two independent authors performed study selection, data extraction and quality assessment using 24 items from the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Of the 132 potentially relevant records identified, eight satisfied the inclusion criteria. Most studies were cost-effectiveness analyses combined with cost-utility analyses (n = 6) from the public payer perspective (n = 4) and were performed in Europe (n = 6) on patients with refractory or relapsed MM (n = 5). All studies were based on economic models, with four of them using discrete event simulation. We found bortezomib-based therapies to be one of the more commonly selected treatment strategies for comparison (n = 7). Overall, the intervention was more effective and costlier than the alternative strategy (average of $54 630 per life year; $68 261 per quality-adjusted life year-QALY). The CHEERS' total score was 14·6 (SD = 2·6) with the most frequent problems being the lack of precision measures for all model parameters, no evaluation of heterogeneity of the results by subgroup analyses

  8. Systemic analysis of genome-wide expression profiles identified potential therapeutic targets of demethylation drugs for glioblastoma.

    PubMed

    Ning, Tongbo; Cui, Hao; Sun, Feng; Zou, Jidian

    2017-09-05

    Glioblastoma represents one of the most aggressive malignant brain tumors with high morbidity and motility. Demethylation drugs have been developed for its treatment with little efficacy has been observed. The purpose of this study was to screen therapeutic targets of demethylation drugs or bioactive molecules for glioblastoma through systemic bioinformatics analysis. We firstly downloaded genome-wide expression profiles from the Gene Expression Omnibus (GEO) and conducted the primary analysis through R software, mainly including preprocessing of raw microarray data, transformation between probe ID and gene symbol and identification of differential expression genes (DEGs). Secondly, functional enrichment analysis was conducted via the Database for Annotation, Visualization and Integrated Discovery (DAVID) to explore biological processes involved in the development of glioblastoma. Thirdly, we constructed protein-protein interaction (PPI) network of interested genes and conducted cross analysis for multi datasets to obtain potential therapeutic targets for glioblastoma. Finally, we further confirmed the therapeutic targets through real-time RT-PCR. As a result, biological processes that related to cancer development, amino metabolism, immune response and etc. were found to be significantly enriched in genes that differential expression in glioblastoma and regulated by 5'aza-dC. Besides, network and cross analysis identified ACAT2, UFC1 and CYB5R1 as novel therapeutic targets of demethylation drugs which also confirmed by real time RT-PCR. In conclusions, our study identified several biological processes and genes that involved in the development of glioblastoma and regulated by 5'aza-dC, which would be helpful for the treatment of glioblastoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The nitric oxide prodrug JS-K and its structural analogues as cancer therapeutic agents.

    PubMed

    Maciag, Anna E; Saavedra, Joseph E; Chakrapani, Harinath

    2009-09-01

    Nitric oxide (NO) prodrugs of the diazeniumdiolate class are routinely used as reliable sources of nitric oxide in chemical and biological laboratory settings. O(2)-(2,4-dinitrophenyl) diazeniumdiolates, which are derivatized forms of ionic diazeniumdiolates, have been found to show potent anti-proliferative activity in a variety of cancer cells, presumably through the effects of NO. One important member of this class of diazeniumdiolates, O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K), has shown promise as a novel cancer therapeutic agent in a number of animal models. This review describes the developments in chemical and biochemical characterization and structure-activity relationship of JS-K and its analogues. In addition, some molecular mechanistic insights into the observed anti-proliferative activity of JS-K are discussed. Finally, a structural motif is presented for O(2)-(aryl) diazeniumdiolate nitric oxide prodrugs that show potency comparable with that of JS-K.

  10. Potential role of bromelain in clinical and therapeutic applications

    PubMed Central

    Rathnavelu, Vidhya; Alitheen, Noorjahan Banu; Sohila, Subramaniam; Kanagesan, Samikannu; Ramesh, Rajendran

    2016-01-01

    Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain. PMID:27602208

  11. BET inhibitors in metastatic prostate cancer: therapeutic implications and rational drug combinations.

    PubMed

    Markowski, Mark C; De Marzo, Angelo M; Antonarakis, Emmanuel S

    2017-12-01

    The bromodomain and extra-terminal (BET) family of proteins are epigenetic readers of acetylated histones regulating a vast network of protein expression across many different cancers. Therapeutic targeting of BET is an attractive area of clinical development for metastatic castration-resistant prostate cancer (mCRPC), particularly due to its putative effect on c-MYC expression and its interaction with the androgen receptor (AR). Areas covered: We speculate that a combination approach using inhibitors of BET proteins (BETi) with other targeted therapies may be required to improve the therapeutic index of BET inhibition in the management of prostate cancer. Preclinical data has identified several molecular targets that may enhance the effect of BET inhibition in the clinic. This review will summarize the known preclinical data implicating BET as an important therapeutic target in advanced prostate cancer, highlight the ongoing clinical trials targeting this protein family, and speculate on rationale combination strategies using BETi together with other agents in prostate cancer. A literature search using Pubmed was performed for this review. Expert opinion: Use of BETi in the treatment of mCRPC patients may require the addition of a second novel agent.

  12. Multifunctional Poly(L-lactide)-Polyethylene Glycol-Grafted Graphene Quantum Dots for Intracellular MicroRNA Imaging and Combined Specific-Gene-Targeting Agents Delivery for Improved Therapeutics.

    PubMed

    Dong, Haifeng; Dai, Wenhao; Ju, Huangxian; Lu, Huiting; Wang, Shiyan; Xu, Liping; Zhou, Shu-Feng; Zhang, Yue; Zhang, Xueji

    2015-05-27

    Photoluminescent (PL) graphene quantum dots (GQDs) with large surface area and superior mechanical flexibility exhibit fascinating optical and electronic properties and possess great promising applications in biomedical engineering. Here, a multifunctional nanocomposite of poly(l-lactide) (PLA) and polyethylene glycol (PEG)-grafted GQDs (f-GQDs) was proposed for simultaneous intracellular microRNAs (miRNAs) imaging analysis and combined gene delivery for enhanced therapeutic efficiency. The functionalization of GQDs with PEG and PLA imparts the nanocomposite with super physiological stability and stable photoluminescence over a broad pH range, which is vital for cell imaging. Cell experiments demonstrate the f-GQDs excellent biocompatibility, lower cytotoxicity, and protective properties. Using the HeLa cell as a model, we found the f-GQDs effectively delivered a miRNA probe for intracellular miRNA imaging analysis and regulation. Notably, the large surface of GQDs was capable of simultaneous adsorption of agents targeting miRNA-21 and survivin, respectively. The combined conjugation of miRNA-21-targeting and survivin-targeting agents induced better inhibition of cancer cell growth and more apoptosis of cancer cells, compared with conjugation of agents targeting miRNA-21 or survivin alone. These findings highlight the promise of the highly versatile multifunctional nanocomposite in biomedical application of intracellular molecules analysis and clinical gene therapeutics.

  13. The use of marine-derived bioactive compounds as potential hepatoprotective agents

    PubMed Central

    Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K

    2015-01-01

    The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871

  14. Inhibition of cell adhesion by anti–P-selectin aptamer: a new potential therapeutic agent for sickle cell disease

    PubMed Central

    Gutsaeva, Diana R.; Parkerson, James B.; Yerigenahally, Shobha D.; Kurz, Jeffrey C.; Schaub, Robert G.; Ikuta, Tohru

    2011-01-01

    Adhesive interactions between circulating sickle red blood cells (RBCs), leukocytes, and endothelial cells are major pathophysiologic events in sickle cell disease (SCD). To develop new therapeutics that efficiently inhibit adhesive interactions, we generated an anti–P-selectin aptamer and examined its effects on cell adhesion using knockout-transgenic SCD model mice. Aptamers, single-stranded oligonucleotides that bind molecular targets with high affinity and specificity, are emerging as new therapeutics for cardiovascular and hematologic disorders. In vitro studies found that the anti–P-selectin aptamer exhibits high specificity to mouse P-selectin but not other selectins. SCD mice were injected with the anti–P-selectin aptamer, and cell adhesion was observed under hypoxia. The anti–P-selectin aptamer inhibited the adhesion of sickle RBCs and leukocytes to endothelial cells by 90% and 80%, respectively. The anti–P-selectin aptamer also increased microvascular flow velocities and reduced the leukocyte rolling flux. SCD mice treated with the anti–P-selectin aptamer demonstrated a reduced mortality rate associated with the experimental procedures compared with control mice. These results demonstrate that anti–P-selectin aptamer efficiently inhibits the adhesion of both sickle RBCs and leukocytes to endothelial cells in SCD model mice, suggesting a critical role for P-selectin in cell adhesion. Anti–P-selectin aptamer may be useful as a novel therapeutic agent for SCD. PMID:20926770

  15. Observational goals for Max '91 to identify the causative agent for impulsive bursts

    NASA Technical Reports Server (NTRS)

    Batchelor, D. A.

    1989-01-01

    Recent studies of impulsive hard x ray and microwave bursts suggest that a propagating causative agent with a characteristic velocity of the order of 1000 km/s is responsible for these bursts. The results of these studies are summarized and observable distinguishing characteristics of the various possible agents are highlighted, with emphasis on key observational goals for the Max '91 campaigns. The most likely causative agents suggested by the evidence are shocks, thermal conduction fronts, and propagating modes of magnetic reconnection in flare plasmas. With new instrumentation planned for Max '91, high spatial resolution observations of hard x ray sources have the potential to identify the agent by revealing detailed features of source spatial evolution. Observations with the Very Large Array and other radio imaging instruments are of great importance, as well as detailed modeling of coronal loop structures to place limits on their density and temperature profiles. With the combined hard x ray and microwave imaging observations, aided by loop model results, the simplest causative agent to rule out would be the propagating modes of magnetic reconnection. To fit the observational evidence, reconnection modes would need to travel at approximately the same velocity (the Alfven velocity) in different coronal structures that vary in length by a factor of 10(exp 3). Over such a vast range in loop lengths, it is difficult to believe that the Alfven velocity is constant. Thermal conduction fronts would be suggested by sources that expand along the direction of B and exhibit relatively little particle precipitation. Particle acceleration due to shocks could produce more diverse radially expanding source geometries with precipitation at loop footprints.

  16. Urinary tract infections: treatment/comparative therapeutics.

    PubMed

    Olin, Shelly J; Bartges, Joseph W

    2015-07-01

    Urinary tract infection (UTI) occurs when there is compromise of host defense mechanisms and a virulent microbe adheres, multiplies, and persists in a portion of the urinary tract. Most commonly, UTI is caused by bacteria, but fungi and viruses are possible. Urine culture and sensitivity are the gold standards for diagnosis of bacterial UTI. Identifying the location of infection (eg, bladder, kidney, prostate) as well as comorbidities (eg, diabetes mellitus, immunosuppression) is essential to guide the diagnostic and therapeutic plan. Antimicrobial agents are the mainstay of therapy for bacterial UTI and selected ideally based on culture and sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Anti-SARS coronavirus agents: a patent review (2008 - present).

    PubMed

    Kumar, Vathan; Jung, Young-Sik; Liang, Po-Huang

    2013-10-01

    A novel coronavirus (CoV), unlike previous typical human coronaviruses (HCoVs), was identified as causative agent for severe acute respiratory syndrome (SARS). SARS first surfaced as a pandemic in late 2002 and originated in southern China. SARS-CoV rapidly spread to > 30 countries by 2003, infecting nearly 8,000 people and causing around 800 fatalities. After 10 years of silence, a 2012 report alarmed researchers about the emergence of a new strain of CoV causing SARS-like disease. To combat SARS, scientists applied for patents on various therapeutic agents, including small-molecule inhibitors targeting the essential proteases, helicase and other proteins of the virus, natural products, approved drugs, molecules binding to the virus, neutralizing antibodies, vaccines, anti-sense RNA, siRNA and ribozyme against SARS-CoV. In this article, the patents published from 2008 to the present for the new therapeutics that could potentially be used in the prophylaxis and treatment of SARS are reviewed. The therapeutic interventions or prophylaxis discussed in this review seems to offer promising solutions to tackle SARS. Rather than being complacent about the results, we should envisage how to transform them into drug candidates that may be useful in combating SARS and related viral infections in the future.

  18. EphB4 as a therapeutic target in mesothelioma

    PubMed Central

    2013-01-01

    Background Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis. Methods We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied. Results EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression. Conclusion EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted. PMID:23721559

  19. Anti-Heparanase Aptamers as Potential Diagnostic and Therapeutic Agents for Oral Cancer

    PubMed Central

    Silva, Dilson; Cortez, Celia M.; McKenzie, Edward A.; Bitu, Carolina C.; Salo, Sirpa; Nurmenniemi, Sini; Nyberg, Pia; Risteli, Juha; deAlmeida, Carlos E. B.; Brenchley, Paul E. C.; Salo, Tuula; Missailidis, Sotiris

    2014-01-01

    Heparanase is an endoglycosidase enzyme present in activated leucocytes, mast cells, placental tissue, neutrophils and macrophages, and is involved in tumour metastasis and tissue invasion. It presents a potential target for cancer therapies and various molecules have been developed in an attempt to inhibit the enzymatic action of heparanase. In an attempt to develop a novel therapeutic with an associated diagnostic assay, we have previously described high affinity aptamers selected against heparanase. In this work, we demonstrated that these anti-heparanase aptamers are capable of inhibiting tissue invasion of tumour cells associated with oral cancer and verified that such inhibition is due to inhibition of the enzyme and not due to other potentially cytotoxic effects of the aptamers. Furthermore, we have identified a short 30 bases aptamer as a potential candidate for further studies, as this showed a higher ability to inhibit tissue invasion than its longer counterpart, as well as a reduced potential for complex formation with other non-specific serum proteins. Finally, the aptamer was found to be stable and therefore suitable for use in human models, as it showed no degradation in the presence of human serum, making it a potential candidate for both diagnostic and therapeutic use. PMID:25295847

  20. Cancer Clonal Theory, Immune Escape, and Their Evolving Roles in Cancer Multi-Agent Therapeutics.

    PubMed

    Messerschmidt, Jonathan L; Bhattacharya, Prianka; Messerschmidt, Gerald L

    2017-08-12

    The knowledge base of malignant cell growth and resulting targets is rapidly increasing every day. Clonal theory is essential to understand the changes required for a cell to become malignant. These changes are then clues to therapeutic intervention strategies. Immune system optimization is a critical piece to find, recognize, and eliminate all cancer cells from the host. Only by administering (1) multiple therapies that counteract the cancer cell's mutational and externally induced survival traits and (2) by augmenting the immune system to combat immune suppression processes and by enhancing specific tumor trait recognition can cancer begin to be treated with a truly targeted focus. Since the sequencing of the human genome during the 1990s, steady progress in understanding genetic alterations and gene product functions are being unraveled. In cancer, this is proceeding very fast and demonstrates that genetic mutations occur very rapidly to allow for selection of survival traits within various cancer clones. Hundreds of mutations have been identified in single individual cancers, but spread across many clones in the patient's body. Precision oncology will require accurate measurement of these cancer survival-benefiting mutations to develop strategies for effective therapy. Inhibiting these cellular mechanisms is a first step, but these malignant cells need to be eliminated by the host's mechanisms, which we are learning to direct more specifically. Cancer is one of the most complicated cellular aberrations humans have encountered. Rapidly developing significant survival traits require prompt, repeated, and total body measurements of these attributes to effectively develop multi-agent treatment of the individual's malignancy. Focused drug development to inhibit these beneficial mutations is critical to slowing cancer cell growth and, perhaps, triggering apoptosis. In many cases, activation and targeting of the immune system to kill the remaining malignant cells is

  1. Anti-IL-23 and Anti-IL-17 Biologic Agents for the Treatment of Immune-Mediated Inflammatory Conditions.

    PubMed

    Frieder, Jillian; Kivelevitch, Dario; Haugh, Isabel; Watson, Ian; Menter, Alan

    2018-01-01

    Advancements in the immunopathogenesis of psoriasis have identified interleukin (IL)-23 and IL-17 as fundamental contributors in the immune pathways of the disease. Leveraging these promising therapeutic targets has led to the emergence of a number of anti-IL-23 and -17 biologic agents with the potential to treat multiple conditions with common underlying pathology. The unprecedented clinical efficacy of these agents in the treatment of psoriasis has paved way for their evaluation in diseases such as psoriatic arthritis, Crohn's disease, rheumatoid arthritis, in addition to other immune-mediated conditions. Here we review the IL-23/IL-17 immune pathways and discuss the key clinical and safety data of the anti-IL-23 and anti-IL-17 biologic agents in psoriasis and other immune-mediated diseases. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  2. Biologically Targeted Therapeutics in Pediatric Brain Tumors

    PubMed Central

    Nageswara Rao, Amulya A.; Scafidi, Joseph; Wells, Elizabeth M.; Packer, Roger J.

    2013-01-01

    Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. PMID:22490764

  3. Biologically targeted therapeutics in pediatric brain tumors.

    PubMed

    Nageswara Rao, Amulya A; Scafidi, Joseph; Wells, Elizabeth M; Packer, Roger J

    2012-04-01

    Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets

    PubMed Central

    Quick, Quincy A.

    2018-01-01

    Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family. On the contrary, microtubules have traditionally been targeted by microtubule inhibiting agents, used for the treatment of diseases such as cancer, in spite of the deleterious toxicities associated with their clinical utility. The Research Collaboratory for Structural Bioinformatics (RCSB) was used here to identify therapeutic drugs targeting the plakin proteins, particularly the spectraplakins MACF1 and BPAG1, which contain microtubule-binding domains. RCSB analysis revealed that plakin proteins had 329 ligands, of which more than 50% were MACF1 and BPAG1 ligands and 10 were documented, clinically or experimentally, to have several therapeutic applications as anticancer, anti-inflammatory, and antibiotic agents. PMID:29373494

  5. Investigating Therapeutic Potential of Trigonella foenum-graecum L. as Our Defense Mechanism against Several Human Diseases.

    PubMed

    Goyal, Shivangi; Gupta, Nidhi; Chatterjee, Sreemoyee

    2016-01-01

    Current lifestyle, stress, and pollution have dramatically enhanced the progression of several diseases in human. Globally, scientists are looking for therapeutic agents that can either cure or delay the onset of diseases. Medicinal plants from time immemorial have been used frequently in therapeutics. Of many such plants, fenugreek is one of the oldest herbs which have been identified as an important medicinal plant by the researchers around the world. It is potentially beneficial in a number of diseases such as diabetes, hypercholesterolemia, and inflammation and probably in several kinds of cancers. It has industrial applications such as synthesis of steroidal hormones. Its medicinal properties and their role in clinical domain can be attributed to its chemical constituents. The 3 major chemical constituents which have been identified as responsible for principle health effects are galactomannan, 4-OH isoleucine, and steroidal saponin. Numerous experiments have been carried out in vivo and in vitro for beneficial effects of both the crude chemical and of its active constituent. Due to its role in health care, the functional food industry has referred to it as a potential nutraceutical. This paper is about various medicinal benefits of fenugreek and its potential application as therapeutic agent against several diseases.

  6. Deoxypodophyllotoxin: a promising therapeutic agent from herbal medicine.

    PubMed

    Khaled, Meyada; Jiang, Zhen-Zhou; Zhang, Lu-Yong

    2013-08-26

    Recently, biologically active compounds isolated from plants used in herbal medicine have been the center of interest. Deoxypodophyllotoxin (DPT), structurally closely related to the lignan podophyllotoxin, is a potent antitumor and anti-inflammatory agent. However, DPT has not been used clinically yet. Also, DPT from natural sources seems to be unavailable. Hence, it is important to establish alternative resources for the production of such lignan; especially that it is used as a precursor for the semi-synthesis of the cytostatic drugs etoposide phosphate and teniposide. The update paper provides an overview of DPT as an effective anticancer natural compound and a leader for cytotoxic drugs synthesis and development in order to highlight the gaps in our knowledge and explore future research needs. The present review covers the literature available from 1877 to 2012. The information was collected via electronic search using Chinese papers and the major scientific databases including PubMed, Sciencedirect, Web of Science and Google Scholar using the keywords. All abstracts and full-text articles reporting database on the history and current status of DPT were gathered and analyzed. Plants containing DPT have played an important role in traditional medicine. In light of the in vitro pharmacological investigations, DPT is a high valuable medicinal agent that has anti-tumor, anti-proliferative, anti-inflammatory and anti-allergic properties. Further, DPT is an important precursor for the cytotoxic aryltetralin lignan, podophyllotoxin, which is used to obtain semisynthetic derivatives like etoposide and teniposide used in cancer therapy. However, most studies have focused on the in vitro data. Therefore, DPT has not been used clinically yet. DPT has emerged as a potent chemical agent from herbal medicine. Therefore, in vivo studies are needed to carry out clinical trials in humans and enable the development of new anti-cancer agents. In addition, DPT from commercial

  7. Mixed Messages: How Primary Agents of Socialization Influence Adolescent Females Who Identify as Multiracial-Bisexual

    ERIC Educational Resources Information Center

    King, Alissa R.

    2013-01-01

    The goals of this study were to highlight the often stigmatized and invisible identities of six female participants who identify as multiracial/biracial-bisexual/pansexual, focusing on the pre-college context. Findings, using in-depth interviews, indicated that the primary socializing agents within the pre-college context strongly influenced…

  8. Possibility of Exosome-Based Therapeutics and Challenges in Production of Exosomes Eligible for Therapeutic Application.

    PubMed

    Yamashita, Takuma; Takahashi, Yuki; Takakura, Yoshinobu

    2018-01-01

    Exosomes are cell-derived vesicles with a diameter 30-120 nm. Exosomes contain endogenous proteins and nucleic acids; delivery of these molecules to exosome-recipient cells causes biological effects. Exosomes derived from some types of cells such as mesenchymal stem cells and dendritic cells have therapeutic potential and may be biocompatible and efficient agents against various disorders such as organ injury. However, there are many challenges for the development of exosome-based therapeutics. In particular, producing exosomal formulations is the major barrier for therapeutic application because of their heterogeneity and low productivity. Development and optimization of producing methods, including methods for isolation and storage of exosome formulations, are required for realizing exosome-based therapeutics. In addition, improvement of therapeutic potential and delivery efficiency of exosomes are important for their therapeutic application. In this review, we summarize current knowledge about therapeutic application of exosomes and discuss some challenges in their successful use.

  9. Discovery of Clinically Approved Agents That Promote Suppression of Cystic Fibrosis Transmembrane Conductance Regulator Nonsense Mutations.

    PubMed

    Mutyam, Venkateshwar; Du, Ming; Xue, Xiaojiao; Keeling, Kim M; White, E Lucile; Bostwick, J Robert; Rasmussen, Lynn; Liu, Bo; Mazur, Marina; Hong, Jeong S; Falk Libby, Emily; Liang, Feng; Shang, Haibo; Mense, Martin; Suto, Mark J; Bedwell, David M; Rowe, Steven M

    2016-11-01

    Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic. To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs. Two independent screens, firefly luciferase and CFTR-mediated transepithelial chloride conductance assay, were performed on a library of 1,600 clinically approved compounds using fisher rat thyroid cells stably transfected with stop codons. Select agents were further evaluated using secondary screening assays including short circuit current analysis on primary cells from patients with CF. In addition, the effect of CFTR modulators (ivacaftor) was tested in combination with the most efficacious agents. From the primary screen, 48 agents were selected as potentially active. Following confirmatory tests in the transepithelial chloride conductance assay and prioritizing agents based on favorable pharmacologic properties, eight agents were advanced for secondary screening. Ivacaftor significantly increased short circuit current following forskolin stimulation in cells treated with pyranoradine tetraphosphate, potassium p-aminobenzoate, and escin as compared with vehicle control. Escin, an herbal agent, consistently induced readthrough activity as demonstrated by enhanced CFTR expression and function in vitro. Clinically approved drugs identified as potential readthrough agents, in combination with ivacaftor, may induce nonsense suppression to restore therapeutic levels of CFTR function. One or more agents may be suitable to advance to human testing.

  10. Therapeutic options to treat sulfur mustard poisoning--the road ahead.

    PubMed

    Smith, William J

    2009-09-01

    For the past 15 years the international research community has conducted a basic and applied research program aimed at identifying a medical countermeasure against chemical threat vesicant, or blistering, agents. The primary emphasis of this program has been the development of therapeutic protection against sulfur mustard and its cutaneous pathology-blister formation. In addition to the work on a medical countermeasures, significant research has been conducted on the development of topical skin protectants and medical strategies for wound healing. This review will focus on the pharmacological strategies investigated, novel therapeutic targets currently under investigation and therapeutic approaches being considered for transition to advanced development. Additionally, we will review the expansion of our understanding of the pathophysiological mechanisms of mustard injury that has come from this research. While great strides have been made through these investigations, the complexity of the mustard insult demands that further studies extend the inroads made and point the way toward better understanding of cellular and tissue disruptions caused by sulfur mustard.

  11. Quorum Quenching Agents: Resources for Antivirulence Therapy

    PubMed Central

    Tang, Kaihao; Zhang, Xiao-Hua

    2014-01-01

    The continuing emergence of antibiotic-resistant pathogens is a concern to human health and highlights the urgent need for the development of alternative therapeutic strategies. Quorum sensing (QS) regulates virulence in many bacterial pathogens, and thus, is a promising target for antivirulence therapy which may inhibit virulence instead of cell growth and division. This means that there is little selective pressure for the evolution of resistance. Many natural quorum quenching (QQ) agents have been identified. Moreover, it has been shown that many microorganisms are capable of producing small molecular QS inhibitors and/or macromolecular QQ enzymes, which could be regarded as a strategy for bacteria to gain benefits in competitive environments. More than 30 species of marine QQ bacteria have been identified thus far, but only a few of them have been intensively studied. Recent studies indicate that an enormous number of QQ microorganisms are undiscovered in the highly diverse marine environments, and these marine microorganism-derived QQ agents may be valuable resources for antivirulence therapy. PMID:24886865

  12. New multifunctional ligands for potential use in the design therapeutic or diagnostic radiopharmaceutical imaging agents

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Ketring, Alan R.; Singh, Prahlad R.

    1997-01-01

    A class of diagnostic and therapeutic compounds derived from phosphinimines that include ligands containing either a single phosphinimine functionality or both a phosphinimine group and a phosphine or arsine group, or an aminato group, or a second phosphinimine moiety. These phosphinimine ligands are complexed to early transition metal radionuclides (e.g. .sup.99m Tc or .sup.186 Re/.sup.188 Re) or late transition metals (e.g., .sup.105 Rh or .sup.109 Pd). The complexes with these metals .sup.186 Re/.sup.188 Re, .sup.99m Tc and .sup.109 Pd exhibit a high in vitro and high in vivo stability. The complexes are formed in high yields and can be neutral or charged. These ligands can also be used to form stable compounds with paramagnetic transition metals (e.g. Fe and Mn) for potential use as MRI contrast agents. Applications for the use of ligands and making the ligands are also disclosed.

  13. New multifunctional ligands for potential use in the design therapeutic or diagnostic radiopharmaceutical imaging agents

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Ketring, A.R.; Singh, P.R.

    1997-02-11

    A class of diagnostic and therapeutic compounds are derived from phosphinimines that include ligands containing either a single phosphinimine functionality or both a phosphinimine group and a phosphine or arsine group, or an aminato group, or a second phosphinimine moiety. These phosphinimine ligands are complexed to early transition metal radionuclides (e.g., {sup 99m}Tc or {sup 186}Re/{sup 188}Re) or late transition metals (e.g., {sup 105}Rh or {sup 109}Pd). The complexes with these metals {sup 186}Re/{sup 188}Re, {sup 99m}Tc and {sup 109}Pd exhibit a high in vitro and high in vivo stability. The complexes are formed in high yields and can be neutral or charged. These ligands can also be used to form stable compounds with paramagnetic transition metals (e.g., Fe and Mn) for potential use as MRI contrast agents. Applications for the use of ligands and making the ligands are also disclosed.

  14. Hyperglycaemia Induced by Novel Anticancer Agents: An Undesirable Complication or a Potential Therapeutic Opportunity?

    PubMed

    Shah, Rashmi R

    2017-03-01

    Signalling pathways involving protein kinase, insulin-like growth factor 1, insulin receptors and the phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) system are critical in promoting oncogenesis. The use of anticancer agents that inhibit these pathways frequently results in hyperglycaemia, an on-target effect of these drugs. Hyperglycaemia induced by these agents denotes optimal inhibition of the desired pharmacological target. As hyperglycaemia can be treated successfully and effectively with metformin, managing this complication by reducing the dose of or discontinuing the anticancer drug may be counterproductive, especially if it is otherwise effective and clinically tolerated. The use of metformin to treat hyperglycaemia induced by anticancer drugs provides a valuable therapeutic opportunity of potentiating their clinical anticancer effects. Although evidence from randomised controlled trials is awaited, extensive preclinical evidence and clinical observational studies suggest that metformin has anticancer properties that improve overall survival in patients with diabetes and a variety of cancers. Metformin has also been reported to reverse resistance to epidermal growth factor receptor (EGFR)-inhibiting tyrosine kinase inhibitors. This review summarises briefly the role of the above signalling pathways in oncogenesis, the causal association between inhibition of these pathways and hyperglycaemia, and the effect of metformin on clinical outcomes resulting from its anticancer properties. The evidence reviewed herein, albeit almost exclusively from observational studies, provides support for a greater use of metformin not only in patients with cancer and diabetes or drug-induced hyperglycaemia but also potentially as an anticancer drug. However, prospective randomised controlled studies are needed in all these settings to better assess the effect on clinical outcomes of adding metformin to ongoing anticancer therapy.

  15. TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water.

    PubMed

    Plewa, Michael J; Wagner, Elizabeth D; Richardson, Susan D

    2017-08-01

    The disinfection of drinking water is a major public health achievement; however, an unintended consequence of disinfection is the generation of disinfection by-products (DBPs). Many of the identified DBPs exhibit in vitro and in vivo toxicity, generate a diversity of adverse biological effects, and may be hazards to the public health and the environment. Only a few DBPs are regulated by several national and international agencies and it is not clear if these regulated DBPs are the forcing agents that drive the observed toxicity and their associated health effects. In this study, we combine analytical chemical and biological data to resolve the forcing agents associated with mammalian cell cytotoxicity of drinking water samples from three cities. These data suggest that the trihalomethanes (THMs) and haloacetic acids may be a small component of the overall cytotoxicity of the organic material isolated from disinfected drinking water. Chemical classes of nitrogen-containing DBPs, such as the haloacetonitriles and haloacetamides, appear to be the major forcing agents of toxicity in these samples. These findings may have important implications for the design of epidemiological studies that primarily rely on the levels of THMs to define DBP exposure among populations. The TIC-Tox approach constitutes a beginning step in the process of identifying the forcing agents of toxicity in disinfected water. Copyright © 2017. Published by Elsevier B.V.

  16. Identification and characterization of a dual-acting antinematodal agent against the pinewood nematode, Bursaphelenchus xylophilus.

    PubMed

    Oh, Wan-Suk; Jeong, Pan-Young; Joo, Hyoe-Jin; Lee, Jeong-Eui; Moon, Yil-Seong; Cheon, Hyang-Mi; Kim, Jung-Ho; Lee, Yong-Uk; Shim, Yhong-Hee; Paik, Young-Ki

    2009-11-11

    The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a mycophagous and phytophagous pathogen responsible for the current widespread epidemic of the pine wilt disease, which has become a major threat to pine forests throughout the world. Despite the availability of several preventive trunk-injection agents, no therapeutic trunk-injection agent for eradication of PWN currently exists. In the characterization of basic physiological properties of B. xylophilus YB-1 isolates, we established a high-throughput screening (HTS) method that identifies potential hits within approximately 7 h. Using this HTS method, we screened 206 compounds with known activities, mostly antifungal, for antinematodal activities and identified HWY-4213 (1-n-undecyl-2-[2-fluorphenyl] methyl-3,4-dihydro-6,7-dimethoxy-isoquinolinium chloride), a highly water-soluble protoberberine derivative, as a potent nematicidal and antifungal agent. When tested on 4 year-old pinewood seedlings that were infected with YB-1 isolates, HWY-4213 exhibited a potent therapeutic nematicidal activity. Further tests of screening 39 Caenorhabditis elegans mutants deficient in channel proteins and B. xylophilus sensitivity to Ca(2+) channel blockers suggested that HWY-4213 targets the calcium channel proteins. Our study marks a technical breakthrough by developing a novel HTS method that leads to the discovery HWY-4213 as a dual-acting antinematodal and antifungal compound.

  17. Designing highly active siRNAs for therapeutic applications.

    PubMed

    Walton, S Patrick; Wu, Ming; Gredell, Joseph A; Chan, Christina

    2010-12-01

    The discovery of RNA interference (RNAi) generated considerable interest in developing short interfering RNAs (siRNAs) for understanding basic biology and as the active agents in a new variety of therapeutics. Early studies showed that selecting an active siRNA was not as straightforward as simply picking a sequence on the target mRNA and synthesizing the siRNA complementary to that sequence. As interest in applying RNAi has increased, the methods for identifying active siRNA sequences have evolved from focusing on the simplicity of synthesis and purification, to identifying preferred target sequences and secondary structures, to predicting the thermodynamic stability of the siRNA. As more specific details of the RNAi mechanism have been defined, these have been incorporated into more complex siRNA selection algorithms, increasing the reliability of selecting active siRNAs against a single target. Ultimately, design of the best siRNA therapeutics will require design of the siRNA itself, in addition to design of the vehicle and other components necessary for it to function in vivo. In this minireview, we summarize the evolution of siRNA selection techniques with a particular focus on one issue of current importance to the field, how best to identify those siRNA sequences likely to have high activity. Approaches to designing active siRNAs through chemical and structural modifications will also be highlighted. As the understanding of how to control the activity and specificity of siRNAs improves, the potential utility of siRNAs as human therapeutics will concomitantly grow. © 2010 The Authors Journal compilation © 2010 FEBS.

  18. THREE-DIMENSIONAL MODELING OF THE DYNAMICS OF THERAPEUTIC ULTRASOUND CONTRAST AGENTS

    PubMed Central

    Hsiao, Chao-Tsung; Lu, Xiaozhen; Chahine, Georges

    2010-01-01

    A 3-D thick-shell contrast agent dynamics model was developed by coupling a finite volume Navier-Stokes solver and a potential boundary element method flow solver to simulate the dynamics of thick-shelled contrast agents subjected to pressure waves. The 3-D model was validated using a spherical thick-shell model validated by experimental observations. We then used this model to study shell break-up during nonspherical deformations resulting from multiple contrast agent interaction or the presence of a nearby solid wall. Our simulations indicate that the thick viscous shell resists the contrast agent from forming a re-entrant jet, as normally observed for an air bubble oscillating near a solid wall. Instead, the shell thickness varies significantly from location to location during the dynamics, and this could lead to shell break-up caused by local shell thinning and stretching. PMID:20950929

  19. Identifying key genes, pathways and screening therapeutic agents for manganese-induced Alzheimer disease using bioinformatics analysis.

    PubMed

    Ling, JunJun; Yang, Shengyou; Huang, Yi; Wei, Dongfeng; Cheng, Weidong

    2018-06-01

    Alzheimer disease (AD) is a progressive neurodegenerative disease, the etiology of which remains largely unknown. Accumulating evidence indicates that elevated manganese (Mn) in brain exerts toxic effects on neurons and contributes to AD development. Thus, we aimed to explore the gene and pathway variations through analysis of high through-put data in this process.To screen the differentially expressed genes (DEGs) that may play critical roles in Mn-induced AD, public microarray data regarding Mn-treated neurocytes versus controls (GSE70845), and AD versus controls (GSE48350), were downloaded and the DEGs were screened out, respectively. The intersection of the DEGs of each datasets was obtained by using Venn analysis. Then, gene ontology (GO) function analysis and KEGG pathway analysis were carried out. For screening hub genes, protein-protein interaction network was constructed. At last, DEGs were analyzed in Connectivity Map (CMAP) for identification of small molecules that overcome Mn-induced neurotoxicity or AD development.The intersection of the DEGs obtained 140 upregulated and 267 downregulated genes. The top 5 items of biological processes of GO analysis were taxis, chemotaxis, cell-cell signaling, regulation of cellular physiological process, and response to wounding. The top 5 items of KEGG pathway analysis were cytokine-cytokine receptor interaction, apoptosis, oxidative phosphorylation, Toll-like receptor signaling pathway, and insulin signaling pathway. Afterwards, several hub genes such as INSR, VEGFA, PRKACB, DLG4, and BCL2 that might play key roles in Mn-induced AD were further screened out. Interestingly, tyrphostin AG-825, an inhibitor of tyrosine phosphorylation, was predicted to be a potential agent for overcoming Mn-induced neurotoxicity or AD development.The present study provided a novel insight into the molecular mechanisms of Mn-induced neurotoxicity or AD development and screened out several small molecular candidates that might be

  20. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer.

    PubMed

    Moran-Jones, Kim; Gloss, Brian S; Murali, Rajmohan; Chang, David K; Colvin, Emily K; Jones, Marc D; Yuen, Samuel; Howell, Viive M; Brown, Laura M; Wong, Carol W; Spong, Suzanne M; Scarlett, Christopher J; Hacker, Neville F; Ghosh, Sue; Mok, Samuel C; Birrer, Michael J; Samimi, Goli

    2015-12-29

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.

  1. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer

    PubMed Central

    Moran-Jones, Kim; Gloss, Brian S.; Murali, Rajmohan; Chang, David K.; Colvin, Emily K.; Jones, Marc D.; Yuen, Samuel; Howell, Viive M.; Brown, Laura M.; Wong, Carol W.; Spong, Suzanne M.; Scarlett, Christopher J.; Hacker, Neville F.; Ghosh, Sue; Mok, Samuel C.; Birrer, Michael J.; Samimi, Goli

    2015-01-01

    Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer. PMID:26575166

  2. Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and novel therapeutic target in acute myeloid leukemia

    PubMed Central

    Porter, Christopher C.; Kim, Jihye; Fosmire, Susan; Gearheart, Christy M.; van Linden, Annemie; Baturin, Dmitry; Zaberezhnyy, Vadym; Patel, Purvi R.; Gao, Dexiang; Tan, Aik Choon; DeGregori, James

    2011-01-01

    Acute myeloid leukemia (AML) remains a therapeutic challenge despite increasing knowledge about the molecular origins of the disease, as the mechanisms of AML cell escape from chemotherapy remain poorly defined. We hypothesized that AML cells are addicted to molecular pathways in the context of chemotherapy and used complementary approaches to identify these addictions. Using novel molecular and computational approaches, we performed genome-wide shRNA screens to identify proteins that mediate AML cell fate after cytarabine exposure, gene expression profiling of AML cells exposed to cytarabine to identify genes with induced expression in this context, and examination of existing gene expression data from primary patient samples. The integration of these independent analyses strongly implicates cell cycle checkpoint proteins, particularly WEE1, as critical mediators of AML cell survival after cytarabine exposure. Knockdown of WEE1 in a secondary screen confirmed its role in AML cell survival. Pharmacologic inhibition of WEE1 in AML cell lines and primary cells is synergistic with cytarabine. Further experiments demonstrate that inhibition of WEE1 prevents S-phase arrest induced by cytarabine, broadening the functions of WEE1 that may be exploited therapeutically. These data highlight the power of integrating functional and descriptive genomics, and identify WEE1 as potential therapeutic target in AML. PMID:22289989

  3. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes

    PubMed Central

    Yang, Xuewei; Yang, Shuang; Chai, Hongyu; Yang, Zhaogang; Lee, Robert J.; Liao, Weiwei; Teng, Lesheng

    2015-01-01

    We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation. PMID:26309138

  4. Effects of exogenous agents on brain development: stress, abuse and therapeutic compounds.

    PubMed

    Archer, Trevor

    2011-10-01

    The range of exogenous agents likely to affect, generally detrimentally, the normal development of the brain and central nervous system defies estimation although the amount of accumulated evidence is enormous. The present review is limited to certain types of chemotherapeutic and "use-and-abuse" compounds and environmental agents, exemplified by anesthetic, antiepileptic, sleep-inducing and anxiolytic compounds, nicotine and alcohol, and stress as well as agents of infection; each of these agents have been investigated quite extensively and have been shown to contribute to the etiopathogenesis of serious neuropsychiatric disorders. To greater or lesser extent, all of the exogenous agents discussed in the present treatise have been investigated for their influence upon neurodevelopmental processes during the period of the brain growth spurt and during other phases uptill adulthood, thereby maintaining the notion of critical phases for the outcome of treatment whether prenatal, postnatal, or adolescent. Several of these agents have contributed to the developmental disruptions underlying structural and functional brain abnormalities that are observed in the symptom and biomarker profiles of the schizophrenia spectrum disorders and the fetal alcohol spectrum disorders. In each case, the effects of the exogenous agents upon the status of the affected brain, within defined parameters and conditions, is generally permanent and irreversible. © 2010 Blackwell Publishing Ltd.

  5. Circulating RNA transcripts identify therapeutic response in cystic fibrosis lung disease.

    PubMed

    Saavedra, Milene T; Hughes, Grant J; Sanders, Linda A; Carr, Michelle; Rodman, David M; Coldren, Christopher D; Geraci, Mark W; Sagel, Scott D; Accurso, Frank J; West, James; Nick, Jerry A

    2008-11-01

    Circulating leukocyte RNA transcripts are systemic markers of inflammation, which have not been studied in cystic fibrosis (CF) lung disease. Although the standard assessment of pulmonary treatment response is FEV(1), a measure of airflow limitation, the lack of systemic markers to reflect changes in lung inflammation critically limits the testing of proposed therapeutics. We sought to prospectively identify and validate peripheral blood leukocyte genes that could mark resolution of pulmonary infection and inflammation using a model by which RNA transcripts could increase the predictive value of spirometry. Peripheral blood mononuclear cells were isolated from 10 patients with CF and acute pulmonary exacerbations before and after therapy. RNA expression profiling revealed that 10 genes significantly changed with treatment when compared with matched non-CF and control subjects with stable CF to establish baseline transcript abundance. Peripheral blood mononuclear cell RNA transcripts were prospectively validated, using real-time polymerase chain reaction amplification, in an independent cohort of acutely ill patients with CF (n = 14). Patients who responded to therapy were analyzed using general estimating equations and multiple logistic regression, such that changes in FEV(1)% predicted were regressed with transcript changes. Three genes, CD64, ADAM9, and CD36, were significant and independent predictors of a therapeutic response beyond that of FEV(1) alone (P < 0.05). In both cohorts, receiver operating characteristic analysis revealed greater accuracy when genes were combined with FEV(1). Circulating mononuclear cell transcripts characterize a response to the treatment of pulmonary exacerbations. Even in small patient cohorts, changes in gene expression in conjunction with FEV(1) may enhance current outcomes measures for treatment response.

  6. New therapeutic solutions for Behçet's syndrome.

    PubMed

    Vitale, Antonio; Rigante, Donato; Lopalco, Giuseppe; Emmi, Giacomo; Bianco, Maria Teresa; Galeazzi, Mauro; Iannone, Florenzo; Cantarini, Luca

    2016-07-01

    Behçet's syndrome (BS) is a systemic inflammatory disorder characterized by a wide range of potential clinical manifestations with no gold-standard therapy. However, the recent classification of BS at a crossroads between autoimmune and autoinflammatory syndromes has paved the way to new further therapeutic opportunities in addition to anti-tumor necrosis factor agents. This review provides a digest of all current experience and evidence about pharmacological agents recently described as having a role in the treatment of BS, including interleukin (IL)-1 inhibitors, tocilizumab, rituximab, alemtuzumab, ustekinumab, interferon-alpha-2a, and apremilast. IL-1 inhibitors currently represent the most studied agents among the latest treatment options for BS, proving to be effective, safe and with an acceptable retention on treatment. However, since BS is a peculiar disorder with clinical features responding to certain treatments that in turn can worsen other manifestations, identifying new treatment options for patients unresponsive to the current drug armamentarium is of great relevance. A number of agents have been studied in the last decade showing changing fortunes in some cases and promising results in others. The latter will potentially provide their contribution for better clinical management of BS, improving patients' quality of life and long-term outcome.

  7. Topical antifungal agents: an update.

    PubMed

    Diehl, K B

    1996-10-01

    So many topical antifungal agents have been introduced that it has become very difficult to select the proper agent for a given infection. Nonspecific agents have been available for many years, and they are still effective in many situations. These agents include Whitfield's ointment, Castellani paint, gentian violet, potassium permanganate, undecylenic acid and selenium sulfide. Specific antifungal agents include, among others, the polyenes (nystatin, amphotericin B), the imidazoles (metronidazole, clotrimazole) and the allylamines (terbinafine, naftifine). Although the choice of an antifungal agent should be based on an accurate diagnosis, many clinicians believe that topical miconazole is a relatively effective agent for the treatment of most mycotic infections. Terbinafine and other newer drugs have primary fungicidal effects. Compared with older antifungal agents, these newer drugs can be used in lower concentrations and shorter therapeutic courses. Studies are needed to evaluate the clinical efficacies and cost advantages of both newer and traditional agents.

  8. A Clinico-analytical Study on Seed of Wrightia antidysenterica Linn. as a Therapeutic Emetic Agent (Vamaka Yoga) in the Management of Psoriasis.

    PubMed

    Bhattacharyya, Nirupam; Pujar, Muralidhar P; Chaturvedi, Ashutosh; Kumar, M Ashvini; Lohith, B A; Kumar, K N Sunil

    2016-03-01

    Wrightia antidysenterica Linn. (WA) is male variety Kutaja stated to be potent therapeutic emetic agent in skin disorders. Expulsion of doshas through oral route is termed as Vamana Karma (VK) (therapeutic emesis). However, so far, its utility for Vamana is not explored in detail, therefore there is a need to revalidate the utility of WA for Vamana. Hence, the above study was conducted to ascertain the efficacy as a therapeutic emetic agent (vamaka yoga) in the management of psoriasis along with quality control and standardization of this herb. The drug was standardized as per analytical procedures in Pharmacopeias. Thirty patients of psoriasis fulfilling inclusion criteria were taken for the study and Vamana with WA was conducted. Criteria were prepared to assess the signs and Symptoms of psoriasis. VK was assessed using the classical Lakshanas (features) such as Anthiki shudhi (Ending symptoms of emesis), Vaigiki shudhi (features of vomiting bouts), Maniki shudhi (Quantitative and qualitative purification), complications. VK with WA showed significant relief in parameters of psoriasis such as scaling, itching, candle grease sign (P < 0.001), and psoriasis area and severity index score (P = 0.001). In VK with WA, mean number of Vegas (vomiting bouts) was 6.91. 66% patients showing quantitative purification between 301 and 600 ml. 73.33% showed all Symptoms of purification. 73.33% patients showed Kaphanta vamana (Moderate expulsion of desire humor). In the level of biopurification, 66.66% patients showed moderated purification. No complication was noted with moderate drug palatability. Pharmacopeial analytical study showed its standardized values for testing the drug used for the study. It is proved as potent therapeutic emetic agent with no complication showed its clinical benefits over skin disorder like psoriasis. Seeds of Wrightia antidysenterica (WA) Linn. free from any foreign matter were selected for the study. Loss on drying revealed 6.535% moisture content

  9. Using a Stem Cell-Based Signature to Guide Therapeutic Selection in Cancer

    PubMed Central

    Shats, Igor; Gatza, Michael L.; Chang, Jeffrey T.; Mori, Seiichi; Wang, Jialiang; Rich, Jeremy; Nevins, Joseph R.

    2010-01-01

    Given the very substantial heterogeneity of most human cancers, it is likely that most cancer therapeutics will be active in only a small fraction of any population of patients. As such, the development of new therapeutics, coupled with methods to match a therapy with the individual patient, will be critical to achieving significant gains in disease outcome. One such opportunity is the use of expression signatures to identify key oncogenic phenotypes that can serve not only as biomarkers but also as a means of identifying therapeutic compounds that might specifically target these phenotypes. Given the potential importance of targeting tumors exhibiting a stem-like phenotype, we have developed an expression signature that reflects common biological aspects of various stem-like characteristics. The Consensus Stemness Ranking (CSR) signature is upregulated in cancer stem cell enriched samples, at advanced tumor stages and is associated with poor prognosis in multiple cancer types. Using two independent computational approaches we utilized the CSR signature to identify clinically useful compounds that could target the CSR phenotype. In vitro assays confirmed selectivity of several predicted compounds including topoisomerase inhibitors and resveratrol towards breast cancer cell lines that exhibit a high-CSR phenotype. Importantly, the CSR signature could predict clinical response of breast cancer patients to a neoadjuvant regimen that included a CSR-specific agent. Collectively, these results suggest therapeutic opportunities to target the CSR phenotype in a relevant cohort of cancer patients. PMID:21169407

  10. Rodent Models of Experimental Endometriosis: Identifying Mechanisms of Disease and Therapeutic Targets

    PubMed Central

    Bruner-Tran, Kaylon L.; Mokshagundam, Shilpa; Herington, Jennifer L.; Ding, Tianbing; Osteen, Kevin G.

    2018-01-01

    Background: Although it has been more than a century since endometriosis was initially described in the literature, understanding the etiology and natural history of the disease has been challenging. However, the broad utility of murine and rat models of experimental endometriosis has enabled the elucidation of a number of potentially targetable processes which may otherwise promote this disease. Objective: To review a variety of studies utilizing rodent models of endometriosis to illustrate their utility in examining mechanisms associated with development and progression of this disease. Results: Use of rodent models of endometriosis has provided a much broader understanding of the risk factors for the initial development of endometriosis, the cellular pathology of the disease and the identification of potential therapeutic targets. Conclusion: Although there are limitations with any animal model, the variety of experimental endometriosis models that have been developed has enabled investigation into numerous aspects of this disease. Thanks to these models, our under-standing of the early processes of disease development, the role of steroid responsiveness, inflammatory processes and the peritoneal environment has been advanced. More recent models have begun to shed light on how epigenetic alterations con-tribute to the molecular basis of this disease as well as the multiple comorbidities which plague many patients. Continued de-velopments of animal models which aid in unraveling the mechanisms of endometriosis development provide the best oppor-tunity to identify therapeutic strategies to prevent or regress this enigmatic disease.

  11. Novel therapeutic uses and formulations of botulinum neurotoxins: a patent review (2012 - 2014).

    PubMed

    Kane, Christopher D; Nuss, Jonathan E; Bavari, Sina

    2015-06-01

    Botulinum neurotoxins (BoNTs) are among the most toxic of known biological molecules and function as acetylcholine release inhibitors and neuromuscular blocking agents. Paradoxically, these properties also make them valuable therapeutic agents for the treatment of movement disorders, urological conditions and hypersecretory disorders. Greater understanding of their molecular mechanism of action and advances in protein engineering has led to significant efforts to improve and expand their function with a view towards broadening their therapeutic potential. Searches of Espacenet and Google Patent have revealed a number of patents related to BoNTs. This review will focus on novel therapeutic uses and formulations disclosed during 2012 - 2014. The seven patents discussed will include nanoformulations of FDA-approved BoNTs, additional BoNT subtypes and novel BoNT variants and chimeras created through protein engineering. Supporting patents and related publications are also briefly discussed. The clinical and commercial success of BoNTs has prompted investigation into novel BoNTs or BoNT-mediated chimeras with promising in vitro results. Distinct strategies including the use of nanoformulations and targeted delivery have been implemented to identify new indication and improved functionality. Greater understanding of their systemic exposure, efficacy and safety profiles will be required for further development.

  12. Preterm labour: an overview of current and emerging therapeutics.

    PubMed

    Schwarz, Matthias K; Page, Patrick

    2003-08-01

    Preterm labour is a major cause of perinatal mortality and morbidity. However, during the past 40 years of clinical studies and despite the use of multiple therapeutic agents, the rate of preterm birth has not drastically declined. In 1991, it was estimated that in the US approximately 116,000 women admitted with acute episodes of preterm labour were treated each year with ritodrine, which is the first drug approved by the US FDA and still remains the standard therapy for treating preterm labour. Ritodrine (Yutopar( trade mark )) stimulates the beta(2)-adrenergic receptor throughout the body, causing an inhibitory action in different tissues that, among other side effects, also leads to an attenuation of uterine contractility. More recently, a new therapeutic agent, atosiban (Tractocile( trade mark )), a peptidic oxytocin receptor antagonist, has been introduced to the market. However, the use of the various pharmacological agents to treat preterm labour remains restricted, due to lack of uterine selectivity, low efficacy and potentially serious side effects for the mother or the foetus. Therefore, there is an urgent need to develop drugs with myometrial selectivity that would allow long-lasting inhibition of labour and prolong pregnancy up to a stage when good foetal maturation raises the chances of survival. One of the major obstacles hampering the development of new therapeutic agents is the marked inter-species difference in terms of preterm labour physiology, which complicates the preclinical evaluation of new candidate molecules in animal models of disease. In this review, the authors will provide a comprehensive update of past, current and new approaches for the management of preterm labour, including beta(2)-adrenergic agonists, calcium channel blockers, oxytocin antagonists, prostaglandin antagonists and other potential therapeutics. For each of the therapies used today, the review will cover the mechanism of action, benefit and adverse effects, and

  13. Therapeutic strategies to improve control of hypertension.

    PubMed

    Armario, Pedro; Waeber, Bernard

    2013-03-01

    Blood pressure is poorly controlled in most European countries and the control rate is even lower in high-risk patients such as patients with chronic kidney disease, diabetic patients or previous coronary heart disease. Several factors have been associated with poor control, some of which involve the characteristic of the patients themselves, such as socioeconomic factors, or unsuitable life-styles, other factors related to hypertension or to associated comorbidity, but there are also factors directly associated with antihypertensive therapy, mainly involving adherence problems, therapeutic inertia and therapeutic strategies unsuited to difficult-to-control hypertensive patients. It is common knowledge that only 30% of hypertensive patients can be controlled using monotherapy; all the rest require a combination of two or more antihypertensive drugs, and this can be a barrier to good adherence and log-term persistence in patients who also often need to use other drugs, such as antidiabetic agents, statins or antiplatelet agents. The fixed combinations of three antihypertensive agents currently available can facilitate long-term control of these patients in clinical practice. If well tolerated, a long-term therapeutic regimen that includes a diuretic, an ACE inhibitor or an angiotensin receptor blocker, and a calcium channel blocker is the recommended optimal triple therapy.

  14. New agents for prostate cancer.

    PubMed

    Agarwal, N; Di Lorenzo, G; Sonpavde, G; Bellmunt, J

    2014-09-01

    The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has been revolutionized by the arrival of multiple novel agents in the past 2 years. Immunotherapy in the form of sipuleucel-T, androgen axis inhibitors, including abiraterone acetate and enzalutamide, a chemotherapeutic agent, cabazitaxel, and a radiopharmaceutical, radium-223, have all yielded incremental extensions of survival and have been recently approved. A number of other agents appear promising in early studies, suggesting that the armamentarium against castrate-resistant prostate cancer is likely to continue to expand. Emerging androgen pathway inhibitors include androgen synthesis inhibitors (TAK700), androgen receptor inhibitors (ARN-509, ODM-201), AR DNA binding domain inhibitors (EPI-001), selective AR downregulators or SARDs (AZD-3514), and agents that inhibit both androgen synthesis and receptor binding (TOK-001/galeterone). Promising immunotherapeutic agents include poxvirus vaccines and CTLA-4 inhibitor (ipilimumab). Biologic agents targeting the molecular drivers of disease are also being investigated as single agents, including cabozantinib (Met and VEGFR2 inhibitor) and tasquinimod (angiogenesis and immune modulatory agent). Despite the disappointing results seen from studies evaluating docetaxel in combination with other agents, including GVAX, anti-angiogentic agents (bevacizumab, aflibercept, lenalinomide), a SRC kinase inhibitor (dasatinib), endothelin receptor antagonists (atrasentan, zibotentan), and high-dose calcitriol (DN-101), the results from the trial evaluating docetaxel in combination with the clusterin antagonist, custirsen, are eagerly awaited. New therapeutic hurdles consist of discovering new targets, understanding resistance mechanisms, the optimal sequencing and combinations of available agents, as well as biomarkers predictive for benefit. Novel agents targeting bone metastases are being developed following the success of zoledronic acid

  15. Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer.

    PubMed

    de Almeida, Carlos E B; Alves, Lais Nascimento; Rocha, Henrique F; Cabral-Neto, Januário Bispo; Missailidis, Sotiris

    2017-06-20

    Aptamers are oligonucleotide reagents with high affinity and specificity, which among other therapeutic and diagnostic applications have the capability of acting as delivery agents. Thus, aptamers are capable of carrying small molecules, nanoparticles, radiopharmaceuticals or fluorescent agents as well as nucleic acid therapeutics specifically to their target cells. In most cases, the molecules may possess interesting therapeutic properties, but their lack of specificity for a particular cell type, or ability to internalise in such a cell, hinders their clinical development, or cause unwanted side effects. Thus, chemotherapy or radiotherapy agents, famous for their side effects, can be coupled to aptamers for specific delivery. Equally, siRNA have great therapeutic potential and specificity, but one of their shortcomings remain the delivery and internalisation into cells. Various methodologies have been proposed to date, including aptamers, to resolve this problem. Therapeutic or imaging reagents benefit from the adaptability and ease of chemical manipulation of aptamers, their high affinity for the specific marker of a cell type, and their internalisation ability via cell mediated endocytosis. In this review paper, we explore the potential of the aptamers as delivery agents and offer an update on current status and latest advancements. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Boron chemicals in diagnosis and therapeutics

    PubMed Central

    Das, Bhaskar C; Thapa, Pritam; Karki, Radha; Schinke, Caroline; Das, Sasmita; Kambhampati, Suman; Banerjee, Sushanta K; Van Veldhuizen, Peter; Verma, Amit; Weiss, Louis M; Evans, Todd

    2013-01-01

    Advances in the field of boron chemistry have expanded the application of boron from material use to medicine. Boron-based drugs represent a new class of molecules that possess several biomedical applications including use as imaging agents for both optical and nuclear imaging as well as therapeutic agents with anticancer, antiviral, antibacterial, antifungal and other disease-specific activities. For example, bortezomib (Velcade®), the only drug in clinical use with boron as an active element, was approved in 2003 as a proteasome inhibitor for the treatment of multiple myeloma and non-Hodgkin’s lymphoma. Several other boron-based compounds are in various phases of clinical trials, which illustrates the promise of this approach for medicinal chemists working in the area of boron chemistry. It is expected that in the near future, several boron-containing drugs should become available in the market with better efficacy and potency than existing drugs. This article discusses the current status of the development of boron-based compounds as diagnostic and therapeutic agents in humans. PMID:23617429

  17. A novel method for detecting neutralizing antibodies against therapeutic proteins by measuring gene expression.

    PubMed

    Yu, Yanbin; Piddington, Christopher; Fitzpatrick, Dan; Twomey, Brian; Xu, Ren; Swanson, Steven J; Jing, Shuqian

    2006-10-20

    The presence of neutralizing antibodies against protein therapeutics is a concern in the biomedical field. Such antibodies not only reduce the efficacy of protein therapeutics, but also impose potential dangers to the patients receiving them. To date, a small number of in vitro cell-based bioassays for detecting neutralizing antibodies against therapeutic proteins have been developed. Most of the existing assays, however, either involve the use of radioactive materials or have limited sensitivities and/or poor specificities. With advances in mRNA profiling and detection techniques, we have established a novel and non-radioactive bioassay system using branched DNA (bDNA) technology for detecting protein-therapeutic neutralizing antibodies in patient serum. Our assay measures the variations of target gene expression that reflect the biologic effect of the therapeutic agent and the capability of the antibodies, if present, to neutralize the therapeutics. Compared with most existing assays, the new assay is more sensitive and specific, and completely eliminates the use of radioactive materials. Application of the new assay system can be widely expanded if new target genes and responding cell lines for other therapeutics are identified or engineered.

  18. New era of biologic therapeutics in atopic dermatitis.

    PubMed

    Guttman-Yassky, Emma; Dhingra, Nikhil; Leung, Donald Y M

    2013-04-01

    Atopic dermatitis (AD) is a common inflammatory skin disease regulated by genetic and environmental factors. Both skin barrier defects and aberrant immune responses are believed to drive cutaneous inflammation in AD. Existing therapies rely largely on allergen avoidance, emollients and topical and systemic immune-suppressants, some with significant toxicity and transient efficacy; no specific targeted therapies are in clinical use today. As our specific understanding of the immune and molecular pathways that cause different subsets of AD increases, a variety of experimental agents, particularly biologic agents that target pathogenic molecules bring the promise of safe and effective therapeutics for long-term use. This paper discusses the molecular pathways characterizing AD, the contributions of barrier and immune abnormalities to its pathogenesis, and development of new treatments that target key molecules in these pathways. In this review, we will discuss a variety of biologic therapies that are in development or in clinical trials for AD, perhaps revolutionizing treatment of this disease. Biologic agents in moderate to severe AD offer promise for controlling a disease that currently lacks good and safe therapeutics posing a large unmet need. Unfortunately, existing treatments for AD aim to decrease cutaneous inflammation, but are not specific for the pathways driving this disease. An increasing understanding of the immune mechanisms underlying AD brings the promise of narrow targeted therapies as has occurred for psoriasis, another inflammatory skin disease, for which specific biologic agents have been demonstrated to both control the disease and prevent occurrence of new skin lesions. Although no biologic is yet approved for AD, these are exciting times for active therapeutic development in AD that might lead to revolutionary therapeutics for this disease.

  19. The Therapeutic Alliance: Clients' Categorization of Client-Identified Factors

    ERIC Educational Resources Information Center

    Simpson, Arlene J.; Bedi, Robinder P.

    2012-01-01

    Clients' perspectives on the therapeutic alliance were examined using written descriptions of factors that clients believed to be helpful in developing a strong alliance. Fifty participants sorted previously collected statements into thematically similar piles and then gave each set of statements a title. Multivariate concept mapping statistical…

  20. Tanshinones as Effective Therapeutic Agents for Prostate Cancer

    DTIC Science & Technology

    2011-06-01

    BW) and the routes of administration (oral gavaging with corn oil or dietary supplementation ) in inhibiting the growth of PC-3 tumors. We found...activity against PC3 tumors. Although dietary supplementation was labor-efficient, the intake of the active agents could not be controlled because the...basis for most modern pharmaceutical drugs. Herbal medicines usually contain multiple bioactive compo- nents with specific biological activities and

  1. Therapeutics of Ebola hemorrhagic fever: whole-genome transcriptional analysis of successful disease mitigation.

    PubMed

    Yen, Judy Y; Garamszegi, Sara; Geisbert, Joan B; Rubins, Kathleen H; Geisbert, Thomas W; Honko, Anna; Xia, Yu; Connor, John H; Hensley, Lisa E

    2011-11-01

    The mechanisms of Ebola (EBOV) pathogenesis are only partially understood, but the dysregulation of normal host immune responses (including destruction of lymphocytes, increases in circulating cytokine levels, and development of coagulation abnormalities) is thought to play a major role. Accumulating evidence suggests that much of the observed pathology is not the direct result of virus-induced structural damage but rather is due to the release of soluble immune mediators from EBOV-infected cells. It is therefore essential to understand how the candidate therapeutic may be interrupting the disease process and/or targeting the infectious agent. To identify genetic signatures that are correlates of protection, we used a DNA microarray-based approach to compare the host genome-wide responses of EBOV-infected nonhuman primates (NHPs) responding to candidate therapeutics. We observed that, although the overall circulating immune response was similar in the presence and absence of coagulation inhibitors, surviving NHPs clustered together. Noticeable differences in coagulation-associated genes appeared to correlate with survival, which revealed a subset of distinctly differentially expressed genes, including chemokine ligand 8 (CCL8/MCP-2), that may provide possible targets for early-stage diagnostics or future therapeutics. These analyses will assist us in understanding the pathogenic mechanisms of EBOV infection and in identifying improved therapeutic strategies.

  2. [New agents for hypercholesterolemia].

    PubMed

    Pintó, Xavier; García Gómez, María Carmen

    2016-02-19

    An elevated proportion of high cardiovascular risk patients do not achieve the therapeutic c-LDL goals. This owes to physicians' inappropriate or insufficient use of cholesterol lowering medications or to patients' bad tolerance or therapeutic compliance. Another cause is an insufficient efficacy of current cholesterol lowering drugs including statins and ezetimibe. In addition, proprotein convertase subtilisin kexin type 9 inhibitors are a new cholesterol lowering medications showing safety and high efficacy to reduce c-LDL in numerous already performed or underway clinical trials, potentially allowing an optimal control of hypercholesterolemia in most patients. Agents inhibiting apolipoprotein B synthesis and microsomal transfer protein are also providing a new potential to decrease cholesterol in patients with severe hypercholesterolemia and in particular in homozygote familial hypercholesterolemia. Last, cholesteryl ester transfer protein inhibitors have shown powerful effects on c-HDL and c-LDL, although their efficacy in cardiovascular prevention and safety has not been demonstrated yet. We provide in this article an overview of the main characteristics of therapeutic agents for hypercholesterolemia, which have been recently approved or in an advanced research stage. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  3. Molecular hydrogen in sports medicine: new therapeutic perspectives.

    PubMed

    Ostojic, S M

    2015-04-01

    In the past 2 decades, molecular hydrogen emerged as a novel therapeutic agent, with antioxidant, anti-inflammatory and anti-apoptotic effects demonstrated in plethora of animal disease models and human studies. Beneficial effects of molecular hydrogen in clinical environment are observed especially in oxidative stress-mediated diseases, such as diabetes mellitus, brain stem infarction, rheumatoid arthritis, or neurodegenerative diseases. A number of more recent studies have reported that molecular hydrogen affects cell signal transduction and acts as an alkalizing agent, with these newly identified mechanisms of action having the potential to widen its application in clinical medicine even further. In particular, hydrogen therapy may be an effective and specific innovative treatment for exercise-induced oxidative stress and sports injury, with potential for the improvement of exercise performance. This review will summarize recent research findings regarding the clinical aspects of molecular hydrogen use, emphasizing its application in the field of sports medicine. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Identification of a candidate therapeutic autophagy–inducing peptide

    PubMed Central

    Shoji-Kawata, Sanae; Sumpter, Rhea; Leveno, Matthew; Campbell, Grant R.; Zou, Zhongju; Kinch, Lisa; Wilkins, Angela D.; Sun, Qihua; Pallauf, Kathrin; MacDuff, Donna; Huerta, Carlos; Virgin, Herbert W.; Helms, J. Bernd; Eerland, Ruud; Tooze, Sharon A.; Xavier, Ramnik; Lenschow, Deborah J.; Yamamoto, Ai; King, David; Lichtarge, Olivier; Grishin, Nick V.; Spector, Stephen A.; Kaloyanova, Dora V.; Levine, Beth

    2013-01-01

    The lysosomal degradation pathway of autophagy has a crucial role in defence against infection, neurodegenerative disorders, cancer and ageing. Accordingly, agents that induce autophagy may have broad therapeutic applications. One approach to developing such agents is to exploit autophagy manipulation strategies used by microbial virulence factors. Here we show that a peptide, Tat–beclin 1—derived from a region of the autophagy protein, beclin 1, which binds human immunodeficiency virus (HIV)-1 Nef—is a potent inducer of autophagy, and interacts with a newly identified negative regulator of autophagy, GAPR-1 (also called GLIPR2). Tat–beclin 1 decreases the accumulation of polyglutamine expansion protein aggregates and the replication of several pathogens (including HIV-1) in vitro, and reduces mortality in mice infected with chikungunya or West Nile virus. Thus, through the characterization of a domain of beclin 1 that interacts with HIV-1 Nef, we have developed an autophagy-inducing peptide that has potential efficacy in the treatment of human diseases. PMID:23364696

  5. The Therapeutic Relationship: Enhancing Referrals.

    PubMed

    Coyle, Mary Kathleen

    2018-05-19

    This article focuses on the ways rehabilitation nurses use the therapeutic relationship to lessen barriers some veterans experience when a referral to mental health treatment is recommended. Veterans presenting with posttraumatic stress symptoms are discussed, and possible interventions within the therapeutic relationship are proposed. Veterans' perception of mental health stigma, building a collaborative therapeutic relationship, recommending a referral and assessments of stress responses, posttraumatic stress symptoms, suicide risk, and intervention strategies are proposed. When changes in functioning and suicidality occur in veterans with posttraumatic stress disorder symptoms, it is important to screen and engage veterans at risk. When veterans in the rehabilitation process present with a need for mental health referral, barriers to treatment may include the stigma of mental health treatment. Rehabilitation nurses using the therapeutic relationship act as change agents to assist veterans in overcoming these barriers to treatment. The therapeutic relationship provides nurses with a foundation to provide opportunities for veterans to be supported and to seek treatment.

  6. The Therapeutic Potential of Anti-Inflammatory Exerkines in the Treatment of Atherosclerosis

    PubMed Central

    Yu, Megan; Tsai, Sheng-Feng; Kuo, Yu-Min

    2017-01-01

    Although many cardiovascular (CVD) medications, such as antithrombotics, statins, and antihypertensives, have been identified to treat atherosclerosis, at most, many of these therapeutic agents only delay its progression. A growing body of evidence suggests physical exercise could be implemented as a non-pharmacologic treatment due to its pro-metabolic, multisystemic, and anti-inflammatory benefits. Specifically, it has been discovered that certain anti-inflammatory peptides, metabolites, and RNA species (collectively termed “exerkines”) are released in response to exercise that could facilitate these benefits and could serve as potential therapeutic targets for atherosclerosis. However, much of the relationship between exercise and these exerkines remains unanswered, and there are several challenges in the discovery and validation of these exerkines. This review primarily highlights major anti-inflammatory exerkines that could serve as potential therapeutic targets for atherosclerosis. To provide some context and comparison for the therapeutic potential of exerkines, the anti-inflammatory, multisystemic benefits of exercise, the basic mechanisms of atherosclerosis, and the limited efficacies of current anti-inflammatory therapeutics for atherosclerosis are briefly summarized. Finally, key challenges and future directions for exploiting these exerkines in the treatment of atherosclerosis are discussed. PMID:28608819

  7. A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression

    PubMed Central

    Giotopoulos, George; van der Weyden, Louise; Osaki, Hikari; Rust, Alistair G.; Gallipoli, Paolo; Meduri, Eshwar; Horton, Sarah J.; Chan, Wai-In; Foster, Donna; Prinjha, Rab K.; Pimanda, John E.; Tenen, Daniel G.; Vassiliou, George S.; Koschmieder, Steffen; Adams, David J.

    2015-01-01

    The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC. However, the identity of these mutations and the pathways they affect are poorly understood, hampering our ability to identify therapeutic targets and improve outcomes. Here, we describe a novel mouse model that allows identification of mechanisms of BC progression in an unbiased and tractable manner, using transposon-based insertional mutagenesis on the background of chronic phase CML. Our BC model is the first to faithfully recapitulate the phenotype, cellular and molecular biology of human CML progression. We report a heterogeneous and unique pattern of insertions identifying known and novel candidate genes and demonstrate that these pathways drive disease progression and provide potential targets for novel therapeutic strategies. Our model greatly informs the biology of CML progression and provides a potent resource for the development of candidate therapies to improve the dismal outcomes in this highly aggressive disease. PMID:26304963

  8. Metallothionein as a Scavenger of Free Radicals - New Cardioprotective Therapeutic Agent or Initiator of Tumor Chemoresistance?

    PubMed

    Heger, Zbynek; Rodrigo, Miguel Angel Merlos; Krizkova, Sona; Ruttkay-Nedecky, Branislav; Zalewska, Marta; Del Pozo, Elena Maria Planells; Pelfrene, Aurelie; Pourrut, Bertrand; Stiborova, Marie; Eckschlager, Tomas; Emri, Gabriella; Kizek, Rene; Adam, Vojtech

    2016-01-01

    Cardiotoxicity is a serious complication of anticancer therapy by anthracycline antibiotics. Except for intercalation into DNA/RNA structure, inhibition of DNA-topoisomerase and histone eviction from chromatin, the main mechanism of their action is iron-mediated formation of various forms of free radicals, which leads to irreversible damage to cancer cells. The most serious adverse effect of anthracyclines is, thus, cardiomyopathy leading to congestive heart failure, which is caused by the same mechanisms. Here, we briefly summarize the basic types of free radicals formed by anthracyclines and the main processes how to scavenge them. From these, the main attention is paid to metallothioneins. These low-molecular cysteine-rich proteins are introduced and their functions and properties are reviewed. Further, their role in detoxification of metals and drugs is discussed. Based on these beneficial roles, their use as a new therapeutic agent against oxidative stress and for cardioprotection is critically evaluated with respect to their ability to increase chemoresistance against some types of commonly used cytostatics.

  9. Cisplatin encapsulated nanoparticle as a therapeutic agent for anticancer treatment

    NASA Astrophysics Data System (ADS)

    Eka Putra, Gusti Ngurah Putu; Huang, Leaf; Hsu, Yih-Chih

    2016-03-01

    The knowledge of manipulating size of biomaterials encapsulated drug into nano-scale particles has been researched and developed in treating cancer. Cancer is the second worldwide cause of death, therefore it is critical to treat cancers challenging with therapeutic modality of various mechanisms. Our preliminary investigation has studied cisplatin encapsulated into lipid-based nanoparticle and examined the therapeutic effect on xenografted animal model. We used mice with tumor volume ranging from 195 to 214 mm3 and then few mice were grouped into three groups including: control (PBS), lipid platinum chloride (LPC) nanoparticles and CDDP (cis-diamminedichloroplatinum(II) at dose of 3mg cisplatin /kg body weight. The effect of the treatment was observed for 12 days post-injection. It showed that LPC NPs demonstrated a better therapeutic effect compared to CDDP at same 3mg cisplatin/kg drug dose of tumor size reduction, 96.6% and 11.1% respectively. In addition, mouse body weight loss of LPC, CDDP and PBS treated group are 12.1%, 24.3% and 1.4%. It means that by compared to CDDP group, LPC group demonstrated less side effect as not much reduction of body weight have found. Our findings have shown to be a potential modality to further investigate as a feasible cancer therapy modality.

  10. Clinical differences among nonsteroidal antiinflammatory drugs: implications for therapeutic substitution in ambulatory patients.

    PubMed

    Levy, R A; Smith, D L

    1989-01-01

    The practice of therapeutic substitution, i.e., replacing one drug with another chemically different drug from the same therapeutic class, represents an important therapeutic modification with potential clinical significance far beyond that of generic substitution. Adverse consequences following therapeutic substitution of nonsteroidal antiinflammatory drugs (NSAID) is of special concern because of substantial differences among these agents in pharmacokinetic, pharmacological, and clinical properties. Therapeutic substitution of NSAID for ambulatory patients may result in compromised clinical outcome because (1) patient response is unpredictable and selection of the optimal agent must be tailored for each patient; (2) substantial differences exist in adverse reaction profiles; (3) drug interaction studies are lacking; and (4) selection of an agent must be individualized to ensure compliance with the dosing regimen. Cost savings achieved through therapeutic substitution of NSAID may be lost by additional overall treatment costs due to adverse reactions or suboptimal therapy. The occurrence of adverse or suboptimal effects in ambulatory patients is more likely if NSAID are substituted without full knowledge of the patient's medical history and clinical status. Communication between the pharmacy and prescribing physician regarding a patient's specific needs is essential for rational substitution among NSAID.

  11. Oral (Systemic) Botanical Agents for the Treatment of Psoriasis: A Review.

    PubMed

    Farahnik, Benjamin; Sharma, Divya; Alban, Joseph; Sivamani, Raja

    2017-06-01

    Patients with psoriasis often use botanical therapies as part of their treatment. It is important for clinicians to be aware of the current evidence regarding these agents as they treat patients. A systematic literature search was conducted using the PubMed, MEDLINE, and EMBASE database for randomized clinical trials assessing the use of botanical therapeutics for psoriasis. The search included the following keywords: "psoriasis" and "plant" or "herbal" or "botanical." Citations within articles were also reviewed to identify relevant sources. The results were then further refined by route of administration, and the oral (systemic) botanical agents are reviewed herein. A total of 12 controlled and uncontrolled clinical trials addressing the use of oral, systemic botanical agents for psoriasis were assessed in this review. While overall evidence is limited in quantity and quality, HESA-A, curcumin, neem extract, and, to a lesser degree, Traditional Chinese Medicine seem to be the most efficacious agents. The literature addresses a large amount of studies in regards to botanicals for the treatment of psoriasis. While most agents appear to be safe, further research is necessary for evidence-based recommendation of oral botanical agents to psoriasis patients.

  12. Surface modification of medical implant materials with hydrophilic polymers for enhanced biocompatibility and delivery of therapeutic agents

    NASA Astrophysics Data System (ADS)

    Urbaniak, Daniel J.

    2004-11-01

    In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens

  13. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin

    PubMed Central

    Shackelford, David B.; Abt, Evan; Gerken, Laurie; Vasquez, Debbie S.; Seki, Atsuko; Leblanc, Mathias; Wei, Liu; Fishbein, Michael C.; Czernin, Johannes; Mischel, Paul S.; Shaw, Reuben J.

    2013-01-01

    SUMMARY The LKB1 (also called STK11) tumor suppressor is mutationally inactivated in ~20% of non-small cell lung cancers (NSCLC). LKB1 is the major upstream kinase activating the energy-sensing kinase AMPK, making LKB1-deficient cells unable to appropriately sense metabolic stress. We tested the therapeutic potential of metabolic drugs in NSCLC and identified phenformin, a mitochondrial inhibitor and analog of the diabetes therapeutic metformin, as selectively inducing apoptosis in LKB1-deficient NSCLC cells. Therapeutic trials in Kras-dependent mouse models of NSCLC revealed that tumors with Kras and Lkb1 mutations, but not those with Kras and p53 mutations showed selective response to phenformin as a single agent, resulting in prolonged survival. This study suggests phenformin as a cancer metabolism-based therapeutic to selectively target LKB1-deficient tumors. PMID:23352126

  14. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    PubMed Central

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  15. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    PubMed

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  16. A Cellular High-Throughput Screening Approach for Therapeutic trans-Cleaving Ribozymes and RNAi against Arbitrary mRNA Disease Targets

    PubMed Central

    Yau, Edwin H.; Butler, Mark C.; Sullivan, Jack M.

    2016-01-01

    Major bottlenecks in development of therapeutic post transcriptional gene silencing (PTGS) agents (e.g. ribozymes, RNA interference, antisense) include the challenge of mapping rare accessible regions of the mRNA target that are open for annealing and cleavage, testing and optimization of agents in human cells to identify lead agents, testing for cellular toxicity, and preclinical evaluation in appropriate animal models of disease. Methods for rapid and reliable cellular testing of PTGS agents are needed to identify potent lead candidates for optimization. Our goal was to develop a means of rapid assessment of many RNA agents to identify a lead candidate for a given mRNA associated with a disease state. We developed a rapid human cell-based screening platform to test efficacy of hammerhead ribozyme (hhRz) or RNA interference (RNAi) constructs, using a model retinal degeneration target, human rod opsin (RHO) mRNA. The focus is on RNA Drug Discovery for diverse retinal degeneration targets. To validate the approach, candidate hhRzs were tested against NUH↓ cleavage sites (N=G,C,A,U; H=C,A,U) within the target mRNA of secreted alkaline phosphatase (SEAP), a model gene expression reporter, based upon in silico predictions of mRNA accessibility. HhRzs were embedded in a larger stable adenoviral VAI RNA scaffold for high cellular expression, cytoplasmic trafficking, and stability. Most hhRz expression plasmids exerted statistically significant knockdown of extracellular SEAP enzyme activity when readily assayed by a fluorescence enzyme assay intended for high throughput screening (HTS). Kinetics of PTGS knockdown of cellular targets is measureable in live cells with the SEAP reporter. The validated SEAP HTS platform was transposed to identify lead PTGS agents against a model hereditary retinal degeneration target, RHO mRNA. Two approaches were used to physically fuse the model retinal gene target mRNA to the SEAP reporter mRNA. The most expedient way to evaluate a

  17. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.

    PubMed

    Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

    2011-08-24

    The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.

  18. Clinical results in cachexia therapeutics.

    PubMed

    Crawford, Jeffrey

    2016-05-01

    This article highlights recent developments in the area of cancer cachexia and therapeutic interventions. Therapeutic interventions in cancer cachexia have been guided by clinical studies focused on the central role of muscle and the increased use of CT imaging to measure the impact of skeletal muscle loss on clinical outcomes. At the translational level, a number of different model systems have emphasized the importance of blockade of tumor-induced inflammation and its potential impact on reversing the cachexia phenotype, including FN14, a receptor in the TNF pathway, as well as the parathyroid hormone-related protein. Clinical studies continue to demonstrate the importance of nutrition and exercise as part of a multimodality approach. Although a number of promising agents are being evaluated, both enobosarm, a selected androgen receptor modulator, and anamorelin, a ghrelin agonist have completed phase III trials. Both agents have shown significant impact on reversal of skeletal muscle loss, but inconsistent effect on physical function improvement. Anamorelin also has a positive effect on appetite and weight gain. Further analysis of these studies, along with regulatory guidance, will be critical in the further development of these and other promising agents in the clinical management of patients with cancer cachexia.

  19. Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant-based natural products.

    PubMed

    Wunderlich, Frank; Al-Quraishy, Saleh; Steinbrenner, Holger; Sies, Helmut; Dkhil, Mohamed A

    2014-10-01

    Eimeriosis, a widespread infectious disease of livestock, is caused by coccidian protozoans of the genus Eimeria. These obligate intracellular parasites strike the digestive tract of their hosts and give rise to enormous economic losses, particularly in poultry, ruminants including cattle, and rabbit farming. Vaccination, though a rational prophylactic measure, has not yet been as successful as initially thought. Numerous broad-spectrum anti-coccidial drugs are currently in use for treatment and prophylactic control of eimeriosis. However, increasing concerns about parasite resistance, consumer health, and environmental safety of the commercial drugs warrant efforts to search for novel agents with anti-Eimeria activity. This review summarizes current approaches to prevent and treat eimeriosis such as vaccination and commercial drugs, as well as recent attempts to use dietary antioxidants as novel anti-Eimeria agents. In particular, the trace elements selenium and zinc, the vitamins A and E, and natural products extracted from garlic, barberry, pomegranate, sweet wormwood, and other plants are discussed. Several of these novel anti-Eimeria agents exhibit a protective role against oxidative stress that occurs not only in the intestine of Eimeria-infected animals, but also in their non-parasitized tissues, in particular, in the first-pass organ liver. Currently, it appears to be promising to identify safe combinations of low-cost natural products with high anti-Eimeria efficacy for a potential use as feed supplementation in animal farming.

  20. Systematic review and meta-analysis of the diagnostic and therapeutic role of water-soluble contrast agent in adhesive small bowel obstruction.

    PubMed

    Branco, B C; Barmparas, G; Schnüriger, B; Inaba, K; Chan, L S; Demetriades, D

    2010-04-01

    This meta-analysis assessed the diagnostic and therapeutic role of water-soluble contrast agent (WSCA) in adhesive small bowel obstruction (SBO). PubMed, Embase and Cochrane databases were searched systematically. The primary outcome in the diagnostic role of WSCA was its ability to predict the need for surgery. In the therapeutic role, the following were evaluated: resolution of SBO without surgery, time from admission to resolution, duration of hospital stay, complications and mortality. To assess the diagnostic role of WSCA, pooled estimates of sensitivity, specificity, positive and negative predictive values, and likelihood ratios were derived. For the therapeutic role of WSCA, weighted odds ratio (OR) and weighted mean difference (WMD) were obtained. Fourteen prospective studies were included. The appearance of contrast in the colon within 4-24 h after administration had a sensitivity of 96 per cent and specificity of 98 per cent in predicting resolution of SBO. WSCA administration was effective in reducing the need for surgery (OR 0.62; P = 0.007) and shortening hospital stay (WMD -1.87 days; P < 0.001) compared with conventional treatment. Water-soluble contrast was effective in predicting the need for surgery in patients with adhesive SBO. In addition, it reduced the need for operation and shortened hospital stay. Copyright (c) 2010 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  1. Theranostics Using Antibodies and Antibody-Related Therapeutics.

    PubMed

    Moek, Kirsten L; Giesen, Danique; Kok, Iris C; de Groot, Derk Jan A; Jalving, Mathilde; Fehrmann, Rudolf S N; Lub-de Hooge, Marjolijn N; Brouwers, Adrienne H; de Vries, Elisabeth G E

    2017-09-01

    In theranostics, radiolabeled compounds are used to determine a treatment strategy by combining therapeutics and diagnostics in the same agent. Monoclonal antibodies (mAbs) and antibody-related therapeutics represent a rapidly expanding group of cancer medicines. Theranostic approaches using these drugs in oncology are particularly interesting because antibodies are designed against specific targets on the tumor cell membrane and immune cells as well as targets in the tumor microenvironment. In addition, these drugs are relatively easy to radiolabel. Noninvasive molecular imaging techniques, such as SPECT and PET, provide information on the whole-body distribution of radiolabeled mAbs and antibody-related therapeutics. Molecular antibody imaging can potentially elucidate drug target expression, tracer uptake in the tumor, tumor saturation, and heterogeneity for these parameters within the tumor. These data can support drug development and may aid in patient stratification and monitoring of the treatment response. Selecting a radionuclide for theranostic purposes generally starts by matching the serum half-life of the mAb or antibody-related therapeutic and the physical half-life of the radionuclide. Furthermore, PET imaging allows better quantification than the SPECT technique. This information has increased interest in theranostics using PET radionuclides with a relatively long physical half-life, such as 89 Zr. In this review, we provide an overview of ongoing research on mAbs and antibody-related theranostics in preclinical and clinical oncologic settings. We identified 24 antibodies or antibody-related therapeutics labeled with PET radionuclides for theranostic purposes in patients. For this approach to become integrated in standard care, further standardization with respect to the procedures involved is required. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  2. Filarial Abundant Larval Transcript Protein ALT-2: An Immunomodulatory Therapeutic Agent for Type 1 Diabetes.

    PubMed

    Reddy, Sridhar M; Reddy, Pooja M; Amdare, Nitin; Khatri, Vishal; Tarnekar, Aaditya; Goswami, Kalyan; Reddy, Maryada Venkata Rami

    2017-03-01

    Type 1 diabetes (T1D) that accounts for about 5-10 % of all diabetes cases results from the autoimmune destruction of the insulin-producing beta cells in the pancreas. It is characterized by severe inflammatory reaction mediated by pronounced T helper type-1 response. Parasitic infections having the ability to skew the host immune responses towards type-2 type as a part of their defense mechanism are able to induce protection against autoimmune diseases like T1D. Hence, the present study is undertaken to explore a recombinant abundant larval transcript protein of the human lymphatic filarial parasite Brugia malayi ( rBm ALT-2), a known anti-inflammatory molecule for its therapeutic effect on streptozotocin (STZ)-induced T1D in mice. The diabetic mice on treatment with r Bm ALT-2 showed a significant ( p  < 0.0005) decrease in their fasting blood glucose levels. By the end of the second week after the initiation of treatment with the r Bm ALT-2, 28 % of the diabetic mice became normal and none of them were diabetic by the end of 5th week. The anti-diabetic effect of r Bm ALT-2 significantly correlated with the concomitant redressal of the pancreatic histopathological damage caused by STZ assault (rho = 0.87; p  < 0.0005). The sera of r Bm ALT-2 treated diabetic mice had increased levels of IgG1 antibodies associated with decreased IgG2a antibodies against the principal autoantigen insulin. The splenocyte proliferative response and the cytokine release in the treated mice showed marked bias against inflammation skewing the immune response to Th-2 type. From this study, it can be envisaged that that filarial proteins like r Bm ALT-2 with effective immunomodulatory activity and anti-diabetic effect are promising alternative therapeutic agents for T1D.

  3. Kinase inhibitors of the IGF-1R as a potential therapeutic agent for rheumatoid arthritis.

    PubMed

    Tsushima, Hiroshi; Morimoto, Shinji; Fujishiro, Maki; Yoshida, Yuko; Hayakawa, Kunihiro; Hirai, Takuya; Miyashita, Tomoko; Ikeda, Keigo; Yamaji, Ken; Takamori, Kenji; Takasaki, Yoshinari; Sekigawa, Iwao; Tamura, Naoto

    2017-08-01

    We have previously shown that the inhibition of connective tissue growth factor (CTGF) is a potential therapeutic strategy against rheumatoid arthritis (RA). CTGF consists of four distinct modules, including the insulin-like growth factor binding protein (IGFBP). In serum, insulin-like growth factors (IGFs) bind IGFBPs, interact with the IGF-1 receptor (IGF-1 R), and regulate anabolic effects and bone metabolism. We investigated the correlation between IGF-1 and the pathogenesis of RA, and the inhibitory effect on osteoclastogenesis and angiogenesis of the small molecular weight kinase inhibitor of the IGF-1 R, NVP-AEW541, against pathogenesis of RA in vitro. Cell proliferation was evaluated by cell count and immunoblotting. The expression of IGF-1 and IGF-1 R was evaluated by RT-PCR. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase staining, a bone resorption assay, and osteoclast-specific enzyme production. Angiogenesis was evaluated by a tube formation assay using human umbilical vein endothelial cells (HUVECs). The proliferation of MH7A cells was found to be inhibited in the presence of NVP-AEW541, and the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt was downregulated in MH7A cells. IGF-1 and IGF-1 R mRNA expression levels were upregulated during formation of M-colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL)-mediated osteoclast formation. Moreover, osteoclastogenesis was suppressed in the presence of NVP-AEW541. The formation of the tubular network was enhanced by IGF-1, and this effect was neutralized by NVP-ARE541. Our findings suggest that NVP-AEW541 may be utilized as a potential therapeutic agent in the treatment of RA.

  4. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    PubMed

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  5. Development and Applications of Photo-triggered Theranostic Agents

    PubMed Central

    Rai, Prakash; Mallidi, Srivallesha; Zheng, Xiang; Rahmanzadeh, Ramtin; Mir, Youssef; Elrington, Stefan; Khurshid, Ahmat; Hasan, Tayyaba

    2010-01-01

    Theranostics, the fusion of therapy and diagnostics for optimizing efficacy and safety of therapeutic regimes, is a growing field that is paving the way towards the goal of personalized medicine for the benefit of patients. The use of light as a remote-activation mechanism for drug delivery has received increased attention due to its advantages in highly specific spatial and temporal control of compound release. Photo-triggered theranostic constructs could facilitate an entirely new category of clinical solutions which permit early recognition of the disease by enhancing contrast in various imaging modalities followed by the tailored guidance of therapy. Finally, such theranostic agents could aid imaging modalities in monitoring response to therapy. This article reviews recent developments in the use of light-triggered theranostic agents for simultaneous imaging and photoactivation of therapeutic agents. Specifically, we discuss recent developments in the use of theranostic agents for photodynamic-, photothermal- or photo-triggered chemo-therapy for several diseases. PMID:20858520

  6. Dogs Identify Agents in Third-Party Interactions on the Basis of the Observed Degree of Contingency.

    PubMed

    Tauzin, Tibor; Kovács, Krisztina; Topál, József

    2016-08-01

    To investigate whether dogs could recognize contingent reactivity as a marker of agents' interaction, we performed an experiment in which dogs were presented with third-party contingent events. In the perfect-contingency condition, dogs were shown an unfamiliar self-propelled agent (SPA) that performed actions corresponding to audio clips of verbal commands played by a computer. In the high-but-imperfect-contingency condition, the SPA responded to the verbal commands on only two thirds of the trials; in the low-contingency condition, the SPA responded to the commands on only one third of the trials. In the test phase, the SPA approached one of two tennis balls, and then the dog was allowed to choose one of the balls. The proportion of trials on which a dog chose the object indicated by the SPA increased with the degree of contingency: Dogs chose the target object significantly above chance level only in the perfect-contingency condition. This finding suggests that dogs may use the degree of temporal contingency observed in third-party interactions as a cue to identify agents. © The Author(s) 2016.

  7. MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma.

    PubMed

    Gautam, Shailendra K; Kumar, Sushil; Cannon, Andrew; Hall, Bradley; Bhatia, Rakesh; Nasser, Mohd Wasim; Mahapatra, Sidharth; Batra, Surinder K; Jain, Maneesh

    2017-07-01

    Pancreatic cancer (PC) is characterized by mucin overexpression. MUC4 is the most differentially overexpressed membrane-bound mucin that plays a functional role in disease progression and therapy resistance. Area covered: We describe the clinicopathological significance of MUC4, summarize mechanisms contributing to its deregulated expression, review preclinical studies aimed at inhibiting MUC4, and discuss how MUC4 overexpression provides opportunities for developing targeted therapies. Finally, we discuss the challenges for developing MUC4-based therapeutics, and identify areas where efforts should be directed to effectively exploit MUC4 as a therapeutic target for PC. Expert opinion: Studies demonstrating that abrogation of MUC4 expression reduces proliferation and metastasis of PC cells and enhances sensitivity to therapeutic agents affirm its utility as a therapeutic target. Emerging evidence also supports the suitability of MUC4 as a potential immunotherapy target. However, these studies have been limited to in vitro, ex vivo or in vivo approaches using xenograft tumors in immunodeficient murine models. For translational relevance, MUC4-targeted therapies should be evaluated in murine models with intact immune system and accurate tumor microenvironment. Additionally, future studies evaluating MUC4 as a target for immunotherapy must entail characterization of immune response in PC patients and investigate its association with immunosuppression and survival.

  8. Systematic approach identifies RHOA as a potential biomarker therapeutic target for Asian gastric cancer.

    PubMed

    Chang, Hae Ryung; Nam, Seungyoon; Lee, Jinhyuk; Kim, Jin-Hee; Jung, Hae Rim; Park, Hee Seo; Park, Sungjin; Ahn, Young Zoo; Huh, Iksoo; Balch, Curt; Ku, Ja-Lok; Powis, Garth; Park, Taesung; Jeong, Jin-Hyun; Kim, Yon Hui

    2016-12-06

    Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer "Big Data" has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of "hit" compounds.

  9. Water-soluble contrast agent in adhesive small bowel obstruction: a systematic review and meta-analysis of diagnostic and therapeutic value.

    PubMed

    Ceresoli, Marco; Coccolini, Federico; Catena, Fausto; Montori, Giulia; Di Saverio, Salomone; Sartelli, Massimo; Ansaloni, Luca

    2016-06-01

    Adhesive small bowel obstructions are the most common postoperative causes of hospitalization. Several studies investigated the diagnostic and therapeutic role of water-soluble contrast agent (WSCA) in predicting the need for surgery, but there is no consensus. A systematic review and meta-analysis was done of studies on diagnostic and therapeutic role of oral WSCA. WSCA had a sensitivity of 92% and a specificity of 93% in predicting resolution of obstruction without surgery; diagnostic accuracy increased significantly if abdominal X-rays were taken after 8 hours. The administration of oral WSCA reduced the need for surgery (odds ratio .55, P = .003), length of stay (weighted mean difference -2.18 days, P < .00001), and time to resolution (weighted mean difference -28.25 hours, P < .00001). No differences in terms of morbidity or mortality were recorded. The administration of WSCA is accurate in predicting the need for surgery; the test should be taken after at least 8 hours from administration. WSCA is a proven safe and effective treatment, correlated with a significant reduction in the need for surgery and in the length of hospital stay. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Therapeutic approaches to preventing cell death in Huntington disease.

    PubMed

    Kaplan, Anna; Stockwell, Brent R

    2012-12-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Therapeutic approaches to preventing cell death in Huntington disease

    PubMed Central

    Kaplan, Anna; Stockwell, Brent R.

    2012-01-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors—fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. PMID:22967354

  12. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.

    PubMed

    Mehta, M; Branford, O A; Rolfe, K J

    2016-01-01

    Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair.

  13. MIDAS: A Practical Bayesian Design for Platform Trials with Molecularly Targeted Agents

    PubMed Central

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-01-01

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time, and thus not efficient for this task. We propose a Bayesian phase II platform design, the Multi-candidate Iterative Design with Adaptive Selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and “graduate” the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. PMID:27112322

  14. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.

    PubMed

    Kemp, Jessica A; Shim, Min Suk; Heo, Chan Yeong; Kwon, Young Jik

    2016-03-01

    The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Therapeutic magnetic microcarriers characterization by measuring magnetophoretic attributes

    NASA Astrophysics Data System (ADS)

    Vidal Ibacache, Guillermo

    Micro/nano robots are considered a promising approach to conduct minimally invasive interventions. We have proposed to embed magnetic nanoparticles in therapeutic or diagnostic agents in order to magnetically control them. A modified clinical Magnetic Resonance Imaging (MRI) scanner is used to provide the driving force that allows these magnetically embedded microcarriers to navigate the vascular human network. By using specific Magnetic Resonance (MR) gradient sequences this method has been validated in previous research works. Magnetophoresis is the term used to describe the fact that a magnetic particle changes its trajectory under the influence of a magnetic force while being carried by a fluid flow. This movement depends on the particle's magnetic characteristics, the particle's geometric shape, the fluid flow's attributes and other factors. In our proposed method, magnetic microcarriers can be produced in several different ways, and so their response will differ to the same magnetic force and fluid flow conditions. The outcome of the therapeutic treatment using our method depends on the adequate selection of the therapeutic and/or diagnosis agents to be used. The selected therapeutic and/or diagnosis magnetic microcarrier also influences the selection of the MR gradient sequence that best fit for a given treatment. This master's thesis presents the design of a device intended to assess the magnetophoretic properties of magnetic therapeutic microcarriers and/or diagnostic agents. Such characterization is essential for determining the optimal sequences of magnetic gradients to deflect their trajectory through relatively complex vascular networks in order to reach a pre-defined target. A microfluidic device was fabricated to validate the design. Magnetophoretic velocities are measured and a simple tracking method is proposed. The preliminary experimental results indicate that, despite some limitations, the proposed technique has the potential to be appropriate

  16. New Therapeutic Approaches for Waldenstrom Macroglobulinemia

    PubMed Central

    Stedman, Jennifer; Roccaro, Aldo; Leleu, Xavier; Ghobrial, Irene M.

    2011-01-01

    Waldenstrom Macroglobulinemia (WM) is a B-cell disorder characterized by the infiltration of the bone marrow (BM) with lymphoplasmacytic cells, as well as detection of an IgM monoclonal gammopathy in the serum. WM is an incurable disease, with an overall medial survival of only 5-6 years. First-line therapy of WM has been based on single-agent or combination therapy with alkylator agents (e.g. chlorambucil or cyclophasphamide), nucleoside analogues (cladribine or fludarabine), and the monoclonal antibody rituximab. Novel therapeutic agents that have demonstrated efficacy in WM include thalidomide, lenalidomide, bortezomib, everolimus, Atacicept, and perifosine. The range of the ORR to these agents is between 25-80%. Ongoing and planned future clinical trials include those using PKC inhibitors such as enzastaurin, new proteasome inhibitors such as carfilzomib, histone deacetylase inhibitors such as panobinostat, humanized CD20 antibodies such as Ofatumumab, and additional alkylating agents such as bendamustine. These agents, when compared to traditional chemotherapeutic agents, may lead in the future to higher responses, longer remissions and better quality of life for patients with WM. PMID:21869855

  17. Pancreas adenocarcinoma: novel therapeutics.

    PubMed

    Krantz, Benjamin A; Yu, Kenneth H; O'Reilly, Eileen M

    2017-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is the third highest cause of cancer-related deaths in the US, and is projected to be second only to non-small cell lung cancer (NSCLC) by the 2020s. Current therapies have a modest impact on survival and median overall survival (mOS) across all stages of disease remains under a year. Over the last decade, however, great strides have been made in the understanding of PDAC pathobiology including the role of the tumor microenvironment (TME), DNA damage repair and mechanism of immunosuppression. Exciting novel therapeutics are in clinical development targeting the TME to increase cytotoxic drug delivery, decrease immunosuppressive cell presence and attack cancer stem cells (CSCs). Immune checkpoint inhibitors, cancer vaccines and other immunotherapies are actively being studied and novel combinations of targeted agents are being pursued. There is a sense of optimism in the oncology community that these scientific advances will translate into improved outcomes for patients with PDAC in the proximate future. In this review, we examine various novel therapeutics under clinical development with a focus on stromal disrupting agents, immunotherapeutics and DNA damage repair strategies.

  18. STATINS MORE THAN CHOLESTEROL LOWERING AGENTS IN ALZHEIMER DISEASE: THEIR PLEIOTROPIC FUNCTIONS AS POTENTIAL THERAPEUTIC TARGETS

    PubMed Central

    Barone, Eugenio; Domenico, Fabio Di; Butterfield, D. Allan

    2013-01-01

    Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by severe cognitive impairment, inability to perform activities of daily living and mood changes. Statins, long known to be beneficial in conditions where dyslipidemia occurs by lowering serum cholesterol levels, also have been proposed for use in neurodegenerative conditions, including AD. However, it is not clear that the purported effectiveness of statins in neurodegenerative disorders is directly related to cholesterol-lowering effects of these agents; rather, the pleiotropic functions of statins likely play critical roles. The aim of this review is to provide an overview on the new discoveries about the effects of statin therapy on the oxidative ad nitrosative stress levels as well as on the modulation of the heme oxygenase/biliverdin reductase (HO/BVR) system in the brain. We propose a novel mechanism of action for atorvastatin which, through the activation of HO/BVR-A system, may contribute to the neuroprotective effects thus suggesting a potential therapeutic role in AD and potentially accounting for the observation of decreased AD incidence with persons on statin. PMID:24231510

  19. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long

    2011-10-22

    Highlights: {yields} ConA induces cancer cell death targeting apoptosis and autophagy. {yields} ConA inhibits cancer cell angiogenesis. {yields} ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca{sup 2+}/Mn{sup 2+}-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-{kappa}B-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor.more » These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.« less

  20. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin.

    PubMed

    Shackelford, David B; Abt, Evan; Gerken, Laurie; Vasquez, Debbie S; Seki, Atsuko; Leblanc, Mathias; Wei, Liu; Fishbein, Michael C; Czernin, Johannes; Mischel, Paul S; Shaw, Reuben J

    2013-02-11

    The LKB1 (also called STK11) tumor suppressor is mutationally inactivated in ∼20% of non-small cell lung cancers (NSCLC). LKB1 is the major upstream kinase activating the energy-sensing kinase AMPK, making LKB1-deficient cells unable to appropriately sense metabolic stress. We tested the therapeutic potential of metabolic drugs in NSCLC and identified phenformin, a mitochondrial inhibitor and analog of the diabetes therapeutic metformin, as selectively inducing apoptosis in LKB1-deficient NSCLC cells. Therapeutic trials in Kras-dependent mouse models of NSCLC revealed that tumors with Kras and Lkb1 mutations, but not those with Kras and p53 mutations, showed selective response to phenformin as a single agent, resulting in prolonged survival. This study suggests phenformin as a cancer metabolism-based therapeutic to selectively target LKB1-deficient tumors. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Ju

    Over the past decades, significant efforts have been devoted to explore the use of various nanoparticle-based systems in the field of nanomedicine, including molecular imaging and therapy. Supramolecular synthetic approaches have attracted lots of attention due to their flexibility, convenience, and modularity for producing nanoparticles. In this dissertation, the developmental story of our size-controllable supramolecular nanoparticles (SNPs) will be discussed, as well as their use in specific biomedical applications. To achieve the self-assembly of SNPs, the well-characterized molecular recognition system (i.e., cyclodextrin/adamantane recognition) was employed. The resulting SNPs, which were assembled from three molecular building blocks, possess incredible stability in various physiological conditions, reversible size-controllability and dynamic disassembly that were exploited for various in vitro and in vivo applications. An advantage of using the supramolecular approach is that it enables the convenient incorporation of functional ligands onto SNP surface that confers functionality ( e.g., targeting, cell penetration) to SNPs. We utilized SNPs for molecular imaging such as magnetic resonance imaging (MRI) and positron emission tomography (PET) by introducing reporter systems (i.e., radio-isotopes, MR contrast agents, and fluorophores) into SNPs. On the other hand, the incorporation of various payloads, including drugs, genes and proteins, into SNPs showed improved delivery performance and enhanced therapeutic efficacy for these therapeutic agents. Leveraging the powers of (i) a combinatorial synthetic approach based on supramolecular assembly and (ii) a digital microreactor, a rapid developmental pathway was developed that is capable of screening SNP candidates for the ideal structural and functional properties that deliver optimal performance. Moreover, SNP-based theranostic delivery systems that combine reporter systems and therapeutic payloads into a

  2. Perceptions of Therapeutic Classrooms for Students Identified with Emotional Disturbances

    ERIC Educational Resources Information Center

    Everson, Shelly M.

    2016-01-01

    For various reasons, many students with emotional disturbances are unable to succeed in traditional classroom environments. The purpose of this qualitative case study was to explore the perceptions of administrators, teachers, paraprofessionals, parents, and related service providers towards therapeutic intervention classrooms for students…

  3. Evolution of and perspectives on therapeutic approaches to nerve agent poisoning.

    PubMed

    Masson, Patrick

    2011-09-25

    After more than 70 years of considerable efforts, research on medical defense against nerve agents has come to a standstill. Major progress in medical countermeasures was achieved between the 50s and 70s with the development of anticholinergic drugs and carbamate-based pretreatment, the introduction of pyridinium oximes as antidotes, and benzodiazepines in emergency treatments. These drugs ensure good protection of the peripheral nervous system and mitigate the acute effects of exposure to lethal doses of nerve agents. However, pyridostigmine and cholinesterase reactivators currently used in the armed forces do not protect/reactivate central acetylcholinesterases. Moreover, other drugs used are not sufficiently effective in protecting the central nervous system against seizures, irreversible brain damages and long-term sequelae of nerve agent poisoning.New developments of medical counter-measures focus on: (a) detoxification of organophosphorus molecules before they react with acetylcholinesterase and other physiological targets by administration of stoichiometric or catalytic scavengers; (b) protection and reactivation of central acetylcholinesterases, and (c) improvement of neuroprotection following delayed therapy.Future developments will aim at treatment of acute and long-term effects of low level exposure to nerve agents, research on alternative routes for optimizing drug delivery, and therapies. Though gene therapy for in situ generation of bioscavengers, and cell therapy based on neural progenitor engraftment for neuronal regeneration have been successfully explored, more studies are needed before practical medical applications can be made of these new approaches. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Vapor Pressures of Anesthetic Agents at Temperatures below Zero Degrees Celsius and a Novel Anesthetic Delivery Device

    PubMed Central

    Schenning, Katie J.; Casson, Henry; Click, Sarah V.; Brambrink, Lucas; Chatkupt, Thomas T.; Alkayed, Nabil J.; Hutchens, Michael P.

    2016-01-01

    At room temperature, the vapor pressures of desflurane, isoflurane, and sevoflurane are well above the clinically useful range. We hypothesized that therapeutic concentrations of these agents could be achieved at temperatures below zero, but the vapor pressure-temperature relationship is unknown below zero. Secondarily, we hypothesized that this relationship could be exploited to deliver therapeutic-range concentrations of anesthetic vapor. We therefore set out to determine the low temperature-vapor pressure relationships of each anesthetic agent thereby identifying the saturated vapor concentration of each agent at any temperature below zero. To test our hypothesis, we measured the saturated vapor concentration at 1 atmosphere of pressure for temperatures between -60°C and 0°C thus developing an empiric relationship for each agent. There was consistency in repeated experiments for all three agents. To test the empiric data we constructed a digitally-controlled thermoelectric anesthetic vaporizer, characterized the device, and used it to deliver anesthetic vapor to laboratory mice. We report, for the first time, the temperature-vapor pressure relationship at temperatures below 0°C for desflurane, isoflurane, and sevoflurane as well as the TMAC of these agents: the temperature at which the vapor pressure is equal to the minimum alveolar concentration. We describe the construction and limited validation of an anesthetic vaporizer prototype based on this principle. We conclude that clinically relevant concentrations of volatile anesthetics may be achieved at low temperatures. PMID:27632346

  5. Vapor Pressures of Anesthetic Agents at Temperatures Below 0°C and a Novel Anesthetic Delivery Device.

    PubMed

    Schenning, Katie J; Casson, Henry; Click, Sarah V; Brambrink, Lucas; Chatkupt, Thomas T; Alkayed, Nabil J; Hutchens, Michael P

    2017-02-01

    At room temperature, the vapor pressures of desflurane, isoflurane, and sevoflurane are well above the clinically useful range. We hypothesized that therapeutic concentrations of these agents could be achieved at temperatures below 0°C, but the vapor pressure-temperature relationship is unknown below 0. Second, we hypothesized that this relationship could be exploited to deliver therapeutic-range concentrations of anesthetic vapor. We therefore set out to determine the low temperature-vapor pressure relationships of each anesthetic agent, thereby identifying the saturated vapor concentration of each agent at any temperature below 0°C. To test our hypothesis, we measured the saturated vapor concentration at 1 atm of pressure for temperatures between -60 and 0°C, thus developing an empiric relationship for each agent. There was consistency in repeated experiments for all 3 agents. To test the empiric data, we constructed a digitally controlled thermoelectric anesthetic vaporizer, characterized the device, and used it to deliver anesthetic vapor to laboratory mice. We report, for the first time, the temperature-vapor pressure relationship at temperatures below 0°C for desflurane, isoflurane, and sevoflurane as well as the TMAC of these agents: the temperature at which the vapor pressure is equal to the minimum alveolar concentration. We describe the construction and limited validation of an anesthetic vaporizer prototype on the basis of this principle. We conclude that clinically relevant concentrations of volatile anesthetics may be achieved at low temperatures.

  6. A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model.

    PubMed

    Mukherjee, Jean; Tremblay, Jacqueline M; Leysath, Clinton E; Ofori, Kwasi; Baldwin, Karen; Feng, Xiaochuan; Bedenice, Daniela; Webb, Robert P; Wright, Patrick M; Smith, Leonard A; Tzipori, Saul; Shoemaker, Charles B

    2012-01-01

    Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant 'targeting agent' that binds a toxin at two unique sites and a 'clearing Ab' that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab V(H) (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit.

  7. A Comparative Study on the Cost of New Antibiotics and Drugs of Other Therapeutic Categories

    PubMed Central

    Falagas, Matthew E.; Fragoulis, Konstantinos N.; Karydis, Ioannis

    2006-01-01

    Background Drug treatment is becoming more expensive due to the increased cost for the introduction of new drugs, and there seems to be an uneven distribution of medication cost for different therapeutic categories. We hypothesized that the cost of new antimicrobial agents may differ from that of other therapeutic categories and this may play a role in the stagnation of development of new antibiotics. Methodology/Principal Findings We performed a pharmaco-economical comparative analysis of the drug cost of treatment for new agents introduced in the United States drug market in various therapeutic categories. We calculated the drug cost (in US dollars) of a ten-day treatment of all new drugs approved by the FDA during the period between January 1997 and July 2003, according to the 2004 Red Book Pharmacy's Fundamental Reference. New anti-neoplastic agents were found to be the most expensive drugs in comparison to all other therapeutic categories, with a median ten-day drug-treatment cost of US$848 compared to the median ten-day drug-treatment costs of all other categories ranging from US$29 to US$301. On the other hand, new antimicrobial drugs were found to be much less expensive, with a median ten-day drug-treatment cost of US$137 and $US85 for all anti-microbial agents and for anti-microbial agents excluding anti-HIV medications, respectively. Conclusions/Significance The drug-treatment cost of new medications varies considerably by different therapeutic categories. This fact may influence industry decisions regarding the development of new drugs and may play a role in the shortage of new antimicrobial agents in the fight against the serious problem of antimicrobial resistance. PMID:17183637

  8. A comparative study on the cost of new antibiotics and drugs of other therapeutic categories.

    PubMed

    Falagas, Matthew E; Fragoulis, Konstantinos N; Karydis, Ioannis

    2006-12-20

    Drug treatment is becoming more expensive due to the increased cost for the introduction of new drugs, and there seems to be an uneven distribution of medication cost for different therapeutic categories. We hypothesized that the cost of new antimicrobial agents may differ from that of other therapeutic categories and this may play a role in the stagnation of development of new antibiotics. We performed a pharmaco-economical comparative analysis of the drug cost of treatment for new agents introduced in the United States drug market in various therapeutic categories. We calculated the drug cost (in US dollars) of a ten-day treatment of all new drugs approved by the FDA during the period between January 1997 and July 2003, according to the 2004 Red Book Pharmacy's Fundamental Reference. New anti-neoplastic agents were found to be the most expensive drugs in comparison to all other therapeutic categories, with a median ten-day drug-treatment cost of US$848 compared to the median ten-day drug-treatment costs of all other categories ranging from US$29 to US$301. On the other hand, new antimicrobial drugs were found to be much less expensive, with a median ten-day drug-treatment cost of US$137 and $US85 for all anti-microbial agents and for anti-microbial agents excluding anti-HIV medications, respectively. The drug-treatment cost of new medications varies considerably by different therapeutic categories. This fact may influence industry decisions regarding the development of new drugs and may play a role in the shortage of new antimicrobial agents in the fight against the serious problem of antimicrobial resistance.

  9. Radiation countermeasure agents: an update (2011 – 2014)

    PubMed Central

    Newman, Victoria L; Romaine, Patricia LP; Wise, Stephen Y; Seed, Thomas M

    2014-01-01

    Introduction Despite significant scientific advances over the past 60 years towards the development of a safe, nontoxic and effective radiation countermeasure for the acute radiation syndrome (ARS), no drug has been approved by the US FDA. A radiation countermeasure to protect the population at large from the effects of lethal radiation exposure remains a significant unmet medical need of the US citizenry and, thus, has been recognized as a high priority area by the government. Area covered This article reviews relevant publications and patents for recent developments and progress for potential ARS treatments in the area of radiation countermeasures. Emphasis is placed on the advanced development of existing agents since 2011 and new agents identified as radiation countermeasure for ARS during this period. Expert opinion A number of promising radiation countermeasures are currently under development, seven of which have received US FDA investigational new drug status for clinical investigation. Four of these agents, CBLB502, Ex-RAD, HemaMax and OrbeShield, are progressing with large animal studies and clinical trials. G-CSF has high potential and well-documented therapeutic effects in countering myelosuppression and may receive full licensing approval by the US FDA in the future. PMID:25315070

  10. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera.

    PubMed

    Gahlawat, Geeta; Shikha, Sristy; Chaddha, Baldev Singh; Chaudhuri, Saumya Ray; Mayilraj, Shanmugam; Choudhury, Anirban Roy

    2016-02-01

    With the increased number of cholera outbreaks and emergence of multidrug resistance in Vibrio cholerae strains it has become necessary for the scientific community to devise and develop novel therapeutic approaches against cholera. Recent studies have indicated plausibility of therapeutic application of metal nano-materials. Among these, silver nanoparticles (AgNPs) have emerged as a potential antimicrobial agent to combat infectious diseases. At present nanoparticles are mostly produced using physical or chemical techniques which are toxic and hazardous. Thus exploitation of microbial systems could be a green eco-friendly approach for the synthesis of nanoparticles having similar or even better antimicrobial activity and biocompatibility. Hence, it would be worth to explore the possibility of utilization of microbial silver nanoparticles and their conjugates as potential novel therapeutic agent against infectious diseases like cholera. The present study attempted utilization of Ochrobactrum rhizosphaerae for the production of AgNPs and focused on investigating their role as antimicrobial agents against cholera. Later the exopolymer, purified from the culture supernatant, was used for the synthesis of spherical shaped AgNPs of around 10 nm size. Further the exopolymer was characterized as glycolipoprotein (GLP). Antibacterial activity of the novel GLP-AgNPs conjugate was evaluated by minimum inhibitory concentration, XTT reduction assay, scanning electron microscopy (SEM) and growth curve analysis. SEM studies revealed that AgNPs treatment resulted in intracellular contents leakage and cell lysis. The potential of microbially synthesized nanoparticles, as novel therapeutic agents, is still relatively less explored. In fact, the present study first time demonstrated that a glycolipoprotein secreted by the O. rhizosphaerae strain can be exploited for production of AgNPs which can further be employed to treat infectious diseases. Although this type of polymer has

  11. Peptides as Therapeutic Agents for Dengue Virus

    PubMed Central

    Chew, Miaw-Fang; Poh, Keat-Seong; Poh, Chit-Laa

    2017-01-01

    Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients. PMID:29200948

  12. Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties

    PubMed Central

    Wang, Yan-Yang; Yang, Yin-Xue; Zhe, Hong; He, Zhi-Xu; Zhou, Shu-Feng

    2014-01-01

    Triterpenoids have been used for medicinal purposes in many Asian countries because of their anti-inflammatory, antioxidant, antiproliferative, anticancer, and anticarcinogenic properties. Bardoxolone methyl, the C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) known as CDDO-Me or RTA 402, is one of the derivatives of synthetic triterpenoids. CDDO-Me has been used for the treatment of chronic kidney disease, cancer (including leukemia and solid tumors), and other diseases. In this review, we will update our knowledge of the clinical pharmacokinetics and pharmacodynamics of CDDO-Me, highlighting its clinical benefits and the underlying mechanisms involved. The role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)/the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the therapeutic activities of CDDO-Me will be discussed. CDDO-Me contains α,β-unsaturated carbonyl groups on rings A and C that can generate reversible adducts with the thiol groups of Cys residues in target proteins such as Keap1 and IκB kinase. At low nanomolar concentrations, CDDO-Me protects the cells against oxidative stress via inhibition of reactive oxygen species generation, while CDDO-Me at low micromolar concentrations induces apoptosis by increasing reactive oxygen species and decreasinging intracellular glutathione levels. Through Keap1/Nrf2 and nuclear factor-κB pathways, this agent can modulate the activities of a number of important proteins that regulate inflammation, redox balance, cell proliferation and programmed cell death. In a Phase I trial in cancer patients, CDDO-Me was found to have a slow and saturable oral absorption, a relatively long terminal phase half-life (39 hours at 900 mg/day), nonlinearity (dose-dependent) at high doses (600–1,300 mg/day), and high interpatient variability. As a multifunctional agent, CDDO-Me has improved the renal function in patients with chronic kidney disease

  13. Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties.

    PubMed

    Wang, Yan-Yang; Yang, Yin-Xue; Zhe, Hong; He, Zhi-Xu; Zhou, Shu-Feng

    2014-01-01

    Triterpenoids have been used for medicinal purposes in many Asian countries because of their anti-inflammatory, antioxidant, antiproliferative, anticancer, and anticarcinogenic properties. Bardoxolone methyl, the C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) known as CDDO-Me or RTA 402, is one of the derivatives of synthetic triterpenoids. CDDO-Me has been used for the treatment of chronic kidney disease, cancer (including leukemia and solid tumors), and other diseases. In this review, we will update our knowledge of the clinical pharmacokinetics and pharmacodynamics of CDDO-Me, highlighting its clinical benefits and the underlying mechanisms involved. The role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)/the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the therapeutic activities of CDDO-Me will be discussed. CDDO-Me contains α,β-unsaturated carbonyl groups on rings A and C that can generate reversible adducts with the thiol groups of Cys residues in target proteins such as Keap1 and IκB kinase. At low nanomolar concentrations, CDDO-Me protects the cells against oxidative stress via inhibition of reactive oxygen species generation, while CDDO-Me at low micromolar concentrations induces apoptosis by increasing reactive oxygen species and decreasinging intracellular glutathione levels. Through Keap1/Nrf2 and nuclear factor-κB pathways, this agent can modulate the activities of a number of important proteins that regulate inflammation, redox balance, cell proliferation and programmed cell death. In a Phase I trial in cancer patients, CDDO-Me was found to have a slow and saturable oral absorption, a relatively long terminal phase half-life (39 hours at 900 mg/day), nonlinearity (dose-dependent) at high doses (600-1,300 mg/day), and high interpatient variability. As a multifunctional agent, CDDO-Me has improved the renal function in patients with chronic kidney disease

  14. Systematic approach identifies RHOA as a potential biomarker therapeutic target for Asian gastric cancer

    PubMed Central

    Jung, Hae Rim; Park, Hee Seo; Park, Sungjin; Ahn, Young Zoo; Huh, Iksoo; Balch, Curt; Ku, Ja-Lok; Powis, Garth; Park, Taesung; Jeong, Jin-Hyun; Kim, Yon Hui

    2016-01-01

    Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer “Big Data” has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of “hit” compounds. PMID:27806312

  15. Discovery and development of anticancer agents from marine sponges: perspectives based on a chemistry-experimental therapeutics collaborative program.

    PubMed

    Valeriote, Frederick A; Tenney, Karen; Media, Joseph; Pietraszkiewicz, Halina; Edelstein, Matthew; Johnson, Tyler A; Amagata, Taro; Crews, Phillip

    2012-01-01

    A collaborative program was initiated in 1990 between the natural product chemistry laboratory of Dr. Phillip Crews at the University of California Santa Cruz and the experimental therapeutics laboratory of Dr. Fred Valeriote at the Henry Ford Hospital in Detroit. The program focused on the discovery and development of anticancer drugs from sponge extracts. A novel in vitro disk diffusion, solid tumor selective assay was used to examine 2,036 extracts from 683 individual sponges. The bioassay-directed fractionation discovery component led to the identification of active pure compounds from many of these sponges. In most cases, pure compound was prepared in sufficient quantities to both chemically identify the active compound(s) as well as pursue one or more of the biological development components. The latter included IC50, clonogenic survival-concentration exposure, maximum tolerated dose, pharmacokinetics and therapeutic assessment studies. Solid tumor selective compounds included fascaplysin and 10-bromofascaplysin (Fascaplysinopsis), neoamphimedine, 5-methoxyneoamphimedine and alpkinidine (Xestospongia), makaluvamine C and makaluvamine H (Zyzzya), psymberin (Psammocinia and Ircinia), and ethylplakortide Z and ethyldidehydroplakortide Z (Plakortis). These compounds or analogs thereof continue to have therapeutic potential.

  16. Physical agents used in the management of chronic pain by physical therapists.

    PubMed

    Allen, Roger J

    2006-05-01

    Evidence supporting the use of specific physical agents in the management of chronic pain conditions is not definitive; it is largely incomplete and sometimes contradictory. However, the use of agents in chronic pain management programs is common. Within the broad use of physical agents, they are rarely the sole modality of treatment. A 1995 American Physical Therapy Association position statement asserts that "Without documentation which justifies the necessity of the exclusive use of physical agents/modalities, the use of physical agents/modalities, in the absence of other skilled therapeutic or educational intervention, should not be considered physical therapy". Physical agents may serve as useful adjunctive modalities of pain relief or to enhance the effectiveness of other elements in therapy geared toward resolution of movement impairments and restoration of physical function. Given that a conclusive aggregate of findings is unlikely to exist for all permutations of patient conditions, combined with interacting therapeutic modalities, an evidence-based approach to pain management is not always possible or beneficial to the patient. In the face of inconclusive evidence, a theory-based approach may help determine if the therapeutic effect ofa given physical agent has the possibility of being a useful clinical tool in the context of treating a particular patient's mechanism of pain generation. Until controlled efficacy findings are definitive, careful individual patient response monitoring of thoughtful theoretical application of adjunctive physical agents may be a prudent approach to the management of chronic pain.

  17. Salmonella and cancer: from pathogens to therapeutics.

    PubMed

    Chorobik, Paulina; Czaplicki, Dominik; Ossysek, Karolina; Bereta, Joanna

    2013-01-01

    Bacterial cancer therapy is a concept more than 100 years old - yet, all things considered, it is still in early development. While the use of many passive therapeutics is hindered by the complexity of tumor biology, bacteria offer unique features that can overcome these limitations. Microbial metabolism, motility and sensitivity can lead to site-specific treatment, highly focused on the tumor and safe to other tissues. Activation of tumor-specific immunity is another important mechanism of such therapies. Several bacterial strains have been evaluated as cancer therapeutics so far, Salmonella Typhimurium being one of the most promising. S. Typhimurium and its derivatives have been used both as direct tumoricidal agents and as cancer vaccine vectors. VNP20009, an attenuated mutant of S. Typhimurium, shows significant native toxicity against murine tumors and was studied in a first-in-man phase I clinical trial for toxicity and anticancer activity. While proved to be safe in cancer patients, insufficient tumor colonization of VNP20009 was identified as a major limitation for further clinical development. Antibody-fragment-based targeting of cancer cells is one of the few approaches proposed to overcome this drawback.

  18. Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer*

    PubMed Central

    Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh; Nirujogi, Raja Sekhar; Kim, Min-Sik; Manda, Srikanth S.; Stearns, Vered; Gabrielson, Edward; Sukumar, Saraswati; Pandey, Akhilesh

    2015-01-01

    Tamoxifen, an estrogen receptor-α (ER) antagonist, is an important agent for the treatment of breast cancer. However, this therapy is complicated by the fact that a substantial number of patients exhibit either de novo or acquired resistance. To characterize the signaling mechanisms underlying this resistance, we treated the MCF7 breast cancer cell line with tamoxifen for over six months and showed that this cell line acquired resistance to tamoxifen in vitro and in vivo. We performed SILAC-based quantitative phosphoproteomic profiling on the tamoxifen resistant and vehicle-treated sensitive cell lines to quantify the phosphorylation alterations associated with tamoxifen resistance. From >5600 unique phosphopeptides identified, 1529 peptides exhibited hyperphosphorylation and 409 peptides showed hypophosphorylation in the tamoxifen resistant cells. Gene set enrichment analysis revealed that focal adhesion pathway was one of the most enriched signaling pathways activated in tamoxifen resistant cells. Significantly, we showed that the focal adhesion kinase FAK2 was not only hyperphosphorylated but also transcriptionally up-regulated in tamoxifen resistant cells. FAK2 suppression by specific siRNA knockdown or a small molecule inhibitor repressed cellular proliferation in vitro and tumor formation in vivo. More importantly, our survival analysis revealed that high expression of FAK2 is significantly associated with shorter metastasis-free survival in estrogen receptor-positive breast cancer patients treated with tamoxifen. Our studies suggest that FAK2 is a potential therapeutic target for the management of hormone-refractory breast cancers. PMID:26330541

  19. Therapeutic Modalities in Diabetic Nephropathy: Future Approaches*

    PubMed Central

    Reeves, William Brian; Rawal, Bishal B.; Abdel-Rahman, Emaad M.; Awad, Alaa S.

    2012-01-01

    Diabetes mellitus is the leading cause of end stage renal disease and is responsible for more than 40% of all cases in the United States. Several therapeutic interventions for the treatment of diabetic nephropathy have been developed and implemented over the past few decades with some degree of success. However, the renal protection provided by these therapeutic modalities is incomplete. More effective approaches are therefore urgently needed. Recently, several novel therapeutic strategies have been explored in treating DN patients including Islet cell transplant, Aldose reductase inhibitors, Sulodexide (GAC), Protein Kinase C (PKC) inhibitors, Connective tissue growth factor (CTGF) inhibitors, Transforming growth factor-beta (TGF-β) inhibitors and bardoxolone. The benefits and risks of these agents are still under investigation. This review aims to summarize the utility of these novel therapeutic approaches. PMID:23293752

  20. MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents.

    PubMed

    Yuan, Ying; Guo, Beibei; Munsell, Mark; Lu, Karen; Jazaeri, Amir

    2016-09-30

    Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time and thus not efficient for this task. We propose a Bayesian phase II platform design, the multi-candidate iterative design with adaptive selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and 'graduate' the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Nitroxyl (HNO) Releasing Therapeutics | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Cancer and Inflammation Program is seeking statements of capability or interest from parties interested in licensing therapeutic agents that generate Nitroxyl (HNO) in physiological media.

  2. [Antiangiogenic agents in ARMD treatment].

    PubMed

    Coroi, Mihaela-Cristiana; Demea, Sorina; Todor, Meda; Apopei, Emmanuela

    2012-01-01

    The aim of antiangiogenic agents in the treatment of age related senile macular degeneration is to destroy coroidian neoformation vessels by minimally affecting the central vision. We present a case of important central vision recovery after 3 intravitreal injections of Avastin. The therapeutic decision and patient monitoring have been made using imaging studies, such as OCT and AFG. A modern therapeutic approach of neovascular forms of age related macular degeneration, backed up by AFG and OCT is a modern treatment method of this disabling illness which brings patients optimal functional and structural improvement.

  3. Mitochondrial Agents for Bipolar Disorder.

    PubMed

    Pereira, Círia; Chavarria, Victor; Vian, João; Ashton, Melanie Maree; Berk, Michael; Marx, Wolfgang; Dean, Olivia May

    2018-03-27

    Bipolar disorder is a chronic and often debilitating illness. Current treatment options (both pharmaco- and psychotherapy) have shown efficacy, but for many leave a shortfall in recovery. Advances in the understanding of the pathophysiology of bipolar disorder suggest that interventions that target mitochondrial dysfunction may provide a therapeutic benefit. This review explores the current and growing theoretical rationale as well as existing preclinical and clinical data for those therapies aiming to target the mitochondrion in bipolar disorder. A Clinicaltrials.gov and ANZCTR search was conducted for complete and ongoing trials on mitochondrial agents used in psychiatric disorders. A PubMed search was also conducted for literature published between January 1981 and July 2017. Systematic reviews, randomized controlled trials, observational studies, case series, and animal studies with an emphasis on agents affecting mitochondrial function and its role in bipolar disorder were included. The search was augmented by manually searching the references of key papers and related literature. The results were presented as a narrative review. Mitochondrial agents offer new horizons in mood disorder treatment. While some negative effects have been reported, most compounds are overall well tolerated and have generally benign side-effect profiles. The study of neuroinflammation, neurodegeneration, and mitochondrial function has contributed the understanding of bipolar disorder's pathophysiology. Agents targeting these pathways could be a potential therapeutic strategy. Future directions include identification of novel candidate mitochondrial modulators as well as rigorous and well-powered clinical trials.

  4. Surface-active agents from the group of polyoxyethylated glycerol esters of fatty acids. Part III. Surface activity and solubilizing properties of the products of oxyethylation of lard (Adeps suillus, F.P. VIII) in the equilibrium system in relation to lipophilic therapeutic agents (class II and III of BCS).

    PubMed

    Nachajski, Michał J; Piotrowska, Jowita B; Kołodziejczyk, Michał K; Lukosek, Marek; Zgoda, Marian M

    2013-01-01

    Research was conducted into the solubilization processes of diclofenac, ibuprofen, ketoprofen and naproxen in equilibrium conditions in the environment of aqueous solutions of oxyethylated lard's fractions (Adeps suillus, Polish Pharmacopoeia VIII). The determined thermodynamic (cmc, deltaGm(0)) and hydrodynamic (R0, R(obs), omega, M(eta)) parameters characterizing the micelle of the solubilizer and the adduct demonstrate that lipophilic therapeutic agents are adsorbed in a palisade structure of the micelle due to a topologically created so-called "lipophilic adsorption pocket". This shows that the hydrophilicity of the micelle and the adsorption layer decreases at the phase boundary, which is confirmed by the calculated values of coefficients A(m) and r x (a). The results obtained indicate the possibility of making use of the class of non-ionic surfactants which are not ksenobiotics for the modification of the profile of solid oral dosage forms with lipophilic therapeutic agents from the II class of Biopharmaceutics Classification System (BCS).

  5. Rapid, Potentially Automatable, Method Extract Biomarkers for HPLC/ESI/MS/MS to Detect and Identify BW Agents

    DTIC Science & Technology

    1997-11-01

    status can sometimes be reflected in the infectious potential or drug resistance of those pathogens. For example, in Mycobacterium tuberculosis ... Mycobacterium tuberculosis , its antibiotic resistance and prediction of pathogenicity amongst Mycobacterium spp. based on signature lipid biomarkers ...TITLE AND SUBTITLE Rapid, Potentially Automatable, Method Extract Biomarkers for HPLC/ESI/MS/MS to Detect and Identify BW Agents 5a. CONTRACT NUMBER 5b

  6. Sepsis reconsidered: Identifying novel metrics for behavioral landscape characterization with a high-performance computing implementation of an agent-based model.

    PubMed

    Cockrell, Chase; An, Gary

    2017-10-07

    Sepsis affects nearly 1 million people in the United States per year, has a mortality rate of 28-50% and requires more than $20 billion a year in hospital costs. Over a quarter century of research has not yielded a single reliable diagnostic test or a directed therapeutic agent for sepsis. Central to this insufficiency is the fact that sepsis remains a clinical/physiological diagnosis representing a multitude of molecularly heterogeneous pathological trajectories. Advances in computational capabilities offered by High Performance Computing (HPC) platforms call for an evolution in the investigation of sepsis to attempt to define the boundaries of traditional research (bench, clinical and computational) through the use of computational proxy models. We present a novel investigatory and analytical approach, derived from how HPC resources and simulation are used in the physical sciences, to identify the epistemic boundary conditions of the study of clinical sepsis via the use of a proxy agent-based model of systemic inflammation. Current predictive models for sepsis use correlative methods that are limited by patient heterogeneity and data sparseness. We address this issue by using an HPC version of a system-level validated agent-based model of sepsis, the Innate Immune Response ABM (IIRBM), as a proxy system in order to identify boundary conditions for the possible behavioral space for sepsis. We then apply advanced analysis derived from the study of Random Dynamical Systems (RDS) to identify novel means for characterizing system behavior and providing insight into the tractability of traditional investigatory methods. The behavior space of the IIRABM was examined by simulating over 70 million sepsis patients for up to 90 days in a sweep across the following parameters: cardio-respiratory-metabolic resilience; microbial invasiveness; microbial toxigenesis; and degree of nosocomial exposure. In addition to using established methods for describing parameter space, we

  7. Pharmacogenetics in type 2 diabetes: influence on response to oral hypoglycemic agents

    PubMed Central

    Dawed, Adem Yesuf; Zhou, Kaixin; Pearson, Ewan Robert

    2016-01-01

    Type 2 diabetes is one of the leading causes of morbidity and mortality, consuming a significant proportion of public health spending. Oral hypoglycemic agents (OHAs) are the frontline treatment approaches after lifestyle changes. However, huge interindividual variation in response to OHAs results in unnecessary treatment failure. In addition to nongenetic factors, genetic factors are thought to contribute to much of such variability, highlighting the importance of the potential of pharmacogenetics to improve therapeutic outcome. Despite the presence of conflicting results, significant progress has been made in an effort to identify the genetic markers associated with pharmacokinetics, pharmacodynamics, and ultimately therapeutic response and/or adverse outcomes to OHAs. As such, this article presents a comprehensive review of current knowledge on pharmacogenetics of OHAs and provides insights into knowledge gaps and future directions. PMID:27103840

  8. Polymer therapeutics: concepts and applications.

    PubMed

    Haag, Rainer; Kratz, Felix

    2006-02-13

    Polymer therapeutics encompass polymer-protein conjugates, drug-polymer conjugates, and supramolecular drug-delivery systems. Numerous polymer-protein conjugates with improved stability and pharmacokinetic properties have been developed, for example, by anchoring enzymes or biologically relevant proteins to polyethylene glycol components (PEGylation). Several polymer-protein conjugates have received market approval, for example the PEGylated form of adenosine deaminase. Coupling low-molecular-weight anticancer drugs to high-molecular-weight polymers through a cleavable linker is an effective method for improving the therapeutic index of clinically established agents, and the first candidates have been evaluated in clinical trials, including, N-(2-hydroxypropyl)methacrylamide conjugates of doxorubicin, camptothecin, paclitaxel, and platinum(II) complexes. Another class of polymer therapeutics are drug-delivery systems based on well-defined multivalent and dendritic polymers. These include polyanionic polymers for the inhibition of virus attachment, polycationic complexes with DNA or RNA (polyplexes), and dendritic core-shell architectures for the encapsulation of drugs. In this Review an overview of polymer therapeutics is presented with a focus on concepts and examples that characterize the salient features of the drug-delivery systems.

  9. Tissue Penetration of Antifungal Agents

    PubMed Central

    Felton, Timothy; Troke, Peter F.

    2014-01-01

    SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

  10. Long-term survival with modern therapeutic agents against metastatic melanoma-vemurafenib and ipilimumab in a daily life setting.

    PubMed

    Lang, B M; Peveling-Oberhag, A; Faidt, D; Hötker, A M; Weyer-Elberich, V; Grabbe, S; Loquai, C

    2018-01-31

    Despite new therapeutic options, metastatic melanoma remains to be one of the most fatal tumors. With the development of BRAF inhibitors and immune checkpoint inhibitors, overall survival could be prolonged significantly for the first time. Clinical studies implied that even long-term survival is possible with both types of drugs, but predictive markers are so far missing. In this study, we analyzed survival data from patients that received the first-in-class substances vemurafenib and ipilimumab, respectively, during the time period from registration of the drugs until availability of combination treatments. We aimed to evaluate the possibility of long-term survival in a daily life setting and to characterize patients that benefit from these drugs in order to gain insight into predictive attributes. Eighty patients were evaluated who were treated with either vemurafenib (n = 40) or ipilimumab (n = 40), and overall survival was analyzed. Subgroup analysis was performed for patients who were still alive 24 months after induction of therapy (long-term survival). Median overall survival (OS) was 8.0 months for patients treated with vemurafenib and 10.0 months for patients treated with ipilimumab (log-rank P value = 0.689). Long-term survival was achieved in 32.5% of patients (42.3% vemurafenib, 57.7% ipilimumab). Negative predictors of long-term survival in the vemurafenib group were brain and liver metastases, as well as elevated LDH, S100ß and liver enzymes. For ipilimumab, an increase in lymphocytes and eosinophils during course of treatment correlated with long-term survival. Our real-life experience shows that long-term survival is possible with using both therapeutic agents, vemurafenib and ipilimumab. Pattern of metastases and laboratory values might be of interest in decision making for a specific therapeutic approach. Combination of drugs and observational studies in larger patient cohorts are necessary to further validate our findings.

  11. Antiretroviral Drug Interactions: Overview of Interactions Involving New and Investigational Agents and the Role of Therapeutic Drug Monitoring for Management

    PubMed Central

    Rathbun, R. Chris; Liedtke, Michelle D.

    2011-01-01

    Antiretrovirals are prone to drug-drug and drug-food interactions that can result in subtherapeutic or supratherapeutic concentrations. Interactions between antiretrovirals and medications for other diseases are common due to shared metabolism through cytochrome P450 (CYP450) and uridine diphosphate glucuronosyltransferase (UGT) enzymes and transport by membrane proteins (e.g., p-glycoprotein, organic anion-transporting polypeptide). The clinical significance of antiretroviral drug interactions is reviewed, with a focus on new and investigational agents. An overview of the mechanistic basis for drug interactions and the effect of individual antiretrovirals on CYP450 and UGT isoforms are provided. Interactions between antiretrovirals and medications for other co-morbidities are summarized. The role of therapeutic drug monitoring in the detection and management of antiretroviral drug interactions is also briefly discussed. PMID:24309307

  12. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia

    PubMed Central

    Zuber, Johannes; Shi, Junwei; Wang, Eric; Rappaport, Amy R.; Herrmann, Harald; Sison, Edward A.; Magoon, Daniel; Qi, Jun; Blatt, Katharina; Wunderlich, Mark; Taylor, Meredith J.; Johns, Christopher; Chicas, Agustin; Mulloy, James C.; Kogan, Scott C.; Brown, Patrick; Valent, Peter; Bradner, James E.; Lowe, Scott W.; Vakoc, Christopher R.

    2012-01-01

    Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs1. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states2. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention. PMID:21814200

  13. Therapeutic use of traditional Chinese herbal medications for chronic kidney diseases

    PubMed Central

    Zhong, Yifei; Deng, Yueyi; Chen, Yiping; Chuang, Peter Y; He, John Cijiang

    2013-01-01

    Traditional Chinese herbal medications (TCHM) are frequently used in conjunction with western pharmacotherapy for treatment of chronic kidney diseases (CKD) in China and many other Asian countries. The practice of traditional Chinese medicine is guided by cumulative empiric experience. Recent in vitro and animal studies have confirmed the biological activity and therapeutic effects of several TCHM in CKD. However, the level of evidence supporting TCHM is limited to small, non-randomized trials. Due to variations in the prescription pattern of TCHM and the need for frequent dosage adjustment, which are inherent to the practice of traditional Chinese medicine, it has been challenging to design and implement large randomized clinical trials of TCHM. Several TCHM are associated with significant adverse effects, including nephrotoxicity. However, reporting of adverse effects associated with TCHM has been inadequate. To fully realize the therapeutic use of TCHM in CKD we need molecular studies to identify active ingredients of TCHM and their mechanism of action, rigorous pharmacologic studies to determine the safety and meet regulatory standards required for clinical therapeutic agents, and well-designed clinical trials to provide evidence-based support of their safety and efficacy. PMID:23868014

  14. Melatonin and Nitrones As Potential Therapeutic Agents for Stroke

    PubMed Central

    Romero, Alejandro; Ramos, Eva; Patiño, Paloma; Oset-Gasque, Maria J.; López-Muñoz, Francisco; Marco-Contelles, José; Ayuso, María I.; Alcázar, Alberto

    2016-01-01

    Stroke is a disease of aging affecting millions of people worldwide, and recombinant tissue-type plasminogen activator (r-tPA) is the only treatment approved. However, r-tPA has a low therapeutic window and secondary effects which limit its beneficial outcome, urging thus the search for new more efficient therapies. Among them, neuroprotection based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due to their strong antioxidant power. In this Perspective article, an update on the specific results of the melatonin and several new nitrones are presented. PMID:27932976

  15. Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances.

    PubMed

    Tyagi, Nikhil; Tyagi, Monika; Pachauri, Manendra; Ghosh, Prahlad C

    2015-11-01

    Cancer is one of the most common devastating disease affecting millions of people per year worldwide. To fight against cancer, a number of natural plant compounds have been exploited by researchers to discover novel anti-cancer therapeutics with minimum or no side effects and plants have proved their usefulness in anti-cancer therapy in past few years. Ricin, a cytotoxic plant protein isolated from castor bean seeds, is a ribosome-inactivating protein which destroys the cells by inhibiting proteins synthesis. Ricin presents great potential as anti-cancer agent and exerts its anti-cancer activity by inducing apoptosis in cancer cells. In this review, we summarize the current information on anti-cancer properties of plant toxin ricin, its potential applications in cancer therapy, challenges associated with its use as therapeutic agent and the recent advances made to overcome these challenges. Nanotechnology could open the doors for quick development of ricin-based anti-cancer therapeutics. Conceivably, ricin may serve as a chemotherapeutic agent against cancer by utilizing nanocarriers for its targeted delivery to cancer cells.

  16. Characterization of a Francisella tularensis-Caenorhabditis elegans Pathosystem for the Evaluation of Therapeutic Compounds

    PubMed Central

    Jayamani, Elamparithi; Tharmalingam, Nagendran; Rajamuthiah, Rajmohan; Kim, Wooseong; Okoli, Ikechukwu; Hernandez, Ana M.; Lee, Kiho; Nau, Gerard J.; Ausubel, Frederick M.

    2017-01-01

    ABSTRACT Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole-animal Caenorhabditis elegans-F. tularensis pathosystem for high-throughput screening to identify and characterize potential therapeutic compounds. We found that the C. elegans p38 mitogen-activate protein (MAP) kinase cascade is involved in the immune response to F. tularensis, and we developed a robust F. tularensis-mediated C. elegans killing assay with a Z′ factor consistently of >0.5, which was then utilized to screen a library of FDA-approved compounds that included 1,760 small molecules. In addition to clinically used antibiotics, five FDA-approved drugs were also identified as potential hits, including the anti-inflammatory drug diflunisal that showed anti-F. tularensis activity in vitro. Moreover, the nonsteroidal anti-inflammatory drug (NSAID) diflunisal, at 4× MIC, blocked the replication of an F. tularensis live vaccine strain (LVS) in primary human macrophages and nonphagocytic cells. Diflunisal was nontoxic to human erythrocytes and HepG2 human liver cells at concentrations of ≥32 μg/ml. Finally, diflunisal exhibited synergetic activity with the antibiotic ciprofloxacin in both a checkerboard assay and a macrophage infection assay. In conclusion, the liquid C. elegans-F. tularensis LVS assay described here allows screening for anti-F. tularensis compounds and suggests that diflunisal could potentially be repurposed for the management of tularemia. PMID:28652232

  17. Peptide hormones and lipopeptides: from self‐assembly to therapeutic applications

    PubMed Central

    Hutchinson, J. A.; Burholt, S.

    2017-01-01

    This review describes the properties and activities of lipopeptides and peptide hormones and how the lipidation of peptide hormones could potentially produce therapeutic agents combating some of the most prevalent diseases and conditions. The self‐assembly of these types of molecules is outlined, and how this can impact on bioactivity. Peptide hormones specific to the uptake of food and produced in the gastrointestinal tract are discussed in detail. The advantages of lipidated peptide hormones over natural peptide hormones are summarised, in terms of stability and renal clearance, with potential application as therapeutic agents. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. PMID:28127868

  18. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 1: Compositions and Features.

    PubMed

    Stendahl, John C; Sinusas, Albert J

    2015-10-01

    Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Oncolytic Viruses: Therapeutics With an Identity Crisis.

    PubMed

    Breitbach, Caroline J; Lichty, Brian D; Bell, John C

    2016-07-01

    Oncolytic viruses (OV) are replicating viral therapeutics for the treatment of cancer and have been in laboratory development for about twenty years. Recently, the FDA approved Imlygic, a herpes virus based therapeutic for the treatment of melanoma and thus OVs have entered a new era where they are a weapon in the armament of the oncologist. OVs are unique therapeutics with multiple mechanisms of therapeutic activity. The exact path for their development and eventual uptake by pharmaceutical companies is somewhat clouded by an uncertain identity. Are they vaccines, tumour lysing therapeutics, inducers of innate immunity, gene therapy vectors, anti-vascular agents or all of the above? Should they be developed as stand-alone loco-regional therapeutics, systemically delivered tumour hunters or immune modulators best tested as combination therapeutics? We summarize data here supporting the idea, depending upon the virus, that OVs can be any or all of these things. Pursuing a "one-size fits all" approach is counter-productive to their clinical development and instead as a field we should build on the strengths of individual virus platforms. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Resveratrol as a Therapeutic Agent for Alzheimer's Disease

    PubMed Central

    Ma, Teng; Tan, Meng-Shan; Yu, Jin-Tai; Tan, Lan

    2014-01-01

    Alzheimer's disease (AD) is the most common cause of dementia, but there is no effective therapy till now. The pathogenic mechanisms of AD are considerably complex, including Aβ accumulation, tau protein phosphorylation, oxidative stress, and inflammation. Exactly, resveratrol, a polyphenol in red wine and many plants, is indicated to show the neuroprotective effect on mechanisms mostly above. Recent years, there are numerous researches about resveratrol acting on AD in many models, both in vitro and in vivo. However, the effects of resveratrol are limited by its pool bioavailability; therefore researchers have been trying a variety of methods to improve the efficiency. This review summarizes the recent studies in cell cultures and animal models, mainly discusses the molecular mechanisms of the neuroprotective effects of resveratrol, and thus investigates the therapeutic potential in AD. PMID:25525597

  1. Inflammatory Bowel Disease: Pathophysiology and Current Therapeutic Approaches.

    PubMed

    Abraham, Bincy P; Ahmed, Tasneem; Ali, Tauseef

    2017-01-01

    Inflammatory bowel diseases, most commonly categorized as Crohn's disease and ulcerative colitis, are immune mediated chronic inflammatory disorders of the gastrointestinal tract. The etiopathogenesis is multifactorial with different environmental, genetic, immune mediated, and gut microbial factors playing important role. The current goals of therapy are to improve clinical symptoms, control inflammation, prevent complications, and improve quality of life. Different therapeutic agents, with their indications, mechanisms of action, and side effects are discussed in this chapter. Anti-integrin therapy, a newer therapeutic class, with its potential beneficial role in both Crohn's disease and ulcerative colitis is also mentioned. In the end, therapeutic algorithms for both diseases are reviewed.

  2. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus.

    PubMed

    Tigabu, Bersabeh; Rasmussen, Lynn; White, E Lucile; Tower, Nichole; Saeed, Mohammad; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W; Noah, James W

    2014-04-01

    Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 μM and selectivities >10. Three sulfonamide compounds with EC50 values <12 μM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses.

  3. A BSL-4 High-Throughput Screen Identifies Sulfonamide Inhibitors of Nipah Virus

    PubMed Central

    Tigabu, Bersabeh; Rasmussen, Lynn; White, E. Lucile; Tower, Nichole; Saeed, Mohammad; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W.

    2014-01-01

    Abstract Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 μM and selectivities >10. Three sulfonamide compounds with EC50 values <12 μM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses. PMID:24735442

  4. Circulatory therapeutics: use of antihypertensive agents and their effects on the vasculature

    PubMed Central

    Schiffrin, Ernesto L

    2010-01-01

    Abstract This review addresses the use of the different antihypertensive agents currently available and some in development, and their effects on the vasculature. The different classes of agents used in the treatment of hypertension, and the results of recent large clinical trials, dosing protocols and adverse effects are first briefly summarized. The consequences on blood vessels of the use of antihypertensive drugs and the differential effects on the biology of large and small arteries resulting in modulation of vascular remodelling and dysfunction in hypertensive patients are then described. Large elastic conduit arteries exhibit outward hypertrophic remodelling and increased stiffness, which contributes to raise systolic blood pressure and afterload on the heart. Small resistance arteries undergo eutrophic or hypertrophic inward remodelling, and impair tissue perfusion. By these mechanisms both large and small arteries may contribute to trigger cardiovascular events. Some antihypertensive agents correct these changes, which could contribute to improved outcome. The mechanisms that at the level of the vascular wall lead to remodelling and can be beneficially affected by antihypertensive agents will also be addressed. These include vasoconstriction, growth and inflammation. The molecular pathways contributing to growth and inflammation will be summarily described. Further identification of these signalling pathways should allow identification of novel targets leading to development of new and improved medications for the treatment of hypertension and cardiovascular disease. PMID:20345850

  5. Phosphotyrosine profiling identifies ephrin receptor A2 as a potential therapeutic target in esophageal squamous‐cell carcinoma

    PubMed Central

    Syed, Nazia; Barbhuiya, Mustafa A.; Pinto, Sneha M.; Nirujogi, Raja Sekhar; Renuse, Santosh; Datta, Keshava K.; Khan, Aafaque Ahmad; Srikumar, Kotteazeth; Prasad, T. S. Keshava; Kumar, M. Vijaya; Kumar, Rekha Vijay; Chatterjee, Aditi; Pandey, Akhilesh

    2015-01-01

    Esophageal squamous‐cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early‐stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non‐neoplastic Het‐1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry‐based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA‐based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation. PMID:25366905

  6. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents.

    PubMed

    Czyzewski, Ann M; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Chongsiriwatana, Nathaniel P; Yuen, Eddie; Hancock, Robert E W; Barron, Annelise E

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.

  7. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents

    PubMed Central

    Fjell, Christopher D.; Waldbrook, Matt; Chongsiriwatana, Nathaniel P.; Yuen, Eddie; Hancock, Robert E. W.; Barron, Annelise E.

    2016-01-01

    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents. PMID:26849681

  8. Therapeutic drug monitoring of antimetabolic cytotoxic drugs

    PubMed Central

    Lennard, L

    1999-01-01

    Therapeutic drug monitoring is not routinely used for cytotoxic agents. There are several reasons, but one major drawback is the lack of established therapeutic concentration ranges. Combination chemotherapy makes the establishment of therapeutic ranges for individual drugs difficult, the concentration-effect relationship for a single drug may not be the same as that when the drug is used in a drug combination. Pharmacokinetic optimization protocols for many classes of cytotoxic compounds exist in specialized centres, and some of these protocols are now part of large multicentre trials. Nonetheless, methotrexate is the only agent which is routinely monitored in most treatment centres. An additional factor, especially in antimetabolite therapy, is the existence of pharmacogenetic enzymes which play a major role in drug metabolism. Monitoring of therapy could include assay of phenotypic enzyme activities or genotype in addition to, or instead of, the more traditional measurement of parent drug or drug metabolites. The cytotoxic activities of mercaptopurine and fluorouracil are regulated by thiopurine methyltransferase (TPMT) and dihydropyrimidine dehydrogenase (DPD), respectively. Lack of TPMT functional activity produces life-threatening mercaptopurine myelotoxicity. Very low DPD activity reduces fluorouracil breakdown producing severe cytotoxicity. These pharmacogenetic enzymes can influence the bioavailability, pharmacokinetics, toxicity and efficacy of their substrate drugs. PMID:10190647

  9. A concise review on advances in development of small molecule anti-inflammatory therapeutics emphasising AMPK: An emerging target.

    PubMed

    Gejjalagere Honnappa, Chethan; Mazhuvancherry Kesavan, Unnikrishnan

    2016-12-01

    Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology. © The Author(s) 2016.

  10. Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington's disease and other neurodegenerative disorders.

    PubMed

    Sarkar, Sovan

    2013-01-01

    Autophagy is a cellular degradation process involved in the clearance of aggregate-prone proteins associated with neurodegenerative diseases. While the mTOR pathway has been known to be the major regulator of autophagy, recent advancements into the regulation of autophagy have identified mTOR-independent autophagy pathways that are amenable to chemical perturbations. Several chemical and genetic screens have been undertaken to identify small molecule and genetic regulators of autophagy, respectively. The small molecule autophagy enhancers offer great potential as therapeutic candidates not only for neurodegenerative diseases, but also for diverse human diseases where autophagy acts as a protective pathway. This review highlights the various chemical screening platforms for autophagy drug discovery pertinent for the treatment of neurodegenerative diseases.

  11. Pharmacology and pharmacogenetics of chemotherapeutic agents.

    PubMed

    Dawood, Shaheenah; Leyland-Jones, Brian

    2009-06-01

    The last decade the field of oncology has seen the introduction of several efficacious chemotherapeutic agents. However the benefits achieved have been modest at best. The choice of chemotherapeutic agent is often empirical and geared to fit the average patient with the result that approximately 40% of patients may be receiving the wrong drug. With greater understanding of the mechanisms behind the heterogeneity observed across patient populations, both in terms of efficacy and toxicity of a variety of therapeutic agents, research has now focused on individualizing treatment strategies by incorporating a combination of physiological variables, genetic characteristics and environmental factors together with the traditional tumor characteristics that currently drives clinical decision making. This review focuses on defining some of the principle components of personalized medicine. In addition we will review the pharmacological and pharmacogenetic predictors of toxic effects of chemotherapeutic agents drawing on examples of commonly used agents in oncology.

  12. Delivery of gene silencing agents for breast cancer therapy

    PubMed Central

    2013-01-01

    The discovery of RNA interference has opened the door for the development of a new class of cancer therapeutics. Small inhibitory RNA oligos are being designed to specifically suppress expression of proteins that are traditionally considered nondruggable, and microRNAs are being evaluated to exert broad control of gene expression for inhibition of tumor growth. Since most naked molecules are not optimized for in vivo applications, the gene silencing agents need to be packaged into delivery vehicles in order to reach the target tissues as their destinations. Thus, the selection of the right delivery vehicles serves as a crucial step in the development of cancer therapeutics. The current review summarizes the status of gene silencing agents in breast cancer and recent development of candidate cancer drugs in clinical trials. Nanotechnology-based delivery vectors for the formulation and packaging of gene silencing agents are also described. PMID:23659575

  13. Multiple sclerosis therapeutic pipeline: opportunities and challenges.

    PubMed

    Krieger, Stephen

    2011-01-01

    The year 2010 marked the beginning of the era of oral medications for the treatment of multiple sclerosis, with the approval of dalfampridine to improve walking and fingolimod as the first oral disease-modifying agent. This review provides an overview of these and other emerging therapies, with an emphasis on the opportunities for new treatment paradigms they have the potential to offer, followed by a discussion of the challenges they will pose in the new era of multiple sclerosis management. Therapeutics in late-stage development for MS include non-selective immunosupressants, targeted immune-modulators, and monoclonal antibodies. Oral agents including cladribine, teriflunomide, laquinimod, and dimethyl fumarate, as well as monoclonal antibodies alemtuzumab, daclizumab, and rituximab are considered. Potential side effects and adverse event monitoring, including opportunistic infections, emergent malignancies, and other systemic consequences of immunosuppression are discussed in a unified section. Challenges of optimally staging, sequencing, and combining treatments in the expanding multiple sclerosis armamentarium are discussed. This review emphasizes the multifactorial decision making that these new therapeutics will warrant in terms of patient selection and personalization/individualization of therapy, and the increasingly interdisciplinary approach that will be necessitated by the new generation of agents. © 2011 Mount Sinai School of Medicine.

  14. [Lipiodol therapeutic indications from 1901 to 1930].

    PubMed

    Bonnemain, B

    2000-01-01

    Iodine and iodide used to be very successful drugs, sometimes at massive doses. Highly iodinated oil such as lipiodol from Lafay discovered in 1901 were part of expanding the therapeutic use of iodine for various pathologies such as syphilis, cardiovascular and respiratory diseases, leprosy, goiter... The present publication reviews unpublished documents and publications from 1901 to 1930 on lipiodol to give an overview of therapeutic indications for this agent and the rationale behind it. In some areas such as asthma, iodide was still in use until the eighties. Prevention and treatment of endemic goiter is the only remaining domain for the therapeutic usage of lipiodol. It is the only reason why this product is on the WHO essential drugs list.

  15. Engineering Improvements in a Bacterial Therapeutic Delivery System for Breast Cancer

    DTIC Science & Technology

    2010-09-01

    system comprises a nucleotide sequence encoding a toxic or 20 therapeutic RNA (e.g., mRNA, tRNA, rRNA, siRNA, ribozyme , and the like), a protein or an RNA...an RNA molecule (e.g., siRNA, ribozyme and the like, for example). The structures of such therapeutic agents are known and can be adapted to

  16. Monitoring/Imaging and Regenerative Agents for Enhancing Tissue Engineering Characterization and Therapies.

    PubMed

    Santiesteban, Daniela Y; Kubelick, Kelsey; Dhada, Kabir S; Dumani, Diego; Suggs, Laura; Emelianov, Stanislav

    2016-03-01

    The past three decades have seen numerous advances in tissue engineering and regenerative medicine (TERM) therapies. However, despite the successes there is still much to be done before TERM therapies become commonplace in clinic. One of the main obstacles is the lack of knowledge regarding complex tissue engineering processes. Imaging strategies, in conjunction with exogenous contrast agents, can aid in this endeavor by assessing in vivo therapeutic progress. The ability to uncover real-time treatment progress will help shed light on the complex tissue engineering processes and lead to development of improved, adaptive treatments. More importantly, the utilized exogenous contrast agents can double as therapeutic agents. Proper use of these Monitoring/Imaging and Regenerative Agents (MIRAs) can help increase TERM therapy successes and allow for clinical translation. While other fields have exploited similar particles for combining diagnostics and therapy, MIRA research is still in its beginning stages with much of the current research being focused on imaging or therapeutic applications, separately. Advancing MIRA research will have numerous impacts on achieving clinical translations of TERM therapies. Therefore, it is our goal to highlight current MIRA progress and suggest future research that can lead to effective TERM treatments.

  17. Increasing nerve agent treatment efficacy by P-glycoprotein inhibition.

    PubMed

    Joosen, Marloes J A; Vester, Stefanie M; Hamelink, Jouk; Klaassen, Steven D; van den Berg, Roland M

    2016-11-25

    One of the shortcomings of current treatment of nerve agent poisoning is that not all drugs effectively penetrate the blood-brain barrier (BBB), whereas most nerve agents easily do. P-glycoprotein (Pgp) efflux transporters at the BBB may contribute to this aspect. It was previously shown that Pgp inhibition by tariquidar enhanced the efficacy of nerve agent treatment when administered as a pretreatment. In the present study soman-induced seizures were also substantially prevented when the animals were intravenously treated with tariquidar post-poisoning, in addition to HI-6 and atropine. In these animals, approximately twice as much AChE activity was present in their brain as compared to control rats. The finding that tariquidar did not affect distribution of soman to the brain indicates that the potentiating effects were a result of interactions of Pgp inhibition with drug distribution. In line with this, atropine appeared to be a substrate for Pgp in in vitro studies in a MDR1/MDCK cell model. This indicates that tariquidar might induce brain region specific effects on atropine distribution, which could contribute to the therapeutic efficacy increase found. Furthermore, the therapeutic enhancement by tariquidar was compared to that of the less specific and less potent Pgp inhibitor cyclosporine A. This compound appeared to induce a protective effect similar to tariquidar. In conclusion, treatment with a Pgp inhibitor resulted in enhanced therapeutic efficacy of HI-6 and atropine in a soman-induced seizure model in the rat. The mechanism underlying these effects should be further investigated. To that end, the potentiating effect of nerve agent treatment should be addressed against a broader range of nerve agents, for oximes and atropine separately, and for those at lower doses. In particular when efficacy against more nerve agents is shown, a Pgp inhibitor such as tariquidar might be a valid addition to nerve agent antidotes. Copyright © 2016 Elsevier Ireland

  18. Invited review of a workshop: anabolic hormones in bone: basic research and therapeutic potential.

    PubMed

    Margolis, R N; Canalis, E; Partridge, N C

    1996-03-01

    Age-, postmenopause-, and disease-related conditions that result in low bone mass represent important public health issues. Maintenance of bone mass is a balance between bone resorption and formation and is influenced by diet, body composition, activity level, and the interactions between and among a large number of hormones, growth factors, and cytokines. Recent research has emphasized establishing a more complete understanding of the hormonal regulation of bone and developing anabolic agents with therapeutic potential for the treatment of low bone mass. The NIDDK at the NIH recently sponsored a Workshop, entitled Anabolic Hormones in Bone: Basic Research and Therapeutic Potential, that attempted to define the current state of the art knowledge of hormones, growth factors, and cytokines that affect bone mass, with particular emphasis on those that could potentially have a role as anabolic agents in bone. This review presents a condensed proceedings of that workshop along with a summary of the optimal requisites for the development of anabolic agents with therapeutic potential in bone.

  19. Bimetallic redox nanoprobe enhances the therapeutic efficacy of hyperthermia in drug-resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Sandeep Kumar; Lakkireddy, Chandrakala; Marjan, Tuba; Fatima, Anjum; Bardia, Avinash; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed

    2018-05-01

    Cancer nanotheranostics has emerged as one of the most promising fields of medicine wherein nano-sized molecules/agents are used for combined diagnosis and treatment of cancer. Despite promises of novel cancer therapeutic approaches, several crucial challenges have remained to be overcome for successful clinical translation of such agents. Hence, the present study has been aimed to investigate the therapeutic efficacy of bimetallic gadolinium super-paramagnetic iron oxide nanoformulation of ascorbic acid in synergism with hyperthermia on ascorbic acid-resistant breast cancer cells. This particular strategy provides real-time MRI-based non-invasive imaging of drug loading in resistant cancer cells along with highly enhanced therapeutic efficacy. This unique redox nanoprobe is capable of reversing drug-resistance mechanism in cancer cells and offers better therapeutic possibilities in targeted and effective destruction of drug-resistant cancer cells.

  20. Recanalization Therapies in Acute Ischemic Stroke: Pharmacological Agents, Devices, and Combinations

    PubMed Central

    Sharma, Vijay K.; Teoh, Hock Luen; Wong, Lily Y. H.; Su, Jie; Ong, Benjamin K. C.; Chan, Bernard P. L.

    2010-01-01

    The primary aim of thrombolysis in acute ischemic stroke is recanalization of an occluded intracranial artery. Recanalization is an important predictor of stroke outcome as timely restoration of regional cerebral perfusion helps salvage threatened ischemic tissue. At present, intravenously administered tissue plasminogen activator (IV-TPA) remains the only FDA-approved therapeutic agent for the treatment of ischemic stroke within 3 hours of symptom onset. Recent studies have demonstrated safety as well as efficacy of IV-TPA even in an extended therapeutic window. However, the short therapeutic window, low rates of recanalization, and only modest benefits with IV-TPA have prompted a quest for alternative approaches to restore blood flow in an occluded artery in acute ischemic stroke. Although intra-arterial delivery of the thrombolytic agent seems effective, various logistic constraints limit its routine use and as yet no lytic agent have not received full regulatory approval for intra-arterial therapy. Mechanical devices and approaches can achieve higher rates of recanalization but their safety and efficacy still need to be established in larger clinical trials. The field of acute revascularization is rapidly evolving, and various combinations of pharmacologic agents, mechanical devices, and novel microbubble/ultrasound technologies are being tested in multiple clinical trials. PMID:20798838

  1. Therapeutic potential of target of rapamycin inhibitors.

    PubMed

    Easton, John B; Houghton, Peter J

    2004-12-01

    Target of rapamycin (TOR) functions within the cell as a transducer of information from various sources, including growth factors, energy sensors, and hypoxia sensors, as well as components of the cell regulating growth and division. Blocking TOR function mimics amino acid, and to some extent, growth factor deprivation and has a cytostatic effect on proliferating cells in vivo. Inhibition of TOR in vivo, utilising its namesake rapamycin, leads to immunosuppression. This property has been exploited successfully with the use of rapamycin and its derivatives as a therapeutic agent in the prevention of organ rejection after transplantation with relatively mild side effects when compared to other immunosuppressive agents. The cytostatic effect of TOR on vascular smooth muscle cell proliferation has also recently been exploited in the therapeutic application of rapamycin to drug eluting stents for angioplasty. These stents significantly reduce the amount of arterial reblockage that results from proliferating vascular smooth muscle cells. In cancer, the effect of blocking TOR function on tumour growth and disease progression is currently of major interest and is the basis for a number of ongoing clinical trials. However, different cell types and tumours respond differently to TOR inhibition, and TOR is clearly not cytostatic for all types of cancer cells in vitro or in vivo. As the molecular details of how TOR functions and the targets of TOR activity are further elucidated, tumour and tissue specific functions are being identified that implicate TOR in angiogenesis, apoptosis, and the reversal of some forms of cellular transformation. This review will describe our current understanding of TOR function, describe the current strategies for employing TOR inhibitors in clinical and preclinical development, and outline future strategies for appropriate targets of TOR inhibitors in the treatment of disease.

  2. The Potential Therapeutic Agent Mepacrine Protects Caco-2 Cells against Clostridium perfringens Enterotoxin Action.

    PubMed

    Freedman, John C; Hendricks, Matthew R; McClane, Bruce A

    2017-01-01

    Clostridium perfringens enterotoxin (CPE) causes the diarrhea associated with a common bacterial food poisoning and many antibiotic-associated diarrhea cases. The severity of some CPE-mediated disease cases warrants the development of potential therapeutics. A previous study showed that the presence of mepacrine inhibited CPE-induced electrophysiology effects in artificial lipid bilayers lacking CPE receptors. However, that study did not assess whether mepacrine inactivates CPE or, instead, inhibits a step in CPE action. Furthermore, CPE action in host cells is complex, involving the toxin binding to receptors, receptor-bound CPE oligomerizing into a prepore on the membrane surface, and β-hairpins in the CPE prepore inserting into the membrane to form a pore that induces cell death. Therefore, the current study evaluated the ability of mepacrine to protect cells from CPE. This drug was found to reduce CPE-induced cytotoxicity in Caco-2 cells. This protection did not involve mepacrine inactivation of CPE, indicating that mepacrine affects one or more steps in CPE action. Western blotting then demonstrated that mepacrine decreases CPE pore levels in Caco-2 cells. This mepacrine-induced reduction in CPE pore levels did not involve CPE binding inhibition but rather an increase in CPE monomer dissociation due to mepacrine interactions with Caco-2 membranes. In addition, mepacrine was also shown to inhibit CPE pores when already present in Caco-2 cells. These in vitro studies, which identified two mepacrine-sensitive steps in CPE-induced cytotoxicity, add support to further testing of the therapeutic potential of mepacrine against CPE-mediated disease. IMPORTANCE Clostridium perfringens enterotoxin (CPE) causes the gastrointestinal (GI) symptoms of a common bacterial food poisoning and several nonfoodborne human GI diseases. A previous study showed that, via an undetermined mechanism, the presence of mepacrine blocks CPE-induced electrophysiologic activity in artificial

  3. Influenza antiviral therapeutics.

    PubMed

    Mayburd, Anatoly L

    2010-01-01

    In this review we conducted a landscaping study of the therapeutic anti-influenza agents, limiting the scope by exclusion of vaccines. The resulting 2800 patent publications were classified into 23 distinct technological sectors. The mechanism of action, the promise and drawbacks of the corresponding technological sectors were explored on comparative basis. A set of quantitative parameters was defined based on landscaping procedure that appears to correlate with the practical success of a given class of therapeutics. Thus, the sectors not considered promising from the mechanistic side were also displaying low value of the classifying parameters. The parameters were combined into a probabilistic Marketing Prediction Score, assessing a likelihood of a given sector to produce a marketable product. The proposed analytical methodology may be useful for automatic search and assessment of technologies for the goals of acquisition, investment and competitive bidding. While not being a substitute for an expert evaluation, it provides an initial assessment suitable for implementation with large-scale automated landscaping.

  4. Molecular genetics and targeted therapeutics in biliary tract carcinoma

    PubMed Central

    Marks, Eric I; Yee, Nelson S

    2016-01-01

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract. PMID:26819503

  5. Molecular genetics and targeted therapeutics in biliary tract carcinoma.

    PubMed

    Marks, Eric I; Yee, Nelson S

    2016-01-28

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract.

  6. Therapeutic options for diseases due to potential viral agents of bioterrorism.

    PubMed

    Bronze, Michael S; Greenfield, Ronald A

    2003-02-01

    The etiologic agents of smallpox and viral hemorrhagic fever have emerged as potential agents of bioterrorism due to their virulence, potential for human to human dissemination and limited strategies for treatment and prevention. Cidofovir has shown significant promise in animal models, and limited case reports in humans are encouraging. Ribavirin is the treatment of choice for certain hemorrhagic fever viral infections, but has no current application to Ebola and Marburg infections. Current vaccine strategies for smallpox are effective, but carry significant risk for complications. Licensed vaccines for hemorrhagic fever viruses are limited to yellow fever, but animal studies are promising. Genomic analysis of the viral pathogen and the animal model response to infection may provide valuable information enabling the development of novel treatment and prevention strategies. Current knowledge of these strategies is reviewed.

  7. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective

    PubMed Central

    Liu, Jiabei; Clough, Shannon J.; Hutchinson, Anthony J.; Adamah-Biassi, Ekue B.; Popovska-Gorevski, Marina; Dubocovich, Margarita L.

    2016-01-01

    Melatonin, or 5-methoxy-N-acetyltryptamine, is synthesized and released by the pineal gland and locally in the retina following a circadian rhythm, with low levels during the day and elevated levels at night. Melatonin activates two high-affinity G protein–coupled receptors, termed MT1 and MT2, to exert beneficial actions in sleep and circadian abnormality, mood disorders, learning and memory, neuroprotection, drug abuse, and cancer. Progress in understanding the role of melatonin receptors in the modulation of sleep and circadian rhythms has led to the discovery of a novel class of melatonin agonists for treating insomnia, circadian rhythms, mood disorders, and cancer. This review describes the pharmacological properties of a slow-release melatonin preparation (i.e., Circadin®) and synthetic ligands (i.e., agomelatine, ramelteon, tasimelteon), with emphasis on identifying specific therapeutic effects mediated through MT1 and MT2 receptor activation. Discovery of selective ligands targeting the MT1 or the MT2 melatonin receptors may promote the development of novel and more efficacious therapeutic agents. PMID:26514204

  8. Glycogen Synthase Kinase-3 Inhibitors as Potent Therapeutic Agents for the Treatment of Parkinson Disease.

    PubMed Central

    2012-01-01

    Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by degeneration of the nigrostriatal dopaminergic pathway. Because the current therapies only lead to temporary, limited improvement and have severe side effects, new approaches to treat PD need to be developed. To discover new targets for potential therapeutic intervention, a chemical genetic approach involving the use of small molecules as pharmacological tools has been implemented. First, a screening of an in-house chemical library on a well-established cellular model of PD was done followed by a detailed pharmacological analysis of the hits. Here, we report the results found for the small heterocyclic derivative called SC001, which after different enzymatic assays was revealed to be a new glycogen synthase kinase-3 (GSK-3) inhibitor with IC50 = 3.38 ± 0.08 μM. To confirm that GSK-3 could be a good target for PD, the evaluation of a set of structurally diverse GSK-3 inhibitors as neuroprotective agents for PD was performed. Results show that inhibitors of GSK-3 have neuroprotective effects in vitro representing a new pharmacological option for the disease-modifying treatment of PD. Furthermore, we show that SC001 is able to cross the blood–brain barrier, protects dopaminergic neurons, and reduces microglia activation in in vivo models of Parkinson disease, being a good candidate for further drug development. PMID:23421686

  9. A Novel Strategy for Development of Recombinant Antitoxin Therapeutics Tested in a Mouse Botulism Model

    PubMed Central

    Leysath, Clinton E.; Ofori, Kwasi; Baldwin, Karen; Feng, Xiaochuan; Bedenice, Daniela; Webb, Robert P.; Wright, Patrick M.; Smith, Leonard A.; Tzipori, Saul; Shoemaker, Charles B.

    2012-01-01

    Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant ‘targeting agent’ that binds a toxin at two unique sites and a ‘clearing Ab’ that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab VH (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit. PMID:22238680

  10. Detecting Biological Warfare Agents

    PubMed Central

    Song, Linan; Ahn, Soohyoun

    2005-01-01

    We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array. PMID:16318712

  11. Therapeutic potential of selenium and tellurium compounds: opportunities yet unrealised.

    PubMed

    Tiekink, Edward R T

    2012-06-07

    Despite being disparaged for their malodorous and toxic demeanour, compounds of selenium, a bio-essential element, and tellurium, offer possibilities as therapeutic agents. Herein, their potential use as drugs, for example, as anti-viral, anti-microbial, anti-inflammatory agents, etc., will be surveyed along with a summary of the established biological functions of selenium. The natural biological functions of tellurium remain to be discovered.

  12. [Therapeutic nursing: a systematic review].

    PubMed

    Lautenschläger, S; Müller, C; Immenschuh, U; Muser, J; Behrens, J

    2014-08-01

    For some years therapeutic service catalogues have been established in medical rehabilitation which have broadened our previous understanding of nursing actions. Currently, therapeutic nursing plays a prominent role in neurological early rehabilitation because the operations and procedures coding system (OPS) 8-552 within the DRG-System (Diagnosis Related Groups) states that therapeutic nursing must be carried out by specially trained nursing personnel. This requirement leads to inconsistencies in nursing practice and the medical service of the health insurance (MDK) since a definition of therapeutic nursing is lacking. A previous review of therapeutic nursing in 2003 focused primarily on the development of the therapeutic nursing role, but not on therapeutic nursing itself. The following article contains the first systematic review of the current state of research regarding a definition of therapeutic nursing. For this purpose, a systematic study was conducted to examine if there are, nationally or internationally, any definitions of therapeutic nursing and to identify what the therapeutic aspects of nursing are. The research included following database; Medline, Cinahl and Embase. Additionally, a research by hand of several German journals as well as textbooks and specialized literature was carried out. 5 studies were selected which define the term "therapeutic nursing". Among these are one review, one primary study, one theoretical discussion and one dissertation. Further twenty four studies were identified which do not define the term, but are closely related to the subject, and use or characterize the term in various contexts. The publications examined provided indications of duties, interventions and roles nurses should perform, but not how to carry these out, nor what is therapeutic about the nursing. At the same time, the low number of studies reveals that therapeutic nursing has barely been examined and demonstrates the lack of theoretically grounding

  13. Ras-Driven Transcriptome Analysis Identifies Aurora Kinase A as a Potential Malignant Peripheral Nerve Sheath Tumor Therapeutic Target

    PubMed Central

    Patel, Ami V.; Eaves, David; Jessen, Walter J.; Rizvi, Tilat A.; Ecsedy, Jeffrey A.; Qian, Mark G.; Aronow, Bruce J.; Perentesis, John P.; Serra, Eduard; Cripe, Timothy P.; Miller, Shyra J.; Ratner, Nancy

    2013-01-01

    Purpose Patients with Neurofibromatosis Type 1 (NF1) develop malignant peripheral nerve sheath tumors (MPNST) which are often inoperable and do not respond well to current chemotherapies or radiation. The goal of this study was to utilize comprehensive gene expression analysis to identify novel therapeutic targets. Experimental Design Nerve Schwann cells and/or their precursors are the tumorigenic cell types in MPNST due to the loss of the NF1 gene, which encodes the RasGAP protein neurofibromin. Therefore, we created a transgenic mouse model, CNP-HRas12V, expressing constitutively-active HRas in Schwann cells and defined a Ras-induced gene expression signature to drive a Bayesian factor regression model analysis of differentially expressed genes in mouse and human neurofibromas and MPNSTs. We tested functional significance of Aurora kinase over-expression in MPNST in vitro and in vivo using Aurora kinase shRNAs and compounds that inhibit Aurora kinase. Results We identified 2000 genes with probability of linkage to nerve Ras signaling of which 339 were significantly differentially expressed in mouse and human NF1-related tumor samples relative to normal nerves, including Aurora kinase A (AURKA). AURKA was dramatically over-expressed and genomically amplified in MPNSTs but not neurofibromas. Aurora kinase shRNAs and Aurora kinase inhibitors blocked MPNST cell growth in vitro. Furthermore, an AURKA selective inhibitor, MLN8237, stabilized tumor volume and significantly increased survival of mice with MPNST xenografts. Conclusion Integrative cross-species transcriptome analyses combined with preclinical testing has provided an effective method for identifying candidates for molecular-targeted therapeutics. Blocking Aurora kinases may be a viable treatment platform for MPNST. PMID:22811580

  14. Antisense technology: an emerging platform for cardiovascular disease therapeutics.

    PubMed

    Lee, Richard G; Crosby, Jeff; Baker, Brenda F; Graham, Mark J; Crooke, Rosanne M

    2013-12-01

    Antisense oligonucleotides and small interfering RNAs, which suppress the translation of specific mRNA target proteins, are emerging as important therapeutic modalities for the treatment of cardiovascular disease. Over the last 25 years, the advances in all aspects of antisense technology, as well as a detailed understanding of the mechanism of action of antisense drugs, have enabled their use as therapeutic agents. These advancements culminated in the FDA approval of the first chronically administered cardiovascular antisense therapeutic, mipomersen, which targets hepatic apolipoprotein B mRNA. This review provides a brief history of antisense technology, highlights the progression of mipomersen from preclinical studies to multiple Phase III registration trials, and gives an update on the status of other cardiovascular antisense therapeutics currently in the clinic.

  15. [Antitubercular agents].

    PubMed

    Gartmann, J

    1999-12-01

    The personally experienced development of chemotherapy for tuberculosis during the last half century represents some highlights of new knowledges and practical successes: the discovery of antituberculosis drugs; the comprehension of their actions and side effects; the exploration of mechanisms of resistance against antituberculosis agents; the evaluation of therapeutic and epidemiologic consequences of resistant strains; the decoding of the mycobacterial genetic structure. For different economic, social and psychologic reasons, the worldwide results of the battle against tuberculosis are not nearly as good as possible. AIDS is only a partial factor of this failure.

  16. Spinal Muscular Atrophy: Current Therapeutic Strategies

    NASA Astrophysics Data System (ADS)

    Kiselyov, Alex S.; Gurney, Mark E.

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord. SMA is caused by deletion and/or mutation of the survival motor neuron gene (SMN1) on chromosome 5q13. There are variable numbers of copies of a second, related gene named SMN2 located in the proximity to SMN1. Both genes encode the same protein (Smn). Loss of SMN1 and incorrect splicing of SMN2 affect cellular levels of Smn triggering death of motor neurons. The severity of SMA is directly related to the normal number of copies of SMN2 carried by the patient. A considerable effort has been dedicated to identifying modalities including both biological and small molecule agents that increase SMN2 promoter activity to upregulate gene transcription and produce increased quantities of full-length Smn protein. This review summarizes recent progress in the area and suggests potential target product profile for an SMA therapeutic.

  17. Rhenium Radioisotopes for Therapeutic Radiopharmaceutical Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beets, A.L.; Knapp, F.F., Jr.; Kropp, J.

    The availability of therapeutic radioisotopes at reasonable costs is important for applications in nuclear medicine, oncology and interventional cardiology, Rhenium-186 (Re-186) and rhenium-1 88 (Re-188) are two reactor-produced radioisotope which are attractive for a variety of therapeutic applications, Rhenium-186 has a half-life of 90 hours and decays with emission of a &particle with a maximum energy of 1.08 MeV and a 135 keV (9Yo) gamma which permits imaging. In contrast, Re- 188 has a much shorter half-life of 16.9 hours and emits a p-particle with a much higher energy of 2.12 MeV (Em=) and a 155 keV gamma photon (15Yo)more » for imaging. While Re-186 is unavailable from a generator system and must be directly produced in a nuclear reactor, Re-188 can also be directly produced in a reactor with high specific activity, but is more conveniently and cost-effectively available as carrier-free sodium perrhenate by saline elution of the alumina-based tungsten-188 (W1 88)/Re-l 88 generator system [1-2]. Since a comprehensive overviewofRe-186 and Re-188 therapeutic agents is beyond the scope of this &tended Abstrac4 the goal is to provide key examples of various agents currently in clinical use and those which are being developed for important clinical applications.« less

  18. Investigational CD33-targeted therapeutics for acute myeloid leukemia.

    PubMed

    Walter, Roland B

    2018-04-01

    There is long-standing interest in drugs targeting the myeloid differentiation antigen CD33 in acute myeloid leukemia (AML). Positive results from randomized trials with the antibody-drug conjugate (ADC) gemtuzumab ozogamicin (GO) validate this approach. Partly stimulated by the success of GO, several CD33-targeted therapeutics are currently in early phase testing. Areas covered: CD33-targeted therapeutics in clinical development include Fc-engineered unconjugated antibodies (BI 836858 [mAb 33.1]), ADCs (SGN-CD33A [vadastuximab talirine], IMGN779), radioimmunoconjugates ( 225 Ac-lintuzumab), bi- and trispecific antibodies (AMG 330, AMG 673, AMV564, 161533 TriKE fusion protein), and chimeric antigen receptor (CAR)-modified immune effector cells. Besides limited data on 225 Ac-lintuzumab showing modest single-agent activity, clinical data are so far primarily available for SGN-CD33A. SGN-CD33A has single-agent activity and has shown encouraging results when combined with an azanucleoside or standard chemotherapeutics. However, concerns about toxicity to the liver and normal hematopoietic cells - the latter leading to early termination of a phase 3 trial - have derailed the development of SGN-CD33A, and its future is uncertain. Expert opinion: Early results from a new generation of CD33-targeted therapeutics are anticipated in the next 2-3 years. Undoubtedly, re-approval of GO in 2017 has changed the landscape and rendered clinical development for these agents more challenging.

  19. Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.

    PubMed

    Atar, Eli

    2004-07-01

    Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.

  20. Targeting histone deacetylases in endometrial cancer: a paradigm-shifting therapeutic strategy?

    PubMed

    Garmpis, N; Damaskos, C; Garmpi, A; Spartalis, E; Kalampokas, E; Kalampokas, T; Margonis, G-A; Schizas, D; Andreatos, N; Angelou, A; Lavaris, A; Athanasiou, A; Apostolou, K G; Spartalis, M; Damaskou, Z; Daskalopoulou, A; Diamantis, E; Tsivelekas, K; Alavanos, A; Valsami, S; Moschos, M M; Sampani, A; Nonni, A; Antoniou, E A; Mantas, D; Tsourouflis, G; Markatos, K; Kontzoglou, K; Perrea, D; Nikiteas, N; Kostakis, A; Dimitroulis, D

    2018-02-01

    Endometrial cancer is increasingly prevalent in western societies and affects mainly postmenopausal women; notably incidence rates have been rising by 1.9% per year on average since 2005. Although the early-stage endometrial cancer can be effectively managed with surgery, more advanced stages of the disease require multimodality treatment with varying results. In recent years, endometrial cancer has been extensively studied at the molecular level in an attempt to develop effective therapies. Recently, a family of compounds that alter epigenetic expression, namely histone deacetylase inhibitors, have shown promise as possible therapeutic agents in endometrial cancer. The present review aims to discuss the therapeutic potential of these agents. This literature review was performed using the MEDLINE database; the search terms histone, deacetylase, inhibitors, endometrial, targeted therapies for endometrial cancer were employed to identify relevant studies. We only reviewed English language publications and also considered studies that were not entirely focused on endometrial cancer. Ultimately, sixty-four articles published until January 2018 were incorporated into our review. Studies in cell cultures have demonstrated that histone deacetylase inhibitors exert their antineoplastic activity by promoting expression of p21WAF1 and p27KIP1, cyclin-dependent kinase inhibitors, that have important roles in cell cycle regulation; importantly, the transcription of specific genes (e.g., E-cadherin, PTEN) that are commonly silenced in endometrial cancer is also enhanced. In addition to these abstracts effects, novel compounds with histone deacetylase inhibitor activity (e.g., scriptaid, trichostatin, entinostat) have also demonstrated significant antineoplastic activity both in vitro and in vivo, by liming tumor growth, inducing apoptosis, inhibiting angiogenesis and potentiating the effects of chemotherapy. The applications of histone deacetylase inhibitors in endometrial

  1. Inhibiting NF-κB Activation by Small Molecules As a Therapeutic Strategy

    PubMed Central

    Gupta, Subash C; Sundaram, Chitra; Reuter, Simone; Aggarwal, Bharat B

    2010-01-01

    Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitnation, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50- p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitnation, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Here, we review the small molecules that suppress NF-κB activation and thus may have therapeutic potential. PMID:20493977

  2. Therapeutic clinical applications of reactor-produced radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, F.F. Jr.

    1997-12-01

    One of the most rapidly growing areas of clinical nuclear medicine is the therapeutic use of radioisotopes for applications in oncology, rheumatology and, more recently, interventional cardiology. With the rapidly increasing development and evaluation of new agents, their introduction into clinical use, and commercialization, the availability of high levels of therapeutic reactor-produced neutron-rich radioisotopes is of increasing importance. The goals of this paper are to discuss the issues associated with optimization of the production and processing of reactor-produced radioisotopes for therapy, with special emphasis on {sup 188}W, and the optimization of the use of the {sup 188}W/{sup 188}Re generator. Inmore » addition, other key examples of therapeutic radioisotopes of current interest and their specific clinical applications are discussed.« less

  3. Recent advances in (therapeutic protein) drug development

    PubMed Central

    Lagassé, H.A. Daniel; Alexaki, Aikaterini; Simhadri, Vijaya L.; Katagiri, Nobuko H.; Jankowski, Wojciech; Sauna, Zuben E.; Kimchi-Sarfaty, Chava

    2017-01-01

    Therapeutic protein drugs are an important class of medicines serving patients most in need of novel therapies. Recently approved recombinant protein therapeutics have been developed to treat a wide variety of clinical indications, including cancers, autoimmunity/inflammation, exposure to infectious agents, and genetic disorders. The latest advances in protein-engineering technologies have allowed drug developers and manufacturers to fine-tune and exploit desirable functional characteristics of proteins of interest while maintaining (and in some cases enhancing) product safety or efficacy or both. In this review, we highlight the emerging trends and approaches in protein drug development by using examples of therapeutic proteins approved by the U.S. Food and Drug Administration over the previous five years (2011–2016, namely January 1, 2011, through August 31, 2016). PMID:28232867

  4. Integrating virtual screening and biochemical experimental approach to identify potential anti-cancer agents from drug databank.

    PubMed

    Deka, Suman Jyoti; Roy, Ashalata; Manna, Debasis; Trivedi, Vishal

    2018-06-01

    Chemical libraries constitute a reservoir of pharmacophoric molecules to identify potent anti-cancer agents. Virtual screening of heterocyclic compound library in conjugation with the agonist-competition assay, toxicity-carcinogenicity analysis, and string-based structural searches enabled us to identify several drugs as potential anti-cancer agents targeting protein kinase C (PKC) as a target. Molecular modeling study indicates that Cinnarizine fits well within the PKC C2 domain and exhibits extensive interaction with the protein residues. Molecular dynamics simulation of PKC-Cinnarizine complex at different temperatures (300, 325, 350, 375, and 400[Formula: see text]K) confirms that Cinnarizine fits nicely into the C2 domain and forms a stable complex. The drug Cinnarizine was found to bind PKC with a dissociation constant Kd of [Formula: see text]M. The breast cancer cells stimulated with Cinnarizine causes translocation of PKC-[Formula: see text] to the plasma membrane as revealed by immunoblotting and immunofluorescence studies. Cinnarizine also dose dependently reduced the viability of MDAMB-231 and MCF-7 breast cancer cells with an IC[Formula: see text] of [Formula: see text] and [Formula: see text]g/mL, respectively. It is due to the disturbance of cell cycle of breast cancer cells with reduction of S-phase and accumulation of cells in G1-phase. It disturbs mitochondrial membrane potentials to release cytochrome C into the cytosol and activates caspase-3 to induce apoptosis in cancer cells. The cell death was due to induction of apoptosis involving mitochondrial pathway. Hence, the current study has assigned an additional role to Cinnarizine as an activator of PKC and potentials of the approach to identify new molecules for anti-cancer therapy. Thus, in silico screening along with biochemical experimentation is a robust approach to assign additional roles to the drugs present in the databank for anti-cancer therapy.

  5. Tofacitinib Suppresses Antibody Responses to Protein Therapeutics in Murine Hosts1

    PubMed Central

    Onda, Masanori; Ghoreschi, Kamran; Steward-Tharp, Scott; Thomas, Craig; O’Shea, John J.; Pastan, Ira H.; FitzGerald, David J.

    2014-01-01

    Immunogenicity remains the ‘Achilles’ heel’ of protein-based therapeutics. Anti-drug antibodies produced in response to protein therapeutics can severely limit both the safety and efficacy of this expanding class of agent. Here we report that monotherapy of mice with tofacitinib (the Janus kinase inhibitor) quells antibody responses to an immunotoxin derived from the bacterial protein, Pseudomonas exotoxin A, as well as to the model antigen, keyhole limpet hemocyanin. Thousandfold reductions in IgG1 titers to both antigens were observed 21 days post-immunization. In fact, suppression was evident for all IgG isotypes and IgM. A reduction in IgG3 production was also noted with a thymus-independent type II antigen. Mechanistic investigations revealed that tofacitinib treatment led to reduced numbers of CD127+ pro-B cells. Furthermore, we observed fewer germinal center B cells and the impaired formation of germinal centers of mice treated with tofacitinib. Since normal immunoglobulin levels were still present during the tofacitinib treatment, this agent specifically reduced anti-drug antibodies, thus preserving the potential efficacy of biological therapeutics, including those that are used as cancer therapeutics. PMID:24890727

  6. Activity of posaconazole and other antifungal agents against Mucorales strains identified by sequencing of internal transcribed spacers.

    PubMed

    Alastruey-Izquierdo, Ana; Castelli, Maria Victoria; Cuesta, Isabel; Monzon, Araceli; Cuenca-Estrella, Manuel; Rodriguez-Tudela, Juan Luis

    2009-04-01

    The antifungal susceptibility profiles of 77 clinical strains of Mucorales species, identified by internal transcribed spacer sequencing, were analyzed. MICs obtained at 24 and 48 h were compared. Amphotericin B was the most active agent against all isolates, except for Cunninghamella and Apophysomyces isolates. Posaconazole also showed good activity for all species but Cunninghamella bertholletiae. Voriconazole had no activity against any of the fungi tested. Terbinafine showed good activity, except for Rhizopus oryzae, Mucor circinelloides, and Rhizomucor variabilis isolates.

  7. An agent-based model identifies MRI regions of probable tumor invasion in a patient with glioblastoma

    NASA Astrophysics Data System (ADS)

    Chen, L. Leon; Ulmer, Stephan; Deisboeck, Thomas S.

    2010-01-01

    We present an application of a previously developed agent-based glioma model (Chen et al 2009 Biosystems 95 234-42) for predicting spatio-temporal tumor progression using a patient-specific MRI lattice derived from apparent diffusion coefficient (ADC) data. Agents representing collections of migrating glioma cells are initialized based upon voxels at the outer border of the tumor identified on T1-weighted (Gd+) MRI at an initial time point. These simulated migratory cells exhibit a specific biologically inspired spatial search paradigm, representing a weighting of the differential contribution from haptotactic permission and biomechanical resistance on the migration decision process. ADC data from 9 months after the initial tumor resection were used to select the best search paradigm for the simulation, which was initiated using data from 6 months after the initial operation. Using this search paradigm, 100 simulations were performed to derive a probabilistic map of tumor invasion locations. The simulation was able to successfully predict a recurrence in the dorsal/posterior aspect long before it was depicted on T1-weighted MRI, 18 months after the initial operation.

  8. An agent-based model identifies MRI regions of probable tumor invasion in a patient with glioblastoma.

    PubMed

    Chen, L Leon; Ulmer, Stephan; Deisboeck, Thomas S

    2010-01-21

    We present an application of a previously developed agent-based glioma model (Chen et al 2009 Biosystems 95 234-42) for predicting spatio-temporal tumor progression using a patient-specific MRI lattice derived from apparent diffusion coefficient (ADC) data. Agents representing collections of migrating glioma cells are initialized based upon voxels at the outer border of the tumor identified on T1-weighted (Gd+) MRI at an initial time point. These simulated migratory cells exhibit a specific biologically inspired spatial search paradigm, representing a weighting of the differential contribution from haptotactic permission and biomechanical resistance on the migration decision process. ADC data from 9 months after the initial tumor resection were used to select the best search paradigm for the simulation, which was initiated using data from 6 months after the initial operation. Using this search paradigm, 100 simulations were performed to derive a probabilistic map of tumor invasion locations. The simulation was able to successfully predict a recurrence in the dorsal/posterior aspect long before it was depicted on T1-weighted MRI, 18 months after the initial operation.

  9. Quantitative Proteomics Analysis Identifies Mitochondria as Therapeutic Targets of Multidrug-Resistance in Ovarian Cancer

    PubMed Central

    Chen, Xiulan; Wei, Shasha; Ma, Ying; Lu, Jie; Niu, Gang; Xue, Yanhong; Chen, Xiaoyuan; Yang, Fuquan

    2014-01-01

    Doxorubicin is a widely used chemotherapeutic agent for the treatment of a variety of solid tumors. However, resistance to this anticancer drug is a major obstacle to the effective treatment of tumors. As mitochondria play important roles in cell life and death, we anticipate that mitochondria may be related to drug resistance. Here, stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic strategy was applied to compare mitochondrial protein expression in doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI_ADR/RES cells. A total of 2085 proteins were quantified, of which 122 proteins displayed significant changes in the NCI_ADR/RES cells. These proteins participated in a variety of cell processes including cell apoptosis, substance metabolism, transport, detoxification and drug metabolism. Then qRT-PCR and western blot were applied to validate the differentially expressed proteins quantified by SILAC. Further functional studies with RNAi demonstrated TOP1MT, a mitochondrial protein participated in DNA repair, was involved in doxorubicin resistance in NCI_ADR/RES cells. Besides the proteomic study, electron microscopy and fluorescence analysis also observed that mitochondrial morphology and localization were greatly altered in NCI_ADR/RES cells. Mitochondrial membrane potential was also decreased in NCI_ADR/RES cells. All these results indicate that mitochondrial function is impaired in doxorubicin-resistant cells and mitochondria play an important role in doxorubicin resistance. This research provides some new information about doxorubicin resistance, indicating that mitochondria could be therapeutic targets of doxorubicin resistance in ovarian cancer cells. PMID:25285166

  10. OXIDATIVE STRESS: BIOMARKERS AND NOVEL THERAPEUTIC PATHWAYS

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-01-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:20064603

  11. Localized sequence-specific release of a chemopreventive agent and an anticancer drug in a time-controllable manner to enhance therapeutic efficacy.

    PubMed

    Pan, Wen-Yu; Lin, Kun-Ju; Huang, Chieh-Cheng; Chiang, Wei-Lun; Lin, Yu-Jung; Lin, Wei-Chih; Chuang, Er-Yuan; Chang, Yen; Sung, Hsing-Wen

    2016-09-01

    Combination chemotherapy with multiple drugs commonly requires several injections on various schedules, and the probability that the drug molecules reach the diseased tissues at the proper time and effective therapeutic concentrations is very low. This work elucidates an injectable co-delivery system that is based on cationic liposomes that are adsorbed on anionic hollow microspheres (Lipos-HMs) via electrostatic interaction, from which the localized sequence-specific release of a chemopreventive agent (1,25(OH)2D3) and an anticancer drug (doxorubicin; DOX) can be thermally driven in a time-controllable manner by an externally applied high-frequency magnetic field (HFMF). Lipos-HMs can greatly promote the accumulation of reactive oxygen species (ROS) in tumor cells by reducing their cytoplasmic expression of an antioxidant enzyme (superoxide dismutase) by 1,25(OH)2D3, increasing the susceptibility of cancer cells to the cytotoxic action of DOX. In nude mice that bear xenograft tumors, treatment with Lipos-HMs under exposure to HFMF effectively inhibits tumor growth and is the most effective therapeutic intervention among all the investigated. These empirical results demonstrate that the synergistic anticancer effects of sequential release of 1,25(OH)2D3 and DOX from the Lipos-HMs may have potential for maximizing DOX cytotoxicity, supporting more effective cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A functional cancer genomics screen identifies a druggable synthetic lethal interaction between MSH3 and PRKDC.

    PubMed

    Dietlein, Felix; Thelen, Lisa; Jokic, Mladen; Jachimowicz, Ron D; Ivan, Laura; Knittel, Gero; Leeser, Uschi; van Oers, Johanna; Edelmann, Winfried; Heukamp, Lukas C; Reinhardt, H Christian

    2014-05-01

    Here, we use a large-scale cell line-based approach to identify cancer cell-specific mutations that are associated with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) dependence. For this purpose, we profiled the mutational landscape across 1,319 cancer-associated genes of 67 distinct cell lines and identified numerous genes involved in homologous recombination-mediated DNA repair, including BRCA1, BRCA2, ATM, PAXIP, and RAD50, as being associated with non-oncogene addiction to DNA-PKcs. Mutations in the mismatch repair gene MSH3, which have been reported to occur recurrently in numerous human cancer entities, emerged as the most significant predictors of DNA-PKcs addiction. Concordantly, DNA-PKcs inhibition robustly induced apoptosis in MSH3-mutant cell lines in vitro and displayed remarkable single-agent efficacy against MSH3-mutant tumors in vivo. Thus, we here identify a therapeutically actionable synthetic lethal interaction between MSH3 and the non-homologous end joining kinase DNA-PKcs. Our observations recommend DNA-PKcs inhibition as a therapeutic concept for the treatment of human cancers displaying homologous recombination defects.

  13. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma.

    PubMed

    Arora, Shilpi; Gonzales, Irma M; Hagelstrom, R Tanner; Beaudry, Christian; Choudhary, Ashish; Sima, Chao; Tibes, Raoul; Mousses, Spyro; Azorsa, David O

    2010-08-18

    Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.

  14. Emerging therapeutic potential of graviola and its constituents in cancers.

    PubMed

    Qazi, Asif Khurshid; Siddiqui, Jawed A; Jahan, Rahat; Chaudhary, Sanjib; Walker, Larry A; Sayed, Zafar; Jones, Dwight T; Batra, Surinder K; Macha, Muzafar A

    2018-04-05

    Cancer remains a leading cause of death in the USA and around the world. Although the current synthetic inhibitors used in targeted therapies have improved patient prognosis, toxicity and development of resistance to these agents remain a challenge. Plant-derived natural products and their derivatives have historically been used to treat various diseases, including cancer. Several leading chemotherapeutic agents are directly or indirectly based on botanical natural products. Beyond these important drugs, however, a number of crude herbal or botanical preparations have also shown promising utility for cancer and other disorders. One such natural resource is derived from certain plants of the family Annonaceae, which are widely distributed in tropical and subtropical regions. Among the best known of these is Annona muricata, also known as soursop, graviola or guanabana. Extracts from the fruit, bark, seeds, roots and leaves of graviola, along with several other Annonaceous species, have been extensively investigated for anticancer, anti-inflammatory and antioxidant properties. Phytochemical studies have identified the acetogenins, a class of bioactive polyketide-derived constituents, from the extracts of Annonaceous species, and dozens of these compounds are present in different parts of graviola. This review summarizes current literature on the therapeutic potential and molecular mechanism of these constituents from A.muricata against cancer and many non-malignant diseases. Based on available data, there is good evidence that these long-used plants could have both chemopreventive and therapeutic potential. Appropriate attention to safety studies will be important to assess their effectiveness on various diseases caused or promoted by inflammation.

  15. Microbiota-drug interactions: Impact on metabolism and efficacy of therapeutics.

    PubMed

    Wilkinson, Ellen M; Ilhan, Zehra Esra; Herbst-Kralovetz, Melissa M

    2018-06-01

    The microbiome not only represents a vital modifier of health and disease, but is a clinically important drug target. Therefore, study of the impact of the human microbiome on drug metabolism, toxicity and efficacy is urgently needed. This review focuses on gut and vaginal microbiomes, and the effect of those microbiomes or components thereof on the pharmacokinetics of specific chemotherapeutic agents, immunotherapies, anti-inflammatory and antimicrobial drugs. In some cases, the presence of specific bacterial species within the microbiome can alter the metabolism of certain drugs, such as chemotherapeutic agents and antiviral drugs. These microbiota-drug interactions are identified mostly through studies using germ-free or microbiome-depleted animal models, or by the administration of specific bacterial isolates. The biotransformation of drugs can cause drug-related toxicities; however, biotransformation also provides a mechanism by which drug developers could exploit host microbiota to create more site-specific drugs. Within this review we consider the importance of the route of drug administration and interactions with microbiota at various mucosal sites. Notably, we discuss the potential utility of bacterial therapeutics in altering the microbiome to enhance therapeutic efficacy and clinical outcomes in a personalized fashion. Based on the data to date, there is a clinically important relationship between microbiota and drug metabolism throughout the lifespan; therefore, profiling of the human microbiome will be essential in order to understand the mechanisms by which these microbiota-drug interactions occur and the degree to which this complex interplay affects drug efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Antisense oligonucleotides as therapeutics for hyperlipidaemias.

    PubMed

    Crooke, Rosanne M

    2005-07-01

    Hyperlipidaemia, due to elevations of low-density lipoprotein cholesterol (LDL-C) or triglycerides (TGs), is recognised as a significant risk factor contributing to the development of coronary heart disease (CHD), the leading cause of morbidity and mortality in the Western world. Even though a variety of established antihyperlipidaemic agents are available, the majority of high-risk patients do not reach their lipid goals, indicating the need for new and more effective therapeutics to be used alone or as combination agents with existing drugs. Antisense oligonucleotides (ASOs), designed to specifically and selectively inhibit novel targets involved in cholesterol/TG homeostasis, represent a new class of agents that may prove beneficial for the treatment of hyperlipidaemias resulting from various genetic, metabolic or behavioural factors. This article describes the antisense technology platform, highlights the advantages of these novel drugs for the treatment of hyperlipidaemia and reviews the current research in this area.

  17. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents.

    PubMed

    Mahlapuu, Margit; Håkansson, Joakim; Ringstad, Lovisa; Björn, Camilla

    2016-01-01

    Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.

  18. Challenges and opportunities in absorption, distribution, metabolism, and excretion studies of therapeutic biologics.

    PubMed

    Xu, Xin; Vugmeyster, Yulia

    2012-12-01

    With the advancement of biotechnology in the last two decades, optimized and novel modalities and platforms of biologic moieties have emerged rapidly in drug discovery pipelines. In addition, new technologies for delivering therapeutic biologics (e.g., needle-free devices, nanoparticle complexes), as well as novel approaches for disease treatments (e.g., stem cell therapy, individualized medicine), continue to be developed. While pharmacokinetic studies are routinely carried out for therapeutic biologics, experiments that elucidate underlying mechanisms for clearance and biodistribution or identify key factors that govern absorption, distribution, metabolism, and excretion (ADME) of biologics often are not thoroughly conducted. Realizing the importance of biologics as therapeutic agents, pharmaceutical industry has recently begun to move the research focus from small molecules only to a blended portfolio consisting of both small molecules and biologics. This trend brings many opportunities for scientists working in the drug disposition research field. In anticipation of these opportunities and associated challenges, this review highlights impact of ADME studies on clinical and commercial success of biologics, with a particular focus on emerging applications and technologies and linkage with mechanistic pharmacokinetic/pharmacodynamic modeling and biomarker research.

  19. Irradiation-induced angiosarcoma and anti-angiogenic therapy: A therapeutic hope?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzariti, Amalia, E-mail: a.azzariti@oncologico.bari.it; Porcelli, Letizia; Mangia, Anita

    2014-02-15

    Angiosarcomas are rare soft-tissue sarcomas of endothelial cell origin. They can be sporadic or caused by therapeutic radiation, hence secondary breast angiosarcomas are an important subgroup of patients. Assessing the molecular biology of angiosarcomas and identify specific targets for treatment is challenging. There is currently great interest in the role of angiogenesis and of angiogenic factors associated with tumor pathogenesis and as targets for treatment of angiosarcomas. A primary cell line derived from a skin fragment of a irradiation-induced angiosarcoma patient was obtained and utilized to evaluate cell biomarkers CD31, CD34, HIF-1alpha and VEGFRs expression by immunocytochemistry and immunofluorescence, drugsmore » cytotoxicity by cell counting and VEGF release by ELISA immunoassay. In addition to previous biomarkers, FVIII and VEGF were also evaluated on tumor specimens by immunohistochemistry to further confirm the diagnosis. We targeted the VEGF–VEGFR-2 axis of tumor angiogenesis with two different class of vascular targeted drugs; caprelsa, the VEGFR-2/EGFR/RET inhibitor and bevacizumab the anti-VEGF monoclonal antibody. We found the same biomarkers expression either in tumor specimens and in the cell line derived from tumor. In vitro experiments demonstrated that angiogenesis plays a pivotal role in the progression of this tumor as cells displayed high level of VEGFR-2, HIF-1 alpha strongly accumulated into the nucleus and the pro-angiogenic factor VEGF was released by cells in culture medium. The evaluation of caprelsa and bevacizumab cytotoxicity demonstrated that both drugs were effective in inhibiting tumor proliferation. Due to these results, we started to treat the patient with pazopanib, which was the unique tyrosine kinase inhibitor available in Italy through a compassionate supply program, obtaining a long lasting partial response. Our data suggest that the study of the primary cell line could help physicians in choosing a therapeutic

  20. [Therapeutic use of cannabis derivatives].

    PubMed

    Benyamina, Amine; Reynaud, Michel

    2014-02-01

    The therapeutic use of cannabis has generated a lot of interest in the past years, leading to a better understanding of its mechanisms of action. Countries like the United States and Canada have modified their laws in order to make cannabinoid use legal in the medical context. It's also the case in France now, where a recent decree was issued, authorizing the prescription of medication containing "therapeutic cannabis" (decree no. 2013-473, June 5, 2013). Cannabinoids such as dronabinol, Sativex and nabilone have been tested for the treatment of acute and chronic pain. These agents are most promising to relieve chronic pain associated with cancer, with human immunodeficiency virus infection and with multiple sclerosis. However, longer-term studies are required to determine potential long-term adverse effects and risks of misuse and addiction.

  1. Optimization of Therapeutic Strategies for Organophosphate Poisoning

    DTIC Science & Technology

    2008-03-01

    chemical (Szinicz, 2005:173). Researchers later created various forms of the organophosphate and applied the chemicals as insecticides (Szinicz, 2005:173...of organophosphorus insecticides and nerve agents (Cannard, 2006:87). Organophosphates poison an estimated 100,000 people each year throughout the...quantifiable result in order to facilitate comparison among different therapeutic strategies. Justification and Applicability Organophosphorus insecticides are

  2. Integrated Patient-Derived Models Delineate Individualized Therapeutic Vulnerabilities of Pancreatic Cancer.

    PubMed

    Witkiewicz, Agnieszka K; Balaji, Uthra; Eslinger, Cody; McMillan, Elizabeth; Conway, William; Posner, Bruce; Mills, Gordon B; O'Reilly, Eileen M; Knudsen, Erik S

    2016-08-16

    Pancreatic ductal adenocarcinoma (PDAC) harbors the worst prognosis of any common solid tumor, and multiple failed clinical trials indicate therapeutic recalcitrance. Here, we use exome sequencing of patient tumors and find multiple conserved genetic alterations. However, the majority of tumors exhibit no clearly defined therapeutic target. High-throughput drug screens using patient-derived cell lines found rare examples of sensitivity to monotherapy, with most models requiring combination therapy. Using PDX models, we confirmed the effectiveness and selectivity of the identified treatment responses. Out of more than 500 single and combination drug regimens tested, no single treatment was effective for the majority of PDAC tumors, and each case had unique sensitivity profiles that could not be predicted using genetic analyses. These data indicate a shortcoming of reliance on genetic analysis to predict efficacy of currently available agents against PDAC and suggest that sensitivity profiling of patient-derived models could inform personalized therapy design for PDAC. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Photoactivatable Lipid-based Nanoparticles as a Vehicle for Dual Agent Delivery | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) RNA Biology Laboratory have developed nanoparticles that can deliver an agent (i.e., therapeutic or imaging) and release the agent upon targeted photoactivation allowing for controlled temporal and localized release of the agent.

  4. Avian Diagnostic and Therapeutic Antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, David Sherman

    2012-12-31

    A number of infectious agents have the potential of causing significant clinical symptomology and even death, but dispite this, the number of incidence remain below the level that supports producing a vaccine. Therapeutic antibodies provide a viable treatment option for many of these diseases. We proposed that antibodies derived from West Nile Virus (WNV) immunized geese would be able to treat WNV infection in mammals and potential humans. We demonstrated that WNV specific goose antibodies are indeed successful in treating WNV infection both prophylactically and therapeutically in a golden hamster model. We demonstrated that the goose derived antibodies are non-reactogenic,more » i.e. do not cause an inflammatory response with multiple exposures in mammals. We also developed both a specific pathogen free facility to house the geese during the antibody production phase and a patent-pending purification process to purify the antibodies to greater than 99% purity. Therefore, the success of these study will allow a cost effective rapidly producible therapeutic toward clinical testing with the necessary infrastructure and processes developed and in place.« less

  5. Anti-herpesvirus agents: a patent and literature review (2003 to present).

    PubMed

    Skoreński, Marcin; Sieńczyk, Marcin

    2014-08-01

    The standard therapy used to treat herpesvirus infections is based on the application of DNA polymerase inhibitors such as ganciclovir or aciclovir. Unfortunately, all of these compounds exhibit relatively high toxicity and the mutation of herpesviruses results in the appearance of new drug-resistant strains. Consequently, there is a great need for the development of new, effective and safe anti-herpesvirus agents that employ different patterns of therapeutic action at various stages of the virus life cycle. Patents and patent applications concerning the development of anti-herpesvirus agents displaying different mechanisms of action that have been published since 2003 are reviewed. In addition, major discoveries in this field that have been published in academic papers have also been included. Among all the anti-herpesvirus agents described in this article, the inhibitors of viral serine protease seem to present one of the most effective/promising therapeutics. Unfortunately, the practical application of these antiviral agents has not yet been proven in any clinical trials. Nevertheless, the dynamic and extensive work on this subject gives hope that a new class of anti-herpesvirus agents aimed at the enzymatic activity of herpesvirus serine protease may be developed.

  6. A screen to identify drug resistant variants to target-directed anti-cancer agents

    PubMed Central

    Azam, Mohammad; Raz, Tal; Nardi, Valentina; Opitz, Sarah L.

    2003-01-01

    The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec), a specific inhibitor of the Chronic Myeloid Leukemia (CML)-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair. PMID:14615817

  7. Development of a Multifaceted Ovarian Cancer Therapeutic and Imaging Agent

    DTIC Science & Technology

    2011-04-01

    by 1-ethyl-3- [3-(dimethylamino) propyl ]carbodiimide (EDC) and N-hydroxysulfonosuccinimide (SNHS) at pH 5.5 for 30 min with a molar ratio of...particle-coated migratory substrate that can act as a permanent record of cellular movement. The gold chloride solution was prepared using 0.342 g... Synthesis and clinical Evaluation. Anticancer Agents Med. Chem. McLane, M.A., Joerger, T., Mahmoud, A., 2008. Disintegrins in health and disease. Front

  8. Activity of Posaconazole and Other Antifungal Agents against Mucorales Strains Identified by Sequencing of Internal Transcribed Spacers▿

    PubMed Central

    Alastruey-Izquierdo, Ana; Castelli, Maria Victoria; Cuesta, Isabel; Monzon, Araceli; Cuenca-Estrella, Manuel; Rodriguez-Tudela, Juan Luis

    2009-01-01

    The antifungal susceptibility profiles of 77 clinical strains of Mucorales species, identified by internal transcribed spacer sequencing, were analyzed. MICs obtained at 24 and 48 h were compared. Amphotericin B was the most active agent against all isolates, except for Cunninghamella and Apophysomyces isolates. Posaconazole also showed good activity for all species but Cunninghamella bertholletiae. Voriconazole had no activity against any of the fungi tested. Terbinafine showed good activity, except for Rhizopus oryzae, Mucor circinelloides, and Rhizomucor variabilis isolates. PMID:19171801

  9. Plasma-Functionalized Solution: A Potent Antimicrobial Agent for Biomedical Applications from Antibacterial Therapeutics to Biomaterial Surface Engineering.

    PubMed

    Park, Joo Young; Park, Sanghoo; Choe, Wonho; Yong, Hae In; Jo, Cheorun; Kim, Kijung

    2017-12-20

    Deadly diseases caused by pathogenic bacteria and viruses have increasingly victimized humans; thus, the importance of disinfection has increased in medical settings as well as in food and agricultural industries. Plasma contains multiple bactericidal agents, including reactive species, charged particles, and photons, which can have synergistic effects. In particular, the chemicals formed in aqueous solution during plasma exposure have the potential for high antibacterial activity against various bacterial infections. Here, we report the antibiotic potency of plasma-treated water (PTW). To illustrate the applicability of PTW for disinfecting biological substances, an Escherichia coli biofilm was used. We sought to identify the chemical species in PTW and investigate their separate effects on biofilm removal. Dielectric barrier discharge in ambient air was used to prepare the PTW and treat the biofilm directly. Hydrogen peroxide, ozone, and nitrites were identified as the long-lived reactive species in the PTW, whereas hydroxyl radicals and superoxide anions were identified as the short-lived reactive species in the PTW; all these species showed an ability to disinfect in biofilm removal.

  10. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  11. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent.

    PubMed

    Jung, Yuchae; Park, Heejoo; Zhao, Hui-Yuan; Jeon, Raok; Ryu, Jae-Ha; Kim, Woo-Young

    2014-07-01

    Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and TGFβ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

  12. Cordycepin: a bioactive metabolite with therapeutic potential.

    PubMed

    Tuli, Hardeep S; Sharma, Anil K; Sandhu, Sardul S; Kashyap, Dharambir

    2013-11-26

    Cytotoxic nucleoside analogues were the first chemotherapeutic agents for cancer treatment. Cordycepin, an active ingredient of the insect fungus Cordyceps militaris, is a category of compounds that exhibit significant therapeutic potential. Cordycepin has many intracellular targets, including nucleic acid (DNA/RNA), apoptosis and cell cycle, etc. Investigations of the mechanism of anti-cancer drugs have yielded important information for the design of novel drug targets in order to enhance anti-tumor activity with less toxicity to patients. This extensive review covers various molecular aspects of cordycepin interactions with its recognized cellular targets and proposes the development of novel therapeutic strategies for cancer treatment. © 2013 Elsevier Inc. All rights reserved.

  13. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. | Office of Cancer Genomics

    Cancer.gov

    T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs).

  14. Proteases as therapeutics

    PubMed Central

    Craik, Charles S.; Page, Michael J.; Madison, Edwin L.

    2015-01-01

    Proteases are an expanding class of drugs that hold great promise. The U.S. FDA (Food and Drug Administration) has approved 12 protease therapies, and a number of next generation or completely new proteases are in clinical development. Although they are a well-recognized class of targets for inhibitors, proteases themselves have not typically been considered as a drug class despite their application in the clinic over the last several decades; initially as plasma fractions and later as purified products. Although the predominant use of proteases has been in treating cardiovascular disease, they are also emerging as useful agents in the treatment of sepsis, digestive disorders, inflammation, cystic fibrosis, retinal disorders, psoriasis and other diseases. In the present review, we outline the history of proteases as therapeutics, provide an overview of their current clinical application, and describe several approaches to improve and expand their clinical application. Undoubtedly, our ability to harness proteolysis for disease treatment will increase with our understanding of protease biology and the molecular mechanisms responsible. New technologies for rationally engineering proteases, as well as improved delivery options, will expand greatly the potential applications of these enzymes. The recognition that proteases are, in fact, an established class of safe and efficacious drugs will stimulate investigation of additional therapeutic applications for these enzymes. Proteases therefore have a bright future as a distinct therapeutic class with diverse clinical applications. PMID:21406063

  15. Engineered bifunctional proteins and stem cells: next generation of targeted cancer therapeutics.

    PubMed

    Choi, Sung Hugh; Shah, Khalid

    2016-09-01

    Redundant survival signaling pathways and their crosstalk within tumor and/or between tumor and their microenvironment are key impediments to developing effective targeted therapies for cancer. Therefore developing therapeutics that target multiple receptor signaling pathways in tumors and utilizing efficient platforms to deliver such therapeutics are critical to the success of future targeted therapies. During the past two decades, a number of bifunctional multi-targeting antibodies, fusion proteins, and oncolytic viruses have been developed and various stem cell types have been engineered to efficiently deliver them to tumors. In this review, we discuss the design and efficacy of therapeutics targeting multiple pathways in tumors and the therapeutic potential of therapeutic stem cells engineered with bifunctional agents.

  16. Progress of small molecular inhibitors in the development of anti-influenza virus agents

    PubMed Central

    Wu, Xiaoai; Wu, Xiuli; Sun, Qizheng; Zhang, Chunhui; Yang, Shengyong; Li, Lin; Jia, Zhiyun

    2017-01-01

    The influenza pandemic is a major threat to human health, and highly aggressive strains such as H1N1, H5N1 and H7N9 have emphasized the need for therapeutic strategies to combat these pathogens. Influenza anti-viral agents, especially active small molecular inhibitors play important roles in controlling pandemics while vaccines are developed. Currently, only a few drugs, which function as influenza neuraminidase (NA) inhibitors and M2 ion channel protein inhibitors, are approved in clinical. However, the acquired resistance against current anti-influenza drugs and the emerging mutations of influenza virus itself remain the major challenging unmet medical needs for influenza treatment. It is highly desirable to identify novel anti-influenza agents. This paper reviews the progress of small molecular inhibitors act as antiviral agents, which include hemagglutinin (HA) inhibitors, RNA-dependent RNA polymerase (RdRp) inhibitors, NA inhibitors and M2 ion channel protein inhibitors etc. Moreover, we also summarize new, recently reported potential targets and discuss strategies for the development of new anti-influenza virus drugs. PMID:28382157

  17. Characterization of Departures from Regulatory Requirements Identified During Inspections Conducted by the US Federal Select Agent Program, 2014-15.

    PubMed

    Bjork, Adam; Sosin, Daniel M

    We studied departures from regulatory requirements identified on US Federal Select Agent Program (FSAP) inspections to increase transparency regarding biosafety and security risk at FSAP-regulated entities and identify areas for programmatic improvement. Regulatory departures from inspections led by Centers for Disease Control and Prevention inspectors during 2014-15 were grouped into "biosafety," "security," and "other" observation categories and assigned a risk level and score reflecting perceived severity. The resulting 2,267 biosafety (n = 1,153) and security (n = 1,114) observations from 296 inspections were analyzed by frequency and risk across entity and inspection characteristics. The greatest proportion of biosafety observations involved equipment and facilities (28%), and the greatest proportion of security observations involved access restrictions (33%). The greatest proportion of higher-risk observations for biosafety were containment issues and for security were inventory discrepancies. Commercial entities had the highest median cumulative risk score per inspection (17), followed by private (13), academic (10), federal government (10), and nonfederal government (8). Maximum containment (BSL-4) inspections had higher median biosafety risk per inspection (13) than other inspections (5) and lower security risk (0 vs 4). Unannounced inspections had proportionally more upper risk level observations than announced (biosafety, 21% vs 12%; security, 18% vs 7%). Possessors of select agents had higher median biosafety risk per inspection (6) than nonpossessors (4) and more upper risk level security observations (10% vs 0%). Programmatic changes to balance resources according to entity risk may strengthen FSAP oversight. Varying inspection methods by select agent possession and entity type, and conducting more unannounced inspections, may be beneficial.

  18. Response to a Relational Agent by Hospital Patients with Depressive Symptoms

    PubMed Central

    Bickmore, Timothy W.; Mitchell, Suzanne E.; Jack, Brian W.; Paasche-Orlow, Michael K.; Pfeifer, Laura M.; ODonnell, Julie

    2010-01-01

    Depression affects approximately 15% of the US population, and is recognized as an important risk factor for poor outcomes among patients with various illnesses. Automated health education and behavior change programs have the potential to help address many of the shortcomings in health care. However, the role of these systems in the care of patients with depression has been insufficiently examined. In the current study, we sought to evaluate how hospitalized medical patients would respond to a computer animated conversational agent that has been developed to provide information in an empathic fashion about a patient’s hospital discharge plan. In particular, we sought to examine how patients who have a high level of depressive symptoms respond to this system. Therapeutic alliance—the trust and belief that a patient and provider have in working together to achieve a desired therapeutic outcome— was used as the primary outcome measure, since it has been shown to be important in predicting outcomes across a wide range of health problems, including depression. In an evaluation of 139 hospital patients who interacted with the agent at the time of discharge, all patients, regardless of depressive symptoms, rated the agent very high on measures of satisfaction and ease of use, and most preferred receiving their discharge information from the agent compared to their doctors or nurses in the hospital. In addition, we found that patients with symptoms indicative of major depression rated the agent significantly higher on therapeutic alliance compared to patients who did not have major depressive symptoms. We conclude that empathic agents represent a promising technology for patient assessment, education and counseling for those most in need of comfort and caring in the inpatient setting. PMID:20628581

  19. High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells.

    PubMed

    Oppermann, Sina; Ylanko, Jarkko; Shi, Yonghong; Hariharan, Santosh; Oakes, Christopher C; Brauer, Patrick M; Zúñiga-Pflücker, Juan C; Leber, Brian; Spaner, David E; Andrews, David W

    2016-08-18

    Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax. © 2016 by The American Society of Hematology.

  20. High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells

    PubMed Central

    Oppermann, Sina; Ylanko, Jarkko; Shi, Yonghong; Hariharan, Santosh; Oakes, Christopher C.; Brauer, Patrick M.; Zúñiga-Pflücker, Juan C.; Leber, Brian; Spaner, David E.

    2016-01-01

    Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax. PMID:27297795

  1. Tissue phosphoproteomics with PolyMAC identifies potential therapeutic targets in a transgenic mouse model of HER2 positive breast cancer

    PubMed Central

    Searleman, Adam C.; Iliuk, Anton B.; Collier, Timothy S.; Chodosh, Lewis A.; Tao, W. Andy; Bose, Ron

    2014-01-01

    Altered protein phosphorylation is a feature of many human cancers that can be targeted therapeutically. Phosphopeptide enrichment is a critical step for maximizing the depth of phosphoproteome coverage by MS, but remains challenging for tissue specimens because of their high complexity. We describe the first analysis of a tissue phosphoproteome using polymer-based metal ion affinity capture (PolyMAC), a nanopolymer that has excellent yield and specificity for phosphopeptide enrichment, on a transgenic mouse model of HER2-driven breast cancer. By combining phosphotyrosine immunoprecipitation with PolyMAC, 411 unique peptides with 139 phosphotyrosine, 45 phosphoserine, and 29 phosphothreonine sites were identified from five LC-MS/MS runs. Combining reverse phase liquid chromatography fractionation at pH 8.0 with PolyMAC identified 1571 unique peptides with 1279 phosphoserine, 213 phosphothreonine, and 21 phosphotyrosine sites from eight LC-MS/MS runs. Linear motif analysis indicated that many of the phosphosites correspond to well-known phosphorylation motifs. Analysis of the tyrosine phosphoproteome with the Drug Gene Interaction database uncovered a network of potential therapeutic targets centered on Src family kinases with inhibitors that are either FDA-approved or in clinical development. These results demonstrate that PolyMAC is well suited for phosphoproteomic analysis of tissue specimens. PMID:24723360

  2. Radioprotective Agents: Strategies and Translational Advances.

    PubMed

    Kamran, Mohammad Zahid; Ranjan, Atul; Kaur, Navrinder; Sur, Souvik; Tandon, Vibha

    2016-05-01

    Radioprotectors are agents required to protect biological system exposed to radiation, either naturally or through radiation leakage, and they protect normal cells from radiation injury in cancer patients undergoing radiotherapy. It is imperative to study radioprotectors and their mechanism of action comprehensively, looking at their potential therapeutic applications. This review intimately chronicles the rich intellectual, pharmacological story of natural and synthetic radioprotectors. A continuous effort is going on by researchers to develop clinically promising radioprotective agents. In this article, for the first time we have discussed the impact of radioprotectors on different signaling pathways in cells, which will create a basis for scientific community working in this area to develop novel molecules with better therapeutic efficacy. The bright future of exceptionally noncytotoxic derivatives of bisbenzimidazoles is also described as radiomodulators. Amifostine, an effective radioprotectant, has been approved by the FDA for limited clinical use. However, due to its adverse side effects, it is not routinely used clinically. Recently, CBLB502 and several analog of a peptide are under clinical trial and showed high success against radiotherapy in cancer. This article reviews the different types of radioprotective agents with emphasis on the strategies for the development of novel radioprotectors for drug development. In addition, direction for future strategies relevant to the development of radioprotectors is also addressed. © 2016 Wiley Periodicals, Inc.

  3. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia

    PubMed Central

    Geng, Huimin; Brennan, Sarah; Milne, Thomas A.; Chen, Wei-Yi; Li, Yushan; Hurtz, Christian; Kweon, Soo-Mi; Zickl, Lynette; Shojaee, Seyedmehdi; Neuberg, Donna; Huang, Chuanxin; Biswas, Debabrata; Xin, Yuan; Racevskis, Janis; Ketterling, Rhett P.; Luger, Selina M.; Lazarus, Hillard; Tallman, Martin S.; Rowe, Jacob M.; Litzow, Mark R.; Guzman, Monica L.; Allis, C. David; Roeder, Robert G.; Müschen, Markus; Paietta, Elisabeth; Elemento, Olivier; Melnick, Ari M.

    2012-01-01

    Genetic lesions such as BCR-ABL1, E2A-PBX1 and MLL rearrangements (MLLr) are associated with unfavorable outcomes in adult B-acute lymphoblastic leukemia (B-ALL). Leukemia oncoproteins may directly or indirectly disrupt cytosine methylation patterning to mediate the malignant phenotype. We postulated that DNA methylation signatures in these aggressive B-ALLs would point towards disease mechanisms and useful biomarkers and therapeutic targets. We therefore performed DNA methylation and gene expression profiling on a cohort of 215 adult B-ALL patients enrolled in a single phase III clinical trial (ECOG E2993) and normal control B-cells. In BCR-ABL1-positive B-ALL, aberrant cytosine methylation patterning centered around a cytokine network defined by hypomethylation and overexpression of IL2RA(CD25). The E2993 trial clinical data showed that CD25 expression was strongly associated with a poor outcome in ALL patients regardless of BCR-ABL1 status, suggesting CD25 as a novel prognostic biomarker for risk stratification in B-ALL. In E2A-PBX1-positive B-ALL, aberrant DNA methylation patterning was strongly associated with direct fusion protein binding as shown by the E2A-PBX1 ChIP sequencing (ChIP-seq), suggesting that E2A-PBX1 fusion protein directly remodels the epigenome to impose an aggressive B-ALL phenotype. MLLr B-ALL featured prominent cytosine hypomethylation, which was linked with MLL fusion protein binding, H3K79 dimethylation and transcriptional upregulation, affecting a set of known and newly identified MLL fusion direct targets with oncogenic activity such as FLT3 and BCL6. Notably, BCL6 blockade or loss of function suppressed proliferation and survival of MLLr leukemia cells, suggesting BCL6 targeted therapy as a new therapeutic strategy for MLLr B-ALL. PMID:23107779

  4. Therapeutic nucleic acids: current clinical status

    PubMed Central

    Sridharan, Kannan

    2016-01-01

    Abstract Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are simple linear polymers that have been the subject of considerable research in the last two decades and have now moved into the realm of being stand‐alone therapeutic agents. Much of this has stemmed from the appreciation that they carry out myriad functions that go beyond mere storage of genetic information and protein synthesis. Therapy with nucleic acids either uses unmodified DNA or RNA or closely related compounds. From both a development and regulatory perspective, they fall somewhere between small molecules and biologics. Several of these compounds are in clinical development and many have received regulatory approval for human use. This review addresses therapeutic uses of DNA based on antisense oligonucleotides, DNA aptamers and gene therapy; and therapeutic uses of RNA including micro RNAs, short interfering RNAs, ribozymes, RNA decoys and circular RNAs. With their specificity, functional diversity and limited toxicity, therapeutic nucleic acids hold enormous promise. However, challenges that need to be addressed include targeted delivery, mass production at low cost, sustaining efficacy and minimizing off‐target toxicity. Technological developments will hold the key to this and help accelerate drug approvals in the years to come. PMID:27111518

  5. Ethical Perspectives on RNA Interference Therapeutics

    PubMed Central

    Ebbesen, Mette; Jensen, Thomas G.; Andersen, Svend; Pedersen, Finn Skou

    2008-01-01

    RNA interference is a mechanism for controlling normal gene expression which has recently begun to be employed as a potential therapeutic agent for a wide range of disorders, including cancer, infectious diseases and metabolic disorders. Clinical trials with RNA interference have begun. However, challenges such as off-target effects, toxicity and safe delivery methods have to be overcome before RNA interference can be considered as a conventional drug. So, if RNA interference is to be used therapeutically, we should perform a risk-benefit analysis. It is ethically relevant to perform a risk-benefit analysis since ethical obligations about not inflicting harm and promoting good are generally accepted. But the ethical issues in RNA interference therapeutics not only include a risk-benefit analysis, but also considerations about respecting the autonomy of the patient and considerations about justice with regard to the inclusion criteria for participation in clinical trials and health care allocation. RNA interference is considered a new and promising therapeutic approach, but the ethical issues of this method have not been greatly discussed, so this article analyses these issues using the bioethical theory of principles of the American bioethicists, Tom L. Beauchamp and James F. Childress. PMID:18612370

  6. Multimodal nanoparticle imaging agents: design and applications

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.

    2017-10-01

    Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  7. 4-haloethenylphenyl tropane:serotonin transporter imaging agents

    DOEpatents

    Goodman, Mark M.; Martarello, Laurent

    2005-01-18

    A series of compounds in the 4-fluoroalkyl-3-halophenyl nortropanes and 4-haloethenylphenyl tropane families are described as diagnostic and therapeutic agents for diseases associated with serotonin transporter dysfunction. These compounds bind to serotonin transporter protein with high affinity and selectivity. The invention provides methods of synthesis which incorporate radioisotopic halogens at a last step which permit high radiochemical yield and maximum usable product life. The radiolabeled compounds of the invention are useful as imaging agents for visualizing the location and density of serotonin transporter by PET and SPECT imaging.

  8. Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Non-invasive Imaging of Therapeutic Effect

    PubMed Central

    Sajja, Hari Krishna; East, Michael P.; Mao, Hui; Wang, Andrew Y.; Nie, Shuming; Yang, Lily

    2011-01-01

    Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by non-invasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine. PMID:19275541

  9. Novel therapeutics in multiple sclerosis management: clinical applications.

    PubMed

    Leist, Thomas; Hunter, Samuel F; Kantor, Daniel; Markowitz, Clyde

    2014-01-01

    Multiple sclerosis (MS) affects an estimated 300,000 individuals in the United States. No cure exists and although there is a lack of consensus on management, strategies to modify disease course are available. These strategies involve initiating disease-modifying therapies that have been found to slow disease progression and prevent disability symptoms, thereby improving function for MS patients. The overall goal of early disease management is to intervene prior to irreversible neuronal destruction in order to delay disability progression and improve quality of life. Maintaining a lower level of disability for a longer period of time postpones and ultimately attempts to prevent reaching a level of immobility and irreversible disability. However, due to the complex nature of disease and its unique, individual patient course, no patient can be treated alike and no patient responds to therapy similarly. Therefore, MS research is continuous in its evolution of therapeutic development, focusing on neuroprotective effects and agents with distinctive mechanisms of action allowing for unique safety and efficacy profiles. Investigations include novel oral agents and monoclonal antibodies. Many of the approved agents also are continually being investigated in order to evaluate comparative data, the most appropriate means of implementing subsequent therapy upon failure, responsiveness to therapeutic agent when switched, and long-term safety and efficacy. This multimedia webcast educational activity will cover the current state of MS science, current therapies in MS, emerging treatments in clinical trials for MS as well as differences between physicians in diagnosis and management of MS and their evolving practices. Copyright © 2014. Published by Elsevier Inc.

  10. Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots.

    PubMed

    Franta, Zdeněk; Vogel, Heiko; Lehmann, Rüdiger; Rupp, Oliver; Goesmann, Alexander; Vilcinskas, Andreas

    2016-01-01

    Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.

  11. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    DOEpatents

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  12. Ultrasound imaging beyond the vasculature with new generation contrast agents.

    PubMed

    Perera, Reshani H; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. © 2015 Wiley Periodicals, Inc.

  13. Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents

    PubMed Central

    Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. PMID:25580914

  14. MicroRNAs in cancer therapeutics: "from the bench to the bedside".

    PubMed

    Monroig-Bosque, Paloma del C; Rivera, Carlos A; Calin, George A

    2015-01-01

    MicroRNAs (miRNAs) are non-coding RNA transcripts that regulate physiological processes by targeting proteins directly. Their involvement in research has been robust, and evidence of their regulative functions has granted them the title: master regulators of the human genome. In cancer, they are considered important therapeutic agents, due to the fact that their aberrant expression contributes to disease development, progression, metastasis, therapeutic response and patient overall survival. This has endeavored fields of biomedical sciences to invest in developing and exploiting miRNA-based therapeutics thoroughly. Herein we highlight relevant ongoing/open clinical trials involving miRNAs and cancer.

  15. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents.

    PubMed

    Gholap, Somnath S

    2016-03-03

    Pyrrole derivatives comprise a class of biologically active heterocyclic compounds which can serve as promising scaffolds for antimicrobial, antiviral, antimalarial, antitubercular, anti-inflammatory and enzyme inhibiting drugs. Due to their inimitable anticancer and anti-tubercular properties, researchers were inspired to develop novel pyrrole derivatives for the treatment of MDR pathogens. In the present review the main target is to focus on the development of pyrrole mimics, with emphasis based on their structure activity relationship (SAR). The present review is being obliging for the future development of pyrrole therapeutics. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Activation of the stress proteome as a mechanism for small molecule therapeutics.

    PubMed

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D

    2012-10-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities.

  17. Activation of the stress proteome as a mechanism for small molecule therapeutics

    PubMed Central

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C.; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X.; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D.

    2012-01-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities. PMID:22752410

  18. Pre-clinical therapeutic development of a series of metalloporphyrins for Parkinson's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Li-Ping

    Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of thesemore » compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD. - Highlights: • A series of metalloporphyrins were optimized in a mouse model of parkinsonism. • Two novel orally active, brain permeable antioxidant metalloporphyrins were identified. • The identified metalloporphyrins were well tolerated.« less

  19. Current progress on aptamer-targeted oligonucleotide therapeutics

    PubMed Central

    Dassie, Justin P; Giangrande, Paloma H

    2014-01-01

    Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted. PMID:24304250

  20. Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics

    PubMed Central

    Meena, Khem Raj; Kanwar, Shamsher S.

    2015-01-01

    A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable. PMID:25632392

  1. Research and development of therapeutic mAbs: An analysis based on pipeline projects.

    PubMed

    Geng, Xiaomei; Kong, Xiangjun; Hu, Hao; Chen, Jiayu; Yang, Fengqing; Liang, Hongyu; Chen, Xin; Hu, Yuanjia

    2015-01-01

    As the subject of active research and development (R&D) in recent decades, monoclonal antibodies have emerged among the major classes of therapeutic agents for treatment of many human diseases, especially cancers, infections, and immunological disorders. This article surveys the landscape of R&D projects of therapeutic monoclonal antibodies (mAbs), which are mostly used for disease immunotherapy, from a number of perspectives, including therapeutic indications, development phases, participants, and citation of related patents. The results of this research can be used as a reference resource for pharmaceutical researchers, investors, and policymakers in the field of therapeutic mAbs.

  2. Research and development of therapeutic mAbs: An analysis based on pipeline projects

    PubMed Central

    Geng, Xiaomei; Kong, Xiangjun; Hu, Hao; Chen, Jiayu; Yang, Fengqing; Liang, Hongyu; Chen, Xin; Hu, Yuanjia

    2015-01-01

    As the subject of active research and development (R&D) in recent decades, monoclonal antibodies have emerged among the major classes of therapeutic agents for treatment of many human diseases, especially cancers, infections, and immunological disorders. This article surveys the landscape of R&D projects of therapeutic monoclonal antibodies (mAbs), which are mostly used for disease immunotherapy, from a number of perspectives, including therapeutic indications, development phases, participants, and citation of related patents. The results of this research can be used as a reference resource for pharmaceutical researchers, investors, and policymakers in the field of therapeutic mAbs PMID:26211701

  3. Systemic use of tumor necrosis factor alpha as an anticancer agent

    PubMed Central

    Roberts, Nicholas J.; Zhou, Shibin; Diaz, Luis A.; Holdhoff, Matthias

    2011-01-01

    Tumor necrosis factor-α (TNF-α) has been discussed as a potential anticancer agent for many years, however initial enthusiasm about its clinical use as a systemic agent was curbed due to significant toxicities and lack of efficacy. Combination of TNF-α with chemotherapy in the setting of hyperthermic isolated limb perfusion (ILP), has provided new insights into a potential therapeutic role of this agent. The therapeutic benefit from TNF-α in ILP is thought to be not only due to its direct anti-proliferative effect, but also due to its ability to increase penetration of the chemotherapeutic agents into the tumor tissue. New concepts for the use of TNF-α as a facilitator rather than as a direct actor are currently being explored with the goal to exploit the ability of this agent to increase drug delivery and to simultaneously reduce systemic toxicity. This review article provides a comprehensive overview on the published previous experience with systemic TNF-α. Data from 18 phase I and 10 phase II single agent as well as 18 combination therapy studies illustrate previously used treatment and dose schedules, response data as well as the most prominently observed adverse effects. Also discussed, based on recent preclinical data, is a potential future role of systemic TNF-α in combination with liposomal chemotherapy to facilitate increased drug uptake into tumors. PMID:22036896

  4. Non-coding RNAs: Therapeutic Strategies and Delivery Systems.

    PubMed

    Ling, Hui

    The vast majority of the human genome is transcribed into RNA molecules that do not code for proteins, which could be small ones approximately 20 nucleotide in length, known as microRNAs, or transcripts longer than 200 bp, defined as long noncoding RNAs. The prevalent deregulation of microRNAs in human cancers prompted immediate interest on the therapeutic value of microRNAs as drugs and drug targets. Many features of microRNAs such as well-defined mechanisms, and straightforward oligonucleotide design further make them attractive candidates for therapeutic development. The intensive efforts of exploring microRNA therapeutics are reflected by the large body of preclinical studies using oligonucleotide-based mimicking and blocking, culminated by the recent entry of microRNA therapeutics in clinical trial for several human diseases including cancer. Meanwhile, microRNA therapeutics faces the challenge of effective and safe delivery of nucleic acid therapeutics into the target site. Various chemical modifications of nucleic acids and delivery systems have been developed to increase targeting specificity and efficacy, and reduce the associated side effects including activation of immune response. Recently, long noncoding RNAs become attractive targets for therapeutic intervention because of their association with complex and delicate phenotypes, and their unconventional pharmaceutical activities such as capacity of increasing output of proteins. Here I discuss the general therapeutic strategies targeting noncoding RNAs, review delivery systems developed to maximize noncoding RNA therapeutic efficacy, and offer perspectives on the future development of noncoding RNA targeting agents for colorectal cancer.

  5. Combination therapeutics in complex diseases.

    PubMed

    He, Bing; Lu, Cheng; Zheng, Guang; He, Xiaojuan; Wang, Maolin; Chen, Gao; Zhang, Ge; Lu, Aiping

    2016-12-01

    The biological redundancies in molecular networks of complex diseases limit the efficacy of many single drug therapies. Combination therapeutics, as a common therapeutic method, involve pharmacological intervention using several drugs that interact with multiple targets in the molecular networks of diseases and may achieve better efficacy and/or less toxicity than monotherapy in practice. The development of combination therapeutics is complicated by several critical issues, including identifying multiple targets, targeting strategies and the drug combination. This review summarizes the current achievements in combination therapeutics, with a particular emphasis on the efforts to develop combination therapeutics for complex diseases. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Identification of the Factors That Govern the Ability of Therapeutic Antibodies to Provide Postchallenge Protection Against Botulinum Toxin: A Model for Assessing Postchallenge Efficacy of Medical Countermeasures against Agents of Bioterrorism and Biological Warfare

    PubMed Central

    Al-Saleem, Fetweh H.; Nasser, Zidoon; Olson, Rebecca M.; Cao, Linsen

    2011-01-01

    Therapeutic antibodies are one of the major classes of medical countermeasures that can provide protection against potential bioweapons such as botulinum toxin. Although a broad array of antibodies are being evaluated for their ability to neutralize the toxin, there is little information that defines the circumstances under which these antibodies can be used. In the present study, an effort was made to quantify the temporal factors that govern therapeutic antibody use in a postchallenge scenario. Experiments were done involving inhalation administration of toxin to mice, intravenous administration to mice, and direct application to murine phrenic nerve-hemidiaphragm preparations. As part of this study, several pharmacokinetic characteristics of botulinum toxin and neutralizing antibodies were measured. The core observation that emerged from the work was that the window of opportunity within which postchallenge administration of antibodies exerted a beneficial effect increased as the challenge dose of toxin decreased. The critical factor in establishing the window of opportunity was the amount of time needed for fractional redistribution of a neuroparalytic quantum of toxin from the extraneuronal space to the intraneuronal space. This redistribution event was a dose-dependent phenomenon. It is likely that the approach used to identify the factors that govern postchallenge efficacy of antibodies against botulinum toxin can be used to assess the factors that govern postchallenge efficacy of medical countermeasures against any agent of bioterrorism or biological warfare. PMID:21586604

  7. Identification of the factors that govern the ability of therapeutic antibodies to provide postchallenge protection against botulinum toxin: a model for assessing postchallenge efficacy of medical countermeasures against agents of bioterrorism and biological warfare.

    PubMed

    Al-Saleem, Fetweh H; Nasser, Zidoon; Olson, Rebecca M; Cao, Linsen; Simpson, Lance L

    2011-08-01

    Therapeutic antibodies are one of the major classes of medical countermeasures that can provide protection against potential bioweapons such as botulinum toxin. Although a broad array of antibodies are being evaluated for their ability to neutralize the toxin, there is little information that defines the circumstances under which these antibodies can be used. In the present study, an effort was made to quantify the temporal factors that govern therapeutic antibody use in a postchallenge scenario. Experiments were done involving inhalation administration of toxin to mice, intravenous administration to mice, and direct application to murine phrenic nerve-hemidiaphragm preparations. As part of this study, several pharmacokinetic characteristics of botulinum toxin and neutralizing antibodies were measured. The core observation that emerged from the work was that the window of opportunity within which postchallenge administration of antibodies exerted a beneficial effect increased as the challenge dose of toxin decreased. The critical factor in establishing the window of opportunity was the amount of time needed for fractional redistribution of a neuroparalytic quantum of toxin from the extraneuronal space to the intraneuronal space. This redistribution event was a dose-dependent phenomenon. It is likely that the approach used to identify the factors that govern postchallenge efficacy of antibodies against botulinum toxin can be used to assess the factors that govern postchallenge efficacy of medical countermeasures against any agent of bioterrorism or biological warfare.

  8. Convection-enhanced Delivery of Therapeutics for Malignant Gliomas.

    PubMed

    Saito, Ryuta; Tominaga, Teiji

    2017-01-15

    Convection-enhanced delivery (CED) circumvents the blood-brain barrier by delivering agents directly into the tumor and surrounding parenchyma. CED can achieve large volumes of distribution by continuous positive-pressure infusion. Although promising as an effective drug delivery method in concept, the administration of therapeutic agents via CED is not without challenges. Limitations of distribution remain a problem in large brains, such as those of humans. Accurate and consistent delivery of an agent is another challenge associated with CED. Similar to the difficulties caused by immunosuppressive environments associated with gliomas, there are several mechanisms that make effective local drug distribution difficult in malignant gliomas. In this review, methods for local drug application targeting gliomas are discussed with special emphasis on CED. Although early clinical trials have failed to demonstrate the efficacy of CED against gliomas, CED potentially can be a platform for translating the molecular understanding of glioblastomas achieved in the laboratory into effective clinical treatments. Several clinical studies using CED of chemotherapeutic agents are ongoing. Successful delivery of effective agents should prove the efficacy of CED in the near future.

  9. Convection-enhanced Delivery of Therapeutics for Malignant Gliomas

    PubMed Central

    SAITO, Ryuta; TOMINAGA, Teiji

    2017-01-01

    Convection-enhanced delivery (CED) circumvents the blood–brain barrier by delivering agents directly into the tumor and surrounding parenchyma. CED can achieve large volumes of distribution by continuous positive-pressure infusion. Although promising as an effective drug delivery method in concept, the administration of therapeutic agents via CED is not without challenges. Limitations of distribution remain a problem in large brains, such as those of humans. Accurate and consistent delivery of an agent is another challenge associated with CED. Similar to the difficulties caused by immunosuppressive environments associated with gliomas, there are several mechanisms that make effective local drug distribution difficult in malignant gliomas. In this review, methods for local drug application targeting gliomas are discussed with special emphasis on CED. Although early clinical trials have failed to demonstrate the efficacy of CED against gliomas, CED potentially can be a platform for translating the molecular understanding of glioblastomas achieved in the laboratory into effective clinical treatments. Several clinical studies using CED of chemotherapeutic agents are ongoing. Successful delivery of effective agents should prove the efficacy of CED in the near future. PMID:27980285

  10. Genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease

    PubMed Central

    Scott, Robert A.; Freitag, Daniel F.; Li, Li; Chu, Audrey Y.; Surendran, Praveen; Young, Robin; Grarup, Niels; Stancáková, Alena; Chen, Yuning; V.Varga, Tibor; Yaghootkar, Hanieh; Luan, Jian'an; Zhao, Jing Hua; Willems, Sara M.; Wessel, Jennifer; Wang, Shuai; Maruthur, Nisa; Michailidou, Kyriaki; Pirie, Ailith; van der Lee, Sven J.; Gillson, Christopher; Olama, Ali Amin Al; Amouyel, Philippe; Arriola, Larraitz; Arveiler, Dominique; Aviles-Olmos, Iciar; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Garcia, Sara Benlloch; Bis, Joshua C.; Blankenberg, Stefan; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Borecki, Ingrid B.; Bork-Jensen, Jette; Bowden, Sarah; Caldas, Carlos; Caslake, Muriel; Cupples, L. Adrienne; Cruchaga, Carlos; Czajkowski, Jacek; den Hoed, Marcel; Dunn, Janet A.; Earl, Helena M.; Ehret, Georg B.; Ferrannini, Ele; Ferrieres, Jean; Foltynie, Thomas; Ford, Ian; Forouhi, Nita G.; Gianfagna, Francesco; Gonzalez, Carlos; Grioni, Sara; Hiller, Louise; Jansson, Jan-Håkan; Jørgensen, Marit E.; Jukema, J. Wouter; Kaaks, Rudolf; Kee, Frank; Kerrison, Nicola D.; Key, Timothy J.; Kontto, Jukka; Kote-Jarai, Zsofia; Kraja, Aldi T.; Kuulasmaa, Kari; Kuusisto, Johanna; Linneberg, Allan; Liu, Chunyu; Marenne, Gaëlle; Mohlke, Karen L.; Morris, Andrew P.; Muir, Kenneth; Müller-Nurasyid, Martina; Munroe, Patricia B.; Navarro, Carmen; Nielsen, Sune F.; Nilsson, Peter M.; Nordestgaard, Børge G.; Packard, Chris J.; Palli, Domenico; Panico, Salvatore; Peloso, Gina M.; Perola, Markus; Peters, Annette; Poole, Christopher J.; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Salomaa, Veikko; Sánchez, María-José; Sattar, Naveed; Sharp, Stephen J.; Sims, Rebecca; Slimani, Nadia; Smith, Jennifer A.; Thompson, Deborah J.; Trompet, Stella; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Virtamo, Jarmo; Walker, Mark; Walter, Klaudia; Abraham, Jean E.; Amundadottir, Laufey T.; Aponte, Jennifer L.; Butterworth, Adam S.; Dupuis, Josée; Easton, Douglas F.; Eeles, Rosalind A.; Erdmann, Jeanette; Franks, Paul W.; Frayling, Timothy M.; Hansen, Torben; Howson, Joanna M. M.; Jørgensen, Torben; Kooner, Jaspal; Laakso, Markku; Langenberg, Claudia; McCarthy, Mark I.; Pankow, James S.; Pedersen, Oluf; Riboli, Elio; Rotter, Jerome I.; Saleheen, Danish; Samani, Nilesh J.; Schunkert, Heribert; Vollenweider, Peter; O'Rahilly, Stephen; Deloukas, Panos; Danesh, John; Goodarzi, Mark O.; Kathiresan, Sekar; Meigs, James B.; Ehm, Margaret G.; Wareham, Nicholas J.; Waterworth, Dawn M.

    2016-01-01

    Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to inform development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in 6 genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing, and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr;rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and lower T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomised controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process. PMID:27252175

  11. Curcumin: a promising agent targeting cancer stem cells.

    PubMed

    Zang, Shufei; Liu, Tao; Shi, Junping; Qiao, Liang

    2014-01-01

    Cancer stem cells are a subset of cells that are responsible for cancer initiation and relapse. They are generally resistant to the current anticancer agents. Successful anticancer therapy must consist of approaches that can target not only the differentiated cancer cells, but also cancer stem cells. Emerging evidence suggested that the dietary agent curcumin exerted its anti-cancer activities via targeting cancer stem cells of various origins such as those of colorectal cancer, pancreatic cancer, breast cancer, brain cancer, and head and neck cancer. In order to enhance the therapeutic potential of curcumin, this agent has been modified or used in combination with other agents in the experimental therapy for many cancers. In this mini-review, we discussed the effect of curcumin and its derivatives in eliminating cancer stem cells and the possible underlying mechanisms.

  12. Functional Genomics to Identify Therapeutic Targets in Cancer Stem Cells Using a Novel Murine CRPC Model

    DTIC Science & Technology

    2015-11-01

    REPORT 3 . DATES COVERED 6 Aug 2013 - 5 Aug 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Functional Genomics to Identify Therapeutic Targets in...4 3 . Accomplishments………..………………………………...…………...4 4. Impact…………………………...……………………….….…………21 5. Changes/Problems...Requirements……………………….…….………23 9. Appendices……………………………………………….…….………23 3 1. INTRODUCTION: Prostate cancer is the most common noncutaneous malignancy in men

  13. Immunotherapeutics in Pediatric Autoimmune Central Nervous System Disease: Agents and Mechanisms.

    PubMed

    Nosadini, Margherita; Sartori, Stefano; Sharma, Suvasini; Dale, Russell C

    2017-08-01

    Beyond the major advances produced by careful clinical-radiological phenotyping and biomarker development in autoimmune central nervous system disorders, a comprehensive knowledge of the range of available immune therapies and a deeper understanding of their action should benefit therapeutic decision-making. This review discusses the agents used in neuroimmunology and their mechanisms of action. First-line treatments typically include corticosteroids, intravenous immunoglobulin, and plasmapheresis, while for severe disease second-line "induction" agents such as rituximab or cyclophosphamide are used. Steroid-sparing agents such as mycophenolate, azathioprine, or methotrexate are often used in potentially relapsing or corticosteroid-dependent diseases. Lessons from adult neuroimmunology and rheumatology could be translated into pediatric autoimmune central nervous system disease in the future, including the potential utility of monoclonal antibodies targeting lymphocytes, adhesion molecules for lymphocytic migration, cytokines or their receptors, or complement. Finally, many agents used in other fields have multiple mechanisms of action, including immunomodulation, with potential usefulness in neuroimmunology, such as antibiotics, psychotropic drugs, probiotics, gut health, and ketogenic diet. All currently accepted and future potential agents have adverse effects, which can be severe; therefore, a "risk-versus-benefit" determination should guide therapeutic decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Formulations for Intranasal Delivery of Pharmacological Agents to Combat Brain Disease: A New Opportunity to Tackle GBM?

    PubMed Central

    van Woensel, Matthias; Wauthoz, Nathalie; Rosière, Rémi; Amighi, Karim; Mathieu, Véronique; Lefranc, Florence; van Gool, Stefaan W.; de Vleeschouwer, Steven

    2013-01-01

    Despite recent advances in tumor imaging and chemoradiotherapy, the median overall survival of patients diagnosed with glioblastoma multiforme does not exceed 15 months. Infiltration of glioma cells into the brain parenchyma, and the blood-brain barrier are important hurdles to further increase the efficacy of classic therapeutic tools. Local administration methods of therapeutic agents, such as convection enhanced delivery and intracerebral injections, are often associated with adverse events. The intranasal pathway has been proposed as a non-invasive alternative route to deliver therapeutics to the brain. This route will bypass the blood-brain barrier and limit systemic side effects. Upon presentation at the nasal cavity, pharmacological agents reach the brain via the olfactory and trigeminal nerves. Recently, formulations have been developed to further enhance this nose-to-brain transport, mainly with the use of nanoparticles. In this review, the focus will be on formulations of pharmacological agents, which increase the nasal permeation of hydrophilic agents to the brain, improve delivery at a constant and slow release rate, protect therapeutics from degradation along the pathway, increase mucoadhesion, and facilitate overall nasal transport. A mounting body of evidence is accumulating that the underexplored intranasal delivery route might represent a major breakthrough to combat glioblastoma. PMID:24202332

  15. Autophagy‑mediated adaptation of hepatocellular carcinoma cells to hypoxia‑mimicking conditions constitutes an attractive therapeutic target.

    PubMed

    Owada, Satoshi; Endo, Hitoshi; Shida, Yukari; Okada, Chisa; Ito, Kanako; Nezu, Takahiro; Tatemichi, Masayuki

    2018-04-01

    Hepatocellular carcinoma has extremely poor prognosis. In cancerous liver tissues, aberrant proliferation of cancer cells leads to the creation of an area where an immature vascular network is formed. Since oxygen is supplied to cancer tissues through the bloodstream, a part of the tumor is exposed to hypoxic conditions. As hypoxia is known to severely reduce the effectiveness of existing anticancer agents, novel valid therapeutic targets must be identified for the treatment of hepatocellular carcinoma. Generally, autophagy has been reported to play an important role in the adaptation of cancer cells to hypoxia. However, the exact role and significance of this process vary depending on the cancer type, requiring detailed analysis in individual primary tumors and cell lines. In the present study, we examined autophagy induced by cobalt chloride, a hypoxia‑mimicking agent, in hepatocellular carcinoma cells with the aim to evaluate the validity of this process as a potential therapeutic target. We observed that treatment with cobalt chloride induced autophagy, including the intracellular quality control mechanism, in an AMPK‑dependent manner. Furthermore, treatment with autophagy inhibitors (bafilomycin and LY294002) resulted in significant, highly‑selective cytotoxicity and apoptosis activation under hypoxia‑mimicking conditions. The knockdown of AMPK also revealed significant cytotoxicity in hypoxia‑mimicking conditions. These results clearly demonstrated that autophagy, especially mitophagy, was induced by the AMPK pathway when hepatocellular carcinoma cells were subjected to hypoxic conditions and played an important role in the adaptation of these cells to such conditions. Thus, autophagy may constitute an attractive therapeutic target for the treatment of hepatocellular carcinoma.

  16. microRNAs as cancer therapeutics: A step closer to clinical application.

    PubMed

    Catela Ivkovic, Tina; Voss, Gjendine; Cornella, Helena; Ceder, Yvonne

    2017-10-28

    During the last decades, basic and translational research has enabled great improvements in the clinical management of cancer. However, scarcity of complete remission and many drug-induced toxicities are still a major problem in the clinics. Recently, microRNAs (miRNAs) have emerged as promising therapeutic targets due to their involvement in cancer development and progression. Their extraordinary regulatory potential, which enables regulation of entire signalling networks within the cells, makes them an interesting tool for the development of cancer therapeutics. In this review we will focus on miRNAs with experimentally proven therapeutic potential, and discuss recent advances in the technical development and clinical evaluation of miRNA-based therapeutic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Therapeutic Vaccination for HPV Induced Cervical Cancers

    PubMed Central

    Brinkman, Joeli A.; Hughes, Sarah H.; Stone, Pamela; Caffrey, Angela S.; Muderspach, Laila I.; Roman, Lynda D.; Weber, Jeffrey S.; Kast, W. Martin

    2007-01-01

    Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV) infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence. PMID:17627067

  18. Therapeutic peptides for cancer therapy. Part I - peptide inhibitors of signal transduction cascades.

    PubMed

    Bidwell, Gene L; Raucher, Drazen

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that inhibit signal transduction cascades are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Given our current knowledge of protein sequences, structures and interaction interfaces, therapeutic peptides that inhibit interactions of interest are easily designed. These peptides are advantageous because they are highly specific for the interaction of interest, and they are much more easily developed than small molecule inhibitors of the same interactions. The main hurdle to application of peptides for cancer therapy is their poor pharmacokinetic and biodistribution parameters. Therefore, successful development of peptide delivery vectors could potentially make possible the use of this new and very promising class of anticancer agents.

  19. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent.

    PubMed

    Unger, E C; McCreery, T P; Sweitzer, R H; Caldwell, V E; Wu, Y

    1998-12-01

    Paclitaxel-carrying lipospheres (MRX-552) were developed and evaluated as a new ultrasound contrast agent for chemotherapeutic drug delivery. Paclitaxel was suspended in soybean oil and added to an aqueous suspension of phospholipids in vials. The headspace of the vials was replaced with perfluorobutane gas; the vials were sealed, and they were agitated at 4200 rpm on a shaking device. The resulting lipospheres containing paclitaxel were studied for concentration, size, acute toxicity in mice, and acoustic activity and drug release with ultrasound. Lipospheres containing sudan black dye were produced to demonstrate the acoustically active liposphere (AAL)-ultrasound release concept. Acoustically active lipospheres containing paclitaxel had a mean particle count of approximately 1 x 10(9) particles per mL and a mean size of 2.9 microns. Acute toxicity studies in mice showed a 10-fold reduction in toxicity for paclitaxel in AALs compared with free paclitaxel. The AALs reflected ultrasound as a contrast agent. Increasing amounts of ultrasound energy selectively ruptured the AALs and released the paclitaxel. Acoustically active lipospheres represent a new class of acoustically active drug delivery vehicles. Future studies will assess efficacy of AALs for ultrasound-mediated drug delivery.

  20. Opportunities for Web-based Drug Repositioning: Searching for Potential Antihypertensive Agents with Hypotension Adverse Events.

    PubMed

    Wang, Kejian; Wan, Mei; Wang, Rui-Sheng; Weng, Zuquan

    2016-04-01

    Drug repositioning refers to the process of developing new indications for existing drugs. As a phenotypic indicator of drug response in humans, clinical side effects may provide straightforward signals and unique opportunities for drug repositioning. We aimed to identify drugs frequently associated with hypotension adverse reactions (ie, the opposite condition of hypertension), which could be potential candidates as antihypertensive agents. We systematically searched the electronic records of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) through the openFDA platform to assess the association between hypotension incidence and antihypertensive therapeutic effect regarding a list of 683 drugs. Statistical analysis of FAERS data demonstrated that those drugs frequently co-occurring with hypotension events were more likely to have antihypertensive activity. Ranked by the statistical significance of frequent hypotension reporting, the well-known antihypertensive drugs were effectively distinguished from others (with an area under the receiver operating characteristic curve > 0.80 and a normalized discounted cumulative gain of 0.77). In addition, we found a series of antihypertensive agents (particularly drugs originally developed for treating nervous system diseases) among the drugs with top significant reporting, suggesting the good potential of Web-based and data-driven drug repositioning. We found several candidate agents among the hypotension-related drugs on our list that may be redirected for lowering blood pressure. More important, we showed that a pharmacovigilance system could alternatively be used to identify antihypertensive agents and sustainably create opportunities for drug repositioning.

  1. CATS-based Agents That Err

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes preliminary research on intelligent agents that make errors. Such agents are crucial to the development of novel agent-based techniques for assessing system safety. The agents extend an agent architecture derived from the Crew Activity Tracking System that has been used as the basis for air traffic controller agents. The report first reviews several error taxonomies. Next, it presents an overview of the air traffic controller agents, then details several mechanisms for causing the agents to err in realistic ways. The report presents a performance assessment of the error-generating agents, and identifies directions for further research. The research was supported by the System-Wide Accident Prevention element of the FAA/NASA Aviation Safety Program.

  2. Nitric Oxide Donors as Neuroprotective Agents after an Ischemic Stroke-Related Inflammatory Reaction

    PubMed Central

    Rojas-Mayorquín, Argelia E.; Ortuño-Sahagún, Daniel

    2013-01-01

    Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment. PMID:23691263

  3. The Expanding Therapeutic Utility of Botulinum Neurotoxins

    PubMed Central

    Fonfria, Elena; Maignel, Jacquie; Lezmi, Stephane; Martin, Vincent; Splevins, Andrew; Shubber, Saif; Kalinichev, Mikhail; Foster, Keith; Picaut, Philippe; Krupp, Johannes

    2018-01-01

    Botulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics. In recent years, novel indications have emerged in the fields of pain, migraine, overactive bladder, osteoarthritis, and wound healing. The study of biological effects distal to the injection site could provide future opportunities for disease-tailored BoNT therapies. However, there are some challenges in the pharmaceutical development of BoNTs, such as liquid and slow-release BoNT formulations; and, transdermal, transurothelial, and transepithelial delivery. Innovative approaches in the areas of formulation and delivery, together with highly sensitive analytical tools, will be key for the success of next generation BoNT clinical products. PMID:29783676

  4. Genetic and pharmacological screens converge in identifying FLIP, BCL2 and IAP proteins as key regulators of sensitivity to the TRAIL-inducing anti-cancer agent ONC201/TIC10

    PubMed Central

    Allen, Joshua E.; Prabhu, Varun V.; Talekar, Mala; van den Heuvel, AP; Lim, Bora; Dicker, David T.; Fritz, Jennifer L.; Beck, Adam; El-Deiry, Wafik S.

    2015-01-01

    ONC201/TIC10 is a small molecule inducer of the TRAIL gene under current investigation as a novel anticancer agent. In this study, we identify critical molecular determinants of ONC201 sensitivity offering potential utility as pharmacodynamic or predictive response markers. By screening a library of kinase siRNAs in combination with a subcytotoxic dose of ONC201, we identified several kinases that ablated tumor cell sensitivity, including the MAPK pathway inducer KSR1. Unexpectedly, KSR1 silencing did not affect MAPK signaling in the presence or absence of ONC201, but instead reduced expression of the anti-apoptotic proteins FLIP, Mcl-1, Bcl-2, cIAP1, cIAP2, and survivin. In parallel to this work, we also conducted a synergy screen in which ONC201 was combined with approved small molecule anticancer drugs. In multiple cancer cell populations, ONC201 synergized with diverse drug classes including the multi-kinase inhibitor sorafenib. Notably, combining ONC201 and sorafenib led to synergistic induction of TRAIL and its receptor DR5 along with a potent induction of cell death. In a mouse xenograft model of hepatocellular carcinoma, we demonstrated that ONC201 and sorafenib cooperatively and safely triggered tumor regressions. Overall, our results established a set of determinants for ONC201 sensitivity that may predict therapeutic response, particularly in settings of sorafenib co-treatment to enhance anticancer responses. PMID:25681273

  5. [Functional dyspepsia. New pathophysiologic knowledge with therapeutic implications].

    PubMed

    Hernando-Harder, Ana C; Franke, Andreas; Singer, Manfred V; Harder, Hermann

    2007-01-01

    Functional dyspepsia (FD) is a heterogeneous, highly prevalent symptom complex in the community and general practice. FD is defined as the presence of symptoms considered as originated in the gastroduodenal region, in the absence of any organic, systemic, or metabolic disease that is likely to explain the symptoms. Pathogenetic features include disturbed gastric accommodation and emptying, duodenal dysmotility, heightened sensitivity, notably psychosocial disturbances and an association with a postinfective state. Increasing efforts are made to determine the etiopathogenesis of the disease, including new molecular and genetic aspects. However, the exact etiopathologic mechanism that causes the symptoms in an individual patient remains to be identified. The new Rome III criteria redefine and sub-characterize FD patients according to their main symptoms and this can be of value for standardized research, development and control of new therapeutic strategies and calculated therapeutic recommendations in the clinical practice. Various treatment modalities have been employed including dietary modifications, pharmacological agents directed at different targets within the gastrointestinal tract and central nervous system and psychological therapies including hypnotherapy. Unfortunately, to date, all of these therapies have yielded only marginal results. After excluding organic diseases, it is essential that the patient be assured about the benign nature and prognosis of the disease, and this can be sometimes the most helpful inversion for the patient and his/her physician.

  6. Discovery, clinical development, and therapeutic uses of bisphosphonates.

    PubMed

    Licata, Angelo A

    2005-04-01

    To review the literature concerning the history, development, and therapeutic uses of bisphosphonates. English-language articles were identified through a search of MEDLINE (through December 2004) using the key word bisphosphonate. Reference lists of pivotal studies, reviews, and full prescribing information for the approved agents were also examined. Selected studies included those that discussed the discovery and initial applications of bisphosphonates, as well as their historical development, pharmacokinetic and pharmacodynamic properties, and current therapeutic uses. Bisphosphonates structurally resemble pyrophosphates (naturally occurring polyphosphates) and have demonstrated similar physicochemical effects to pyrophosphates. In addition, bisphosphonates reduce bone turnover and resist hydrolysis when administered orally. The information gained from initial work with etidronate generated a considerable scientific effort to design new and more effective bisphosphonates. The PCP moiety in the general bisphosphonate structure is essential for binding to hydroxyapatite and allows for a number of chemical variations by changing the 2 lateral side chains (designated R(1) and R(2)). The R(1) side chain determines binding affinity to hydroxyapatite, and the R(2) side chain determines antiresorptive potency. Accordingly, each bisphosphonate has its own characteristic profile of activity. The bisphosphonates reduce bone turnover, increase bone mass, and decrease fracture risk and therefore have a significant place in the management of skeletal disorders including osteoporosis, Paget's disease, bone metastases, osteogenesis imperfecta, and heterotopic ossification.

  7. Plasma Membrane Calcium ATPases as Novel Candidates for Therapeutic Agent Development

    PubMed Central

    Strehler, Emanuel E.

    2013-01-01

    Plasma membrane Ca2+ ATPases (PMCAs) are highly regulated transporters responsible for Ca2+ extrusion from all eukaryotic cells. Different PMCA isoforms are implicated in various tasks of Ca2+ regulation including bulk Ca2+ transport and localized Ca2+ signaling in specific membrane microdomains. Accumulating evidence shows that loss, mutation or inappropriate expression of different PMCAs is associated with pathologies ranging from hypertension, low bone density and male infertility to hearing loss and cerebellar ataxia. Compared to Ca2+ influx channels, PMCAs have lagged far behind as targets for drug development, mainly due to the lack of detailed understanding of their structure and specific function. This is rapidly changing thanks to integrated efforts combining biochemical, structural, cellular and physiological studies suggesting that selective modulation of PMCA isoforms may be of therapeutic value in the management of different and complex diseases. Both structurally informed rational design and high-throughput small molecule library screenings are promising strategies that are expected to lead to specific and isoform-selective modulators of PMCA function. This short review will provide an overview of the diverse roles played by PMCA isoforms in different cells and tissues and their emerging involvement in pathophysiological processes, summarize recent progress in obtaining structural information on the PMCAs, and discuss current and future strategies to develop specific PMCA inhibitors and activators for potential therapeutic applications. PMID:23958189

  8. Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots

    PubMed Central

    Franta, Zdeněk; Vogel, Heiko; Lehmann, Rüdiger; Rupp, Oliver; Goesmann, Alexander; Vilcinskas, Andreas

    2016-01-01

    Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions. PMID:27119084

  9. Meta-analysis of oral water-soluble contrast agent in the management of adhesive small bowel obstruction.

    PubMed

    Abbas, S M; Bissett, I P; Parry, B R

    2007-04-01

    Adhesions are the leading cause of small bowel obstruction. Identification of patients who require surgery is difficult. This review analyses the role of Gastrografin as a diagnostic and therapeutic agent in the management of adhesive small bowel obstruction. A systematic search of Medline, Embase and Cochrane databases was performed to identify studies of the use of Gastrografin in adhesive small bowel obstruction. Studies that addressed the diagnostic role of water-soluble contrast agent were appraised, and data presented as sensitivity, specificity, and positive and negative likelihood ratios. Results were pooled and a summary receiver-operator characteristic (ROC) curve was constructed. A meta-analysis of the data from six therapeutic studies was performed using the Mantel-Haenszel test and both fixed- and random-effect models. The appearance of water-soluble contrast agent in the colon on an abdominal radiograph within 24 h of its administration predicted resolution of obstruction with a pooled sensitivity of 97 per cent and specificity of 96 per cent. The area under the summary ROC curve was 0.98. Water-soluble contrast agent did not reduce the need for surgical intervention (odds ratio 0.81, P = 0.300), but it did reduce the length of hospital stay for patients who did not require surgery compared with placebo (weighted mean difference--1.84 days; P < 0.001). Published data strongly support the use of water-soluble contrast medium as a predictive test for non-operative resolution of adhesive small bowel obstruction. Although Gastrografin does not reduce the need for operation, it appears to shorten the hospital stay for those who do not require surgery.

  10. Emerging techniques for the discovery and validation of therapeutic targets for skeletal diseases.

    PubMed

    Cho, Christine H; Nuttall, Mark E

    2002-12-01

    Advances in genomics and proteomics have revolutionised the drug discovery process and target validation. Identification of novel therapeutic targets for chronic skeletal diseases is an extremely challenging process based on the difficulty of obtaining high-quality human diseased versus normal tissue samples. The quality of tissue and genomic information obtained from the sample is critical to identifying disease-related genes. Using a genomics-based approach, novel genes or genes with similar homology to existing genes can be identified from cDNA libraries generated from normal versus diseased tissue. High-quality cDNA libraries are prepared from uncontaminated homogeneous cell populations harvested from tissue sections of interest. Localised gene expression analysis and confirmation are obtained through in situ hybridisation or immunohistochemical studies. Cells overexpressing the recombinant protein are subsequently designed for primary cell-based high-throughput assays that are capable of screening large compound banks for potential hits. Afterwards, secondary functional assays are used to test promising compounds. The same overexpressing cells are used in the secondary assay to test protein activity and functionality as well as screen for small-molecule agonists or antagonists. Once a hit is generated, a structure-activity relationship of the compound is optimised for better oral bioavailability and pharmacokinetics allowing the compound to progress into development. Parallel efforts from proteomics, as well as genetics/transgenics, bioinformatics and combinatorial chemistry, and improvements in high-throughput automation technologies, allow the drug discovery process to meet the demands of the medicinal market. This review discusses and illustrates how different approaches are incorporated into the discovery and validation of novel targets and, consequently, the development of potentially therapeutic agents in the areas of osteoporosis and osteoarthritis

  11. Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents Against Lung Cancer

    DTIC Science & Technology

    2014-10-01

    pol eta when replicating damaged DNA. 1S. SUBJECT TERMS: Mutagenesis, DNA polymerases, nucleoside analogs, chemotherapeutic agents 16. SECURITY ...such as polymerase eta, iota , and kappa that are involved in replicating damaged DNA. Our kinetic data obtained under Task 1B indicates that pol eta

  12. Curtailing the high rate of late-stage attrition of investigational therapeutics against unprecedented targets in patients with lung and other malignancies.

    PubMed

    Rowinsky, Eric K

    2004-06-15

    A greater understanding of the pathogenesis and biology of cancer coupled with major advances in biotechnology has resulted in the identification of rationally designed, target-based (RDTB) anticancer therapeutics, ushering in new therapeutic opportunities and high expectations for the future as well as developmental challenges. Because these agents appear to principally target malignant cells, it is expected that they will produce less toxicity at clinically effective doses than nonspecific cytotoxic agents, but their target requirements are likely to be much more stringent. The innate complexity of the networks that contain elements targeted by these agents also decreases the probability that any single therapeutic manipulation will result in robust clinical activity and success when used alone, particularly in patients with solid malignancies that have multiple relevant signaling aberrations. In contrast, proof of principle and robust antitumor activity may be most efficiently demonstrated in nonrandomized evaluations involving tumors that are principally driven by aberrations of the specific target. The predominant therapeutic manifestation of RDTB agents in preclinical studies is due to decreased tumor growth rates and will likely be similar in the clinic; however, such manifestations are not readily detectable and quantifiable using nonrandomized clinical evaluations. To curtail the increasing rate of late-stage attrition of RDTB agents, which, if maintained, will stymie progress in cancer therapy, the design of initial nonrandomized evaluations, particularly the selection of tumors and patients, must be guided by the principal biological features of the agents. Next, evaluations, some of which must be randomized, can be performed in a wide range of tumor types, depending on the presence and relevance of the target. To validate the concept of RDTB therapeutics and to realize their full potential, radically different development, evaluation, and regulatory

  13. Identifying HIV care enrollees at-risk for cannabis use disorder.

    PubMed

    Hartzler, Bryan; Carlini, Beatriz H; Newville, Howard; Crane, Heidi M; Eron, Joseph J; Geng, Elvin H; Mathews, W Christopher; Mayer, Kenneth H; Moore, Richard D; Mugavero, Michael J; Napravnik, Sonia; Rodriguez, Benigno; Donovan, Dennis M

    2017-07-01

    Increased scientific attention given to cannabis in the United States has particular relevance for its domestic HIV care population, given that evidence exists for both cannabis as a therapeutic agent and cannabis use disorder (CUD) as a barrier to antiretroviral medication adherence. It is critical to identify relative risk for CUD among demographic subgroups of HIV patients, as this will inform detection and intervention efforts. A Center For AIDS Research Network of Integrated Clinical Systems cohort (N = 10,652) of HIV-positive adults linked to care at seven United State sites was examined for this purpose. Based on a patient-report instrument with validated diagnostic threshold for CUD, the prevalence of recent cannabis use and corresponding conditional probabilities for CUD were calculated for the aggregate sample and demographic subgroups. Generalized estimating equations then tested models directly examining patient demographic indices as predictors of CUD, while controlling for history and geography. Conditional probability of CUD among cannabis-using patients was 49%, with the highest conditional probabilities among demographic subgroups of young adults and those with non-specified sexual orientation (67-69%) and the lowest conditional probability among females and those 50+ years of age (42% apiece). Similarly, youthful age and male gender emerged as robust multivariate model predictors of CUD. In the context of increasingly lenient policies for use of cannabis as a therapeutic agent for chronic conditions like HIV/AIDS, current study findings offer needed direction in terms of specifying targeted patient groups in HIV care on whom resources for enhanced surveillance and intervention efforts will be most impactful.

  14. Imaging enabled platforms for development of therapeutics

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan; Rizvi, Imran; Blanden, Adam R.; Evans, Conor L.; Abu-Yousif, Adnan O.; Spring, Bryan Q.; Muzikansky, Alona; Pogue, Brian W.; Finkelstein, Dianne M.; Hasan, Tayyaba

    2011-03-01

    Advances in imaging and spectroscopic technologies have enabled the optimization of many therapeutic modalities in cancer and noncancer pathologies either by earlier disease detection or by allowing therapy monitoring. Amongst the therapeutic options benefiting from developments in imaging technologies, photodynamic therapy (PDT) is exceptional. PDT is a photochemistry-based therapeutic approach where a light-sensitive molecule (photosensitizer) is activated with light of appropriate energy (wavelength) to produce reactive molecular species such as free radicals and singlet oxygen. These molecular entities then react with biological targets such as DNA, membranes and other cellular components to impair their function and lead to eventual cell and tissue death. Development of PDT-based imaging also provides a platform for rapid screening of new therapeutics in novel in vitro models prior to expensive and labor-intensive animal studies. In this study we demonstrate how an imaging platform can be used for strategizing a novel combination treatment strategy for multifocal ovarian cancer. Using an in vitro 3D model for micrometastatic ovarian cancer in conjunction with quantitative imaging we examine dose and scheduling strategies for PDT in combination with carboplatin, a chemotherapeutic agent presently in clinical use for management of this deadly form of cancer.

  15. Mustard vesicating agent-induced toxicity in the skin tissue and silibinin as a potential countermeasure.

    PubMed

    Tewari-Singh, Neera; Agarwal, Rajesh

    2016-06-01

    Exposure to the vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) causes severe skin injury with delayed blistering. Depending upon the dose and time of their exposure, edema and erythema develop into blisters, ulceration, necrosis, desquamation, and pigmentation changes, which persist weeks and even years after exposure. Research advances have generated data that have started to explain the probable mechanism of action of vesicant-induced skin toxicity; however, despite these advances, effective and targeted therapies are still deficient. This review highlights studies on two SM analogs, 2-chloroethyl ethyl sulfide (CEES) and NM, and CEES- and NM-induced skin injury mouse models that have substantially added to the knowledge on the complex pathways involved in mustard vesicating agent-induced skin injury. Furthermore, employing these mouse models, studies under the National Institutes of Health Countermeasures Against Chemical Threats program have identified the flavanone silibinin as a novel therapeutic intervention with the potential to be developed as an effective countermeasure against skin injury following exposure to mustard vesicating agents. © 2016 New York Academy of Sciences.

  16. Identifying real and perceived barriers to therapeutic education programs for individuals with inflammatory arthritis.

    PubMed

    Bain, Lorna; Sangrar, Ruheena; Bornstein, Carolyn; Lukmanji, Sara; Hapuhennedige, Sandani; Thorne, Carter; Beattie, Karen A

    2016-09-01

    Therapeutic Education Programs (TEPs) grounded in self-management principles have been shown to improve quality of life of patients with chronic conditions and reduce patient-related healthcare costs. Though these programs are becoming more readily available, patients often experience barriers in participating. This study sought to identify barriers faced by inflammatory arthritis (IA) patients in attending a TEP and understand how patients overcame perceived barriers. A mixed-method study design was used. Questionnaires were distributed to individuals with IA who were invited to attend a TEP between 2010 and 2013. Respondents were those that chose not to attend (group A), individuals who attended ≤4 of 10 sessions (group B), individuals who attended ≥5 of 10 sessions prior to May 2013 (group C), and individuals who attended ≥5 of 10 sessions from June 2013 to November 2013 (group D). Individuals in group D were also invited to participate in focus groups to discuss how they had overcome perceived barriers. Real barriers identified by individuals in groups A and B included time, distance, and cost associated with attendance. Individuals who overcame perceived barriers (groups C and D) discussed strategies they used to do so. Aspects of the overall program experience and access to clinic and program also contributed to patients being able to overcome barriers. Time, distance, and cost are external barriers that prevented individuals from utilizing self-management education opportunities. These barriers were overcome if and when individuals had resources available to them. Readiness for behavior change also influenced commitment to participate in the program.

  17. MRP4/ABCC4 as a new therapeutic target: meta-analysis to determine cAMP binding sites as a tool for drug design.

    PubMed

    Yaneff, Agustín; Sahores, Ana; Gomez, Natalia; Carozzo, Alejandro; Shayo, Carina; Davio, Carlos

    2017-12-29

    MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This metaanalysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Speciation in Metal Toxicity and Metal-Based Therapeutics

    PubMed Central

    Templeton, Douglas M.

    2015-01-01

    Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure. PMID:29056656

  19. Therapeutic Drug Monitoring and Clinical Outcomes in Immune Mediated Diseases: The Missing Link.

    PubMed

    Sorrentino, Dario; Nguyen, Vu; Henderson, Carl; Bankole, Adegabenga

    2016-10-01

    As the incidence of inflammatory bowel diseases and the number of patients treated with anti-TNF agents keep on increasing so are the phenomena of primary non response (PNR) and secondary loss of response (SLR) to these medications. Traditionally PNR and SLR have been managed empirically-that is, switching medications for PNR and increasing the anti-TNF dose for SNR. More recently an approach based on testing drug levels and antibodies to the drug (therapeutic drug monitoring) has gained increasing popularity in the management of inflammatory bowel diseases. However, while this strategy might offer an insight into the mechanisms leading to PNR/SLR it often falls short of providing a simple, reproducible method to manage these issues in clinical practice. Here, we will review the currently recommended therapeutic strategies when using therapeutic drug monitoring; the evidence for and against such approach and the current standard strategies in Rheumatology (the specialty with the largest and longest experience with anti-TNF agents). We will then discuss the possible reasons of the shortcomings of therapeutic drug monitoring and the rationale and need to move the therapeutic target to the disease burden in inflammatory bowel diseases-along with the supporting preliminary evidence. Finally, we will focus on future crucial studies that need to be done to make approaches to PNR/SLR more rigorous and at the same time user-friendly for the practicing gastroenterologist.

  20. Antioxidants as Potential Therapeutics for Lung Fibrosis

    PubMed Central

    DAY, BRIAN J.

    2009-01-01

    Interstitial lung disease encompasses a large group of chronic lung disorders associated with excessive tissue remodeling, scarring, and fibrosis. The evidence of a redox imbalance in lung fibrosis is substantial, and the rationale for testing antioxidants as potential new therapeutics for lung fibrosis is appealing. Current animal models of lung fibrosis have clear involvement of ROS in their pathogenesis. New classes of antioxidant agents divided into catalytic antioxidant mimetics and antioxidant scavengers are being developed. The catalytic antioxidant class is based on endogenous antioxidant enzymes and includes the manganese-containing macrocyclics, porphyrins, salens, and the non–metal-containing nitroxides. The antioxidant scavenging class is based on endogenous antioxidant molecules and includes the vitamin E analogues, thiols, lazaroids, and polyphenolic agents. Numerous studies have shown oxidative stress to be associated with many interstitial lung diseases and that these agents are effective in attenuating fibroproliferative responses in the lung of animals and humans. PMID:17999627

  1. Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation

    PubMed Central

    Vats, Mukti; Mishra, Sumit Kumar; Baghini, Mahdieh Shojaei; Chauhan, Deepak S.; Srivastava, Rohit; De, Abhijit

    2017-01-01

    The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials. PMID:28452928

  2. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma

    PubMed Central

    Varshosaz, Jaleh; Farzan, Maryam

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein

  3. Synthetic Curcumin Analogs as Inhibitors of β -Amyloid Peptide Aggregation: Potential Therapeutic and Diagnostic Agents for Alzheimer's Disease.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim

    2015-01-01

    There is a crucial need to develop new effective drugs for Alzheimer's disease (AD) as the currently available AD treatments provide only momentary and incomplete symptomatic relief. Amongst natural products, curcumin, a major constituent of turmeric, has been intensively investigated for its neuroprotective effect against β-amyloid (Aβ)-induced toxicity in cultured neuronal cells. The ability of curcumin to attach to Aβ peptide and prevent its accumulation is attributed to its three structural characteristics such as the presence of two aromatic end groups and their co-planarity, the length and rigidity of the linker region and the substitution conformation of these aromatics. However, curcumin failed to reach adequate brain levels after oral absorption in AD clinical trials due to its low water solubility and poor oral bioavailability. A number of new curcumin analogs that mimic the active site of the compound along with analogs that mimic the curcumin anti-amyloid effect combined with anticholinesterase effect have been developed to enhance the bioavailability, pharmacokinetics, water solubility, stability at physiological conditions and delivery of curcumin. In this article, we have summarized all reported synthetic analogs of curcumin showing effects on β-amyloid and discussed their potential as therapeutic and diagnostic agents for AD.

  4. 3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances.

    PubMed

    Iourov, Ivan Y; Vorsanova, Svetlana G; Voinova, Victoria Y; Yurov, Yuri B

    2015-01-01

    In contrast to other autism spectrum disorders, chromosome abnormalities are rare in Asperger syndrome (AS) or high-functioning autism. Consequently, AS was occasionally subjected to classical positional cloning. Here, we report on a case of AS associated with a deletion of the short arm of chromosome 3. Further in silico analysis has identified a candidate gene for AS and has suggested a therapeutic strategy for manifestations of the chromosome rearrangement. Using array comparative genomic hybridization, an interstitial deletion of 3p22.1p21.31 (~2.5 Mb in size) in a child with Asperger's syndrome, seborrheic dermatitis and chronic pancreatitis was detected. Original bioinformatic approach to the prioritization of candidate genes/processes identified CCK (cholecystokinin) as a candidate gene for AS. In addition to processes associated with deleted genes, bioinformatic analysis of CCK gene interactome indicated that zinc deficiency might be a pathogenic mechanism in this case. This suggestion was supported by plasma zinc concentration measurements. The increase of zinc intake produced a rise in zinc plasma concentration and the improvement in the patient's condition. Our study supported previous linkage findings and had suggested a new candidate gene in AS. Moreover, bioinformatic analysis identified the pathogenic mechanism, which was used to propose a therapeutic strategy for manifestations of the deletion. The relative success of this strategy allows speculating that therapeutic or dietary normalization of metabolic processes altered by a chromosome imbalance or genomic copy number variations may be a way for treating at least a small proportion of cases of these presumably incurable genetic conditions.

  5. Screening for Natural Chemoprevention Agents that Modify Human Keap1

    PubMed Central

    Hu, Chenqi; Nikolic, Dejan; Eggler, Aimee L.; Mesecar, Andrew D.; van Breemen, Richard B.

    2012-01-01

    Upregulation of cytoprotective enzymes by therapeutic agents to prevent damage by reactive oxygen species and xenobiotic electrophiles is a strategy for cancer chemoprevention. The Kelch-like ECH-associated protein 1 (Keap1) and its binding partner, transcription factor NF-E2-related factor-2 (Nrf2), are chemoprevention targets because of their role in regulating the antioxidant response element (ARE) in response to oxidative stress and exposure to electrophiles. Modification of the sensor protein Keap1 by electrophiles such as the isothiocyanate sulforaphane can direct Nrf2 accumulation in the nucleus and subsequent ARE activation. Since our previous matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS)-based screening method to discover natural products that modify Keap1 does not detect covalent modification of Keap1 by some highly reversible agents such as sulforaphane, a more sensitive screening assay was developed. In this new assay, electrophiles that have reversibly modified Keap1 can be released, trapped and detected as β-mercaptoethanol adducts by mass spectrometry. Isoliquiritigenin and sulforaphane, known ARE activators that target Keap1, were used to validate the assay. To determine the ability of the assay to identify electrophiles in complex matrixes that modify Keap1, sulforaphane was spiked into a cocoa extract, and LC-MS/MS using high resolution mass spectrometry with accurate mass measurement was used to identify β-mercaptoethanol adducts of sulforaphane that had been released from Keap1. This screening assay permits identification of potential chemoprevention agents in complex natural product mixtures that reversibly modify Keap1 but cannot be detected using MALDI-TOF MS. PMID:22074792

  6. Lung lesions and anti-ulcer agents beneficial effect: anti-ulcer agents pentadecapeptide BPC 157, ranitidine, omeprazole and atropine ameliorate lung lesion in rats.

    PubMed

    Stancic-Rokotov, D; Slobodnjak, Z; Aralica, J; Aralica, G; Perovic, D; Staresinic, M; Gjurasin, M; Anic, T; Zoricic, I; Buljat, G; Prkacin, I; Sikiric, P; Seiwerth, S; Rucman, R; Petek, M; Turkovic, B; Kokic, N; Jagic, V; Boban-Blagaic, A

    2001-01-01

    Anti-ulcer agents may likely attenuate lesions outside the gastrointestinal tract, since they had protected gastrectomized rats (a "direct cytoprotective effect"). Therefore, their therapeutic potential in lung/stomach lesions were shown. Rats received an intratracheal (i.t.) HCl instillation [1.5 ml/kg HCl (pH 1.75)] (lung lesion), and an intragastric (i.g.) instillation of 96% ethanol (gastric lesion; 1 ml/rat, 24 h after i.t. HCl instillation), then sacrificed 1 h after ethanol. Basically, in lung-injured rats, the subsequent ethanol-gastric lesion was markedly aggravated. This aggravation, however, in turn, did not affect the severity of the lung lesions in the further period, at least for 1 h of observation. Taking intratracheal HCl-instillation as time 0, a gastric pentadecapeptide, GEPPPGKPADDAGLV, M.W.1419, coded BPC 157 (10 microg, 10 ng, 10 pg), ranitidine (10 mg), atropine (10 mg), omeprazole (10 mg), were given [/kg, intraperitoneally (i.p.)] (i) once, only prophylactically [as a pre-treatment (at -1h)], or as a co-treatment [at 0)], or only therapeutically (at +18h or +24 h); (ii) repeatedly, combining prophylactic/therapeutic regimens [(-1 h)+(+24 h)] or [(0)+(+24 h)], or therapeutic/therapeutic regimens [(+18 h)+(+24 h)]. For all agents, combining their prophylactic and salutary regimens (at -1 h/+24 h, or at 0/+24 h) attenuated lung lesions; even if effect had been not seen already with a single application, it became prominent after repeated treatment. In single application studies, relative to controls, a co-treatment (except to omeprazole), a pre-treatment (at -1 h) (pentadecapeptide BPC 157 and atropine, but not ranitidine and omeprazole) regularly attenuated, while therapeutically, atropine (at +18 h), pentadecapeptide BPC 157 highest dose and omeprazole (at +24 h), reversed the otherwise more severe lung lesions.

  7. Contrast echocardiography: new agents.

    PubMed

    Miller, Andrew P; Nanda, Navin C

    2004-04-01

    In this report, we review the history, rationale, current status and future directions of contrast agents in echocardiography. First, we discuss the historic development of contrast agents through a review of important physical principles of microbubbles in ultrasonography. Second, we identify attributes of an ideal contrast agent and review those that are currently available or in the "pipeline" for clinical use. Third, we review indications for contrast echocardiography, including endocardial border detection, perfusion quantification and reperfusion assessment, and validate these observations by comparisons with other imaging modalities. Then, we briefly review different methodologies of performing a contrast study, including interrupted, real-time and a hybrid modality. Finally, we identify novel future applications of the newest contrast agents. These newer concepts in contrast echocardiography should form a foundation for nearly limitless application of echocardiography in improved anatomical assessment, perfusion imaging and even special applications, such as detection of vascular inflammation and site-specific drug delivery.

  8. Novel agents that downregulate EGFR, HER2, and HER3 in parallel

    PubMed Central

    Ferreira, Renan Barroso; Law, Mary Elizabeth; Jahn, Stephan Christopher; Davis, Bradley John; Heldermon, Coy Don; Reinhard, Mary; Castellano, Ronald Keith; Law, Brian Keith

    2015-01-01

    EGFR, HER2, and HER3 contribute to the initiation and progression of human cancers, and are therapeutic targets for monoclonal antibodies and tyrosine kinase inhibitors. An important source of resistance to these agents arises from functional redundancy among EGFR, HER2, and HER3. EGFR family members contain conserved extracellular structures that are stabilized by disulfide bonds. Compounds that disrupt extracellular disulfide bonds could inactivate EGFR, HER2, and HER3 in unison. Here we describe the identification of compounds that kill breast cancer cells that overexpress EGFR or HER2. Cell death parallels downregulation of EGFR, HER2, and HER3. These compounds disrupt disulfide bonds and are termed Disulfide Bond Disrupting Agents (DDAs). DDA RBF3 exhibits anticancer efficacy in vivo at 40 mg/kg without evidence of toxicity. DDAs may complement existing EGFR-, HER2-, and HER3-targeted agents that function through alternate mechanisms of action, and combination regimens with these existing drugs may overcome therapeutic resistance. PMID:25865227

  9. Genetic and Pharmacological Screens Converge in Identifying FLIP, BCL2, and IAP Proteins as Key Regulators of Sensitivity to the TRAIL-Inducing Anticancer Agent ONC201/TIC10.

    PubMed

    Allen, Joshua E; Prabhu, Varun V; Talekar, Mala; van den Heuvel, A Pieter J; Lim, Bora; Dicker, David T; Fritz, Jennifer L; Beck, Adam; El-Deiry, Wafik S

    2015-04-15

    ONC201/TIC10 is a small-molecule inducer of the TRAIL gene under current investigation as a novel anticancer agent. In this study, we identify critical molecular determinants of ONC201 sensitivity offering potential utility as pharmacodynamic or predictive response markers. By screening a library of kinase siRNAs in combination with a subcytotoxic dose of ONC201, we identified several kinases that ablated tumor cell sensitivity, including the MAPK pathway-inducer KSR1. Unexpectedly, KSR1 silencing did not affect MAPK signaling in the presence or absence of ONC201, but instead reduced expression of the antiapoptotic proteins FLIP, Mcl-1, Bcl-2, cIAP1, cIAP2, and survivin. In parallel to this work, we also conducted a synergy screen in which ONC201 was combined with approved small-molecule anticancer drugs. In multiple cancer cell populations, ONC201 synergized with diverse drug classes, including the multikinase inhibitor sorafenib. Notably, combining ONC201 and sorafenib led to synergistic induction of TRAIL and its receptor DR5 along with a potent induction of cell death. In a mouse xenograft model of hepatocellular carcinoma, we demonstrated that ONC201 and sorafenib cooperatively and safely triggered tumor regressions. Overall, our results established a set of determinants for ONC201 sensitivity that may predict therapeutic response, particularly in settings of sorafenib cotreatment to enhance anticancer responses. ©2015 American Association for Cancer Research.

  10. The therapeutic journey of benzimidazoles: a review.

    PubMed

    Bansal, Yogita; Silakari, Om

    2012-11-01

    Presence of benzimidazole nucleus in numerous categories of therapeutic agents such as antimicrobials, antivirals, antiparasites, anticancer, anti-inflammatory, antioxidants, proton pump inhibitors, antihypertensives, anticoagulants, immunomodulators, hormone modulators, CNS stimulants as well as depressants, lipid level modulators, antidiabetics, etc. has made it an indispensable anchor for development of new therapeutic agents. Varied substitutents around the benzimidazole nucleus have provided a wide spectrum of biological activities. Importance of this nucleus in some activities like, Angiotensin I (AT(1)) receptor antagonism and proton-pump inhibition is reviewed separately in literature. Even some very short reviews on biological importance of this nucleus are also known in literature. However, owing to fast development of new drugs possessing benzimidazole nucleus many research reports are generated in short span of time. So, there is a need to couple the latest information with the earlier information to understand the current status of benzimidazole nucleus in medicinal chemistry research. In the present review, various derivatives of benzimidazole with different pharmacological activities are described on the basis of substitution pattern around the nucleus with an aim to help medicinal chemists for developing an SAR on benzimidazole derived compounds for each activity. This discussion will further help in the development of novel benzimidazole compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. High-throughput screen of drug repurposing library identifies inhibitors of Sarcocystis neurona growth.

    PubMed

    Bowden, Gregory D; Land, Kirkwood M; O'Connor, Roberta M; Fritz, Heather M

    2018-04-01

    The apicomplexan parasite Sarcocystis neurona is the primary etiologic agent of equine protozoal myeloencephalitis (EPM), a serious neurologic disease of horses. Many horses in the U.S. are at risk of developing EPM; approximately 50% of all horses in the U.S. have been exposed to S. neurona and treatments for EPM are 60-70% effective. Advancement of treatment requires new technology to identify new drugs for EPM. To address this critical need, we developed, validated, and implemented a high-throughput screen to test 725 FDA-approved compounds from the NIH clinical collections library for anti-S. neurona activity. Our screen identified 18 compounds with confirmed inhibitory activity against S. neurona growth, including compounds active in the nM concentration range. Many identified inhibitory compounds have well-defined mechanisms of action, making them useful tools to study parasite biology in addition to being potential therapeutic agents. In comparing the activity of inhibitory compounds identified by our screen to that of other screens against other apicomplexan parasites, we found that most compounds (15/18; 83%) have activity against one or more related apicomplexans. Interestingly, nearly half (44%; 8/18) of the inhibitory compounds have reported activity against dopamine receptors. We also found that dantrolene, a compound already formulated for horses with a peak plasma concentration of 37.8 ± 12.8 ng/ml after 500 mg dose, inhibits S. neurona parasites at low concentrations (0.065 μM [0.036-0.12; 95% CI] or 21.9 ng/ml [12.1-40.3; 95% CI]). These studies demonstrate the use of a new tool for discovering new chemotherapeutic agents for EPM and potentially providing new reagents to elucidate biologic pathways required for successful S. neurona infection. Copyright © 2018. Published by Elsevier Ltd.

  12. Strategies for the synthesis of the novel antitumor agent peloruside A

    PubMed Central

    Williams, David R; Nag, Partha P; Zorn, Nicolas

    2009-01-01

    The microtubule-stabilizing agent (+)-peloruside A has emerged as a potential therapeutic agent for the treatment of cancer. Two total syntheses have been published and these reports have stimulated additional studies to advance the methodology and strategies for accessing this molecular architecture. This review details the biological data, modeling and conformation analyses, and synthetic studies toward the synthesis of (+)-peloruside A, that were reported prior to December 2007. PMID:18283613

  13. Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions

    PubMed Central

    Breakefield, Xandra O.; Leonard, Joshua N.

    2015-01-01

    This review provides an updated perspective on rapidly proliferating efforts to harness extracellular vesicles (EVs) for therapeutic applications. We summarize current knowledge, emerging strategies, and open questions pertaining to clinical potential and translation. Potentially useful EVs comprise diverse products of various cell types and species. EV components may also be combined with liposomes and nanoparticles to facilitate manufacturing as well as product safety and evaluation. Potential therapeutic cargoes include RNA, proteins, and drugs. Strategic issues considered herein include choice of therapeutic agent, means of loading cargoes into EVs, promotion of EV stability, tissue targeting, and functional delivery of cargo to recipient cells. Some applications may harness natural EV properties, such as immune modulation, regeneration promotion, and pathogen suppression. These properties can be enhanced or customized to enable a wide range of therapeutic applications, including vaccination, improvement of pregnancy outcome, and treatment of autoimmune disease, cancer, and tissue injury. PMID:25292428

  14. Therapeutic cloning: from consequences to contradiction.

    PubMed

    Coors, Marilyn

    2002-06-01

    The British Parliament legalized therapeutic cloning in December 2000 despite opposition from the European Union. The watershed event in Parliament's move was the active and unprecedented government support for the generation and destruction of human embryonic life merely as a means of medical advancement. This article contends that the utilitarian analysis of this procedure is necessary to identify the real world risks of therapeutic cloning but insufficient to identify the breach of defensible ethical limits that this procedure represents. A value-oriented approach to Kantian ethics demonstrates that the utilitarian endorsement of therapeutic cloning entails a contradiction of the necessity of human vulnerability and a faulty valuation of the human embryo. The concern is that a narrow utilitarian focus ultimately commodifies human embryonic life and preferences outcomes as the sole determinant of moral value.

  15. Peroxisome Proliferator-Activated Receptor Ligands and Their Role in Chronic Myeloid Leukemia: Therapeutic Strategies.

    PubMed

    Yousefi, Bahman; Samadi, Nasser; Baradaran, Behzad; Shafiei-Irannejad, Vahid; Zarghami, Nosratollah

    2016-07-01

    Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail. © 2016 John Wiley & Sons A/S.

  16. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets.

    PubMed

    Wang, Zhang; Arat, Seda; Magid-Slav, Michal; Brown, James R

    2018-01-10

    With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.

  17. Evaluating mice lacking serum carboxylesterase as a behavioral model for nerve agent intoxication.

    PubMed

    Dunn, Emily N; Ferrara-Bowens, Teresa M; Chachich, Mark E; Honnold, Cary L; Rothwell, Cristin C; Hoard-Fruchey, Heidi M; Lesyna, Catherine A; Johnson, Erik A; Cerasoli, Douglas M; McDonough, John H; Cadieux, C Linn

    2018-06-07

    Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.

  18. Combating Multidrug-Resistant Pathogens with Host-Directed Nonantibiotic Therapeutics.

    PubMed

    Andersson, Jourdan A; Sha, Jian; Kirtley, Michelle L; Reyes, Emily; Fitts, Eric C; Dann, Sara M; Chopra, Ashok K

    2018-01-01

    Earlier, we reported that three Food and Drug Administration-approved drugs, trifluoperazine (TFP; an antipsychotic), amoxapine (AXPN; an antidepressant), and doxapram (DXP; a breathing stimulant), identified from an in vitro murine macrophage cytotoxicity screen, provided mice with 40 to 60% protection against pneumonic plague when administered at the time of infection for 1 to 3 days. In the present study, the therapeutic potential of these drugs against pneumonic plague in mice was further evaluated when they were administered at up to 48 h postinfection. While the efficacy of TFP was somewhat diminished as treatment was delayed to 24 h, the protection of mice with AXPN and DXP increased as treatment was progressively delayed to 24 h. At 48 h postinfection, these drugs provided the animals with significant protection (up to 100%) against challenge with the agent of pneumonic or bubonic plague when they were administered in combination with levofloxacin. Likewise, when they were used in combination with vancomycin, all three drugs provided mice with 80 to 100% protection from fatal oral Clostridium difficile infection when they were administered at 24 h postinfection. Furthermore, AXPN provided 40 to 60% protection against respiratory infection with Klebsiella pneumoniae when it was administered at the time of infection or at 24 h postinfection. Using the same in vitro cytotoxicity assay, we identified an additional 76/780 nonantibiotic drugs effective against K. pneumoniae For Acinetobacter baumannii , 121 nonantibiotic drugs were identified to inhibit bacterium-induced cytotoxicity in murine macrophages. Of these 121 drugs, 13 inhibited the macrophage cytotoxicity induced by two additional multiple-antibiotic-resistant strains. Six of these drugs decreased the intracellular survival of all three A. baumannii strains in macrophages. These results provided further evidence of the broad applicability and utilization of drug repurposing screening to identify new

  19. Pharmacotherapeutic agents in the treatment of methamphetamine dependence.

    PubMed

    Morley, Kirsten C; Cornish, Jennifer L; Faingold, Alon; Wood, Katie; Haber, Paul S

    2017-05-01

    Methamphetamine use is a serious public health concern in many countries and is second to cannabis as the most widely abused illicit drug in the world. Effective management for methamphetamine dependence remains elusive and the large majority of methamphetamine users relapse following treatment. Areas covered: Progression in the understanding of the pharmacological basis of methamphetamine use has provided us with innovative opportunities to develop agents to treat dependence. The current review summarizes relevant literature on the neurobiological and clinical correlates associated with methamphetamine use. We then outline agents that have been explored for potential treatments in preclinical studies, human laboratory phase I and phase II trials over the last ten years. Expert opinion: No agent has demonstrated a broad and strong effect in achieving MA abstinence in Phase II trials. Agents with novel therapeutic targets appear promising. Advancement in MA treatment, including translation into practice, faces several clinical challenges.

  20. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases

    PubMed Central

    Sarkar, Avijit; De, Ronita; Mukhopadhyay, Asish K

    2016-01-01

    Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake. PMID:26973412

  1. Nanoparticles as conjugated delivery agents for therapeutic applications

    NASA Astrophysics Data System (ADS)

    Muroski, Megan Elizabeth

    This dissertation explores the use of nanoparticles as conjugated delivery agents. Chapter 1 is a general introduction. Chapter 2 discusses the delivery by a nanoparticle platform provides a method to manipulate gene activation, by taking advantage of the high surface area of a nanoparticle and the ability to selectively couple a desired biological moiety to the NP surface. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of co-delivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol. In Chapter 3, we wanted to understand the NP complex within the cell, and to look at the dynamics of release utilizing nanometal surface energy transfer as

  2. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  3. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment.

    PubMed

    Phi, Lan Thi Hanh; Sari, Ita Novita; Yang, Ying-Gui; Lee, Sang-Hyun; Jun, Nayoung; Kim, Kwang Seock; Lee, Yun Kyung; Kwon, Hyog Young

    2018-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.

  4. Synthesis and evaluation of 1-amino-6-halo-β-carbolines as antimalarial and antiprion agents.

    PubMed

    Thompson, Mark J; Louth, Jennifer C; Little, Susan M; Jackson, Matthew P; Boursereau, Yohan; Chen, Beining; Coldham, Iain

    2012-04-01

    Malaria is one of the world's most devastating parasitic diseases, causing almost one million deaths each year. Growing resistance to classical antimalarial drugs, such as chloroquine, necessitates the discovery of new therapeutic agents for successful control of this global disease. Here, we report the synthesis of some 6-halo-β-carbolines as analogues of the potent antimalarial natural product, manzamine A, retaining its heteroaromatic core whilst providing compounds with much improved synthetic accessibility. Two compounds displayed superior activity to chloroquine itself against a resistant Plasmodium falciparum strain, identifying them as promising leads for future development. Furthermore, in line with previous reports of similarities in antimalarial and antiprion effects of aminoaryl-based antimalarial agents, the 1-amino-β-carboline libraries were also found to possess significant bioactivity against a prion-infected cell line. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Technological advancements for the detection of and protection against biological and chemical warfare agents.

    PubMed

    Eubanks, Lisa M; Dickerson, Tobin J; Janda, Kim D

    2007-03-01

    There is a growing need for technological advancements to combat agents of chemical and biological warfare, particularly in the context of the deliberate use of a chemical and/or biological warfare agent by a terrorist organization. In this tutorial review, we describe methods that have been developed both for the specific detection of biological and chemical warfare agents in a field setting, as well as potential therapeutic approaches for treating exposure to these toxic species. In particular, nerve agents are described as a typical chemical warfare agent, and the two potent biothreat agents, anthrax and botulinum neurotoxin, are used as illustrative examples of potent weapons for which countermeasures are urgently needed.

  6. Advances in refractory ulcerative colitis treatment: A new therapeutic target, Annexin A2

    PubMed Central

    Tanida, Satoshi; Mizoshita, Tsutomu; Ozeki, Keiji; Katano, Takahito; Kataoka, Hiromi; Kamiya, Takeshi; Joh, Takashi

    2015-01-01

    Medical treatment has progressed significantly over the past decade towards achieving and maintaining clinical remission in patients with refractory ulcerative colitis (UC). Proposed mediators of inflammation in UC include pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-2, and the cell-surface adhesive molecule integrin α4β7. Conventional therapeutics for active UC include 5-aminosalicylic acid, corticosteroids and purine analogues (azathioprine and 6-mercaptopurine). Patients who fail to respond to conventional therapy are treated with agents such as the calicineurin inhibitors cyclosporine and tacrolimus, the TNF-α inhibitors infliximab or adalimumab, or a neutralizing antibody (vedolizumab) directed against integrin α4β7. These therapeutic agents are of benefit for patients with refractory UC, but are not universally effective. Our recent research on TNF-α shedding demonstrated that inhibition of annexin (ANX) A2 may be a new therapeutic strategy for the prevention of TNF-α shedding during inflammatory bowel disease (IBD) inflammation. In this review, we provide an overview of therapeutic treatments that are effective and currently available for UC patients, as well as some that are likely to be available in the near future. We also propose the potential of ANX A2 as a new molecular target for IBD treatment. PMID:26269667

  7. Future prospects of therapeutic clinical trials in acute myeloid leukemia

    PubMed Central

    Khan, Maliha; Mansoor, Armaghan-e-Rehman; Kadia, Tapan M

    2017-01-01

    Acute myeloid leukemia (AML) is a markedly heterogeneous hematological malignancy that is most commonly seen in elderly adults. The response to current therapies to AML is quite variable, and very few new drugs have been recently approved for use in AML. This review aims to discuss the issues with current trial design for AML therapies, including trial end points, patient enrollment, cost of drug discovery and patient heterogeneity. We also discuss the future directions in AML therapeutics, including intensification of conventional therapy and new drug delivery mechanisms; targeted agents, including epigenetic therapies, cell cycle regulators, hypomethylating agents and chimeric antigen receptor T-cell therapy; and detail of the possible agents that may be incorporated into the treatment of AML in the future. PMID:27771959

  8. Heterocyclic N-Oxides – An Emerging Class of Therapeutic Agents

    PubMed Central

    Mfuh, Adelphe M.; Larionov, Oleg V.

    2016-01-01

    Heterocyclic N-oxides have emerged as potent compounds with anticancer, antibacterial, antihypertensive, antiparasitic, anti-HIV, anti-inflammatory, herbicidal, neuroprotective, and procognitive activities. The N-oxide motif has been successfully employed in a number of recent drug development projects. This review surveys the emergence of this scaffold in the mainstream medicinal chemistry with a focus on the discovery of the heterocyclic N-oxide drugs, N-oxide-specific mechanisms of action, drug-receptor interactions and synthetic avenues to these compounds. As the first review on this subject that covers the developments since 1950s to date, it is expected that it will inspire wider implementation of the heterocyclic N-oxide motif in the rational design of new medicinal agents. PMID:26087764

  9. Fighting fire with fire: attacking the complexity of human tumors with armed therapeutic viruses.

    PubMed

    Hermiston, Terry

    2002-08-01

    Cancer gene therapies have centered on the use of a single gene, directed against a particular property or single aspect of tumor biology, to treat neoplastic disease. These therapies have met with limited clinical success. This is, perhaps, not surprising given the complex and heterogeneous nature of solid tumors. Treatments targeted at confronting multiple dimensions of human tumors are needed. Armed therapeutic viruses (oncolytic viruses carrying therapeutic genes) represent a system where the concerted action of multiple therapeutics can be joined into a single agent, and represent a promising avenue for developing future cancer therapies.

  10. Challenges in the development of magnetic particles for therapeutic applications.

    PubMed

    Barry, Stephen E

    2008-09-01

    Certain iron-based particle formulations have useful magnetic properties that, when combined with low toxicity and desirable pharmacokinetics, encourage their development for therapeutic applications. This mini-review begins with background information on magnetic particle use as MRI contrast agents and the influence of material size on pharmacokinetics and tissue penetration. Therapeutic investigations, including (1) the loading of bioactive materials, (2) the use of stationary, high-gradient (HG) magnetic fields to concentrate magnetic particles in tissues or to separate material bound to the particles from the body, and (3) the application of high power alternating magnetic fields (AMF) to generate heat in magnetic particles for hyperthermic therapeutic applications are then surveyed. Attention is directed mainly to cancer treatment, as selective distribution to tumors is well-suited to particulate approaches and has been a focus of most development efforts. While magnetic particles have been explored for several decades, their use in therapeutic products remains minimal; a discussion of future directions and potential ways to better leverage magnetic properties and to integrate their use into therapeutic regimens is discussed.

  11. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  12. Conversational Agents in E-Learning

    NASA Astrophysics Data System (ADS)

    Kerry, Alice; Ellis, Richard; Bull, Susan

    This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.

  13. Small molecules as therapy for uveitis: a selected perspective of new and developing agents.

    PubMed

    Pleyer, Uwe; Algharably, Engi Abdel-Hady; Feist, Eugen; Kreutz, Reinhold

    2017-09-01

    Intraocular inflammation (uveitis) remains a significant burden of legal blindness. Because of its immune mediated and chronic recurrent nature, common therapy includes corticosteroids, disease-modifying anti-rheumatic drugs and more recently biologics as immune modulatory agents. The purpose of this article is to identify the role of new treatment approaches focusing on small molecules as therapeutic option in uveitis. Areas covered: A MEDLINE database search was conducted through February 2017 using the terms 'uveitis' and 'small molecule'. To provide ongoing and future perspectives in treatment options, also clinical trials as registered at ClinicalTrials.gov were included. Both, results from experimental as well as clinical research in this field were included. Since this field is rapidly evolving, a selection of promising agents had to be made. Expert opinion: Small molecules may interfere at different steps of the inflammatory cascade and appear as an interesting option in the treatment algorithm of uveitis. Because of their highly targeted molecular effects and their favorable bioavailability with the potential of topical application small molecules hold great promise. Nevertheless, a careful evaluation of these agents has to be made, since current experience is almost exclusively based on experimental uveitis models and few registered trials.

  14. Pro-drugs for indirect cannabinoids as therapeutic agents.

    PubMed

    Ashton, John

    2008-10-01

    Medicinal cannabis, cannabis extracts, and other cannabinoids are currently in use or under clinical trial investigation for the control of nausea, emesis and wasting in patients undergoing chemotherapy, the control of neuropathic pain and arthritic pain, and the control of the symptoms of multiple sclerosis. The further development of medicinal cannabinoids has been challenged with problems. These include the psychoactivity of cannabinoid CB1 receptor agonists and the lack of availability of highly selective cannabinoid receptor full agonists (for the CB1 or CB2 receptor), as well as problems of pharmacokinetics. Global activation of cannabinoid receptors is usually undesirable, and so enhancement of local endocannabinoid receptor activity with indirect cannabimimetics is an attractive strategy for therapeutic modulation of the endocannabinoid system. However, existing drugs of this type tend to be metabolized by the same enzymes as their target endocannabinoids and are not yet available in a form that is clinically useful. A potential solution to these problems may now have been suggested by the discovery that paracetamol (acetaminophen) exerts its analgesic (and probably anti-pyretic) effects by its degradation into an anandamide (an endocannabinoid) reuptake inhibitor (AM404) within the body, thus classifying it as pro-drug for an indirect cannabimimetic. Given the proven efficacy and safety of paracetamol, the challenge now is to develop related drugs, or entirely different substrates, into pro-drug indirect cannabimimetics with a similar safety profile to paracetamol but at high effective dose titrations.

  15. Fetal hemoglobin in sickle cell anemia: The Arab-Indian haplotype and new therapeutic agents.

    PubMed

    Habara, Alawi H; Shaikho, Elmutaz M; Steinberg, Martin H

    2017-11-01

    Fetal hemoglobin (HbF) has well-known tempering effects on the symptoms of sickle cell disease and its levels vary among patients with different haplotypes of the sickle hemoglobin gene. Compared with sickle cell anemia haplotypes found in patients of African descent, HbF levels in Saudi and Indian patients with the Arab-Indian (AI) haplotype exceed that in any other haplotype by nearly twofold. Genetic association studies have identified some loci associated with high HbF in the AI haplotype but these observations require functional confirmation. Saudi patients with the Benin haplotype have HbF levels almost twice as high as African patients with this haplotype but this difference is unexplained. Hydroxyurea is still the only FDA approved drug for HbF induction in sickle cell disease. While most patients treated with hydroxyurea have an increase in HbF and some clinical improvement, 10 to 20% of adults show little response to this agent. We review the genetic basis of HbF regulation focusing on sickle cell anemia in Saudi Arabia and discuss new drugs that can induce increased levels of HbF. © 2017 Wiley Periodicals, Inc.

  16. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria

    PubMed Central

    Feinberg, Konstantin; Kolaj, Adelaida; Wu, Chen; Grinshtein, Natalie; Krieger, Jonathan R.; Moran, Michael F.; Rubin, Lee L.

    2017-01-01

    Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug. PMID:28877995

  17. Will biofilm disassembly agents make it to market?

    PubMed Central

    Romero, Diego; Kolter, Roberto

    2013-01-01

    Nearly twelve years after promising results suggested that anti-biofilm agents might be developed into novel therapeutics, there are no such products on the market. In our opinion, the reasons for this have been predominantly economic. Recent developments, however, suggest that there may still be emerging opportunities for the developments of such products. PMID:21458996

  18. The therapeutic applications of antimicrobial peptides (AMPs): a patent review.

    PubMed

    Kang, Hee-Kyoung; Kim, Cheolmin; Seo, Chang Ho; Park, Yoonkyung

    2017-01-01

    Antimicrobial peptides (AMPs) are small molecules with a broad spectrum of antibiotic activities against bacteria, yeasts, fungi, and viruses and cytotoxic activity on cancer cells, in addition to anti-inflammatory and immunomodulatory activities. Therefore, AMPs have garnered interest as novel therapeutic agents. Because of the rapid increase in drug-resistant pathogenic microorganisms, AMPs from synthetic and natural sources have been developed using alternative antimicrobial strategies. This article presents a broad analysis of patents referring to the therapeutic applications of AMPs since 2009. The review focuses on the universal trends in the effective design, mechanism, and biological evolution of AMPs.

  19. Triggering autophagic cell death with a di-manganese(II) developmental therapeutic.

    PubMed

    Slator, Creina; Molphy, Zara; McKee, Vickie; Kellett, Andrew

    2017-08-01

    There is an unmet need for novel metal-based chemotherapeutics with alternative modes of action compared to clinical agents such as cisplatin and metallo-bleomycin. Recent attention in this field has focused on designing intracellular ROS-mediators as powerful cytotoxins of human cancers and identifying potentially unique toxic mechanisms underpinning their utility. Herein, we report the developmental di-manganese(II) therapeutic [Mn 2 (μ-oda)(phen) 4 (H 2 O) 2 ][Mn 2 (μ-oda)(phen) 4 (oda) 2 ]·4H 2 O (Mn-Oda) induces autophagy-promoted apoptosis in human ovarian cancer cells (SKOV3). The complex was initially identified to intercalate DNA by topoisomerase I unwinding and circular dichroism spectroscopy. Intracellular DNA damage, detected by γH2AX and the COMET assay, however, is not linked to direct Mn-Oda free radical generation, but is instead mediated through the promotion of intracellular reactive oxygen species (ROS) leading to autophagic vacuole formation and downstream nuclear degradation. To elucidate the cytotoxic profile of Mn-Oda, a wide range of biomarkers specific to apoptosis and autophagy including caspase release, mitochondrial membrane integrity, fluorogenic probe localisation, and cell cycle analysis were employed. Through these techniques, the activity of Mn-Oda was compared directly to i.) the pro-apoptotic clinical anticancer drug doxorubicin, ii.) the multimodal histone deacetylase inhibitor suberoyanilide hydroxamic acid, and iii.) the autophagy inducer rapamycin. In conjunction with ROS-specific trapping agents and established inhibitors of autophagy, we have identified autophagy-induction linked to mitochondrial superoxide production, with confocal image analysis of SKOV3 cells further supporting autophagosome formation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Anti-inflammatory Agents: Present and Future

    PubMed Central

    Dinarello, Charles A.

    2012-01-01

    Inflammation involving the innate and adaptive immune systems is a normal response to infection. However, when allowed to continue unchecked, inflammation may result in autoimmune or autoinflammatory disorders, neurodegenerative disease, or cancer. A variety of safe and effective anti-inflammatory agents are available, including aspirin and other nonsteroidal anti-inflammatories, with many more drugs under development. In particular, the new era of anti-inflammatory agents includes “biologicals” such as anticytokine therapies and small molecules that block the activity of kinases. Other anti-inflammatories currently in use or under development include statins, histone deacetylase inhibitors, PPAR agonists, and small RNAs. This Review discusses the current status of anti-inflammatory drug research and the development of new anti-inflammatory therapeutics. PMID:20303881

  1. Applications of Venom Proteins as Potential Anticancer agents.

    PubMed

    Ejaz, Samina; Hashmi, Fatima Bashir; Malik, Waqas Nazir; Ashraf, Muhammad; Nasim, Faiz Ul-Hassan; Iqbal, Muhammad

    2018-06-13

    Venoms, the secretions of venomous animals, are conventionally thought to be the source of toxic substances though the views about venoms in the recent era have been changed. Venoms are the proven source of many biologically and pharmacologically important useful molecules. Bioactive components present in different venoms are mainly proteins and peptides either enzymatic or non-enzymatic which have tremendous therapeutic potential and are being used for the treatment of variety of diseases including cancer. Many venoms proteins and peptides have been reported as potential anticancer agents. Venom proteins kill cancer cells through a variety of mechanisms which induce apoptosis and ultimately lead to cell death. Therefore, the understanding regarding sources and classification of venoms, biological role of venomous proteins, their anticancer potential and mechanisms to suppress/kill cancer cells needs to be addressed. The present review is an attempt to highlight the reported work and develop strategies to answer the key questions regarding the use of venomous proteins as therapeutic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Novel Therapeutics for Therapy-Related Acute Myeloid Leukemia: 2014.

    PubMed

    Feldman, Eric J

    2015-06-01

    Effective treatment options for adults with therapy-related AML continues to be an area of unmet need. Genetic and molecular changes within these leukemias confer resistance to standard chemotherapy regimens. Emerging developmental therapeutics in this area has focused on several approaches. These include; novel delivery of chemotherapy as well as newer DNA-damaging agents delivered through antibody-drug conjugates, increased use of hypomethylating agents, and molecularly-directed small molecules against specific mutations commonly occurring in secondary AML. Results of this efforts are encouraging, but to date, no clear improvements have been demonstrated in this most difficult to treat population. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Preparation, Surface Properties, and Therapeutic Applications of Gold Nanoparticles in Biomedicine.

    PubMed

    Panahi, Yunes; Mohammadhosseini, Majid; Nejati-Koshki, Kazem; Abadi, Azam Jafari Najaf; Moafi, Hadi Fallah; Akbarzadeh, Abolfazl; Farshbaf, Masoud

    2017-02-01

    Gold nanoparticles (AuNPs) due to their unique properties and manifold surface functionalities have been applied in bio-nanotechnology. The application of GNPs in recent medical and biological research is very extensive. Especially it involves applications such as detection and photothermalysis of microorganisms and cancer stem cells, biosensors; optical bio-imaging and observing of cells and these nanostructures also serve as practical platforms for therapeutic agents. In this review we studied all therapeutic applications of gold nanoparticles in biomedicine, synthesis methods, and surface properties. © Georg Thieme Verlag KG Stuttgart · New York.

  4. [Production of autologous keratinocytes for therapeutic purposes within a pharmaceutical company].

    PubMed

    Guillot, F L

    2001-01-01

    Because biotechnologies are growing and are becoming key players in the pharmaceutical industry scene, Genévrier Laboratories inaugurated in January 1998, a new department especially designed for the production of cultured cells as therapeutic agents. Meeting clinician therapeutic needs by providing autologous keratinocytes and chondrocytes in the near future, represents the primary aim of the Biotechnology department. Concrete cell-based products are already being used for the treatment of burns and cutaneous chronic wounds such as the EPIBASE graft, which corresponds to an epidermis sheet composed of cultured autologous keratinocytes.

  5. Prediction of Therapeutic Effect of Chemotherapy for NSCLC Using Dual-Input Perfusion CT Analysis: Comparison among Bevacizumab Treatment, Two-Agent Platinum-based Therapy without Bevacizumab, and Other Non-Bevacizumab Treatment Groups.

    PubMed

    Yabuuchi, Hidetake; Kawanami, Satoshi; Iwama, Eiji; Okamoto, Isamu; Kamitani, Takeshi; Sagiyama, Koji; Yamasaki, Yuzo; Honda, Hiroshi

    2018-02-01

    Purpose To determine whether dual-input perfusion computed tomography (CT) can predict therapeutic response and prognosis in patients who underwent chemotherapy for non-small cell lung cancer (NSCLC). Materials and Methods The institutional review board approved this study and informed consent was obtained. Sixty-six patients with stage III or IV NSCLC (42 men, 24 women; mean age, 63.4 years) who underwent chemotherapy were enrolled. Patients were separated into three groups: those who received chemotherapy with bevacizumab (BV) (n = 20), those who received two-agent platinum-based therapy without BV (n = 25), and those who received other non-BV treatment (n = 21). Before treatment, pulmonary artery perfusion (PAP) and bronchial artery perfusion (BAP) of the tumors were calculated. Predictors of tumor reduction after two courses of chemotherapy and prognosis were identified by using univariate and multivariate analyses. Covariates included were age, sex, patient's performance status, baseline maximum diameter of the tumor, clinical stage, pretreatment PAP, and pretreatment BAP. For multivariate analyses, multiple linear regression analysis for tumor reduction rate and Cox proportional hazards model for prognosis were performed, respectively. Results Pretreatment BAP was independently correlated with tumor reduction rate after two courses of chemotherapy in the BV treatment group (P = .006). Pretreatment BAP was significantly associated with a highly cumulative risk of death (P = .006) and disease progression after chemotherapy (P = .015) in the BV treatment group. Pretreatment PAP and clinical parameters were not significant predictors of therapeutic effect or prognosis in three treatment groups. Conclusion Pretreatment BAP derived from dual-input perfusion CT seems to be a promising tool to help predict responses to chemotherapy with BV in patients with NSCLC. © RSNA, 2017.

  6. Imaging of prehospital stroke therapeutics

    PubMed Central

    Lin, Michelle P; Sanossian, Nerses; Liebeskind, David S

    2016-01-01

    Despite significant quality improvement efforts to streamline in-hospital acute stroke care in the conventional model, there remain inherent layers of treatment delays, which could be eliminated with prehospital diagnostics and therapeutics administered in a mobile stroke unit. Early diagnosis using Telestroke and neuroimaging while in the ambulance may enable targeted routing to hospitals with specialized care, which will likely improve patient outcomes. Key clinical trials in Telestroke, mobile stroke units with prehospital neuroimaging capability, prehospital ultrasound and co-administration of various classes of neuroprotectives, antiplatelets and antithrombin agents with intravenous thrombolysis are discussed in this article. PMID:26308602

  7. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization.

    PubMed

    Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K

    2015-05-28

    Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.

  8. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models.

    PubMed

    Ng, Samuel Y; Yoshida, Noriaki; Christie, Amanda L; Ghandi, Mahmoud; Dharia, Neekesh V; Dempster, Joshua; Murakami, Mark; Shigemori, Kay; Morrow, Sara N; Van Scoyk, Alexandria; Cordero, Nicolas A; Stevenson, Kristen E; Puligandla, Maneka; Haas, Brian; Lo, Christopher; Meyers, Robin; Gao, Galen; Cherniack, Andrew; Louissaint, Abner; Nardi, Valentina; Thorner, Aaron R; Long, Henry; Qiu, Xintao; Morgan, Elizabeth A; Dorfman, David M; Fiore, Danilo; Jang, Julie; Epstein, Alan L; Dogan, Ahmet; Zhang, Yanming; Horwitz, Steven M; Jacobsen, Eric D; Santiago, Solimar; Ren, Jian-Guo; Guerlavais, Vincent; Annis, D Allen; Aivado, Manuel; Saleh, Mansoor N; Mehta, Amitkumar; Tsherniak, Aviad; Root, David; Vazquez, Francisca; Hahn, William C; Inghirami, Giorgio; Aster, Jon C; Weinstock, David M; Koch, Raphael

    2018-05-22

    T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs). We show that MDM2 and MDMX are targetable vulnerabilities within TP53-wild-type TCLs. ALRN-6924, a stapled peptide that blocks interactions between p53 and both MDM2 and MDMX has potent in vitro activity and superior in vivo activity across 8 different PDX models compared to the standard-of-care agent romidepsin. ALRN-6924 induced a complete remission in a patient with TP53-wild-type angioimmunoblastic T-cell lymphoma, demonstrating the potential for rapid translation of discoveries from subtype-specific preclinical models.

  9. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective.

    PubMed

    Shome, Soumitra; Talukdar, Anupam Das; Choudhury, Manabendra Dutta; Bhattacharya, Mrinal Kanti; Upadhyaya, Hrishikesh

    2016-12-01

    Nanotechnology-based drug delivery systems can resolve the poor bioavailability issue allied with curcumin. The therapeutic potential of curcumin can be enhanced by making nanocomposite preparation of curcumin with metal oxide nanoparticles, poly lactic-co-glycolic acid (PLGA) nanoparticles and solid lipid nanoparticles that increases its bioavailability in the tissue. Curcumin has manifold therapeutic effects which include antidiabetic, antihypertensive, anticancer, anti-inflammatory and antimicrobial properties. Curcumin can inhibit diabetes, heavy metal and stress-induced hypertension with its antioxidant, chelating and inhibitory effects on the pathways that lead to hypertension. Curcumin is an anticancer agent that can prevent abnormal cell proliferation. Nanocurcumin is an improved form of curcumin with enhanced therapeutic properties due to improved delivery to the diseased tissue, better internalization and reduced systemic elimination. Curcumin has multiple pharmacologic effects, but its poor bioavailability reduces its therapeutic effects. By conjugating curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels and polymeric nanoparticles, the water solubility and bioavailability of curcumin can be improved and thus increase its pharmacological effectiveness. © 2016 Royal Pharmaceutical Society.

  10. Prevalence of acid-reducing agents (ARA) in cancer populations and ARA drug-drug interaction potential for molecular targeted agents in clinical development.

    PubMed

    Smelick, Gillian S; Heffron, Timothy P; Chu, Laura; Dean, Brian; West, David A; Duvall, Scott L; Lum, Bert L; Budha, Nageshwar; Holden, Scott N; Benet, Leslie Z; Frymoyer, Adam; Dresser, Mark J; Ware, Joseph A

    2013-11-04

    Acid-reducing agents (ARAs) are the most commonly prescribed medications in North America and Western Europe. There are currently no data describing the prevalence of their use among cancer patients. However, this is a paramount question due to the potential for significant drug-drug interactions (DDIs) between ARAs, most commonly proton pump inhibitors (PPIs), and orally administered cancer therapeutics that display pH-dependent solubility, which may lead to decreased drug absorption and decreased therapeutic benefit. Of recently approved orally administered cancer therapeutics, >50% are characterized as having pH-dependent solubility, but there are currently no data describing the potential for this ARA-DDI liability among targeted agents currently in clinical development. The objectives of this study were to (1) determine the prevalence of ARA use among different cancer populations and (2) investigate the prevalence of orally administered cancer therapeutics currently in development that may be liable for an ARA-DDI. To address the question of ARA use among cancer patients, a retrospective cross-sectional analysis was performed using two large healthcare databases: Thomson Reuters MarketScan (N = 1,776,443) and the U.S. Department of Veterans Affairs (VA, N = 1,171,833). Among all cancer patients, the total prevalence proportion of ARA use (no. of cancer patients receiving an ARA/total no. of cancer patients) was 20% and 33% for the MarketScan and VA databases, respectively. PPIs were the most commonly prescribed agent, comprising 79% and 65% of all cancer patients receiving a prescription for an ARA (no. of cancer patients receiving a PPI /no. of cancer patients receiving an ARA) for the MarketScan and VA databases, respectively. To estimate the ARA-DDI liability of orally administered molecular targeted cancer therapeutics currently in development, two publicly available databases, (1) Kinase SARfari and (2) canSAR, were examined. For those orally administered

  11. Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research.

    PubMed

    Mulvana, Helen; Browning, Richard J; Luan, Ying; de Jong, Nico; Tang, Meng-Xing; Eckersley, Robert J; Stride, Eleanor

    2017-01-01

    The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.

  12. Biogenic Aldehydes as Therapeutic Targets for Cardiovascular Disease

    PubMed Central

    Nelson, Margaret-Ann M; Baba, Shahid P; Andersonc, Ethan J

    2017-01-01

    Aldehydes are continuously formed in biological systems through enzyme-dependent and spontaneous oxidation of lipids, glucose, and primary amines. These highly reactive, biogenic electrophiles can become toxic via covalent modification of proteins, lipids and DNA. Thus, agents that scavenge aldehydes through conjugation have therapeutic value for a number of major cardiovascular diseases. Several commonly-prescribed drugs (e.g., hydralazine) have been shown to have potent aldehyde-conjugating properties which may contribute to their beneficial effects. Herein, we briefly describe the major sources and toxicities of biogenic aldehydes in cardiovascular system, and provide an overview of drugs that are known to have aldehyde-conjugating effects. Some compounds of phytochemical origin, and histidyl-dipeptides with emerging therapeutic value in this area are also discussed. PMID:28528297

  13. First In Vivo Evaluation of Liposome-encapsulated 223Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasdottir, Thora J.; Fisher, Darrell R.; Borrebaek, Jorgen

    2006-09-13

    Liposomes carrying chemotherapeutics have had some success in cancer treatment and may be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution of and to estimate the radiation doses from the alpha emitter 223Ra loaded into pegylated liposomes in selected tissues. 223Ra was encapsulated in pegylated liposomal doxorubicin by ionophore-mediated loading. The biodistribution of liposomal 223Ra was compared to free cationic 223Ra in Balb/C mice. We showed that liposomal 223 Ra circulated in the blood with an initial half-time in excess of 24 hours, which agreed well with that reported for liposomal doxorubicin in rodents, whilemore » the blood half-time of cationic 223Ra was considerably less than one hour. When liposomal 223 Ra was catabolized, the released 223Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free 223Ra. Pre-treatment with non-radioactive liposomal doxorubicin 4 days in advance lessened the liver uptake of liposomal 223 Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Liposomal 223 Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents.« less

  14. A gastrointestinal anti-infectious biotherapeutic agent: the heat-treated Lactobacillus LB

    PubMed Central

    Liévin-Le Moal, Vanessa

    2016-01-01

    Experimental in vitro and in vivo studies support the hypothesis that heat-treated, lyophilized Lactobacillus acidophilus LB cells and concentrated, neutralized spent culture medium conserve the variety of pharmacological, antimicrobial activities of the live probiotic strain against several infectious agents involved in well-established acute and persistent watery diarrhoea and gastritis. Heat-treated cells and heat-stable secreted molecules trigger multiple strain-specific activities explaining the therapeutic efficacy of L. acidophilus LB. This review discusses the current body of knowledge on the antimicrobial mechanisms of action exerted by L. acidophilus LB demonstrated in in vitro and in vivo experimental studies, and the evidence for the therapeutic efficacy of this anti-infectious biotherapeutic agent proved in randomized clinical trials for the treatment of acute and persistent watery diarrhoea associated with several intestinal infectious diseases in humans. PMID:26770268

  15. Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action

    PubMed Central

    Rusnati, Marco; Urbinati, Chiara; Bonifacio, Silvia; Presta, Marco; Taraboletti, Giulia

    2010-01-01

    Uncontrolled neovascularization occurs in several angiogenesis-dependent diseases, including cancer. Neovascularization is tightly controlled by the balance between angiogenic growth factors and antiangiogenic agents. The various natural angiogenesis inhibitors identified so far affect neovascularization by different mechanisms of action. Thrombospondin-1 (TSP-1) is a matricellular modular glycoprotein that acts as a powerful endogenous inhibitor of angiogenesis. It acts both indirectly, by sequestering angiogenic growth factors and effectors in the extracellular environment, and directly, by inducing an antiangiogenic program in endothelial cells following engagement of specific receptors including CD36, CD47, integrins and proteoglycans (all involved in angiogenesis ). In view of its central, multifaceted role in angiogenesis, TSP-1 has served as a source of antiangiogenic tools, including TSP-1 fragments, synthetic peptides and peptidomimetics, gene therapy strategies, and agents that up-regulate TSP-1 expression. This review discusses TSP-1-based inhibitors of angiogenesis, their mechanisms of action and therapeutic potential, drawing our experience with angiogenic growth factor-interacting TSP-1 peptides, and the possibility of exploiting them to design novel antiangiogenic agents. PMID:27713299

  16. The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ataman, Ozlem U., E-mail: ouataman@hotmail.com; Sambrook, Sally J.; Wilks, Chris

    2012-11-15

    Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, andmore » PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests

  17. Identifying and individuating cognitive systems: a task-based distributed cognition alternative to agent-based extended cognition.

    PubMed

    Davies, Jim; Michaelian, Kourken

    2016-08-01

    This article argues for a task-based approach to identifying and individuating cognitive systems. The agent-based extended cognition approach faces a problem of cognitive bloat and has difficulty accommodating both sub-individual cognitive systems ("scaling down") and some supra-individual cognitive systems ("scaling up"). The standard distributed cognition approach can accommodate a wider variety of supra-individual systems but likewise has difficulties with sub-individual systems and faces the problem of cognitive bloat. We develop a task-based variant of distributed cognition designed to scale up and down smoothly while providing a principled means of avoiding cognitive bloat. The advantages of the task-based approach are illustrated by means of two parallel case studies: re-representation in the human visual system and in a biomedical engineering laboratory.

  18. Impact of Pharmacy-Led Dyslipidemia Interventions on Medication Safety and Therapeutic Failure in Patients

    DTIC Science & Technology

    2005-05-01

    Center (PEC) guidelines on therapeutic failure. Such guidelines recommend atorvastatin as an alternative agent in patients who had a bona fide failure...on simvastatin. Failures requiring atorvastatin as an alternate agent were defined as (a) patients not at their LDL goal on maximal doses of...simvastatin 20 atorvastatin 20 med changed 3 (2%) simvastatin 10 atorvastatin 10 med changed 1 (0.7%) simvastatin 10 atorvastatin 20 med changed 5 (3.3

  19. Clear cell carcinoma of the ovary: molecular insights and future therapeutic perspectives

    PubMed Central

    2016-01-01

    Clear cell carcinoma (CCC) of the ovary is known to show poorer sensitivity to chemotherapeutic agents and to be associated with a worse prognosis than the more common serous adenocarcinoma or endometrioid adenocarcinoma. To improve the survival of patients with ovarian CCC, the deeper understanding of the mechanism of CCC carcinogenesis as well as the efforts to develop novel treatment strategies in the setting of both front-line treatment and salvage treatment for recurrent disease are needed. In this presentation, we first summarize the mechanism responsible for carcinogenesis. Then, we highlight the promising therapeutic targets in ovarian CCC and provide information on the novel agents which inhibit these molecular targets. Moreover, we discuss on the cytotoxic anti-cancer agents that can be best combined with targeted agents in the treatment of ovarian CCC. PMID:27029752

  20. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases

    PubMed Central

    Speziale, Pietro; Rindi, Simonetta

    2018-01-01

    Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections. PMID:29533985