Sample records for identify vertebrate hosts

  1. Disentangling Vector-Borne Transmission Networks: A Universal DNA Barcoding Method to Identify Vertebrate Hosts from Arthropod Bloodmeals

    PubMed Central

    Alcaide, Miguel; Rico, Ciro; Ruiz, Santiago; Soriguer, Ramón; Muñoz, Joaquín; Figuerola, Jordi

    2009-01-01

    Emerging infectious diseases represent a challenge for global economies and public health. About one fourth of the last pandemics have been originated by the spread of vector-borne pathogens. In this sense, the advent of modern molecular techniques has enhanced our capabilities to understand vector-host interactions and disease ecology. However, host identification protocols have poorly profited of international DNA barcoding initiatives and/or have focused exclusively on a limited array of vector species. Therefore, ascertaining the potential afforded by DNA barcoding tools in other vector-host systems of human and veterinary importance would represent a major advance in tracking pathogen life cycles and hosts. Here, we show the applicability of a novel and efficient molecular method for the identification of the vertebrate host's DNA contained in the midgut of blood-feeding arthropods. To this end, we designed a eukaryote-universal forward primer and a vertebrate-specific reverse primer to selectively amplify 758 base pairs (bp) of the vertebrate mitochondrial Cytochrome c Oxidase Subunit I (COI) gene. Our method was validated using both extensive sequence surveys from the public domain and Polymerase Chain Reaction (PCR) experiments carried out over specimens from different Classes of vertebrates (Mammalia, Aves, Reptilia and Amphibia) and invertebrate ectoparasites (Arachnida and Insecta). The analysis of mosquito, culicoid, phlebotomie, sucking bugs, and tick bloodmeals revealed up to 40 vertebrate hosts, including 23 avian, 16 mammalian and one reptilian species. Importantly, the inspection and analysis of direct sequencing electropherograms also assisted the resolving of mixed bloodmeals. We therefore provide a universal and high-throughput diagnostic tool for the study of the ecology of haematophagous invertebrates in relation to their vertebrate hosts. Such information is crucial to support the efficient management of initiatives aimed at reducing

  2. The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frese, Steven A.; Benson, Andrew K.; Tannock, Gerald W.

    Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order tomore » differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.« less

  3. Insect-specific flavivirus infection is restricted by innate immunity in the vertebrate host.

    PubMed

    Tree, Maya O; McKellar, Dexter R; Kieft, Kristopher J; Watson, Alan M; Ryman, Kate D; Conway, Michael J

    2016-10-01

    Arboviruses are a large group of viruses that are transmitted by arthropods including ticks and mosquitoes. The global diversity of arboviruses is unknown; however, theoretical studies have estimated that over 2,000 mosquito-borne flaviviruses may exist. An increasing number of flaviviruses can only infect insect cells. We hypothesize that insect-specific flaviviruses (ISFVs) represent model genetic precursors to pathogenic flaviviruses, although the genetic mechanisms required for adaptation to vertebrate hosts are unclear. In this study, we determined that Kamiti River virus (KRV) infection was inhibited by innate immunity pathways in vertebrate cells. KRV infection of IRF3,5,7(-/-) mouse embryonic fibroblasts led to low levels of viral protein production and shedding of infectious progeny. These data suggest that ISFVs cannot evade vertebrate innate immune pathways. Identifying cellular pathways and genetic changes that are required for adaptation of arthropod-specific arboviruses to vertebrate hosts is critical to understanding emerging infectious disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates

    PubMed Central

    2011-01-01

    The successful replication of a viral agent in a host is a complex process that often leads to a species specificity of the virus and can make interspecies transmission difficult. Despite this difficulty, natural host switch seems to have been frequent among viruses of lower vertebrates, especially fish viruses, since there are several viruses known to be able to infect a wide range of species. In the present review we will focus on well documented reports of broad host range, variations in host specificity, and host shift events hypothesized for viruses within the genera Ranavirus, Novirhabdovirus, Betanodavirus, Isavirus, and some herpesvirus. PMID:21592358

  5. Meta-analyses of the proportion of Japanese encephalitis virus infection in vectors and vertebrate hosts.

    PubMed

    Oliveira, Ana R S; Cohnstaedt, Lee W; Strathe, Erin; Hernández, Luciana Etcheverry; McVey, D Scott; Piaggio, José; Cernicchiaro, Natalia

    2017-09-07

    Japanese encephalitis (JE) is a zoonosis in Southeast Asia vectored by mosquitoes infected with the Japanese encephalitis virus (JEV). Japanese encephalitis is considered an emerging exotic infectious disease with potential for introduction in currently JEV-free countries. Pigs and ardeid birds are reservoir hosts and play a major role on the transmission dynamics of the disease. The objective of the study was to quantitatively summarize the proportion of JEV infection in vectors and vertebrate hosts from data pertaining to observational studies obtained in a systematic review of the literature on vector and host competence for JEV, using meta-analyses. Data gathered in this study pertained to three outcomes: proportion of JEV infection in vectors, proportion of JEV infection in vertebrate hosts, and minimum infection rate (MIR) in vectors. Random-effects subgroup meta-analysis models were fitted by species (mosquito or vertebrate host species) to estimate pooled summary measures, as well as to compute the variance between studies. Meta-regression models were fitted to assess the association between different predictors and the outcomes of interest and to identify sources of heterogeneity among studies. Predictors included in all models were mosquito/vertebrate host species, diagnostic methods, mosquito capture methods, season, country/region, age category, and number of mosquitos per pool. Mosquito species, diagnostic method, country, and capture method represented important sources of heterogeneity associated with the proportion of JEV infection; host species and region were considered sources of heterogeneity associated with the proportion of JEV infection in hosts; and diagnostic and mosquito capture methods were deemed important contributors of heterogeneity for the MIR outcome. Our findings provide reference pooled summary estimates of vector competence for JEV for some mosquito species, as well as of sources of variability for these outcomes. Moreover, this

  6. Transmission of Ranavirus between Ectothermic Vertebrate Hosts

    PubMed Central

    Brenes, Roberto; Gray, Matthew J.; Waltzek, Thomas B.; Wilkes, Rebecca P.; Miller, Debra L.

    2014-01-01

    Transmission is an essential process that contributes to the survival of pathogens. Ranaviruses are known to infect different classes of lower vertebrates including amphibians, fishes and reptiles. Differences in the likelihood of infection among ectothermic vertebrate hosts could explain the successful yearlong persistence of ranaviruses in aquatic environments. The goal of this study was to determine if transmission of a Frog Virus 3 (FV3)-like ranavirus was possible among three species from different ectothermic vertebrate classes: Cope’s gray treefrog (Hyla chrysoscelis) larvae, mosquito fish (Gambusia affinis), and red-eared slider (Trachemys scripta elegans). We housed individuals previously exposed to the FV3-like ranavirus with naïve (unexposed) individuals in containers divided by plastic mesh screen to permit water flow between subjects. Our results showed that infected gray treefrog larvae were capable of transmitting ranavirus to naïve larval conspecifics and turtles (60% and 30% infection, respectively), but not to fish. Also, infected turtles and fish transmitted ranavirus to 50% and 10% of the naïve gray treefrog larvae, respectively. Nearly all infected amphibians experienced mortality, whereas infected turtles and fish did not die. Our results demonstrate that ranavirus can be transmitted through water among ectothermic vertebrate classes, which has not been reported previously. Moreover, fish and reptiles might serve as reservoirs for ranavirus given their ability to live with subclinical infections. Subclinical infections of ranavirus in fish and aquatic turtles could contribute to the pathogen’s persistence, especially when highly susceptible hosts like amphibians are absent as a result of seasonal fluctuations in relative abundance. PMID:24667325

  7. Quantifying the Availability of Vertebrate Hosts to Ticks: A Camera-Trapping Approach

    PubMed Central

    Hofmeester, Tim R.; Rowcliffe, J. Marcus; Jansen, Patrick A.

    2017-01-01

    The availability of vertebrate hosts is a major determinant of the occurrence of ticks and tick-borne zoonoses in natural and anthropogenic ecosystems and thus drives disease risk for wildlife, livestock, and humans. However, it remains challenging to quantify the availability of vertebrate hosts in field settings, particularly for medium-sized to large-bodied mammals. Here, we present a method that uses camera traps to quantify the availability of warm-bodied vertebrates to ticks. The approach is to deploy camera traps at questing height at a representative sample of random points across the study area, measure the average photographic capture rate for vertebrate species, and then correct these rates for the effective detection distance. The resulting “passage rate” is a standardized measure of the frequency at which vertebrates approach questing ticks, which we show is proportional to contact rate. A field test across twenty 1-ha forest plots in the Netherlands indicated that this method effectively captures differences in wildlife assemblage composition between sites. Also, the relative abundances of three life stages of the sheep tick Ixodes ricinus from drag sampling were correlated with passage rates of deer, which agrees with the known association with this group of host species, suggesting that passage rate effectively reflects the availability of medium- to large-sized hosts to ticks. This method will facilitate quantitative studies of the relationship between densities of questing ticks and the availability of different vertebrate species—wild as well as domesticated species—in natural and anthropogenic settings. PMID:28770219

  8. Identifying osteoporotic vertebral endplate and cortex fractures

    PubMed Central

    Santiago, Fernando Ruiz; Deng, Min; Nogueira-Barbosa, Marcello H.

    2017-01-01

    Osteoporosis is the most common metabolic bone disease, and vertebral fractures (VFs) are the most common osteoporotic fracture. A single atraumatic VF may lead to the diagnosis of osteoporosis. Prevalent VFs increase the risk of future vertebral and non-vertebral osteoporotic fracture independent of bone mineral density (BMD). The accurate and clear reporting of VF is essential to ensure patients with osteoporosis receive appropriate treatment. Radiologist has a vital role in the diagnosis of this disease. Several morphometrical and radiological methods for detecting osteoporotic VF have been proposed, but there is no consensus regarding the definition of osteoporotic VF. A vertebra may fracture yet not ever result in measurable changes in radiographic height or area. To overcome these difficulties, algorithm-based qualitative approach (ABQ) was developed with a focus on the identification of change in the vertebral endplate. Evidence of endplate fracture (rather than variation in vertebral shape) is the primary indicator of osteoporotic fracture according to ABQ criteria. Other changes that may mimic osteoporotic fractures should be systemically excluded. It is also possible that vertebral cortex fracture may not initially occur in endplate. Particularly, vertebral cortex fracture can occur in anterior vertebral cortex without gross vertebral deformity (VD), or fractures deform the anterior vertebral cortex without endplate disruption. This article aims to serve as a teaching material for physicians or researchers to identify vertebral endplate/cortex fracture (ECF). Emphasis is particularly dedicated to identifying ECF which may not be associated apparent vertebral body collapse. We believe a combined approach based on standardized radiologic evaluation by experts and morphometry measurement is the most appropriate approach to detect and classify VFs. PMID:29184768

  9. Helminths as vectors of pathogens in vertebrate hosts: a theoretical approach.

    PubMed

    Perkins, Sarah E; Fenton, Andy

    2006-07-01

    Pathogens frequently use vectors to facilitate transmission between hosts and, for vertebrate hosts, the vectors are typically ectoparasitic arthropods. However, other parasites that are intimately associated with their hosts may also be ideal candidate vectors; namely the parasitic helminths. Here, we present empirical evidence that helminth vectoring of pathogens occurs in a range of vertebrate systems by a variety of helminth taxa. Using a novel theoretical framework we explore the dynamics of helminth vectoring and determine which host-helminth-pathogen characteristics may favour the evolution of helminth vectoring. We use two theoretical models: the first is a population dynamic model amalgamated from standard macro- and microparasite models, which serves as a framework for investigation of within-host interactions between co-infecting pathogens and helminths. The second is an evolutionary model, which we use to predict the ecological conditions under which we would expect helminth vectoring to evolve. We show that, like arthropod vectors, helminth vectors increase pathogen fitness. However, unlike arthropod vectors, helminth vectoring increases the pathogenic impact on the host and may allow the evolution of high pathogen virulence. We show that concomitant infection of a host with a helminth and pathogen are not necessarily independent of one another, due to helminth vectoring of microparasites, with profound consequences for pathogen persistence and the impact of disease on the host population.

  10. Comparative genetic diversity of Lyme disease bacteria in Northern Californian ticks and their vertebrate hosts.

    PubMed

    Swei, Andrea; Bowie, Verna C; Bowie, Rauri C K

    2015-04-01

    Vector-borne pathogens are transmitted between vertebrate hosts and arthropod vectors, two immensely different environments for the pathogen. There is further differentiation among vertebrate hosts that often have complex, species-specific immunological responses to the pathogen. All this presents a heterogeneous environmental and immunological landscape with possible consequences on the population genetic structure of the pathogen. We evaluated the differential genetic diversity of the Lyme disease pathogen, Borrelia burgdorferi, in its vector, the western black-legged tick (Ixodes pacificus), and in its mammal host community using the 5S-23S rRNA intergenic spacer region. We found differences in haplotype distribution of B. burgdorferi in tick populations from two counties in California as well as between a sympatric tick and vertebrate host community. In addition, we found that three closely related haplotypes consistently occurred in high frequency in all sample types. Lastly, our study found lower species diversity of the B. burgdorferi species complex, known as B. burgdorferi sensu lato, in small mammal hosts versus the tick populations in a sympatric study area. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Genome-Wide RNAi Screen Identifies Broadly-Acting Host Factors That Inhibit Arbovirus Infection

    PubMed Central

    Yasunaga, Ari; Hanna, Sheri L.; Li, Jianqing; Cho, Hyelim; Rose, Patrick P.; Spiridigliozzi, Anna; Gold, Beth; Diamond, Michael S.; Cherry, Sara

    2014-01-01

    Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts. PMID:24550726

  12. Vertebrate hosts and phylogenetic relationships of amphibian trypanosomes from a potential invertebrate vector, Culex territans Walker (Diptera: Culicidae).

    PubMed

    Bartlett-Healy, Kristen; Crans, Wayne; Gaugler, Randy

    2009-04-01

    The blood meals of field-collected female Culex territans (Diptera: Culicidae) were concurrently assayed for the presence of trypanosomes and for vertebrate host identification. We amplified vertebrate DNA in 42 of 119 females and made positive identification to the host species level in 29 of those samples. Of the 119 field-collected Cx. territans females, 24 were infected with trypanosomes. Phylogenetic analysis placed the trypanosomes in the amphibian portion of the aquatic clade of the Trypanosomatidae. These trypanosomes were isolated from Cx. territans females that had fed on the frog species Rana clamitans, R. catesbeiana, R. virgatipes, and Rana spp. Results support a potential new lineage of dipteran-transmitted amphibian trypanosomes may occur within the aquatic clade. The frequency in which female Cx. territans acquire trypanosomes, through diverse feeding habits, indicates a new relationship between amphibian trypanosomes and mosquitoes that has not been examined previously. Combining Trypanosoma species, invertebrate, and vertebrate hosts to existing phylogenies can elucidate trypanosome and host relationships.

  13. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution.

    PubMed

    Hayward, Alexander; Cornwallis, Charlie K; Jern, Patric

    2015-01-13

    Although extensive research has demonstrated host-retrovirus microevolutionary dynamics, it has been difficult to gain a deeper understanding of the macroevolutionary patterns of host-retrovirus interactions. Here we use recent technological advances to infer broad patterns in retroviral diversity, evolution, and host-virus relationships by using a large-scale phylogenomic approach using endogenous retroviruses (ERVs). Retroviruses insert a proviral DNA copy into the host cell genome to produce new viruses. ERVs are provirus insertions in germline cells that are inherited down the host lineage and consequently present a record of past host-viral associations. By mining ERVs from 65 host genomes sampled across vertebrate diversity, we uncover a great diversity of ERVs, indicating that retroviral sequences are much more prevalent and widespread across vertebrates than previously appreciated. The majority of ERV clades that we recover do not contain known retroviruses, implying either that retroviral lineages are highly transient over evolutionary time or that a considerable number of retroviruses remain to be identified. By characterizing the distribution of ERVs, we show that no major vertebrate lineage has escaped retroviral activity and that retroviruses are extreme host generalists, having an unprecedented ability for rampant host switching among distantly related vertebrates. In addition, we examine whether the distribution of ERVs can be explained by host factors predicted to influence viral transmission and find that internal fertilization has a pronounced effect on retroviral colonization of host genomes. By capturing the mode and pattern of retroviral evolution and contrasting ERV diversity with known retroviral diversity, our study provides a cohesive framework to understand host-virus coevolution better.

  14. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution

    PubMed Central

    Hayward, Alexander; Cornwallis, Charlie K.; Jern, Patric

    2015-01-01

    Although extensive research has demonstrated host-retrovirus microevolutionary dynamics, it has been difficult to gain a deeper understanding of the macroevolutionary patterns of host–retrovirus interactions. Here we use recent technological advances to infer broad patterns in retroviral diversity, evolution, and host–virus relationships by using a large-scale phylogenomic approach using endogenous retroviruses (ERVs). Retroviruses insert a proviral DNA copy into the host cell genome to produce new viruses. ERVs are provirus insertions in germline cells that are inherited down the host lineage and consequently present a record of past host–viral associations. By mining ERVs from 65 host genomes sampled across vertebrate diversity, we uncover a great diversity of ERVs, indicating that retroviral sequences are much more prevalent and widespread across vertebrates than previously appreciated. The majority of ERV clades that we recover do not contain known retroviruses, implying either that retroviral lineages are highly transient over evolutionary time or that a considerable number of retroviruses remain to be identified. By characterizing the distribution of ERVs, we show that no major vertebrate lineage has escaped retroviral activity and that retroviruses are extreme host generalists, having an unprecedented ability for rampant host switching among distantly related vertebrates. In addition, we examine whether the distribution of ERVs can be explained by host factors predicted to influence viral transmission and find that internal fertilization has a pronounced effect on retroviral colonization of host genomes. By capturing the mode and pattern of retroviral evolution and contrasting ERV diversity with known retroviral diversity, our study provides a cohesive framework to understand host–virus coevolution better. PMID:25535393

  15. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks

    PubMed Central

    Hawlena, Hadas; Rynkiewicz, Evelyn; Toh, Evelyn; Alfred, Andrew; Durden, Lance A; Hastriter, Michael W; Nelson, David E; Rong, Ruichen; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith

    2013-01-01

    Bacterial community composition in blood-sucking arthropods can shift dramatically across time and space. We used 16S rRNA gene amplification and pyrosequencing to investigate the relative impact of vertebrate host-related, arthropod-related and environmental factors on bacterial community composition in fleas and ticks collected from rodents in southern Indiana (USA). Bacterial community composition was largely affected by arthropod identity, but not by the rodent host or environmental conditions. Specifically, the arthropod group (fleas vs ticks) determined the community composition of bacteria, where bacterial communities of ticks were less diverse and more dependent on arthropod traits—especially tick species and life stage—than bacterial communities of fleas. Our data suggest that both arthropod life histories and the presence of arthropod-specific endosymbionts may mask the effects of the vertebrate host and its environment. PMID:22739493

  16. Using lice to identify cowbird hosts

    USGS Publications Warehouse

    Hahn, D.C.; Osenton, P.C.; Price, R.W.

    1995-01-01

    Avian lice may link fledgling Brown-headed Cowbirds to the host species that raised them. Lice, if host-specific and transferred to nestling cowbirds, could serve to identify the principal host species raising cowbirds in a local area. This approach of trapping cowbird fledglings in a feeding flock, then collecting and identifying the lice they carry is economical. The alternative requires a team of people to locate large numbers of parasitized host nests. We trapped 250 cowbird fledglings during June-August 1994 on Patuxent Research Center, and from them we collected 426 lice identified as representing 6 genera and 12 species. We. also collected and identified 347 lice from 30 known host species that were mist-netted on our Center. The lice found on cowbird fledglings in this population can be linked to Wood Thrush, Red-eyed Vireo, Common Yellowthroat, Rufous-sided Towhee, Red-winged Blackbird, Common Grackle, Song Sparrow, Field Sparrow, and Tree sparrow, based on this study and also on published reports.

  17. The evolution, diversity, and host associations of rhabdoviruses.

    PubMed

    Longdon, Ben; Murray, Gemma G R; Palmer, William J; Day, Jonathan P; Parker, Darren J; Welch, John J; Obbard, Darren J; Jiggins, Francis M

    2015-01-01

    Metagenomic studies are leading to the discovery of a hidden diversity of RNA viruses. These new viruses are poorly characterized and new approaches are needed predict the host species these viruses pose a risk to. The rhabdoviruses are a diverse family of RNA viruses that includes important pathogens of humans, animals, and plants. We have discovered thirty-two new rhabdoviruses through a combination of our own RNA sequencing of insects and searching public sequence databases. Combining these with previously known sequences we reconstructed the phylogeny of 195 rhabdovirus sequences, and produced the most in depth analysis of the family to date. In most cases we know nothing about the biology of the viruses beyond the host they were identified from, but our dataset provides a powerful phylogenetic approach to predict which are vector-borne viruses and which are specific to vertebrates or arthropods. By reconstructing ancestral and present host states we found that switches between major groups of hosts have occurred rarely during rhabdovirus evolution. This allowed us to propose seventy-six new likely vector-borne vertebrate viruses among viruses identified from vertebrates or biting insects. Based on currently available data, our analysis suggests it is likely there was a single origin of the known plant viruses and arthropod-borne vertebrate viruses, while vertebrate- and arthropod-specific viruses arose at least twice. There are also few transitions between aquatic and terrestrial ecosystems. Viruses also cluster together at a finer scale, with closely related viruses tending to be found in closely related hosts. Our data therefore suggest that throughout their evolution, rhabdoviruses have occasionally jumped between distantly related host species before spreading through related hosts in the same environment. This approach offers a way to predict the most probable biology and key traits of newly discovered viruses.

  18. Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virus Nucleocapsid and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication.

    PubMed

    Schuchman, Ryan; Kilianski, Andy; Piper, Amanda; Vancini, Ricardo; Ribeiro, José M C; Sprague, Thomas R; Nasar, Farooq; Boyd, Gabrielle; Hernandez, Raquel; Glaros, Trevor

    2018-05-09

    Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro and Chikungunya virus. The most significant finding was that in addition to the host proteins, SINV non-structural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics. IMPORTANCE Pathogenic Alphaviruses, such as Chikungunya and Mayaro virus, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed Arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens such as dengue fever, West Nile and Yellow fever viruses. With few exceptions there are

  19. Predicting the mosquito species and vertebrate species involved in the theoretical transmission of Rift Valley fever virus in the United States.

    PubMed

    Golnar, Andrew J; Turell, Michael J; LaBeaud, A Desiree; Kading, Rebekah C; Hamer, Gabriel L

    2014-09-01

    Rift Valley fever virus (RVFV) is a mosquito-borne virus in the family Bunyaviridiae that has spread throughout continental Africa to Madagascar and the Arabian Peninsula. The establishment of RVFV in North America would have serious consequences for human and animal health in addition to a significant economic impact on the livestock industry. Published and unpublished data on RVFV vector competence, vertebrate host competence, and mosquito feeding patterns from the United States were combined to quantitatively implicate mosquito vectors and vertebrate hosts that may be important to RVFV transmission in the United States. A viremia-vector competence relationship based on published mosquito transmission studies was used to calculate a vertebrate host competence index which was then combined with mosquito blood feeding patterns to approximate the vector and vertebrate amplification fraction, defined as the relative contribution of the mosquito or vertebrate host to pathogen transmission. Results implicate several Aedes spp. mosquitoes and vertebrates in the order Artiodactyla as important hosts for RVFV transmission in the U.S. Moreover, this study identifies critical gaps in knowledge which would be necessary to complete a comprehensive analysis identifying the different contributions of mosquitoes and vertebrates to potential RVFV transmission in the U.S. Future research should focus on (1) the dose-dependent relationship between viremic exposure and the subsequent infectiousness of key mosquito species, (2) evaluation of vertebrate host competence for RVFV among North American mammal species, with particular emphasis on the order Artiodactyla, and (3) identification of areas with a high risk for RVFV introduction so data on local vector and host populations can help generate geographically appropriate amplification fraction estimates.

  20. Predicting the Mosquito Species and Vertebrate Species Involved in the Theoretical Transmission of Rift Valley Fever Virus in the United States

    PubMed Central

    Golnar, Andrew J.; Turell, Michael J.; LaBeaud, A. Desiree; Kading, Rebekah C.; Hamer, Gabriel L.

    2014-01-01

    Rift Valley fever virus (RVFV) is a mosquito-borne virus in the family Bunyaviridiae that has spread throughout continental Africa to Madagascar and the Arabian Peninsula. The establishment of RVFV in North America would have serious consequences for human and animal health in addition to a significant economic impact on the livestock industry. Published and unpublished data on RVFV vector competence, vertebrate host competence, and mosquito feeding patterns from the United States were combined to quantitatively implicate mosquito vectors and vertebrate hosts that may be important to RVFV transmission in the United States. A viremia-vector competence relationship based on published mosquito transmission studies was used to calculate a vertebrate host competence index which was then combined with mosquito blood feeding patterns to approximate the vector and vertebrate amplification fraction, defined as the relative contribution of the mosquito or vertebrate host to pathogen transmission. Results implicate several Aedes spp. mosquitoes and vertebrates in the order Artiodactyla as important hosts for RVFV transmission in the U.S. Moreover, this study identifies critical gaps in knowledge which would be necessary to complete a comprehensive analysis identifying the different contributions of mosquitoes and vertebrates to potential RVFV transmission in the U.S. Future research should focus on (1) the dose-dependent relationship between viremic exposure and the subsequent infectiousness of key mosquito species, (2) evaluation of vertebrate host competence for RVFV among North American mammal species, with particular emphasis on the order Artiodactyla, and (3) identification of areas with a high risk for RVFV introduction so data on local vector and host populations can help generate geographically appropriate amplification fraction estimates. PMID:25211133

  1. Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts.

    PubMed

    Lopaticki, Sash; Yang, Annie S P; John, Alan; Scott, Nichollas E; Lingford, James P; O'Neill, Matthew T; Erickson, Sara M; McKenzie, Nicole C; Jennison, Charlie; Whitehead, Lachlan W; Douglas, Donna N; Kneteman, Norman M; Goddard-Borger, Ethan D; Boddey, Justin A

    2017-09-15

    O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism.The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.

  2. Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle.

    PubMed

    Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian; Kümmerer, Beate Mareike

    2017-01-01

    The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d'Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus , e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number

  3. Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle

    PubMed Central

    Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian

    2017-01-01

    ABSTRACT The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d’Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus, e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an

  4. Concurrent micro-RNA mediated silencing of tick-borne flavivirus replication in tick vector and in the brain of vertebrate host.

    PubMed

    Tsetsarkin, Konstantin A; Liu, Guangping; Kenney, Heather; Hermance, Meghan; Thangamani, Saravanan; Pletnev, Alexander G

    2016-09-13

    Tick-borne viruses include medically important zoonotic pathogens that can cause life-threatening diseases. Unlike mosquito-borne viruses, whose impact can be restrained via mosquito population control programs, for tick-borne viruses only vaccination remains the reliable means of disease prevention. For live vaccine viruses a concern exists, that spillovers from viremic vaccinees could result in introduction of genetically modified viruses into sustainable tick-vertebrate host transmission cycle in nature. To restrict tick-borne flavivirus (Langat virus, LGTV) vector tropism, we inserted target sequences for tick-specific microRNAs (mir-1, mir-275 and mir-279) individually or in combination into several distant regions of LGTV genome. This caused selective attenuation of viral replication in tick-derived cells. LGTV expressing combinations of target sequences for tick- and vertebrate CNS-specific miRNAs were developed. The resulting viruses replicated efficiently and remained stable in simian Vero cells, which do not express these miRNAs, however were severely restricted to replicate in tick-derived cells. In addition, simultaneous dual miRNA targeting led to silencing of virus replication in live Ixodes ricinus ticks and abolished virus neurotropism in highly permissive newborn mice. The concurrent restriction of adverse replication events in vertebrate and invertebrate hosts will, therefore, ensure the environmental safety of live tick-borne virus vaccine candidates.

  5. Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates.

    PubMed

    Zhang, Zhimin; Li, Dapeng

    2018-05-31

    Adoption of thermal processing of the diet drives human evolution and gut microbiota diversity changes in a dietary habit-dependent manner. However, whether thermal processing of food triggers gut microbial variation remains unknown. Herein, we compared the microbiota of non-thermally processed and thermally processed food (NF and TF) and investigated gut microbiota associated with NF and TF in catfish Silurus meridionalis and C57BL/6 mice to assess effects of thermal processing of food on gut microbiota and to further identify the differences in host responses. We found no differences in overall microbial composition and structure in the pairwise NF and TF, but identified differential microbial communities between food and gut. Both fish and mice fed TF had significantly lower gut microbial diversity than those fed NF. Moreover, thermal processing of food triggered the changes in their microbial communities. Comparative host studies further indicated host species determined gut microbial assemblies, even if fed with the same food. Fusobacteria was the most abundant phylum in the fish, and Bacteroidetes and Firmicutes dominated in the mice. Besides the consistent reduction of Bacteroidetes and the balanced Protebacteria, the response of other dominated gut microbiota in the fish and mice to TF was taxonomically opposite at the phylum level, and those further found at the genus level. Our results reveal that thermal processing of food strongly contributes to the reduction of gut microbial diversity and differentially drives microbial alterations in a host-dependent manner, suggesting specific adaptations of host-gut microbiota in vertebrates responding to thermal processing of food. These findings open a window of opportunity to understand the decline in gut microbial diversity and the community variation in human evolution and provide new insights into the host-specific microbial assemblages associated with the use of processing techniques in food preparation in

  6. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi.

    PubMed

    Mylonakis, Eleftherios; Casadevall, Arturo; Ausubel, Frederick M

    2007-07-27

    Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.

  7. Bipteria vetusta n. sp. – an old parasite in an old host: tracing the origin of myxosporean parasitism in vertebrates.

    PubMed

    Kodádková, Alena; Bartošová-Sojková, Pavla; Holzer, Astrid S; Fiala, Ivan

    2015-03-01

    Myxosporea (Myxozoa), a group of parasitic Cnidaria, use mostly bony fishes (Teleostei) as intermediate hosts; however, they can also parasitize other vertebrates such as cartilaginous fish (Chondrichthyes). Molecular data of myxosporeans from sharks and rays (Elasmobranchii) revealed these parasites to be one of the most basal representatives in the myxosporean phylogenetic tree, suggesting their ancient evolutionary history. A new myxosporean species, Bipteria vetusta n. sp., was found in the gall bladder of rabbit fish, Chimaera monstrosa (Holocephali; Chondrichthyes), and ssrDNA-based phylogeny revealed its basal position within the marine myxosporean lineage. Molecular dating based on ssrDNA analysis suggested the origin of a stem lineage leading to the marine myxosporean lineage at the time of the origin of Chondrichthyes in the Silurian era. The two common lineages of Myxozoa, Myxosporea and Malacosporea, were estimated to have split from their common ancestor in the Cambrian era. Tracing the history of evolution of the "vertebrate host type" character in the context of molecular dating showed that cartilaginous fish represented an ancestral state for all myxosporeans. Teleosts were very likely subsequently parasitized by myxozoans four times, independently. Myxosporean radiation and diversification appear to correlate with intermediate host evolution. The first intermediate hosts of myxosporeans were cartilaginous fish. When bony fish evolved and radiated, myxosporeans switched and adapted to bony fish, and subsequently greatly diversified in this new host niche. We believe that the present study is the first attempt at molecular dating of myxozoan evolution based on an old myxosporean species – a living myxosporean fossil. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. Isolation of deer tick virus (Powassan virus, lineage II) from Ixodes scapularis and detection of antibody in vertebrate hosts sampled in the Hudson Valley, New York State

    PubMed Central

    2013-01-01

    Background Deer tick virus, DTV, is a genetically and ecologically distinct lineage of Powassan virus (POWV) also known as lineage II POWV. Human incidence of POW encephalitis has increased in the last 15 years potentially due to the emergence of DTV, particularly in the Hudson Valley of New York State. We initiated an extensive sampling campaign to determine whether POWV was extant throughout the Hudson Valley in tick vectors and/or vertebrate hosts. Methods More than 13,000 ticks were collected from hosts or vegetation and tested for the presence of DTV using molecular and virus isolation techniques. Vertebrate hosts of Ixodes scapularis (black-legged tick) were trapped (mammals) or netted (birds) and blood samples analyzed for the presence of neutralizing antibodies to POWV. Maximum likelihood estimates (MLE) were calculated to determine infection rates in ticks at each study site. Results Evidence of DTV was identified each year from 2007 to 2012, in nymphal and adult I. scapularis collected from the Hudson Valley. 58 tick pools were positive for virus and/or RNA. Infection rates were higher in adult ticks collected from areas east of the Hudson River. MLE limits ranged from 0.2-6.0 infected adults per 100 at sites where DTV was detected. Virginia opossums, striped skunks and raccoons were the source of infected nymphal ticks collected as replete larvae. Serologic evidence of POWV infection was detected in woodchucks (4/6), an opossum (1/6), and birds (4/727). Lineage I, prototype POWV, was not detected. Conclusions These data demonstrate widespread enzootic transmission of DTV throughout the Hudson Valley, in particular areas east of the river. High infection rates were detected in counties where recent POW encephalitis cases have been identified, supporting the hypothesis that lineage II POWV, DTV, is responsible for these human infections. PMID:24016533

  9. Isolation of deer tick virus (Powassan virus, lineage II) from Ixodes scapularis and detection of antibody in vertebrate hosts sampled in the Hudson Valley, New York State.

    PubMed

    Dupuis, Alan P; Peters, Ryan J; Prusinski, Melissa A; Falco, Richard C; Ostfeld, Richard S; Kramer, Laura D

    2013-07-15

    Deer tick virus, DTV, is a genetically and ecologically distinct lineage of Powassan virus (POWV) also known as lineage II POWV. Human incidence of POW encephalitis has increased in the last 15 years potentially due to the emergence of DTV, particularly in the Hudson Valley of New York State. We initiated an extensive sampling campaign to determine whether POWV was extant throughout the Hudson Valley in tick vectors and/or vertebrate hosts. More than 13,000 ticks were collected from hosts or vegetation and tested for the presence of DTV using molecular and virus isolation techniques. Vertebrate hosts of Ixodes scapularis (black-legged tick) were trapped (mammals) or netted (birds) and blood samples analyzed for the presence of neutralizing antibodies to POWV. Maximum likelihood estimates (MLE) were calculated to determine infection rates in ticks at each study site. Evidence of DTV was identified each year from 2007 to 2012, in nymphal and adult I. scapularis collected from the Hudson Valley. 58 tick pools were positive for virus and/or RNA. Infection rates were higher in adult ticks collected from areas east of the Hudson River. MLE limits ranged from 0.2-6.0 infected adults per 100 at sites where DTV was detected. Virginia opossums, striped skunks and raccoons were the source of infected nymphal ticks collected as replete larvae. Serologic evidence of POWV infection was detected in woodchucks (4/6), an opossum (1/6), and birds (4/727). Lineage I, prototype POWV, was not detected. These data demonstrate widespread enzootic transmission of DTV throughout the Hudson Valley, in particular areas east of the river. High infection rates were detected in counties where recent POW encephalitis cases have been identified, supporting the hypothesis that lineage II POWV, DTV, is responsible for these human infections.

  10. Use of lice to identify cowbird hosts

    USGS Publications Warehouse

    Hahn, D.C.; Price, R.D.; Osenton, P.C.

    2000-01-01

    The host specificity of avian lice (Phthiraptera) may be utilized by biologists to investigate the brood parasitism patterns of Brown-headed Cowbirds (Molothrus ater). As nestlings, brood parasites have a unique opportunity to encounter lice that are typically host specific. Lice are permanent hemimetabolic ectoparasites, a group found strictly on the body of the host, and they are transferred almost exclusively by bodily contact between hosts during care of young and at copulation. We investigated whether cowbird nestlings become infested with avian lice from their host parents and carry these lice away when they fledge, in effect bearing ectoparasite indicators of the species that raised them. The technique of examining the lice on cowbird fledglings to identify their foster parents would be much less costly than hiring a team of experts to determine parasitism patterns in the conventional way by finding hundreds of songbird nests. We examined 244 cowbird fledglings and found that they carried a rich fauna of lice representing 11 species and six genera, almost the entire spectrum of louse genera known to occur on passerines. We also examined 320 songbirds from 30 species, all known hosts of the Brown-headed Cowbird. As a group the host birds bore a diversity of louse species comparable to that on the fledgling cowbirds: 13 species of lice from seven genera. In contrast, most individual passerine host species yielded only 1 or 2 louse species, significantly fewer than the cowbird fledglings (p < 0.0001). Of 44 fledgling cowbirds carrying lice, 11 were linked to their probable avian foster parents via louse indicators, and these are the Wood Thrush and Red-winged Blackbird. Eighteen additional fledglings were linked to one of two possible foster parents. We concluded that cowbird fledglings do carry away host lice and this survey technique provides a partial assessment of local community parasitism patterns. The incomplete state of passerine louse taxonomy requires

  11. 7α-Hydroxypregnenolone regulating locomotor behavior identified in the brain and pineal gland across vertebrates.

    PubMed

    Tsutsui, Kazuyoshi; Haraguchi, Shogo; Vaudry, Hubert

    2017-09-14

    The brain synthesizes steroids de novo from cholesterol, which are called neurosteroids. Based on extensive studies on neurosteroids over the past thirty years, it is now accepted that neurosteroidogenesis in the brain is a conserved property across vertebrates. However, the formation of bioactive neurosteroids in the brain is still incompletely elucidated in vertebrates. In fact, we recently identified 7α-hydroxypregnenolone (7α-OH PREG) as a novel bioactive neurosteroid stimulating locomotor behavior in the brain of several vertebrates. The follow-up studies have demonstrated that the stimulatory action of brain 7α-OH PREG on locomotor behavior is mediated by the dopaminergic system across vertebrates. More recently, we have further demonstrated that the pineal gland, an endocrine organ located close to the brain, is a major site of the formation of bioactive neurosteroids. In addition to the brain, the pineal gland actively produces 7α-OH PREG de novo from cholesterol as a major pineal neurosteroid that acts on the brain to control locomotor rhythms. This review summarizes the identification, biosynthesis and mode of action of brain and pineal 7α-OH PREG, a new bioactive neurosteroid regulating locomotor behavior, across vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown.

    PubMed

    Colston, Timothy J; Jackson, Colin R

    2016-08-01

    Vertebrates harbour microbes both internally and externally, and collectively, these microorganisms (the 'microbiome') contain genes that outnumber the host's genetic information 10-fold. The majority of the microorganisms associated with vertebrates are found within the gut, where they influence host physiology, immunity and development. The development of next-generation sequencing has led to a surge in effort to characterize the microbiomes of various vertebrate hosts, a necessary first step to determine the functional role these communities play in host evolution or ecology. This shift away from a culture-based microbiological approach, limited in taxonomic breadth, has resulted in the emergence of patterns suggesting a core vertebrate microbiome dominated by members of the bacterial phyla Bacteroidetes, Proteobacteria and Firmicutes. Still, there is a substantial variation in the methodology used to characterize the microbiome, from differences in sample type to issues of sampling captive or wild hosts, and the majority (>90%) of studies have characterized the microbiome of mammals, which represent just 8% of described vertebrate species. Here, we review the state of microbiome studies of nonmammalian vertebrates and provide a synthesis of emerging patterns in the microbiome of those organisms. We highlight the importance of collection methods, and the need for greater taxonomic sampling of natural rather than captive hosts, a shift in approach that is needed to draw ecologically and evolutionarily relevant inferences. Finally, we recommend future directions for vertebrate microbiome research, so that attempts can be made to determine the role that microbial communities play in vertebrate biology and evolution. © 2016 John Wiley & Sons Ltd.

  13. Vertebral formula and congenital abnormalities of the vertebral column in rabbits.

    PubMed

    Proks, P; Stehlik, L; Nyvltova, I; Necas, A; Vignoli, M; Jekl, V

    2018-06-01

    The aim of this retrospective study of 330 rabbits (164 males, 166 females) was to determine different vertebral formulas and prevalence of congenital vertebral anomalies in rabbits from radiographs of the cervical (C), thoracic (Th), lumbar (L) and sacral (S) segments of the vertebral column. The number of vertebrae in each segment of vertebral column, position of anticlinal vertebra and localisation and type of congenital abnormalities were recorded. In 280/330 rabbits (84.8%) with normal vertebral morphology, seven vertebral formulas were identified: C7/Th12/L7/S4 (252/330, 76.4%), C7/Th12/L6/S4 (11/330, 3.3%), C7/Th13/L7/S4 (8/330, 2.4%), C7/Th12/L7/S5 (4/330, 1.2%), C7/Th12/L8/S4 (3/330, 0.9%), C7/Th12/L7/S6 (1/330, 0.3%) and C7/Th11/L7/S4 (1/330, 0.3%). The anticlinal vertebra was identified as Th10 in 56.4% of rabbits and Th11 in 42.4% of rabbits. Congenital spinal abnormalities were identified in 50/330 (15.2%) rabbits, predominantly as a single pathology (n=44). Transitional vertebrae represented the most common abnormalities (n=41 rabbits) in the thoracolumbar (n=35) and lumbosacral segments (n=6). Five variants of thoracolumbar transitional vertebrae were identified. Cervical butterfly vertebrae were detected in three rabbits. One rabbit exhibited three congenital vertebral anomalies: cervical block vertebra, thoracic hemivertebra and thoracolumbar transitional vertebra. Five rabbits exhibited congenital vertebral abnormalities with concurrent malalignment, specifically cervical kyphosis/short vertebra (n=1), thoracic lordoscoliosis/thoracolumbar transitional vertebrae (n=1), thoracic kyphoscoliosis/wedge vertebrae (n=2) and thoracolumbar lordoscoliosis/thoracolumbar transitional vertebrae/lumbosacral transitional vertebrae (n=1). These findings suggest that vertebral columns in rabbits display a wide range of morphologies, with occasional congenital malformations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Threats from Climate Change to Terrestrial Vertebrate Hotspots in Europe

    PubMed Central

    Maiorano, Luigi; Amori, Giovanni; Capula, Massimo; Falcucci, Alessandra; Masi, Monica; Montemaggiori, Alessandro; Pottier, Julien; Psomas, Achilleas; Rondinini, Carlo; Russo, Danilo; Zimmermann, Niklaus E.

    2013-01-01

    We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21st century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In particular, we considered the entire European sub-continent plus Turkey and a total of 1149 species of terrestrial vertebrates. For each species, we developed species-specific expert-based distribution models (validated against field data) which we used to calculate species richness maps for mammals, breeding birds, amphibians, and reptiles. Considering four global circulation model outputs and three emission scenarios, we generated an index of risk of exposure to extreme climates, and we used a bivariate local Moran’s I to identify the areas with a significant association between hotspots of diversity and high risk of exposure to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot for biodiversity and especially for threatened species for all taxa. In particular, the Iberian and Italian peninsulas host particularly high species richness as measured over all groups, while the eastern Mediterranean basin is particularly rich in amphibians and reptiles; the islands (both Macaronesian and Mediterranean) host the highest richness of threatened species for all taxa occurs. Our results suggest that the main hotspots of biodiversity for terrestrial vertebrates may be extensively influenced by the climate change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing serious concerns for biodiversity conservation. PMID:24066162

  15. Threats from climate change to terrestrial vertebrate hotspots in Europe.

    PubMed

    Maiorano, Luigi; Amori, Giovanni; Capula, Massimo; Falcucci, Alessandra; Masi, Monica; Montemaggiori, Alessandro; Pottier, Julien; Psomas, Achilleas; Rondinini, Carlo; Russo, Danilo; Zimmermann, Niklaus E; Boitani, Luigi; Guisan, Antoine

    2013-01-01

    We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21(st) century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In particular, we considered the entire European sub-continent plus Turkey and a total of 1149 species of terrestrial vertebrates. For each species, we developed species-specific expert-based distribution models (validated against field data) which we used to calculate species richness maps for mammals, breeding birds, amphibians, and reptiles. Considering four global circulation model outputs and three emission scenarios, we generated an index of risk of exposure to extreme climates, and we used a bivariate local Moran's I to identify the areas with a significant association between hotspots of diversity and high risk of exposure to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot for biodiversity and especially for threatened species for all taxa. In particular, the Iberian and Italian peninsulas host particularly high species richness as measured over all groups, while the eastern Mediterranean basin is particularly rich in amphibians and reptiles; the islands (both Macaronesian and Mediterranean) host the highest richness of threatened species for all taxa occurs. Our results suggest that the main hotspots of biodiversity for terrestrial vertebrates may be extensively influenced by the climate change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing serious concerns for biodiversity conservation.

  16. Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells

    PubMed Central

    Clark, Karl J.; Carlson, Daniel F.; Leaver, Michael J.; Foster, Linda K.; Fahrenkrug, Scott C.

    2009-01-01

    The Tc1/mariner family of DNA transposons is widespread across fungal, plant and animal kingdoms, and thought to contribute to the evolution of their host genomes. To date, an active Tc1 transposon has not been identified within the native genome of a vertebrate. We demonstrate that Passport, a native transposon isolated from a fish (Pleuronectes platessa), is active in a variety of vertebrate cells. In transposition assays, we found that the Passport transposon system improved stable cellular transgenesis by 40-fold, has an apparent preference for insertion into genes, and is subject to overproduction inhibition like other Tc1 elements. Passport represents the first vertebrate Tc1 element described as both natively intact and functionally active, and given its restricted phylogenetic distribution, may be contemporaneously active. The Passport transposon system thus complements the available genetic tools for the manipulation of vertebrate genomes, and may provide a unique system for studying the infiltration of vertebrate genomes by Tc1 elements. PMID:19136468

  17. Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells.

    PubMed

    Clark, Karl J; Carlson, Daniel F; Leaver, Michael J; Foster, Linda K; Fahrenkrug, Scott C

    2009-03-01

    The Tc1/mariner family of DNA transposons is widespread across fungal, plant and animal kingdoms, and thought to contribute to the evolution of their host genomes. To date, an active Tc1 transposon has not been identified within the native genome of a vertebrate. We demonstrate that Passport, a native transposon isolated from a fish (Pleuronectes platessa), is active in a variety of vertebrate cells. In transposition assays, we found that the Passport transposon system improved stable cellular transgenesis by 40-fold, has an apparent preference for insertion into genes, and is subject to overproduction inhibition like other Tc1 elements. Passport represents the first vertebrate Tc1 element described as both natively intact and functionally active, and given its restricted phylogenetic distribution, may be contemporaneously active. The Passport transposon system thus complements the available genetic tools for the manipulation of vertebrate genomes, and may provide a unique system for studying the infiltration of vertebrate genomes by Tc1 elements.

  18. Comparing mechanisms of host manipulation across host and parasite taxa

    USGS Publications Warehouse

    Lafferty, Kevin D.; Shaw, Jenny C.

    2013-01-01

    Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host’s reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host’s contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.

  19. Validation of an osteoporosis self-assessment tool to identify primary osteoporosis and new osteoporotic vertebral fractures in postmenopausal Chinese women in Beijing

    PubMed Central

    2013-01-01

    Background This study aimed to validate the effectiveness of the Osteoporosis Self-assessment Tool for Asians (OSTA) in identifying postmenopausal women at increased risk of primary osteoporosis and painful new osteoporotic vertebral fractures in a large selected Han Chinese population in Beijing. Methods We assessed the performance of the OSTA in 1201 women. Subjects with an OSTA index > -1 were classified as the low risk group, and those with an index ≤ -1 were classified as the increased risk group. Osteoporosis is defined by a T-score ≤ 2.5 standard deviations according to the WHO criteria. All painful, new vertebral fractures were identified by X-ray and MRI scans with correlating clinical signs and symptoms. We determined the sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve for correctly selecting women with osteoporosis and painful new vertebral fractures. Results Of the study subjects, 29.3% had osteoporosis, and the prevalence of osteoporosis increased progressively with age. The areas under the ROC curves of the OSTA index (cutoff = -1) to identify osteoporosis in the femoral neck, total hip, and lumbar spine were 0.824, 0.824, and 0.776, respectively. The sensitivity and specificity of the OSTA index (cutoff = -1) to identify osteoporosis in healthy women were 66% and 76%, respectively. With regard to painful new vertebral fractures, the area under the ROC curve relating the OSTA index (cutoff = -1) to new vertebral fractures was 0.812. Conclusions The OSTA may be a simple and effective tool for identifying the risk of osteoporosis and new painful osteoporotic vertebral fractures in Han Chinese women. PMID:24053509

  20. Intestinal microbiota composition in fishes is influenced by host ecology and environment.

    PubMed

    Wong, Sandi; Rawls, John F

    2012-07-01

    The digestive tracts of vertebrates are colonized by complex assemblages of micro-organisms, collectively called the gut microbiota. Recent studies have revealed important contributions of gut microbiota to vertebrate health and disease, stimulating intense interest in understanding how gut microbial communities are assembled and how they impact host fitness (Sekirov et al. 2010). Although all vertebrates harbour a gut microbiota, current information on microbiota composition and function has been derived primarily from mammals. Comparisons of different mammalian species have revealed intriguing associations between gut microbiota composition and host diet, anatomy and phylogeny (Ley et al. 2008b). However, mammals constitute <10% of all vertebrate species, and it remains unclear whether similar associations exist in more diverse and ancient vertebrate lineages such as fish. In this issue, Sullam et al. (2012) make an important contribution toward identifying factors determining gut microbiota composition in fishes. The authors conducted a detailed meta-analysis of 25 bacterial 16S rRNA gene sequence libraries derived from the intestines of different fish species. To provide a broader context for their analysis, they compared these data sets to a large collection of 16S rRNA gene sequence data sets from diverse free-living and host-associated bacterial communities. Their results suggest that variation in gut microbiota composition in fishes is strongly correlated with species habitat salinity, trophic level and possibly taxonomy. Comparison of data sets from fish intestines and other environments revealed that fish gut microbiota compositions are often similar to those of other animals and contain relatively few free-living environmental bacteria. These results suggest that the gut microbiota composition of fishes is not a simple reflection of the micro-organisms in their local habitat but may result from host-specific selective pressures within the gut (Bevins

  1. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  2. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    PubMed Central

    Tabor, Ala E.; Ali, Abid; Rehman, Gauhar; Rocha Garcia, Gustavo; Zangirolamo, Amanda Fonseca; Malardo, Thiago; Jonsson, Nicholas N.

    2017-01-01

    Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites), blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding), infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also contained higher

  3. Parasite and vertebrate host genetic heterogeneity determine the outcome of infection by Schistosoma mansoni.

    PubMed

    Nino Incani, R; Morales, G; Cesari, I M

    2001-02-01

    Intraspecific variation in Schistosoma mansoni infection and modulation of its expression by vertebrate host genetics was studied by evaluation of some biological parameters of the infection in BALB/c and C57BL/6 mice infected with one Brazilian (BH) and two Venezuelan (YT and SM) laboratory strains of the parasite. Mice infected with 60 cercariae of each parasite strain were euthanized at 5, 6, 8, and 12 weeks. Parameters recorded included the number of adult worms recovered by portal perfusion (infectivity); the number of eggs in the feces, the intestine, and the liver; and the ability of the eggs to cross the intestine, expressed as a quotient of the number of eggs in the intestine versus the feces. Results showed that the parasite appeared to determine the infectivity, the sex ratio, the onset and timing of oviposition, the number of eggs produced, initial egg laying toward the liver, and the ability to cross the intestinal wall. In this sense the BH strain appeared to be the most efficient and the SM strain, the most delayed; the YT strain was intermediate, although closer to the SM strain. On the other hand, the host appeared to influence the susceptibility to infection, the fecundity, and the percentage of eggs distributed in the liver and in the intestine during the chronic stage. In this sense, although they have been shown to be less susceptible to infection than BALB/c mice, C57BL/6 mice permit more eggs to be produced and exhibit similar numbers of eggs in the intestine and the liver at certain time points. It appears from these results that parasite genetics is essential for the outcome of infection with S. mansoni, but some characteristics may be quantitatively modulated by host genetics.

  4. Vertebral Osteomyelitis Caused by Helicobacter cinaedi Identified Using Broad-range Polymerase Chain Reaction with Sequencing of the Biopsied Specimen.

    PubMed

    Hase, Ryota; Hirooka, Takuya; Itabashi, Takashi; Endo, Yasunobu; Otsuka, Yoshihito

    2018-05-15

    A 65-year-old man presented with gradually exacerbating low back pain. Magnetic resonance imaging revealed vertebral osteomyelitis in the Th11-L2 vertebral bodies and discs. The patient showed negative findings on conventional cultures. Direct broad-range polymerase chain reaction (PCR) with sequencing of the biopsied specimen had the highest similarity to the 16S rRNA gene of Helicobacter cinaedi. This case suggests that direct broad-range PCR with sequencing should be considered when conventional cultures cannot identify the causative organism of vertebral osteomyelitis, and that this method may be particularly useful when the pathogen is a fastidious organism, such as H. cinaedi.

  5. In Vivo fitness associated with high virulence in a vertebrate virus is a complex trait regulated by host entry, replication, and shedding

    USGS Publications Warehouse

    Wargo, Andrew R.; Kurath, Gael

    2011-01-01

    The relationship between pathogen fitness and virulence is typically examined by quantifying only one or two pathogen fitness traits. More specifically, it is regularly assumed that within-host replication, as a precursor to transmission, is the driving force behind virulence. In reality, many traits contribute to pathogen fitness, and each trait could drive the evolution of virulence in different ways. Here, we independently quantified four viral infection cycle traits, namely, host entry, within-host replication, within-host coinfection fitness, and shedding, in vivo, in the vertebrate virus Infectious hematopoietic necrosis virus (IHNV). We examined how each of these stages of the viral infection cycle contributes to the fitness of IHNV genotypes that differ in virulence in rainbow trout. This enabled us to determine how infection cycle fitness traits are independently associated with virulence. We found that viral fitness was independently regulated by each of the traits examined, with the largest impact on fitness being provided by within-host replication. Furthermore, the more virulent of the two genotypes of IHNV we used had advantages in all of the traits quantified. Our results are thus congruent with the assumption that virulence and within-host replication are correlated but suggest that infection cycle fitness is complex and that replication is not the only trait associated with virulence.

  6. Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems

    PubMed Central

    MacPherson, Jamie I.; Dickerson, Jonathan E.; Pinney, John W.; Robertson, David L.

    2010-01-01

    Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell functions in order to replicate. This is mediated through a network of virus-host interactions. A variety of recent studies have catalogued this information. In particular the HIV-1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein interaction detail. However, as a map of HIV-1 infection, the HHPID is problematic, as it contains curation error and redundancy; in addition, it is based on a heterogeneous set of experimental methods. Based on identifying shared patterns of HIV-host interaction, we have developed a novel methodology to delimit the core set of host-cellular functions and their associated perturbation from the HHPID. Initially, using biclustering, we identify 279 significant sets of host proteins that undergo the same types of interaction. The functional cohesiveness of these protein sets was validated using a human protein-protein interaction network, gene ontology annotation and sequence similarity. Next, using a distance measure, we group host protein sets and identify 37 distinct higher-level subsystems. We further demonstrate the biological significance of these subsystems by cross-referencing with global siRNA screens that have been used to detect host factors necessary for HIV-1 replication, and investigate the seemingly small intersect between these data sets. Our results highlight significant host-cell subsystems that are perturbed during the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that contribute to these perturbations. Thus, our work disentangles the complex set of HIV-1-host protein interactions in the HHPID, reconciles these with siRNA screens and provides an accessible and interpretable map of infection. PMID:20686668

  7. Vertebrate Cells Express Protozoan Antigen after Hybridization

    NASA Astrophysics Data System (ADS)

    Crane, Mark St. J.; Dvorak, James A.

    1980-04-01

    Epimastigotes, the invertebrate host stage of Trypanosoma cruzi, the protozoan parasite causing Chagas' disease in man, were fused with vertebrate cells by using polyethylene glycol. Hybrid cells were selected on the basis of T. cruzi DNA complementation of biochemical deficiencies in the vertebrate cells. Some clones of the hybrid cells expressed T. cruzi-specific antigen. It might be possible to use selected antigens obtained from the hybrids as vaccines for immunodiagnosis or for elucidation of the pathogenesis of Chagas' disease.

  8. The incidence of secondary vertebral fracture of vertebral augmentation techniques versus conservative treatment for painful osteoporotic vertebral fractures: a systematic review and meta-analysis.

    PubMed

    Song, Dawei; Meng, Bin; Gan, Minfeng; Niu, Junjie; Li, Shiyan; Chen, Hao; Yuan, Chenxi; Yang, Huilin

    2015-08-01

    Percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP) are minimally invasive and effective vertebral augmentation techniques for managing osteoporotic vertebral compression fractures (OVCFs). Recent meta-analyses have compared the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques or conservative treatment; however, the inclusions were not thorough and rigorous enough, and the effects of each technique on the incidence of secondary vertebral fractures remain unclear. To perform an updated systematic review and meta-analysis of the studies with more rigorous inclusion criteria on the effects of vertebral augmentation techniques and conservative treatment for OVCF on the incidence of secondary vertebral fractures. PubMed, MEDLINE, EMBASE, SpringerLink, Web of Science, and the Cochrane Library database were searched for relevant original articles comparing the incidence of secondary vertebral fractures between vertebral augmentation techniques and conservative treatment for patients with OVCFs. Randomized controlled trials (RCTs) and prospective non-randomized controlled trials (NRCTs) were identified. The methodological qualities of the studies were evaluated, relevant data were extracted and recorded, and an appropriate meta-analysis was conducted. A total of 13 articles were included. The pooled results from included studies showed no statistically significant differences in the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques and conservative treatment. Subgroup analysis comparing different study designs, durations of symptoms, follow-up times, races of patients, and techniques were conducted, and no significant differences in the incidence of secondary fractures were identified (P > 0.05). No obvious publication bias was detected by either Begg's test (P = 0.360 > 0.05) or Egger's test (P = 0.373 > 0.05). Despite current thinking in the

  9. Use of clinical risk factors to identify postmenopausal women with vertebral fractures.

    PubMed

    Tobias, J H; Hutchinson, A P; Hunt, L P; McCloskey, E V; Stone, M D; Martin, J C; Thompson, P W; Palferman, T G; Bhalla, A K

    2007-01-01

    Previous studies have been unable to identify risk factors for prevalent vertebral fractures (VF), which are suitable for use in selection strategies intended to target high-risk sub-groups for diagnostic assessment. However, these studies generally consisted of large epidemiology surveys based on questionnaires and were only able to evaluate a limited number of risk factors. Here, we investigated whether a stronger relationship exists with prevalent VF when conventional risk factors are combined with additional information obtained from detailed one-to-one assessment. Women aged 65-75 registered at four geographically distinct GP practices were invited to participate (n=1,518), of whom 540 attended for assessment as follows: a questionnaire asking about risk factors for osteoporosis such as height loss compared to age 25 and history of non-vertebral fracture (NVF), the get-up-and-go test, Margolis back pain score, measurement of wall-tragus and rib-pelvis distances, and BMD as measured by the distal forearm BMD. A lateral thoraco-lumbar spine X-ray was obtained, which was subsequently scored for the presence of significant vertebral deformities. Of the 509 subjects who underwent spinal radiographs, 37 (7.3%) were found to have one or more VF. Following logistic regression analysis, the four most predictive clinical risk factors for prevalent VF were: height loss (P=0.006), past NVF (P=0.004), history of back pain (P=0.075) and age (P=0.05). BMD was also significantly associated with prevalent VF (P=0.002), but its inclusion did not affect associations with other variables. Factors elicited from detailed one-to-one assessment were not related to the risk of one or more prevalent VFs. The area under ROC curves derived from these regressions, which suggested that models for prevalent VF had modest predictive accuracy, were as follows: 0.68 (BMD), 0.74 (four clinical risk factors above) and 0.78 (clinical risk factors + BMD). Analyses were repeated in relation to the

  10. The Evolution of LINE-1 in Vertebrates

    PubMed Central

    Sookdeo, Akash

    2016-01-01

    The abundance and diversity of the LINE-1 (L1) retrotransposon differ greatly among vertebrates. Mammalian genomes contain hundreds of thousands L1s that have accumulated since the origin of mammals. A single group of very similar elements is active at a time in mammals, thus a single lineage of active families has evolved in this group. In contrast, non-mammalian genomes (fish, amphibians, reptiles) harbor a large diversity of concurrently transposing families, which are all represented by very small number of recently inserted copies. Why the pattern of diversity and abundance of L1 is so different among vertebrates remains unknown. To address this issue, we performed a detailed analysis of the evolution of active L1 in 14 mammals and in 3 non-mammalian vertebrate model species. We examined the evolution of base composition and codon bias, the general structure, and the evolution of the different domains of L1 (5′UTR, ORF1, ORF2, 3′UTR). L1s differ substantially in length, base composition, and structure among vertebrates. The most variation is found in the 5′UTR, which is longer in amniotes, and in the ORF1, which tend to evolve faster in mammals. The highly divergent L1 families of lizard, frog, and fish share species-specific features suggesting that they are subjected to the same functional constraints imposed by their host. The relative conservation of the 5′UTR and ORF1 in non-mammalian vertebrates suggests that the repression of transposition by the host does not act in a sequence-specific manner and did not result in an arms race, as is observed in mammals. PMID:28175298

  11. The Evolution of LINE-1 in Vertebrates.

    PubMed

    Boissinot, Stéphane; Sookdeo, Akash

    2016-12-01

    The abundance and diversity of the LINE-1 (L1) retrotransposon differ greatly among vertebrates. Mammalian genomes contain hundreds of thousands L1s that have accumulated since the origin of mammals. A single group of very similar elements is active at a time in mammals, thus a single lineage of active families has evolved in this group. In contrast, non-mammalian genomes (fish, amphibians, reptiles) harbor a large diversity of concurrently transposing families, which are all represented by very small number of recently inserted copies. Why the pattern of diversity and abundance of L1 is so different among vertebrates remains unknown. To address this issue, we performed a detailed analysis of the evolution of active L1 in 14 mammals and in 3 non-mammalian vertebrate model species. We examined the evolution of base composition and codon bias, the general structure, and the evolution of the different domains of L1 (5′UTR, ORF1, ORF2, 3′UTR). L1s differ substantially in length, base composition, and structure among vertebrates. The most variation is found in the 5′UTR, which is longer in amniotes, and in the ORF1, which tend to evolve faster in mammals. The highly divergent L1 families of lizard, frog, and fish share species-specific features suggesting that they are subjected to the same functional constraints imposed by their host. The relative conservation of the 5′UTR and ORF1 in non-mammalian vertebrates suggests that the repression of transposition by the host does not act in a sequence-specific manner and did not result in an arms race, as is observed in mammals.

  12. The scaling of total parasite biomass with host body mass.

    PubMed

    Poulin, Robert; George-Nascimento, Mario

    2007-03-01

    The selective pressure exerted by parasites on their hosts will to a large extent be influenced by the abundance or biomass of parasites supported by the hosts. Predicting how much parasite biomass can be supported by host individuals or populations should be straightforward: ultimately, parasite biomass must be controlled by resource supply, which is a direct function of host metabolism. Using comparative data sets on the biomass of metazoan parasites in vertebrate hosts, we determined how parasite biomass scales with host body mass. If the rate at which host resources are converted into parasite biomass is the same as that at which host resources are channelled toward host growth, then on a log-log plot parasite biomass should increase with host mass with a slope of 0.75 when corrected for operating temperature. Average parasite biomass per host scaled with host body mass at a lower rate than expected (across 131 vertebrate species, slope=0.54); this was true independently of phylogenetic influences and also within the major vertebrate groups separately. Since most host individuals in a population harbour a parasite load well below that allowed by their metabolic rate, because of the stochastic nature of infection, it is maximum parasite biomass, and not average biomass, that is predicted to scale with metabolic rate among host species. We found that maximum parasite biomass scaled isometrically (i.e., slope=1) with host body mass. Thus, larger host species can potentially support the same parasite biomass per gram of host tissues as small host species. The relationship found between maximum parasite biomass and host body mass, with its slope greater than 0.75, suggests that parasites are not like host tissues: they are able to appropriate more host resources than expected from metabolically derived host growth rates.

  13. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  14. Vertebral body innervation: Implications for pain.

    PubMed

    Buonocore, Michelangelo; Aloisi, Anna Maria; Barbieri, Massimo; Gatti, Anna Maria; Bonezzi, Cesare

    2010-03-01

    Vertebral fractures often cause intractable pain. To define the involvement of vertebral body innervation in pain, we collected specimens from male and female patients during percutaneous kyphoplasty, a procedure used for reconstruction of the vertebral body. Specimens were taken from 31 patients (9 men and 22 women) suffering high-intensity pain before surgery. In total, 1,876 histological preparations were obtained and analysed. Immunohistochemical techniques were used to locate the nerves in the specimens. The nerve fibres were labelled by indirect immunofluorescence with the primary antibody directed against Protein Gene Product 9.5 (PGP 9.5), a pan-neuronal marker; another primary antibody directed against type IV collagen (Col IV) was used to identify vessels and to determine their relationship with vertebral nerve fibres. The mean percentage of samples in which it was possible to identify nerve fibres was 35% in men and 29% in women. The percentages varied depending on the spinal level considered and the sex of the subject, nerve fibres being mostly present around vessels (95%). In conclusion, there is scarce innervation of the vertebral bodies, with a clear prevalence of fibres located around vessels. It seems unlikely that this pattern of vertebral body innervation is involved in vertebral pain or in pain relief following kyphoplasty.

  15. CpG Dinucleotide Frequencies Reveal the Role of Host Methylation Capabilities in Parvovirus Evolution

    PubMed Central

    Upadhyay, Mohita; Samal, Jasmine; Kandpal, Manish; Vasaikar, Suhas; Biswas, Banhi; Gomes, James

    2013-01-01

    Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to “fractional” methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses. PMID:24109231

  16. CpG dinucleotide frequencies reveal the role of host methylation capabilities in parvovirus evolution.

    PubMed

    Upadhyay, Mohita; Samal, Jasmine; Kandpal, Manish; Vasaikar, Suhas; Biswas, Banhi; Gomes, James; Vivekanandan, Perumal

    2013-12-01

    Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.

  17. Host-seeking strategies of mosquito disease vectors.

    PubMed

    Day, Jonathan F

    2005-12-01

    Disease transmission by arthropods normally requires at least 2 host contacts. During the first, a pathogen (nematode, protozoan, or virus) is acquired along with the blood from an infected vertebrate host. The pathogen penetrates the vector's midgut and infects a variety of tissues, where replication may occur during an extrinsic incubation period lasting 3-30, days depending on vector and parasite physiology and ambient temperature. Following salivary-gland infection, the pathogen is usually transmitted to additional susceptible vertebrate hosts during future probing or blood feeding. The host-seeking strategies used by arthropod vectors can, in part, affect the efficiency of disease transmission. Vector abundance, seasonal distribution, habitat and host preference, and susceptibility to infection are all important components of disease-transmission cycles. Examples of 3 mosquito vectors of human disease are presented here to highlight the diversity of host seeking and to show how specific behaviors may influence disease-transmission cycles. In the African tropics, Anopheles gambiae s.s. is an efficient vector of human malaria due to its remarkably focused preference for human blood. Aedes aegypti is the main vector of dengue viruses in the New and Old World tropics and subtropics. This mosquito has evolved a domestic lifestyle and shares human habitations throughout much of its range. It prospers in settings where humans are its main source of blood. In south Florida, Culex nigripalpus is the major vector of St. Louis encephalitis (SLE) and West Nile (WN) viruses. This mosquito is opportunistic and blood feeds on virtually any available vertebrate host. It serves as an arboviral vector, in part, due to its ability to produce large populations in a short period of time. These 3 host-seeking and blood-feeding strategies make the specialist, as well as the opportunist, equally dangerous disease vectors.

  18. Ecological determinants of avian malaria infections: An integrative analysis at landscape, mosquito and vertebrate community levels.

    PubMed

    Ferraguti, Martina; Martínez-de la Puente, Josué; Bensch, Staffan; Roiz, David; Ruiz, Santigo; Viana, Duarte S; Soriguer, Ramón C; Figuerola, Jordi

    2018-05-01

    Vector and host communities, as well as habitat characteristics, may have important but different impacts on the prevalence, richness and evenness of vector-borne parasites. We investigated the relative importance of (1) the mosquito community composition, (2) the vertebrate community composition and (3) landscape characteristics on the prevalence, richness and evenness of avian Plasmodium. We hypothesized that parasite prevalence will be more affected by vector-related parameters, while host parameters should be also important to explain Plasmodium richness and evenness. We sampled 2,588 wild house sparrows (Passer domesticus) and 340,829 mosquitoes, and we performed vertebrate censuses at 45 localities in the Southwest of Spain. These localities included urban, rural and natural landscapes that were characterized by several habitat variables. Twelve Plasmodium lineages were identified in house sparrows corresponding to three major clades. Variation partitioning showed that landscape characteristics explained the highest fraction of variation in all response variables (21.0%-44.8%). Plasmodium prevalence was in addition explained by vector-related variables (5.4%) and its interaction with landscape (10.2%). Parasite richness and evenness were mostly explained by vertebrate community-related variables. The structuring role of landscape characteristics in vector and host communities was a key factor in determining parasite prevalence, richness and evenness, although the role of each factor differed according to the parasite parameters studied. These results show that the biotic and abiotic contexts are important to explain the transmission dynamics of mosquito-borne pathogens in the wild. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  19. Globally threatened vertebrates on islands with invasive species

    PubMed Central

    Spatz, Dena R.; Zilliacus, Kelly M.; Holmes, Nick D.; Butchart, Stuart H. M.; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R.; Croll, Donald A.

    2017-01-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth’s terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in <1% of islands worldwide. Information about invasive vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth’s highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss. PMID:29075662

  20. Globally threatened vertebrates on islands with invasive species.

    PubMed

    Spatz, Dena R; Zilliacus, Kelly M; Holmes, Nick D; Butchart, Stuart H M; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R; Croll, Donald A

    2017-10-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth's terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in <1% of islands worldwide. Information about invasive vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth's highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss.

  1. Broad-scale phylogenomics provides insights into retrovirus-host evolution.

    PubMed

    Hayward, Alexander; Grabherr, Manfred; Jern, Patric

    2013-12-10

    Genomic data provide an excellent resource to improve understanding of retrovirus evolution and the complex relationships among viruses and their hosts. In conjunction with broad-scale in silico screening of vertebrate genomes, this resource offers an opportunity to complement data on the evolution and frequency of past retroviral spread and so evaluate future risks and limitations for horizontal transmission between different host species. Here, we develop a methodology for extracting phylogenetic signal from large endogenous retrovirus (ERV) datasets by collapsing information to facilitate broad-scale phylogenomics across a wide sample of hosts. Starting with nearly 90,000 ERVs from 60 vertebrate host genomes, we construct phylogenetic hypotheses and draw inferences regarding the designation, host distribution, origin, and transmission of the Gammaretrovirus genus and associated class I ERVs. Our results uncover remarkable depths in retroviral sequence diversity, supported within a phylogenetic context. This finding suggests that current infectious exogenous retrovirus diversity may be underestimated, adding credence to the possibility that many additional exogenous retroviruses may remain to be discovered in vertebrate taxa. We demonstrate a history of frequent horizontal interorder transmissions from a rodent reservoir and suggest that rats may have acted as important overlooked facilitators of gammaretrovirus spread across diverse mammalian hosts. Together, these results demonstrate the promise of the methodology used here to analyze large ERV datasets and improve understanding of retroviral evolution and diversity for utilization in wider applications.

  2. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.

    PubMed

    Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques

    2015-12-29

    Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the

  3. Phylogenetic evidence for an ancestral coevolution between a major clade of coccidian parasites and elasmobranch hosts.

    PubMed

    Xavier, Raquel; Santos, Joana L; Veríssimo, Ana

    2018-05-01

    Cartilaginous fishes are the oldest jawed vertebrates and are also reported to be the hosts of some of the most basal lineages of Cestoda and Aporocotylidae (Digenea) parasites. Recently a phylogenetic analysis of the coccidia (Apicomplexa) infecting marine vertebrates revealed that the lesser spotted dogfish harbours parasite lineages basal to Eimeria Schneider, 1875 and the group formed by Schellackia Reichenow, 1919, Lankesterella Ames, 1923, Caryospora Leger, 1904 and Isospora Schneider, 1881. In the present study we have found additional lineages of coccidian parasites infecting the cownose ray Rhinoptera bonasus Mitchill and the blue shark Prionace glauca Linnaeus. These lineages were also found as basal to species from the genera Lankesterella, Schellackia, Caryospora and Isospora infecting higher vertebrates. These results confirm previous phylogenetic assessments and suggest that these parasitic lineages first evolved in basal vertebrate hosts (i.e. Chondrichthyes), and that the more derived lineages infect higher vertebrates (e.g. birds and mammals) conforming to the evolution of their hosts. We hypothesise that elasmobranchs might host further ancestral parasite lineages harbouring unknown links of parasite evolution.

  4. Effects of an invasive forest pathogen on abundance of ticks and their vertebrate hosts in a California Lyme disease focus.

    PubMed

    Swei, Andrea; Ostfeld, Richard S; Lane, Robert S; Briggs, Cheryl J

    2011-05-01

    Invasive species, including pathogens, can have important effects on local ecosystems, including indirect consequences on native species. This study focuses on the effects of an invasive plant pathogen on a vertebrate community and Ixodes pacificus, the vector of the Lyme disease pathogen (Borrelia burgdorferi) in California. Phytophthora ramorum, the causative agent of sudden oak death, is a non-native pathogen killing trees in California and Oregon. We conducted a multi-year study using a gradient of SOD-caused disturbance to assess the impact on the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), two reservoir hosts of B. burgdorferi, as well as the impact on the Columbian black-tailed deer (Odocoileus hemionus columbianus) and the western fence lizard (Sceloporus occidentalis), both of which are important hosts for I. pacificus but are not pathogen reservoirs. Abundances of P. maniculatus and S. occidentalis were positively correlated with greater SOD disturbance, whereas N. fuscipes abundance was negatively correlated. We did not find a change in space use by O. hemionus. Our data show that SOD has a positive impact on the density of nymphal ticks, which is expected to increase the risk of human exposure to Lyme disease all else being equal. A positive correlation between SOD disturbance and the density of nymphal ticks was expected given increased abundances of two important hosts: deer mice and western fence lizards. However, further research is needed to integrate the direct effects of SOD on ticks, for example via altered abiotic conditions with host-mediated indirect effects.

  5. Host compatibility rather than vector–host-encounter rate determines the host range of avian Plasmodium parasites

    PubMed Central

    Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.

    2013-01-01

    Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266

  6. Vertebrate LTR retrotransposons of the Tf1/sushi group.

    PubMed

    Butler, M; Goodwin, T; Simpson, M; Singh, M; Poulter, R

    2001-03-01

    LTR retrotransposons of the Tf1/sushi group from a diversity of vertebrates, including fish, amphibians, and mammals (humans, mice, and others), are described as full-length or partial elements. These elements are compared, and the mechanisms involved in self-priming of reverse transcriptase and programmed phase shifting are inferred. Evidence is presented that in mammals these elements are still transcriptionally active and are represented as proteins. This suggests that members of the Tf1/sushi group are present as functional elements (or incorporated as partial elements into host genes) in diverse vertebrate lineages.

  7. Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts.

    PubMed

    Ammar, El-Desouky; Tsai, Chi-Wei; Whitfield, Anna E; Redinbaugh, Margaret G; Hogenhout, Saskia A

    2009-01-01

    The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are at least 90 plant-infecting rhabdoviruses, several of which are economically important pathogens of various crops. All definitive plant-infecting and many vertebrate-infecting rhabdoviruses are persistently transmitted by insect vectors, and a few putative plant rhabdoviruses are transmitted by mites. Plant rhabdoviruses replicate in their plant and arthropod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these interactions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions.

  8. Broad-scale phylogenomics provides insights into retrovirus–host evolution

    PubMed Central

    Hayward, Alexander; Grabherr, Manfred; Jern, Patric

    2013-01-01

    Genomic data provide an excellent resource to improve understanding of retrovirus evolution and the complex relationships among viruses and their hosts. In conjunction with broad-scale in silico screening of vertebrate genomes, this resource offers an opportunity to complement data on the evolution and frequency of past retroviral spread and so evaluate future risks and limitations for horizontal transmission between different host species. Here, we develop a methodology for extracting phylogenetic signal from large endogenous retrovirus (ERV) datasets by collapsing information to facilitate broad-scale phylogenomics across a wide sample of hosts. Starting with nearly 90,000 ERVs from 60 vertebrate host genomes, we construct phylogenetic hypotheses and draw inferences regarding the designation, host distribution, origin, and transmission of the Gammaretrovirus genus and associated class I ERVs. Our results uncover remarkable depths in retroviral sequence diversity, supported within a phylogenetic context. This finding suggests that current infectious exogenous retrovirus diversity may be underestimated, adding credence to the possibility that many additional exogenous retroviruses may remain to be discovered in vertebrate taxa. We demonstrate a history of frequent horizontal interorder transmissions from a rodent reservoir and suggest that rats may have acted as important overlooked facilitators of gammaretrovirus spread across diverse mammalian hosts. Together, these results demonstrate the promise of the methodology used here to analyze large ERV datasets and improve understanding of retroviral evolution and diversity for utilization in wider applications. PMID:24277832

  9. Variation of canine vertebral bone architecture in computed tomography

    PubMed Central

    Cheon, Byunggyu; Park, Seungjo; Lee, Sang-kwon; Park, Jun-Gyu; Cho, Kyoung-Oh

    2018-01-01

    Focal vertebral bone density changes were assessed in vertebral computed tomography (CT) images obtained from clinically healthy dogs without diseases that affect bone density. The number, location, and density of lesions were determined. A total of 429 vertebral CT images from 20 dogs were reviewed, and 99 focal vertebral changes were identified in 14 dogs. Focal vertebral bone density changes were mainly found in thoracic vertebrae (29.6%) as hyperattenuating (86.9%) lesions. All focal vertebral changes were observed at the vertebral body, except for a single hyperattenuating change in one thoracic transverse process. Among the hyperattenuating changes, multifocal changes (53.5%) were more common than single changes (46.5%). Most of the hypoattenuating changes were single (92.3%). Eight dogs, 40% of the 20 dogs in the study and 61.6% of the 13 dogs showing focal vertebral changes in the thoracic vertebra, had hyperattenuating changes at the 7th or 8th thoracic vertebra. Our results indicate that focal changes in vertebral bone density are commonly identified on vertebral CT images in healthy dogs, and these changes should be taken into consideration on interpretation of CT images. PMID:28693309

  10. Rapid onset aggressive vertebral haemangioma.

    PubMed

    Cheung, Nicholas K; Doorenbosch, Xenia; Christie, John G

    2011-03-01

    Vertebral haemangiomas are generally benign asymptomatic vascular tumours seen commonly in the adult population. Presentations in paediatric populations are extremely rare, which can result in rapid onset of neurological symptoms. We present a highly unusual case of an aggressive paediatric vertebral haemangioma causing significant cord compression. A 13-year-old boy presented with only 2 weeks duration of progressive gait disturbance, truncal ataxia and loss of bladder control. Magnetic resonance imaging (MRI) of the spine revealed a large vascular epidural mass extending between T6 and T8 vertebral bodies. Associated displacement and compression of the spinal cord was present. A highly vascular bony lesion was found during surgery. Histopathology identified this tumour to be a vertebral haemangioma. We present an extremely unusual acute presentation of a paediatric vertebral haemangioma. This study highlights the need for early diagnosis, MRI for investigation and urgent surgical management. © Springer-Verlag 2011

  11. Encapsidated Host Factors in Alphavirus Particles Influence Midgut Infection of Aedes aegypti.

    PubMed

    Mackenzie-Liu, David; Sokoloski, Kevin J; Purdy, Sarah; Hardy, Richard W

    2018-05-16

    Transmission of mosquito-borne viruses requires the efficient infection of both a permissive vertebrate host and a competent mosquito vector. The infectivity of Sindbis virus (SINV), the type species of the Alphavirus genus, is influenced by both the original and new host cell. We have shown that infection of vertebrate cells by SINV, chikungunya virus (CHIKV), and Ross River virus (RRV) produces two subpopulations of virus particles separable based on density. In contrast, a single population of viral particles is produced by mosquito cells. Previous studies demonstrated that the denser vertebrate-derived particles and the mosquito-derived particles contain components of the small subunit of the host cell ribosome, whereas the less dense vertebrate-derived particles do not. Infection of mice with RRV showed that both particle subpopulations are produced in an infected vertebrate, but in a tissue specific manner with serum containing only the less dense version of the virus particles. Previous infectivity studies using SINV particles have shown that the denser particles (SINV Heavy ) and mosquito derived particles SINV C6/36 are significantly more infectious in vertebrate cells than the less dense vertebrate derived particles (SINV Light ). The current study shows that SINV Light particles, initiate the infection of the mosquito midgut more efficiently than SINV Heavy particles and that this enhanced infectivity is associated with an exacerbated immune response to SINV Light infection in midgut tissues. The enhanced infection of SINV Light is specific to the midgut as intrathoracically injected virus do not exhibit the same fitness advantage. Together, our data indicate a biologically significant role for the SINV Light subpopulation in the efficient transmission from infected vertebrates to the mosquito vector.

  12. Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens

    PubMed Central

    Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric

    2015-01-01

    Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336

  13. Novel Hepatozoon in vertebrates from the southern United States.

    PubMed

    Allen, Kelly E; Yabsley, Michael J; Johnson, Eileen M; Reichard, Mason V; Panciera, Roger J; Ewing, Sidney A; Little, Susan E

    2011-08-01

    Novel Hepatozoon spp. sequences collected from previously unrecognized vertebrate hosts in North America were compared with documented Hepatozoon 18S rRNA sequences in an effort to examine phylogenetic relationships between the different Hepatozoon organisms found cycling in nature. An approximately 500-base pair fragment of 18S rDNA common to Hepatozoon spp. and some other apicomplexans was amplified and sequenced from the tissues or blood of 16 vertebrate host species from the southern United States, including 1 opossum (Didelphis virginiana), 2 bobcats (Lynx rufus), 1 domestic cat (Felis catus), 3 coyotes (Canis latrans), 1 gray fox (Urocyon cinereoargenteus), 4 raccoons (Procyon lotor), 1 pet boa constrictor (Boa constrictor imperator), 1 swamp rabbit (Sylvilagus aquaticus), 1 cottontail rabbit (Sylvilagus floridanus), 4 woodrats (Neotoma fuscipes and Neotoma micropus), 3 white-footed mice (Peromyscus leucopus), 8 cotton rats (Sigmodon hispidus), 1 cotton mouse (Peromyscus gossypinus), 1 eastern grey squirrel (Sciurus carolinensis), and 1 woodchuck (Marmota monax). Phylogenetic analyses and comparison with sequences in the existing database revealed distinct groups of Hepatozoon spp., with clusters formed by sequences obtained from scavengers and carnivores (opossum, raccoons, canids, and felids) and those obtained from rodents. Surprisingly, Hepatozoon spp. sequences from wild rabbits were most closely related to sequences obtained from carnivores (97.2% identical), and the sequence from the boa constrictor was most closely related to the rodent cluster (97.4% identical). These data are consistent with recent work identifying prey-predator transmission cycles in Hepatozoon spp. and suggest this pattern may be more common than previously recognized.

  14. Teleosts as Model Organisms To Understand Host-Microbe Interactions

    PubMed Central

    2017-01-01

    ABSTRACT Host-microbe interactions are influenced by complex host genetics and environment. Studies across animal taxa have aided our understanding of how intestinal microbiota influence vertebrate development, disease, and physiology. However, traditional mammalian studies can be limited by the use of isogenic strains, husbandry constraints that result in small sample sizes and limited statistical power, reliance on indirect characterization of gut microbial communities from fecal samples, and concerns of whether observations in artificial conditions are actually reflective of what occurs in the wild. Fish models are able to overcome many of these limitations. The extensive variation in the physiology, ecology, and natural history of fish enriches studies of the evolution and ecology of host-microbe interactions. They share physiological and immunological features common among vertebrates, including humans, and harbor complex gut microbiota, which allows identification of the mechanisms driving microbial community assembly. Their accelerated life cycles and large clutch sizes and the ease of sampling both internal and external microbial communities make them particularly well suited for robust statistical studies of microbial diversity. Gnotobiotic techniques, genetic manipulation of the microbiota and host, and transparent juveniles enable novel insights into mechanisms underlying development of the digestive tract and disease states. Many diseases involve a complex combination of genes which are difficult to manipulate in homogeneous model organisms. By taking advantage of the natural genetic variation found in wild fish populations, as well as of the availability of powerful genetic tools, future studies should be able to identify conserved genes and pathways that contribute to human genetic diseases characterized by dysbiosis. PMID:28439034

  15. iDNA screening: Disease vectors as vertebrate samplers.

    PubMed

    Kocher, Arthur; de Thoisy, Benoit; Catzeflis, François; Valière, Sophie; Bañuls, Anne-Laure; Murienne, Jérôme

    2017-11-01

    In the current context of global change and human-induced biodiversity decline, there is an urgent need for developing sampling approaches able to accurately describe the state of biodiversity. Traditional surveys of vertebrate fauna involve time-consuming and skill-demanding field methods. Recently, the use of DNA derived from invertebrate parasites (leeches and blowflies) was suggested as a new tool for vertebrate diversity assessment. Bloodmeal analyses of arthropod disease vectors have long been performed to describe their feeding behaviour, for epidemiological purposes. On the other hand, this existing expertise has not yet been applied to investigate vertebrate fauna per se. Here, we evaluate the usefulness of hematophagous dipterans as vertebrate samplers. Blood-fed sand flies and mosquitoes were collected in Amazonian forest sites and analysed using high-throughput sequencing of short mitochondrial markers. Bloodmeal identifications highlighted contrasting ecological features and feeding behaviour among dipteran species, which allowed unveiling arboreal and terrestrial mammals of various body size, as well as birds, lizards and amphibians. Additionally, lower vertebrate diversity was found in sites undergoing higher levels of human-induced perturbation. These results suggest that, in addition to providing precious information on disease vector host use, dipteran bloodmeal analyses may represent a useful tool in the study of vertebrate communities. Although further effort is required to validate the approach and consider its application to large-scale studies, this first work opens up promising perspectives for biodiversity monitoring and eco-epidemiology. © 2017 John Wiley & Sons Ltd.

  16. The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance.

    PubMed

    Maleki-Ravasan, Naseh; Solhjouy-Fard, Samaneh; Beaucournu, Jean-Claude; Laudisoit, Anne; Mostafavi, Ehsan

    2017-01-01

    Flea-borne diseases have a wide distribution in the world. Studies on the identity, abundance, distribution and seasonality of the potential vectors of pathogenic agents (e.g. Yersinia pestis, Francisella tularensis, and Rickettsia felis) are necessary tools for controlling and preventing such diseases outbreaks. The improvements of diagnostic tools are partly responsible for an easier detection of otherwise unnoticed agents in the ectoparasitic fauna and as such a good taxonomical knowledge of the potential vectors is crucial. The aims of this study were to make an exhaustive inventory of the literature on the fleas (Siphonaptera) and range of associated hosts in Iran, present their known distribution, and discuss their medical importance. The data were obtained by an extensive literature review related to medically significant fleas in Iran published before 31st August 2016. The flea-host specificity was then determined using a family and subfamily-oriented criteria to further realize and quantify the shared and exclusive vertebrate hosts of fleas among Iran fleas. The locations sampled and reported in the literature were primarily from human habitation, livestock farms, poultry, and rodents' burrows of the 31 provinces of the country. The flea fauna were dominated by seven families, namely the Ceratophyllidae, Leptopsyllidae, Pulicidae, Ctenophthalmidae, Coptopsyllidae, Ischnopsyllidae and Vermipsyllidae. The hosts associated with Iran fleas ranged from the small and large mammals to the birds. Pulicidae were associated with 73% (56/77) of identified host species. Flea-host association analysis indicates that rodents are the common hosts of 5 flea families but some sampling bias results in the reduced number of bird host sampled. Analyses of flea-host relationships at the subfamily level showed that most vertebrates hosted fleas belgonging to 3 subfamilies namely Xenopsyllinae (n = 43), Ctenophthalminae (n = 20) and Amphipsyllinae (n = 17). Meriones persicus was

  17. The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance

    PubMed Central

    Maleki-Ravasan, Naseh; Solhjouy-Fard, Samaneh; Beaucournu, Jean-Claude; Laudisoit, Anne

    2017-01-01

    Background Flea-borne diseases have a wide distribution in the world. Studies on the identity, abundance, distribution and seasonality of the potential vectors of pathogenic agents (e.g. Yersinia pestis, Francisella tularensis, and Rickettsia felis) are necessary tools for controlling and preventing such diseases outbreaks. The improvements of diagnostic tools are partly responsible for an easier detection of otherwise unnoticed agents in the ectoparasitic fauna and as such a good taxonomical knowledge of the potential vectors is crucial. The aims of this study were to make an exhaustive inventory of the literature on the fleas (Siphonaptera) and range of associated hosts in Iran, present their known distribution, and discuss their medical importance. Methodology/Principal Findings The data were obtained by an extensive literature review related to medically significant fleas in Iran published before 31st August 2016. The flea-host specificity was then determined using a family and subfamily-oriented criteria to further realize and quantify the shared and exclusive vertebrate hosts of fleas among Iran fleas. The locations sampled and reported in the literature were primarily from human habitation, livestock farms, poultry, and rodents’ burrows of the 31 provinces of the country. The flea fauna were dominated by seven families, namely the Ceratophyllidae, Leptopsyllidae, Pulicidae, Ctenophthalmidae, Coptopsyllidae, Ischnopsyllidae and Vermipsyllidae. The hosts associated with Iran fleas ranged from the small and large mammals to the birds. Pulicidae were associated with 73% (56/77) of identified host species. Flea-host association analysis indicates that rodents are the common hosts of 5 flea families but some sampling bias results in the reduced number of bird host sampled. Analyses of flea-host relationships at the subfamily level showed that most vertebrates hosted fleas belgonging to 3 subfamilies namely Xenopsyllinae (n = 43), Ctenophthalminae (n = 20) and

  18. Comparative Genomics and Host Resistance against Infectious Diseases

    PubMed Central

    Qureshi, Salman T.; Skamene, Emil

    1999-01-01

    The large size and complexity of the human genome have limited the identification and functional characterization of components of the innate immune system that play a critical role in front-line defense against invading microorganisms. However, advances in genome analysis (including the development of comprehensive sets of informative genetic markers, improved physical mapping methods, and novel techniques for transcript identification) have reduced the obstacles to discovery of novel host resistance genes. Study of the genomic organization and content of widely divergent vertebrate species has shown a remarkable degree of evolutionary conservation and enables meaningful cross-species comparison and analysis of newly discovered genes. Application of comparative genomics to host resistance will rapidly expand our understanding of human immune defense by facilitating the translation of knowledge acquired through the study of model organisms. We review the rationale and resources for comparative genomic analysis and describe three examples of host resistance genes successfully identified by this approach. PMID:10081670

  19. Avian Hosts of West Nile Virus in Arizona

    PubMed Central

    Komar, Nicholas; Panella, Nicholas A.; Young, Ginger R.; Brault, Aaron C.; Levy, Craig E.

    2013-01-01

    West Nile virus (WNV) causes sporadic outbreaks of human encephalitis in Phoenix, Arizona. To identify amplifying hosts of WNV in the Phoenix area, we blood-sampled resident birds and measured antibody prevalence following an outbreak in the East Valley of metropolitan Phoenix during summer, 2010. House sparrow (Passer domesticus), house finch (Haemorhous mexicanus), great-tailed grackle (Quiscalus mexicanus), and mourning dove (Zenaida macroura) accounted for most WNV infections among locally resident birds. These species roost communally after early summer breeding. In September 2010, Culex vector-avian host contact was 3-fold greater at communal bird roosts compared with control sites, as determined by densities of resting mosquitoes with previous vertebrate contact (i.e., blood-engorged or gravid mosquitoes). Because of the low competence of mourning doves, these were considered weak amplifiers but potentially effective free-ranging sentinels. Highly competent sparrows, finches, and grackles were predicted to be key amplifying hosts for WNV in suburban Phoenix. PMID:23857022

  20. Origin and Loss of Nested LRRTM/α-Catenin Genes during Vertebrate Evolution

    PubMed Central

    Uvarov, Pavel; Kajander, Tommi; Airaksinen, Matti S.

    2014-01-01

    Leucine-rich repeat transmembrane neuronal proteins (LRRTMs) form in mammals a family of four postsynaptic adhesion proteins, which have been shown to bind neurexins and heparan sulphate proteoglycan (HSPG) glypican on the presynaptic side. Mutations in the genes encoding LRRTMs and neurexins are implicated in human cognitive disorders such as schizophrenia and autism. Our analysis shows that in most jawed vertebrates, lrrtm1, lrrtm2, and lrrtm3 genes are nested on opposite strands of large conserved intron of α-catenin genes ctnna2, ctnna1, and ctnna3, respectively. No lrrtm genes could be found in tunicates or lancelets, while two lrrtm genes are found in the lamprey genome, one of which is adjacent to a single ctnna homolog. Based on similar highly positive net charge of lamprey LRRTMs and the HSPG-binding LRRTM3 and LRRTM4 proteins, we speculate that the ancestral LRRTM might have bound HSPG before acquiring neurexins as binding partners. Our model suggests that lrrtm gene translocated into the large ctnna intron in early vertebrates, and that subsequent duplications resulted in three lrrtm/ctnna gene pairs present in most jawed vertebrates. However, we detected three prominent exceptions: (1) the lrrtm3/ctnna3 gene structure is absent in the ray-finned fish genomes, (2) the genomes of clawed frogs contain ctnna1 but lack the corresponding nested (lrrtm2) gene, and (3) contain lrrtm3 gene in the syntenic position but lack the corresponding host (ctnna3) gene. We identified several other protein-coding nested gene structures of which either the host or the nested gene has presumably been lost in the frog or chicken lineages. Interestingly, majority of these nested genes comprise LRR domains. PMID:24587117

  1. Diversity of helminth parasites in aquatic invertebrate hosts in Latin America: how much do we know?

    PubMed

    Aguirre-Macedo, M L; May-Tec, A L; Martínez-Aquino, A; Cremonte, F; Martorelli, S R

    2017-03-01

    Helminths in aquatic invertebrate hosts have been overlooked in comparison with vertebrate hosts. Therefore, the known diversity, ecology and distribution of these host-parasite systems are very limited in terms of their taxonomic diversity, habitat and geographic regions. In this study we examined the published literature on helminth parasites of aquatic invertebrates from Latin America and the Caribbean (LAC) to identify the state of the knowledge in the region and to identify patterns of helminth diversity. Results showed that 67% of the literature is from Argentina, Mexico and Brazil. We found records for 772 host-parasite associations. Most records relate to medically or economically important hosts. Molluscs were the most studied host group with 377 helminth records (80% trematodes). The lymnaeids and planorbids were the most studied molluscs across LAC. Arthropods were the second most studied host group with 78 helminth records (trematodes 38%, cestodes 24% and nematodes 20%), with shrimps and crabs being the most studied hosts. Host species with the largest number of helminth taxa were those with a larger sampling effort through time, usually in a small country region. No large geographical-scale studies were identified. In general, the knowledge is still too scarce to allow any zoogeographical or helminth diversity generalization, as most hosts have been studied locally and the studies on invertebrate hosts in LAC are substantially uneven among countries.

  2. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    PubMed

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  3. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits.

    PubMed

    Green, Stephen A; Bronner, Marianne E

    2014-01-01

    Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  4. Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment.

    PubMed

    Avena, Christine V; Parfrey, Laura Wegener; Leff, Jonathan W; Archer, Holly M; Frick, Winifred F; Langwig, Kate E; Kilpatrick, A Marm; Powers, Karen E; Foster, Jeffrey T; McKenzie, Valerie J

    2016-01-01

    Bats are geographically widespread and play an important role in many ecosystems, but relatively little is known about the ecology of their associated microbial communities and the role microbial taxa play in bat health, development, and evolution. Moreover, few vertebrate animal skin microbiomes have been comprehensively assessed, and thus characterizing the bat skin microbiome will yield valuable insight into the variability of vertebrate skin microbiomes as a whole. The recent emergence of the skin fungal disease white-nose syndrome highlights the potentially important role bat skin microbial communities could play in bat health. Understanding the determinant of bat skin microbial communities could provide insight into important factors allowing individuals to persist with disease. We collected skin swabs from a total of 11 bat species from the eastern United States ( n = 45) and Colorado ( n = 119), as well as environmental samples ( n = 38) from a subset of sites, and used 16S rRNA marker gene sequencing to observe bacterial communities. In addition, we conducted a literature survey to compare the skin microbiome across vertebrate groups, including the bats presented in this study. Host species, region, and site were all significant predictors of the variability across bat skin bacterial communities. Many bacterial taxa were found both on bats and in the environment. However, some bacterial taxa had consistently greater relative abundances on bat skin relative to their environments. Bats shared many of their abundant taxa with other vertebrates, but also hosted unique bacterial lineages such as the class Thermoleophilia (Actinobacteria). A strong effect of site on the bat skin microbiome indicates that the environment very strongly influences what bacteria are present on bat skin. Bat skin microbiomes are largely composed of site-specific microbiota, but there do appear to be important host-specific taxa. How this translates to differences in host

  5. Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment

    PubMed Central

    Avena, Christine V.; Parfrey, Laura Wegener; Leff, Jonathan W.; Archer, Holly M.; Frick, Winifred F.; Langwig, Kate E.; Kilpatrick, A. Marm; Powers, Karen E.; Foster, Jeffrey T.; McKenzie, Valerie J.

    2016-01-01

    Bats are geographically widespread and play an important role in many ecosystems, but relatively little is known about the ecology of their associated microbial communities and the role microbial taxa play in bat health, development, and evolution. Moreover, few vertebrate animal skin microbiomes have been comprehensively assessed, and thus characterizing the bat skin microbiome will yield valuable insight into the variability of vertebrate skin microbiomes as a whole. The recent emergence of the skin fungal disease white-nose syndrome highlights the potentially important role bat skin microbial communities could play in bat health. Understanding the determinant of bat skin microbial communities could provide insight into important factors allowing individuals to persist with disease. We collected skin swabs from a total of 11 bat species from the eastern United States (n = 45) and Colorado (n = 119), as well as environmental samples (n = 38) from a subset of sites, and used 16S rRNA marker gene sequencing to observe bacterial communities. In addition, we conducted a literature survey to compare the skin microbiome across vertebrate groups, including the bats presented in this study. Host species, region, and site were all significant predictors of the variability across bat skin bacterial communities. Many bacterial taxa were found both on bats and in the environment. However, some bacterial taxa had consistently greater relative abundances on bat skin relative to their environments. Bats shared many of their abundant taxa with other vertebrates, but also hosted unique bacterial lineages such as the class Thermoleophilia (Actinobacteria). A strong effect of site on the bat skin microbiome indicates that the environment very strongly influences what bacteria are present on bat skin. Bat skin microbiomes are largely composed of site-specific microbiota, but there do appear to be important host-specific taxa. How this translates to differences in host

  6. Teleosts as Model Organisms To Understand Host-Microbe Interactions.

    PubMed

    Lescak, Emily A; Milligan-Myhre, Kathryn C

    2017-08-01

    Host-microbe interactions are influenced by complex host genetics and environment. Studies across animal taxa have aided our understanding of how intestinal microbiota influence vertebrate development, disease, and physiology. However, traditional mammalian studies can be limited by the use of isogenic strains, husbandry constraints that result in small sample sizes and limited statistical power, reliance on indirect characterization of gut microbial communities from fecal samples, and concerns of whether observations in artificial conditions are actually reflective of what occurs in the wild. Fish models are able to overcome many of these limitations. The extensive variation in the physiology, ecology, and natural history of fish enriches studies of the evolution and ecology of host-microbe interactions. They share physiological and immunological features common among vertebrates, including humans, and harbor complex gut microbiota, which allows identification of the mechanisms driving microbial community assembly. Their accelerated life cycles and large clutch sizes and the ease of sampling both internal and external microbial communities make them particularly well suited for robust statistical studies of microbial diversity. Gnotobiotic techniques, genetic manipulation of the microbiota and host, and transparent juveniles enable novel insights into mechanisms underlying development of the digestive tract and disease states. Many diseases involve a complex combination of genes which are difficult to manipulate in homogeneous model organisms. By taking advantage of the natural genetic variation found in wild fish populations, as well as of the availability of powerful genetic tools, future studies should be able to identify conserved genes and pathways that contribute to human genetic diseases characterized by dysbiosis. Copyright © 2017 Lescak and Milligan-Myhre.

  7. Comparison of Vertebrate Cytochrome b and Prepronociceptin for Blood Meal Analyses in Culicoides

    PubMed Central

    Hadj-Henni, Leila; De Meulemeester, Thibaut; Depaquit, Jérôme; Noël, Philippe; Germain, Adeline; Helder, Remi; Augot, Denis

    2015-01-01

    To date, studies on host preferences and blood meal identification have been conducted for Culicoides species using molecular-based methods such as PCR techniques to amplify only a fragment from universal vertebrate mitochondrial genes such as cytochrome c oxidase subunit I or cytochrome b (Cyt b). The vertebrate prepronociceptin gene (PNOC) was also tested in this field. However, the choice of molecular marker to identify blood meal is critical. The objective of our study is to compare the ability of Cyt b and PNOC as molecular markers for blood meal identification depending on the stage of blood meal digestion. In order to determine whether these Cyt b and PNOC could provide a positive result, 565 blood-fed females of Culicoides spp were collected and morphologically identified. The samples were collected between 2012 and 2014, in two localities in France. The collection localities were near either livestock or a forest. To catch the specimens, we used UV CDC miniature light traps. PNOC sequence of donkeys (Equus asinus) was sequenced and submitted because it was missing in GenBank. Our findings emphasize that the PNOC marker is not suitable to separate closely related Equid species such as horses and donkeys. The Cyt b marker was able to identify 204 more samples when compared to PNOC (99.55% of specimens). Cyt b appears to be better able to detect the origin of blood meals from females with digested blood in their abdomens. We conclude that Cyt b is a good marker as it increases the accuracy of blood meal identification of engorged females containing digested blood in their abdomens. The host opportunist behavior of Culicoides, especially that of C. obsoletus and C. scoticus, the main vectors of BTV in Europe was also highlighted. PMID:26664944

  8. Surveillance of potential hosts and vectors of scrub typhus in Taiwan.

    PubMed

    Kuo, Chi-Chien; Lee, Pei-Lung; Chen, Chun-Hsung; Wang, Hsi-Chieh

    2015-12-01

    Scrub typhus is a lethal infectious disease vectored by larval trombiculid mites (i.e. chiggers) infected with Orientia tsutsugamushi (OT) and recent decades have witnessed an emergence of scrub typhus in several countries. Identification of chigger species and their vertebrate hosts is fundamental for the assessment of human risks to scrub typhus under environmental changes, but intensive and extensive survey of chiggers and their hosts is still lacking in Taiwan. Chiggers were collected from shrews and rodents in nine counties of Taiwan and were assayed for OT infections with nested polymerase chain reaction (PCR). PCR products were further sequenced to reveal probable OT strains. Rodents were assessed for OT exposure by immunofluorescent antibody assay. Lastly, incidence rate of scrub typhus in each county was associated with loads and prevalence of chigger infestations, seropositivity rate in rodents, and OT positivity rate in chiggers. Rattus losea was the most abundant (48.7% of 1,285 individuals) and widespread (occurred in nine counties) small mammal species and hosted the majority of chiggers (76.4% of 128,520 chiggers). Leptotrombidium deliense was the most common (64.9% of all identified chiggers) and widespread (occurred in seven counties) chigger species but was replaced by Leptotrombidium pallidum or Leptotrombidium scutellare during the cold seasons in two counties (Matsu and Kinmen) where winter temperatures were lower than other study sites. Seropositivity rate for OT exposure in 876 assayed rodents was 43.0% and OT positivity rate in 347 pools of chiggers was 55.9%, with 15 OT strains identified in the 107 successfully sequenced samples. Incidence rate of scrub typhus was positively correlated with chigger loads, prevalence of chigger infestations, seropositivity rate but not OT positivity rate in chiggers. Our study reveals R. losea as the primary host for chiggers and there exists a geographical and seasonal variation in chigger species in

  9. Eilat virus host range restriction is present at multiple levels of the virus life cycle.

    PubMed

    Nasar, Farooq; Gorchakov, Rodion V; Tesh, Robert B; Weaver, Scott C

    2015-01-15

    Most alphaviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. This ability of most alphaviruses to infect arthropods and vertebrates is essential for their maintenance in nature. Recently, a new alphavirus, Eilat virus (EILV), was described, and in contrast to all other mosquito-borne viruses, it is unable to replicate in vertebrate cell lines. Investigations into the nature of its host range restriction showed the inability of genomic EILV RNA to replicate in vertebrate cells. Here, we investigated whether the EILV host range restriction is present at the entry level and further explored the viral factors responsible for the lack of genomic RNA replication. Utilizing Sindbis virus (SINV) and EILV chimeras, we show that the EILV vertebrate host range restriction is also manifested at the entry level. Furthermore, the EILV RNA replication restriction is independent of the 3' untranslated genome region (UTR). Complementation experiments with SINV suggested that RNA replication is restricted by the inability of the EILV nonstructural proteins to form functional replicative complexes. These data demonstrate that the EILV host range restriction is multigenic, involving at least one gene from both nonstructural protein (nsP) and structural protein (sP) open reading frames (ORFs). As EILV groups phylogenetically within the mosquito-borne virus clade of pathogenic alphaviruses, our findings have important evolutionary implications for arboviruses. Our work explores the nature of host range restriction of the first "mosquito-only alphavirus," EILV. EILV is related to pathogenic mosquito-borne viruses (Eastern equine encephalitis virus [EEEV], Western equine encephalitis virus [WEEV], Venezuelan equine encephalitis virus [VEEV], and Chikungunya virus [CHIKV]) that cause severe disease in humans. Our data demonstrate that EILV is restricted both at entry and genomic

  10. Molecular signatures that are distinctive characteristics of the vertebrates and chordates and supporting a grouping of vertebrates with the tunicates.

    PubMed

    Gupta, Radhey S

    2016-01-01

    Members of the phylum Chordata and the subphylum Vertebrata are presently distinguished solely on the basis of morphological characteristics. The relationship of the vertebrates to the two non-vertebrate chordate subphyla is also a subject of debate. Analyses of protein sequences have identified multiple conserved signature indels (CSIs) that are specific for Chordata or for Vertebrata. Five CSIs in 4 important proteins are specific for the Vertebrata, whereas two other CSIs are uniquely found in all sequenced chordate species including Ciona intestinalis and Oikapleura dioica (Tunicates) as well as Branchiostoma floridae (Cephalochordates). The shared presence of these molecular signatures by all vertebrates/chordate species, but in no other animal taxa, strongly indicates that the genetic changes represented by the identified CSIs diagnose monophyletic groups. Two other discovered CSIs are uniquely shared by different vertebrate species and by either one (Ciona intestinalis) or both tunicate (Ciona and Oikapleura) species, but they are not found in Branchiostoma or other animal species. Specific presence of these CSIs in different vertebrates and either one or both tunicate species provides strong independent evidence that the vertebrate species are more closely related to the urochordates (tunicates) than to the cephalochordates. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Host-derived, pore-forming toxin–like protein and trefoil factor complex protects the host against microbial infection

    PubMed Central

    Xiang, Yang; Yan, Chao; Guo, Xiaolong; Zhou, Kaifeng; Li, Sheng’an; Gao, Qian; Wang, Xuan; Zhao, Feng; Liu, Jie; Lee, Wen-Hui; Zhang, Yun

    2014-01-01

    Aerolysins are virulence factors belonging to the bacterial β-pore–forming toxin superfamily. Surprisingly, numerous aerolysin-like proteins exist in vertebrates, but their biological functions are unknown. βγ-CAT, a complex of an aerolysin-like protein subunit (two βγ-crystallin domains followed by an aerolysin pore-forming domain) and two trefoil factor subunits, has been identified in frogs (Bombina maxima) skin secretions. Here, we report the rich expression of this protein, in the frog blood and immune-related tissues, and the induction of its presence in peritoneal lavage by bacterial challenge. This phenomena raises the possibility of its involvement in antimicrobial infection. When βγ-CAT was administrated in a peritoneal infection model, it greatly accelerated bacterial clearance and increased the survival rate of both frogs and mice. Meanwhile, accelerated Interleukin-1β release and enhanced local leukocyte recruitments were determined, which may partially explain the robust and effective antimicrobial responses observed. The release of interleukin-1β was potently triggered by βγ-CAT from the frog peritoneal cells and murine macrophages in vitro. βγ-CAT was rapidly endocytosed and translocated to lysosomes, where it formed high molecular mass SDS-stable oligomers (>170 kDa). Lysosomal destabilization and cathepsin B release were detected, which may explain the activation of caspase-1 inflammasome and subsequent interleukin-1β maturation and release. To our knowledge, these results provide the first functional evidence of the ability of a host-derived aerolysin-like protein to counter microbial infection by eliciting rapid and effective host innate immune responses. The findings will also largely help to elucidate the possible involvement and action mechanisms of aerolysin-like proteins and/or trefoil factors widely existing in vertebrates in the host defense against pathogens. PMID:24733922

  12. Molecular identification of vertebrate and hemoparasite DNA within mosquito blood meals from eastern North Dakota.

    PubMed

    Mehus, Joseph O; Vaughan, Jefferson A

    2013-11-01

    To understand local transmission of vector-borne diseases, it is important to identify potential vectors, characterize their host feeding patterns, and determine if vector-borne pathogens are circulating within the region. This study simultaneously investigated these aspects of disease transmission by collecting engorged mosquitoes within two rural study sites in the central Red River Valley of North Dakota. Mosquitoes were identified, midguts were excised, and the blood was expelled from the midguts. DNA was extracted from blood meals and subjected to PCR and direct sequencing to identify the vertebrate origin of the blood. Using different primer sets, PCR was used to screen for two types of vector-borne pathogens, filarioid nematodes and hemosporidian parasites. White-tailed deer were the primary source of blood meals for the eight aedine mosquito species collected. None of the 288 deer-derived blood meals contained filarioid or hemosporidian DNA. In contrast, 18 of 32 Culex tarsalis and three of three Cx. pipiens blood meals contained avian blood, representing eight different species of birds. Of 24 avian-derived blood meals examined, 12 contained Plasmodium DNA, three of which also contained Leucocytozoon DNA (i.e., dual infection). Potential confounding effects resulting from parasite acquisition and development from previous blood meals (e.g., oocysts) were eliminated because host blood had been removed from the midguts prior to DNA extraction. Thus, specific parasite lineages/species could be unequivocally linked to specific vertebrate species. By combining mosquito identification with molecular techniques for identifying blood meal source and pathogens, a relatively small sample of engorged mosquitoes yielded important new information about mosquito feeding patterns and hemosporidia infections in birds. Thorough analyses of wild-caught engorged mosquitoes and other arthropods represent a powerful tool in understanding the local transmission of vector

  13. Molecular Identification of Vertebrate and Hemoparasite DNA Within Mosquito Blood Meals From Eastern North Dakota

    PubMed Central

    Vaughan, Jefferson A.

    2013-01-01

    Abstract To understand local transmission of vector-borne diseases, it is important to identify potential vectors, characterize their host feeding patterns, and determine if vector-borne pathogens are circulating within the region. This study simultaneously investigated these aspects of disease transmission by collecting engorged mosquitoes within two rural study sites in the central Red River Valley of North Dakota. Mosquitoes were identified, midguts were excised, and the blood was expelled from the midguts. DNA was extracted from blood meals and subjected to PCR and direct sequencing to identify the vertebrate origin of the blood. Using different primer sets, PCR was used to screen for two types of vector-borne pathogens, filarioid nematodes and hemosporidian parasites. White-tailed deer were the primary source of blood meals for the eight aedine mosquito species collected. None of the 288 deer-derived blood meals contained filarioid or hemosporidian DNA. In contrast, 18 of 32 Culex tarsalis and three of three Cx. pipiens blood meals contained avian blood, representing eight different species of birds. Of 24 avian-derived blood meals examined, 12 contained Plasmodium DNA, three of which also contained Leucocytozoon DNA (i.e., dual infection). Potential confounding effects resulting from parasite acquisition and development from previous blood meals (e.g., oocysts) were eliminated because host blood had been removed from the midguts prior to DNA extraction. Thus, specific parasite lineages/species could be unequivocally linked to specific vertebrate species. By combining mosquito identification with molecular techniques for identifying blood meal source and pathogens, a relatively small sample of engorged mosquitoes yielded important new information about mosquito feeding patterns and hemosporidia infections in birds. Thorough analyses of wild-caught engorged mosquitoes and other arthropods represent a powerful tool in understanding the local transmission of

  14. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies

    PubMed Central

    Fritzsch, Bernd; Straka, Hans

    2014-01-01

    Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation, were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development. PMID:24281353

  15. Vestibular blueprint in early vertebrates.

    PubMed

    Straka, Hans; Baker, Robert

    2013-11-19

    Central vestibular neurons form identifiable subgroups within the boundaries of classically outlined octavolateral nuclei in primitive vertebrates that are distinct from those processing lateral line, electrosensory, and auditory signals. Each vestibular subgroup exhibits a particular morpho-physiological property that receives origin-specific sensory inputs from semicircular canal and otolith organs. Behaviorally characterized phenotypes send discrete axonal projections to extraocular, spinal, and cerebellar targets including other ipsi- and contralateral vestibular nuclei. The anatomical locations of vestibuloocular and vestibulospinal neurons correlate with genetically defined hindbrain compartments that are well conserved throughout vertebrate evolution though some variability exists in fossil and extant vertebrate species. The different vestibular subgroups exhibit a robust sensorimotor signal processing complemented with a high degree of vestibular and visual adaptive plasticity.

  16. Gout and the Risk of Non-vertebral Fracture

    PubMed Central

    Kim, Seoyoung C.; Paik, Julie M.; Liu, Jun; Curhan, Gary C.; Solomon, Daniel H.

    2016-01-01

    Prior studies suggest an association between osteoporosis, systemic inflammation and pro-inflammatory cytokines such as IL-1 and IL-6. Conflicting findings exist on the association between hyperuricemia and osteoporosis. Furthermore, it remains unknown whether gout, a common inflammatory arthritis, affects fracture risk. Using data from a US commercial health plan (2004–2013), we evaluated the risk of non-vertebral fracture (i.e. forearm, wrist, hip and pelvis) in patients with gout versus those without. Gout patients were identified with ≥2 diagnosis codes and ≥1 dispensing for a gout-related drug. Non-gout patients, identified with ≥2 visits coded for any diagnosis and ≥1 dispensing for any prescription drugs, were free of gout diagnosis and received no gout-related drugs. Hip fracture was the secondary outcome. Fractures were identified with a combination of diagnosis and procedure codes. Cox proportional hazards models compared the risk of non-vertebral fracture in gout patients versus non-gout, adjusting for over 40 risk factors for osteoporotic fracture. Among gout patients with baseline serum uric acid (sUA) measurements available, we assessed the risk of non-vertebral fracture associated with sUA. We identified 73,202 gout and 219,606 non-gout patients, matched on age, sex, and the date of study entry. The mean age was 60 years and 82% were men. Over the mean 2-year follow-up, the incidence rate of non-vertebral fracture per 1,000 person-years was 2.92 in gout and 2.66 in non-gout. The adjusted hazard ratio (HR) was 0.98 (95%CI 0.85–1.12) for non-vertebral fracture and 0.83 (95%CI 0.65–1.07) for hip fracture in gout versus non-gout. Subgroup analysis (n=15,079) showed no association between baseline sUA and non-vertebral fracture (HR 1.03, 95%CI 0.93–1.15), adjusted for age, sex, comorbidity score and number of any prescription drugs. Gout was not associated with a risk of non-vertebral fracture. Among patients with gout, sUA was not

  17. Gout and the Risk of Non-vertebral Fracture.

    PubMed

    Kim, Seoyoung C; Paik, Julie M; Liu, Jun; Curhan, Gary C; Solomon, Daniel H

    2017-02-01

    Prior studies suggest an association between osteoporosis, systemic inflammation, and pro-inflammatory cytokines such as interleukin (IL)-1 and IL-6. Conflicting findings exist on the association between hyperuricemia and osteoporosis. Furthermore, it remains unknown whether gout, a common inflammatory arthritis, affects fracture risk. Using data from a US commercial health plan (2004-2013), we evaluated the risk of non-vertebral fracture (ie, forearm, wrist, hip, and pelvis) in patients with gout versus those without. Gout patients were identified with ≥2 diagnosis codes and ≥1 dispensing for a gout-related drug. Non-gout patients, identified with ≥2 visits coded for any diagnosis and ≥1 dispensing for any prescription drugs, were free of gout diagnosis and received no gout-related drugs. Hip fracture was the secondary outcome. Fractures were identified with a combination of diagnosis and procedure codes. Cox proportional hazards models compared the risk of non-vertebral fracture in gout patients versus non-gout, adjusting for more than 40 risk factors for osteoporotic fracture. Among gout patients with baseline serum uric acid (sUA) measurements available, we assessed the risk of non-vertebral fracture associated with sUA. We identified 73,202 gout and 219,606 non-gout patients, matched on age, sex, and the date of study entry. The mean age was 60 years and 82% were men. Over the mean 2-year follow-up, the incidence rate of non-vertebral fracture per 1,000 person-years was 2.92 in gout and 2.66 in non-gout. The adjusted hazard ratio (HR) was 0.98 (95% confidence interval [CI] 0.85-1.12) for non-vertebral fracture and 0.83 (95% CI 0.65-1.07) for hip fracture in gout versus non-gout. Subgroup analysis (n = 15,079) showed no association between baseline sUA and non-vertebral fracture (HR = 1.03, 95% CI 0.93-1.15), adjusted for age, sex, comorbidity score, and number of any prescription drugs. Gout was not associated with a risk of non-vertebral

  18. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates.

    PubMed

    Nakatani, Yoichiro; Takeda, Hiroyuki; Kohara, Yuji; Morishita, Shinichi

    2007-09-01

    Although several vertebrate genomes have been sequenced, little is known about the genome evolution of early vertebrates and how large-scale genomic changes such as the two rounds of whole-genome duplications (2R WGD) affected evolutionary complexity and novelty in vertebrates. Reconstructing the ancestral vertebrate genome is highly nontrivial because of the difficulty in identifying traces originating from the 2R WGD. To resolve this problem, we developed a novel method capable of pinning down remains of the 2R WGD in the human and medaka fish genomes using invertebrate tunicate and sea urchin genes to define ohnologs, i.e., paralogs produced by the 2R WGD. We validated the reconstruction using the chicken genome, which was not considered in the reconstruction step, and observed that many ancestral proto-chromosomes were retained in the chicken genome and had one-to-one correspondence to chicken microchromosomes, thereby confirming the reconstructed ancestral genomes. Our reconstruction revealed a contrast between the slow karyotype evolution after the second WGD and the rapid, lineage-specific genome reorganizations that occurred in the ancestral lineages of major taxonomic groups such as teleost fishes, amphibians, reptiles, and marsupials.

  19. Sensitivity of Lyme Borreliosis Spirochetes to Serum Complement of Regular Zoo Animals: Potential Reservoir Competence of Some Exotic Vertebrates.

    PubMed

    Ticha, Lucie; Golovchenko, Maryna; Oliver, James H; Grubhoffer, Libor; Rudenko, Nataliia

    2016-01-01

    Reaction of vertebrate serum complement with different Borrelia burgdorferi sensu lato species is used as a basis in determining reservoir hosts among domesticated and wild animals. Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii were tested for their sensitivity to sera of exotic vertebrate species housed in five zoos located in the Czech Republic. We confirmed that different Borrelia species have different sensitivity to host serum. We found that tolerance to Borrelia infection possessed by hosts might differ among individuals of the same genera or species and is not affected by host age or sex. Of all zoo animals included in our study, carnivores demonstrated the highest apparent reservoir competency for Lyme borreliosis spirochetes. We showed that selected exotic ungulate species are tolerant to Borrelia infection. For the first time we showed the high tolerance of Siamese crocodile to Borrelia as compared to the other studied reptile species. While exotic vertebrates present a limited risk to the European human population as reservoirs for the causative agents of Lyme borreliosis, cases of incidental spillover infection could lead to successful replication of the pathogens in a new host, changing the status of selected exotic species and their role in pathogen emergence or maintenance. The question if being tolerant to pathogen means to be a competent reservoir host still needs an answer, simply because the majority of exotic animals might never be exposed to spirochetes in their natural environment.

  20. Divergent Viruses Discovered in Arthropods and Vertebrates Revise the Evolutionary History of the Flaviviridae and Related Viruses.

    PubMed

    Shi, Mang; Lin, Xian-Dan; Vasilakis, Nikos; Tian, Jun-Hua; Li, Ci-Xiu; Chen, Liang-Jun; Eastwood, Gillian; Diao, Xiu-Nian; Chen, Ming-Hui; Chen, Xiao; Qin, Xin-Cheng; Widen, Steven G; Wood, Thomas G; Tesh, Robert B; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen

    2016-01-15

    Viruses of the family Flaviviridae are important pathogens of humans and other animals and are currently classified into four genera. To better understand their diversity, evolutionary history, and genomic flexibility, we used transcriptome sequencing (RNA-seq) to search for the viruses related to the Flaviviridae in a range of potential invertebrate and vertebrate hosts. Accordingly, we recovered the full genomes of five segmented jingmenviruses and 12 distant relatives of the known Flaviviridae ("flavi-like" viruses) from a range of arthropod species. Although these viruses are highly divergent, they share a similar genomic plan and common ancestry with the Flaviviridae in the NS3 and NS5 regions. Remarkably, although these viruses fill in major gaps in the phylogenetic diversity of the Flaviviridae, genomic comparisons reveal important changes in genome structure, genome size, and replication/gene regulation strategy during evolutionary history. In addition, the wide diversity of flavi-like viruses found in invertebrates, as well as their deep phylogenetic positions, suggests that they may represent the ancestral forms from which the vertebrate-infecting viruses evolved. For the vertebrate viruses, we expanded the previously mammal-only pegivirus-hepacivirus group to include a virus from the graceful catshark (Proscyllium habereri), which in turn implies that these viruses possess a larger host range than is currently known. In sum, our data show that the Flaviviridae infect a far wider range of hosts and exhibit greater diversity in genome structure than previously anticipated. The family Flaviviridae of RNA viruses contains several notorious human pathogens, including dengue virus, West Nile virus, and hepatitis C virus. To date, however, our understanding of the biodiversity and evolution of the Flaviviridae has largely been directed toward vertebrate hosts and their blood-feeding arthropod vectors. Therefore, we investigated an expanded group of potential

  1. New host records of the nematode Gnathostoma sp. in Mexico.

    PubMed

    León-Règagnon, Virginia; Osorio-Sarabia, David; García-Prieto, Luis; Lamothe-Argumedo, Rafael; Bertoni-Ruiz, Florencia; Oceguera-Figueroa, Alejandro

    2005-03-01

    Gnathostomiasis is an emerging zoonosis in Mexico. However, for most endemic zones, the source of human infection has not been established. During 2000-2003, we investigated 2168 vertebrates (2047 fish, 31 amphibians, 4 reptiles, 19 birds and 67 mammals) from 39 localities distributed in nine states. We registered 7 vertebrate species as new hosts for Gnathostoma, and 22 new locality records for this nematode.

  2. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle

    NASA Astrophysics Data System (ADS)

    Hofmeester, T. R.; Coipan, E. C.; van Wieren, S. E.; Prins, H. H. T.; Takken, W.; Sprong, H.

    2016-04-01

    Background. In the northern hemisphere, ticks of the Ixodidae family are vectors of diseases such as Lyme borreliosis, Rocky Mountain spotted fever and tick-borne encephalitis. Most of these ticks are generalists and have a three-host life cycle for which they are dependent on three different hosts for their blood meal. Finding out which host species contribute most in maintaining ticks and the pathogens they transmit, is imperative in understanding the drivers behind the dynamics of a disease. Methods. We performed a systematic review to identify the most important vertebrate host species for Ixodes ricinus and Borrelia burgdorferi s.l. as a well-studied model system for tick-borne diseases. We analyzed data from 66 publications and quantified the relative contribution for 15 host species. Review results. We found a positive correlation between host body mass and tick burdens for the different stages of I. ricinus. We show that nymphal burdens of host species are positively correlated with infection prevalence with B. burgdorferi s.l., which is again positively correlated with the realized reservoir competence of a host species for B. burgdorferi s.l. Our quantification method suggests that only a few host species, which are amongst the most widespread species in the environment (rodents, thrushes and deer), feed the majority of I. ricinus individuals and that rodents infect the majority of I. ricinus larvae with B. burgdorferi s.l. Discussion. We argue that small mammal-transmitted Borrelia spp. are maintained due to the high density of their reservoir hosts, while bird-transmitted Borrelia spp. are maintained due to the high infection prevalence of their reservoir hosts. Our findings suggest that Ixodes ricinus and Borrelia burgdorferi s.l. populations are maintained by a few widespread host species. The increase in distribution and abundance of these species, could be the cause for the increase in Lyme borreliosis incidence in Europe in recent decades.

  3. Innate immunity in vertebrates: an overview.

    PubMed

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  4. Climate change and the ecology and evolution of Arctic vertebrates.

    PubMed

    Gilg, Olivier; Kovacs, Kit M; Aars, Jon; Fort, Jérôme; Gauthier, Gilles; Grémillet, David; Ims, Rolf A; Meltofte, Hans; Moreau, Jérôme; Post, Eric; Schmidt, Niels Martin; Yannic, Glenn; Bollache, Loïc

    2012-02-01

    Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have already been documented. Changes in phenology and range will occur for most species but will only partly mitigate climate change impacts, which are particularly difficult to forecast due to the many interactions within and between trophic levels. Even though Arctic species richness is increasing via immigration from the South, many Arctic vertebrates are expected to become increasingly threatened during this century. © 2012 New York Academy of Sciences.

  5. Functionally conserved enhancers with divergent sequences in distant vertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Song; Oksenberg, Nir; Takayama, Sachiko

    To examine the contributions of sequence and function conservation in the evolution of enhancers, we systematically identified enhancers whose sequences are not conserved among distant groups of vertebrate species, but have homologous function and are likely to be derived from a common ancestral sequence. In conclusion, our approach combined comparative genomics and epigenomics to identify potential enhancer sequences in the genomes of three groups of distantly related vertebrate species.

  6. Functionally conserved enhancers with divergent sequences in distant vertebrates

    DOE PAGES

    Yang, Song; Oksenberg, Nir; Takayama, Sachiko; ...

    2015-10-30

    To examine the contributions of sequence and function conservation in the evolution of enhancers, we systematically identified enhancers whose sequences are not conserved among distant groups of vertebrate species, but have homologous function and are likely to be derived from a common ancestral sequence. In conclusion, our approach combined comparative genomics and epigenomics to identify potential enhancer sequences in the genomes of three groups of distantly related vertebrate species.

  7. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems.

    PubMed

    Du, Kang; Zhong, Zaixuan; Fang, Chengchi; Dai, Wei; Shen, Yanjun; Gan, Xiaoni; He, Shunping

    2018-04-01

    Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A Human Proteome Array Approach to Identifying Key Host Proteins Targeted by Toxoplasma Kinase ROP18*

    PubMed Central

    Yang, Zhaoshou; Hou, Yongheng; Hao, Taofang; Rho, Hee-Sool; Wan, Jun; Luan, Yizhao; Gao, Xin; Yao, Jianping; Pan, Aihua; Xie, Zhi; Qian, Jiang; Liao, Wanqin; Zhu, Heng; Zhou, Xingwang

    2017-01-01

    Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface. PMID:28087594

  9. Host susceptibility to malaria in human and mice: compatible approaches to identify potential resistant genes.

    PubMed

    Hernandez-Valladares, Maria; Rihet, Pascal; Iraqi, Fuad A

    2014-01-01

    There is growing evidence for human genetic factors controlling the outcome of malaria infection, while molecular basis of this genetic control is still poorly understood. Case-control and family-based studies have been carried out to identify genes underlying host susceptibility to malarial infection. Parasitemia and mild malaria have been genetically linked to human chromosomes 5q31-q33 and 6p21.3, and several immune genes located within those regions have been associated with malaria-related phenotypes. Association and linkage studies of resistance to malaria are not easy to carry out in human populations, because of the difficulty in surveying a significant number of families. Murine models have proven to be an excellent genetic tool for studying host response to malaria; their use allowed mapping 14 resistance loci, eight of them controlling parasitic levels and six controlling cerebral malaria. Once quantitative trait loci or genes have been identified, the human ortholog may then be identified. Comparative mapping studies showed that a couple of human and mouse might share similar genetically controlled mechanisms of resistance. In this way, char8, which controls parasitemia, was mapped on chromosome 11; char8 corresponds to human chromosome 5q31-q33 and contains immune genes, such as Il3, Il4, Il5, Il12b, Il13, Irf1, and Csf2. Nevertheless, part of the genetic factors controlling malaria traits might differ in both hosts because of specific host-pathogen interactions. Finally, novel genetic tools including animal models were recently developed and will offer new opportunities for identifying genetic factors underlying host phenotypic response to malaria, which will help in better therapeutic strategies including vaccine and drug development.

  10. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: A Systematic Review

    PubMed Central

    Pron, Gaylene; Holubowich, Corinne; Kaulback, Kellee

    2016-01-01

    Background Cancers that metastasize to the spine and primary cancers such as multiple myeloma can result in vertebral compression fractures or instability. Conservative strategies, including bed rest, bracing, and analgesic use, can be ineffective, resulting in continued pain and progressive functional disability limiting mobility and self-care. Surgery is not usually an option for cancer patients in advanced disease states because of their poor medical health or functional status and limited life expectancy. The objectives of this review were to evaluate the effectiveness and safety of percutaneous image-guided vertebral augmentation techniques, vertebroplasty and kyphoplasty, for palliation of cancer-related vertebral compression fractures. Methods We performed a systematic literature search for studies on vertebral augmentation of cancer-related vertebral compression fractures published from January 1, 2000, to October 2014; abstracts were screened by a single reviewer. For those studies meeting the eligibility criteria, full-text articles were obtained. Owing to the heterogeneity of the clinical reports, we performed a narrative synthesis based on an analytical framework constructed for the type of cancer-related vertebral fractures and the diversity of the vertebral augmentation interventions. Results The evidence review identified 3,391 citations, of which 111 clinical reports (4,235 patients) evaluated the effectiveness of vertebroplasty (78 reports, 2,545 patients) or kyphoplasty (33 reports, 1,690 patients) for patients with mixed primary spinal metastatic cancers, multiple myeloma, or hemangiomas. Overall the mean pain intensity scores often reported within 48 hours of vertebral augmentation (kyphoplasty or vertebroplasty), were significantly reduced. Analgesic use, although variably reported, usually involved parallel decreases, particularly in opioids, and mean pain-related disability scores were also significantly improved. In a randomized controlled

  11. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: A Systematic Review.

    PubMed

    2016-01-01

    Cancers that metastasize to the spine and primary cancers such as multiple myeloma can result in vertebral compression fractures or instability. Conservative strategies, including bed rest, bracing, and analgesic use, can be ineffective, resulting in continued pain and progressive functional disability limiting mobility and self-care. Surgery is not usually an option for cancer patients in advanced disease states because of their poor medical health or functional status and limited life expectancy. The objectives of this review were to evaluate the effectiveness and safety of percutaneous image-guided vertebral augmentation techniques, vertebroplasty and kyphoplasty, for palliation of cancer-related vertebral compression fractures. We performed a systematic literature search for studies on vertebral augmentation of cancer-related vertebral compression fractures published from January 1, 2000, to October 2014; abstracts were screened by a single reviewer. For those studies meeting the eligibility criteria, full-text articles were obtained. Owing to the heterogeneity of the clinical reports, we performed a narrative synthesis based on an analytical framework constructed for the type of cancer-related vertebral fractures and the diversity of the vertebral augmentation interventions. The evidence review identified 3,391 citations, of which 111 clinical reports (4,235 patients) evaluated the effectiveness of vertebroplasty (78 reports, 2,545 patients) or kyphoplasty (33 reports, 1,690 patients) for patients with mixed primary spinal metastatic cancers, multiple myeloma, or hemangiomas. Overall the mean pain intensity scores often reported within 48 hours of vertebral augmentation (kyphoplasty or vertebroplasty), were significantly reduced. Analgesic use, although variably reported, usually involved parallel decreases, particularly in opioids, and mean pain-related disability scores were also significantly improved. In a randomized controlled trial comparing kyphoplasty

  12. Host influence in the genomic composition of flaviviruses: A multivariate approach.

    PubMed

    Simón, Diego; Fajardo, Alvaro; Sóñora, Martín; Delfraro, Adriana; Musto, Héctor

    2017-10-28

    Flaviviruses present substantial differences in their host range and transmissibility. We studied the evolution of base composition, dinucleotide biases, codon usage and amino acid frequencies in the genus Flavivirus within a phylogenetic framework by principal components analysis. There is a mutual interplay between the evolutionary history of flaviviruses and their respective vectors and/or hosts. Hosts associated to distinct phylogenetic groups may be driving flaviviruses at different pace and through various sequence landscapes, as can be seen for viruses associated with Aedes or Culex spp., although phylogenetic inertia cannot be ruled out. In some cases, viruses face even opposite forces. For instance, in tick-borne flaviviruses, while vertebrate hosts exert pressure to deplete their CpG, tick vectors drive them to exhibit GC-rich codons. Within a vertebrate environment, natural selection appears to be acting on the viral genome to overcome the immune system. On the other side, within an arthropod environment, mutational biases seem to be the dominant forces. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. LncRNAs in vertebrates: advances and challenges.

    PubMed

    Mallory, Allison C; Shkumatava, Alena

    2015-10-01

    Beyond the handful of classic and well-characterized long noncoding RNAs (lncRNAs), more recently, hundreds of thousands of lncRNAs have been identified in multiple species including bacteria, plants and vertebrates, and the number of newly annotated lncRNAs continues to increase as more transcriptomes are analyzed. In vertebrates, the expression of many lncRNAs is highly regulated, displaying discrete temporal and spatial expression patterns, suggesting roles in a wide range of developmental processes and setting them apart from classic housekeeping ncRNAs. In addition, the deregulation of a subset of these lncRNAs has been linked to the development of several diseases, including cancers, as well as developmental anomalies. However, the majority of vertebrate lncRNA functions remain enigmatic. As such, a major task at hand is to decipher the biological roles of lncRNAs and uncover the regulatory networks upon which they impinge. This review focuses on our emerging understanding of lncRNAs in vertebrate animals, highlighting some recent advances in their functional analyses across several species and emphasizing the current challenges researchers face to characterize lncRNAs and identify their in vivo functions. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens

    PubMed Central

    Leung, Jacqueline M.; Graham, Andrea L.; Knowles, Sarah C. L.

    2018-01-01

    The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control. PMID:29867790

  15. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens.

    PubMed

    Leung, Jacqueline M; Graham, Andrea L; Knowles, Sarah C L

    2018-01-01

    The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control.

  16. COMPARATIVE STUDY OF TUMORIGENESIS AND TUMOR IMMUNITY IN INVERTEBRATES AND NONMAMMALIAN VERTEBRATES

    PubMed Central

    Robert, Jacques

    2010-01-01

    Despite intense study in mammals, the different roles played by the immune system in detecting (immunosurveillance), controlling and remodeling (immunoediting) neoplasia, and perhaps in metastasis are not fully understood. In this review, I will present evidence of neoplasia and invasive malignancy, as well as tumor immunity in invertebrates and nonmammalian vertebrates. I will also present a comparative and evolutionary view of the complex interactions between neoplasia and the host immune system. Overall, I wish to go beyond the too simplistic dichotomy between invertebrates with innate immunity that are only affected with benign neoplasia and vertebrates with adaptive immunity that are affected by metastatic malignancies or cancer. PMID:20553753

  17. The biogeography of threatened insular iguanas and opportunities for invasive vertebrate management

    USGS Publications Warehouse

    Tershy, Bernie R.; Newton, Kelly M.; Spatz, Dena R.; Swinnerton, Kirsty; Iverson, John B.; Fisher, Robert N.; Harlow, Peter S.; Holmes, Nick D.; Croll, Donald A.; Iverson, J.B.; Grant, T. D.; Knapp, C. R.; Pasachnik, S. A.

    2016-01-01

    Iguanas are a particularly threatened group of reptiles, with 61% of species at risk of extinction. Primary threats to iguanas include habitat loss, direct and indirect impacts by invasive vertebrates, overexploitation, and human disturbance. As conspicuous, charismatic vertebrates, iguanas also represent excellent flagships for biodiversity conservation. To assist planning for invasive vertebrate management and thus benefit threatened iguana recovery, we identified all islands with known extant or extirpated populations of Critically Endangered and Endangered insular iguana taxa as recognized by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. For each island, we determined total area, sovereignty, the presence of invasive alien vertebrates, and human population. For the 23 taxa of threatened insular iguanas we identified 230 populations, of which iguanas were extant on 185 islands and extirpated from 45 islands. Twenty-one iguana taxa (91% of all threatened insular iguana taxa) occurred on at least one island with invasive vertebrates present; 16 taxa had 100% of their population(s) on islands with invasive vertebrates present. Rodents, cats, ungulates, and dogs were the most common invasive vertebrates. We discuss biosecurity, eradication, and control of invasive vertebrates to benefit iguana recovery: (1) on islands already free of invasive vertebrates; (2) on islands with high iguana endemicity; and (3) for species and subspecies with small total populations occurring across multiple small islands. Our analyses provide an important first step toward understanding how invasive vertebrate management can be planned effectively to benefit threatened insular iguanas.

  18. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface

    PubMed Central

    Kazimírová, Mária; Thangamani, Saravanan; Bartíková, Pavlína; Hermance, Meghan; Holíková, Viera; Štibrániová, Iveta; Nuttall, Patricia A.

    2017-01-01

    Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against

  19. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface.

    PubMed

    Kazimírová, Mária; Thangamani, Saravanan; Bartíková, Pavlína; Hermance, Meghan; Holíková, Viera; Štibrániová, Iveta; Nuttall, Patricia A

    2017-01-01

    Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against

  20. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis.

    PubMed

    2016-01-01

    Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. The base case considered each of kyphoplasty and vertebroplasty

  1. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis

    PubMed Central

    2016-01-01

    Background Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. Methods We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. Results The base case considered each of

  2. Vertebral hemangiomas: their demographical characteristics, location along the spine and position within the vertebral body.

    PubMed

    Slon, Viviane; Stein, Dan; Cohen, Haim; Sella-Tunis, Tatiana; May, Hila; Hershkovitz, Israel

    2015-10-01

    Vertebral hemangiomas (VHs) are the most common form of benign tumors in the spine. The aim of this research was to study the prevalence of VHs in the human population, their distribution along the spine and their location in the vertebral body. The presence of VHs was assessed in full spine CT scans of 196 adults. Demographic data were gathered from medical records. VHs were present in 26.0% of the individuals studied, a rate significantly higher (χ2=43.338, p<0.001) than the prevalence reported in the literature (10.7%). Multiple VHs (≥2) appeared in 7.2% of the population studied. VHs prevalence is sex-independent, appearing in 28.6% of females and 23.5% of males (χ2=0.663, p=0.416); and age-dependent: the mean age of affected individuals (65.8 years) was significantly higher (p<0.001) than unaffected individuals (56.2 years). VH size was also age-dependent (p=0.023). No vertebra was significantly more prone to be affected by a hemangioma. T11 and T12 show the highest prevalence of VHs (3.57% of vertebrae affected). VHs were found in similar percentages in the anterior and posterior parts of the vertebral body (52.8 vs. 47.2%, respectively); and at its center and periphery (50.1 and 49.9%, respectively). VHs usually appeared at mid-height of the vertebral body or slightly higher. The reported prevalence of VHs is dependent on the demographic structure of the population studied, the size of the VHs and the method used to identify them. Overall, the phenomenon is more frequent than usually reported. VHs may appear at all vertebral levels and in all areas of the vertebral body.

  3. The evolution of early vertebrate photoreceptors.

    PubMed

    Collin, Shaun P; Davies, Wayne L; Hart, Nathan S; Hunt, David M

    2009-10-12

    Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these 'living fossils', we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.

  4. Host Selection of Potential West Nile Virus Vectors in Puerto Barrios, Guatemala, 2007

    PubMed Central

    Kading, Rebekah C.; Reiche, Ana Silvia Gonzalez; Morales-Betoulle, Maria Eugenia; Komar, Nicholas

    2013-01-01

    The selection of vertebrate hosts by Culex mosquitoes relative to West Nile virus (WNV) transmission in neotropical countries such as Guatemala is not described. This study determined the feeding patterns of Cx. quinquefasciatus and Cx. nigripalpus and estimated the relative contribution of two common and frequently infected wild bird species, Turdus grayi and Quiscalus mexicanus, to WNV transmission. Engorged mosquitoes were collected from rural and urban habitats after the dry and wet seasons in the Department of Izabal in 2007. Host selection by Cx. nigripalpus varied significantly between urban and rural habitats. Both Cx. quinquefasciatus and Cx. nigripalpus fed predominantly on chickens and other domestic animals. Blood meals from wild birds were rare, accounting for 1.1% of blood meals identified from Cx. quinquefasciatus and 6.5% of blood meals from Cx. nigripalpus. Transmission of WNV by these two mosquito species may be dampened by extensive feeding on reservoir-incompetent hosts. PMID:23208881

  5. Vertebral pneumatocysts.

    PubMed

    Arslan, G; Ceken, K; Cubuk, M; Ozkaynak, C; Lüleci, E

    2001-01-01

    To review the prevalence and location of vertebral pneumatocysts and evaluate the CT findings of these benign lesions. Retrospectively we reviewed CT images of 89 patients with suspected disc disease during a 6-month period. Distinctive CT pattern of intraosseous pneumatocysts involving the cervical, thoracic and lumbar spine was found. In 8 patients (9%), 10 vertebral pneumatocysts were detected. Five were located in the vertebral body and 4 of these were associated with vacuum phenomenon in adjacent intervertebral discs. Five were located near the facet joint and all were associated with vacuum phenomenon in adjacent facet joint. Intraosseous pneumatocyst is a benign lesion, therefore biopsy and follow-up are unnecessary. Although vertebral pneumatocysts seem to be uncommon with a few reported cases, this study shows them to be more frequent than previously thought.

  6. Coccidian parasites of fish encompass profound phylogenetic diversity and gave rise to each of the major parasitic groups in terrestrial vertebrates.

    PubMed

    Rosenthal, Benjamin M; Dunams-Morel, Detiger; Ostoros, Gyorgyi; Molnár, Kálmán

    2016-06-01

    Fish are the oldest and most diverse group of vertebrates; it therefore stands to reason that fish may have been the original hosts for many types of extant vertebrate parasites. Here, we sought to determine whether coccidian parasites of fish are especially diverse. We therefore sampled such parasites from thirty-nine species of fish and tested phylogenetic hypotheses concerning their relationships, using 18S rDNA. We found compelling phylogenetic support for distinctions among at least four lineages of piscine parasites presently ascribed to the genus Goussia. Some, but not all parasites attributed to Eimeria were confirmed as such. Major taxonomic revisions are likely justified for these parasites of fish, which appear to have given rise to each of the major lineages of coccidian parasites that subsequently proliferated in terrestrial vertebrates, including those such as Toxoplasma gondii that form tissue cysts in intermediate hosts. Published by Elsevier B.V.

  7. Comparison of Ultra-Conserved Elements in Drosophilids and Vertebrates

    PubMed Central

    Makunin, Igor V.; Shloma, Viktor V.; Stephen, Stuart J.; Pheasant, Michael; Belyakin, Stepan N.

    2013-01-01

    Metazoan genomes contain many ultra-conserved elements (UCEs), long sequences identical between distant species. In this study we identified UCEs in drosophilid and vertebrate species with a similar level of phylogenetic divergence measured at protein-coding regions, and demonstrated that both the length and number of UCEs are larger in vertebrates. The proportion of non-exonic UCEs declines in distant drosophilids whilst an opposite trend was observed in vertebrates. We generated a set of 2,126 Sophophora UCEs by merging elements identified in several drosophila species and compared these to the eutherian UCEs identified in placental mammals. In contrast to vertebrates, the Sophophora UCEs are depleted around transcription start sites. Analysis of 52,954 P-element, piggyBac and Minos insertions in the D. melanogaster genome revealed depletion of the P-element and piggyBac insertions in and around the Sophophora UCEs. We examined eleven fly strains with transposon insertions into the intergenic UCEs and identified associated phenotypes in five strains. Four insertions behave as recessive lethals, and in one case we observed a suppression of the marker gene within the transgene, presumably by silenced chromatin around the integration site. To confirm the lethality is caused by integration of transposons we performed a phenotype rescue experiment for two stocks and demonstrated that the excision of the transposons from the intergenic UCEs restores viability. Sequencing of DNA after the transposon excision in one fly strain with the restored viability revealed a 47 bp insertion at the original transposon integration site suggesting that the nature of the mutation is important for the appearance of the phenotype. Our results suggest that the UCEs in flies and vertebrates have both common and distinct features, and demonstrate that a significant proportion of intergenic drosophila UCEs are sensitive to disruption. PMID:24349264

  8. An invertebrate stomach's view on vertebrate ecology: certain invertebrates could be used as "vertebrate samplers" and deliver DNA-based information on many aspects of vertebrate ecology.

    PubMed

    Calvignac-Spencer, Sébastien; Leendertz, Fabian H; Gilbert, M Thomas P; Schubert, Grit

    2013-11-01

    Recent studies suggest that vertebrate genetic material ingested by invertebrates (iDNA) can be used to investigate vertebrate ecology. Given the ubiquity of invertebrates that feed on vertebrates across the globe, iDNA might qualify as a very powerful tool for 21st century population and conservation biologists. Here, we identify some invertebrate characteristics that will likely influence iDNA retrieval and elaborate on the potential uses of invertebrate-derived information. We hypothesize that beyond inventorying local faunal diversity, iDNA should allow for more profound insights into wildlife population density, size, mortality, and infectious agents. Based on the similarities of iDNA with other low-quality sources of DNA, a general technical framework for iDNA analyses is proposed. As it is likely that no such thing as a single ideal iDNA sampler exists, forthcoming research efforts should aim at cataloguing invertebrate properties relevant to iDNA retrieval so as to guide future usage of the invertebrate tool box. © 2013 WILEY Periodicals, Inc.

  9. Late development of hagfish vertebral elements.

    PubMed

    Ota, Kinya G; Fujimoto, Satoko; Oisi, Yasuhiro; Kuratani, Shigeru

    2013-05-01

    It has been demonstrated recently that hagfishes, one of two groups of extant jawless vertebrates, have cartilaginous vertebral elements. Embryological and gene expression analyses have also shown that this group of animals develops a sclerotome, the potential primordium of the axial skeleton. However, it has not been shown unequivocally that the hagfish sclerotome truly differentiates into cartilage, because access to late-stage embryos and information about the cartilaginous extracellular matrix (ECM) are lacking for these animals. Here we investigated the expression patterns of the biglycan/decorin (BGN/DCN) gene in the inshore hagfish, Eptatretus burgeri. The homologue of this gene encodes the major noncollagenous component of the cartilaginous ECM among gnathostomes. We clearly identified the expression of this gene in adult vertebral tissues and in embryonic mesenchymal cells on the ventral aspect of the notochord. Taking into account that the sclerotome in the gnathostomes expresses BGN/DCN gene during the chondrogenesis, it is highly expected the hagfish BGN/DCN-positive mesenchymal cells are derived from the sclerotomes. We propose that hagfishes and gnathostomes share conserved developmental mechanisms not only in their somite differentiation, but also in chondrogenesis of their vertebral elements. Copyright © 2013 Wiley Periodicals, Inc.

  10. V. Terrestrial vertebrates

    Treesearch

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  11. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes.

    PubMed

    Parker, Brian J; Moltke, Ida; Roth, Adam; Washietl, Stefan; Wen, Jiayu; Kellis, Manolis; Breaker, Ronald; Pedersen, Jakob Skou

    2011-11-01

    Regulatory RNA structures are often members of families with multiple paralogous instances across the genome. Family members share functional and structural properties, which allow them to be studied as a whole, facilitating both bioinformatic and experimental characterization. We have developed a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we identify potential new regulatory networks, including large families of short hairpins enriched in immunity-related genes, e.g., TNF, FOS, and CTLA4, which include known transcript destabilizing elements. Our findings exemplify the diversity of post-transcriptional regulation and provide a resource for further characterization of new regulatory mechanisms and families of noncoding RNAs.

  12. [Localization of larvae of Neotrombicula (N) monticola (Trombiculidae) ticks on the vertebrates].

    PubMed

    Chirov, P A; Kharadov, A V

    2007-01-01

    The specific features of distribution of Neotrombicula (N) monticola Schluger et Davidov, 1967 on small mammals were studied in the Tien Shan montains (Kirghiz ridge). N. (N ) monticola was found to occur in all the places under study. Nine species of mammals (pigmy white-toothed shrew, dwarf hamster, tamarisk gerbil, Turkestan rat, long-tailed mouse, Tien Shan, Kirghiz, and silver voles, and wood mouse) were established to be feeders of larvae of the ticks. N. (N) monticola larvae were detected in three topographic zones and seven portions of the body of vertebral hosts. The inner auricle is the major site of tick attachment to the host. Preference of N. (N) monticola in selecting the host is likely to be based on the morphophysiological features of partners.

  13. Host-derived transferrin is maintained and transferred from midgut to ovary in Haemaphysalis longicornis ticks.

    PubMed

    Mori, Hiroyuki; Galay, Remil Linggatong; Maeda, Hiroki; Matsuo, Tomohide; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2014-03-01

    Transferrin is known to be an iron transporter in vertebrates and several arthropods. Iron from host blood is essential for ovarian development in blood-sucking arthropods. However, tick transferrin has been identified in only a few species, and its function has yet to be elucidated, resulting in incomplete understanding of iron metabolism in ticks. Here, we investigated the transfer of host-derived transferrin in the hard tick Haemaphysalis longicornis using immunological methods. Western blot showed that host-derived transferrin was maintained in all developmental stages of ticks up to 28 days after engorgement and was detected in the midgut and the ovary of adult females following blood feeding. However, no host-derived transferrin was detected in eggs after laying or in larvae after hatching, indicating that host-derived transferrin is not transferred to offspring transovarially. Indirect immunofluorescent antibody testing showed the localization of host-derived transferrin in digestive cells of the midgut and oocytes of the ovary from engorged adult females. These results suggest that host-derived transferrin is transferred to the ovary through the midgut and the hemolymph, and raise the possibility of the function of host-derived transferrin as an iron source in the ovary, providing additional insight on iron metabolism in ticks. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    PubMed Central

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  15. Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates

    PubMed Central

    McEwen, Gayle K.; Goode, Debbie K.; Parker, Hugo J.; Woolfe, Adam; Callaway, Heather; Elgar, Greg

    2009-01-01

    Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA. PMID:20011110

  16. Individual diet has sex-dependent effects on vertebrate gut microbiota.

    PubMed

    Bolnick, Daniel I; Snowberg, Lisa K; Hirsch, Philipp E; Lauber, Christian L; Org, Elin; Parks, Brian; Lusis, Aldons J; Knight, Rob; Caporaso, J Gregory; Svanbäck, Richard

    2014-07-29

    Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition ('dysbiosis'). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet-microbiota associations are sex dependent. We document similar sex-specific diet-microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects.

  17. Closure of the vertebral canal in human embryos and fetuses.

    PubMed

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S Eleonore; Lamers, Wouter H

    2017-08-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10 weeks of development. Human embryos (5-10 weeks of development) were visualized using Amira 3D ® reconstruction and Cinema 4D ® remodelling software. Vertebral bodies were identifiable as loose mesenchymal structures between the dense mesenchymal intervertebral discs up to 6 weeks and then differentiated into cartilaginous structures in the 7th week. In this week, the dense mesenchymal neural processes also differentiated into cartilaginous structures. Transverse processes became identifiable at 6 weeks. The growth rate of all vertebral bodies was exponential and similar between 6 and 10 weeks, whereas the intervertebral discs hardly increased in size between 6 and 8 weeks and then followed vertebral growth between 8 and 10 weeks. The neural processes extended dorsolaterally (6th week), dorsally (7th week) and finally dorsomedially (8th and 9th weeks) to fuse at the midthoracic level at 9 weeks. From there, fusion extended cranially and caudally in the 10th week. Closure of the foramen magnum required the development of the supraoccipital bone as a craniomedial extension of the exoccipitals (neural processes of occipital vertebra 4), whereas a growth burst of sacral vertebra 1 delayed closure until 15 weeks. Both the cranial- and caudal-most vertebral bodies fused to form the basioccipital (occipital vertebrae 1-4) and sacrum (sacral vertebrae 1-5). In the sacrum, fusion of its so-called alar processes preceded that of the bodies by at least 6 weeks. In conclusion, the highly ordered and substantial changes in shape of the vertebral bodies leading to the formation of the vertebral canal make the development of the spine an excellent, continuous staging system for

  18. Non-specific Patterns of Vector, Host, and Avian Malaria Parasite Associations in a Central African Rainforest

    PubMed Central

    Njabo, Kevin Y; Cornel, Anthony J.; Bonneaud, Camille; Toffelmier, Erin; Sehgal, R.N.M.; Valkiūnas, Gediminas; Russell, Andrew F.; Smith, Thomas B.

    2010-01-01

    Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex, and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species. PMID:21134011

  19. The Immunoglobulins of Cold-Blooded Vertebrates

    PubMed Central

    Pettinello, Rita; Dooley, Helen

    2014-01-01

    Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species. PMID:25427250

  20. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    PubMed

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.

  1. Checklist of tapeworms (Platyhelminthes, Cestoda) of vertebrates in Finland

    PubMed Central

    Haukisalmi, Voitto

    2015-01-01

    Abstract A checklist of tapeworms (Cestoda) of vertebrates (fishes, birds and mammals) in Finland is presented, based on published observations, specimens deposited in the collections of the Finnish Museum of Natural History (Helsinki) and the Zoological Museum of the University of Turku, and additional specimens identified by the present author. The checklist includes 170 tapeworm species from 151 host species, comprising 447 parasite species/host species combinations. Thirty of the tapeworm species and 96 of the parasite/host species combinations have not been previously reported from Finland. The total number of tapeworm species in Finland (170 spp.) is significantly lower than the corresponding figure for the Iberian Peninsula (257 spp.), Slovakia (225 spp.) and Poland (279 spp.). The difference between Finland and the other three regions is particularly pronounced for anseriform, podicipediform, charadriiform and passeriform birds, reflecting inadequate and/or biased sampling of these birds in Finland. It is predicted that there are actually ca. 270 species of tapeworms in Finland, assuming that true number of bird tapeworms in Finland corresponds to that in other European countries with more comprehensive knowledge of the local tapeworm fauna. The other main pattern emerging from the present data is the seemingly unexplained absence in (northern) Fennoscandia of several mammalian tapeworms that otherwise have extensive distributions in the Holarctic region or in Eurasia, including the northern regions. Previously unknown type specimens, that is, the holotype of Bothrimonus nylandicus Schneider, 1902 (a junior synonym of Diplocotyle olrikii Krabbe, 1874) (MZH 127096) and the syntypes of Caryophyllaeides fennica (Schneider, 1902) (MZH 127097) were located in the collections of the Finnish Museum of Natural History. PMID:26668540

  2. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC MICROBIAL GENETIC MARKERS IN COW FECAL SAMPLES

    EPA Science Inventory

    Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...

  3. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC GENETIC MARKERS IN CATTLE FECAL SAMPLES - ABSTRACT

    EPA Science Inventory

    Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...

  4. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding.

    PubMed

    Andruszkiewicz, Elizabeth A; Starks, Hilary A; Chavez, Francisco P; Sassoubre, Lauren M; Block, Barbara A; Boehm, Alexandria B

    2017-01-01

    Molecular analysis of environmental DNA (eDNA) can be used to assess vertebrate biodiversity in aquatic systems, but limited work has applied eDNA technologies to marine waters. Further, there is limited understanding of the spatial distribution of vertebrate eDNA in marine waters. Here, we use an eDNA metabarcoding approach to target and amplify a hypervariable region of the mitochondrial 12S rRNA gene to characterize vertebrate communities at 10 oceanographic stations spanning 45 km within the Monterey Bay National Marine Sanctuary (MBNMS). In this study, we collected three biological replicates of small volume water samples (1 L) at 2 depths at each of the 10 stations. We amplified fish mitochondrial DNA using a universal primer set. We obtained 5,644,299 high quality Illumina sequence reads from the environmental samples. The sequence reads were annotated to the lowest taxonomic assignment using a bioinformatics pipeline. The eDNA survey identified, to the lowest taxonomic rank, 7 families, 3 subfamilies, 10 genera, and 72 species of vertebrates at the study sites. These 92 distinct taxa come from 33 unique marine vertebrate families. We observed significantly different vertebrate community composition between sampling depths (0 m and 20/40 m deep) across all stations and significantly different communities at stations located on the continental shelf (<200 m bottom depth) versus in the deeper waters of the canyons of Monterey Bay (>200 m bottom depth). All but 1 family identified using eDNA metabarcoding is known to occur in MBNMS. The study informs the implementation of eDNA metabarcoding for vertebrate biomonitoring.

  5. Structural and Practical Identifiability Issues of Immuno-Epidemiological Vector-Host Models with Application to Rift Valley Fever.

    PubMed

    Tuncer, Necibe; Gulbudak, Hayriye; Cannataro, Vincent L; Martcheva, Maia

    2016-09-01

    In this article, we discuss the structural and practical identifiability of a nested immuno-epidemiological model of arbovirus diseases, where host-vector transmission rate, host recovery, and disease-induced death rates are governed by the within-host immune system. We incorporate the newest ideas and the most up-to-date features of numerical methods to fit multi-scale models to multi-scale data. For an immunological model, we use Rift Valley Fever Virus (RVFV) time-series data obtained from livestock under laboratory experiments, and for an epidemiological model we incorporate a human compartment to the nested model and use the number of human RVFV cases reported by the CDC during the 2006-2007 Kenya outbreak. We show that the immunological model is not structurally identifiable for the measurements of time-series viremia concentrations in the host. Thus, we study the non-dimensionalized and scaled versions of the immunological model and prove that both are structurally globally identifiable. After fixing estimated parameter values for the immunological model derived from the scaled model, we develop a numerical method to fit observable RVFV epidemiological data to the nested model for the remaining parameter values of the multi-scale system. For the given (CDC) data set, Monte Carlo simulations indicate that only three parameters of the epidemiological model are practically identifiable when the immune model parameters are fixed. Alternatively, we fit the multi-scale data to the multi-scale model simultaneously. Monte Carlo simulations for the simultaneous fitting suggest that the parameters of the immunological model and the parameters of the immuno-epidemiological model are practically identifiable. We suggest that analytic approaches for studying the structural identifiability of nested models are a necessity, so that identifiable parameter combinations can be derived to reparameterize the nested model to obtain an identifiable one. This is a crucial step in

  6. Individual diet has sex-dependent effects on vertebrate gut microbiota

    PubMed Central

    Bolnick, Daniel I.; Snowberg, Lisa K.; Hirsch, Philipp E.; Lauber, Christian L.; Org, Elin; Parks, Brian; Lusis, Aldons J.; Knight, Rob; Caporaso, J. Gregory; Svanbäck, Richard

    2014-01-01

    Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition (‘dysbiosis’). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet–microbiota associations are sex dependent. We document similar sex-specific diet–microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects. PMID:25072318

  7. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection.

    PubMed

    Jagdeo, Julienne M; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M; Jan, Eric

    2018-04-15

    Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed t erminal a mine i sotopic l abeling of s ubstrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3C pro s) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3C pro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3C pro -targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3C pro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3C pro substrates in vivo , we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection

  8. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection

    PubMed Central

    Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.

    2018-01-01

    ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection

  9. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates.

    PubMed

    Debiais-Thibaud, Mélanie; Metcalfe, Cushla J; Pollack, Jacob; Germon, Isabelle; Ekker, Marc; Depew, Michael; Laurenti, Patrick; Borday-Birraux, Véronique; Casane, Didier

    2013-01-01

    The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high

  10. Examination of the relationship between host worm community structure on transmission of the parasite, Myxobolus cerebralis by developing taxon-specific probes for multiplex qPCR to identify worm taxa in stream communities

    NASA Astrophysics Data System (ADS)

    Fytilis, N.; Lamb, R.; Kerans, B.; Stevens, L.; Rizzo, D. M.

    2011-12-01

    Fish diseases are often caused by waterborne parasites, making them ideal systems for modeling the non-linear relationships between disease dynamics, stream dwelling oligochaete communities and geochemical features. Myxobolus cerebralis, the causative agent of whirling disease in salmonid fishes, has been a major contributor to the loss of wild rainbow trout populations in numerous streams within the Intermountain West. The parasite alternates between an invertebrate and vertebrate host, being transmitted between the sediment feeding worm Tubifex tubifex (T.tubifex) and salmonid fishes. Worm community biodiversity and abundance are influenced by biogeochemical features and have been linked to disease severity in fish. The worm (T.tubifex) lives in communities with 3-4 other types of worms in stream sediments. Unfortunately, taxonomic identification of oligochaetes is largely dependent on morphological characteristics of sexually mature adults. We have collected and identified ~700 worms from eight sites using molecular genetic probes and a taxonomic key. Additionally, ~1700 worms were identified using only molecular genetic probes. To facilitate distinguishing among tubificids, we developed two multiplex molecular genetic probe-based quantitative polymerase reaction (qPCR) assays to assess tubificid communities in the study area. Similar qPCR techniques specific for M.cerebralis used to determine if individual worms were infected with the parasite. We show how simple Bayesian analysis of the qPCR data can predict the worm community structure and reveal relationships between biodiversity of host communities and host-parasite dynamics. To our knowledge, this is the first study that combines molecular data of both the host and the parasite to examine the effects of host community structure on the transmission of a parasite. Our work can be extended to examine the links between worm community structure and biogeochemical features using molecular genetics and Bayesian

  11. The Rift Valley fever accessory proteins NSm and P78/NSm-GN are distinct determinants of virus propagation in vertebrate and invertebrate hosts

    PubMed Central

    Kreher, Felix; Tamietti, Carole; Gommet, Céline; Guillemot, Laurent; Ermonval, Myriam; Failloux, Anna-Bella; Panthier, Jean-Jacques; Bouloy, Michèle; Flamand, Marie

    2014-01-01

    Rift Valley fever virus (RVFV) is an enzootic virus circulating in Africa that is transmitted to its vertebrate host by a mosquito vector and causes severe clinical manifestations in humans and ruminants. RVFV has a tripartite genome of negative or ambisense polarity. The M segment contains five in-frame AUG codons that are alternatively used for the synthesis of two major structural glycoproteins, GN and GC, and at least two accessory proteins, NSm, a 14-kDa cytosolic protein, and P78/NSm-GN, a 78-kDa glycoprotein. To determine the relative contribution of P78 and NSm to RVFV infectivity, AUG codons were knocked out to generate mutant viruses expressing various sets of the M-encoded proteins. We found that, in the absence of the second AUG codon used to express NSm, a 13-kDa protein corresponding to an N-terminally truncated form of NSm, named NSm′, was synthesized from AUG 3. None of the individual accessory proteins had any significant impact on RVFV virulence in mice. However, a mutant virus lacking both NSm and NSm′ was strongly attenuated in mice and grew to reduced titers in murine macrophages, a major target cell type of RVFV. In contrast, P78 was not associated with reduced viral virulence in mice, yet it appeared as a major determinant of virus dissemination in mosquitoes. This study demonstrates how related accessory proteins differentially contribute to RVFV propagation in mammalian and arthropod hosts. PMID:26038497

  12. Evolution of Retinoid and Steroid Signaling: Vertebrate Diversification from an Amphioxus Perspective

    PubMed Central

    Albalat, Ricard; Brunet, Frédéric; Laudet, Vincent; Schubert, Michael

    2011-01-01

    Although the physiological relevance of retinoids and steroids in vertebrates is very well established, the origin and evolution of the genetic machineries implicated in their metabolic pathways is still very poorly understood. We investigated the evolution of these genetic networks by conducting an exhaustive survey of components of the retinoid and steroid pathways in the genome of the invertebrate chordate amphioxus (Branchiostoma floridae). Due to its phylogenetic position at the base of chordates, amphioxus is a very useful model to identify and study chordate versus vertebrate innovations, both on a morphological and a genomic level. We have characterized more than 220 amphioxus genes evolutionarily related to vertebrate components of the retinoid and steroid pathways and found that, globally, amphioxus has orthologs of most of the vertebrate components of these two pathways, with some very important exceptions. For example, we failed to identify a vertebrate-like machinery for retinoid storage, transport, and delivery in amphioxus and were also unable to characterize components of the adrenal steroid pathway in this invertebrate chordate. The absence of these genes from the amphioxus genome suggests that both an elaboration and a refinement of the retinoid and steroid pathways took place at the base of the vertebrate lineage. In stark contrast, we also identified massive amplifications in some amphioxus gene families, most extensively in the short-chain dehydrogenase/reductase superfamily, which, based on phylogenetic and genomic linkage analyses, were likely the result of duplications specific to the amphioxus lineage. In sum, this detailed characterization of genes implicated in retinoid and steroid signaling in amphioxus allows us not only to reconstruct an outline of these pathways in the ancestral chordate but also to discuss functional innovations in retinoid homeostasis and steroid-dependent regulation in both cephalochordate and vertebrate evolution

  13. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior.

    PubMed

    Lyte, Mark

    2014-01-01

    The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.

  14. Global patterns of terrestrial vertebrate diversity and conservation

    PubMed Central

    Jenkins, Clinton N.; Pimm, Stuart L.; Joppa, Lucas N.

    2013-01-01

    Identifying priority areas for biodiversity is essential for directing conservation resources. Fundamentally, we must know where individual species live, which ones are vulnerable, where human actions threaten them, and their levels of protection. As conservation knowledge and threats change, we must reevaluate priorities. We mapped priority areas for vertebrates using newly updated data on >21,000 species of mammals, amphibians, and birds. For each taxon, we identified centers of richness for all species, small-ranged species, and threatened species listed with the International Union for the Conservation of Nature. Importantly, all analyses were at a spatial grain of 10 × 10 km, 100 times finer than previous assessments. This fine scale is a significant methodological improvement, because it brings mapping to scales comparable with regional decisions on where to place protected areas. We also mapped recent species discoveries, because they suggest where as-yet-unknown species might be living. To assess the protection of the priority areas, we calculated the percentage of priority areas within protected areas using the latest data from the World Database of Protected Areas, providing a snapshot of how well the planet’s protected area system encompasses vertebrate biodiversity. Although the priority areas do have more protection than the global average, the level of protection still is insufficient given the importance of these areas for preventing vertebrate extinctions. We also found substantial differences between our identified vertebrate priorities and the leading map of global conservation priorities, the biodiversity hotspots. Our findings suggest a need to reassess the global allocation of conservation resources to reflect today’s improved knowledge of biodiversity and conservation. PMID:23803854

  15. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes.

    PubMed

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-06-20

    The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments.

  16. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes

    PubMed Central

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-01-01

    Summary The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus (JEV) NS1s in the blood of infected interferon alpha and gamma receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments. PMID:27562253

  17. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    PubMed

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  18. Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex.

    PubMed

    Estrada-Peña, Agustín; Sprong, Hein; Cabezas-Cruz, Alejandro; de la Fuente, José; Ramo, Ana; Coipan, Elena Claudia

    2016-09-23

    The bacteria of the Borrelia burgdorferi (s.l.) (BBG) complex constitute a group of tick-transmitted pathogens that are linked to many vertebrate and tick species. The ecological relationships between the pathogens, the ticks and the vertebrate carriers have not been analysed. The aim of this study was to quantitatively analyse these interactions by creating a network based on a large dataset of associations. Specifically, we examined the relative positions of partners in the network, the phylogenetic diversity of the tick's hosts and its impact on BBG circulation. The secondary aim was to evaluate the segregation of BBG strains in different vectors and reservoirs. BBG circulates through a nested recursive network of ticks and vertebrates that delineate closed clusters. Each cluster contains generalist ticks with high values of centrality as well as specialist ticks that originate nested sub-networks and that link secondary vertebrates to the cluster. These results highlighted the importance of host phylogenetic diversity for ticks in the circulation of BBG, as this diversity was correlated with high centrality values for the ticks. The ticks and BBG species in each cluster were not significantly associated with specific branches of the phylogeny of host genera (R 2  = 0.156, P = 0.784 for BBG; R 2  = 0.299, P = 0.699 for ticks). A few host genera had higher centrality values and thus higher importance for BBG circulation. However, the combined contribution of hosts with low centrality values could maintain active BBG foci. The results suggested that ticks do not share strains of BBG, which were highly segregated among sympatric species of ticks. We conclude that BBG circulation is supported by a highly redundant network. This network includes ticks with high centrality values and high host phylogenetic diversity as well as ticks with low centrality values. This promotes ecological sub-networks and reflects the high resilience of BBG circulation

  19. Evolution and diversity of the complement system of poikilothermic vertebrates.

    PubMed

    Sunyer, J O; Lambris, J D

    1998-12-01

    In mammals the complement system plays an important role in innate and acquired host defense mechanisms against infection and in various immunoregulatory processes. The complement system is an ancient defense mechanism that is already present in the invertebrate deuterostomes. In these species as well as in agnathans (the most primitive vertebrate species), both the alternative and lectin pathway of complement activation are already present, and the complement system appears to be involved mainly in opsonization of foreign material. With the emergence of immunoglobulins in cartilaginous fish, the classical and lytic pathways first appear. The rest of the poikilothermic species, from teleosts to reptilians, appear to contain a well-developed complement system resembling that of homeothermic vertebrates. However, important differences remain. Unlike homeotherms, several species of poikilotherms have recently been shown to possess multiple forms of complement components (C3 and factor B) that are structurally and functionally more diverse than those of higher vertebrates. It is noteworthy that the multiple forms of C3 that have been characterized in several teleost fish are able to bind with varying efficiencies to various complement-activating surfaces. We hypothesize that this diversity has allowed these animals to expand their innate capacity for immune recognition.

  20. Plant and animal rhabdovirus host range: a bug's view.

    PubMed

    Hogenhout, Saskia A; Redinbaugh, Margaret G; Ammar, El-Desouky

    2003-06-01

    Rhabdoviruses affect human health, terrestrial and aquatic livestock and crops. Most rhabdoviruses are transmitted by insects to their vertebrate or plant hosts. For insect transmission to occur, rhabdoviruses must negotiate barriers to acquisition, replication, movement, escape and inoculation. A better understanding of the molecular interactions of rhabdoviruses with insects will clarify the complexities of rhabdovirus infection processes and epidemiology. A unique opportunity for studying how insects become hosts and vectors of rhabdoviruses is provided by five maize-infecting rhabdoviruses that are differentially transmitted by one or more related species of two divergent homopteran families.

  1. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome.

    PubMed

    Becker, C G; Longo, A V; Haddad, C F B; Zamudio, K R

    2017-08-30

    Deforestation has detrimental consequences on biodiversity, affecting species interactions at multiple scales. The associations among vertebrates, pathogens and their commensal/symbiotic microbial communities (i.e. microbiomes) have important downstream effects for biodiversity conservation, yet we know little about how deforestation contributes to changes in host microbial diversity and pathogen abundance. Here, we tested the effects of landcover, forest connectivity and infection by the chytrid fungus Batrachochytrium dendrobatidis ( Bd ) on amphibian skin bacterial diversity along deforestation gradients in Brazilian landscapes. If disturbance to natural habitat alters skin microbiomes as it does in vertebrate host communities, then we would expect higher host bacterial diversity in natural forest habitats. Bd infection loads are also often higher in these closed-canopy forests, which may in turn impact skin-associated bacterial communities. We found that forest corridors shaped composition of host skin microbiomes; high forest connectivity predicted greater similarity of skin bacterial communities among host populations. In addition, we found that host skin bacterial diversity and Bd loads increased towards natural vegetation. Because symbiotic bacteria can potentially buffer hosts from Bd infection, we also evaluated the bi-directional microbiome- Bd link but failed to find a significant effect of skin bacterial diversity reducing Bd infections. Although weak, we found support for Bd increasing bacterial diversity and/or for core bacteria dominance reducing Bd loads. Our research incorporates a critical element in the study of host microbiomes by linking environmental heterogeneity of landscapes to the host-pathogen-microbiome triangle. © 2017 The Author(s).

  2. Vertebral column anomalies in Indo-Pacific and Atlantic humpback dolphins Sousa spp.

    PubMed

    Weir, Caroline R; Wang, John Y

    2016-08-09

    Conspicuous vertebral column abnormalities in humpback dolphins (genus Sousa) were documented for the first time during 3 photo-identification field studies of small populations in Taiwan, Senegal and Angola. Seven Taiwanese humpback dolphins S. chinensis taiwanensis with vertebral column anomalies (lordosis, kyphosis or scoliosis) were identified, along with 2 possible cases of vertebral osteomyelitis. There was evidence from several individuals photographed over consecutive years that the anomalies became more pronounced with age. Three Atlantic humpback dolphins S. teuszii were observed with axial deviations of the vertebral column (lordosis and kyphosis). Another possible case was identified in a calf, and 2 further animals were photographed with dorsal indents potentially indicative of anomalies. Vertebral column anomalies of humpback dolphins were predominantly evident in the lumbo-caudal region, but one Atlantic humpback dolphin had an anomaly in the cervico-thoracic region. Lordosis and kyphosis occurred simultaneously in several individuals. Apart from the described anomalies, all dolphins appeared in good health and were not obviously underweight or noticeably compromised in swim speed. This study presents the first descriptions of vertebral column anomalies in the genus Sousa. The causative factors for the anomalies were unknown in every case and are potentially diverse. Whether these anomalies result in reduced fitness of individuals or populations merits attention, as both the Taiwanese and Atlantic humpback dolphin are species of high conservation concern.

  3. Faustovirus-Like Asfarvirus in Hematophagous Biting Midges and Their Vertebrate Hosts

    PubMed Central

    Temmam, Sarah; Monteil-Bouchard, Sonia; Sambou, Masse; Aubadie-Ladrix, Maxence; Azza, Saïd; Decloquement, Philippe; Khalil, Jacques Y. Bou; Baudoin, Jean-Pierre; Jardot, Priscilla; Robert, Catherine; La Scola, Bernard; Mediannikov, Oleg Y.; Raoult, Didier; Desnues, Christelle

    2015-01-01

    Faustovirus, a new Asfarviridae-related giant virus, was recently isolated in Vermamoeba vermiformis, a protist found in sewage water in various geographical locations and occasionally reported in human eye infection cases. As part of a global metagenomic analysis of viral communities existing in biting midges, we report here for the first time the identification and isolation of a Faustovirus-like virus in hematophagous arthropods and its detection in their animal hosts. The DNA virome analysis of three pools of Culicoides sp., engorged female Culicoides imicola and non-engorged male/female C. imicola biting midges collected in Senegal, revealed the presence of amoeba-infecting giant viruses and, among them, a majority of sequences related to Faustovirus. Phylogenetic analyses conducted on several structural genes of Faustovirus confirmed the clustering of the arthropod-borne Faustovirus with sewage-borne Faustoviruses, with a distinct geographical clustering of Senegalese Faustovirus strains. Transmission electron microscopy identified viral particles with morphologies and diameters which were compatible with Faustovirus. The presence of infectious arthropod-borne Faustovirus was finally confirmed by successful isolation on V. vermiformis amoeba. Global proteomic analysis of biting midges identified that arthropods' blood meal originating from cattle, rodents and humans. Further screening of cattle sera and rodent tissue resulted in prevalence of Faustovirus being estimated at 38% in rodents and 14% in cattle, suggesting a possible origin of Faustovirus presence in arthropods via the ingestion of contaminated blood meal. Viral loads were the highest in rodents' urine and kidney samples, suggesting a possible excretion of viral particles into the environment. Faustovirus DNA polymerase-related sequences were also detected in more than 9 and 11% of febrile patients and healthy Senegalese human sera, respectively. Our study thus, highlights the need to investigate

  4. Cellular and Molecular Interactions of Rhabdoviruses with their Insect and Plant Hosts

    USDA-ARS?s Scientific Manuscript database

    The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are about 75 plant-infecting rhabdoviruses described, several of which are economically important pathogens that are persistently transmitted to their plant ho...

  5. Epitope-blocking enzyme-linked immunosorbent assay for detection of antibodies to Ross River virus in vertebrate sera.

    PubMed

    Oliveira, Nidia M M; Broom, Annette K; Mackenzie, John S; Smith, David W; Lindsay, Michael D A; Kay, Brian H; Hall, Roy A

    2006-07-01

    We describe the development of an epitope-blocking enzyme-linked immunosorbent assay (ELISA) for the sensitive and rapid detection of antibodies to Ross River virus (RRV) in human sera and known vertebrate host species. This ELISA provides an alternative method for the serodiagnosis of RRV infections.

  6. Intercellular signaling pathways active during and after growth and differentiation of the lumbar vertebral growth plate.

    PubMed

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2011-06-15

    Vertebral growth plates at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the major signaling pathways active in the postnatal mouse lumbar vertebral growth plate. The growth of all long bones is known to occur by cartilaginous growth plates. The growth plate is composed of layers of chondrocyets that actively proliferate, differentiate, die and, are replaced by bone. The role of major cell signaling pathways has been suggested for regulation of the fetal long bones. But not much is known about the molecular or cellular signals that control the postnatal vertebral growth plate and hence postnatal vertebral bone growth. Understanding such molecular mechanisms will help design therapeutic treatments for vertebral growth disorders such as scoliosis. Antibodies against activated downstream intermediates were used to identify cells in the growth plate responding to BMP, TGFβ, and FGF in cryosections of lumbar vertebrae from different postnatal age mice to identify the zones that were responding to these signals. Reporter mice were used to identify the chondrocytes responding to hedgehog (Ihh), and Wnt signaling. We present a spatial/temporal map of these signaling pathways during growth, and differentiation of the mouse lumbar vertebral growth plate. During growth and differentiation of the vertebral growth plate, its different components respond at different times to different intercellular signaling ligands. Response to most of these signals is dramatically downregulated at the end of vertebral growth.

  7. Systems-based analysis of the Sarcocystis neurona genome identifies pathways that contribute to a heteroxenous life cycle.

    PubMed

    Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S; Hung, Stacy S; Bridgers, Joshua; Ricklefs, Stacy M; Boulanger, Martin J; Dubey, Jitender P; Porcella, Stephen F; Kissinger, Jessica C; Howe, Daniel K; Grigg, Michael E; Parkinson, John

    2015-02-10

    Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarcocystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammals-including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated with

  8. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    PubMed

    Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B; Lorenzi, Hernan; Basler, Christopher F; Shabman, Reed S

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.

  9. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing

    PubMed Central

    Voorhies, Alexander A.; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B.; Lorenzi, Hernan; Basler, Christopher F.; Shabman, Reed S.

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation. PMID:28636653

  10. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization.

    PubMed

    van der Weyden, Louise; Arends, Mark J; Campbell, Andrew D; Bald, Tobias; Wardle-Jones, Hannah; Griggs, Nicola; Velasco-Herrera, Martin Del Castillo; Tüting, Thomas; Sansom, Owen J; Karp, Natasha A; Clare, Simon; Gleeson, Diane; Ryder, Edward; Galli, Antonella; Tuck, Elizabeth; Cambridge, Emma L; Voet, Thierry; Macaulay, Iain C; Wong, Kim; Spiegel, Sarah; Speak, Anneliese O; Adams, David J

    2017-01-12

    Metastasis is the leading cause of death for cancer patients. This multi-stage process requires tumour cells to survive in the circulation, extravasate at distant sites, then proliferate; it involves contributions from both the tumour cell and tumour microenvironment ('host', which includes stromal cells and the immune system). Studies suggest the early steps of the metastatic process are relatively efficient, with the post-extravasation regulation of tumour growth ('colonization') being critical in determining metastatic outcome. Here we show the results of screening 810 mutant mouse lines using an in vivo assay to identify microenvironmental regulators of metastatic colonization. We identify 23 genes that, when disrupted in mouse, modify the ability of tumour cells to establish metastatic foci, with 19 of these genes not previously demonstrated to play a role in host control of metastasis. The largest reduction in pulmonary metastasis was observed in sphingosine-1-phosphate (S1P) transporter spinster homologue 2 (Spns2)-deficient mice. We demonstrate a novel outcome of S1P-mediated regulation of lymphocyte trafficking, whereby deletion of Spns2, either globally or in a lymphatic endothelial-specific manner, creates a circulating lymphopenia and a higher percentage of effector T cells and natural killer (NK) cells present in the lung. This allows for potent tumour cell killing, and an overall decreased metastatic burden.

  11. Anthropometric measurements and vertebral deformities. European Vertebral Osteoporosis Study (EVOS) Group.

    PubMed

    Johnell, O; O'Neill, T; Felsenberg, D; Kanis, J; Cooper, C; Silman, A J

    1997-08-15

    To investigate the association between anthropometric indices and morphometrically determined vertebral deformity, the authors carried out a cross-sectional study using data from the European Vertebral Osteoporosis Study (EVOS), a population-based study of vertebral osteoporosis in 36 European centers from 19 countries. A total of 16,047 EVOS subjects were included in this analysis, of whom 1,973 subjects (915 males, 1,058 females) (12.3%) aged 50 years or over had one or more vertebral deformities ("cases"). The cases were compared with the 14,074 subjects (6,539 males, 7,535 females) with morphometrically normal spines ("controls"). Data were collected on self-reported height at age 25 years and minimum weight after age 25 years, as well as on current measured height and weight. Body mass index (BMI) and height and weight change were calculated from these data. The relations between these variables and vertebral deformity were examined separately by sex with logistic regression adjusting for age, smoking, and physical activity. In females, there was a significant trend of decreasing risk with increasing quintile of current weight, current BMI, and weight gain since age 25 years. In males, subjects in the lightest quintile for these measures were at increased risk but there was no evidence of a trend. An ecologic analysis by country revealed a negative correlation between mean BMI and the prevalence of deformity in females but not in males. The authors conclude that low body weight is associated with presence of vertebral deformity.

  12. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens☆

    PubMed Central

    Ferguson, Laura V.; Kirk Hillier, N.; Smith, Todd G.

    2012-01-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites. PMID:24533317

  13. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens.

    PubMed

    Ferguson, Laura V; Kirk Hillier, N; Smith, Todd G

    2013-12-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites.

  14. Evolution of endothelin receptors in vertebrates.

    PubMed

    Braasch, Ingo; Schartl, Manfred

    2014-12-01

    Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only present among vertebrates, including the lineages of jawless vertebrates (lampreys and hagfishes), cartilaginous vertebrates (sharks, rays, and chimaeras), and bony vertebrates (ray-finned fishes and lobe-finned vertebrates including tetrapods). A bona fide endothelin system is thus a vertebrate-specific innovation with important roles for regulating the cardiovascular system, renal and pulmonary processes, as well as for the development of the vertebrate-specific neural crest cell population and its derivatives. Expectedly, dysregulation of endothelin receptors and the endothelin system leads to a multitude of human diseases. Despite the importance of different types of endothelin receptors for vertebrate development and physiology, current knowledge on endothelin ligand-receptor interactions, on the expression of endothelin receptors and their ligands, and on the functional roles of the endothelin system for embryonic development and in adult vertebrates is very much biased towards amniote vertebrates. Recent analyses from a variety of vertebrate lineages, however, have shown that the endothelin system in lineages such as teleost fish and lampreys is more diverse and is divergent from the mammalian endothelin system. This diversity is mainly based on differential evolution of numerous endothelin system components among vertebrate lineages generated by two rounds of whole genome duplication (three in teleosts) during vertebrate evolution. Here we review current understanding of the evolutionary history of the endothelin receptor family in vertebrates supplemented with surveys on the endothelin receptor gene complement of

  15. Eimeria that infect fish are diverse and are related to, but distinct from, those that infect terrestrial vertebrates

    USDA-ARS?s Scientific Manuscript database

    The Eimeria are ubiquitous Apicoplexan parasites (family: coccidia) of the gut epithelium of vertebrates which complete their development in a single host species and whose sporocysts may be recognized by the presence of a Stieda body through which their sporozoites excyst. Their diversity and rel...

  16. Application of a reverse dot blot DNA-DNA hydridization method to quantify host-feeding tendencies of two sibling species in the Anopheles gambiae complex.

    PubMed

    Fritz, M L; Miller, J R; Bayoh, M N; Vulule, J M; Landgraf, J R; Walker, E D

    2013-12-01

    A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used to identify Anopheles gambiae s.s. and Anopheles arabiensis (Diptera: Culicidae) hosts. Of 299 blood-fed and semi-gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; of these, 69.5% were An. arabiensis and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable with those of conventional polymerase chain reaction (PCR) followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome b gene. Of the 174 amplicon-producing samples used to compare these two methods, 147 were identifiable by direct sequencing and 139 of these were identifiable by RDBA. Anopheles arabiensis bloodmeals were mostly (94.6%) bovine in origin, whereas An. gambiae s.s. fed upon humans more than 91.8% of the time. Tests by RDBA detected that two of 112 An. arabiensis contained blood from more than one host species, whereas PCR and direct sequencing did not. Recent use of insecticide-treated bednets in Kisian is likely to have caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. Reverse dot blot analysis provides an opportunity to study changes in host-feeding by members of the An. gambiae complex in response to the broadening distribution of vector control measures targeting host-selection behaviours. © 2013 The Royal Entomological Society.

  17. Mechanisms of host seeking by parasitic nematodes.

    PubMed

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies.

    PubMed

    Aikawa, Takeshi; Kanazono, Shinichi; Yoshigae, Yuki; Sharp, Nicholas J H; Muñana, Karen R

    2007-07-01

    To describe diagnostic findings, surgical technique, and outcome in dogs with thoracic spinal canal stenosis and vertebral instability secondary to congenital vertebral anomalies. Retrospective clinical study. Dogs (n=9) with thoracic spinal canal stenosis. Medical records (1995-1996; 2000-2006) of 9 dogs with a myelographic diagnosis of spinal canal stenosis and/or vertebral instability secondary to congenital vertebral anomaly that were surgically managed by vertebral stabilization with or without laminectomy were reviewed. Data on pre- and postoperative neurologic status, diagnostic findings, surgical techniques, and outcomes were retrieved. Follow-up evaluations were performed at 1, 2, and 6 months. Long-term outcome was assessed by means of clinical examination or owner telephone interviews. Spinal cord compression was confirmed by myelography, and in 2 dogs, dynamic compression by stress myelography. Eight dogs regained the ability to ambulate postoperatively. One dog with a partial recovery regained voluntary movement but did not become ambulatory. Spinal cord injury secondary to congenital vertebral anomaly may have a good outcome when treated by vertebral stabilization with or without laminectomy. Adequate stabilization of the vertebrae and improved neurologic outcome were achieved in most dogs. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate with or without laminectomy is an effective treatment for spinal canal stenosis and vertebral instability secondary to congenital thoracic vertebral anomalies.

  19. Systems Biology-Based Investigation of Host-Plasmodium Interactions.

    PubMed

    Smith, Maren L; Styczynski, Mark P

    2018-05-18

    Malaria is a serious, complex disease caused by parasites of the genus Plasmodium. Plasmodium parasites affect multiple tissues as they evade immune responses, replicate, sexually reproduce, and transmit between vertebrate and invertebrate hosts. The explosion of omics technologies has enabled large-scale collection of Plasmodium infection data, revealing systems-scale patterns, mechanisms of pathogenesis, and the ways that host and pathogen affect each other. Here, we provide an overview of recent efforts using systems biology approaches to study host-Plasmodium interactions and the biological themes that have emerged from these efforts. We discuss some of the challenges in using systems biology for this goal, key research efforts needed to address those issues, and promising future malaria applications of systems biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminary analysis of G. duodenalis population biology in marine systems.

    PubMed

    Lasek-Nesselquist, Erica; Welch, David Mark; Sogin, Mitchell L

    2010-08-01

    Giardia duodenalis is an intestinal parasite of many vertebrates. The presence of G. duodenalis in the marine environment due to anthropogenic and wildlife activity is well documented, including the contributions from untreated sewage and storm water, agricultural run-off and droppings from terrestrial animals. Recently, studies have detected this protistan parasite in the faeces of marine vertebrates such as whales, dolphins, seals and shore birds. To explore the population biology of G. duodenalis in marine life, we determined the prevalence of G. duodenalis in two species of seal (Halichoerus grypus, Phoca vitulina vitulina and Phoca vitulina richardsi) from the east and west coasts of the USA, sequenced two loci from G. duodenalis-positive samples to assess molecular diversity and examined G. duodenalis distribution amongst these seals and other marine vertebrates along the east coast. We found a significant difference in the presence of G. duodenalis between east and west coast seal species. Only the zoonotic lineages of G. duodenalis, Assemblages A and B and a novel lineage, which we designated as Assemblage H, were identified in marine vertebrates. Assemblages A and B are broadly distributed geographically and show a lack of host specificity. Only grey seal (Halichoerus grypus) samples and one gull sample (Larus argentatus) from a northern location of Cape Cod, Massachusetts, USA, showed the presence of Assemblage H haplotypes; only one other study of harbour seals from the Puget Sound region of Washington, USA previously recorded the presence of an Assemblage H haplotype. Assemblage H sequences form a monophyletic clade that appears as divergent from the other seven Assemblages of G. duodenalis as these assemblages are from each other. The discovery of a previously uncharacterised lineage of G. duodenalis suggests that this parasite has more genetic diversity and perhaps a larger host range than previously believed. Copyright 2010 Australian Society for

  1. The metabolic pace-of-life model: incorporating ectothermic organisms into the theory of vertebrate ecoimmunology.

    PubMed

    Sandmeier, Franziska C; Tracy, Richard C

    2014-09-01

    We propose a new heuristic model that incorporates metabolic rate and pace of life to predict a vertebrate species' investment in adaptive immune function. Using reptiles as an example, we hypothesize that animals with low metabolic rates will invest more in innate immunity compared with adaptive immunity. High metabolic rates and body temperatures should logically optimize the efficacy of the adaptive immune system--through rapid replication of T and B cells, prolific production of induced antibodies, and kinetics of antibody--antigen interactions. In current theory, the precise mechanisms of vertebrate immune function oft are inadequately considered as diverse selective pressures on the evolution of pathogens. We propose that the strength of adaptive immune function and pace of life together determine many of the important dynamics of host-pathogen evolution, namely, that hosts with a short lifespan and innate immunity or with a long lifespan and strong adaptive immunity are expected to drive the rapid evolution of their populations of pathogens. Long-lived hosts that rely primarily on innate immune functions are more likely to use defense mechanisms of tolerance (instead of resistance), which are not expected to act as a selection pressure for the rapid evolution of pathogens' virulence. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton.

    PubMed

    Square, Tyler; Jandzik, David; Romášek, Marek; Cerny, Robert; Medeiros, Daniel Meulemans

    2017-07-15

    The apparent evolvability of the vertebrate head skeleton has allowed a diverse array of shapes, sizes, and compositions of the head in order to better adapt species to their environments. This encompasses feeding, breathing, sensing, and communicating: the head skeleton somehow participated in the evolution of all these critical processes for the last 500 million years. Through evolution, present head diversity was made possible via developmental modifications to the first head skeletal genetic program. Understanding the development of the vertebrate common ancestor's head skeleton is thus an important step in identifying how different lineages have respectively achieved their many innovations in the head. To this end, cyclostomes (jawless vertebrates) are extremely useful, having diverged from jawed vertebrates approximately 400 million years ago, at the deepest node within living vertebrates. From this ancestral vantage point (that is, the node connecting cyclostomes and gnathostomes) we can best identify the earliest major differences in development between vertebrate classes, and start to address how these might translate onto morphology. In this review we survey what is currently known about the cell biology and gene expression during head development in modern vertebrates, allowing us to better characterize the developmental genetics driving head skeleton formation in the most recent common ancestor of all living vertebrates. By pairing this vertebrate composite with information from fossil chordates, we can also deduce how gene regulatory modules might have been arranged in the ancestral vertebrate head. Together, we can immediately begin to understand which aspects of head skeletal development are the most conserved, and which are divergent, informing us as to when the first differences appear during development, and thus which pathways or cell types might be involved in generating lineage specific shape and structure. Copyright © 2017 Elsevier Inc. All

  3. Substantial vertebral body osteophytes protect against severe vertebral fractures in compression

    PubMed Central

    Aubin, Carl-Éric; Chaumoître, Kathia; Mac-Thiong, Jean-Marc; Ménard, Anne-Laure; Petit, Yvan; Garo, Anaïs; Arnoux, Pierre-Jean

    2017-01-01

    Recent findings suggest that vertebral osteophytes increase the resistance of the spine to compression. However, the role of vertebral osteophytes on the biomechanical response of the spine under fast dynamic compression, up to failure, is unclear. Seventeen human spine specimens composed of three vertebrae (from T5-T7 to T11-L1) and their surrounding soft tissues were harvested from nine cadavers, aged 77 to 92 years. Specimens were imaged using quantitative computer tomography (QCT) for medical observation, classification of the intervertebral disc degeneration (Thomson grade) and measurement of the vertebral trabecular density (VTD), height and cross-sectional area. Specimens were divided into two groups (with (n = 9) or without (n = 8) substantial vertebral body osteophytes) and compressed axially at a dynamic displacement rate of 1 m/s, up to failure. Normalized force-displacement curves, videos and QCT images allowed characterizing failure parameters (force, displacement and energy at failure) and fracture patterns. Results were analyzed using chi-squared tests for sampling distributions and linear regression for correlations between VTD and failure parameters. Specimens with substantial vertebral body osteophytes present higher stiffness (2.7 times on average) and force at failure (1.8 times on average) than other segments. The presence of osteophytes significantly influences the location, pattern and type of fracture. VTD was a good predictor of the dynamic force and energy at failure for specimens without substantial osteophytes. This study also showed that vertebral body osteophytes provide a protective mechanism to the underlying vertebra against severe compression fractures. PMID:29065144

  4. Systems-Based Analysis of the Sarcocystis neurona Genome Identifies Pathways That Contribute to a Heteroxenous Life Cycle

    PubMed Central

    Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A.; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S.; Hung, Stacy S.; Bridgers, Joshua; Ricklefs, Stacy M.; Boulanger, Martin J.; Dubey, Jitender P.; Porcella, Stephen F.; Kissinger, Jessica C.; Howe, Daniel K.

    2015-01-01

    ABSTRACT Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. PMID:25670772

  5. Vertebral column deformities in white-beaked dolphins from the eastern North Atlantic.

    PubMed

    Bertulli, Chiara G; Galatius, Anders; Kinze, Carl C; Rasmussen, Marianne H; Deaville, Rob; Jepson, Paul; Vedder, Elisabeth J; Sánchez Contreras, Guillermo J; Sabin, Richard C; Watson, Alastair

    2015-09-17

    Five white-beaked dolphins Lagenorhynchus albirostris with outwardly vertebral kyphosis, kyphoscoliosis or lordosis were identified during a photo-identification survey of over 400 individuals (2002-2013) in Faxaflói and Skjálfandi Bays, Iceland. In addition, 3 stranding reports from Denmark, The Netherlands and the UK were analysed, providing both external observation and post mortem details of axial deviations of the vertebral column in this species. Two of the free-ranging cases and 2 of the stranded specimens appeared to have an acquired disease, either as a direct result of trauma, or indirectly from trauma/wound and subsequent infection and bony proliferation, although we were unable to specifically identify the causes. Our data represent a starting point to understand vertebral column deformations and their implications in white-beaked dolphins from the eastern North Atlantic. We recommend for future necropsy cases to conduct macro- and microscopic evaluation of muscle from both sides of the deformed region, in order to assess chronic or acute conditions related to the vertebral deformations and cause of death.

  6. Inflammation and oxidative stress in vertebrate host–parasite systems

    PubMed Central

    Sorci, Gabriele; Faivre, Bruno

    2008-01-01

    Innate, inflammation-based immunity is the first line of vertebrate defence against micro-organisms. Inflammation relies on a number of cellular and molecular effectors that can strike invading pathogens very shortly after the encounter between inflammatory cells and the intruder, but in a non-specific way. Owing to this non-specific response, inflammation can generate substantial costs for the host if the inflammatory response, and the associated oxygen-based damage, get out of control. This imposes strong selection pressure that acts to optimize two key features of the inflammatory response: the timing of activation and resolution (the process of downregulation of the response). In this paper, we review the benefits and costs of inflammation-driven immunity. Our aim is to emphasize the importance of resolution of inflammation as a way of maintaining homeostasis against oxidative stress and to prevent the ‘horror autotoxicus’ of chronic inflammation. Nevertheless, host immune regulation also opens the way to pathogens to subvert host defences. Therefore, quantifying inflammatory costs requires assessing (i) short-term negative effects, (ii) delayed inflammation-driven diseases, and (iii) parasitic strategies to subvert inflammation. PMID:18930878

  7. Selective factors associated with the evolution of codon usage in natural populations of arboviruses and their practical application to infer possible hosts for emerging viruses

    USDA-ARS?s Scientific Manuscript database

    Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for the...

  8. Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins.

    PubMed

    Holmes, Roger S

    2015-06-05

    Vertebrate ALDH1A-like genes encode cytosolic enzymes capable of metabolizing all-trans-retinaldehyde to retinoic acid which is a molecular 'signal' guiding vertebrate development and adipogenesis. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH1A1, ALDH1A2 and ALDH1A3 amino acid sequences. Comparative analyses of the corresponding human genes provided evidence for distinct modes of gene regulation and expression with putative transcription factor binding sites (TFBS), CpG islands and micro-RNA binding sites identified for the human genes. ALDH1A-like sequences were identified for all mammalian, bird, lizard and frog genomes examined, whereas fish genomes displayed a more restricted distribution pattern for ALDH1A1 and ALDH1A3 genes. The ALDH1A1 gene was absent in many bony fish genomes examined, with the ALDH1A3 gene also absent in the medaka and tilapia genomes. Multiple ALDH1A1-like genes were identified in mouse, rat and marsupial genomes. Vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences were highly conserved throughout vertebrate evolution. Comparative amino acid substitution rates showed that mammalian ALDH1A2 sequences were more highly conserved than for the ALDH1A1 and ALDH1A3 sequences. Phylogenetic studies supported an hypothesis for ALDH1A2 as a likely primordial gene originating in invertebrate genomes and undergoing sequential gene duplication to generate two additional genes, ALDH1A1 and ALDH1A3, in most vertebrate genomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin

    PubMed Central

    Feiner, Nathalie; Murakami, Yasunori; Breithut, Lisa; Mazan, Sylvie; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates. PMID:23843192

  10. Transcriptional analysis of murine macrophages infected with different Toxoplasma strains identifies novel regulation of host signaling pathways.

    PubMed

    Melo, Mariane B; Nguyen, Quynh P; Cordeiro, Cynthia; Hassan, Musa A; Yang, Ninghan; McKell, Renée; Rosowski, Emily E; Julien, Lindsay; Butty, Vincent; Dardé, Marie-Laure; Ajzenberg, Daniel; Fitzgerald, Katherine; Young, Lucy H; Saeij, Jeroen P J

    2013-01-01

    Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.

  11. Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity.

    PubMed

    Mitzel, Dana N; Best, Sonja M; Masnick, Max F; Porcella, Stephen F; Wolfinbarger, James B; Bloom, Marshall E

    2008-11-25

    Tick-borne flaviviruses are maintained in nature in an enzootic cycle involving a tick vector and a vertebrate host. Thus, the virus replicates in two disparate hosts, each providing selective pressures that can influence virus replication and pathogenicity. To identify viral determinants associated with replication in the individual hosts, plaque purified Langat virus (TP21pp) was adapted to growth in mouse or tick cell lines to generate two virus variants, MNBp20 and ISEp20, respectively. Virus adaptation to mouse cells resulted in four amino acid changes in MNBp20 relative to TP21pp, occurring in E, NS4A and NS4B. A comparison between TP21pp and ISEp20 revealed three amino acid modifications in M, NS3 and NS4A of ISEp20. ISEp20, but not MNBp20, was attenuated following intraperitoneal inoculation of mice. Following isolation from mice brains, additional mutations reproducibly emerged in E and NS3 of ISEp20 that were possibly compensatory for the initial adaptation to tick cells. Thus, our data implicate a role for E, M, NS3, NS4A and NS4B in host adaptation and pathogenicity of tick-borne flaviviruses.

  12. Primary extracranial vertebral artery aneurysms.

    PubMed

    Morasch, Mark D; Phade, Sachin V; Naughton, Peter; Garcia-Toca, Manuel; Escobar, Guillermo; Berguer, Ramon

    2013-05-01

    Extracranial vertebral artery aneurysms are uncommon and are usually associated with trauma or dissection. Primary cervical vertebral aneurysms are even rarer and are not well described. The presentation and natural history are unknown and operative management can be difficult. Accessing aneurysms at the skull base can be difficult and, because the frail arteries are often afflicted with connective tissue abnormalities, direct repair can be particularly challenging. We describe the presentation and surgical management of patients with primary extracranial vertebral artery aneurysms. In this study we performed a retrospective, multi-institutional review of patients with primary aneurysms within the extracranial vertebral artery. Between January 2000 and January 2011, 7 patients, aged 12-56 years, were noted to have 9 primary extracranial vertebral artery aneurysms. All had underlying connective tissue or another hereditary disorder, including Ehler-Danlos syndrome (n=3), Marfan's disease (n=2), neurofibromatosis (n=1), and an unspecified connective tissue abnormality (n=1). Eight of 9 aneurysms were managed operatively, including an attempted bypass that ultimately required vertebral ligation; the contralateral aneurysm on this patient has not been treated. Open interventions included vertebral bypass with vein, external carotid autograft, and vertebral transposition to the internal carotid artery. Special techniques were used for handling the anastomoses in patients with Ehler-Danlos syndrome. Although endovascular exclusion was not performed in isolation, 2 hybrid procedures were performed. There were no instances of perioperative stroke or death. Primary extracranial vertebral artery aneurysms are rare and occur in patients with hereditary disorders. Operative intervention is warranted in symptomatic patients. Exclusion and reconstruction may be performed with open and hybrid techniques with low morbidity and mortality. Copyright © 2013 Elsevier Inc. All rights

  13. Identifying Francisella tularensis genes required for growth in host cells

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: Francisella tularensis is a highly virulent Gram negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cel...

  14. Supine vs decubitus lateral patient positioning in vertebral fracture assessment.

    PubMed

    Paggiosi, Margaret Anne; Finigan, Judith; Peel, Nicola; Eastell, Richard; Ferrar, Lynne

    2012-01-01

    In vertebral fracture assessment (VFA), lateral scans are obtained with the patient positioned supine (C-arm densitometers) or lateral decubitus (fixed-arm densitometers). We aimed to determine the impact of positioning on image quality and fracture definition. We performed supine and decubitus lateral VFA in 50 postmenopausal women and used the algorithm-based qualitative method to identify vertebral fractures. We compared the 2 techniques for the identification of fractures (kappa analysis) and compared the numbers of unreadable vertebrae (indiscernible endplates) and vertebrae that were projected obliquely (Wilcoxon matched-pairs signed-rank test). The kappa score for agreement between the VFA techniques (to identify women with vertebral fractures) was 0.84 (95% confidence interval [CI]: 0.68-0.99), and for agreement with fracture assessments made from radiographs, kappa was 0.76 (95% CI: 0.57-0.94) for both supine and decubitus lateral VFA. There were more unreadable vertebrae with supine lateral (48 vertebrae in supine lateral compared with 14 in decubitus lateral; p=0.001), but oblique projection was less common (93 vertebrae compared with 145 in decubitus lateral; p=0.002). We conclude that there were significantly different projection effects with supine and decubitus lateral VFA, but these differences did not influence the identification of vertebral fractures in our study sample. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  15. Disseminated Mycobacterium chimaera Presenting as Vertebral Osteomyelitis.

    PubMed

    Moutsoglou, Daphne M; Merritt, Frank; Cumbler, Ethan

    2017-01-01

    Mycobacterium chimaera , a member of the Mycobacterium avium complex, is a slow-growing, nontuberculous mycobacterium associated with outbreaks in cardiac-surgery patients supported on heart-lung machines. We report a case of an elderly woman on chronic prednisone who presented with a six-month history of worsening chronic back pain, recurrent low-grade fevers, and weight loss. Imaging identified multilevel vertebral osteomyelitis and lumbar soft-tissue abscess. Abscess culture identified M. chimaera .

  16. Global assessment of molecularly identified Anisakis Dujardin, 1845 (Nematoda: Anisakidae) in their teleost intermediate hosts.

    PubMed

    Kuhn, Thomas; Hailer, Frank; Palm, Harry W; Klimpel, Sven

    2013-05-01

    Here, we present the ITS ribosomal DNA (rDNA) sequence data on 330 larvae of nematodes of the genus Anisakis Dujardin, 1845 collected from 26 different bony fish species from 21 sampling locations and different climatic zones. New host records are provided for Anisakis simplex (Rudolphi, 1809) sensu stricto (s.s.) and A. pegreffli Campana-Rouget et Biocca, 1955 from Anoplopoma fimbria (Pallas) (Santa Barbara, East Pacific), A. typica (Diesing, 1860) from Caesio cuning (Bloch), Lepturacanthus savala (Cuvier) and Katsuwonus pelamis (Linnaeus) (Indonesia, West Pacific), A. simplex s.s. from Cololabis saira (Brevoort) (Hawaii, Central Pacific), A. simplex C of Nascetti et al. (1986) from Sebastolobus alascanus Bean (Santa Barbara, East Pacific) and A. physeteris Baylis, 1923 from Synaphobranchus kaupii Johnson (Namibia, East Atlantic). Comparison with host records from 60 previous molecular studies of Anisakis species reveals the teleost host range so far recorded for the genus. Perciform (57 species) and gadiform (21) fishes were the most frequently infected orders, followed by pleuronectiforms (15) and scorpaeniforms (15). Most commonly infected fish families were Scombridae (12), Gadidae (10), Carangidae (8) and Clupeidae (7), with Merluccius merluccius (Linnaeus) alone harbouring eight Anisakis species. Different intermediate host compositions implicate differing life cycles for the so far molecularly identified Anisakis sibling species.

  17. The Ecology of Parasite-Host Interactions at Montezuma Well National Monument, Arizona - Appreciating the Importance of Parasites

    USGS Publications Warehouse

    O'Brien, Chris; van Riper, Charles

    2009-01-01

    Although parasites play important ecological roles through the direct interactions they have with their hosts, historically that fact has been underappreciated. Today, scientists have a growing appreciation of the scope of such impacts. Parasites have been reported to dominate food webs, alter predator-prey relationships, act as ecosystem engineers, and alter community structure. In spite of this growing awareness in the scientific community, parasites are still often neglected in the consideration of the management and conservation of resources and ecosystems. Given that at least half of the organisms on earth are probably parasitic, it should be evident that the ecological functions of parasites warrant greater attention. In this report, we explore different aspects of parasite-host relationships found at a desert spring pond within Montezuma Well National Monument, Arizona. In three separate but related chapters, we explore interactions between a novel amphipod host and two parasites. First, we identify how host behavior responds to this association and how this association affects interactions with both invertebrate non-host predators and a vertebrate host predator. Second, we look at the human dimension, investigating how human recreation can indirectly affect patterns of disease by altering patterns of vertebrate host space use. Finally - because parasites and diseases are of increasing importance in the management of wildlife species, especially those that are imperiled or of management concern - the third chapter argues that research would benefit from increased attention to the statistical analysis of wildlife disease studies. This report also explores issues of statistical parasitology, providing information that may better inform those designing research projects and analyzing data from studies of wildlife disease. In investigating the nature of parasite-host interactions, the role that relationships play in ecological communities, and how human

  18. Identifying the Local Impacts of National ATE Centers on Their Host Institutions: An Exploratory Study

    ERIC Educational Resources Information Center

    Henderson, Charles; Fynewever, Herb; Petcovic, Heather; Bierema, Andrea

    2012-01-01

    The purpose of this study is to identify the local impacts of national advanced technological education (ATE) centers on their host institutions. A sample of three mature, national ATE centers are chosen, with each center serving as a case for a mixed-methods, collective case study research design. Results, drawn from interviews and surveys,…

  19. Repeated vertebral augmentation for new vertebral compression fractures of postvertebral augmentation patients: a nationwide cohort study

    PubMed Central

    Liang, Cheng-Loong; Wang, Hao-Kwan; Syu, Fei-Kai; Wang, Kuo-Wei; Lu, Kang; Liliang, Po-Chou

    2015-01-01

    Purpose Postvertebral augmentation vertebral compression fractures are common; repeated vertebral augmentation is usually performed for prompt pain relief. This study aimed to evaluate the incidence and risk factors of repeat vertebral augmentation. Methods We performed a retrospective, nationwide, population-based longitudinal observation study, using the National Health Insurance Research Database (NHIRD) of Taiwan. All patients who received vertebral augmentation for vertebral compression fractures were evaluated. The collected data included patient characteristics (demographics, comorbidities, and medication exposure) and repeat vertebral augmentation. Kaplan–Meier and stratified Cox proportional hazard regressions were performed for analyses. Results The overall incidence of repeat vertebral augmentation was 11.3% during the follow-up until 2010. Patients with the following characteristics were at greater risk for repeat vertebral augmentation: female sex (AOR=1.24; 95% confidence interval [CI]: 1.10–2.36), advanced age (AOR=1.60; 95% CI: 1.32–2.08), diabetes mellitus (AOR=4.31; 95% CI: 4.05–5.88), cerebrovascular disease (AOR=4.09; 95% CI: 3.44–5.76), dementia (AOR=1.97; 95% CI: 1.69–2.33), blindness or low vision (AOR=3.72; 95% CI: 2.32–3.95), hypertension (AOR=2.58; 95% CI: 2.35–3.47), and hyperlipidemia (AOR=2.09; 95% CI: 1.67–2.22). Patients taking calcium/vitamin D (AOR=2.98; 95% CI: 1.83–3.93), bisphosphonates (AOR=2.11; 95% CI: 1.26–2.61), or calcitonin (AOR=4.59; 95% CI: 3.40–5.77) were less likely to undergo repeat vertebral augmentation; however, those taking steroids (AOR=7.28; 95% CI: 6.32–8.08), acetaminophen (AOR=3.54; 95% CI: 2.75–4.83), or nonsteroidal anti-inflammatory drugs (NSAIDs) (AOR=6.14; 95% CI: 5.08–7.41) were more likely to undergo repeat vertebral augmentation. Conclusion We conclude that the incidence of repeat vertebral augmentation is rather high. An understanding of risk factors predicting repeat

  20. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection

    PubMed Central

    Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J.; Memišević, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P.; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M.; Panchal, Rekha G.

    2015-01-01

    Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031

  1. Coccidian parasites of fish encompass profound phylogenetic diversity and gave rise to each of the major parasitic groups in terrestrial vertebrates

    USDA-ARS?s Scientific Manuscript database

    Coccidian paraasites are ubiquitous single-celled protists that cause enteric disease in all manner of vertebrate hosts. These include infections of wildlife, livestock, and people, resulting in a variety of disease outcomes. The diversity and relationships among these diverse parasites is best kn...

  2. Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus.

    PubMed

    Nagy, Peter D; Pogany, Judit

    2010-01-01

    The success of RNA viruses as pathogens of plants, animals, and humans depends on their ability to reprogram the host cell metabolism to support the viral infection cycle and to suppress host defense mechanisms. Plus-strand (+)RNA viruses have limited coding potential necessitating that they co-opt an unknown number of host factors to facilitate their replication in host cells. Global genomics and proteomics approaches performed with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have led to the identification of 250 host factors affecting TBSV RNA replication and recombination or bound to the viral replicase, replication proteins, or the viral RNA. The roles of a dozen host factors involved in various steps of the replication process have been validated in yeast as well as a plant host. Altogether, the large number of host factors identified and the great variety of cellular functions performed by these factors indicate the existence of a truly complex interaction between TBSV and the host cell. This review summarizes the advantages of using a simple plant virus and yeast as a model host to advance our understanding of virus-host interactions at the molecular and cellular levels. The knowledge of host factors gained can potentially be used to inhibit virus replication via gene silencing, expression of dominant negative mutants, or design of specific chemical inhibitors leading to novel specific or broad-range resistance and antiviral tools against (+)RNA plant viruses. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Health economic aspects of vertebral augmentation procedures.

    PubMed

    Borgström, F; Beall, D P; Berven, S; Boonen, S; Christie, S; Kallmes, D F; Kanis, J A; Olafsson, G; Singer, A J; Åkesson, K

    2015-04-01

    We reviewed all peer-reviewed papers analysing the cost-effectiveness of vertebroplasty and balloon kyphoplasty for osteoporotic vertebral compression fractures. In general, the procedures appear to be cost effective but are very dependent upon model input details. Better data, rather than new models, are needed to answer outstanding questions. Vertebral augmentation procedures (VAPs), including vertebroplasty (VP) and balloon kyphoplasty (BKP), seek to stabilise fractured vertebral bodies and reduce pain. The aim of this paper is to review current literature on the cost-effectiveness of VAPs as well as to discuss the challenges for economic evaluation in this research area. A systematic literature search was conducted to identify existing published studies on the cost-effectiveness of VAPs in patients with osteoporosis. Only peer-reviewed published articles that fulfilled the criteria of being regarded as full economic evaluations including both morbidity and mortality in the outcome measure in the form of quality-adjusted life years (QALYs) were included. The search identified 949 studies, of which four (0.4 %) were identified as relevant with one study added later. The reviewed studies differed widely in terms of study design, modelling framework and data used, yielding different results and conclusions regarding the cost-effectiveness of VAPs. Three out of five studies indicated in the base case results that VAPs were cost effective compared to non-surgical management (NSM). The five main factors that drove the variations in the cost-effectiveness between the studies were time horizon, quality of life effect of treatment, offset time of the treatment effect, reduced number of bed days associated with VAPs and mortality benefit with treatment. The cost-effectiveness of VAPs is uncertain. In answering the remaining questions, new cost-effectiveness analysis will yield limited benefit. Rather, studies that can reduce the uncertainty in the underlying data

  4. Use of DNA Microarrays to Identify Diagnostic Signature Transcription Profiles for Host Responses to Infectious Agents

    DTIC Science & Technology

    2004-10-01

    informative in this regard. Key signature genes will serve as the basis for rapid diagnostic approaches that could be accessed when an outbreak is suspected...AD Award Number: DAMD17-01-1-0787 TITLE: Use of DNA Microarrays to Identify Diagnostic Signature Transcription Profiles for Host Responses to...Sep 2004) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Use of DNA Microarrays to Identify Diagnostic Signature DAMD17-01-1-0787 Transcription Profiles for

  5. Temporal variation and lack of host specificity among bacterial endosymbionts of Osedax bone worms (Polychaeta: Siboglinidae)

    PubMed Central

    2012-01-01

    Background Osedax worms use a proliferative root system to extract nutrients from the bones of sunken vertebrate carcasses. The roots contain bacterial endosymbionts that contribute to the nutrition of these mouthless and gutless worms. The worms acquire these essential endosymbionts locally from the environment in which their larvae settle. Here we report on the temporal dynamics of endosymbiont diversity hosted by nine Osedax species sampled during a three-year investigation of an experimental whale fall at 1820-m depth in the Monterey Bay, California. The host species were identified by their unique mitochondrial COI haplotypes. The endosymbionts were identified by ribotyping with PCR primers specifically designed to target Oceanospirillales. Results Thirty-two endosymbiont ribotypes associated with these worms clustered into two distinct bacterial ribospecies that together comprise a monophyletic group, mostly restricted to deep waters (>1000 m). Statistical analyses confirmed significant changes in the relative abundances of host species and the two dominant endosymbiont ribospecies during the three-year sampling period. Bone type (whale vs. cow) also had a significant effect on host species, but not on the two dominant symbiont ribospecies. No statistically significant association existed between the host species and endosymbiont ribospecies. Conclusions Standard PCR and direct sequencing proved to be an efficient method for ribotyping the numerically dominant endosymbiont strains infecting a large sample of host individuals; however, this method did not adequately represent the frequency of mixed infections, which appears to be the rule rather than an exception for Osedax individuals. Through cloning and the use of experimental dilution series, we determined that minority ribotypes constituting less than 30% of a mixture would not likely be detected, leading to underestimates of the frequency of multiple infections in host individuals. PMID:23006795

  6. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    PubMed Central

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  7. Vertebrate sex-determining genes play musical chairs

    PubMed Central

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H.; Schartl, Manfred; Guiguen, Yann

    2017-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. PMID:27291506

  8. Pathologic fracture of the thoracic spine in a male master ultra-marathoner due to the combination of a vertebral hemangioma and osteopenia.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T; Lutz, Bruno; Rosemann, Thomas; Baerlocher, Christian B

    2017-01-01

    Vertebral hemangiomas are the most common benign vertebral neoplasms and are generally asymptomatic. In the present study, we report the case of a 52-year-old male master ultra-marathoner suffering from a pathologic fracture of the thoracic spine due to a vertebral hemangioma. A further examination in the athlete revealed an accompanying osteopenia, which was most likely due to a deficiency in both vitamin D and testosterone. The treatment of the fracture consisted of percutaneous vertebroplasty. Shortly after the operation the athlete was able to continue running. The most likely reason for the pathologic fracture of the vertebral body was the combination of the vertebral hemangioma and osteopenia. The further treatment consisted of supplementation of both vitamin D and testosterone. Athletes and physicians should be aware that male master ultra-marathoners older than 50 years might suffer from osteopenia, where a deficiency in vitamin D and testosterone could be contributing factors for osteopenia development in general. Copyright © 2017 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.

  9. Application of a reverse dot blot, DNA-DNA hydridization method to quantify host-feeding tendencies of two sibling species in the Anopheles gambiae complex

    PubMed Central

    Fritz, Megan L; Miller, James R; Bayoh, M Nabie; Vulule, John M; Landgraf, Jeffrey R; Walker, Edward D

    2012-01-01

    A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used for identification of Anopheles gambiae s.s. and An. arabiensis hosts. Of 299 blood fed and half gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; 69.5% were An. arabiensis, and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable to conventional PCR followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome B gene. Of the 174 amplicon-producing samples used for comparison of these two methods, 147 were identifiable by direct sequencing, and 139 of these same by RDBA. An. arabiensis blood meals were mostly (>90%) bovine in origin, whereas An. gambiae s.s. fed upon humans > 90% of the time. RDBA detected that 2 of 112 An. arabiensis had blood from more than one host species, whereas PCR and direct sequencing did not. Recent insecticide-treated bednet (ITN) use in Kisian has likely caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. RDBA provides an opportunity to study changes in host-feeding by members of the An. gambiae complex as a response to the broadening distribution of vector control measures targeting host-selection behaviors. PMID:24188164

  10. Checklist of available generic names for Microsporidia with type species and type host

    USDA-ARS?s Scientific Manuscript database

    The science of microsporidiology encompasses a diverse assemblage of pathogens from a large and varied group of hosts. Many members of this group have been studied and exploited for their role in the control of insect pests and vectors as well as their detrimental impact on vertebrates including ma...

  11. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    USGS Publications Warehouse

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  12. Analysis of lamprey clustered Fox genes: insight into Fox gene evolution and expression in vertebrates.

    PubMed

    Wotton, Karl R; Shimeld, Sebastian M

    2011-12-01

    In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome. 2011 Elsevier B.V. All rights reserved.

  13. Questioning hagfish affinities of the enigmatic Devonian vertebrate Palaeospondylus

    NASA Astrophysics Data System (ADS)

    Johanson, Zerina; Smith, Moya; Sanchez, Sophie; Senden, Tim; Trinajstic, Kate; Pfaff, Cathrin

    2017-07-01

    Palaeospondylus gunni Traquair, 1890 is an enigmatic Devonian vertebrate whose taxonomic affinities have been debated since it was first described. Most recently, Palaeospondylus has been identified as a stem-group hagfish (Myxinoidea). However, one character questioning this assignment is the presence of three semicircular canals in the otic region of the cartilaginous skull, a feature of jawed vertebrates. Additionally, new tomographic data reveal that the following characters of crown-group gnathostomes (chondrichthyans + osteichthyans) are present in Palaeospondylus: a longer telencephalic region of the braincase, separation of otic and occipital regions by the otico-occipital fissure, and vertebral centra. As well, a precerebral fontanelle and postorbital articulation of the palatoquadrate are characteristic of certain chondrichthyans. Similarities in the structure of the postorbital process to taxa such as Pucapampella, and possible presence of the ventral cranial fissure, both support a resolution of Pa. gunni as a stem chondrichthyan. The internally mineralized cartilaginous skeleton in Palaeospondylus may represent a stage in the loss of bone characteristic of the Chondrichthyes.

  14. Extinction risk is most acute for the world's largest and smallest vertebrates.

    PubMed

    Ripple, William J; Wolf, Christopher; Newsome, Thomas M; Hoffmann, Michael; Wirsing, Aaron J; McCauley, Douglas J

    2017-10-03

    Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world's vertebrates, fundamentally reordering the structure of life on our planet.

  15. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity

    NASA Astrophysics Data System (ADS)

    Trobaugh, Derek W.; Gardner, Christina L.; Sun, Chengqun; Haddow, Andrew D.; Wang, Eryu; Chapnik, Elik; Mildner, Alexander; Weaver, Scott C.; Ryman, Kate D.; Klimstra, William B.

    2014-02-01

    Currently, there is little evidence for a notable role of the vertebrate microRNA (miRNA) system in the pathogenesis of RNA viruses. This is primarily attributed to the ease with which these viruses mutate to disrupt recognition and growth suppression by host miRNAs. Here we report that the haematopoietic-cell-specific miRNA miR-142-3p potently restricts the replication of the mosquito-borne North American eastern equine encephalitis virus in myeloid-lineage cells by binding to sites in the 3' non-translated region of its RNA genome. However, by limiting myeloid cell tropism and consequent innate immunity induction, this restriction directly promotes neurologic disease manifestations characteristic of eastern equine encephalitis virus infection in humans. Furthermore, the region containing the miR-142-3p binding sites is essential for efficient virus infection of mosquito vectors. We propose that RNA viruses can adapt to use antiviral properties of vertebrate miRNAs to limit replication in particular cell types and that this restriction can lead to exacerbation of disease severity.

  16. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    PubMed

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are

  17. Dynamics of Vector-Host Interactions in Avian Communities in Four Eastern Equine Encephalitis Virus Foci in the Northeastern U.S.

    PubMed Central

    Molaei, Goudarz; Thomas, Michael C.; Muller, Tim; Medlock, Jan; Shepard, John J.; Armstrong, Philip M.; Andreadis, Theodore G.

    2016-01-01

    Background Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors. Methodology and principle findings Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing

  18. Dynamics of Vector-Host Interactions in Avian Communities in Four Eastern Equine Encephalitis Virus Foci in the Northeastern U.S.

    PubMed

    Molaei, Goudarz; Thomas, Michael C; Muller, Tim; Medlock, Jan; Shepard, John J; Armstrong, Philip M; Andreadis, Theodore G

    2016-01-01

    Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors. Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing three species. We developed an empirically

  19. Computerized detection of vertebral compression fractures on lateral chest radiographs: Preliminary results with a tool for early detection of osteoporosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasai, Satoshi; Li Feng; Shiraishi, Junji

    Vertebral fracture (or vertebral deformity) is a very common outcome of osteoporosis, which is one of the major public health concerns in the world. Early detection of vertebral fractures is important because timely pharmacologic intervention can reduce the risk of subsequent additional fractures. Chest radiographs are used routinely for detection of lung and heart diseases, and vertebral fractures can be visible on lateral chest radiographs. However, investigators noted that about 50% of vertebral fractures visible on lateral chest radiographs were underdiagnosed or under-reported, even when the fractures were severe. Therefore, our goal was to develop a computerized method for detectionmore » of vertebral fractures on lateral chest radiographs in order to assist radiologists' image interpretation and thus allow the early diagnosis of osteoporosis. The cases used in this study were 20 patients with severe vertebral fractures and 118 patients without fractures, as confirmed by the consensus of two radiologists. Radiologists identified the locations of fractured vertebrae, and they provided morphometric data on the vertebral shape for evaluation of the accuracy of detecting vertebral end plates by computer. In our computerized method, a curved search area, which included a number of vertebral end plates, was first extracted automatically, and was straightened so that vertebral end plates became oriented horizontally. Edge candidates were enhanced by use of a horizontal line-enhancement filter in the straightened image, and a multiple thresholding technique, followed by feature analysis, was used for identification of the vertebral end plates. The height of each vertebra was determined from locations of identified vertebral end plates, and fractured vertebrae were detected by comparison of the measured vertebral height with the expected height. The sensitivity of our computerized method for detection of fracture cases was 95% (19/20), with 1.03 (139/135) false

  20. Testing Skills in Vertebrates

    ERIC Educational Resources Information Center

    Funk, Mildred Sears; Tosto, Pat

    2007-01-01

    In this article, the authors present a project that gives students examples of basic skills that many vertebrate species develop as they grow and function in their ecosystem. These activities involve information gathering about surroundings, learning how to use objects, and tracking and searching skills. Different vertebrate species may acquire…

  1. Computerized method for detection of vertebral fractures on lateral chest radiographs based on morphometric data

    NASA Astrophysics Data System (ADS)

    Kasai, Satoshi; Li, Feng; Shiraishi, Junji; Li, Qiang; Straus, Christopher; Vokes, Tamara; MacMahon, Heber; Doi, Kunio

    2007-03-01

    Vertebral fractures are the most common osteoporosis-related fractures. It is important to detect vertebral fractures, because they are associated with increased risk of subsequent fractures, and because pharmacologic therapy can reduce the risk of subsequent fractures. Although vertebral fractures are often not clinically recognized, they can be visualized on lateral chest radiographs taken for other purposes. However, only 15-60% of vertebral fractures found on lateral chest radiographs are mentioned in radiology reports. The purpose of this study was to develop a computerized method for detection of vertebral fractures on lateral chest radiographs in order to assist radiologists' image interpretation. Our computerized method is based on the automated identification of upper and lower vertebral edges. In order to develop the scheme, radiologists provided morphometric data for each identifiable vertebra, which consisted of six points for each vertebra, for 25 normals and 20 cases with severe fractures. Anatomical information was obtained from morphometric data of normal cases in terms of vertebral heights, heights of vertebral disk spaces, and vertebral centerline. Computerized detection of vertebral fractures was based on the reduction in the heights of fractured vertebrae compared to adjacent vertebrae and normal reference data. Vertebral heights from morphometric data on normal cases were used as reference. On 138 chest radiographs (20 with fractures) the sensitivity of our method for detection of fracture cases was 95% (19/20) with 0.93 (110/118) false-positives per image. In conclusion, the computerized method would be useful for detection of potentially overlooked vertebral fractures on lateral chest radiographs.

  2. Diverse papillomaviruses identified in Weddell seals.

    PubMed

    Smeele, Zoe E; Burns, Jennifer M; Van Doorsaler, Koenraad; Fontenele, Rafaela S; Waits, Kara; Stainton, Daisy; Shero, Michelle R; Beltran, Roxanne S; Kirkham, Amy L; Berngartt, Rachel; Kraberger, Simona; Varsani, Arvind

    2018-04-01

    Papillomaviridae is a diverse family of circular, double-stranded DNA (dsDNA) viruses that infect a broad range of mammalian, avian and fish hosts. While papillomaviruses have been characterized most extensively in humans, the study of non-human papillomaviruses has contributed greatly to our understanding of their pathogenicity and evolution. Using high-throughput sequencing approaches, we identified 7 novel papillomaviruses from vaginal swabs collected from 81 adult female Weddell seals (Leptonychotes weddellii) in the Ross Sea of Antarctica between 2014-2017. These seven papillomavirus genomes were amplified from seven individual seals, and six of the seven genomes represented novel species with distinct evolutionary lineages. This highlights the diversity of papillomaviruses among the relatively small number of Weddell seal samples tested. Viruses associated with large vertebrates are poorly studied in Antarctica, and this study adds information about papillomaviruses associated with Weddell seals and contributes to our understanding of the evolutionary history of papillomaviruses.

  3. In vivo insertion pool sequencing identifies virulence factors in a complex fungal–host interaction

    PubMed Central

    Uhse, Simon; Pflug, Florian G.; Stirnberg, Alexandra; Ehrlinger, Klaus; von Haeseler, Arndt

    2018-01-01

    Large-scale insertional mutagenesis screens can be powerful genome-wide tools if they are streamlined with efficient downstream analysis, which is a serious bottleneck in complex biological systems. A major impediment to the success of next-generation sequencing (NGS)-based screens for virulence factors is that the genetic material of pathogens is often underrepresented within the eukaryotic host, making detection extremely challenging. We therefore established insertion Pool-Sequencing (iPool-Seq) on maize infected with the biotrophic fungus U. maydis. iPool-Seq features tagmentation, unique molecular barcodes, and affinity purification of pathogen insertion mutant DNA from in vivo-infected tissues. In a proof of concept using iPool-Seq, we identified 28 virulence factors, including 23 that were previously uncharacterized, from an initial pool of 195 candidate effector mutants. Because of its sensitivity and quantitative nature, iPool-Seq can be applied to any insertional mutagenesis library and is especially suitable for genetically complex setups like pooled infections of eukaryotic hosts. PMID:29684023

  4. Application of DNA markers to identify the individual-specific hosts of tsetse feeding on cattle.

    PubMed

    Torr, S J; Wilson, P J; Schofield, S; Mangwiro, T N; Akber, S; White, B N

    2001-03-01

    Primer sets for five different ungulate loci were used to obtain individual microsatellite DNA profiles for 29 Mashona cattle from a herd in Zimbabwe. There were 3-13 alleles for each locus and, using the entire suite of five loci, each animal within the herd, including closely related individuals, could be unequivocally distinguished. Wild-caught Glossina pallidipes Austen (Diptera: Glossinidae) were fed on specific cattle and the bloodmeal was profiled 0.5-72 h after feeding. The individual specific sources of the bloodmeals, including mixe meals produced by allowing tsetse to feed on two different cattle, were reliabl identified up to 24 h after feeding. The technique was used in field studies of hos selection by G. pallidipes and G. morsitans morsitans Westwood (Diptera Glossinidae) attracted to pairs of cattle. When the pair comprised an adult and a calf, 100% of meals were from the adult. For some pairs of adult cattle, tsetse were biased significantly towards feeding on one animal, whereas for other pairs there was no such bias. In general, feeding was greater on the animal known to have lower rate of host defensive behaviour. Results suggest that relatively slight differences in the inherent defensive behaviour of cattle produce large difference in host-specific feeding rates when the hosts are adjacent. For flies attracted to pair of cattle, < 2% contained blood from both hosts. The DNA profiling technique will be useful in studying the epidemiology of vector-borne diseases of livestock.

  5. An orthologue of the host-defense protein psoriasin (S100A7) is expressed in frog skin.

    PubMed

    Matthijs, Severine; Hernalsteens, Jean-Pierre; Roelants, Kim

    2017-02-01

    Host-defense peptides and proteins are vital for first line protection against bacteria. Most host-defense peptides and proteins common in vertebrates have been studied primarily in mammals, while their orthologues in non-mammalian vertebrates received less attention. We found that the European Common Frog Rana temporaria expresses a protein in its skin that is evolutionarily related to the host-defense protein S100A7. This prompted us to test if the encoded protein, which is an important microbicidal protein in human skin, shows similar activity in frogs. The R. temporaria protein lacks the zinc-binding sites that are key to the antimicrobial activity of human S100A7 at neutral pH. However, despite being less potent, the R. temporaria protein does compromise bacterial membranes at low pH, similar to its human counterpart. We postulate that, while amphibian S100A7 likely serves other functions, the capacity to compromise bacterial cell membranes evolved early in tetrapod evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Does adaptation to vertebrate codon usage relate to flavivirus emergence potential?

    PubMed Central

    Freire, Caio César de Melo

    2018-01-01

    Codon adaptation index (CAI) is a measure of synonymous codon usage biases given a usage reference. Through mutation, selection, and drift, viruses can optimize their replication efficiency and produce more offspring, which could increase the chance of secondary transmission. To evaluate how higher CAI towards the host has been associated with higher viral titers, we explored temporal trends of several historic and extensively sequenced zoonotic flaviviruses and relationships within the genus itself. To showcase evolutionary and epidemiological relationships associated with silent, adaptive synonymous changes of viruses, we used codon usage tables from human housekeeping and antiviral immune genes, as well as tables from arthropod vectors and vertebrate species involved in the flavivirus maintenance cycle. We argue that temporal trends of CAI changes could lead to a better understanding of zoonotic emergences, evolutionary dynamics, and host adaptation. CAI appears to help illustrate historically relevant trends of well-characterized viruses, in different viral species and genetic diversity within a single species. CAI can be a useful tool together with in vivo and in vitro kinetics, phylodynamics, and additional functional genomics studies to better understand species trafficking and viral emergence in a new host. PMID:29385205

  7. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes

    PubMed Central

    Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald

    2012-01-01

    Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially

  8. A minimally invasive vertebral hemangioma.

    PubMed

    Van den Broeck, S; Mailleux, P; Joris, J P

    2010-01-01

    We describe a very unusual vertebral hemangioma presenting with a mixture of aggressive-like pattern (epidural extension, T1 hyposignal) and quiescent, inactive lesion (fatty infiltration), in association with a spiculated calcified epidural component.This paper emphasizes that CT and/or MR findings are accurate enough to make formal assessment of vertebral hemangioma, preventing patient's anguish and moreover unnecessary treatment. Furthermore this attractive case proposes a poorly known characteristic of vertebral hemangioma which is usually encountered and described only in skull hemangiomas.

  9. Large Scale Screening of Digeneans for Neorickettsia Endosymbionts Using Real-Time PCR Reveals New Neorickettsia Genotypes, Host Associations and Geographic Records

    PubMed Central

    Greiman, Stephen E.; Tkach, Vasyl V.; Pulis, Eric; Fayton, Thomas J.; Curran, Stephen S.

    2014-01-01

    Digeneans are endoparasitic flatworms with complex life cycles including one or two intermediate hosts (first of which is always a mollusk) and a vertebrate definitive host. Digeneans may harbor intracellular endosymbiotic bacteria belonging to the genus Neorickettsia (order Rickettsiales, family Anaplasmataceae). Some Neorickettsia are able to invade cells of the digenean's vertebrate host and are known to cause diseases of wildlife and humans. In this study we report the results of screening 771 digenean samples for Neorickettsia collected from various vertebrates in terrestrial, freshwater, brackish, and marine habitats in the United States, China and Australia. Neorickettsia were detected using a newly designed real-time PCR protocol targeting a 152 bp fragment of the heat shock protein coding gene, GroEL, and verified with nested PCR and sequencing of a 1371 bp long region of 16S rRNA. Eight isolates of Neorickettsia have been obtained. Sequence comparison and phylogenetic analysis demonstrated that 7 of these isolates, provisionally named Neorickettsia sp. 1–7 (obtained from allocreadiid Crepidostomum affine, haploporids Saccocoelioides beauforti and Saccocoelioides lizae, faustulid Bacciger sprenti, deropegid Deropegus aspina, a lecithodendriid, and a pleurogenid) represent new genotypes and one (obtained from Metagonimoides oregonensis) was identical to a published sequence of Neorickettsia known as SF agent. All digenean species reported in this study represent new host records. Three of the 6 digenean families (Haploporidae, Pleurogenidae, and Faustulidae) are also reported for the first time as hosts of Neorickettsia. We have detected Neorickettsia in digeneans from China and Australia for the first time based on PCR and sequencing evidence. Our findings suggest that further surveys from broader geographic regions and wider selection of digenean taxa are likely to reveal new Neorickettsia lineages as well as new digenean host associations. PMID

  10. Hormonally active phytochemicals and vertebrate evolution.

    PubMed

    Lambert, Max R; Edwards, Thea M

    2017-06-01

    Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.

  11. The role of virulence for in vivo superinfection fitness of a vertebrate RNA virus

    USGS Publications Warehouse

    Kell, Alison M.; Wargo, Andrew R.; Kurath, Gael

    2013-01-01

    We have developed a novel, in vivo superinfection fitness assay to examine superinfection dynamics and the role of virulence in superinfection fitness. This assay involves controlled, sequential infections of a natural, vertebrate host, Oncorhynchus mykiss (rainbow trout), with variants of a co-evolved viral pathogen, infectious hematopoietic necrosis virus (IHNV). Intervals between infections ranged from 12 hours to 7 days, and both frequency of superinfection and viral replication levels were examined. Using virus genotype pairs of equal and unequal virulence, we observed that superinfection generally occurred with decreasing frequency as the interval between exposures to each genotype increased. For both the equal virulence and unequal virulence genotype pairs, the frequency of superinfection was the same regardless of which genotype was used in the primary exposure. However, the ability to replicate in the context of superinfection did not differ between the genotypes of equal or unequal virulence tested here. For both genotype pairs, the mean viral load of the secondary virus was significantly reduced in superinfection, while primary virus replication was unaffected. Our results demonstrate, for the two genotype pairs examined, that superinfection restriction does occur for IHNV, and that higher virulence did not correlate with a significant difference in superinfection fitness. To our knowledge, this is the first assay to examine the role of virulence of an RNA virus in determining superinfection fitness dynamics within a natural, vertebrate host.

  12. Relationship between vertebral artery blood flow in different head positions and vertigo.

    PubMed

    Araz Server, Ela; Edizer, Deniz Tuna; Yiğit, Özgür; Yasak, Ahmet Görkem; Erdim, Çağrı

    2018-01-01

    To identify the vertebral artery blood flow in different head positions in patients with positional vertigo with no specific diagnosis. Patients with history of vestibular symptoms associated with changes in head position were enrolled into the study. Healthy volunteers were evaluated as control group. Doppler ultrasonography examination of the cervical segment of the vertebral arteries was performed under three different head positions: (i) supine position, (ii) head hyperextended and rotated to the right side and (iii) head hyperextended and rotated to the left side. In the study group, right and left vertebral artery blood flow was significantly lower in the ipsilateral hyperextended position compared to standard supine position (respectively p = .014; p = .001), but did not differ significantly when compared between the standard supine and contralateral hyperextended positions (respectively = .959; p = .669). In the control group, left and right vertebral artery blood flow did not differ significantly when the head was hyperextended to the right or left sides compared to standard supine position (p > .05). Our data demonstrated that the etiology of vestibular complaints in patients with undiagnosed positional vertigo might be related to impairment in vertebral artery blood flow according to head positions.

  13. Vertebrate sex-determining genes play musical chairs.

    PubMed

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H; Schartl, Manfred; Guiguen, Yann

    2016-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. Copyright © 2016 Académie des sciences. All rights reserved.

  14. Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey.

    PubMed

    Mukendi, Christian; Dean, Nicholas; Lala, Rushil; Smith, Jeramiah; Bronner, Marianne E; Nikitina, Natalya V

    2016-01-01

    Claudins are major constituents of tight junctions, contributing both to their intercellular sealing and selective permeability properties. While claudins and claudin-like molecules are present in some invertebrates, the association of claudins with tight junctions has been conclusively documented only in vertebrates. Here we report the sequencing, phylogenetic analysis and comprehensive spatiotemporal expression analysis of the entire claudin gene family in the basal extant vertebrate, the sea lamprey. Our results demonstrate that clear orthologues to about half of all mammalian claudins are present in the lamprey, suggesting that at least one round of whole genome duplication contributed to the diversification of this gene family. Expression analysis revealed that claudins are expressed in discrete and specific domains, many of which represent vertebrate-specific innovations, such as in cranial ectodermal placodes and the neural crest; whereas others represent structures characteristic of chordates, e.g. pronephros, notochord, somites, endostyle and pharyngeal arches. By comparing the embryonic expression of claudins in the lamprey to that of other vertebrates, we found that ancestral expression patterns were often preserved in higher vertebrates. Morpholino mediated loss of Cldn3b demonstrated a functional role for this protein in placode and pharyngeal arch morphogenesis. Taken together, our data provide novel insights into the origins and evolution of the claudin gene family and the significance of claudin proteins in the evolution of vertebrates.

  15. Stenting for symptomatic vertebral artery stenosis: The Vertebral Artery Ischaemia Stenting Trial.

    PubMed

    Markus, Hugh S; Larsson, Susanna C; Kuker, Wilhelm; Schulz, Ursula G; Ford, Ian; Rothwell, Peter M; Clifton, Andrew

    2017-09-19

    To compare in the Vertebral Artery Ischaemia Stenting Trial (VIST) the risks and benefits of vertebral angioplasty and stenting with best medical treatment (BMT) alone for symptomatic vertebral artery stenosis. VIST was a prospective, randomized, open-blinded endpoint clinical trial performed in 14 hospitals in the United Kingdom. Participants with symptomatic vertebral stenosis ≥50% were randomly assigned (1:1) to vertebral angioplasty/stenting plus BMT or to BMT alone with randomization stratified by site of stenosis (extracranial vs intracranial). Because of slow recruitment and cessation of funding, recruitment was stopped after 182 participants. Follow-up was a minimum of ≥1 year for each participant. Three patients did not contribute any follow-up data and were excluded, leaving 91 patients in the stent group and 88 in the medical group. Mean follow-up was 3.5 (interquartile range 2.1-4.7) years. Of 61 patients who were stented, stenosis was extracranial in 48 (78.7%) and intracranial in 13 (21.3%). No periprocedural complications occurred with extracranial stenting; 2 strokes occurred during intracranial stenting. The primary endpoint of fatal or nonfatal stroke occurred in 5 patients in the stent group vs 12 in the medical group (hazard ratio 0.40, 95% confidence interval 0.14-1.13, p = 0.08), with an absolute risk reduction of 25 strokes per 1,000 person-years. The hazard ratio for stroke or TIA was 0.50 ( p = 0.05). Stenting in extracranial stenosis appears safe with low complication rates. Large phase 3 trials are required to determine whether stenting reduces stroke risk. ISRCTN95212240. This study provides Class I evidence that for patients with symptomatic vertebral stenosis, angioplasty with stenting does not reduce the risk of stroke. However, the study lacked the precision to exclude a benefit from stenting. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  16. Vertebrate reservoirs and secondary epidemiological cycles of vector-borne diseases.

    PubMed

    Kock, R A

    2015-04-01

    Vector-borne diseases of importance to human and domestic animal health are listed and the increasing emergence of syndromes, new epidemiological cycles and distributions are highlighted. These diseases involve a multitude of vectors and hosts, frequently for the same pathogen, and involve natural enzootic cycles, wild reservoirs and secondary epidemiological cycles, sometimes affecting humans and domestic animals. On occasions the main reservoir is in the domestic environment. Drivers for secondary cycles are mainly related to human impacts and activities and therefore, for purposes of prevention and control, the focus needs to be on the socioecology of the diseases. Technical and therapeutical solutions exist, and for control there needs to be a clear understanding of the main vertebrate hosts or reservoirs and the main vectors. The targets of interventions are usually the vector and/or secondary epidemiological cycles and, in the case of humans and domestic animals, the spillover or incidental hosts are treated. More attention needs to be given to the importance of the political economy in relation to vector-borne diseases, as many key drivers arise from globalisation, climate change and changes in structural ecologies. Attention to reducing the risk of emergence of new infection cycles through better management of the human-animal-environment interface is urgently needed.

  17. Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells.

    PubMed

    Sadewasser, Anne; Paki, Katharina; Eichelbaum, Katrin; Bogdanow, Boris; Saenger, Sandra; Budt, Matthias; Lesch, Markus; Hinz, Klaus-Peter; Herrmann, Andreas; Meyer, Thomas F; Karlas, Alexander; Selbach, Matthias; Wolff, Thorsten

    2017-05-01

    Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic IAV strains replicate efficiently in permissive human cells, many avian IAV cause abortive nonproductive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or downregulated in the course of permissive versus nonpermissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive versus nonpermissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as proviral host factor because its downregulation inhibited efficient propagation of seasonal IAV whereas overexpression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and nonpermissive influenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells*

    PubMed Central

    Sadewasser, Anne; Paki, Katharina; Eichelbaum, Katrin; Bogdanow, Boris; Saenger, Sandra; Budt, Matthias; Lesch, Markus; Hinz, Klaus-Peter; Herrmann, Andreas; Meyer, Thomas F.; Karlas, Alexander; Selbach, Matthias; Wolff, Thorsten

    2017-01-01

    Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic IAV strains replicate efficiently in permissive human cells, many avian IAV cause abortive nonproductive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or downregulated in the course of permissive versus nonpermissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive versus nonpermissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as proviral host factor because its downregulation inhibited efficient propagation of seasonal IAV whereas overexpression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and nonpermissive influenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target. PMID:28289176

  19. Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes.

    PubMed

    Chen, Yuan; Ding, Yun; Zhang, Zuming; Wang, Wen; Chen, Jun-Yuan; Ueno, Naoto; Mao, Bingyu

    2011-12-20

    The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes. Copyright © 2011. Published by Elsevier Ltd.

  20. Prospective Single-Site Experience with Radiofrequency-Targeted Vertebral Augmentation for Osteoporotic Vertebral Compression Fracture

    PubMed Central

    Moser, Franklin G.; Maya, Marcel M.; Blaszkiewicz, Laura; Scicli, Andrea; Miller, Larry E.; Block, Jon E.

    2013-01-01

    Vertebral augmentation procedures are widely used to treat osteoporotic vertebral compression fractures (VCFs). We report our initial experience with radiofrequency-targeted vertebral augmentation (RF-TVA) in 20 patients aged 50 to 90 years with single-level, symptomatic osteoporotic VCF between T10 and L5, back pain severity > 4 on a 0 to 10 scale, Oswestry Disability Index ≥ 21%, 20% to 90% vertebral height loss compared to adjacent vertebral body, and fracture age < 6 months. After treatment, patients were followed through hospital discharge and returned for visits after 1 week, 1 month, and 3 months. Back pain severity improved 66% (P < 0.001), from 7.9 (95% CI: 7.1 to 8.6) at pretreatment to 2.7 (95% CI: 1.5 to 4.0) at 3 months. Back function improved 46% (P < 0.001), from 74 (95% CI: 69% to 79%) at pretreatment to 40 (95% CI: 33% to 47%) at 3 months. The percentage of patients regularly consuming pain medication was 70% at pretreatment and only 21% at 3 months. No adverse events related to the device or procedure were reported. RF-TVA reduces back pain severity, improves back function, and reduces pain medication requirements with no observed complications in patients with osteoporotic VCF. PMID:24228187

  1. Accuracy of conventional radiography and computed tomography in predicting implant position in relation to the vertebral canal in dogs.

    PubMed

    Hettlich, Bianca F; Fosgate, Geoffrey T; Levine, Jonathan M; Young, Benjamin D; Kerwin, Sharon C; Walker, Michael; Griffin, Jay; Maierl, Johann

    2010-08-01

    To compare the accuracy of radiography and computed tomography (CT) in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column. In vitro imaging and anatomic study. Medium-sized canine cadaver vertebral columns (n=12). Steinmann pins were inserted into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT images were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. Left/right accuracy was 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P<.0001). Sensitivity was significantly higher for complete versus partial penetration and for radiologists compared with nonradiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P=.049). CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. CT is significantly more accurate in identifying vertebral canal violation by Steinmann pins and should be performed postoperatively to assess implant position.

  2. Heat shock during early somitogenesis induces caudal vertebral column defects in Atlantic salmon (Salmo salar).

    PubMed

    Wargelius, Anna; Fjelldal, Per Gunnar; Hansen, Tom

    2005-07-01

    In several terrestrial vertebrates, heat shock (HS) during somitogenesis causes vertebral deformities. To determine if vertebral deformities can occur due to sudden temperature changes during early development in fish, Atlantic salmon embryos were HS treated during somitogenesis. Ten months later these individuals displayed a high prevalence of caudal vertebral column condensations (27-34%). The defects were located caudally of the abdominal cavity, displaying an even distribution in this region independent of time of HS. To determine if HS disturbed vertebral development during somitogenesis, two genes coding for markers of skeletal development were identified, namely, the secreted protein Shh (Sashh) and the transcription factor Twist (Satwist). These proteins are involved in the proliferation and specification of presumptive skeletal cells (sclerotome) in vertebrates. The spatial expression pattern of sashh and satwist in salmon indicated a functional conservation of these proteins. Furthermore, HS embryos displayed expressional disturbance in both sashh and satwist, indicating an effect of HS on sclerotomal cell patterning. However, the HS-protecting ability in embryos seems to be individually regulated because reduction in gene expression was not detected at all stages; in addition, HS did not induce somitic disturbance and vertebral deformity in all embryos.

  3. Extinction risk is most acute for the world’s largest and smallest vertebrates

    PubMed Central

    Ripple, William J.; Wolf, Christopher; Newsome, Thomas M.; Hoffmann, Michael; Wirsing, Aaron J.; McCauley, Douglas J.

    2017-01-01

    Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world’s vertebrates, fundamentally reordering the structure of life on our planet. PMID:28923917

  4. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates

    PubMed Central

    Brunet, Frédéric G.; Volff, Jean-Nicolas; Schartl, Manfred

    2016-01-01

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. PMID:27260203

  5. Evolutionary anatomy of the muscular apparatus involved in the anchoring of Acanthocephala to the intestinal wall of their vertebrate hosts.

    PubMed

    Herlyn, Holger; Taraschewski, Horst

    2017-04-01

    Different conceptions exist regarding structure, function, and evolution of the muscles that move the acanthocephalan presoma, including the proboscis, i.e., the usually hooked hold-fast anchoring these endoparasites to the intestinal wall of their vertebrate definitive hosts. In order to clarify the unresolved issues, we carried out a light microscopic analysis of series of semi-thin sections and whole mounts representing the three traditional acanthocephalan classes: Archiacanthocephala (Macracanthorhynchus hirudinaceus), Eoacanthocephala (Paratenuisentis ambiguus, Tenuisentis niloticus), and Palaeacanthocephala (Acanthocephalus anguillae, Echinorhynchus truttae, Pomphorhynchus laevis, Corynosoma sp.). Combining our data with published light, transmission electron, and scanning electron microscopic data, we demonstrate that receptacle protrusor and proboscis receptacle in Archi- and Eoacanthocephala are homologous to the outer and inner wall of the proboscis receptacle in Palaeacanthocephala. Besides the proboscis receptacle and a "surrounding muscle," the last common ancestor of Acanthocephala presumably possessed a proboscis retractor, receptacle retractor, neck retractor (continuous with lemnisci compressors), and retinacula. These muscles most probably evolved in the acanthocephalan stem line. Moreover, the last common ancestor of Acanthocephala presumably possessed only a single layer of muscular cords under the presomal tegument while the metasomal body wall had circular and longitudinal strands. Two lateral receptacle flexors (also lateral receptacle protrusors), an apical muscle plate (surrounding one or two apical sensory organs), a midventral longitudinal muscle, and the differentiation of longitudinal body wall musculature at the base of the proboscis probably emerged within Archiacanthocephala. All muscles have a common organization principle: a peripheral layer of contractile filaments encloses the cytoplasm.

  6. Modulation of Host Learning in Aedes aegypti Mosquitoes.

    PubMed

    Vinauger, Clément; Lahondère, Chloé; Wolff, Gabriella H; Locke, Lauren T; Liaw, Jessica E; Parrish, Jay Z; Akbari, Omar S; Dickinson, Michael H; Riffell, Jeffrey A

    2018-02-05

    How mosquitoes determine which individuals to bite has important epidemiological consequences. This choice is not random; most mosquitoes specialize in one or a few vertebrate host species, and some individuals in a host population are preferred over others. Mosquitoes will also blood feed from other hosts when their preferred is no longer abundant, but the mechanisms mediating these shifts between hosts, and preferences for certain individuals within a host species, remain unclear. Here, we show that olfactory learning may contribute to Aedes aegypti mosquito biting preferences and host shifts. Training and testing to scents of humans and other host species showed that mosquitoes can aversively learn the scent of specific humans and single odorants and learn to avoid the scent of rats (but not chickens). Using pharmacological interventions, RNAi, and CRISPR gene editing, we found that modification of the dopamine-1 receptor suppressed their learning abilities. We further show through combined electrophysiological and behavioral recordings from tethered flying mosquitoes that these odors evoke changes in both behavior and antennal lobe (AL) neuronal responses and that dopamine strongly modulates odor-evoked responses in AL neurons. Not only do these results provide direct experimental evidence that olfactory learning in mosquitoes can play an epidemiological role, but collectively, they also provide neuroanatomical and functional demonstration of the role of dopamine in mediating this learning-induced plasticity, for the first time in a disease vector insect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    PubMed

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P < 0.05), while no significant difference in T score of BMD, operative level, preoperative anterior compression degree of

  8. The posterior skeletal thorax: rib-vertebral angle and axial vertebral rotation asymmetries in adolescent idiopathic scoliosis.

    PubMed

    Burwell, R G; Aujla, R K; Freeman, B J C; Dangerfield, P H; Cole, A A; Kirby, A S; Polak, F J; Pratt, R K; Moulton, A

    2008-01-01

    The deformity of the ribcage in thoracic adolescent idiopathic scoliosis (AIS) is viewed by most as being secondary to the spinal deformity, though a few consider it primary or involved in curve aggravation. Those who consider it primary ascribe pathogenetic significance to rib-vertebra angle asymmetry. In thoracic AIS, supra-apical rib-vertebra angle differences (RVADs) are reported to be associated with the severity of the Cobb angle. In this paper we attempt to evaluate rib and spinal pathomechanisms in thoracic and thnoracolumbar AIS using spinal radiographs and real-time ultrasound. On the radiographs by costo-vertebral angle asymmetries (rib-vertebral angle differences RVADs, and rib-spinal angle differences RSADs), apical vertebral rotation (AV) and apical vertebral translation (AVT) were measured; and by ultrasound, spine-rib rotation differences (SRRDs) were estimated. RVADs are largest at two and three vertebral levels above the apex where they correlate significantly and positively with Cobb angle and AVT but not AVR. In right thoracic AIS, the cause(s) of the RVA asymmetries is unknown: it may result from trunk muscle imbalance, or from ribs adjusting passively within the constraint of the fourth column of the spine to increasing spinal curvature from whatever cause. Several possible mechanisms may drive axial vertebral rotation including, biplanar spinal asymmetry, relative anterior spinal overgrowth, dorsal shear forces in the presence of normal vertebral axial rotation, asymmetry of rib linear growth, trunk muscle imbalance causing rib-vertebra angle asymmetry weakening the spinal rotation-defending system of bipedal gait, and CNS mechanisms.

  9. Glycoconjugates in New World species of Leishmania: polymorphisms in lipophosphoglycan and glycoinositolphospholipids and interaction with hosts.

    PubMed

    de Assis, Rafael Ramiro; Ibraim, Izabela Coimbra; Nogueira, Paula Monalisa; Soares, Rodrigo Pedro; Turco, Salvatore J

    2012-09-01

    Protozoan parasites of the genus Leishmania cause a number of important diseases in humans and undergo a complex life cycle, alternating between a sand fly vector and vertebrate hosts. The parasites have a remarkable capacity to avoid destruction in which surface molecules are determinant for survival. Amongst the many surface molecules of Leishmania, the glycoconjugates are known to play a central role in host-parasite interactions and are the focus of this review. The most abundant and best studied glycoconjugates are the Lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs). This review summarizes the main studies on structure and biological functions of these molecules in New World Leishmania species. LPG and GIPLs are complex molecules that display inter- and intraspecies polymorphisms. They are key elements for survival inside the vector and to modulate the vertebrate immune response during infection. Most of the studies on glycoconjugates focused on Old World Leishmania species. Here, it is reported some of the studies involving New World species and their biological significance on host-parasite interaction. This article is part of a Special Issue entitled Glycoproteomics. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates

    PubMed Central

    Long, Hannah K; Sims, David; Heger, Andreas; Blackledge, Neil P; Kutter, Claudia; Wright, Megan L; Grützner, Frank; Odom, Duncan T; Patient, Roger; Ponting, Chris P; Klose, Robert J

    2013-01-01

    Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI: http://dx.doi.org/10.7554/eLife.00348.001 PMID:23467541

  11. CIRSE Guidelines on Percutaneous Vertebral Augmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Too, Chow Wei, E-mail: spyder55@gmail.com; Koch, Guillaume, E-mail: guillaume.koch@gmail.com

    Vertebral compression fracture (VCF) is an important cause of severe debilitating back pain, adversely affecting quality of life, physical function, psychosocial performance, mental health and survival. Different vertebral augmentation procedures (VAPs) are used in order to consolidate the VCFs, relief pain,and whenever posible achieve vertebral body height restoration. In the present review we give the indications, contraindications, safety profile and outcomes of the existing percutaneous VAPs.

  12. Anatomy and biomechanics of the vertebral aponeurosis part of the posterior layer of the thoracolumbar fascia.

    PubMed

    Loukas, Marios; Shoja, Mohammadali M; Thurston, Todd; Jones, Virginia L; Linganna, Sanjay; Tubbs, R Shane

    2008-03-01

    There is significant paucity in the literature regarding vertebral aponeurosis. We were able to find only a few descriptions of this specific fascia in the extant medical literature. To elucidate further the anatomy of this structure, forty adult human cadavers were dissected. Both quantitation and anatomical observations were made of the vertebral aponeurosis. The vertebral aponeurosis was identified in 100% of specimens. This fascia was identified as a thin fibrous layer consisting of longitudinal and transverse connective tissue fibers blended together deep to the latissimus dorsi muscle. It attached medially to the spinous processes of the of the thoracic vertebrae; laterally to the angles of ribs; inferiorly to the fascia covering the serratus posterior inferior muscle (superficial lamina of the posterior layer of thoracolumbar fascia); superiorly it ran deep to the serratus posterior superior and splenius capitis muscles to blend with the deep fascia of the neck. At the level of the serratus posterior inferior muscle, the vertebral aponeurosis fused to form a continuous layer descending toward the sacrotuberous ligament covering the erector spinae muscle. Morphometrically, the mean length of the vertebral aponeurosis was 38 cm and the mean width was 24 cm. The mean thickness was three mm. There was no significant difference between left and right sides, gender or age with regard to vertebral aponeurosis length, width, or thickness (P > 0.05). During manual tension of the vertebral aponeurosis, the tensile force necessary for failure had a mean of 38.7 N. In all specimens, the vertebral aponeurosis was capable of holding sutures placed through its substance. We hope that these data will be of use for descriptive purposes and may potentially add to our understanding of the biomechanics involved in movements of the back. As back pain is perhaps the most common reason patients visit their physicians, additional knowledge of this anatomical region is important.

  13. Light adaptation and the evolution of vertebrate photoreceptors.

    PubMed

    Morshedian, Ala; Fain, Gordon L

    2017-07-15

    Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease

  14. Embryonic origin of the gnathostome vertebral skeleton

    PubMed Central

    Gillis, J. Andrew

    2017-01-01

    The vertebral column is a key component of the jawed vertebrate (gnathostome) body plan, but the primitive embryonic origin of this skeleton remains unclear. In tetrapods, all vertebral components (neural arches, haemal arches and centra) derive from paraxial mesoderm (somites). However, in teleost fishes, vertebrae have a dual embryonic origin, with arches derived from somites, but centra formed, in part, by secretion of bone matrix from the notochord. Here, we test the embryonic origin of the vertebral skeleton in a cartilaginous fish (the skate, Leucoraja erinacea) which serves as an outgroup to tetrapods and teleosts. We demonstrate, by cell lineage tracing, that both arches and centra are somite-derived. We find no evidence of cellular or matrix contribution from the notochord to the skate vertebral skeleton. These findings indicate that the earliest gnathostome vertebral skeleton was exclusively of somitic origin, with a notochord contribution arising secondarily in teleosts. PMID:29167367

  15. Host genetics affect microbial ecosystems via host immunity.

    PubMed

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  16. The evolution of vertebral formulae in Hominoidea.

    PubMed

    Thompson, Nathan E; Almécija, Sergio

    2017-09-01

    Primate vertebral formulae have long been investigated because of their link to locomotor behavior and overall body plan. Knowledge of the ancestral vertebral formulae in the hominoid tree of life is necessary to interpret the pattern of evolution among apes, and to critically evaluate the morphological adaptations involved in the transition to hominin bipedalism. Though many evolutionary hypotheses have been proposed based on living and fossil species, the application of quantitative phylogenetic methods for thoroughly reconstructing ancestral vertebral formulae and formally testing patterns of vertebral evolution is lacking. To estimate the most probable scenarios of hominoid vertebral evolution, we utilized an iterative ancestral state reconstruction approach to determine likely ancestral vertebral counts in apes, humans, and other anthropoid out-groups. All available ape and hominin fossil taxa with an inferred regional vertebral count were included in the analysis. Sensitivity iterations were performed both by changing the phylogenetic position of fossil taxa with a contentious placement, and by changing the inferred number of vertebrae in taxa with uncertain morphology. Our ancestral state reconstruction results generally support a short-backed hypothesis of human evolution, with a Pan-Homo last common ancestor possessing a vertebral formulae of 7:13:4:6 (cervical:thoracic:lumbar:sacral). Our results indicate that an initial reduction in lumbar vertebral count and increase in sacral count is a synapomorphy of crown hominoids (supporting an intermediate-backed hypothesis for the origins of the great ape-human clade). Further reduction in lumbar count occurs independently in orangutans and African apes. Our results highlight the complexity and homoplastic nature of vertebral count evolution, and give little support to the long-backed hypothesis of human evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts.

    PubMed

    De Maayer, Pieter; Chan, Wai Yin; Rubagotti, Enrico; Venter, Stephanus N; Toth, Ian K; Birch, Paul R J; Coutinho, Teresa A

    2014-05-27

    Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms. The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors. P. ananatis has an 'open' pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of

  18. Lymphatic regulation in nonmammalian vertebrates.

    PubMed

    Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C

    2013-08-01

    All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression.

  19. Nanotechnology for treating osteoporotic vertebral fractures

    PubMed Central

    Gao, Chunxia; Wei, Donglei; Yang, Huilin; Chen, Tao; Yang, Lei

    2015-01-01

    Osteoporosis is a serious public health problem affecting hundreds of millions of aged people worldwide, with severe consequences including vertebral fractures that are associated with significant morbidity and mortality. To augment or treat osteoporotic vertebral fractures, a number of surgical approaches including minimally invasive vertebroplasty and kyphoplasty have been developed. However, these approaches face problems and difficulties with efficacy and long-term stability. Recent advances and progress in nanotechnology are opening up new opportunities to improve the surgical procedures for treating osteoporotic vertebral fractures. This article reviews the improvements enabled by new nanomaterials and focuses on new injectable biomaterials like bone cements and surgical instruments for treating vertebral fractures. This article also provides an introduction to osteoporotic vertebral fractures and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. In addition, perspectives on future trends with injectable bone cements and surgical instruments enhanced by nanotechnology are provided. PMID:26316746

  20. Vertebral architecture in the earliest stem tetrapods.

    PubMed

    Pierce, Stephanie E; Ahlberg, Per E; Hutchinson, John R; Molnar, Julia L; Sanchez, Sophie; Tafforeau, Paul; Clack, Jennifer A

    2013-02-14

    The construction of the vertebral column has been used as a key anatomical character in defining and diagnosing early tetrapod groups. Rhachitomous vertebrae--in which there is a dorsally placed neural arch and spine, an anteroventrally placed intercentrum and paired, posterodorsally placed pleurocentra--have long been considered the ancestral morphology for tetrapods. Nonetheless, very little is known about vertebral anatomy in the earliest stem tetrapods, because most specimens remain trapped in surrounding matrix, obscuring important anatomical features. Here we describe the three-dimensional vertebral architecture of the Late Devonian stem tetrapod Ichthyostega using propagation phase-contrast X-ray synchrotron microtomography. Our scans reveal a diverse array of new morphological, and associated developmental and functional, characteristics, including a possible posterior-to-anterior vertebral ossification sequence and the first evolutionary appearance of ossified sternal elements. One of the most intriguing features relates to the positional relationships between the vertebral elements, with the pleurocentra being unexpectedly sutured or fused to the intercentra that directly succeed them, indicating a 'reverse' rhachitomous design. Comparison of Ichthyostega with two other stem tetrapods, Acanthostega and Pederpes, shows that reverse rhachitomous vertebrae may be the ancestral condition for limbed vertebrates. This study fundamentally revises our current understanding of vertebral column evolution in the earliest tetrapods and raises questions about the presumed vertebral architecture of tetrapodomorph fish and later, more crownward, tetrapods.

  1. Alternative approaches for vertebrate ecotoxicity tests in the ...

    EPA Pesticide Factsheets

    The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimised wherever possible. For some regulatory purposes, the use of vertebrate organisms for environmental risk assessments (ERA) has even been banned, and in other situations the numbers of organisms tested has been dramatically reduced, or the severity of the procedure refined. However, there is still a long way to go to achieve replacement of vertebrate organisms to generate environmental hazard data. The development of animal alternatives is not just based on ethical considerations but also to reduce the cost of performing vertebrate ecotoxicity tests and in some cases to provide better information aimed at improving ERAs. The present focus paper provides an overview of the considerable advances that have been made towards alternative approaches for ecotoxicity assessments over the last few decades. The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimised wherever possible. For some regulatory purposes, the use of vertebrate organi

  2. Vertebral sclerosis in adults.

    PubMed Central

    Russell, A S; Percy, J S; Lentle, B C

    1979-01-01

    Narrowing of the intervertebral disc space with sclerosis of the adjacent vertebral bodies may occur as a consequence of infection, neoplasia, trauma, or rheumatic disease. Some patients have been described with backache and these radiological appearances without any primary cause being apparent. The lesions were almost always of 1 or, at most, 2 vertebrae and most frequently involved the inferior margin of L4. We describe 3 patients with far more extensive vertebral involvement and present the clinical, radiological, scintiscan, and histological findings. The only patient we have seen with the better known, isolated L4/5 lesion was shown on biopsy to have staphylococcal osteomyelitis. For this reason we would still recommend a biopsy of all such sclerotic vertebral lesions if they occur in the absence of other rheumatic disease. Images PMID:434941

  3. Feeding Period Required by Amblyomma aureolatum Ticks for Transmission of Rickettsia rickettsii to Vertebrate Hosts

    PubMed Central

    Saraiva, Danilo G.; Soares, Herbert S.; Soares, João Fábio

    2014-01-01

    Rocky Mountain spotted fever is endemic to the São Paulo metropolitan area, Brazil, where the etiologic agent, Rickettsia rickettsii, is transmitted to humans by adult Amblyomma aureolatum ticks. We determined the minimal feeding period required by A. aureolatum nymphs and adults to transmit R. rickettsii to guinea pigs. Unfed nymphs and unfed adult ticks had to be attached to the host for >10 hours to transmit R. rickettsii. In contrast, fed ticks needed a minimum of 10 minutes of attachment to transmit R. rickettsii to hosts. Most confirmed infections of Rocky Mountain spotted fever in humans in the São Paulo metropolitan area have been associated with contact with domestic dogs, the main host of A. aureolatum adult ticks. The typical expectation that transmission of tickborne bacteria to humans as well as to dogs requires ≥2 hours of tick attachment may discourage persons from immediately removing them and result in transmission of this lethal bacterium. PMID:25148391

  4. Behavioral fever in ectothermic vertebrates.

    PubMed

    Rakus, Krzysztof; Ronsmans, Maygane; Vanderplasschen, Alain

    2017-01-01

    Fever is an evolutionary conserved defense mechanism which is present in both endothermic and ectothermic vertebrates. Ectotherms in response to infection can increase their body temperature by moving to warmer places. This process is known as behavioral fever. In this review, we summarize the current knowledge on the mechanisms of induction of fever in mammals. We further discuss the evolutionary conserved mechanisms existing between fever of mammals and behavioral fever of ectothermic vertebrates. Finally, the experimental evidences supporting an adaptive value of behavioral fever expressed by ectothermic vertebrates are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Building the backbone: the development and evolution of vertebral patterning.

    PubMed

    Fleming, Angeleen; Kishida, Marcia G; Kimmel, Charles B; Keynes, Roger J

    2015-05-15

    The segmented vertebral column comprises a repeat series of vertebrae, each consisting of two key components: the vertebral body (or centrum) and the vertebral arches. Despite being a defining feature of the vertebrates, much remains to be understood about vertebral development and evolution. Particular controversy surrounds whether vertebral component structures are homologous across vertebrates, how somite and vertebral patterning are connected, and the developmental origin of vertebral bone-mineralizing cells. Here, we assemble evidence from ichthyologists, palaeontologists and developmental biologists to consider these issues. Vertebral arch elements were present in early stem vertebrates, whereas centra arose later. We argue that centra are homologous among jawed vertebrates, and review evidence in teleosts that the notochord plays an instructive role in segmental patterning, alongside the somites, and contributes to mineralization. By clarifying the evolutionary relationship between centra and arches, and their varying modes of skeletal mineralization, we can better appreciate the detailed mechanisms that regulate and diversify vertebral patterning. © 2015. Published by The Company of Biologists Ltd.

  6. CT-scout based, semi-automated vertebral morphometry after digital image enhancement.

    PubMed

    Glinkowski, Wojciech M; Narloch, Jerzy

    2017-09-01

    Radiographic diagnosis of osteoporotic vertebral fracture is necessary to reduce its substantial associated morbidity. Computed tomography (CT) scout has recently been demonstrated as a reliable technique for vertebral fracture diagnosis. Software assistance may help to overcome some limitations of that diagnostics. We aimed to evaluate whether digital image enhancement improved the capacity of one of the existing software to detect fractures semi-automatically. CT scanograms of patients suffering from osteoporosis, with or without vertebral fractures were analyzed. The original set of CT scanograms were triplicated and digitally modified to improve edge detection using three different techniques: SHARPENING, UNSHARP MASKING, and CONVOLUTION. The manual morphometric analysis identified 1485 vertebrae, 200 of which were classified as fractured. Unadjusted morphometry (AUTOMATED with no digital enhancement) found 63 fractures, 33 of which were true positive (i.e., it correctly identified 52% of the fractures); SHARPENING detected 57 fractures (30 true positives, 53%); UNSHARP MASKING yielded 30 (13 true positives, 43%); and CONVOLUTION found 24 fractures (9 true positives, 38%). The intra-reader reliability for height ratios did not significantly improve with image enhancement (kappa ranged 0.22-0.41 for adjusted measurements and 0.16-0.38 for unadjusted). Similarly, the inter-reader agreement for prevalent fractures did not significantly improve with image enhancement (kappa 0.29-0.56 and -0.01 to 0.23 for adjusted and unadjusted measurements, respectively). Our results suggest that digital image enhancement does not improve software-assisted vertebral fracture detection by CT scout. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts.

    PubMed

    Rose, Patrick P; Hanna, Sheri L; Spiridigliozzi, Anna; Wannissorn, Nattha; Beiting, Daniel P; Ross, Susan R; Hardy, Richard W; Bambina, Shelly A; Heise, Mark T; Cherry, Sara

    2011-08-18

    Alphaviruses, including several emerging human pathogens, are a large family of mosquito-borne viruses with Sindbis virus being a prototypical member of the genus. The host factor requirements and receptors for entry of this class of viruses remain obscure. Using a Drosophila system, we identified the divalent metal ion transporter natural resistance-associated macrophage protein (NRAMP) as a host cell surface molecule required for Sindbis virus binding and entry into Drosophila cells. Consequently, flies mutant for dNRAMP were protected from virus infection. NRAMP2, the ubiquitously expressed vertebrate homolog, mediated binding and infection of Sindbis virus into mammalian cells, and murine cells deficient for NRAMP2 were nonpermissive to infection. Alphavirus glycoprotein chimeras demonstrated that the requirement for NRAMP2 is at the level of Sindbis virus entry. Given the conserved structure of alphavirus glycoproteins, and the widespread use of transporters for viral entry, other alphaviruses may use conserved multipass membrane proteins for infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated with host adaptation.

    PubMed

    Gaulin, Elodie; Pel, Michiel J C; Camborde, Laurent; San-Clemente, Hélène; Courbier, Sarah; Dupouy, Marie-Alexane; Lengellé, Juliette; Veyssiere, Marine; Le Ru, Aurélie; Grandjean, Frédéric; Cordaux, Richard; Moumen, Bouziane; Gilbert, Clément; Cano, Liliana M; Aury, Jean-Marc; Guy, Julie; Wincker, Patrick; Bouchez, Olivier; Klopp, Christophe; Dumas, Bernard

    2018-04-18

    Oomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms. By carrying out genomic analyses of the plant pathogen A. euteiches and the crustacean pathogen A. astaci, we show that host specialization is correlated with specialized secretomes that are adapted to the deconstruction of the plant cell wall in A. euteiches and protein degradation in A. astaci. The A. euteiches genome is characterized by a large repertoire of small secreted protein (SSP)-encoding genes that are highly induced during plant infection, and are not detected in other oomycetes. Functional analysis revealed an SSP from A. euteiches containing a predicted nuclear-localization signal which shuttles to the plant nucleus and increases plant susceptibility to infection. Collectively, our results show that Aphanomyces host adaptation is associated with evolution of specialized secretomes and identify SSPs as a new class of putative oomycete effectors.

  9. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.

    PubMed

    Brunet, Frédéric G; Volff, Jean-Nicolas; Schartl, Manfred

    2016-06-03

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag family.

    PubMed

    Volff, J N; Körting, C; Altschmied, J; Duschl, J; Sweeney, K; Wichert, K; Froschauer, A; Schartl, M

    2001-02-01

    Jule is the second complete long-terminal-repeat (LTR) Ty3/Gypsy retrotransposon identified to date in vertebrates. Jule, first isolated from the poeciliid fish Xiphophorus maculatus, is 4.8 kb in length, is flanked by two 202-bp LTRs, and encodes Gag (structural core protein) and Pol (protease, reverse transcriptase, RNase H, and integrase, in that order) but no envelope. There are three to four copies of Jule per haploid genome in X. maculatus. Two of them are located in a subtelomeric region of the sex chromosomes, where they are associated with the Xmrk receptor tyrosine kinase genes, of which oncogenic versions are responsible for the formation of hereditary melanoma in Xiphophorus. One almost intact copy of Jule was found in the first intron of the X-chromosomal allele of the Xmrk proto-oncogene, and a second, more corrupted copy is present only 56 nt downstream of the polyadenylation signal of the Xmrk oncogene. Jule-related elements were detected by Southern blot hybridization with less than 10 copies per haploid genome in numerous other poeciliids, as well as in more divergent fishes, including the medakafish Oryzias latipes and the tilapia Oreochromis niloticus. Database searches also identified Jule-related sequences in the zebrafish Danio rerio and in both genome project pufferfishes, Fugu rubripes and Tetraodon nigroviridis. Phylogenetic analysis revealed that Jule is the first member of the Mag family of Ty3/Gypsy retrotransposons described to date in vertebrates. This family includes the silkworm Mag and sea urchin SURL retrotransposons, as well as sequences from the nematode Caenorhabditis elegans. Additional related elements were identified in the genomes of the malaria mosquito Anopheles gambiae and the nematode Ascaris lumbricoides. Phylogeny of Mag-related elements suggested that the Mag family of retrotransposons is polyphyletic and is constituted of several ancient lineages that diverged before their host genomes more than 600 MYA.

  11. Using vertebrate prey capture locations to identify cover type selection patterns of nocturnally foraging Burrowing Owls.

    PubMed

    Marsh, Alan; Bayne, Erin M; Wellicome, Troy I

    2014-07-01

    Studies of habitat selection often measure an animal's use of space via radiotelemetry or GPS-based technologies. Such data tend to be analyzed using a resource selection function, despite the fact that the actual resources acquired are typically not recorded. Without explicit proof of resource use, conclusions from RSF models are based on assumptions regarding an animal's behavior and the resources gained. Conservation initiatives are often based on space-use models, and could be detrimental to the target species if these assumptions are incorrect. We used GPS dataloggers and digital video recorders to determine precise locations where nocturnally foraging Burrowing Owls acquired food resources (vertebrate prey). We compared land cover type selection patterns using a presence-only resource selection function (RSF) to a model that incorporated prey capture locations (CRSF). We also compared net prey returns in each cover type to better measure reward relative to foraging effort. The RSF method did not reflect prey capture patterns and cover-type rankings from this model were quite different from models that used only locations where prey was known to have been obtained. Burrowing Owls successfully foraged across all cover types; however, return vs. effort models indicate that different cover types were of higher quality than those identified using resource selection functions. Conclusions about the type of resources acquired should not be made from RSF-style models without evidence that the actual resource of interest was acquired. Conservation efforts based on RSF models alone may be ineffective or detrimental to the target species if the limiting resource and where it is acquired are not properly identified.

  12. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    PubMed Central

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  13. Acute compressive myelopathy due to vertebral haemangioma.

    PubMed

    Macki, Mohamed; Bydon, Mohamad; Kaloostian, Paul; Bydon, Ali

    2014-04-28

    A 47-year-old woman with a history of anaemia presented to the emergency room with an acute onset of leg weakness. Physical examination of the bilateral lower extremities was significant for 0/5 muscle strength in all muscle groups with decreased pinprick and temperature sensation. A sensory level at the umbilicus was appreciated. Fine touch and proprioception were preserved. Bowel and bladder function were intact. CT revealed several thoracic, vertebral haemangiomatas. An MRI was suggestive of an epidural clot at the T8-T10-weighted posterior epidural space. At the level of the lesion, the cerebrospinal fluid space was completely effaced, and the flattened spinal cord exhibited signs of oedema and compressive myelopathy. The patient immediately underwent surgical decompression of the spinal cord. An epidural clot and vessel conglomeration were identified. A postoperative spinal angiogram confirmed the diagnosis of vertebral haemangioma. At 1-month follow-up, the patient regained strength and sensation.

  14. Acute compressive myelopathy due to vertebral haemangioma

    PubMed Central

    Macki, Mohamed; Bydon, Mohamad; Kaloostian, Paul; Bydon, Ali

    2014-01-01

    A 47-year-old woman with a history of anaemia presented to the emergency room with an acute onset of leg weakness. Physical examination of the bilateral lower extremities was significant for 0/5 muscle strength in all muscle groups with decreased pinprick and temperature sensation. A sensory level at the umbilicus was appreciated. Fine touch and proprioception were preserved. Bowel and bladder function were intact. CT revealed several thoracic, vertebral haemangiomatas. An MRI was suggestive of an epidural clot at the T8–T10-weighted posterior epidural space. At the level of the lesion, the cerebrospinal fluid space was completely effaced, and the flattened spinal cord exhibited signs of oedema and compressive myelopathy. The patient immediately underwent surgical decompression of the spinal cord. An epidural clot and vessel conglomeration were identified. A postoperative spinal angiogram confirmed the diagnosis of vertebral haemangioma. At 1-month follow-up, the patient regained strength and sensation. PMID:24777075

  15. Chagas disease vector blood meal sources identified by protein mass spectrometry

    PubMed Central

    Keller, Judith I.; Ballif, Bryan A.; St. Clair, Riley M.; Vincent, James J.; Monroy, M. Carlota

    2017-01-01

    Chagas disease is a complex vector borne parasitic disease involving blood feeding Triatominae (Hemiptera: Reduviidae) insects, also known as kissing bugs, and the vertebrates they feed on. This disease has tremendous impacts on millions of people and is a global health problem. The etiological agent of Chagas disease, Trypanosoma cruzi (Kinetoplastea: Trypanosomatida: Trypanosomatidae), is deposited on the mammalian host in the insect’s feces during a blood meal, and enters the host’s blood stream through mucous membranes or a break in the skin. Identifying the blood meal sources of triatomine vectors is critical in understanding Chagas disease transmission dynamics, can lead to identification of other vertebrates important in the transmission cycle, and aids management decisions. The latter is particularly important as there is little in the way of effective therapeutics for Chagas disease. Several techniques, mostly DNA-based, are available for blood meal identification. However, further methods are needed, particularly when sample conditions lead to low-quality DNA or to assess the risk of human cross-contamination. We demonstrate a proteomics-based approach, using liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify host-specific hemoglobin peptides for blood meal identification in mouse blood control samples and apply LC-MS/MS for the first time to Triatoma dimidiata insect vectors, tracing blood sources to species. In contrast to most proteins, hemoglobin, stabilized by iron, is incredibly stable even being preserved through geologic time. We compared blood stored with and without an anticoagulant and examined field-collected insect specimens stored in suboptimal conditions such as at room temperature for long periods of time. To our knowledge, this is the first study using LC-MS/MS on field-collected arthropod disease vectors to identify blood meal composition, and where blood meal identification was confirmed with more traditional DNA

  16. Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2

    PubMed Central

    Nielson, Carrie M; Liu, Ching-Ti; Smith, Albert V; Ackert-Bicknell, Cheryl L; Reppe, Sjur; Jakobsdottir, Johanna; Wassel, Christina; Register, Thomas C; Oei, Ling; Alonso, Nerea; Oei, Edwin H; Parimi, Neeta; Samelson, Elizabeth J; Nalls, Mike A; Zmuda, Joseph; Lang, Thomas; Bouxsein, Mary; Latourelle, Jeanne; Claussnitzer, Melina; Siggeirsdottir, Kristin; Srikanth, Priya; Lorentzen, Erik; Vandenput, Liesbeth; Langefeld, Carl; Raffield, Laura; Terry, Greg; Cox, Amanda J; Allison, Matthew A; Criqui, Michael H; Bowden, Don; Ikram, M Arfan; Mellstrom, Dan; Karlsson, Magnus K; Carr, John; Budoff, Matthew; Phillips, Caroline; Cupples, L Adrienne; Chou, Wen-Chi; Myers, Richard H; Ralston, Stuart H; Gautvik, Kaare M; Cawthon, Peggy M; Cummings, Steven; Karasik, David; Rivadeneira, Fernando; Gudnason, Vilmundur; Orwoll, Eric S; Harris, Tamara B; Ohlsson, Claes; Kiel, Douglas P; Hsu, Yi-Hsiang

    2017-01-01

    Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta-analysis (n = 15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta-analyses to determine associations with morphometric vertebral fracture (n = 21,701) and clinical vertebral fracture (n = 5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF] = 3%) was associated with higher vBMD (β = 0.22, p = 1.9 × 10−8) and decreased risk of radiographic vertebral fracture (odds ratio [OR] = 0.75; false discovery rate [FDR] p = 0.01). In 1p36.12, rs12742784 (MAF = 21%) was associated with higher vBMD (β = 0.09, p = 1.2 × 10−10) and decreased risk of clinical vertebral fracture (OR = 0.82; FDR p = 7.4 × 10−4). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (β = 0.28, FDR p = 0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (β = 0.12, FDR p = 1.7 × 10−3, functions in bone-related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to linkSLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help

  17. Experimental Infections with Mycoplasma agalactiae Identify Key Factors Involved in Host-Colonization

    PubMed Central

    Baranowski, Eric; Bergonier, Dominique; Sagné, Eveline; Hygonenq, Marie-Claude; Ronsin, Patricia; Berthelot, Xavier; Citti, Christine

    2014-01-01

    Mechanisms underlying pathogenic processes in mycoplasma infections are poorly understood, mainly because of limited sequence similarities with classical, bacterial virulence factors. Recently, large-scale transposon mutagenesis in the ruminant pathogen Mycoplasma agalactiae identified the NIF locus, including nifS and nifU, as essential for mycoplasma growth in cell culture, while dispensable in axenic media. To evaluate the importance of this locus in vivo, the infectivity of two knock-out mutants was tested upon experimental infection in the natural host. In this model, the parental PG2 strain was able to establish a systemic infection in lactating ewes, colonizing various body sites such as lymph nodes and the mammary gland, even when inoculated at low doses. In these PG2-infected ewes, we observed over the course of infection (i) the development of a specific antibody response and (ii) dynamic changes in expression of M. agalactiae surface variable proteins (Vpma), with multiple Vpma profiles co-existing in the same animal. In contrast and despite a sensitive model, none of the knock-out mutants were able to survive and colonize the host. The extreme avirulent phenotype of the two mutants was further supported by the absence of an IgG response in inoculated animals. The exact role of the NIF locus remains to be elucidated but these data demonstrate that it plays a key role in the infectious process of M. agalactiae and most likely of other pathogenic mycoplasma species as many carry closely related homologs. PMID:24699671

  18. Improved Prediction of Non-methylated Islands in Vertebrates Highlights Different Characteristic Sequence Patterns

    PubMed Central

    Vingron, Martin

    2016-01-01

    Non-methylated islands (NMIs) of DNA are genomic regions that are important for gene regulation and development. A recent study of genome-wide non-methylation data in vertebrates by Long et al. (eLife 2013;2:e00348) has shown that many experimentally identified non-methylated regions do not overlap with classically defined CpG islands which are computationally predicted using simple DNA sequence features. This is especially true in cold-blooded vertebrates such as Danio rerio (zebrafish). In order to investigate how predictive DNA sequence is of a region’s methylation status, we applied a supervised learning approach using a spectrum kernel support vector machine, to see if a more complex model and supervised learning can be used to improve non-methylated island prediction and to understand the sequence properties of these regions. We demonstrate that DNA sequence is highly predictive of methylation status, and that in contrast to existing CpG island prediction methods our method is able to provide more useful predictions of NMIs genome-wide in all vertebrate organisms that were studied. Our results also show that in cold-blooded vertebrates (Anolis carolinensis, Xenopus tropicalis and Danio rerio) where genome-wide classical CpG island predictions consist primarily of false positives, longer primarily AT-rich DNA sequence features are able to identify these regions much more accurately. PMID:27984582

  19. Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) identifies immune-selected HIV variants

    DOE PAGES

    Hraber, Peter; Korber, Bette; Wagh, Kshitij; ...

    2015-10-21

    Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations ofmore » mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. Here, with well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Finally, practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.« less

  20. Department of Vertebrate Zoology, NMNH

    Science.gov Websites

    Research & Collections About Us Get Involved Calendar Department ofVertebrate Zoology Red-eyed Libraries Staff Contact Us NMNH Home › Research & Collections › Department of Vertebrate Zoology the study of animals with backbones. Research in the department covers fishes, amphibians, reptiles

  1. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport.

    PubMed

    Pirkmajer, Sergej; Kirchner, Henriette; Lundell, Leonidas S; Zelenin, Pavel V; Zierath, Juleen R; Makarova, Kira S; Wolf, Yuri I; Chibalin, Alexander V

    2017-07-15

    Small transmembrane proteins such as FXYDs, which interact with Na + ,K + -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca 2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na + ,K + -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony

  2. Discordance between Prevalent Vertebral Fracture and Vertebral Strength Estimated by the Finite Element Method Based on Quantitative Computed Tomography in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    2015-01-01

    Background Bone fragility is increased in patients with type 2 diabetes mellitus (T2DM), but a useful method to estimate bone fragility in T2DM patients is lacking because bone mineral density alone is not sufficient to assess the risk of fracture. This study investigated the association between prevalent vertebral fractures (VFs) and the vertebral strength index estimated by the quantitative computed tomography-based nonlinear finite element method (QCT-based nonlinear FEM) using multi-detector computed tomography (MDCT) for clinical practice use. Research Design and Methods A cross-sectional observational study was conducted on 54 postmenopausal women and 92 men over 50 years of age, all of whom had T2DM. The vertebral strength index was compared in patients with and without VFs confirmed by spinal radiographs. A standard FEM procedure was performed with the application of known parameters for the bone material properties obtained from nondiabetic subjects. Results A total of 20 women (37.0%) and 39 men (42.4%) with VFs were identified. The vertebral strength index was significantly higher in the men than in the women (P<0.01). Multiple regression analysis demonstrated that the vertebral strength index was significantly and positively correlated with the spinal bone mineral density (BMD) and inversely associated with age in both genders. There were no significant differences in the parameters, including the vertebral strength index, between patients with and without VFs. Logistic regression analysis adjusted for age, spine BMD, BMI, HbA1c, and duration of T2DM did not indicate a significant relationship between the vertebral strength index and the presence of VFs. Conclusion The vertebral strength index calculated by QCT-based nonlinear FEM using material property parameters obtained from nondiabetic subjects, whose risk of fracture is lower than that of T2DM patients, was not significantly associated with bone fragility in patients with T2DM. This discordance

  3. A Comparative Study of Vertebrate Corneal Structure: The Evolution of a Refractive Lens

    PubMed Central

    Winkler, Moritz; Shoa, Golroxan; Tran, Stephanie T.; Xie, Yilu; Thomasy, Sarah; Raghunathan, Vijay K.; Murphy, Christopher; Brown, Donald J.; Jester, James V.

    2015-01-01

    Purpose. Although corneal curvature plays an important role in determining the refractive power of the vertebrate eye, the mechanisms controlling corneal shape remain largely unknown. To address this question, we performed a comparative study of vertebrate corneal structure to identify potential evolutionarily based changes that correlate with the development of a corneal refractive lens. Methods. Nonlinear optical (NLO) imaging of second-harmonic–generated (SHG) signals was used to image collagen and three-dimensionally reconstruct the lamellar organization in corneas from different vertebrate clades. Results. Second-harmonic–generated images taken normal to the corneal surface showed that corneal collagen in all nonmammalian vertebrates was organized into sheets (fish and amphibians) or ribbons (reptiles and birds) extending from limbus to limbus that were oriented nearly orthogonal (ranging from 77.7°–88.2°) to their neighbors. The slight angular offset (2°–13°) created a rotational pattern that continued throughout the full thickness in fish and amphibians and to the very posterior layers in reptiles and birds. Interactions between lamellae were limited to “sutural” fibers in cartilaginous fish, and occasional lamellar branching in fish and amphibians. There was a marked increase in lamellar branching in higher vertebrates, such that birds ≫ reptiles > amphibians > fish. By contrast, mammalian corneas showed a nearly random collagen fiber organization with no orthogonal, chiral pattern. Conclusions. Our data indicate that nonmammalian vertebrate corneas share a common orthogonal collagen structural organization that shows increased lamellar branching in higher vertebrate species. Importantly, mammalian corneas showed a different structural organization, suggesting a divergent evolutionary background. PMID:26066606

  4. A Comparative Study of Vertebrate Corneal Structure: The Evolution of a Refractive Lens.

    PubMed

    Winkler, Moritz; Shoa, Golroxan; Tran, Stephanie T; Xie, Yilu; Thomasy, Sarah; Raghunathan, Vijay K; Murphy, Christopher; Brown, Donald J; Jester, James V

    2015-04-01

    Although corneal curvature plays an important role in determining the refractive power of the vertebrate eye, the mechanisms controlling corneal shape remain largely unknown. To address this question, we performed a comparative study of vertebrate corneal structure to identify potential evolutionarily based changes that correlate with the development of a corneal refractive lens. Nonlinear optical (NLO) imaging of second-harmonic-generated (SHG) signals was used to image collagen and three-dimensionally reconstruct the lamellar organization in corneas from different vertebrate clades. Second-harmonic-generated images taken normal to the corneal surface showed that corneal collagen in all nonmammalian vertebrates was organized into sheets (fish and amphibians) or ribbons (reptiles and birds) extending from limbus to limbus that were oriented nearly orthogonal (ranging from 77.7°-88.2°) to their neighbors. The slight angular offset (2°-13°) created a rotational pattern that continued throughout the full thickness in fish and amphibians and to the very posterior layers in reptiles and birds. Interactions between lamellae were limited to "sutural" fibers in cartilaginous fish, and occasional lamellar branching in fish and amphibians. There was a marked increase in lamellar branching in higher vertebrates, such that birds ≫ reptiles > amphibians > fish. By contrast, mammalian corneas showed a nearly random collagen fiber organization with no orthogonal, chiral pattern. Our data indicate that nonmammalian vertebrate corneas share a common orthogonal collagen structural organization that shows increased lamellar branching in higher vertebrate species. Importantly, mammalian corneas showed a different structural organization, suggesting a divergent evolutionary background.

  5. An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host.

    PubMed

    Woolsey, Ian David; Fredensborg, Brian L; Jensen, Per M; Kapel, Christian M O; Meyling, Nicolai V

    2015-07-01

    Invertebrate models provide several important advantages over their vertebrate counterparts including fewer legislative stipulations and faster, more cost-effective experimental procedures. Furthermore, various similarities between insect and mammalian systems have been highlighted. To obtain maximum use of invertebrate models in pharmacology, their fidelity as analogues of vertebrate systems requires verification. We utilised a flour beetle (Tenebrio molitor)-tapeworm (Hymenolepis diminuta) model to evaluate the efficacy of known anthelmintic compounds, praziquantel, mebendazole and levamisole against H. diminuta cysticercoid larvae in vitro. Inhibition of cysticercoid activity during the excystation procedure was used as a proxy for worm removal. The effects of the three compounds mirrored their relative efficacy in treatment against adult worms in mammalian systems; however, further study is required to determine the fidelity of this model in relation to dose administered. The model precludes comparison of consecutive daily administration of pharmaceuticals in mammals due to cysticercoids not surviving outside of the host for multiple days. Treatment of beetles in vivo, followed by excystation of cysticercoids postdissection could potentially allow for such comparisons. Further model validation will include analysis of pharmaceutical efficacy in varying H. diminuta isolates and pharmaceutical dilution in solvents other than water. Notwithstanding, our results demonstrate that this model holds promise as a method to efficiently identify promising new cestocidal candidates.

  6. The evolution of host specificity in dove body lice.

    PubMed

    Johnson, Kevin P; Weckstein, Jason D; Bush, Sarah E; Clayton, Dale H

    2011-11-01

    Conventional wisdom suggests that parasites evolve increased host specialization over time. Host specificity, which describes the number of host species parasitized, is one aspect of host specialization. Recent studies of vertebrate parasites indicate that highly host-specific parasite lineages are not, in fact, evolutionary dead ends; host generalists can evolve from host specialists. Using phylogenetic reconstruction methods, we evaluate these patterns in the body lice (Insecta: Phthiraptera) of pigeons and doves, which are permanent ectoparasites that complete their entire life cycle on the body of the host. We find that species of body lice that parasitize more than one species of host (generalists) are invariably derived from lice parasitizing only one species of host (specialists). A previous study of the wing lice of pigeons and doves also found that generalists were derived from specialists, and that these changes were correlated with the presence of a potentially competing species of wing louse on the same host. For body lice we did not find such a correlation with competition. Instead, the evolution of host generalists in body lice was correlated with host ecology. When we compared body lice that parasitize terrestrial versus arboreal hosts, we found that the evolution of host generalists was associated with terrestrial hosts. In contrast, wing lice showed no correlation between the evolution of generalists and host ecology. The correlation in body lice suggests that dispersal between host species may occur via the ground. This, in turn, suggests that body lice may fall to the ground more often than wing lice. To test this hypothesis, we conducted an experiment to compare the rate at which body and wing lice are dislodged from the bodies of preening pigeons. Interestingly, our results showed that body lice are dislodged four times more often than wing lice. Therefore, species of terrestrial doves are far more likely to encounter body lice than wing lice

  7. Vector-Host Interactions Governing Epidemiology of West Nile Virus in Southern California

    PubMed Central

    Molaei, Goudarz; Cummings, Robert F.; Su, Tianyun; Armstrong, Philip M.; Williams, Greg A.; Cheng, Min-Lee; Webb, James P.; Andreadis, Theodore G.

    2010-01-01

    Southern California remains an important focus of West Nile virus (WNV) activity, with persistently elevated incidence after invasion by the virus in 2003 and subsequent amplification to epidemic levels in 2004. Eco-epidemiological studies of vectors-hosts-pathogen interactions are of paramount importance for better understanding of the transmission dynamics of WNV and other emerging mosquito-borne arboviruses. We investigated vector-host interactions and host-feeding patterns of 531 blood-engorged mosquitoes in four competent mosquito vectors by using a polymerase chain reaction (PCR) method targeting mitochondrial DNA to identify vertebrate hosts of blood-fed mosquitoes. Diagnostic testing by cell culture, real-time reverse transcriptase-PCR, and immunoassays were used to examine WNV infection in blood-fed mosquitoes, mosquito pools, dead birds, and mammals. Prevalence of WNV antibodies among wild birds was estimated by using a blocking enzyme-linked immunosorbent assay. Analyses of engorged Culex quinquefasciatus revealed that this mosquito species acquired 88.4% of the blood meals from avian and 11.6% from mammalian hosts, including humans. Similarly, Culex tarsalis fed 82% on birds and 18% on mammals. Culex erythrothorax fed on both birds (59%) and mammals (41%). In contrast, Culex stigmatosoma acquired all blood meals from avian hosts. House finches and a few other mostly passeriform birds served as the main hosts for the blood-seeking mosquitoes. Evidence of WNV infection was detected in mosquito pools, wild birds, dead birds, and mammals, including human fatalities during the study period. Our results emphasize the important role of house finches and several other passeriform birds in the maintenance and amplification of WNV in southern California, with Cx. quinquefasciatus acting as both the principal enzootic and “bridge vector” responsible for the spillover of WNV to humans. Other mosquito species, such as Cx. tarsalis and Cx. stigmatosoma, are

  8. Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis

    PubMed Central

    Hurford, Amy; Ellison, Amy R.

    2017-01-01

    Parasites vary widely in the diversity of hosts they infect: some parasite species are specialists—infecting just a single host species, while others are generalists, capable of infecting many. Understanding the factors that drive parasite host-generalism is of basic biological interest, but also directly relevant to predicting disease emergence in new host species, identifying parasites that are likely to have unidentified additional hosts, and assessing transmission risk. Here, we use mathematical models to investigate how variation in host body size and environmental temperature affect the evolution of parasite host-generalism. We predict that parasites are more likely to evolve a generalist strategy when hosts are large-bodied, when variation in host body size is large, and in cooler environments. We then explore these predictions using a newly updated database of over 20 000 fish–macroparasite associations. Within the database we see some evidence supporting these predictions, but also highlight mismatches between theory and data. By combining these two approaches, we establish a theoretical basis for interpreting empirical data on parasites' host specificity and identify key areas for future work that will help untangle the drivers of parasite host-generalism. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289257

  9. Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis.

    PubMed

    Walker, Josephine G; Hurford, Amy; Cable, Jo; Ellison, Amy R; Price, Stephen J; Cressler, Clayton E

    2017-05-05

    Parasites vary widely in the diversity of hosts they infect: some parasite species are specialists-infecting just a single host species, while others are generalists, capable of infecting many. Understanding the factors that drive parasite host-generalism is of basic biological interest, but also directly relevant to predicting disease emergence in new host species, identifying parasites that are likely to have unidentified additional hosts, and assessing transmission risk. Here, we use mathematical models to investigate how variation in host body size and environmental temperature affect the evolution of parasite host-generalism. We predict that parasites are more likely to evolve a generalist strategy when hosts are large-bodied, when variation in host body size is large, and in cooler environments. We then explore these predictions using a newly updated database of over 20 000 fish-macroparasite associations. Within the database we see some evidence supporting these predictions, but also highlight mismatches between theory and data. By combining these two approaches, we establish a theoretical basis for interpreting empirical data on parasites' host specificity and identify key areas for future work that will help untangle the drivers of parasite host-generalism.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Authors.

  10. Avian host defense peptides.

    PubMed

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons

    PubMed Central

    Gelfman, Sahar; Burstein, David; Penn, Osnat; Savchenko, Anna; Amit, Maayan; Schwartz, Schraga; Pupko, Tal; Ast, Gil

    2012-01-01

    Exon–intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon–intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3′ and 5′ splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery. PMID:21974994

  12. Relationship between cervical vertebral maturation and mandibular growth.

    PubMed

    Ball, Gina; Woodside, Donald; Tompson, Bryan; Hunter, W Stuart; Posluns, James

    2011-05-01

    The cervical vertebrae have been proposed as a method of determining biologic maturity. The purposes of this study were to establish a pattern of mandibular growth and to relate this pattern to the stages of cervical vertebral maturation. Cephalometric radiographs, taken annually from ages 9 to 18 years, were evaluated for 90 boys from the Burlington Growth Center, Toronto, Ontario, Canada. Mandibular lengths were measured from articulare to gnathion, and incremental growth was determined. Cervical vertebral maturation stages were assessed by using a 6-stage method. Advanced, average, and delayed maturation groups were established. The prepubertal mandibular growth minimum velocity occurred during cervical stages 1 through 4 (P = 0.7327). Peak mandibular growth velocity occurred most frequently during stage 4 in all 3 maturation groups, with a statistical difference in the average and delayed groups (P <0.0001) and the advanced group (P = 0.0143). The average number of years spent in stage 4 was 3.79 (P <0.0001). The average amount of mandibular growth occurring during stage 4 was 9.40 mm (P <0.0001). The average amount of growth in stages 5 and 6 combined was 7.09 mm. Progression from cervical stages 1 through 6 does not occur annually; time spent in each stage varies depending on the stage and the maturation group. Cervical vertebral maturation stages cannot accurately identify the mandibular prepubertal growth minimum and therefore cannot predict the onset of the peak in mandibular growth. The cervical vertebral maturation stages should be used with other methods of biologic maturity assessment when considering both dentofacial orthopedic treatment and orthognathic surgery. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  13. Guiding Development Based Approach Practicum Vertebrates Taxonomy Scientific Study Program for Students of Biology Education

    NASA Astrophysics Data System (ADS)

    Arieska, M.; Syamsurizal, S.; Sumarmin, R.

    2018-04-01

    Students having difficulty in identifying and describing the vertebrate animals as well as less skilled in science process as practical. Increased expertise in scientific skills, one of which is through practical activities using practical guidance based on scientific approach. This study aims to produce practical guidance vertebrate taxonomy for biology education students PGRI STKIP West Sumatra valid. This study uses a model of Plomp development consisting of three phases: the initial investigation, floating or prototype stage, and the stage of assessment. Data collection instruments used in this study is a validation sheet guiding practicum. Data were analyzed descriptively based on data obtained from the field. The result of the development of practical guidance vertebrate taxonomic validity value of 3.22 is obtained with very valid category. Research and development has produced a practical guide based vertebrate taxonomic scientific approach very valid.

  14. Metamerism in cephalochordates and the problem of the vertebrate head.

    PubMed

    Onai, Takayuki; Adachi, Noritaka; Kuratani, Shigeru

    2017-01-01

    The vertebrate head characteristically exhibits a complex pattern with sense organs, brain, paired eyes and jaw muscles, and the brain case is not found in other chordates. How the extant vertebrate head has evolved remains enigmatic. Historically, there have been two conflicting views on the origin of the vertebrate head, segmental and non-segmental views. According to the segmentalists, the vertebrate head is organized as a metameric structure composed of segments equivalent to those in the trunk; a metamere in the vertebrate head was assumed to consist of a somite, a branchial arch and a set of cranial nerves, considering that the head evolved from rostral segments of amphioxus-like ancestral vertebrates. Non-segmentalists, however, considered that the vertebrate head was not segmental. In that case, the ancestral state of the vertebrate head may be non-segmented, and rostral segments in amphioxus might have been secondarily gained, or extant vertebrates might have evolved through radical modifications of amphioxus-like ancestral vertebrate head. Comparative studies of mesodermal development in amphioxus and vertebrate gastrula embryos have revealed that mesodermal gene expressions become segregated into two domains anteroposteriorly to specify the head mesoderm and trunk mesoderm only in vertebrates; in this segregation, key genes such as delta and hairy, involved in segment formation, are expressed in the trunk mesoderm, but not in the head mesoderm, strongly suggesting that the head mesoderm of extant vertebrates is not segmented. Taken together, the above finding possibly adds a new insight into the origin of the vertebrate head; the vertebrate head mesoderm would have evolved through an anteroposterior polarization of the paraxial mesoderm if the ancestral vertebrate had been amphioxus-like.

  15. Interferon regulatory factor 10 (IRF10): Cloning in orange spotted grouper, Epinephelus coioides, and evolutionary analysis in vertebrates.

    PubMed

    Huang, Bei; Jia, Qin Qin; Liang, Ying; Huang, Wen Shu; Nie, P

    2015-10-01

    IRF10 gene was cloned in orange spotted grouper, Epinephelus coioides, and its expression was examined following poly(I:C) stimulation and bacterial infection. The cDNA sequence of grouper IRF10 contains an open reading frame of 1197 bp, flanked by 99 bp 5'-untranslated region and 480 bp 3'- untranslated region. Multiple alignments showed that the grouper IRF10 has a highly conserved DNA binding domain in the N terminus with characteristic motif containing five tryptophan residues. Quantitative real-time PCR analysis revealed that the expression of IRF10 was responsive to both poly(I:C) stimulation and Vibrio parahemolyticus infection, with a higher increase to poly(I:C), indicating an important role of IRF10 in host immune response during infection. A phyletic distribution of IRF members was also examined in vertebrates, and IRF10 was found in most lineages of vertebrates, not in modern primates and rodents. It is suggested that the first divergence of IRF members might have occurred before the evolutionary split of vertebrate and cephalochordates, producing ancestors of IRF (1/2/11) and IRF (4/8/9/10)[(3/7) (5/6)], and that the second and/or third divergence of IRF members occurred following the split, thus leading to the subsets of the IRF family in vertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Prevalence of vertebral fracture in Asian men and women: comparison between Hong Kong, Thailand, Indonesia and Japan.

    PubMed

    Kwok, A W L; Leung, J C S; Chan, A Y H; Au, B S K; Lau, E M C; Yurianto, H; Yuktanandana, P; Yoshimura, N; Muraki, S; Oka, H; Akune, T; Leung, P C

    2012-06-01

    Little is known about the prevalence of vertebral fracture among Asians. This study investigated the prevalence of radiographically defined vertebral fracture, and identified associated risk factors in the aged population of four Asian countries. In total, 1588 males and females aged ≥ 65 years were recruited from Hong Kong, Thailand, Indonesia and Japan. Standard X-rays for the spine were taken and vertebral heights were measured. Vertebral fracture was defined as a reduction of >3 standard deviations in vertebral height ratio. Bone mineral density (BMD) of the hip was measured by dual energy X-ray absorptiometry, and anthropometric measurements were taken in Hong Kong and Japan. Other relevant data were entered in a standard questionnaire. The prevalence of vertebral fracture for both males and females was highest in Japan for younger (65-74 years) and older (≥ 75 years) age groups (36.6% and 37.6% for males; 18.8% and 28.7% for females). Lower hip BMD was associated with vertebral fracture in both sexes. Older age, lower quality of life score on Short Form-12 (physical), past longest occupation as a farmer, and history of cataract were significantly associated with vertebral fracture in females. However, smoking did not appear to be an important risk factor for vertebral fracture. Radiographic assessments for vertebral fracture were performed in all four Asian countries. The prevalence of vertebral fracture was highest in Japan. Lower hip BMD, poorer physical condition and past longest occupation as a farmer were associated with vertebral fracture. Copyright © 2012 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes

    PubMed Central

    Radolf, Justin D.; Caimano, Melissa J.; Stevenson, Brian; Hu, Linden T.

    2012-01-01

    In little more than 30 years, Lyme disease, which is caused by the spirochaete Borrelia burgdorferi, has risen from relative obscurity to become a global public health problem and a prototype of an emerging infection. During this period, there has been an extraordinary accumulation of knowledge on the phylogenetic diversity, molecular biology, genetics and host interactions of B. burgdorferi. In this Review, we integrate this large body of information into a cohesive picture of the molecular and cellular events that transpire as Lyme disease spirochaetes transit between their arthropod and vertebrate hosts during the enzootic cycle. PMID:22230951

  18. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  19. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus.

    PubMed

    Cheng, Han; Koning, Katie; O'Hearn, Aileen; Wang, Minxiu; Rumschlag-Booms, Emily; Varhegyi, Elizabeth; Rong, Lijun

    2015-11-24

    Genome-wide RNAi screening has been widely used to identify host proteins involved in replication and infection of different viruses, and numerous host factors are implicated in the replication cycles of these viruses, demonstrating the power of this approach. However, discrepancies on target identification of the same viruses by different groups suggest that high throughput RNAi screening strategies need to be carefully designed, developed and optimized prior to the large scale screening. Two genome-wide RNAi screens were performed in parallel against the entry of pseudotyped Marburg viruses and avian influenza virus H5N1 utilizing an HIV-1 based surrogate system, to identify host factors which are important for virus entry. A comparative analysis approach was employed in data analysis, which alleviated systematic positional effects and reduced the false positive number of virus-specific hits. The parallel nature of the strategy allows us to easily identify the host factors for a specific virus with a greatly reduced number of false positives in the initial screen, which is one of the major problems with high throughput screening. The power of this strategy is illustrated by a genome-wide RNAi screen for identifying the host factors important for Marburg virus and/or avian influenza virus H5N1 as described in this study. This strategy is particularly useful for highly pathogenic viruses since pseudotyping allows us to perform high throughput screens in the biosafety level 2 (BSL-2) containment instead of the BSL-3 or BSL-4 for the infectious viruses, with alleviated safety concerns. The screening strategy together with the unique comparative analysis approach makes the data more suitable for hit selection and enables us to identify virus-specific hits with a much lower false positive rate.

  20. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts.

    PubMed

    Daugherty, Matthew D; Young, Janet M; Kerns, Julie A; Malik, Harmit S

    2014-01-01

    Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic 'arms races' with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in 'housekeeping' functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our

  1. Rapid Evolution of PARP Genes Suggests a Broad Role for ADP-Ribosylation in Host-Virus Conflicts

    PubMed Central

    Daugherty, Matthew D.; Young, Janet M.; Kerns, Julie A.; Malik, Harmit S.

    2014-01-01

    Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic ‘arms races’ with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in ‘housekeeping’ functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our

  2. Gap junctional coupling in the vertebrate retina: variations on one theme?

    PubMed

    Völgyi, Béla; Kovács-Oller, Tamás; Atlasz, Tamás; Wilhelm, Márta; Gábriel, Róbert

    2013-05-01

    Gap junctions connect cells in the bodies of all multicellular organisms, forming either homologous or heterologous (i.e. established between identical or different cell types, respectively) cell-to-cell contacts by utilizing identical (homotypic) or different (heterotypic) connexin protein subunits. Gap junctions in the nervous system serve electrical signaling between neurons, thus they are also called electrical synapses. Such electrical synapses are particularly abundant in the vertebrate retina where they are specialized to form links between neurons as well as glial cells. In this article, we summarize recent findings on retinal cell-to-cell coupling in different vertebrates and identify general features in the light of the evergrowing body of data. In particular, we describe and discuss tracer coupling patterns, connexin proteins, junctional conductances and modulatory processes. This multispecies comparison serves to point out that most features are remarkably conserved across the vertebrate classes, including (i) the cell types connected via electrical synapses; (ii) the connexin makeup and the conductance of each cell-to-cell contact; (iii) the probable function of each gap junction in retinal circuitry; (iv) the fact that gap junctions underlie both electrical and/or tracer coupling between glial cells. These pan-vertebrate features thus demonstrate that retinal gap junctions have changed little during the over 500 million years of vertebrate evolution. Therefore, the fundamental architecture of electrically coupled retinal circuits seems as old as the retina itself, indicating that gap junctions deeply incorporated in retinal wiring from the very beginning of the eye formation of vertebrates. In addition to hard wiring provided by fast synaptic transmitter-releasing neurons and soft wiring contributed by peptidergic, aminergic and purinergic systems, electrical coupling may serve as the 'skeleton' of lateral processing, enabling important functions such

  3. The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals.

    PubMed

    García-Verdugo, Jose Manuel; Ferrón, Sacri; Flames, Nuria; Collado, Lucía; Desfilis, Ester; Font, Enrique

    2002-04-01

    Although evidence accumulated during the last decades has advanced our understanding of adult neurogenesis in the vertebrate brain, many aspects of this intriguing phenomenon remain controversial. Here we review the organization and cellular composition of the ventricular wall of reptiles, birds, and mammals in an effort to identify differences and commonalities among these vertebrate classes. Three major cell types have been identified in the ventricular zone of reptiles and birds: migrating (Type A) cells, radial glial (Type B) cells, and ependymal (Type E) cells. Cells similar anatomically and functionally to Types A, B, and E have also been described in the ventricular wall of mammals, which contains an additional cell type (Type C) not found in reptiles or birds. The bulk of the evidence points to a role of Type B cells as primary neural precursors (stem cells) in the three classes of living amniotic vertebrates. This finding may have implications for the development of strategies for the possible treatment of human neurological disorders.

  4. The Expanding Diversity of RNA Viruses in Vertebrates.

    PubMed

    Wang, Wenqiang; Han, Guan-Zhu

    2018-06-01

    The diversity of RNA viruses in vertebrates remains largely unexplored. The discovery of 214 novel vertebrate-associated RNA viruses will likely help us to understand the diversity and evolution of RNA viruses in vertebrates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Unusual vertebral artery origins: examples and related pathology.

    PubMed

    Koenigsberg, Robert A; Pereira, Lorianne; Nair, Bronwyn; McCormick, Daniel; Schwartzman, Robert

    2003-06-01

    Anomalies of the vertebral arteries are uncommon, but important to recognize in the diagnosis and catheter based evaluation and treatment of patients suffering cerebrovascular disease. This article illustrates our experience with such anomalies. These include the vertebral artery arising as the fourth and most distal branch of the aortic arch, as a right subclavian artery branch arising distal to the right thyrocervical trunk, as a right common carotid artery branch in a patient with an aberrant right subclavian artery, and a case of left vertebral artery proximal duplication, with both aortic and left subclavian vertebral arteries present in the same patient; the latter join to form a single distal cervical vertebral artery. Copyright 2003 Wiley-Liss, Inc.

  6. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree

    PubMed Central

    Mejía, Luis C.; Herre, Edward A.; Sparks, Jed P.; Winter, Klaus; García, Milton N.; Van Bael, Sunshine A.; Stitt, Joseph; Shi, Zi; Zhang, Yufan; Guiltinan, Mark J.; Maximova, Siela N.

    2014-01-01

    It is increasingly recognized that macro-organisms (corals, insects, plants, vertebrates) consist of both host tissues and multiple microbial symbionts that play essential roles in their host's ecological and evolutionary success. Consequently, identifying benefits and costs of symbioses, as well as mechanisms underlying them are research priorities. All plants surveyed under natural conditions harbor foliar endophytic fungi (FEF) in their leaf tissues, often at high densities. Despite producing no visible effects on their hosts, experiments have nonetheless shown that FEF reduce pathogen and herbivore damage. Here, combining results from three genomic, and two physiological experiments, we demonstrate pervasive genetic and phenotypic effects of the apparently asymptomatic endophytes on their hosts. Specifically, inoculation of endophyte-free (E−) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant FEF species in healthy T. cacao, induces consistent changes in the expression of hundreds of host genes, including many with known defensive functions. Further, E+ plants exhibited increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes. These phenotypic changes observed in E+ plants correspond to changes in expression of specific functional genes in related pathways. Moreover, a cacao gene (Tc00g04254) highly up-regulated by C. tropicale also confers resistance to pathogen damage in the absence of endophytes or their products in host tissues. Thus, the benefits of increased pathogen resistance in E+ plants are derived in part from up-regulation of intrinsic host defense responses, and appear to be offset by potential costs including reduced photosynthesis, altered host nitrogen metabolism, and endophyte heterotrophy of host tissues. Similar effects are likely in most plant-endophyte interactions, and should be recognized in the design and interpretation of genetic

  7. A Case of Duplicated Right Vertebral Artery.

    PubMed

    Motomura, Mayuko; Watanabe, Koichi; Tabira, Yoko; Iwanaga, Joe; Matsuuchi, Wakako; Yoshida, Daichi; Saga, Tsuyoshi; Yamaki, Koh-Ichi

    2018-04-27

    We encountered a case of duplicated right vertebral artery during an anatomical dissection course for medical students in 2015. Two vertebral arteries were found in the right neck of a 91-year-old female cadaver. The proximal leg of the arteries arose from the area between the right subclavian artery and the right common carotid artery that diverged from the brachiocephalic artery. The distal leg arose from the right subclavian artery as expected. The proximal leg entered the transverse foramen of the fourth cervical vertebra and the distal leg entered the transverse foramen of the sixth cervical vertebra. The two right vertebral arteries joined to form one artery just after the origin of the right vertebral artery of the brachiocephalic artery entered the transverse foramen of the fourth cervical vertebra. This artery then traveled up in the transverse foramina and became the basilar artery, joining with the left vertebral artery. We discuss the embryological origin of this case and review previously reported cases.

  8. Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic.

    PubMed

    Brisson, Dustin; Dykhuizen, Daniel E; Ostfeld, Richard S

    2008-01-22

    Emerging zoonotic pathogens are a constant threat to human health throughout the world. Control strategies to protect public health regularly fail, due in part to the tendency to focus on a single host species assumed to be the primary reservoir for a pathogen. Here, we present evidence that a diverse set of species can play an important role in determining disease risk to humans using Lyme disease as a model. Host-targeted public health strategies to control the Lyme disease epidemic in North America have focused on interrupting Borrelia burgdorferi sensu stricto (ss) transmission between blacklegged ticks and the putative dominant reservoir species, white-footed mice. However, B. burgdorferi ss infects more than a dozen vertebrate species, any of which could transmit the pathogen to feeding ticks and increase the density of infected ticks and Lyme disease risk. Using genetic and ecological data, we demonstrate that mice are neither the primary host for ticks nor the primary reservoir for B. burgdorferi ss, feeding 10% of all ticks and 25% of B. burgdorferi-infected ticks. Inconspicuous shrews feed 35% of all ticks and 55% of infected ticks. Because several important host species influence Lyme disease risk, interventions directed at a multiple host species will be required to control this epidemic.

  9. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    PubMed

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  10. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes

    PubMed Central

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-01-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined ‘ohnologs’ after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases. PMID:26181593

  11. Correlation between Hox code and vertebral morphology in archosaurs.

    PubMed

    Böhmer, Christine; Rauhut, Oliver W M; Wörheide, Gert

    2015-07-07

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns.

  12. Correlation between Hox code and vertebral morphology in archosaurs

    PubMed Central

    Böhmer, Christine; Rauhut, Oliver W. M.; Wörheide, Gert

    2015-01-01

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns. PMID:26085583

  13. Constrained vertebrate evolution by pleiotropic genes.

    PubMed

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song; Shimai, Kotaro; Lu, Tsai-Ming; Li, Fang; Fujimoto, Satoko; Ishikawa, Masato; Liu, Shiping; Sasagawa, Yohei; Zhang, Guojie; Kuratani, Shigeru; Yu, Jr-Kai; Kusakabe, Takehiro G; Khaitovich, Philipp; Irie, Naoki

    2017-11-01

    Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.

  14. Smuggling across the border: how arthropod-borne pathogens evade and exploit the host defense system of the skin.

    PubMed

    Bernard, Quentin; Jaulhac, Benoit; Boulanger, Nathalie

    2014-05-01

    The skin is a critical barrier between hosts and pathogens in arthropod-borne diseases. It harbors many resident cells and specific immune cells to arrest or limit infections by secreting inflammatory molecules or by directly killing pathogens. However, some pathogens are able to use specific skin cells and arthropod saliva for their initial development, to hide from the host immune system, and to establish persistent infection in the vertebrate host. A better understanding of the initial mechanisms taking place in the skin should allow the development of new strategies to fight these vector-borne pathogens that are spread worldwide and are of major medical importance.

  15. A critical appraisal of vertebral fracture assessment in paediatrics.

    PubMed

    Kyriakou, Andreas; Shepherd, Sheila; Mason, Avril; Faisal Ahmed, S

    2015-12-01

    There is a need to improve our understanding of the clinical utility of vertebral fracture assessment (VFA) in paediatrics and this requires a thorough evaluation of its readability, reproducibility, and accuracy for identifying VF. VFA was performed independently by two observers, in 165 children and adolescents with a median age of 13.4 years (range, 3.6, 18). In 20 of these subjects, VFA was compared to lateral vertebral morphometry assessment on lateral spine X-ray (LVM). 1528 (84%) of the vertebrae were adequately visualised by both observers for VFA. Interobserver agreement in vertebral readability was 94% (kappa, 0.73 [95% CI, 0.68, 0.73]). 93% of the non-readable vertebrae were located between T6 and T9. Interobserver agreement per-vertebra for the presence of VF was 99% (kappa, 0.85 [95% CI, 0.79, 0.91]). Interobserver agreement per-subject was 91% (kappa, 0.78 [95% CI, 0.66, 0.87]). Per-vertebra agreement between LVM and VFA was 95% (kappa 0.79 [95% CI, 0.62, 0.92]) and per-subject agreement was 95% (kappa, 0.88 [95% CI, 0.58, 1.0]). Accepting LVM as the gold standard, VFA had a positive predictive value (PPV) of 90% and a negative predictive value (NPV) of 95% in per-vertebra analysis and a PPV of 100% and NPV of 93% in per-subject analysis. VFA reaches an excellent level of agreement between observers and a high level of accuracy in identifying VF in a paediatric population. The readability of vertebrae at the mid thoracic region is suboptimal and interpretation at this level should be exercised with caution. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A median third eye: pineal gland retraces evolution of vertebrate photoreceptive organs.

    PubMed

    Mano, Hiroaki; Fukada, Yoshitaka

    2007-01-01

    In many vertebrates, the pineal gland serves as a photoreceptive neuroendocrine organ. Morphological and functional similarities between the pineal and retinal photoreceptor cells indicate their close evolutionary relationship, and hence the comparative studies on the pineal gland and the retina are the keys to deciphering the evolutionary traces of the vertebrate photoreceptive organs. Several studies have suggested common genetic and molecular mechanisms responsible for their similarities, but largely unknown are those underlying pineal-specific development and physiological functions. Recent studies have identified several cis-acting DNA elements that participate in transcriptional control of the pineal-specific genes. Genetic approaches in the zebrafish have also contributed to elucidating the genetic network regulating the pineal development and neurogenesis. These efforts toward elucidating the molecular instrumentation intrinsic to the pineal gland, back to back with those to the retina, should lead to a comprehensive understanding of the evolutionary history of the vertebrate photoreceptive structures. This article summarizes the current status of research on these topics.

  17. Development and evolution of the vertebrate primary mouth

    PubMed Central

    Soukup, Vladimír; Horácek, Ivan; Cerny, Robert

    2013-01-01

    The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary–developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during

  18. Influence of physical activity on vertebral strength during late adolescence.

    PubMed

    Junno, Juho-Antti; Paananen, Markus; Karppinen, Jaro; Tammelin, Tuija; Niinimäki, Jaakko; Lammentausta, Eveliina; Niskanen, Markku; Nieminen, Miika T; Järvelin, Marjo-Riitta; Takatalo, Jani; Tervonen, Osmo; Tuukkanen, Juha

    2013-02-01

    Reduced vertebral strength is a clear risk factor for vertebral fractures. Men and women with vertebral fractures often have reduced vertebral size and bone mineral density (BMD). Vertebral strength is controlled by both genetic and developmental factors. Malnutrition and low levels of physical activity are commonly considered to result in reduced bone size during growth. Several studies have also demonstrated the general relationship between BMD and physical activity in the appendicular skeleton. In this study, we wanted to clarify the role of physical activity on vertebral bodies. Vertebral dimensions appear to generally be less pliant than long bones when lifetime changes occur. We wanted to explore the association between physical activity during late adolescence and vertebral strength parameters such as cross-sectional size and BMD. The association between physical activity and vertebral strength was explored by measuring vertebral strength parameters and defining the level of physical activity during adolescence. The study population consisted of 6,928 males and females who, at 15 to 16 and 19 years of age, responded to a mailed questionnaire inquiring about their physical activity. A total of 558 individuals at the mean age of 21 years underwent magnetic resonance imaging (MRI) scans. We measured the dimensions of the fourth lumbar vertebra from the MRI scans of the Northern Finland Birth Cohort 1986 and performed T2* relaxation time mapping, reflective of BMD. Vertebral strength was based on these two parameters. We analyzed the association of physical activity on vertebral strength using the analysis of variance. We observed no association between the level of physical activity during late adolescence and vertebral strength at 21 years. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Biomechanical Evaluation of an Injectable and Biodegradable Copolymer P(PF-co-CL) in a Cadaveric Vertebral Body Defect Model

    PubMed Central

    Fang, Zhong; Giambini, Hugo; Zeng, Heng; Camp, Jon J.; Dadsetan, Mahrokh; Robb, Richard A.; An, Kai-Nan; Yaszemski, Michael J.

    2014-01-01

    A novel biodegradable copolymer, poly(propylene fumarate-co-caprolactone) [P(PF-co-CL)], has been developed in our laboratory as an injectable scaffold for bone defect repair. In the current study, we evaluated the ability of P(PF-co-CL) to reconstitute the load-bearing capacity of vertebral bodies with lytic lesions. Forty vertebral bodies from four fresh-frozen cadaveric thoracolumbar spines were used for this study. They were randomly divided into four groups: intact vertebral body (intact control), simulated defect without treatment (negative control), defect treated with P(PF-co-CL) (copolymer group), and defect treated with poly(methyl methacrylate) (PMMA group). Simulated metastatic lytic defects were made by removing a central core of the trabecular bone in each vertebral body with an approximate volume of 25% through an access hole in the side of the vertebrae. Defects were then filled by injecting either P(PF-co-CL) or PMMA in situ crosslinkable formulations. After the spines were imaged with quantitative computerized tomography, single vertebral body segments were harvested for mechanical testing. Specimens were compressed until failure or to 25% reduction in body height and ultimate strength and elastic modulus of each specimen were then calculated from the force–displacement data. The average failure strength of the copolymer group was 1.83 times stronger than the untreated negative group and it closely matched the intact vertebral bodies (intact control). The PMMA-treated vertebrae, however, had a failure strength 1.64 times larger compared with the intact control. The elastic modulus followed the same trend. This modulus mismatch between PMMA-treated vertebrae and the host vertebrae could potentially induce a fracture cascade and degenerative changes in adjacent intervertebral discs. In contrast, P(PF-co-CL) restored the mechanical properties of the treated segments similar to the normal, intact, vertebrae. Therefore, P(PF-co-CL) may be a suitable

  20. Evolutionary Specialization of Tactile Perception in Vertebrates.

    PubMed

    Schneider, Eve R; Gracheva, Elena O; Bagriantsev, Slav N

    2016-05-01

    Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  1. Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate lamin protein family.

    PubMed

    Schilf, Paul; Peter, Annette; Hurek, Thomas; Stick, Reimer

    2014-07-01

    Lamin proteins are found in all metazoans. Most non-vertebrate genomes including those of the closest relatives of vertebrates, the cephalochordates and tunicates, encode only a single lamin. In teleosts and tetrapods the number of lamin genes has quadrupled. They can be divided into four sub-types, lmnb1, lmnb2, LIII, and lmna, each characterized by particular features and functional differentiations. Little is known when during vertebrate evolution these features have emerged. Lampreys belong to the Agnatha, the sister group of the Gnathostomata. They split off first within the vertebrate lineage. Analysis of the sea lamprey (Petromyzon marinus) lamin complement presented here, identified three functional lamin genes, one encoding a lamin LIII, indicating that the characteristic gene structure of this subtype had been established prior to the agnathan/gnathostome split. Two other genes encode lamins for which orthology to gnathostome lamins cannot be designated. Search for lamin gene sequences in all vertebrate taxa for which sufficient sequence data are available reveals the evolutionary time frame in which specific features of the vertebrate lamins were established. Structural features characteristic for A-type lamins are not found in the lamprey genome. In contrast, lmna genes are present in all gnathostome lineages suggesting that this gene evolved with the emergence of the gnathostomes. The analysis of lamin gene neighborhoods reveals noticeable similarities between the different vertebrate lamin genes supporting the hypothesis that they emerged due to two rounds of whole genome duplication and makes clear that an orthologous relationship between a particular vertebrate paralog and lamins outside the vertebrate lineage cannot be established. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Facultative parthenogenesis in vertebrates: reproductive error or chance?

    PubMed

    Lampert, K P

    2008-01-01

    Parthenogenesis, the development of an embryo from a female gamete without any contribution of a male gamete, is very rare in vertebrates. Parthenogenetically reproducing species have, so far, only been found in the Squamate reptiles (lizards and snakes). Facultative parthenogenesis, switching between sexual and clonal reproduction, although quite common in invertebrates, e.g. Daphnia and aphids, seems to be even rarer in vertebrates. However, isolated cases of parthenogenetic development have been reported in all vertebrate groups. Facultative parthenogenesis in vertebrates has only been found in captive animals but might simply have been overlooked in natural populations. Even though its evolutionary impact is hard to determine and very likely varies depending on the ploidy restoration mechanisms and sex-determining mechanisms involved, facultative parthenogenesis is already discussed in conservation biology and medical research. To raise interest for facultative parthenogenesis especially in evolutionary biology, I summarize the current knowledge about facultative parthenogenesis in the different vertebrate groups, introduce mechanisms of diploid oocyte formation and discuss the genetic consequences and potential evolutionary impact of facultative parthenogenesis in vertebrates.

  3. Ancient deuterostome origins of vertebrate brain signalling centres.

    PubMed

    Pani, Ariel M; Mullarkey, Erin E; Aronowicz, Jochanan; Assimacopoulos, Stavroula; Grove, Elizabeth A; Lowe, Christopher J

    2012-03-14

    Neuroectodermal signalling centres induce and pattern many novel vertebrate brain structures but are absent, or divergent, in invertebrate chordates. This has led to the idea that signalling-centre genetic programs were first assembled in stem vertebrates and potentially drove morphological innovations of the brain. However, this scenario presumes that extant cephalochordates accurately represent ancestral chordate characters, which has not been tested using close chordate outgroups. Here we report that genetic programs homologous to three vertebrate signalling centres-the anterior neural ridge, zona limitans intrathalamica and isthmic organizer-are present in the hemichordate Saccoglossus kowalevskii. Fgf8/17/18 (a single gene homologous to vertebrate Fgf8, Fgf17 and Fgf18), sfrp1/5, hh and wnt1 are expressed in vertebrate-like arrangements in hemichordate ectoderm, and homologous genetic mechanisms regulate ectodermal patterning in both animals. We propose that these genetic programs were components of an unexpectedly complex, ancient genetic regulatory scaffold for deuterostome body patterning that degenerated in amphioxus and ascidians, but was retained to pattern divergent structures in hemichordates and vertebrates. © 2012 Macmillan Publishers Limited. All rights reserved

  4. [Vertebrate mortality in the Guanare-Guanarito road, Portuguesa state, Venezuela].

    PubMed

    Seijas, Andrés Eloy; Araujo-Quintero, Alexis; Velásquez, Nadines

    2013-12-01

    Roads directly or indirectly affect the structure, dynamics and function of ecosystems that they traverse. Most studies on the effect of roads on wildlife focus on the evaluation of mortality of vertebrates by vehicle collisions. Despite the extensive road network that exists in Venezuela, studies of wildlife mortality in them are scarce. In this paper, we analyzed the temporal and spatial pattern of vertebrate's collisions along the road Guanare-Guanarito, in Portuguesa state. We travelled 26 times between these towns (74 km) to localize dead vertebrates, at a speed of 50-60km/h. of those trips were conducted from March 13 to October 26, 2010, and 10 additional trips from December 7, 2009 to December 14, 2010; these ones, with the aim to include months and seasons that were insufficiently sampled during the first period. The elapsed time between trips varied from 14 to 37 days. The total distance traveled was 1 924 km. Dead animals found amounted 464 individuals, 66 of them were birds (25 identified species), 130 mammals (15 species) and 268 reptiles (18 species). The species with the highest number of individuals were the snake Leptodeira annulata (n=119), the oppossum Didelphis marsupialis (n=39) and the spectacled caiman Caiman crocodilus (n=33). Excluding domestic animals, the rate of road-killed vertebrates was 0.2282 indiv./km, a figure 28.3% higher than previous studies in the same road. Changes in the relative number of collisions for some species, respect to the numbers reported 20 years ago, were linked to the increase in traffic flow and changes in land use. Road segments with collision rates higher than expected by chance were identified. Collition by cars may be the principal cause of mortality for species like the tamandua (Tamandua tetradactyla) and the giant anteater (Myrmecophaga tridactyla), the last considered a vulnerable species. Some basic measures are proposed to reduce wildlife mortality on the road.

  5. The prevalence of radiographic vertebral fractures in Latin American countries: the Latin American Vertebral Osteoporosis Study (LAVOS).

    PubMed

    Clark, P; Cons-Molina, F; Deleze, M; Ragi, S; Haddock, L; Zanchetta, J R; Jaller, J J; Palermo, L; Talavera, J O; Messina, D O; Morales-Torres, J; Salmeron, J; Navarrete, A; Suarez, E; Pérez, C M; Cummings, S R

    2009-02-01

    In the first population-based study of vertebral fractures in Latin America, we found a 11.18 (95% CI 9.23-13.4) prevalence of radiographically ascertained vertebral fractures in a random sample of 1,922 women from cities within five different countries. These figures are similar to findings from studies in Beijing, China, some regions of Europe, and slightly lower than those found in the USA using the same standardized methodology. We report the first study of radiographic vertebral fractures in Latin America. An age-stratified random sample of 1,922 women aged 50 years and older from Argentina, Brazil, Colombia, Mexico, and Puerto Rico were included. In all cases a standardized questionnaire and lateral X-rays of the lumbar and thoracic spine were obtained after informed consent. A standardized prevalence of 11.18 (95% CI 9.23-13.4) was found. The prevalence was similar in all five countries, increasing from 6.9% (95% CI 4.6-9.1) in women aged 50-59 years to 27.8% (95% CI 23.1-32.4) in those 80 years and older (p for trend < 0.001). Among different risk factors, self-reported height loss OR = 1.63 (95% CI: 1.18-2.25), and previous history of fracture OR = 1.52 (95% CI: 1.14-2.03) were significantly (p < 0.003 and p < 0.04 respectably) associated with the presence of radiographic vertebral fractures in the multivariate analysis. In the bivariate analyses HRT was associated with a 35% lower risk OR = 0.65 (95% CI: 0.46-0.93) and physical activity with a 27% lower risk of having a vertebral fracture OR = 0.73 (95% CI: 0.55-0.98), but were not statistically significant in multivariate analyses We conclude that radiographically ascertained vertebral fractures are common in Latin America. Health authorities in the region should be aware and consider implementing measures to prevent vertebral fractures.

  6. Identification of a novel locus on chromosome 2q13, which predisposes to clinical vertebral fractures independently of bone density.

    PubMed

    Alonso, Nerea; Estrada, Karol; Albagha, Omar M E; Herrera, Lizbeth; Reppe, Sjur; Olstad, Ole K; Gautvik, Kaare M; Ryan, Niamh M; Evans, Kathryn L; Nielson, Carrie M; Hsu, Yi-Hsiang; Kiel, Douglas P; Markozannes, George; Ntzani, Evangelia E; Evangelou, Evangelos; Feenstra, Bjarke; Liu, Xueping; Melbye, Mads; Masi, Laura; Brandi, Maria Luisa; Riches, Philip; Daroszewska, Anna; Olmos, José Manuel; Valero, Carmen; Castillo, Jesús; Riancho, José A; Husted, Lise B; Langdahl, Bente L; Brown, Matthew A; Duncan, Emma L; Kaptoge, Stephen; Khaw, Kay-Tee; Usategui-Martín, Ricardo; Del Pino-Montes, Javier; González-Sarmiento, Rogelio; Lewis, Joshua R; Prince, Richard L; D'Amelio, Patrizia; García-Giralt, Natalia; Nogués, Xavier; Mencej-Bedrac, Simona; Marc, Janja; Wolstein, Orit; Eisman, John A; Oei, Ling; Medina-Gómez, Carolina; Schraut, Katharina E; Navarro, Pau; Wilson, James F; Davies, Gail; Starr, John; Deary, Ian; Tanaka, Toshiko; Ferrucci, Luigi; Gianfrancesco, Fernando; Gennari, Luigi; Lucas, Gavin; Elosua, Roberto; Uitterlinden, André G; Rivadeneira, Fernando; Ralston, Stuart H

    2018-03-01

    To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10 -9 ) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Evolution and development of the vertebrate neck

    PubMed Central

    Ericsson, Rolf; Knight, Robert; Johanson, Zerina

    2013-01-01

    Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1–3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates. PMID:22697305

  8. The Variety of Vertebrate Mechanisms of Sex Determination

    PubMed Central

    Trukhina, Antonina V.; Lukina, Natalia A.; Wackerow-Kouzova, Natalia D.; Smirnov, Alexander F.

    2013-01-01

    The review deals with features of sex determination in vertebrates. The mechanisms of sex determination are compared between fishes, amphibians, reptilians, birds, and mammals. We focus on structural and functional differences in the role of sex-determining genes in different vertebrates. Special attention is paid to the role of estrogens in sex determination in nonmammalian vertebrates. PMID:24369014

  9. The variety of vertebrate mechanisms of sex determination.

    PubMed

    Trukhina, Antonina V; Lukina, Natalia A; Wackerow-Kouzova, Natalia D; Smirnov, Alexander F

    2013-01-01

    The review deals with features of sex determination in vertebrates. The mechanisms of sex determination are compared between fishes, amphibians, reptilians, birds, and mammals. We focus on structural and functional differences in the role of sex-determining genes in different vertebrates. Special attention is paid to the role of estrogens in sex determination in nonmammalian vertebrates.

  10. Thoracolumbar vertebral osteochondroma in a young dog.

    PubMed

    Santen, D R; Payne, J T; Pace, L W; Kroll, R A; Johnson, G C

    1991-10-15

    Osteosarcoma was diagnosed in a 7-month-old female German Shepherd Dog with hind limb paresis. Radiography revealed a circumscribed calcified mass in the dorsal vertebral lamina at T13-L1 resulting in extradural compression of the spinal cord. Surgical excision of the mass resulted in gradual return to normal neurologic function. Four weeks after surgery, the dog became severely atactic after rolling onto its back. A chip fracture of T13 was identified, and the dog was euthanatized at the owners' request.

  11. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    PubMed

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  12. Risk of Vertebral Fracture in Patients Diagnosed with a Depressive Disorder: A Nationwide Population-Based Cohort Study.

    PubMed

    Lee, Shyh-Chyang; Hu, Li-Yu; Huang, Min-Wei; Shen, Cheng-Che; Huang, Wei-Lun; Lu, Ti; Hsu, Chiao-Lin; Pan, Chih-Chuan

    2017-01-01

    Previous studies have reported that depression may play a crucial role in the occurrence of vertebral fractures. However, a clear correlation between depressive disorders and osteoporotic fractures has not been established. We explored the association between depressive disorders and subsequent new-onset vertebral fractures. Additionally, we aimed to identify the potential risk factors for vertebral fracture in patients with a depressive disorder. We studied patients listed in the Taiwan National Health Insurance Research Database who were diagnosed with a depressive disorder by a psychiatrist. The comparison cohort consisted of age- and sex-matched patients without a depressive disorder. The incidence rate and hazard ratios of subsequent vertebral fracture were evaluated. We used Cox regression analysis to evaluate the risk of vertebral fracture among patients with a depressive disorder. The total number of patients with and without a depressive disorder was 44,812. The incidence risk ratio (IRR) between these 2 cohorts indicated that depressive disorder patients had a higher risk of developing a subsequent vertebral fracture (IRR=1.41, 95% confidence interval [CI]=1.26-1.57, p<0.001). In the multivariate analysis, the depressive disorder cohort showed a higher risk of vertebral fracture than the comparison cohort (adjusted hazard ratio=1.24, 95% CI=1.11-1.38, p<0.001). Being older than 50 years, having a lower monthly income, and having hypertension, diabetes mellitus, cerebrovascular disease, chronic obstructive pulmonary disease, autoimmune disease, or osteoporosis were considered predictive factors for vertebral fracture in patients with depressive disorders. Depressive disorders may increase the risk of a subsequent new-onset vertebral fracture.

  13. Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component

    PubMed Central

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M.; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Vidalain, Pierre-Olivier

    2012-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus. PMID:22258240

  14. Surgical treatment of hematogenous vertebral Aspergillus osteomyelitis.

    PubMed

    Bridwell, K H; Campbell, J W; Barenkamp, S J

    1990-04-01

    Three cases of Aspergillus fumigatas vertebral osteomyelitis failed courses of medical treatment. Each was subsequently treated with anterior vertebral debridement and posterior segmental spinal instrumentation. Despite poor nutritional and immune systems, resolution of the infection and subsequent anterior ankylosis occurred in each patient, with follow-up ranging from 1 to 3 years. If patients with aspergillus vertebral osteomyelitis do not respond to medical treatment, early surgical debridement and stabilization in combination with intravenous amphotericin B can lead to resolution and bony ankylosis.

  15. Summer time predation on the obligatory off-host stage of an invasive ectoparasite.

    PubMed

    Kaunisto, Sirpa; Raunismaa, Ilkka; Kortet, Raine; Ylönen, Hannu

    2016-12-01

    Predation can regulate populations and strongly affect invasion success of novel prey. The deer ked (Lipoptena cervi; Linnaeus 1758) is an invasive ectoparasite of cervids that spends a long period of its life cycle outside the host. Prior to this study, virtually nothing was known about natural summer time predation on the deer ked. We aimed to evaluate the magnitude of summer time predation on L. cervi pupae in different habitats and to identify potential predators. We conducted a set of field experiments, where we exposed L. cervi pupae to various ground-dwelling vertebrate and invertebrate predators. The loss of pupae was monitored for different predator guilds. Three habitats of the moose, the main host species, were studied: (1) moist heath forest; (2) dry, logged heath forest; and (3) moist meadow. The results indicate notable summer time predation on L. cervi pupae, and the pupal predation varied within and between habitats, being lowest in the meadow habitat. We found a positive correlation between pupal loss and abundance of the common lizard (Zootoca vivipara), harvestmen (Opiliones), ground spiders (Gnaphosidae) and Formicinae-ants. We conclude that summer time predation during the pupal phase can have a notable local importance for the L. cervi abundance.

  16. C3 Vertebral Metastases From Tongue Adenoid Cystic Carcinoma: A Rare Case Report.

    PubMed

    Feng, Helin; Wang, Jin; Guo, Peng; Xu, Jianfa; Feng, Jiangang

    2015-07-01

    We report a rare case involving a patient with C3 vertebral body metastasis secondary to adenoid cystic carcinoma of the tongue.Five years after local resection of the primary tumor, magnetic resonance imaging showed a metastasis located in the left posterior border of the C3 vertebral body. Additionally, multiple pulmonary metastases were identified by computed tomography. Based on these findings, the patient underwent C2-3, C3-4 discectomy; C3 corpectomy; and titanium mesh fusion with a Zephir plate. The diagnosis was confirmed by the pathology findings. During 6 months of follow-up, the patient showed improvement and return of function of the cervical vertebrae, with no serious complications.Because of the scarcity of cases of vertebral metastases from tumors of the tongue in the literature, we have reported this case to add to the available evidence regarding this rarely encountered condition.

  17. Vaccinia Virus C9 Ankyrin Repeat/F-Box Protein Is a Newly Identified Antagonist of the Type I Interferon-Induced Antiviral State.

    PubMed

    Liu, Ruikang; Moss, Bernard

    2018-05-01

    Type I interferons (IFNs) induce expression of more than 300 cellular genes that provide protection against viruses and other pathogens. For survival, viruses evolved defenses to prevent the IFN response or counteract the IFN-induced antiviral state. However, because viruses and cells coevolved, the dynamic relationship between virus and host is difficult to discern. In the present study, we demonstrated that vaccinia virus with a large deletion near the left end of the genome had a diminished ability to replicate in cells that had been pretreated with beta interferon (IFN-β), suggesting that one or more of the missing 17 open reading frames (ORFs) encode an antagonist of the IFN-induced antiviral state. By systematically deleting groups of ORFs and then individual ORFs, the C9L gene was shown to be required for IFN resistance. Replication of the C9L deletion mutant (vΔC9) was impaired in human cells that had been pretreated with IFN-β. Expression of viral early genes occurred, but subsequent events, including genome uncoating, genome replication, and postreplicative gene expression, were inhibited. Expression of the C9 protein occurred prior to genome replication, consistent with an early role in counteracting the IFN-induced antiviral state. C9 contains six ankyrin repeat motifs and a near C-terminal F-box. Mass spectrometry and immunoblotting identified host proteins that copurified with a functional epitope-tagged C9. The most abundant proteins were components of the SCF (CUL1, SKP1, F-box) and signalosome/deneddylation complexes, which interact with each other, suggesting a possible role in proteolysis of one or more interferon-induced proteins. IMPORTANCE Poxviruses comprise a family of large DNA viruses that replicate in the cytoplasm of vertebrate and insect hosts and cause human and zoonotic diseases. In most cases the primary infection is moderated by innate immune defenses. Vertebrates, including fish, amphibians, reptiles, birds, and mammals, all

  18. Host surveys, ixodid tick biology and transmission scenarios as related to the tick-borne pathogen, Ehrlichia canis

    PubMed Central

    Stich, R. W.; Schaefer, John J.; Bremer, William G.; Needham, Glen R.; Jittapalapong, Sathaporn

    2008-01-01

    The ehrlichioses have been subject to increasing interest from veterinary and public health perspectives, but experimental studies of these diseases and their etiologic agents can be challenging. Ehrlichia canis, the primary etiologic agent of canine monocytic ehrlichiosis, is relatively well characterized and offers unique advantages and opportunities to study interactions between a monocytotropic pathogen and both its vertebrate and invertebrate hosts. Historically, advances in tick-borne disease control strategies have typically followed explication of tick-pathogen-vertebrate interactions, thus it is reasonable to expect novel, more sustainable approaches to control of these diseases as the transmission of their associated infections are investigated at the molecular through ecological levels. Better understanding of the interactions between E. canis and its canine and tick hosts would also elucidate similar interactions for other Ehrlichia species as well as the potential roles of canine sentinels, reservoirs and models of tick-borne zoonoses. This article summarizes natural exposure studies and experimental investigations of E. canis in the context of what is understood about biological vectors of tick-borne Anaplasmataceae. PMID:18963493

  19. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    PubMed Central

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  20. VerSeDa: vertebrate secretome database

    PubMed Central

    Cortazar, Ana R.; Oguiza, José A.

    2017-01-01

    Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly. Database URL: VerSeDa is freely available at http://genomics.cicbiogune.es/VerSeDa/index.php PMID:28365718

  1. VerSeDa: vertebrate secretome database.

    PubMed

    Cortazar, Ana R; Oguiza, José A; Aransay, Ana M; Lavín, José L

    2017-01-01

    Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly. VerSeDa is freely available at http://genomics.cicbiogune.es/VerSeDa/index.php. © The Author(s) 2017. Published by Oxford University Press.

  2. Identification of a novel Gig2 gene family specific to non-amniote vertebrates.

    PubMed

    Zhang, Yi-Bing; Liu, Ting-Kai; Jiang, Jun; Shi, Jun; Liu, Ying; Li, Shun; Gui, Jian-Fang

    2013-01-01

    Gig2 (grass carp reovirus (GCRV)-induced gene 2) is first identified as a novel fish interferon (IFN)-stimulated gene (ISG). Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD) hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose) polymerases (PARPs), and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.

  3. A multidimensional approach for detecting species patterns in Malagasy vertebrates

    PubMed Central

    Yoder, Anne D.; Olson, Link E.; Hanley, Carol; Heckman, Kellie L.; Rasoloarison, Rodin; Russell, Amy L.; Ranivo, Julie; Soarimalala, Voahangy; Karanth, K. Praveen; Raselimanana, Achille P.; Goodman, Steven M.

    2005-01-01

    The biodiversity of Madagascar is extraordinarily distinctive, diverse, and endangered. It is therefore urgent that steps be taken to document, describe, interpret, and protect this exceptional biota. As a collaborative group of field and laboratory biologists, we employ a suite of methodological and analytical tools to investigate the vertebrate portion of Madagascar's fauna. Given that species are the fundamental unit of evolution, where micro- and macroevolutionary forces converge to generate biological diversity, a thorough understanding of species distribution and abundance is critical for understanding the evolutionary, ecological, and biogeographic forces that have shaped Malagasy vertebrate diversity. We illustrate the means by which we apply Mayr's “three basic tasks” of the systematist [Mayr, E. (1942) Systematics and the Origin of Species from the Viewpoint of a Zoologist (Harvard Univ. Press, Cambridge, MA)] to identify, classify, and study the organisms that together constitute Madagascar's vertebrate community. Using field inventory methods, specimen-based studies, and morphological and molecular analyses, we formulate hypotheses of species identity that then serve as the foundation for subsequent studies of biology and history. Our experience, as well as that of other investigators, has shown that much of the vertebrate species diversity in Madagascar is “cryptic” for both biological and practical reasons. Beyond issues of cryptic biological diversity, the resolution of species identity in Madagascar has been hampered because of a lack of vouchered comparative material at the population level. Through our activities, we are attempting to remedy these limitations while simultaneously enhancing research capacity in Madagascar. PMID:15851666

  4. Vertebrate seed dispersers maintain the composition of tropical forest seedbanks

    PubMed Central

    Wandrag, E. M.; Dunham, A. E.; Miller, R. H.; Rogers, H. S.

    2015-01-01

    The accumulation of seeds in the soil (the seedbank) can set the template for the early regeneration of habitats following disturbance. Seed dispersal is an important factor determining the pattern of seed rain, which affects the interactions those seeds experience. For this reason, seed dispersal should play an important role in structuring forest seedbanks, yet we know little about how that happens. Using the functional extirpation of frugivorous vertebrates from the island of Guam, together with two nearby islands (Saipan and Rota) that each support relatively intact disperser assemblages, we aimed to identify the role of vertebrate dispersers in structuring forest seedbanks. We sampled the seedbank on Guam where dispersers are absent, and compared this with the seedbank on Saipan and Rota where they are present. Almost twice as many species found in the seedbank on Guam, when compared with Saipan and Rota, had a conspecific adult within 2 m. This indicates a strong role of vertebrate dispersal in determining the identity of seeds in the seedbank. In addition, on Guam, a greater proportion of samples contained no seeds and overall species richness was lower than on Saipan. Differences in seed abundance and richness between Guam and Rota were less clear, as seedbanks on Rota also contained fewer species than Saipan, possibly due to increased post-dispersal seed predation. Our findings suggest that vertebrate seed dispersers can have a strong influence on the species composition of seedbanks. Regardless of post-dispersal processes, without dispersal, seedbanks no longer serve to increase the species pool of recruits during regeneration. PMID:26578741

  5. The pre-vertebrate origins of neurogenic placodes.

    PubMed

    Abitua, Philip Barron; Gainous, T Blair; Kaczmarczyk, Angela N; Winchell, Christopher J; Hudson, Clare; Kamata, Kaori; Nakagawa, Masashi; Tsuda, Motoyuki; Kusakabe, Takehiro G; Levine, Michael

    2015-08-27

    The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.

  6. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization

    PubMed Central

    van der Weyden, Louise; Arends, Mark J.; Campbell, Andrew D.; Bald, Tobias; Wardle-Jones, Hannah; Griggs, Nicola; Velasco-Herrera, Martin Del Castillo; Tüting, Thomas; Sansom, Owen J.; Karp, Natasha A.; Clare, Simon; Gleeson, Diane; Ryder, Edward; Galli, Antonella; Tuck, Elizabeth; Cambridge, Emma L.; Voet, Thierry; Macaulay, Iain C.; Wong, Kim; Spiegel, Sarah; Speak, Anneliese O.; Adams, David J.

    2017-01-01

    Metastasis is the leading cause of death for cancer patients. This multi-stage process requires tumour cells to survive in the circulation, extravasate at distant sites, then proliferate; it involves contributions from both the tumour cell and tumour microenvironment (‘host’, which includes stromal cells and the immune system1). Studies suggest the early steps of the metastatic process are relatively efficient, with the post-extravasation regulation of tumour growth (‘colonization’) being critical in determining metastatic outcome2. Here we show the results of screening 810 mutant mouse lines using an in vivo assay to identify microenvironmental regulators of metastatic colonization. We identify 23 genes that, when disrupted in mouse, modify the ability of tumour cells to establish metastatic foci, with 19 of these genes not previously demonstrated to play a role in host control of metastasis. The largest reduction in pulmonary metastasis was observed in sphingosine-1-phosphate (S1P) transporter spinster homologue 2 (Spns2)-deficient mice. We demonstrate a novel outcome of S1P-mediated regulation of lymphocyte trafficking, whereby deletion of Spns2, either globally or in a lymphatic endothelial-specific manner, creates a circulating lymphopenia and a higher percentage of effector T cells and natural killer (NK) cells present in the lung. This allows for potent tumour cell killing, and an overall decreased metastatic burden. PMID:28052056

  7. Where are the horses? With the sheep or cows? Uncertain host location, vector-feeding preferences and the risk of African horse sickness transmission in Great Britain

    PubMed Central

    Lo Iacono, Giovanni; Robin, Charlotte A.; Newton, J. Richard; Gubbins, Simon; Wood, James L. N.

    2013-01-01

    Understanding the influence of non-susceptible hosts on vector-borne disease transmission is an important epidemiological problem. However, investigation of its impact can be complicated by uncertainty in the location of the hosts. Estimating the risk of transmission of African horse sickness (AHS) in Great Britain (GB), a virus transmitted by Culicoides biting midges, provides an insightful example because: (i) the patterns of risk are expected to be influenced by the presence of non-susceptible vertebrate hosts (cattle and sheep) and (ii) incomplete information on the spatial distribution of horses is available because the GB National Equine Database records owner, rather than horse, locations. Here, we combine land-use data with available horse owner distributions and, using a Bayesian approach, infer a realistic distribution for the location of horses. We estimate the risk of an outbreak of AHS in GB, using the basic reproduction number (R0), and demonstrate that mapping owner addresses as a proxy for horse location significantly underestimates the risk. We clarify the role of non-susceptible vertebrate hosts by showing that the risk of disease in the presence of many hosts (susceptible and non-susceptible) can be ultimately reduced to two fundamental factors: first, the abundance of vectors and how this depends on host density, and, second, the differential feeding preference of vectors among animal species. PMID:23594817

  8. Building the Vertebrate Spine

    NASA Astrophysics Data System (ADS)

    Pourquié, Olivier

    2008-03-01

    The vertebrate body can be subdivided along the antero-posterior (AP) axis into repeated structures called segments. This periodic pattern is established during embryogenesis by the somitogenesis process. Somites are generated in a rhythmic fashion from the paraxial mesoderm and subsequently differentiate to give rise to the vertebrae and skeletal muscles of the body. Somite formation involves an oscillator-the segmentation clock-whose periodic signal is converted into the periodic array of somite boundaries. This clock drives the dynamic expression of cyclic genes in the presomitic mesoderm and requires Notch and Wnt signaling. Microarray studies of the mouse presomitic mesoderm transcriptome reveal that the segmentation clock drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive activation of the Notch/FGF and Wnt pathways during each cycle suggests that coordinated regulation of these three pathways underlies the clock oscillator. In humans, mutations in the genes associated to the function of this oscillator such as Dll3 or Lunatic Fringe result in abnormal segmentation of the vertebral column such as those seen in congenital scoliosis. Whereas the segmentation clock is thought to set the pace of vertebrate segmentation, the translation of this pulsation into the reiterated arrangement of segment boundaries along the AP axis involves dynamic gradients of FGF and Wnt signaling. The FGF signaling gradient is established based on an unusual mechanism involving mRNA decay which provides an efficient means to couple the spatio-temporal activation of segmentation to the posterior elongation of the embryo. Another striking aspect of somite production is the strict bilateral symmetry of the process. Retinoic acid was shown to control aspects of this coordination by buffering destabilizing effects from the embryonic left-right machinery. Defects in this embryonic program controlling vertebral symmetry might lead

  9. Elongation Factor-1a is a novel protein associated with host cell invasion and a potential protective antigen of Cryptosporidium parvum*

    USDA-ARS?s Scientific Manuscript database

    The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess a unique complex of organelles at the anterior end, referred to as the apical complex, which is involved in host cell invasion. Previously, we generated the chicken m...

  10. High within-host genetic variation of the nematode Spirocerca lupi in a high-density urban dog population.

    PubMed

    de Waal, Pamela J; Gous, Annemarie; Clift, Sarah J; Greeff, Jaco M

    2012-06-08

    The nematode worm Spirocerca lupi has a cosmopolitan distribution and can cause the death of its final canid host, typically dogs. While its life cycle, which involves a coprophagous beetle intermediate host, a number of non-obligatory vertebrate paratenic hosts and a canid final host, is well understood, surprisingly little is known about its transmission dynamics and population genetic structure. Here we sequenced cox1 to quantify genetic variation and the factors that limit gene flow in a 300 km(2) area in South Africa. Three quarters of the genetic variation, was explained by differences between worms from the same host, whereas a quarter of the variation was explained by differences between worms from different hosts. With the help of a newly derived model we conclude that while the offspring from different infrapopulations mixes fairly frequently in new hosts, the level of admixture is not enough to homogenize the parasite populations among dogs. Small infrapopulation sizes along with clumped transmission may also result in members of infrapopulations being closely related. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Vertebral fracture after aircraft ejection during Operation Desert Storm.

    PubMed

    Osborne, R G; Cook, A A

    1997-04-01

    During Operation Desert Storm, 21 United States and 2 Italian military personnel were held in Iraq as prisoners of war. Of these, 18 had ejected from fixed-wing, ejection seat-equipped, combat aircraft prior to their capture. Of the 18, 6 (33%) had sustained vertebral fractures; 4 of these were compression fractures. This fracture rate is comparable to that of previously studied groups. Fractures were noted to be at several different vertebral sites and after ejecting from a variety of aircraft. Apart from contusions and abrasions, vertebral fractures were the most common injuries discovered in this repatriated population. None of the vertebral fractures produced recognizable neurological disability. The development of vertebral fractures was neither associated with the use of any particular ejection system or aircraft nor did the development of vertebral fractures appear dependent on the age, height or length of service of the affected personnel. Ejected aircrew with low altitude mission profiles seemed more predisposed to vertebral fracture than those at high altitudes, but with a small sample population, this relationship was not statistically significant (p > 0.25). Reliable data were unavailable on aircrew positioning and preparation time for ejection.

  12. Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens

    PubMed Central

    Hall, Roy A.; Bielefeldt-Ohmann, Helle; McLean, Breeanna J.; O’Brien, Caitlin A.; Colmant, Agathe M.G.; Piyasena, Thisun B.H.; Harrison, Jessica J.; Newton, Natalee D.; Barnard, Ross T.; Prow, Natalie A.; Deerain, Joshua M.; Mah, Marcus G.K.Y.; Hobson-Peters, Jody

    2016-01-01

    Recent advances in virus detection strategies and deep sequencing technologies have enabled the identification of a multitude of new viruses that persistently infect mosquitoes but do not infect vertebrates. These are usually referred to as insect-specific viruses (ISVs). These novel viruses have generated considerable interest in their modes of transmission, persistence in mosquito populations, the mechanisms that restrict their host range to mosquitoes, and their interactions with pathogens transmissible by the same mosquito. In this article, we discuss studies in our laboratory and others that demonstrate that many ISVs are efficiently transmitted directly from the female mosquito to their progeny via infected eggs, and, moreover, that persistent infection of mosquito cell cultures or whole mosquitoes with ISVs can restrict subsequent infection, replication, and transmission of some mosquito-borne viral pathogens. This suggests that some ISVs may act as natural regulators of arboviral transmission. We also discuss viral and host factors that may be responsible for their host restriction. PMID:28096646

  13. The CW domain, a structural module shared amongst vertebrates, vertebrate-infecting parasites and higher plants.

    PubMed

    Perry, Jason; Zhao, Yunde

    2003-11-01

    A previously undetected domain, named CW for its conserved cysteine and tryptophan residues, appears to be a four-cysteine zinc-finger motif found exclusively in vertebrates, vertebrate-infecting parasites and higher plants. Of the twelve distinct nuclear protein families that comprise the CW domain-containing superfamily, only the microrchida (MORC) family has begun to be characterized. However, several families contain other domains suggesting a relationship between the CW domain and either chromatin methylation status or early embryonic development.

  14. Risk of Vertebral Fracture in Patients Diagnosed with a Depressive Disorder: A Nationwide Population-Based Cohort Study

    PubMed Central

    Lee, Shyh-Chyang; Hu, Li-Yu; Huang, Min-Wei; Shen, Cheng-Che; Huang, Wei-Lun; Lu, Ti; Hsu, Chiao-Lin; Pan, Chih-Chuan

    2017-01-01

    OBJECTIVE: Previous studies have reported that depression may play a crucial role in the occurrence of vertebral fractures. However, a clear correlation between depressive disorders and osteoporotic fractures has not been established. We explored the association between depressive disorders and subsequent new-onset vertebral fractures. Additionally, we aimed to identify the potential risk factors for vertebral fracture in patients with a depressive disorder. METHODS: We studied patients listed in the Taiwan National Health Insurance Research Database who were diagnosed with a depressive disorder by a psychiatrist. The comparison cohort consisted of age- and sex-matched patients without a depressive disorder. The incidence rate and hazard ratios of subsequent vertebral fracture were evaluated. We used Cox regression analysis to evaluate the risk of vertebral fracture among patients with a depressive disorder. RESULTS: The total number of patients with and without a depressive disorder was 44,812. The incidence risk ratio (IRR) between these 2 cohorts indicated that depressive disorder patients had a higher risk of developing a subsequent vertebral fracture (IRR=1.41, 95% confidence interval [CI]=1.26–1.57, p<0.001). In the multivariate analysis, the depressive disorder cohort showed a higher risk of vertebral fracture than the comparison cohort (adjusted hazard ratio=1.24, 95% CI=1.11–1.38, p<0.001). Being older than 50 years, having a lower monthly income, and having hypertension, diabetes mellitus, cerebrovascular disease, chronic obstructive pulmonary disease, autoimmune disease, or osteoporosis were considered predictive factors for vertebral fracture in patients with depressive disorders. CONCLUSIONS: Depressive disorders may increase the risk of a subsequent new-onset vertebral fracture. PMID:28226032

  15. Odontonema cuspidatum and Psychotria punctata, two new cucumber mosaic virus hosts identified in Florida

    USDA-ARS?s Scientific Manuscript database

    The wide host range of Cucumber mosaic virus (CMV) has been expanded by the identification of Odontonema cuspidatum (firespike) and Psychotria punctata (dotted wild coffee) as CMV hosts in Florida....

  16. A proposed radiographic classification scheme for congenital thoracic vertebral malformations in brachycephalic "screw-tailed" dog breeds.

    PubMed

    Gutierrez-Quintana, Rodrigo; Guevar, Julien; Stalin, Catherine; Faller, Kiterie; Yeamans, Carmen; Penderis, Jacques

    2014-01-01

    Congenital vertebral malformations are common in brachycephalic "screw-tailed" dog breeds such as French bulldogs, English bulldogs, Boston terriers, and pugs. The aim of this retrospective study was to determine whether a radiographic classification scheme developed for use in humans would be feasible for use in these dog breeds. Inclusion criteria were hospital admission between September 2009 and April 2013, neurologic examination findings available, diagnostic quality lateral and ventro-dorsal digital radiographs of the thoracic vertebral column, and at least one congenital vertebral malformation. Radiographs were retrieved and interpreted by two observers who were unaware of neurologic status. Vertebral malformations were classified based on a classification scheme modified from a previous human study and a consensus of both observers. Twenty-eight dogs met inclusion criteria (12 with neurologic deficits, 16 with no neurologic deficits). Congenital vertebral malformations affected 85/362 (23.5%) of thoracic vertebrae. Vertebral body formation defects were the most common (butterfly vertebrae 6.6%, ventral wedge-shaped vertebrae 5.5%, dorsal hemivertebrae 0.8%, and dorso-lateral hemivertebrae 0.5%). No lateral hemivertebrae or lateral wedge-shaped vertebrae were identified. The T7 vertebra was the most commonly affected (11/28 dogs), followed by T8 (8/28 dogs) and T12 (8/28 dogs). The number and type of vertebral malformations differed between groups (P = 0.01). Based on MRI, dorsal, and dorso-lateral hemivertebrae were the cause of spinal cord compression in 5/12 (41.6%) of dogs with neurologic deficits. Findings indicated that a modified human radiographic classification system of vertebral malformations is feasible for use in future studies of brachycephalic "screw-tailed" dogs. © 2014 American College of Veterinary Radiology.

  17. Mast cells are present in the choroid of the normal eye in most vertebrate classes.

    PubMed

    McMenamin, Paul Gerard; Polla, Emily

    2013-07-01

    Mast cells are bone marrow-derived tissue-homing leukocytes, which have traditionally been regarded as effector cells in allergic disorders, responses against parasites, and regulation of blood flow, but a broader perspective of their functional heterogeneity, such as immunomodulation, angiogenesis, tissue repair, and remodeling after injury, is now emerging. The persistence of mast cells in connective tissues throughout the evolution of vertebrates is evidence of strong selective pressure suggesting that these cells must have multiple beneficial and important roles in normal homeostasis. While mast cells are present within the uveal tract of eutherian mammals, there is little known about their presence in the choroid of other vertebrate classes. Eye tissues from a range of vertebrate species (fish, amphibian, reptiles, birds, marsupials, monotreme, and eutherian mammals) were investigated. Tissues were fixed in either 2% glutaraldehyde, 2% paraformaldehyde or a mixture of both and processed for resin embedding. Semi-thin sections of the retina and choroid were cut and stained with toluidine blue. Mast cells were identified in the choroid of all classes of vertebrates investigated except sharks. Their morphology, location, and staining characteristics were remarkably similar from teleost fish through to eutherian mammals and bore close morphological resemblance to mammalian connective tissue mast cells. The similar morphology and distribution of mast cells in the choroid of all vertebrate classes studied suggest a basic physiological function that has been retained since the evolution of the vertebrate eye. © 2013 American College of Veterinary Ophthalmologists.

  18. Kyphoplasty for vertebral augmentation in the elderly with osteoporotic vertebral compression fractures: scenarios and review of recent studies.

    PubMed

    Bednar, Timothy; Heyde, Christoph E; Bednar, Grace; Nguyen, David; Volpi, Elena; Przkora, Rene

    2013-11-01

    Vertebral compression fractures caused by osteoporosis are among the most common fractures in the elderly. The treatment focuses on pain control, maintenance of independence, and management of the osteoporosis. Elderly patients often encounter adverse effects to pain medications, do not tolerate bed rest, and are not ideal candidates for invasive spinal reconstructive surgery. Percutaneous vertebral augmentation (vertebroplasty or kyphoplasty) has become popular as a less-invasive alternative. However, studies have questioned the effectiveness of these procedures. The authors conducted a MEDLINE search using relevant search terms including osteoporosis, osteoporotic vertebral compression fracture, elderly, kyphoplasty and vertebroplasty. Two elderly patients presented with a fracture of their third and first lumbar vertebral body, respectively. One patient progressed well with conservative treatment, whereas the other patient was hospitalized secondary to pain after conservative measures failed to offer improvement. The hospitalized patient subsequently opted for a kyphoplasty and was able to resume his normal daily activities after the procedure. Selecting patients on an individual case-by-case basis can optimize the effectiveness and outcomes of a vertebral augmentation. This process includes the documentation of an osteoporotic vertebral compression fracture with the aide of imaging studies, including the acuity of the fracture as well as the correlation with the physical examination findings. Patients who are functional and improving under a conservative regimen are not candidates for kyphoplasty. However, if the conservative management is not successful after 4 to 6 weeks and the patient is at risk to become bedridden, an augmentation should be considered. A kyphoplasty procedure may be preferred over vertebroplasty, given the lower risk profile and better outcomes regarding spinal alignment. Published by Elsevier HS Journals, Inc.

  19. Non-contiguous multifocal vertebral osteomyelitis caused by Serratia marcescens.

    PubMed

    Lau, Jen Xin; Li, Jordan Yuanzhi; Yong, Tuck Yean

    2015-03-01

    Serratia marcescens is a common nosocomial infection but a rare cause of osteomyelitis and more so of vertebral osteomyelitis. Vertebral osteomyelitis caused by this organism has been reported in few studies. We report a case of S. marcescens vertebral discitis and osteomyelitis affecting multiple non-contiguous vertebras. Although Staphylococcus aureus is the most common cause of vertebral osteomyelitis, rare causes, such as S. marcescens, need to be considered, especially when risk factors such as intravenous heroin use, post-spinal surgery and immunosuppression are present. Therefore, blood culture and where necessary biopsy of the infected region should be undertaken to establish the causative organism and determine appropriate antibiotic susceptibility. Prompt diagnosis of S. marcescens vertebral osteomyelitis followed by the appropriate treatment can achieve successful outcomes.

  20. Handed behavior in hagfish--an ancient vertebrate lineage--and a survey of lateralized behaviors in other invertebrate chordates and elongate vertebrates.

    PubMed

    Miyashita, Tetsuto; Palmer, A Richard

    2014-04-01

    Hagfish represent an ancient lineage of boneless and jawless vertebrates. Among several curious behaviors they exhibit, solitary individuals in one dominant genus of hagfish (Eptatretus spp.) regularly rest in a tightly coiled posture. We present the first systematic treatment of this distinctive behavior. Individual northeastern Pacific hagfish (E. stoutii) exhibited significant handedness (preferred orientation of coiling). However, right-coiling and left-coiling individuals were equally common in the population. Individual hagfish likely develop a preference for one direction by repeating the preceding coiling direction. We also revisit classical accounts of chordate natural history and compare the coiling behavior of Eptatretus with other handed or lateralized behaviors in non-vertebrate chordates, lampreys, and derived vertebrates with elongate bodies. Handed behaviors occur in many of these groups, but they likely evolved independently. In contrast to vertebrates, morphological asymmetries may bias lateralized larval behaviors toward one side in cephalochordates and tunicates. As a consequence, no known handed behavior can be inferred to have existed in the common ancestor of vertebrates.

  1. Health state utility values and patient-reported outcomes before and after vertebral and non-vertebral fractures in an osteoporosis clinical trial.

    PubMed

    Imai, T; Tanaka, S; Kawakami, K; Miyazaki, T; Hagino, H; Shiraki, M

    2017-06-01

    We assessed the health state utility value (HSUV) reductions associated with vertebral fractures using data collected in the Japanese Osteoporosis Intervention Trial-03 (JOINT-03). Our analysis revealed that assessment of HSUVs after morphometric vertebral fracture is important to capture the burden of vertebral fractures. Evaluation of the HSUV after fracture is important to calculate the quality-adjusted life years (QALYs) of osteoporosis patients, which is essential information in the context of health economic evaluation. JOINT-03 study patients were aged ≥65 years and treated with risedronate and vitamin K 2 or risedronate alone. Radiographic information and patient-reported outcomes measured by EQ-5D and a visual analogue scale (VAS) were assessed at registration and followed up after 6, 12, and 24 months. According to differences among the dates of these assessments and the radiographic information, we classified the follow-up HSUVs calculated based on EQ-5D results into before or after fracture categories regardless of clinical symptoms. Among 2922 follow-up HSUVs, 201 HSUVs were categorized as HSUVs that were observed after incident vertebral fractures on X-ray films. The median time from the detection of an incident vertebral fracture until the EQ-5D assessment was 53 days (25th percentile, 0 day; 75th percentile, 357 days). The impact of incident vertebral fractures on HSUVs was quantified as -0.03. Among the five health profile domains on the EQ-5D, an incident vertebral fracture had significant effects on anxiety/depression, self-care, and usual activities. The results suggest that incident morphometric vertebral fracture was associated with impairment of the HSUV for patients with osteoporosis not only immediately but also several months after the fracture.

  2. TALE transcription factors during early development of the vertebrate brain and eye.

    PubMed

    Schulte, Dorothea; Frank, Dale

    2014-01-01

    Our brain's cognitive performance arises from the coordinated activities of billions of nerve cells. Despite a high degree of morphological and functional differences, all neurons of the vertebrate central nervous system (CNS) arise from a common field of multipotent progenitors. Cell fate specification and differentiation are directed by multistep processes that include inductive/external cues, such as the extracellular matrix or growth factors, and cell-intrinsic determinants, such as transcription factors and epigenetic modulators of proteins and DNA. Here we review recent findings implicating TALE-homeodomain proteins in these processes. Although originally identified as HOX-cofactors, TALE proteins also contribute to many physiological processes that do not require HOX-activity. Particular focus is, therefore, given to HOX-dependent and -independent functions of TALE proteins during early vertebrate brain development. Additionally, we provide an overview about known upstream and downstream factors of TALE proteins in the developing vertebrate brain and discuss general concepts of how TALE proteins function to modulate neuronal cell fate specification. Copyright © 2013 Wiley Periodicals, Inc.

  3. Caudal lumbar vertebral fractures in California Quarter Horse and Thoroughbred racehorses.

    PubMed

    Collar, E M; Zavodovskaya, R; Spriet, M; Hitchens, P L; Wisner, T; Uzal, F A; Stover, S M

    2015-09-01

    To gain insight into the pathophysiology of equine lumbar vertebral fractures in racehorses. To characterise equine lumbar vertebral fractures in California racehorses. Retrospective case series and prospective case-control study. Racehorse post mortem reports and jockey injury reports were retrospectively reviewed. Vertebral specimens from 6 racehorses affected with lumbar vertebral fractures and 4 control racehorses subjected to euthanasia for nonspinal fracture were assessed using visual, radiographic, computed tomography and histological examinations. Lumbar vertebral fractures occurred in 38 Quarter Horse and 29 Thoroughbred racehorses over a 22 year period, primarily involving the 5th and/or 6th lumbar vertebrae (L5-L6; 87% of Quarter Horses and 48% of Thoroughbreds). Lumbar vertebral fractures were the third most common musculoskeletal cause of death in Quarter Horses and frequently involved a jockey injury. Lumbar vertebral specimens contained anatomical variations in the number of vertebrae, dorsal spinous processes and intertransverse articulations. Lumbar vertebral fractures examined in 6 racehorse specimens (5 Quarter Horses and one Thoroughbred) coursed obliquely in a cranioventral to caudodorsal direction across the adjacent L5-L6 vertebral endplates and intervertebral disc, although one case involved only one endplate. All cases had evidence of abnormalities on the ventral aspect of the vertebral bodies consistent with pre-existing, maladaptive pathology. Lumbar vertebral fractures occur in racehorses with pre-existing pathology at the L5-L6 vertebral junction that is likely predisposes horses to catastrophic fracture. Knowledge of these findings should encourage assessment of the lumbar vertebrae, therefore increasing detection of mild vertebral injuries and preventing catastrophic racehorse and associated jockey injuries. © 2014 EVJ Ltd.

  4. Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    NASA Technical Reports Server (NTRS)

    Sakamoto, Takanori; Troja, E.; Aoki, K.; Guiriec, S.; Im, M.; Leloudas, G.; Malesani, D.; Melandri, A.; deUgartePostigo, A.; Urata, Y.; hide

    2012-01-01

    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail.

  5. Reduced Bone Density and Vertebral Fractures in Smokers. Men and COPD Patients at Increased Risk

    PubMed Central

    Jaramillo, Joshua D.; Wilson, Carla; Stinson, Douglas J.; Lynch, David A.; Bowler, Russell P.; Lutz, Sharon; Bon, Jessica M.; Arnold, Ben; McDonald, Merry-Lynn N.; Washko, George R.; Wan, Emily S.; DeMeo, Dawn L.; Foreman, Marilyn G.; Soler, Xavier; Lindsay, Sarah E.; Lane, Nancy E.; Genant, Harry K.; Silverman, Edwin K.; Hokanson, John E.; Make, Barry J.; Crapo, James D.

    2015-01-01

    Rationale: Former smoking history and chronic obstructive pulmonary disease (COPD) are potential risk factors for osteoporosis and fractures. Under existing guidelines for osteoporosis screening, women are included but men are not, and only current smoking is considered. Objectives: To demonstrate the impact of COPD and smoking history on the risk of osteoporosis and vertebral fracture in men and women. Methods: Characteristics of participants with low volumetric bone mineral density (vBMD) were identified and related to COPD and other risk factors. We tested associations of sex and COPD with both vBMD and fractures adjusting for age, race, body mass index (BMI), smoking, and glucocorticoid use. Measurements and Main Results: vBMD by calibrated quantitative computed tomography (QCT), visually scored vertebral fractures, and severity of lung disease were determined from chest CT scans of 3,321 current and ex-smokers in the COPDGene study. Low vBMD as a surrogate for osteoporosis was calculated from young adult normal values. Male smokers had a small but significantly greater risk of low vBMD (2.5 SD below young adult mean by calibrated QCT) and more fractures than female smokers. Low vBMD was present in 58% of all subjects, was more frequent in those with worse COPD, and rose to 84% among subjects with very severe COPD. Vertebral fractures were present in 37% of all subjects and were associated with lower vBMD at each Global Initiative for Chronic Obstructive Lung Disease stage of severity. Vertebral fractures were most common in the midthoracic region. COPD and especially emphysema were associated with both low vBMD and vertebral fractures after adjustment for steroid use, age, pack-years of smoking, current smoking, and exacerbations. Airway disease was associated with higher bone density after adjustment for other variables. Calibrated QCT identified more subjects with abnormal values than the standard dual-energy X-ray absorptiometry in a subset of subjects and

  6. Reduced Bone Density and Vertebral Fractures in Smokers. Men and COPD Patients at Increased Risk.

    PubMed

    Jaramillo, Joshua D; Wilson, Carla; Stinson, Douglas S; Stinson, Douglas J; Lynch, David A; Bowler, Russell P; Lutz, Sharon; Bon, Jessica M; Arnold, Ben; McDonald, Merry-Lynn N; Washko, George R; Wan, Emily S; DeMeo, Dawn L; Foreman, Marilyn G; Soler, Xavier; Lindsay, Sarah E; Lane, Nancy E; Genant, Harry K; Silverman, Edwin K; Hokanson, John E; Make, Barry J; Crapo, James D; Regan, Elizabeth A

    2015-05-01

    Former smoking history and chronic obstructive pulmonary disease (COPD) are potential risk factors for osteoporosis and fractures. Under existing guidelines for osteoporosis screening, women are included but men are not, and only current smoking is considered. To demonstrate the impact of COPD and smoking history on the risk of osteoporosis and vertebral fracture in men and women. Characteristics of participants with low volumetric bone mineral density (vBMD) were identified and related to COPD and other risk factors. We tested associations of sex and COPD with both vBMD and fractures adjusting for age, race, body mass index (BMI), smoking, and glucocorticoid use. vBMD by calibrated quantitative computed tomography (QCT), visually scored vertebral fractures, and severity of lung disease were determined from chest CT scans of 3,321 current and ex-smokers in the COPDGene study. Low vBMD as a surrogate for osteoporosis was calculated from young adult normal values. Male smokers had a small but significantly greater risk of low vBMD (2.5 SD below young adult mean by calibrated QCT) and more fractures than female smokers. Low vBMD was present in 58% of all subjects, was more frequent in those with worse COPD, and rose to 84% among subjects with very severe COPD. Vertebral fractures were present in 37% of all subjects and were associated with lower vBMD at each Global Initiative for Chronic Obstructive Lung Disease stage of severity. Vertebral fractures were most common in the midthoracic region. COPD and especially emphysema were associated with both low vBMD and vertebral fractures after adjustment for steroid use, age, pack-years of smoking, current smoking, and exacerbations. Airway disease was associated with higher bone density after adjustment for other variables. Calibrated QCT identified more subjects with abnormal values than the standard dual-energy X-ray absorptiometry in a subset of subjects and correlated well with prevalent fractures. Male smokers, with or

  7. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection

    PubMed Central

    Ko, Ya-Ping; Flick, Matthew J.

    2017-01-01

    Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment. PMID:27056151

  8. Why do chimpanzees hunt? Considering the benefits and costs of acquiring and consuming vertebrate versus invertebrate prey.

    PubMed

    Tennie, Claudio; O'Malley, Robert C; Gilby, Ian C

    2014-06-01

    Understanding the benefits and costs of acquiring and consuming different forms of animal matter by primates is critical for identifying the selective pressures responsible for increased meat consumption in the hominin lineage. Chimpanzees (Pan troglodytes) are unusual among primates in the amount of vertebrate prey they consume. Still, surprisingly little is known about the nutritional benefits of eating meat for this species. In order to understand why chimpanzees eat vertebrates, it is critical to consider the relative benefits and costs of other types of faunivory - including invertebrates. Although we lack specific nutritional data on the flesh and organs of chimpanzee prey, the macronutrient profiles of insects and wild vertebrate meat are generally comparable on a gram-to-gram basis. There are currently very few data on the micronutrient (vitamin and mineral) content of meat consumed by chimpanzees. With few exceptions, the advantages of hunting vertebrate prey include year-round availability, rapid acquisition of larger packages and reduced handling/processing time (once prey are encountered or detected). The disadvantages of hunting vertebrate prey include high potential acquisition costs per unit time (energy expenditure and risk of injury) and greater contest competition with conspecifics. Acquiring an equivalent mass of invertebrates (to match even a small scrap of meat) is possible, but typically takes more time. Furthermore, in contrast to vertebrate prey, some insect resources are effectively available only at certain times of the year. Here we identify the critical data needed to test our hypothesis that meat scraps may have a higher (or at least comparable) net benefit:cost ratio than insect prey. This would support the 'meat scrap' hypothesis as an explanation for why chimpanzees hunt in groups even when doing so does not maximize an individual's energetic gain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A Standard System to Study Vertebrate Embryos

    PubMed Central

    Werneburg, Ingmar

    2009-01-01

    Staged embryonic series are important as reference for different kinds of biological studies. I summarise problems that occur when using ‘staging tables’ of ‘model organisms’. Investigations of developmental processes in a broad scope of taxa are becoming commonplace. Beginning in the 1990s, methods were developed to quantify and analyse developmental events in a phylogenetic framework. The algorithms associated with these methods are still under development, mainly due to difficulties of using non-independent characters. Nevertheless, the principle of comparing clearly defined newly occurring morphological features in development (events) in quantifying analyses was a key innovation for comparative embryonic research. Up to date no standard was set for how to define such events in a comparative approach. As a case study I compared the external development of 23 land vertebrate species with a focus on turtles, mainly based on reference staging tables. I excluded all the characters that are only identical for a particular species or general features that were only analysed in a few species. Based on these comparisons I defined 104 developmental characters that are common either for all vertebrates (61 characters), gnathostomes (26), tetrapods (3), amniotes (7), or only for sauropsids (7). Characters concern the neural tube, somite, ear, eye, limb, maxillary and mandibular process, pharyngeal arch, eyelid or carapace development. I present an illustrated guide listing all the defined events. This guide can be used for describing developmental series of any vertebrate species or for documenting specimen variability of a particular species. The guide incorporates drawings and photographs as well as consideration of species identifying developmental features such as colouration. The simple character-code of the guide is extendable to further characters pertaining to external and internal morphological, physiological, genetic or molecular development, and also

  10. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species

  11. Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.

    PubMed

    Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan

    2015-06-01

    Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. © 2015 John Wiley & Sons Ltd.

  12. Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania

    PubMed Central

    Auty, Harriet; Cleaveland, Sarah; Malele, Imna; Masoy, Joseph; Lembo, Tiziana; Bessell, Paul; Torr, Stephen; Picozzi, Kim; Welburn, Susan C.

    2016-01-01

    Background Identifying hosts of blood-feeding insect vectors is crucial in understanding their role in disease transmission. Rhodesian human African trypanosomiasis (rHAT), also known as acute sleeping sickness is caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies. The disease is commonly associated with wilderness areas of east and southern Africa. Such areas hold a diverse range of species which form communities of hosts for disease maintenance. The relative importance of different wildlife hosts remains unclear. This study quantified tsetse feeding preferences in a wilderness area of great host species richness, Serengeti National Park, Tanzania, assessing tsetse feeding and host density contemporaneously. Methods Glossina swynnertoni and G. pallidipes were collected from six study sites. Bloodmeal sources were identified through matching Cytochrome B sequences amplified from bloodmeals from recently fed flies to published sequences. Densities of large mammal species in each site were quantified, and feeding indices calculated to assess the relative selection or avoidance of each host species by tsetse. Results The host species most commonly identified in G. swynnertoni bloodmeals, warthog (94/220), buffalo (48/220) and giraffe (46/220), were found at relatively low densities (3-11/km2) and fed on up to 15 times more frequently than expected by their relative density. Wildebeest, zebra, impala and Thomson’s gazelle, found at the highest densities, were never identified in bloodmeals. Commonly identified hosts for G. pallidipes were buffalo (26/46), giraffe (9/46) and elephant (5/46). Conclusions This study is the first to quantify tsetse host range by molecular analysis of tsetse diet with simultaneous assessment of host density in a wilderness area. Although G. swynnertoni and G. pallidipes can feed on a range of species, they are highly selective. Many host species are rarely fed on, despite being present in areas where tsetse are

  13. Thyroglobulin Represents a Novel Molecular Architecture of Vertebrates.

    PubMed

    Holzer, Guillaume; Morishita, Yoshiaki; Fini, Jean-Baptiste; Lorin, Thibault; Gillet, Benjamin; Hughes, Sandrine; Tohmé, Marie; Deléage, Gilbert; Demeneix, Barbara; Arvan, Peter; Laudet, Vincent

    2016-08-05

    Thyroid hormones modulate not only multiple functions in vertebrates (energy metabolism, central nervous system function, seasonal changes in physiology, and behavior) but also in some non-vertebrates where they control critical post-embryonic developmental transitions such as metamorphosis. Despite their obvious biological importance, the thyroid hormone precursor protein, thyroglobulin (Tg), has been experimentally investigated only in mammals. This may bias our view of how thyroid hormones are produced in other organisms. In this study we searched genomic databases and found Tg orthologs in all vertebrates including the sea lamprey (Petromyzon marinus). We cloned a full-size Tg coding sequence from western clawed frog (Xenopus tropicalis) and zebrafish (Danio rerio). Comparisons between the representative mammal, amphibian, teleost fish, and basal vertebrate indicate that all of the different domains of Tg, as well as Tg regional structure, are conserved throughout the vertebrates. Indeed, in Xenopus, zebrafish, and lamprey Tgs, key residues, including the hormonogenic tyrosines and the disulfide bond-forming cysteines critical for Tg function, are well conserved despite overall divergence of amino acid sequences. We uncovered upstream sequences that include start codons of zebrafish and Xenopus Tgs and experimentally proved that these are full-length secreted proteins, which are specifically recognized by antibodies against rat Tg. By contrast, we have not been able to find any orthologs of Tg among non-vertebrate species. Thus, Tg appears to be a novel protein elaborated as a single event at the base of vertebrates and virtually unchanged thereafter. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Vectors as Epidemiological Sentinels: Patterns of Within-Tick Borrelia burgdorferi Diversity

    PubMed Central

    Walter, Katharine S.; Carpi, Giovanna; Evans, Benjamin R.; Caccone, Adalgisa; Diuk-Wasser, Maria A.

    2016-01-01

    Hosts including humans, other vertebrates, and arthropods, are frequently infected with heterogeneous populations of pathogens. Within-host pathogen diversity has major implications for human health, epidemiology, and pathogen evolution. However, pathogen diversity within-hosts is difficult to characterize and little is known about the levels and sources of within-host diversity maintained in natural populations of disease vectors. Here, we examine genomic variation of the Lyme disease bacteria, Borrelia burgdorferi (Bb), in 98 individual field-collected tick vectors as a model for study of within-host processes. Deep population sequencing reveals extensive and previously undocumented levels of Bb variation: the majority (~70%) of ticks harbor mixed strain infections, which we define as levels Bb diversity pre-existing in a diverse inoculum. Within-tick diversity is thus a sample of the variation present within vertebrate hosts. Within individual ticks, we detect signatures of positive selection. Genes most commonly under positive selection across ticks include those involved in dissemination in vertebrate hosts and evasion of the vertebrate immune complement. By focusing on tick-borne Bb, we show that vectors can serve as epidemiological and evolutionary sentinels: within-vector pathogen diversity can be a useful and unbiased way to survey circulating pathogen diversity and identify evolutionary processes occurring in natural transmission cycles. PMID:27414806

  15. Vertebrate richness and biogeography in the Big Thicket of Texas

    Treesearch

    Michael H MacRoberts; Barbara R. MacRoberts; D. Craig Rudolph

    2010-01-01

    The Big Thicket of Texas has been described as rich in species and a “crossroads:” a place where organisms from many different regions meet. We examine the species richness and regional affiliations of Big Thicket vertebrates. We found that the Big Thicket is neither exceptionally rich in vertebrates nor is it a crossroads for vertebrates. Its vertebrate fauna is...

  16. Imperfect isolation: factors and filters shaping Madagascar's extant vertebrate fauna.

    PubMed

    Samonds, Karen E; Godfrey, Laurie R; Ali, Jason R; Goodman, Steven M; Vences, Miguel; Sutherland, Michael R; Irwin, Mitchell T; Krause, David W

    2013-01-01

    Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar's colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island's biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island's paleogeographical evolution to determine how particular events influenced the arrival of the island's extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar's tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island's isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar's extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar's unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of other, more

  17. A unified anatomy ontology of the vertebrate skeletal system.

    PubMed

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  18. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    PubMed Central

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  19. Why do larval helminths avoid the gut of intermediate hosts?

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2009-10-07

    In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be

  20. Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes.

    PubMed

    Nowroozi, Bryan N; Brainerd, Elizabeth L

    2014-02-01

    Whole-body stiffness in fishes has important consequences for swimming mode, speed and efficiency, but the contribution of vertebral column stiffness to whole-body stiffness is unclear. In our opinion, this lack of clarity is due in part to the lack of studies that have measured both in vitro mechanical properties of the vertebral column as well as in vivo vertebral kinematics in the same species. Some lack of clarity may also come from real variation in the mechanical role of the vertebral column across species. Previous studies, based on either mechanics or kinematics alone, suggest species-specific variation in vertebral column locomotor function that ranges from highly stiff regimes that contribute greatly to whole-body stiffness, and potentially act as a spring, to highly compliant regimes that only prohibit excessive flexion of the intervertebral joints. We review data collected in combined investigations of both mechanics and kinematics of three species, Myxine glutinosa, Acipenser transmontanus, and Morone saxatilis, to illustrate how mechanical testing within the context of the in vivo kinematics more clearly distinguishes the role of the vertebral column in each species. In addition, we identify species for which kinematic data are available, but mechanical data are lacking. We encourage further investigation of these species to fill these mechanical data gaps. Finally, we hope these future combined analyses will identify certain morphological, mechanical, or kinematic parameters that might be associated with certain vertebral column functional regimes with respect to body stiffness. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Computer Based Assessment of Cervical Vertebral Maturation Stages Using Digital Lateral Cephalograms.

    PubMed

    Dzemidzic, Vildana; Sokic, Emir; Tiro, Alisa; Nakas, Enita

    2015-12-01

    This study was aimed to investigate the reliability of a computer application for assessment of the stages of cervical vertebra maturation in order to determine the stage of skeletal maturity. For this study, digital lateral cephalograms of 99 subjects (52 females and 47 males) were examined. The following selection criteria were used during the sample composition: age between 9 and 16 years, absence of anomalies of the vertebrae, good general health, no history of trauma at the cervical region. Subjects with lateral cephalograms of low quality were excluded from the study. For the purpose of this study a computer application Cephalometar HF V1 was developed. This application was used to mark the contours of the second, third and fourth cervical vertebrae on the digital lateral cephalograms, which enabled a computer to determine the stage of cervical vertebral maturation. The assessment of the stages of cervical vertebral maturation was carried out by an experienced orthodontist. The assessment was conducted according to the principles of the method proposed by authors Hassel and Farman. The degree of the agreement between the computer application and the researcher was analyzed using by statistical Cohen Kappa test. The results of this study showed the agreement between the computer assessment and the researcher assessment of the cervical vertebral maturation stages, where the value of the Cohen Kappa coefficient was 0.985. The computer application Cephalometar HF V1 proved to be a reliable method for assessing the stages of cervical vertebral maturation. This program could help the orthodontists to identify the stage of cervical vertebral maturation when planning the orthodontic treatment for the patients with skeletal disharmonies.

  2. Cervical vertebral erosion caused by bilateral vertebral artery tortuosity, predisposing to spinal, sprain: A medieval case study.

    PubMed

    Darton, Yves

    2014-03-01

    Bone resorption within the cervical spine due to vertebral arterial tortuosities is rarely observed in medical practice because the condition often lacks clinical symptoms. Traumatic complications involving the vertebral arteries are relatively common and occasionally very serious, but very few affect bone, appearing only when survival has been sufficiently long for a pseudoaneurysm to form. CT scans and MRI screening, practised increasingly today following traffic and sports accidents, incidentally show that arterial tortuosities that had stimulated bone resorption are relatively frequent. Only rarely do such tortuosities cause nerve compression or trigger orthopaedic problems, while large pseudoaneurysms and congenital absence of a vertebral pedicle may require surgery to stabilize the spine. There are few publications by palaeopathologists reporting such conditions of the cervical vertebrae. This contribution reports a case of a tiered bilateral tortuosity of the vertebral artery dating from the Early Middle Ages; it provides a basis by which to recognize this type of lesion in osteoarchaeology, and it attests to the fact that multiple tortuosities may lead to spinal instability in the form of spine sprain. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Validity of height loss as a predictor for prevalent vertebral fractures, low bone mineral density, and vitamin D deficiency.

    PubMed

    Mikula, A L; Hetzel, S J; Binkley, N; Anderson, P A

    2017-05-01

    Many osteoporosis-related vertebral fractures are unappreciated but their detection is important as their presence increases future fracture risk. We found height loss is a useful tool in detecting patients with vertebral fractures, low bone mineral density, and vitamin D deficiency which may lead to improvements in patient care. This study aimed to determine if/how height loss can be used to identify patients with vertebral fractures, low bone mineral density, and vitamin D deficiency. A hospital database search in which four patient groups including those with a diagnosis of osteoporosis-related vertebral fracture, osteoporosis, osteopenia, or vitamin D deficiency and a control group were evaluated for chart-documented height loss over an average 3 1/2 to 4-year time period. Data was retrieved from 66,021 patients (25,792 men and 40,229 women). A height loss of 1, 2, 3, and 4 cm had a sensitivity of 42, 32, 19, and 14% in detecting vertebral fractures, respectively. Positive likelihood ratios for detecting vertebral fractures were 1.73, 2.35, and 2.89 at 2, 3, and 4 cm of height loss, respectively. Height loss had lower sensitivities and positive likelihood ratios for detecting low bone mineral density and vitamin D deficiency compared to vertebral fractures. Specificity of 1, 2, 3, and 4 cm of height loss was 70, 82, 92, and 95%, respectively. The odds ratios for a patient who loses 1 cm of height being in one of the four diagnostic groups compared to a patient who loses no height was higher for younger and male patients. This study demonstrated that prospective height loss is an effective tool to identify patients with vertebral fractures, low bone mineral density, and vitamin D deficiency although a lack of height loss does not rule out these diagnoses. If significant height loss is present, the high positive likelihood ratios support a further workup.

  4. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    PubMed Central

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  5. The vertebral column of Australopithecus sediba.

    PubMed

    Williams, Scott A; Ostrofsky, Kelly R; Frater, Nakita; Churchill, Steven E; Schmid, Peter; Berger, Lee R

    2013-04-12

    Two partial vertebral columns of Australopithecus sediba grant insight into aspects of early hominin spinal mobility, lumbar curvature, vertebral formula, and transitional vertebra position. Au. sediba likely possessed five non-rib-bearing lumbar vertebrae and five sacral elements, the same configuration that occurs modally in modern humans. This finding contrasts with other interpretations of early hominin regional vertebral numbers. Importantly, the transitional vertebra is distinct from and above the last rib-bearing vertebra in Au. sediba, resulting in a functionally longer lower back. This configuration, along with a strongly wedged last lumbar vertebra and other indicators of lordotic posture, would have contributed to a highly flexible spine that is derived compared with earlier members of the genus Australopithecus and similar to that of the Nariokotome Homo erectus skeleton.

  6. Vertebrate seed dispersers maintain the composition of tropical forest seedbanks.

    PubMed

    Wandrag, E M; Dunham, A E; Miller, R H; Rogers, H S

    2015-11-16

    The accumulation of seeds in the soil (the seedbank) can set the template for the early regeneration of habitats following disturbance. Seed dispersal is an important factor determining the pattern of seed rain, which affects the interactions those seeds experience. For this reason, seed dispersal should play an important role in structuring forest seedbanks, yet we know little about how that happens. Using the functional extirpation of frugivorous vertebrates from the island of Guam, together with two nearby islands (Saipan and Rota) that each support relatively intact disperser assemblages, we aimed to identify the role of vertebrate dispersers in structuring forest seedbanks. We sampled the seedbank on Guam where dispersers are absent, and compared this with the seedbank on Saipan and Rota where they are present. Almost twice as many species found in the seedbank on Guam, when compared with Saipan and Rota, had a conspecific adult within 2 m. This indicates a strong role of vertebrate dispersal in determining the identity of seeds in the seedbank. In addition, on Guam, a greater proportion of samples contained no seeds and overall species richness was lower than on Saipan. Differences in seed abundance and richness between Guam and Rota were less clear, as seedbanks on Rota also contained fewer species than Saipan, possibly due to increased post-dispersal seed predation. Our findings suggest that vertebrate seed dispersers can have a strong influence on the species composition of seedbanks. Regardless of post-dispersal processes, without dispersal, seedbanks no longer serve to increase the species pool of recruits during regeneration. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Peptidomic analysis of the extensive array of host-defense peptides in skin secretions of the dodecaploid frog Xenopus ruwenzoriensis (Pipidae).

    PubMed

    Coquet, Laurent; Kolodziejek, Jolanta; Jouenne, Thierry; Nowotny, Norbert; King, Jay D; Conlon, J Michael

    2016-09-01

    The Uganda clawed frog Xenopus ruwenzoriensis with a karyotype of 2n=108 is one of the very few vertebrates with dodecaploid status. Peptidomic analysis of norepinephrine-stimulated skin secretions from this species led to the isolation and structural characterization of 23 host-defense peptides belonging to the following families: magainin (3 peptides), peptide glycine-leucine-amide (PGLa; 6 peptides), xenopsin precursor fragment (XPF; 3 peptides), caerulein precursor fragment (CPF; 8 peptides), and caerulein precursor fragment-related peptide (CPF-RP; 3 peptides). In addition, the secretions contained caerulein, identical to the peptide from Xenopus laevis, and two peptides that were identified as members of the trefoil factor family (TFF). The data indicate that silencing of the host-defense peptide genes following polyploidization has been appreciable and non-uniform. Consistent with data derived from comparison of nucleotide sequences of mitochrondrial and nuclear genes, cladistic analyses based upon the primary structures of the host-defense peptides provide support for an evolutionary scenario in which X. ruwenzoriensis arose from an allopolyploidization event involving an octoploid ancestor of the present-day frogs belonging to the Xenopus amieti species group and a tetraploid ancestor of Xenopus pygmaeus. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes

    PubMed Central

    Boyle, Greg; Richter, Kerstin; Priest, Henry D.; Traver, David; Mockler, Todd C.; Chang, Jeffrey T.; Kay, Steve A.

    2017-01-01

    From photosynthetic bacteria to mammals, the circadian clock evolved to track diurnal rhythms and enable organisms to anticipate daily recurring changes such as temperature and light. It orchestrates a broad spectrum of physiology such as the sleep/wake and eating/fasting cycles. While we have made tremendous advances in our understanding of the molecular details of the circadian clock mechanism and how it is synchronized with the environment, we still have rudimentary knowledge regarding its connection to help regulate diurnal physiology. One potential reason is the sheer size of the output network. Diurnal/circadian transcriptomic studies are reporting that around 10% of the expressed genome is rhythmically controlled. Zebrafish is an important model system for the study of the core circadian mechanism in vertebrate. As Zebrafish share more than 70% of its genes with human, it could also be an additional model in addition to rodent for exploring the diurnal/circadian output with potential for translational relevance. Here we performed comparative diurnal/circadian transcriptome analysis with established mouse liver and other tissue datasets. First, by combining liver tissue sampling in a 48h time series, transcription profiling using oligonucleotide arrays and bioinformatics analysis, we profiled rhythmic transcripts and identified 2609 rhythmic genes. The comparative analysis revealed interesting features of the output network regarding number of rhythmic genes, proportion of tissue specific genes and the extent of transcription factor family expression. Undoubtedly, the Zebrafish model system will help identify new vertebrate outputs and their regulators and provides leads for further characterization of the diurnal cis-regulatory network. PMID:28076377

  9. Host Immunization with Recombinant Proteins to Screen Antigens for Tick Control.

    PubMed

    Galay, Remil Linggatong; Miyata, Takeshi; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2016-01-01

    Ticks (Parasitiformes: Ixodida) are known for their obligate blood feeding habit and their role in transmitting pathogens to various vertebrate hosts. Tick control using chemical acaricides is extensively used particularly in livestock management, but several disadvantages arise from resistance development of many tick species, and concerns on animal product and environmental contamination. Vaccination offers better protection and more cost-effective alternative to application of chemical acaricides, addressing their disadvantages. However, an ideal anti-tick vaccine targeting multiple tick species and all the tick stages is still wanting. Here, we describe the procedures involved in the evaluation of a vaccine candidate antigen against ticks at the laboratory level, from the preparation of recombinant proteins, administration to the rabbit host and monitoring of antibody titer, to tick infestation challenge and determination of the effects of immunization to ticks.

  10. Structural RNAs of known and unknown function identified in malaria parasites by comparative genomics and RNA analysis

    PubMed Central

    Chakrabarti, Kausik; Pearson, Michael; Grate, Leslie; Sterne-Weiler, Timothy; Deans, Jonathan; Donohue, John Paul; Ares, Manuel

    2007-01-01

    As the genomes of more eukaryotic pathogens are sequenced, understanding how molecular differences between parasite and host might be exploited to provide new therapies has become a major focus. Central to cell function are RNA-containing complexes involved in gene expression, such as the ribosome, the spliceosome, snoRNAs, RNase P, and telomerase, among others. In this article we identify by comparative genomics and validate by RNA analysis numerous previously unknown structural RNAs encoded by the Plasmodium falciparum genome, including the telomerase RNA, U3, 31 snoRNAs, as well as previously predicted spliceosomal snRNAs, SRP RNA, MRP RNA, and RNAse P RNA. Furthermore, we identify six new RNA coding genes of unknown function. To investigate the relationships of the RNA coding genes to other genomic features in related parasites, we developed a genome browser for P. falciparum (http://areslab.ucsc.edu/cgi-bin/hgGateway). Additional experiments provide evidence supporting the prediction that snoRNAs guide methylation of a specific position on U4 snRNA, as well as predicting an snRNA promoter element particular to Plasmodium sp. These findings should allow detailed structural comparisons between the RNA components of the gene expression machinery of the parasite and its vertebrate hosts. PMID:17901154

  11. Sylvatic host associations of Triatominae and implications for Chagas disease reservoirs: a review and new host records based on archival specimens

    PubMed Central

    Weirauch, Christiane

    2017-01-01

    Background The 152 extant species of kissing bug include important vectors of the debilitating, chronic, and often fatal Chagas disease, which affects several million people mainly in Central and South America. An understanding of the natural hosts of this speciose group of blood-feeding insects has and will continue to aid ongoing efforts to impede the spread of Chagas disease. However, information on kissing bug biology is piecemeal and scattered, developed using methods with varying levels of accuracy over more than 100 years. Existing host records are heavily biased towards well-studied primary vector species and are derived from primarily three different types of observations, associational, immunological or DNA-based, with varying reliability. Methods We gather a comprehensive and unparalleled number of sources reporting host associations via rigorous targeted searches of publication databases to review all known natural, or sylvatic, host records including information on how each record was collected. We integrate this information with novel host records obtained via attempted amplification and sequencing of a ∼160 base pair (bp) region of the vertebrate 12S mitochondrial gene from the gastrointestinal tract of 64 archival specimens of Triatominae representing 19 species collected primarily in sylvatic habitats throughout the southern United States and Central and South America during the past 10 years. We show the utility of this method for uncovering novel and under-studied groups of Triatominae hosts, as well as detecting the presence of the Chagas disease pathogen via Polymerase Chain Reaction (PCR) of a ∼400 bp sequence of the trypanosome 18S gene. Results New host associations for several groups of arboreal mammals were determined including sloths, New World monkeys, coatis, arboreal porcupines and, for the first time as a host of any Triatominae, tayras. A thorough review of previously documented sylvatic hosts, organized by triatomine species and

  12. Worldwide prevalence and incidence of osteoporotic vertebral fractures.

    PubMed

    Ballane, G; Cauley, J A; Luckey, M M; El-Hajj Fuleihan, G

    2017-05-01

    We investigated the prevalence and incidence of vertebral fractures worldwide. We used a systematic Medline search current to 2015 and updated as per authors' libraries. A total of 62 articles of fair to good quality and comparable methods for vertebral fracture identification were considered. The prevalence of morphometric vertebral fractures in European women is highest in Scandinavia (26%) and lowest in Eastern Europe (18%). Prevalence rates in North America (NA) for White women ≥50 are 20-24%, with a White/Black ratio of 1.6. Rates in women ≥50 years in Latin America are overall lower than Europe and NA (11-19%). In Asia, rates in women above ≥65 are highest in Japan (24%), lowest in Indonesia (9%), and in the Middle East, Lebanon, rates are 20%. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Incidence data is less abundant and more heterogeneous. Age-standardized rates in studies combining hospitalized and ambulatory vertebral fractures are highest in South Korea, USA, and Hong Kong and lowest in the UK. Neither a North-South gradient nor a relation to urbanization is evident. Conversely, the incidence of hospitalized vertebral fractures in European patients ≥50 shows a North-South gradient with 3-3.7-fold variability. In the USA, rates in Whites are approximately 4-fold higher than in Blacks. Vertebral fractures variation worldwide is lower than observed with hip fractures, and some of highest rates are unexpectedly from Asia. Better quality representative studies are needed. We investigate the occurrence of vertebral fractures, worldwide, using published data current until the present. Worldwide, the variation in vertebral fractures is lower than observed for hip fractures. Some of the highest rates are from North America and unexpectedly Asia. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Better quality representative data is needed.

  13. Staff Directory, Department of Vertebrate Zoology, NMNH

    Science.gov Websites

    Research & Collections About Us Get Involved Calendar Department ofVertebrate Zoology Chestnut Mammals VZ Online Newsletter Visitor Information Research Fellowships Volunteers and Interns VZ Libraries Staff Contact Us NMNH Home › Research & Collections › Vertebrate Zoology › Staff Directory

  14. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.

    PubMed

    Lagman, David; Ocampo Daza, Daniel; Widmark, Jenny; Abalo, Xesús M; Sundström, Görel; Larhammar, Dan

    2013-11-02

    other neuronal and neuroendocrine functions exerted by the proteins encoded by these gene families. In pouched lamprey all five visual opsin genes have previously been identified, suggesting that lampreys diverged from the jawed vertebrates after 2R.

  15. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium.

    PubMed

    Hashiguchi, Yasuyuki; Nishida, Mutsumi

    2007-09-01

    The trace amine-associated receptors (TAARs) form a specific family of G protein-coupled receptors in vertebrates. TAARs were initially considered neurotransmitter receptors, but recent study showed that mouse TAARs function as chemosensory receptors in the olfactory epithelium. To clarify the evolutionary dynamics of the TAAR gene family in vertebrates, near-complete repertoires of TAAR genes and pseudogenes were identified from the genomic assemblies of 4 teleost fishes (zebrafish, fugu, stickleback, and medaka), western clawed frogs, chickens, 3 mammals (humans, mice, and opossum), and sea lampreys. Database searches revealed that fishes had many putatively functional TAAR genes (13-109 genes), whereas relatively small numbers of TAAR genes (3-22 genes) were identified in tetrapods. Phylogenetic analysis of these genes indicated that the TAAR gene family was subdivided into 5 subfamilies that diverged before the divergence of ray-finned fishes and tetrapods. In tetrapods, virtually all TAAR genes were located in 1 specific region of their genomes as a gene cluster; however, in fishes, TAAR genes were scattered throughout more than 2 genomic locations. This possibly reflects a whole-genome duplication that occurred in the common ancestor of ray-finned fishes. Expression analysis of zebrafish and stickleback TAAR genes revealed that many TAARs in these fishes were expressed in the olfactory organ, suggesting the relatively high importance of TAARs as chemosensory receptors in fishes. A possible evolutionary history of the vertebrate TAAR gene family was inferred from the phylogenetic and comparative genomic analyses.

  16. Models hosts for the study of oral candidiasis.

    PubMed

    Junqueira, Juliana Campos

    2012-01-01

    Oral candidiasis is an opportunistic infection caused by yeast of the Candida genus, primarily Candida albicans. It is generally associated with predisposing factors such as the use of immunosuppressive agents, antibiotics, prostheses, and xerostomia. The development of research in animal models is extremely important for understanding the nature of the fungal pathogenicity, host interactions, and treatment of oral mucosal Candida infections. Many oral candidiasis models in rats and mice have been developed with antibiotic administration, induction of xerostomia, treatment with immunosuppressive agents, or the use of germ-free animals, and all these models has both benefits and limitations. Over the past decade, invertebrate model hosts, including Galleria mellonella, Caenorhabditis elegans, and Drosophila melanogaster, have been used for the study of Candida pathogenesis. These invertebrate systems offer a number of advantages over mammalian vertebrate models, predominantly because they allow the study of strain collections without the ethical considerations associated with studies in mammals. Thus, the invertebrate models may be useful to understanding of pathogenicity of Candida isolates from the oral cavity, interactions of oral microorganisms, and study of new antifungal compounds for oral candidiasis.

  17. Hybridization between two cestode species and its consequences for intermediate host range

    PubMed Central

    2013-01-01

    Background Many parasites show an extraordinary degree of host specificity, even though a narrow range of host species reduces the likelihood of successful transmission. In this study, we evaluate the genetic basis of host specificity and transmission success of experimental F1 hybrids from two closely related tapeworm species (Schistocephalus solidus and S. pungitii), both highly specific to their respective vertebrate second intermediate hosts (three- and nine-spined sticklebacks, respectively). Methods We used an in vitro breeding system to hybridize Schistocephalus solidus and S. pungitii; hybridization rate was quantified using microsatellite markers. We measured several fitness relevant traits in pure lines of the parental parasite species as well as in their hybrids: hatching rates, infection rates in the copepod first host, and infection rates and growth in the two species of stickleback second hosts. Results We show that the parasites can hybridize in the in vitro system, although the proportion of self-fertilized offspring was higher in the heterospecific breeding pairs than in the control pure parental species. Hybrids have a lower hatching rate, but do not show any disadvantages in infection of copepods. In fish, hybrids were able to infect both stickleback species with equal frequency, whereas the pure lines were only able to infect their normal host species. Conclusions Although not yet documented in nature, our study shows that hybridization in Schistocephalus spp. is in principle possible and that, in respect to their expanded host range, the hybrids are fitter. Further studies are needed to find the reason for the maintenance of the species boundaries in wild populations. PMID:23390985

  18. The origin of the vertebrate skeleton

    NASA Astrophysics Data System (ADS)

    Pivar, Stuart

    2011-01-01

    The anatomy of the human and other vertebrates has been well described since the days of Leonardo da Vinci and Vesalius. The causative origin of the configuration of the bones and of their shapes and forms has been addressed over the ensuing centuries by such outstanding investigators as Goethe, Von Baer, Gegenbauer, Wilhelm His and D'Arcy Thompson, who sought to apply mechanical principles to morphogenesis. However, no coherent causative model of morphogenesis has ever been presented. This paper presents a causative model for the origin of the vertebrate skeleton, based on the premise that the body is a mosaic enlargement of self-organized patterns engrained in the membrane of the egg cell. Drawings illustrate the proposed hypothetical origin of membrane patterning and the changes in the hydrostatic equilibrium of the cytoplasm that cause topographical deformations resulting in the vertebrate body form.

  19. Experimental taphonomy and the anatomy and diversity of the earliest fossil vertebrates (Chengjiang Biota, Cambrian, China)

    NASA Astrophysics Data System (ADS)

    Purnell, Mark; Gabbott, Sarah; Murdock, Duncan; Cong, Peiyun

    2016-04-01

    The oldest fossil vertebrates are from the Lower Cambrian Chengjiang biota of China, which contains four genera of fish-like, primitive vertebrates: Haikouichthys, Myllokunmingia, Zhongjianichthys and Zhongxiniscus. These fossils play key roles in calibrating molecular clocks and informing our view of the anatomy of animals close to the origin of vertebrates, potentially including transitional forms between vertebrates and their nearest relatives. Despite the evident importance of these fossils, the degree to which taphonomic processes have affected their anatomical completeness has not been investigated. For example, some or all might have been affected by stemward slippage - the pattern observed in experimental decay of non-biomineralised chordates in which preferential decay of synapomorphies and retention of plesiomorphic characters would cause fossil taxa to erroneously occupy more basal positions than they should. This hypothesis is based on experimental data derived from decay of non-biomineralised chordates under laboratory conditions. We have expanded this analysis to include a broader range of potentially significant environmental variables; we have also compared and combined the results of experiments from several taxa to identify general patterns of chordate decay. Examination of the Chengjiang vertebrates in the light of these results demonstrates that, contrary to some assertions, experimentally derived models of phylogenetic bias are applicable to fossils. Anatomical and phylogenetic interpretations of early vertebrates that do not take taphonomic biases into account risk overestimating diversity and the evolutionary significance of differences between fossil specimens.

  20. Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference

    PubMed Central

    Palmarini, Massimo; Mertens, Peter

    2017-01-01

    Spatio-temporal patterns of the spread of infectious diseases are commonly driven by environmental and ecological factors. This is particularly true for vector-borne diseases because vector populations can be strongly affected by host distribution as well as by climatic and landscape variables. Here, we aim to identify environmental drivers for bluetongue virus (BTV), the causative agent of a major vector-borne disease of ruminants that has emerged multiple times in Europe in recent decades. In order to determine the importance of climatic, landscape and host-related factors affecting BTV diffusion across Europe, we fitted different phylogeographic models to a dataset of 113 time-stamped and geo-referenced BTV genomes, representing multiple strains and serotypes. Diffusion models using continuous space revealed that terrestrial habitat below 300 m altitude, wind direction and higher livestock densities were associated with faster BTV movement. Results of discrete phylogeographic analysis involving generalized linear models broadly supported these findings, but varied considerably with the level of spatial partitioning. Contrary to common perception, we found no evidence for average temperature having a positive effect on BTV diffusion, though both methodological and biological reasons could be responsible for this result. Our study provides important insights into the drivers of BTV transmission at the landscape scale that could inform predictive models of viral spread and have implications for designing control strategies. PMID:29021180

  1. Repeated targeting of the same hosts by a brood parasite compromises host egg rejection.

    PubMed

    Stevens, Martin; Troscianko, Jolyon; Spottiswoode, Claire N

    2013-01-01

    Cuckoo eggs famously mimic those of their foster parents to evade rejection from discriminating hosts. Here we test whether parasites benefit by repeatedly parasitizing the same host nest. This should make accurate rejection decisions harder, regardless of the mechanism that hosts use to identify foreign eggs. Here we find strong support for this prediction in the African tawny-flanked prinia (Prinia subflava), the most common host of the cuckoo finch (Anomalospiza imberbis). We show experimentally that hosts reject eggs that differ from an internal template, but crucially, as the proportion of foreign eggs increases, hosts are less likely to reject them and require greater differences in appearance to do so. Repeated parasitism by the same cuckoo finch female is common in host nests and likely to be an adaptation to increase the probability of host acceptance. Thus, repeated parasitism interacts with egg mimicry to exploit cognitive and sensory limitations in host defences.

  2. CHROMOSPHERIC EMISSION OF PLANET CANDIDATE HOST STARS: A WAY TO IDENTIFY FALSE POSITIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karoff, Christoffer; Knudsen, Mads Faurschou; Albrecht, Simon

    2016-10-10

    It has been hypothesized that the presence of closely orbiting giant planets is associated with enhanced chromospheric emission of their host stars. The main cause for such a relation would likely be enhanced dynamo action induced by the planet. We present measurements of chromospheric emission in 234 planet candidate systems from the Kepler mission. This ensemble includes 37 systems with giant-planet candidates, which show a clear emission enhancement. The enhancement, however, disappears when systems that are also identified as eclipsing binary candidates are removed from the ensemble. This suggests that a large fraction of the giant-planet candidate systems with chromosphericmore » emission stronger than the Sun are not giant-planet systems, but false positives. Such false-positive systems could be tidally interacting binaries with strong chromospheric emission. This hypothesis is supported by an analysis of 188 eclipsing binary candidates that show increasing chromospheric emission as function of decreasing orbital period.« less

  3. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    PubMed

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  4. Evolution of the vertebrate phototransduction cascade activation steps.

    PubMed

    Lamb, Trevor D; Hunt, David M

    2017-11-01

    We examine the molecular phylogeny of the proteins underlying the activation steps of vertebrate phototransduction, for both agnathan and jawed vertebrate taxa. We expand the number of taxa analysed and we update the alignment and tree building methodology from a previous analysis. For each of the four primary components (the G-protein transducin alpha subunit, Gα T , the cyclic GMP phosphodiesterase, PDE6, and the alpha and beta subunits of the cGMP-gated ion channel, CNGC), the phylogenies appear consistent with expansion from an ancestral proto-vertebrate cascade during two rounds of whole-genome duplication followed by divergence of the agnathan and jawed vertebrate lineages. In each case, we consider possible scenarios for the underlying gene duplications and losses, and we apply relevant constraints to the tree construction. From tests of the topology of the resulting trees, we obtain a scenario for the expansion of each component during 2R that accurately fits the observations. Similar analysis of the visual opsins indicates that the only expansion to have occurred during 2R was the formation of Rh1 and Rh2. Finally, we propose a hypothetical scenario for the conversion of an ancestral chordate cascade into the proto-vertebrate phototransduction cascade, prior to whole-genome duplication. Together, our models provide a plausible account for the origin and expansion of the vertebrate phototransduction cascade. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Convergent evolution of hemoglobin switching in jawed and jawless vertebrates.

    PubMed

    Rohlfing, Kim; Stuhlmann, Friederike; Docker, Margaret F; Burmester, Thorsten

    2016-02-01

    During development, humans and other jawed vertebrates (Gnathostomata) express distinct hemoglobin genes, resulting in different hemoglobin tetramers. Embryonic and fetal hemoglobin have higher oxygen affinities than the adult hemoglobin, sustaining the oxygen demand of the developing organism. Little is known about the expression of hemoglobins during development of jawless vertebrates (Agnatha). We identified three hemoglobin switches in the life cycle of the sea lamprey. Three hemoglobin genes are specifically expressed in the embryo, four genes in the filter feeding larva (ammocoete), and nine genes correspond to the adult hemoglobin chains. During the development from the parasitic to the reproductive adult, the composition of hemoglobin changes again, with a massive increase of chain aHb1. A single hemoglobin chain is expressed constitutively in all stages. We further showed the differential expression of other globin genes: Myoglobin 1 is most highly expressed in the reproductive adult, myoglobin 2 expression peaks in the larva. Globin X1 is restricted to the embryo; globin X2 was only found in the reproductive adult. Cytoglobin is expressed at low levels throughout the life cycle. Because the hemoglobins of jawed and jawless vertebrates evolved independently from a common globin ancestor, hemoglobin switching must also have evolved convergently in these taxa. Notably, the ontogeny of sea lamprey hemoglobins essentially recapitulates their phylogeny, with the embryonic hemoglobins emerging first, followed by the evolution of larval and adult hemoglobins.

  6. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host.

    PubMed

    Yang, Yalin; Xiong, Jie; Zhou, Zhigang; Huo, Fengmin; Miao, Wei; Ran, Chao; Liu, Yuchun; Zhang, Jinyong; Feng, Jinmei; Wang, Meng; Wang, Min; Wang, Lei; Yao, Bin

    2014-11-08

    Members of Myxozoa, a parasitic metazoan taxon, have considerable detrimental effects on fish hosts and also have been associated with human food-borne illness. Little is known about their biology and metabolism. Analysis of the genome of Thelohanellus kitauei and comparative analysis with genomes of its two free-living cnidarian relatives revealed that T. kitauei has adapted to parasitism, as indicated by the streamlined metabolic repertoire and the tendency toward anabolism rather than catabolism. Thelohanellus kitauei mainly secretes proteases and protease inhibitors for nutrient digestion (parasite invasion), and depends on endocytosis (mainly low-density lipoprotein receptors-mediated type) and secondary carriers for nutrient absorption. Absence of both classic and complementary anaerobic pathways and gluconeogenesis, the lack of de novo synthesis and reduced activity in hydrolysis of fatty acids, amino acids, and nucleotides indicated that T. kitauei in this vertebrate host-parasite system has adapted to inhabit a physiological environment extremely rich in both oxygen and nutrients (especially glucose), which is consistent with its preferred parasitic site, that is, the host gut submucosa. Taking advantage of the genomic and transcriptomic information, 23 potential nutrition-related T. kitauei-specific chemotherapeutic targets were identified. This first genome sequence of a myxozoan will facilitate development of potential therapeutics for efficient control of myxozoan parasites and ultimately prevent myxozoan-induced fish-borne illnesses in humans. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Evolution of vertebrate sex chromosomes and dosage compensation.

    PubMed

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.

  8. ChimericSeq: An open-source, user-friendly interface for analyzing NGS data to identify and characterize viral-host chimeric sequences.

    PubMed

    Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D; Lin, Selena; Jain, Surbhi; Song, Wei; Su, Ying-Hsiu

    2017-01-01

    Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq's pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community.

  9. ChimericSeq: An open-source, user-friendly interface for analyzing NGS data to identify and characterize viral-host chimeric sequences

    PubMed Central

    Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D.; Lin, Selena; Jain, Surbhi; Song, Wei

    2017-01-01

    Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq’s pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community. PMID:28829778

  10. Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review

    PubMed Central

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-01-01

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165

  11. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent.

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary

  12. Macrobiota - helminths as active participants and partners of the microbiota in host intestinal homeostasis.

    PubMed

    Gause, William C; Maizels, Rick M

    2016-08-01

    Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis. Copyright © 2016. Published by Elsevier Ltd.

  13. Toward reciprocity: host supervisor perspectives on international medical electives.

    PubMed

    Bozinoff, Nikki; Dorman, Katie P; Kerr, Denali; Roebbelen, Erica; Rogers, Erin; Hunter, Andrea; O'Shea, Tim; Kraeker, Christian

    2014-04-01

    An increasing number of medical students are engaging in international medical electives, the majority of which involve travel from northern, higher-income countries to southern, lower-income countries. Existing research has identified benefits to students participating in these experiences. However, reports on the impacts on host communities are largely absent from the literature. The current study aims to identify host country perspectives on international medical electives. Questionnaires were delivered to a convenience sample of supervisors hosting international elective students (n = 39) from a Canadian medical school. Responses represented 22 countries. Conventional content analysis of the qualitative data was used to identify themes in host supervisor perspectives on the impact of international medical electives. Host country supervisors identified that in addition to the benefits realised by the elective students, supervisors and their institutions also benefited from hosting Canadian students. Although some host supervisors denied the occurrence of any harm, others expressed concern that international elective students may negatively impact the local community in terms of resource use and patient care. Host country supervisors also identified potential harms to travelling students including health risks and emotional distress. Ideas for improving international electives were identified and were largely centred around increasing the bidirectional flow of students by establishing formal partnerships between institutions. This research provides important insights into the impacts of international medical student electives from the perspective of host country supervisors. This research may be a starting point for further research and the establishment of meaningful partnerships that incorporate the self-identified needs of receiving institutions, especially those in lower-income settings. © 2014 John Wiley & Sons Ltd.

  14. Severity of aortic calcification is positively associated with vertebral fracture in older men—a densitometry study in the STRAMBO cohort

    PubMed Central

    Samelson, E. J.; Sornay-Rendu, E.; Chapurlat, R.; Kiel, D. P.

    2013-01-01

    Summary In older men, severe abdominal aortic calcification and vertebral fracture (both assessed using dual-energy X-ray absorptiometry) were positively associated after adjustment for confounders including bone mineral density. Introduction Abdominal aortic calcification (AAC) is associated with higher fracture risk, independently of low bone mineral density (BMD). Dual-energy X-ray absorptiometry (DXA) can be used to assess both vertebral fracture and AAC and requires less time, cost, and radiation exposure. Methods We conducted a cross-sectional study of the association between AAC and prevalent vertebral fractures in 901 men ≥50 years old. We used DXA (vertebral fracture assessment) to evaluate BMD, vertebral fracture, and AAC. Results Prevalence of vertebral fracture was 11 %. Median AAC score was 1 and 12 % of men had AAC score >6. After adjustment for age, weight, femoral neck BMD, smoking, ischemic heart disease, diabetes, and hypertension, AAC score >6 (vs ≤6) was associated with 2.5 (95 % CI, 1.4–4.5) higher odds of vertebral fracture. Odds of vertebral fracture for AAC score >6 increased with vertebral fracture severity (grade 1, OR=1.8; grade 2, OR=2.4; grade 3, OR=4.4; trend p<0.01) and with the number of vertebral fractures (1 fracture, OR=2.0, >1 fracture, OR=3.5). Prevalence of vertebral fracture was twice as high in men having both a T-score<−2.0 and an AAC score>6 compared with men having only one of these characteristics. Conclusions Men with greater severity AAC had greater severity and greater number of vertebral fractures, independently of BMD and co-morbidities. DXA can be used to assess vertebral fracture and AAC. It can provide a rapid, safe, and less expensive alternative to radiography. DXA may be an important clinical tool to identify men at high risk of adverse outcomes from osteoporosis and cardiovascular disease. PMID:22872071

  15. Use of cervical vertebral dimensions for assessment of children growth.

    PubMed

    Caldas, Maria de Paula; Ambrosano, Gláucia Maria Bovi; Haiter-Neto, Francisco

    2007-04-01

    The purpose of this study was to investigate whether skeletal maturation using cephalometric radiographs could be used in a Brazilian population. The study population was selected from the files of the Oral Radiological Clinic of the Dental School of Piracicaba, Brazil and consisted of 128 girls and 110 boys (7.0 to 15.9 years old) who had cephalometric and hand-wrist radiographs taken on the same day. Cervical vertebral bone age was evaluated using the method described by Mito and colleagues in 2002. Bone age was assessed by the Tanner-Whitehouse (TW3) method and was used as a gold standard to determine the reliability of cervical vertebral bone age. An analysis of variance and Tukey's post-hoc test were used to compare cervical vertebral bone age, bone age and chronological age at 5% significance level. The analysis of the Brazilian female children data showed that there was a statistically significant difference (p<0.05) between cervical vertebral bone age and chronological age and between bone age and chronological age. However no statistically significant difference (p>0.05) was found between cervical vertebral bone age and bone age. Differently, the analysis of the male children data revealed a statistically significant difference (p<0.05) between cervical vertebral bone age and bone age and between cervical vertebral bone age and chronological age (p<0.05). The findings of the present study suggest that the method for objectively evaluating skeletal maturation on cephalometric radiographs by determination of vertebral bone age can be applied to Brazilian females only. The development of a new method to objectively evaluate cervical vertebral bone age in males is needed.

  16. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    PubMed

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Evolution of the β-adrenoreceptors in vertebrates.

    PubMed

    Zavala, Kattina; Vandewege, Michael W; Hoffmann, Federico G; Opazo, Juan C

    2017-01-01

    The study of the evolutionary history of genes related to human disease lies at the interface of evolution and medicine. These studies provide the evolutionary context on which medical researchers should work, and are also useful in providing information to suggest further genetic experiments, especially in model species where genetic manipulations can be made. Here we studied the evolution of the β-adrenoreceptor gene family in vertebrates with the aim of adding an evolutionary framework to the already abundant physiological information. Our results show that in addition to the three already described vertebrate β-adrenoreceptor genes there is an additional group containing cyclostome sequences. We suggest that β-adrenoreceptors diversified as a product of the two whole genome duplications that occurred in the ancestor of vertebrates. Gene expression patterns are in general consistent across species, suggesting that expression dynamics were established early in the evolutionary history of vertebrates, and have been maintained since then. Finally, amino acid polymorphisms that are associated to pathological conditions in humans appear to be common in non-human mammals, suggesting that the phenotypic effects of these mutations depend on epistatic interaction with other positions. The evolutionary analysis of the β-adrenoreceptors delivers new insights about the diversity of these receptors in vertebrates, the evolution of the expression patterns and a comparative perspective regarding the polymorphisms that in humans are linked to pathological conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep.

    PubMed

    Zhang, Zhifeng; Sun, Yawei; Du, Wei; He, Sangang; Liu, Mingjun; Tian, Changyan

    2017-09-01

    The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin ( VRTN ) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  19. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates.

    PubMed

    Naville, M; Warren, I A; Haftek-Terreau, Z; Chalopin, D; Brunet, F; Levin, P; Galiana, D; Volff, J-N

    2016-04-01

    Viruses and transposable elements, once considered as purely junk and selfish sequences, have repeatedly been used as a source of novel protein-coding genes during the evolution of most eukaryotic lineages, a phenomenon called 'molecular domestication'. This is exemplified perfectly in mammals and other vertebrates, where many genes derived from long terminal repeat (LTR) retroelements (retroviruses and LTR retrotransposons) have been identified through comparative genomics and functional analyses. In particular, genes derived from gag structural protein and envelope (env) genes, as well as from the integrase-coding and protease-coding sequences, have been identified in humans and other vertebrates. Retroelement-derived genes are involved in many important biological processes including placenta formation, cognitive functions in the brain and immunity against retroelements, as well as in cell proliferation, apoptosis and cancer. These observations support an important role of retroelement-derived genes in the evolution and diversification of the vertebrate lineage. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Gravidity, Parity and Vertebral Dimensions in the Northern Finland Birth Cohort 1966.

    PubMed

    Oura, Petteri; Paananen, Markus; Auvinen, Juha; Niinimäki, Jaakko; Niinimäki, Maarit; Karppinen, Jaro; Junno, Juho-Antti

    2018-03-15

    A population-based birth cohort study. To investigate the association between gravidity, parity and vertebral geometry among middle-aged women. Vertebral size is a recognized determinant of vertebral fracture risk. Yet only a few lifestyle factors that influence vertebral size are known. Pregnancy is a labile period which may affect the maternal vertebral size or shape. The lumbar lordosis angle is permanently deepened by pregnancy, but it remains unclear whether vertebral shape or size contribute to this deepened angle. We aimed to investigate whether gravidity and parity were associated with vertebral cross-sectional area (CSA) and height ratio (anterior height: posterior height) among 705 middle-aged women from the Northern Finland Birth Cohort 1966. We measured the corpus of their fourth lumbar vertebra using magnetic resonance imaging of the lumbar spine at the age of 46. Gravidity and parity were elicited using a questionnaire also at the age of 46. Linear regression analysis was used with adjustments for body mass index, vertebral CSA (height ratio models), and vertebral height (CSA models). We also ran a subgroup analysis which did not include nulliparous women, and we compared nulliparous women with grand multiparous women. The models found no statistically significant associations between the predictors and outcomes. Crude and adjusted results were highly similar, and the subgroup analyses provided analogous results. Pregnancy, or even multiple pregnancies, do not seem to have long-term effects on vertebral geometry. In order to enhance the prevention of vertebral fractures, future studies should aim to reveal more lifestyle determinants of vertebral size. 3.

  1. Built for speed: strain in the cartilaginous vertebral columns of sharks.

    PubMed

    Porter, M E; Diaz, Candido; Sturm, Joshua J; Grotmol, Sindre; Summers, A P; Long, John H

    2014-02-01

    In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. [Vertebral artery dissection due to the C6 transverse process and laryngeal cartilage associated with vertebral artery anomaly].

    PubMed

    Kusunoki Nakamoto, Fumiko; Hashimoto Maeda, Meiko; Mori, Kentaro; Hara, Takayuki; Uesaka, Yoshikazu

    2014-01-01

    A 52-year-old woman complained of the sudden onset of a left temporal headache, left neck stiffness and dizziness. Brain magnetic resonance imaging showed a high-intensity lesion in the right medial medulla. Dynamic cerebral angiography revealed vertebral artery dissection and compression at the C6 level due to a transverse process at the C6 level associated with rightward head rotation. Removal of bone and decompression of the vertebral artery were performed from the C5 to C6 levels. Intraoperasively, obstruction of blood flow due to a laryngeal cartilage that rotated with the passive rotation of the patient's head to the right was found. To the best of our knowledge this is the first reported case of vertebral artery occlusion due to a laryngeal cartilage associated with head rotation.

  3. Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes

    PubMed Central

    Belyi, Vladimir A.; Levine, Arnold J.; Skalka, Anna Marie

    2010-01-01

    Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected), later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important biological

  4. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes.

    PubMed

    Belyi, Vladimir A; Levine, Arnold J; Skalka, Anna Marie

    2010-07-29

    Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected), later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important biological

  5. Host fishes and host-attracting behavior of Lampsilis altilis and Villosa vibex (Bivalvia: Unionidae)

    Treesearch

    Wendell R. Haag; Melvin L. Warren; Mahala Shillingsford

    1999-01-01

    Suitable host fishes were identified for two species of freshwater mussels (Unionidae) from the Coosa River drainage, Mobile Basin: Lampsilis altilis, the fine-lines pocketbook and Villosa vibex, the southern rainbow. Suitable hosts are defined as fishes that produce juvenile mussels from glochidial infestations in the laboratory....

  6. Contact Us, Department of Vertebrate Zoology, NMNH

    Science.gov Websites

    Contact Us NMNH Home › Research & Collections › Vertebrate Zoology › Contact Us Contacting Individual Staff Members: To contact members of the Department of Vertebrate Zoology please go to the Staff page. Most members will be linked to their own webpage that contains contact information, research

  7. Vascular Plant and Vertebrate Inventory of Tuzigoot National Monument

    USGS Publications Warehouse

    Powell, Brian F.; Albrecht, E.W.; Halvorson, William Lee; Schmidt, Cecilia A.; Anning, P.; Docherty, K.

    2005-01-01

    Executive Summary From 2002 to 2004, we surveyed for plants and vertebrates (amphibians, reptiles, birds, and mammals) at Tuzigoot National Monument (NM) and adjacent areas in Arizona. This was the first effort of its kind in the area and was part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. In addition to our own surveys, we also compiled a complete list of species that have been found by previous studies. We found 330 species, including 142 that had not previously been recorded at the monument (Table 1). We found 39 species of non-native plants, 11 non-native fishes, three non-native birds, and one non-native species each of amphibian and mammal. Based on our work and that of others, there have been 597 species of plants and vertebrates found at the monument. The bird community at the monument had the highest species richness of any national park unit in central and southern Arizona. We found all other taxa to have intermediate species richness compared to other park units in the region. This extraordinary species richness observed for birds, as well as for some other taxa, is due primarily to Tavasci Marsh and the Verde River, two critical sources of perennial water, which provide habitat for many regionally rare or uncommon species. The location of the monument at the northern edge of the Sonoran Desert and at the southern edge of the Mogollon Rim also plays an important role in determining the distribution and community composition of the plant and vertebrate communities. Based on our findings, we believe the high number of non-native species, especially fish and plants, should be of particular management concern. We detail other management challenges, most notably the rapid increase in housing and associated commercial development near the monument, which will continue to impact the plant and vertebrate communities. Based on our data and a review of past studies, we believe the

  8. Comprehensive identification and profiling of host miRNAs in response to Singapore grouper iridovirus (SGIV) infection in grouper (Epinephelus coioides).

    PubMed

    Guo, Chuanyu; Cui, Huachun; Ni, Songwei; Yan, Yang; Qin, Qiwei

    2015-10-01

    microRNAs (miRNAs) are an evolutionarily conserved class of non-coding RNA molecules that participate in various biological processes. Employment of high-throughput screening strategies greatly prompts the investigation and profiling of miRNAs in diverse species. In recent years, grouper (Epinephelus spp.) aquaculture was severely affected by iridoviral diseases. However, knowledge regarding the host immune responses to viral infection, especially the miRNA-mediated immune regulatory roles, is rather limited. In this study, by employing Solexa deep sequencing approach, we identified 116 grouper miRNAs from grouper spleen-derived cells (GS). As expected, these miRNAs shared high sequence similarity with miRNAs identified in zebrafish (Danio rerio), pufferfish (Fugu rubripes), and other higher vertebrates. In the process of Singapore grouper iridovirus (SGIV) infection, 45 and 43 miRNAs with altered expression (>1.5-fold) were identified by miRNA microarray assays in grouper spleen tissues and GS cells, respectively. Furthermore, target prediction revealed 189 putative targets of these grouper miRNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Adaptation to different host plant ages facilitates insect divergence without a host shift

    PubMed Central

    Zhang, Bin; Segraves, Kari A.; Xue, Huai-Jun; Nie, Rui-E; Li, Wen-Zhu; Yang, Xing-Ke

    2015-01-01

    Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts. PMID:26378220

  10. The generation of vertebral segmental patterning in the chick embryo

    PubMed Central

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-01-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. PMID:22458512

  11. Preventive effects of conservative treatment with short-term teriparatide on the progression of vertebral body collapse after osteoporotic vertebral compression fracture.

    PubMed

    Park, J-H; Kang, K-C; Shin, D-E; Koh, Y-G; Son, J-S; Kim, B-H

    2014-02-01

    The progression of fractured vertebral collapse is not rare after a conservative treatment of vertebral compression fracture (VCF). Teriparatide has been shown to directly stimulate bone formation and improve bone density, but there is a lack of evidence regarding its use in fracture management. Conservative treatment with short-term teriparatide is effective for decreasing the progression of fractured vertebral body collapse. Few studies have reported on the prevention of collapsed vertebral body progression after osteoporotic VCF. Teriparatide rapidly enhances bone formation and increases bone strength. This study evaluated preventive effects of short-term teriparatide on the progression of vertebral body collapse after osteoporotic VCF. Radiographs of 68 women with single-level osteoporotic VCF at thoracolumbar junction (T11-L2) were reviewed. Among them, 32 patients were treated conservatively with teriparatide (minimum 3 months) (group I), and 36 were treated with antiresorptive (group II). We measured kyphosis and wedge angle of the fractured vertebral body, and ratios of anterior, middle, and posterior heights of the collapsed body to posterior height of a normal upper vertebra were determined. The degree of collapse progression was compared between two groups. The progression of fractured vertebral body collapse was shown in both groups, but the degree of progression was significantly lower in group I than in group II. At the last follow-up, mean increments of kyphosis and wedge angle were significantly lower in group I (4.0° ± 4.2° and 3.6° ± 3.6°) than in group II (6.8° ± 4.1° and 5.8° ± 3.5°) (p = 0.032 and p = 0.037). Decrement percentages of anterior and middle border height were significantly lower in group I (9.6 ± 10.3 and 7.4 ± 7.5 %) than in group II (18.1 ± 9.7 and 13.8 ± 12.2 %) (p = 0.001 and p = 0.025), but not in posterior height (p = 0.086). In female patients with single-level osteoporotic VCF at the thoracolumbar junction

  12. An investigation of thoracic and lumbar cancellous vertebral architecture using power-spectral analysis of plain radiographs*

    PubMed Central

    Buck, AM; Price, RI; Sweetman, IM; Oxnard, CE

    2002-01-01

    The internal architecture of the vertebral bodies spanning the levels T1 to L5 in seven male columns was studied using mammographic-resolution radiographs of 2.5-mm-thick planar parasagittal slices. The overlapping radiographic shadows of vertebral trabeculae combined in the image to form a series of ‘elements’, broadly representative of the cancellous structure. The orientations and sizes of these elements were analysed by applying the Fast Fourier transform (FFT) to the digitized radiographic images. Elements aligned in the ‘vertical’ orientation, along the long axis of the column, were the most prominent for all vertebral levels. The relative prominence of horizontal to vertical elements was generally constant along the column below T5. In contrast, the relative prominence of oblique to vertical elements declined in the cranio-caudal direction, particularly in individuals aged ≥ 60 years. The ratio of ‘large’ (x > 0.3 mm) to ‘small’ (0.15 mm ≤ x ≤ 0.3 mm) elements was unchanged cranio-caudally in specimens < 60 years. However, in individuals ≥ 60 years, large elements increased in relative prominence in the caudal direction. These results suggest that a basic orthogonal pattern of trabeculae is found along the male human spine, regardless of differences in vertebral body size. Power-spectral analysis is shown to yield information summarizing the predominant orientations and sizes of radiographically rendered architectural elements of vertebral cancellous bone, to define the effects of ageing on architecture, and to identify broad structural differences between vertebral levels in the adult male spine. PMID:12090391

  13. Evolution of vertebrates: a view from the crest

    PubMed Central

    Bronner, Marianne E.

    2016-01-01

    The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural crest specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analyzing the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives. PMID:25903629

  14. Physiological characterization of the hematophagy of Ornithodoros rostratus (Acari: Argasidae) on live hosts.

    PubMed

    Costa, Gabriel Cerqueira Alves; Soares, Adriana Coelho; Pereira, Marcos Horácio; Gontijo, Nelder Figueiredo; Sant'Anna, Maurício Roberto Viana; Araujo, Ricardo Nascimento

    2016-11-15

    Ornithodoros rostratus is an argasid tick and its importance is based on its hematophagy and the resulting transmission of pathogens such as Rickettsia rickettsii and Coxiella burnetii to its vertebrate hosts. In the face of a lack of physiological studies related to hematophagy in argasid ticks, this paper aims to identify and characterize the events that occur throughout the feeding by O. rostratus on live hosts. Electrical signals and alterations on the feeding site were monitored using intravital microscopy and electromyography. The analyses allowed for the characterization of four distinct events: suction, salivation, chelicerae movements and inactivity. Feeding was divided into two distinct phases: (1) penetration of mouthparts (when only salivation and chelicerae movements occurred) and the formation of the feeding pool (salivation and chelicerae movements with the first signs of suction) and (2) engorgement, during which chelicerae movements ceased and blood intake took place in feeding complexes (salivation followed by suction). Variations in patterns of the electrical signals, suction frequency and salivation showed four distinct sub-phases: (2a) suction with electrical signals of irregular shape, increased suction frequency and decreased salivation frequency throughout blood feeding; (2b) suction with electrical signals of symmetrical shape, high suction rates (3.8 Hz on average) and feeding complexes lasting for 7.7 s; (2c) suction with electrical signals of irregular shape, high suction frequency and feeding complex lasting 11.5 s; and (2d) electrical signals with no profile and the longest feeding complexes (14.5 s). Blood feeding ended with the withdrawal of the mouthparts from the host's skin. © 2016. Published by The Company of Biologists Ltd.

  15. Specificity between Lactobacilli and Hymenopteran Hosts Is the Exception Rather than the Rule

    PubMed Central

    Cannone, Jamie J.; Gutell, Robin R.; Kellner, Katrin; Plowes, Robert M.; Mueller, Ulrich G.

    2013-01-01

    Lactobacilli (Lactobacillales: Lactobacillaceae) are well known for their roles in food fermentation, as probiotics, and in human health, but they can also be dominant members of the microbiota of some species of Hymenoptera (ants, bees, and wasps). Honey bees and bumble bees associate with host-specific lactobacilli, and some evidence suggests that these lactobacilli are important for bee health. Social transmission helps maintain associations between these bees and their respective microbiota. To determine whether lactobacilli associated with social hymenopteran hosts are generally host specific, we gathered publicly available Lactobacillus 16S rRNA gene sequences, along with Lactobacillus sequences from 454 pyrosequencing surveys of six other hymenopteran species (three sweat bees and three ants). We determined the comparative secondary structural models of 16S rRNA, which allowed us to accurately align the entire 16S rRNA gene, including fast-evolving regions. BLAST searches and maximum-likelihood phylogenetic reconstructions confirmed that honey and bumble bees have host-specific Lactobacillus associates. Regardless of colony size or within-colony oral sharing of food (trophallaxis), sweat bees and ants associate with lactobacilli that are closely related to those found in vertebrate hosts or in diverse environments. Why honey and bumble bees associate with host-specific lactobacilli while other social Hymenoptera do not remains an open question. Lactobacilli are known to inhibit the growth of other microbes and can be beneficial whether they are coevolved with their host or are recruited by the host from environmental sources through mechanisms of partner choice. PMID:23291551

  16. Vertebral reconstruction using the telescopic plate spacer-thoracolumbar (TPS-TL) device.

    PubMed

    Atalay, Basar; Riesenburger, Ron I; Schirmer, Clemens M; Bhadelia, Rafeeque A; Weller, Simcha J

    2010-07-01

    Retrospective study of surgical technique and outcome. The authors conducted a study to evaluate the ability of the TPS-TL (telescopic plate spacer-thoracolumbar) implant to correct kyphotic deformity and restore vertebral body height after vertebrectomy in the thoracolumbar spine. TPS-TL is a novel vertebral body replacement device that consists of an expandable cage with an integrated plate component for transvertebral screw fixation. This is a retrospective study of 20 patients who underwent anterior column reconstruction with TPS-TL after a 1 or 2 level thoracolumbar vertebrectomy. Preoperative and postoperative sagittal alignment and vertebral body heights were radiologically analyzed in all patients. The mean follow-up was 14 months. Preoperative and postoperative Cobb angles were measured to assess sagittal alignment. The average preoperative Cobb angle was 16.0 + or - 7 degrees. This was reduced to 9.8 + or - 10 degrees at the final follow-up (P<0.001). Percent of ideal vertebral body height was used to assess postoperative restoration of vertebral body height. This value was obtained by creating a ratio of the height of the effected vertebral levels to the height of the adjacent normal vertebral bodies. The mean percent of ideal vertebral body height improved from a preoperative value from 86.2 + or - 2% to 93.1 + or - 6% at the final follow-up (P<0.001). The TPS-TL implant is effective in restoring vertebral body height and correcting kyphotic deformity after thoracolumbar vertebrectomy.

  17. Evolution of motor innervation to vertebrate fins and limbs.

    PubMed

    Murakami, Yasunori; Tanaka, Mikiko

    2011-07-01

    The evolution and diversification of vertebrate behaviors associated with locomotion depend highly on the functional transformation of paired appendages. Although the evolution of fins into limbs has long been a focus of interest to scientists, the evolution of neural control during this transition has not received much attention. Recent studies have provided significant progress in the understanding of the genetic and developmental bases of the evolution of fin/limb motor circuitry in vertebrates. Here we compare the organization of the motor neurons in the spinal cord of various vertebrates. We also discuss recent advances in our understanding of these events and how they can provide a mechanistic explanation for the evolution of fin/limb motor circuitry in vertebrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The clinical characteristics and therapy of syndrome of craniocerebral-cervical vertebral injury.

    PubMed

    Liu, Sheng; Liu, Yuan-xin; Wang, Cheng

    2005-06-01

    To explore the clinical characteristics and new treatment for syndrome of craniocerebral-cervical vertebral injury. The clinical data of 52 patients with head injury accompanied by neck injury were analyzed retrospectively. Craniocerebral injury could result in damage to cervical vertebrae, muscles, vessels and nerves, and even cause vertebral artery injury, which may lead to insufficient blood-supply of vertebral-basal artery. All patients were treated with cervical vertebral traction and the results were good. Acute craniocerebral injury with symptom of insufficient blood-supply of vertebral-basal artery, evident neurosis and atlas-axis half-dislocation in X-ray should be treated by cervical vertebral traction, which will yield better outcome.

  19. Assessment of non‐vertebral fracture risk in postmenopausal women

    PubMed Central

    Roux, Christian; Briot, Karine; Horlait, Stéphane; Varbanov, Alex; Watts, Nelson B; Boonen, Steven

    2007-01-01

    Background Non‐vertebral (NV) fractures are responsible for a great amount of morbidity, mortality and cost attributable to osteoporosis. Objectives To identify risk factors for NV fractures in postmenopausal women with osteoporosis, and to design an assessment tool for prediction of these fractures. Methods 2546 postmenopausal women with osteoporosis included in the placebo groups of three risedronate controlled trials were included (mean age 72 years, mean femoral T‐score −2.5; 60% and 53% of patients with prevalent vertebral and NV fractures, respectively). Over 3 years, 222 NV fractures were observed. Baseline data on 14 risk factors were included in a logistic regression analysis. Results 6 risk factors were associated with NV fracture risk: prevalent NV fracture (p = 0.004), number of prevalent vertebral fractures (p<0.001), femoral T‐score (p = 0.031), serum level of 25‐hydroxyvitamin D (p<0.001), age (p = 0.012) and height (p = 0.037). An NV risk index was developed by converting the multivariate logistic equation into an additive score. In the group of women with a score ⩾2.1, the incidence of NV fracture was 13.2% (95% CI 11.1 to 15.3), 1.5 times higher than that of the general population. Conclusions The NV risk index is a convenient tool for selection of patients with osteoporosis with a high risk for NV fractures, and may help to choose from available treatments those with a proven efficacy for reduction of NV fracture risk. PMID:17314119

  20. Goats as sentinel hosts for the detection of tick-borne encephalitis risk areas in the Canton of Valais, Switzerland.

    PubMed

    Rieille, Nadia; Klaus, Christine; Hoffmann, Donata; Péter, Olivier; Voordouw, Maarten J

    2017-07-11

    Tick-borne encephalitis (TBE) is an important tick-borne disease in Europe. Detection of the TBE virus (TBEV) in local populations of Ixodes ricinus ticks is the most reliable proof that a given area is at risk for TBE, but this approach is time-consuming and expensive. A cheaper and simpler approach is to use immunology-based methods to screen vertebrate hosts for TBEV-specific antibodies and subsequently test the tick populations at locations with seropositive animals. The purpose of the present study was to use goats as sentinel animals to identify new risk areas for TBE in the canton of Valais in Switzerland. A total of 4114 individual goat sera were screened for TBEV-specific antibodies using immunological methods. According to our ELISA assay, 175 goat sera reacted strongly with TBEV antigen, resulting in a seroprevalence rate of 4.3%. The serum neutralization test confirmed that 70 of the 173 ELISA-positive sera had neutralizing antibodies against TBEV. Most of the 26 seropositive goat flocks were detected in the known risk areas in the canton of Valais, with some spread into the connecting valley of Saas and to the east of the town of Brig. One seropositive site was 60 km to the west of the known TBEV-endemic area. At two of the three locations where goats were seropositive, the local tick populations also tested positive for TBEV. The combined approach of screening vertebrate hosts for TBEV-specific antibodies followed by testing the local tick population for TBEV allowed us to detect two new TBEV foci in the canton of Valais. The present study showed that goats are useful sentinel animals for the detection of new TBEV risk areas.

  1. The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation.

    PubMed

    Carvalho, Teresa Gil; Morahan, Belinda; John von Freyend, Simona; Boeuf, Philippe; Grau, Georges; Garcia-Bustos, Jose; Doerig, Christian

    2016-07-01

    Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cervical vertebral and dental maturity in Turkish subjects.

    PubMed

    Başaran, Güvenç; Ozer, Törün; Hamamci, Nihal

    2007-04-01

    The aim of this study was to investigate the relationships between the stages of calcification of teeth and the cervical vertebral maturity stages in Turkish subjects. A retrospective cross-sectional study was designed. The final study population consisted of 590 Turkish subjects. Statistical analysis of the data was performed with computer software. Spearman rank order correlation coefficients were used to assess the relationship between cervical vertebral and dental maturation. For a better understanding of the relationship between cervical vertebral maturation indexes and dental age, percentage distributions of the studied teeth were also calculated. Strict correlations were found between dental and cervical vertebral maturation of Turkish subjects. For males, the sequence from lowest to the highest was third molar, central incisor, canine, first premolar, second premolar, first molar, and second molar. For females, the sequence from lowest to the highest was third molar, canine, second premolar, first premolar, central incisor, first molar, and second molar. Dental maturation stages can be used as a reliable indicator of facial growth.

  3. Vertebral hemangioma coincident with metastasis of colon adenocarcinoma.

    PubMed

    Zapałowicz, Krzysztof; Bierzyńska-Macyszyn, Grażyna; Stasiów, Bartłomiej; Krzan, Aleksandra; Wierzycka, Beata; Kopycka, Anna

    2016-03-01

    The authors report on colon cancer metastasis to the L-3 vertebra, which had been previously found to be involved by an asymptomatic hemangioma. A 61-year-old female patient was admitted after onset of lumbar axial pain and weakness of the right quadriceps muscle. Her medical history included colon cancer that had been diagnosed 3 years earlier and was treated via a right hemicolectomy followed by chemotherapy. Presurgical imaging revealed an asymptomatic hemangioma in the L-3 vertebral body. Computed tomography and MRI of the spine were performed after admission and revealed a hemangioma in the L-3 vertebral body as well as a soft-tissue mass protruding from the L-3 vertebral body to the spinal canal. Treatment consisted of vertebroplasty of the hemangioma, left L-3 hemilaminectomy, and removal of the pathological mass from the spinal canal and the L-3 vertebral body. Histopathological examination revealed the presence of colon cancer metastasis and a hemangioma in the same vertebra.

  4. Allergenicity of vertebrate tropomyosins: Challenging an immunological dogma.

    PubMed

    González-Fernández, J; Daschner, A; Cuéllar, C

    With the exception of tilapia tropomyosin, other anecdotic reports of tropomyosin recognition of vertebrate origin are generally not accompanied by clinical significance and a dogmatic idea is generally accepted about the inexistence of allergenicity of vertebrate tropomyosins, based mainly on sequence similarity evaluations with human tropomyosins. Recently, a specific work-up of a tropomyosin sensitised patient with seafood allergy, demonstrated that the IgE-recognition of tropomyosin from different fish species can be clinically relevant. We hypothesise that some vertebrate tropomyosins could be relevant allergens. The hypothesis is based on the molecular evolution of the proteins and it was tested by in silico methods. Fish, which are primitive vertebrates, could have tropomyosins similar to those of invertebrates. If the hypothesis is confirmed, tropomyosin should be included in different allergy diagnosis tools to improve the medical protocols and management of patients with digestive or cutaneous symptoms after fish intake. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  5. Developmental mechanisms of intervertebral disc and vertebral column formation.

    PubMed

    Lawson, Lisa Y; Harfe, Brian D

    2017-11-01

    The vertebral column consists of repeating units of ossified vertebrae that are adjoined by fibrocartilagenous intervertebral discs. These structures form from the embryonic notochord and somitic mesoderm. In humans, congenital malformations of the vertebral column include scoliosis, kyphosis, spina bifida, and Klippel Feil syndrome. In adulthood, a common malady affecting the vertebral column includes disc degeneration and associated back pain. Indeed, recent reports estimate that low back pain is the number one cause of disability worldwide. Our review provides an overview of the molecular mechanisms underlying vertebral column morphogenesis and intervertebral disc development and maintenance, with an emphasis on what has been gleaned from recent genetic studies in mice. The aim of this review is to provide a developmental framework through which vertebral column formation can be understood so that ultimately, research scientists and clinicians alike can restore disc health with appropriately designed gene and cell-based therapies. WIREs Dev Biol 2017, 6:e283. doi: 10.1002/wdev.283 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  6. Corticotropin-releasing hormone: Mediator of vertebrate life stage transitions?

    PubMed

    Watanabe, Yugo; Grommen, Sylvia V H; De Groef, Bert

    2016-03-01

    Hormones, particularly thyroid hormones and corticosteroids, play critical roles in vertebrate life stage transitions such as amphibian metamorphosis, hatching in precocial birds, and smoltification in salmonids. Since they synergistically regulate several metabolic and developmental processes that accompany vertebrate life stage transitions, the existence of extensive cross-communication between the adrenal/interrenal and thyroidal axes is not surprising. Synergies of corticosteroids and thyroid hormones are based on effects at the level of tissue hormone sensitivity and gene regulation. In addition, in representative nonmammalian vertebrates, corticotropin-releasing hormone (CRH) stimulates hypophyseal thyrotropin secretion, and thus functions as a common regulator of both the adrenal/interrenal and thyroidal axes to release corticosteroids and thyroid hormones. The dual function of CRH has been speculated to control or affect the timing of vertebrate life history transitions across taxa. After a brief overview of recent insights in the molecular mechanisms behind the synergic actions of thyroid hormones and corticosteroids during life stage transitions, this review examines the evidence for a possible role of CRH in controlling vertebrate life stage transitions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The conserved role of Krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation.

    PubMed

    Nonchev, S; Maconochie, M; Vesque, C; Aparicio, S; Ariza-McNaughton, L; Manzanares, M; Maruthainar, K; Kuroiwa, A; Brenner, S; Charnay, P; Krumlauf, R

    1996-09-03

    Transient segmentation in the hindbrain is a fundamental morphogenetic phenomenon in the vertebrate embryo, and the restricted expression of subsets of Hox genes in the developing rhombomeric units and their derivatives is linked with regional specification. Here we show that patterning of the vertebrate hindbrain involves the direct upregulation of the chicken and pufferfish group 2 paralogous genes, Hoxb-2 and Hoxa-2, in rhombomeres 3 and 5 (r3 and r5) by the zinc finger gene Krox-20. We identified evolutionarily conserved r3/r5 enhancers that contain high affinity Krox-20. binding sites capable of mediating transactivation by Krox-20. In addition to conservation of binding sites critical for Krox-20 activity in the chicken Hoxa-2 and pufferfish Hoxb-2 genes, the r3/r5 enhancers are also characterized by the presence of a number of identical motifs likely to be involved in cooperative interactions with Krox-20 during the process of hindbrain patterning in vertebrates.

  8. The generation of vertebral segmental patterning in the chick embryo.

    PubMed

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-06-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  9. Evolution of phototransduction, vertebrate photoreceptors and retina.

    PubMed

    Lamb, Trevor D

    2013-09-01

    Evidence is reviewed from a wide range of studies relevant to the evolution of vertebrate photoreceptors and phototransduction, in order to permit the synthesis of a scenario for the major steps that occurred during the evolution of cones, rods and the vertebrate retina. The ancestral opsin originated more than 700 Mya (million years ago) and duplicated to form three branches before cnidarians diverged from our own lineage. During chordate evolution, ciliary opsins (C-opsins) underwent multiple stages of improvement, giving rise to the 'bleaching' opsins that characterise cones and rods. Prior to the '2R' rounds of whole genome duplication near the base of the vertebrate lineage, 'cone' photoreceptors already existed; they possessed a transduction cascade essentially the same as in modern cones, along with two classes of opsin: SWS and LWS (short- and long-wave-sensitive). These cones appear to have made synaptic contact directly onto ganglion cells, in a two-layered retina that resembled the pineal organ of extant non-mammalian vertebrates. Interestingly, those ganglion cells appear to be descendants of microvillar photoreceptor cells. No lens was associated with this two-layered retina, and it is likely to have mediated circadian timing rather than spatial vision. Subsequently, retinal bipolar cells evolved, as variants of ciliary photoreceptors, and greatly increased the computational power of the retina. With the advent of a lens and extraocular muscles, spatial imaging information became available for central processing, and gave rise to vision in vertebrates more than 500 Mya. The '2R' genome duplications permitted the refinement of cascade components suitable for both rods and cones, and also led to the emergence of five visual opsins. The exact timing of the emergence of 'true rods' is not yet clear, but it may not have occurred until after the divergence of jawed and jawless vertebrates. Copyright © 2013 The Author. Published by Elsevier Ltd.. All

  10. Molecular evolutionary analysis of vertebrate transducins: a role for amino acid variation in photoreceptor deactivation.

    PubMed

    Lin, Yi G; Weadick, Cameron J; Santini, Francesco; Chang, Belinda S W

    2013-12-01

    Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems.

  11. Role of sediment size and biostratinomy on the development of biofilms in recent avian vertebrate remains

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.

    2017-04-01

    Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.

  12. Macrobiota — helminths as active participants and partners of the microbiota in host intestinal homeostasis

    PubMed Central

    Gause, William C; Maizels, Rick M

    2016-01-01

    Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis. PMID:27116368

  13. Collection & Processing of Vertebrate Specimens for Arbovirus Studies.

    ERIC Educational Resources Information Center

    Sudia, W. Daniel; And Others

    Described are techniques used by the National Communicable Disease Center in obtaining blood and tissues from man and other vertebrates for arbovirus isolation and antibody studies. Also included are techniques for capturing and handling vertebrates; banding and marking; restraining and bleeding; storing of specimens to preserve antibody and…

  14. Imperfect Isolation: Factors and Filters Shaping Madagascar’s Extant Vertebrate Fauna

    PubMed Central

    Samonds, Karen E.; Godfrey, Laurie R.; Ali, Jason R.; Goodman, Steven M.; Vences, Miguel; Sutherland, Michael R.; Irwin, Mitchell T.; Krause, David W.

    2013-01-01

    Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar’s colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island’s biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island’s paleogeographical evolution to determine how particular events influenced the arrival of the island’s extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar’s tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island’s isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar’s extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar’s unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of

  15. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents.

    PubMed

    Wren, Tishya A L; Aggabao, Patricia C; Poorghasamians, Ervin; Chavez, Thomas A; Ponrartana, Skorn; Gilsanz, Vicente

    2017-01-01

    Lumbar lordosis (LL) is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA) when compared to boys-a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA) and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI), we measured vertebral cross-sectional area (CSA) and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9-13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001), while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02). When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001); this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001), suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as spondylolysis

  16. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents

    PubMed Central

    Aggabao, Patricia C.; Poorghasamians, Ervin; Chavez, Thomas A.

    2017-01-01

    Lumbar lordosis (LL) is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA) when compared to boys—a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA) and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI), we measured vertebral cross-sectional area (CSA) and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9–13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001), while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02). When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001); this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001), suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as

  17. Transcriptional Activity and Nuclear Localization of Cabut, the Drosophila Ortholog of Vertebrate TGF-β-Inducible Early-Response Gene (TIEG) Proteins

    PubMed Central

    Belacortu, Yaiza; Weiss, Ron; Kadener, Sebastian; Paricio, Nuria

    2012-01-01

    Background Cabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. Methodology/Principal Findings To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. Conclusions/Significance Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of

  18. Pleistocene vertebrates of the Yukon Territory

    NASA Astrophysics Data System (ADS)

    Harington, C. R.

    2011-08-01

    Unglaciated parts of the Yukon constitute one of the most important areas in North America for yielding Pleistocene vertebrate fossils. Nearly 30 vertebrate faunal localities are reviewed spanning a period of about 1.6 Ma (million years ago) to the close of the Pleistocene some 10 000 BP (radiocarbon years before present, taken as 1950). The vertebrate fossils represent at least 8 species of fishes, 1 amphibian, 41 species of birds and 83 species of mammals. Dominant among the large mammals are: steppe bison ( Bison priscus), horse ( Equus sp.), woolly mammoth ( Mammuthus primigenius), and caribou ( Rangifer tarandus) - signature species of the Mammoth Steppe fauna ( Fig. 1), which was widespread from the British Isles, through northern Europe, and Siberia to Alaska, Yukon and adjacent Northwest Territories. The Yukon faunas extend from Herschel Island in the north to Revenue Creek in the south and from the Alaskan border in the west to Ketza River in the east. The Yukon holds evidence of the earliest-known people in North America. Artifacts made from bison, mammoth and caribou bones from Bluefish Caves, Old Crow Basin and Dawson City areas show that people had a substantial knowledge of making and using bone tools at least by 25 000 BP, and possibly as early as 40 000 BP. A suggested chronological sequence of Yukon Pleistocene vertebrates ( Table 1) facilitates comparison of selected faunas and indicates the known duration of various taxa.

  19. Comparison of Radiofrequency-targeted Vertebral Augmentation With Balloon Kyphoplasty for the Treatment of Vertebral Compression Fractures: 2-Year Results.

    PubMed

    Bornemann, Rahel; Jansen, Tom R; Kabir, Koroush; Pennekamp, Peter H; Stüwe, Brit; Wirtz, Dieter C; Pflugmacher, Robert

    2017-04-01

    A retrospective study. The aim of this study was the evaluation of the safety and effectiveness of radiofrequency-targeted vertebral augmentation (RF-TVA) in comparison with balloon kyphoplasty (BK) for the treatment of acute painful vertebral compression fractures (VCFs) on the basis of matched pairs. Vertebroplasty and BK are the common surgical interventions for the treatment of VCF. Both are effective and safe but pose some risks such as adjacent fractures and cement leakage. In 2009, RF-TVA was introduced as an innovative augmentation procedure for the treatment of VCF. A total of 192 patients (116 female; 51-90 y) with VCF (n=303) at 1 to 3 levels were treated with RF-TVA or BK. Functionality (Oswestry Disability Index), pain (visual analogue scale), vertebral height (anterior, middle), and kyphotic angle were evaluated over a 2-year period (postoperatively, 3-4 d, 3, 6, 12, and 24 mo). In addition, operating time and occurrence of cement leakage were recorded. Pain and functionality were significantly improved after both treatments. In both groups, there was an increase in the vertebral height and a decrease in the kyphotic angle, which remained relatively consistent during 24 months. The incidence of cement leakage was 9.4% (n=9) in the RF-TVA group and 24.0% (n=25) in the BK group. The mean operating time with radiofrequency kyphoplasty was 25.9±9.9 minutes, and with balloon kyphoplasty 48.0±18.4 minutes. RF-TVA is a safe and effective procedure for the treatment of vertebral compression fractures when compared with BK. Improvement in pain and functional scores after RF-TVA are durable through 24 months postprocedure and remained better than those after BK at long-term follow-up. Operating time for RF-TVA is shorter and the risk of cement leakage is lower. Both procedures provided similar results in vertebral height restoration and reduction in the kyphotic angle.

  20. A new heart for a new head in vertebrate cardiopharyngeal evolution.

    PubMed

    Diogo, Rui; Kelly, Robert G; Christiaen, Lionel; Levine, Michael; Ziermann, Janine M; Molnar, Julia L; Noden, Drew M; Tzahor, Eldad

    2015-04-23

    It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.

  1. Thyroid dysfunction in an adult female population: A population-based study of Latin American Vertebral Osteoporosis Study (LAVOS) - Puerto Rico site.

    PubMed

    González-Rodríguez, Loida A; Felici-Giovanini, Marcos E; Haddock, Lillian

    2013-06-01

    To determine the prevalence of hypothyroidism in an adult female population in Puerto Rico and to determine the relationship between hypothyroidism, bone mineral density and vertebral and non-vertebral fractures in this population. Data from the 400 subjects' database of the Latin American Vertebral Osteoporosis Study (LAVOS), Puerto Rico site was reviewed. Patient's medical history, anthropometric data, current medications, laboratories, and DXA results was extracted. Subjects with thyroid dysfunction were identified based on their previous medical history and levels of TSH. Bone Mineral Density was classified using the World Health Organization criteria. Crude prevalence of thyroid dysfunction were estimated with a confidence of 95% and weighted by the population distribution by age, according to the distribution by age group in the 2000 census. Bone mineral densities and prevalence of vertebral and non-vertebral fractures were compared among the groups. The weighted prevalence of hyperthyroidism in this population was 0.0043% (95% CI: -0.0021%, 0.0107%). The weighted prevalence of hypothyroidism was 24.2% (95% CI: 19.9%, 28.4%). Increased prevalence of hypothyroidism was found in participants 70 years or older. The mean BMD at spine, hip and femoral neck was similar among the groups. No difference in the proportion of participants with vertebral and non-vertebral fractures was found among the groups. Our study found a high prevalence of hypothyroidism among adult postmenopausal females in Puerto Rico. No association between hypothyroidism and decreased bone mineral densities, vertebral or non-vertebral fractures was found in this population.

  2. Management of vertebral compression fracture in general practice: BEACH program.

    PubMed

    Megale, Rodrigo Z; Pollack, Allan; Britt, Helena; Latimer, Jane; Naganathan, Vasi; McLachlan, Andrew J; Ferreira, Manuela L

    2017-01-01

    The pain associated with vertebral compression fractures can cause significant loss of function and quality of life for older adults. Despite this, there is little consensus on how best to manage this condition. To describe usual care provided by general practitioners (GPs) in Australia for the management of vertebral compression fractures. Data from the Bettering the Evaluation And Care of Health (BEACH) program collected between April 2005 and March 2015 was used for this study. Each year, a random sample of approximately 1,000 GPs each recorded information on 100 consecutive encounters. We selected those encounters at which vertebral compression fracture was managed. Analyses of management options were limited to encounters with patients aged 50 years or over. i) patient demographics; ii) diagnoses/problems managed; iii) the management provided for vertebral compression fracture during the encounter. Robust 95% confidence intervals, adjusted for the cluster survey design, were used to assess significant differences between group means. Vertebral compression fractures were managed in 211 (0.022%; 95% CI: 0.018-0.025) of the 977,300 BEACH encounters recorded April 2005- March 2015. That provides a national annual estimate of 26,000 (95% CI: 22,000-29,000) encounters at which vertebral fractures were managed. At encounters with patients aged 50 years or over (those at higher risk of primary osteoporosis), prescription of analgesics was the most common management action, particularly opioids analgesics (47.1 per 100 vertebral fractures; 95% CI: 38.4-55.7). Prescriptions of paracetamol (8.2; 95% CI: 4-12.4) or non-steroidal anti-inflammatory drugs (4.1; 95% CI: 1.1-7.1) were less frequent. Non-pharmacological treatment was provided at a rate of 22.4 per 100 vertebral fractures (95% CI: 14.6-30.1). At least one referral (to hospital, specialist, allied health care or other) was given for 12.3 per 100 vertebral fractures (95% CI: 7.8-16.8). The prescription of oral

  3. Evolution and the origin of the visual retinoid cycle in vertebrates.

    PubMed

    Kusakabe, Takehiro G; Takimoto, Noriko; Jin, Minghao; Tsuda, Motoyuki

    2009-10-12

    Absorption of a photon by visual pigments induces isomerization of 11-cis-retinaldehyde (RAL) chromophore to all-trans-RAL. Since the opsins lacking 11-cis-RAL lose light sensitivity, sustained vision requires continuous regeneration of 11-cis-RAL via the process called 'visual cycle'. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual retinoid cycles between different photoreceptors of vertebrates, including rods, cones and non-visual photoreceptors, as well as between vertebrates and invertebrates. The visual cycle systems in ascidians, the closest living relatives of vertebrates, show an intermediate state between vertebrates and non-chordate invertebrates. The ascidian larva may use retinochrome-like opsin as the major isomerase. The entire process of the visual cycle can occur inside the photoreceptor cells with distinct subcellular compartmentalization, although the visual cycle components are also present in surrounding non-photoreceptor cells. The adult ascidian probably uses RPE65 isomerase, and trans-to-cis isomerization may occur in distinct cellular compartments, which is similar to the vertebrate situation. The complete transition to the sophisticated retinoid cycle of vertebrates may have required acquisition of new genes, such as interphotoreceptor retinoid-binding protein, and functional evolution of the visual cycle genes.

  4. The importance of morphometric radiographic vertebral assessment for the detection of patients who need pharmacological treatment of osteoporosis among postmenopausal diabetic Korean women.

    PubMed

    Choi, Y J; Yang, S-O; Shin, C S; Chung, Y-S

    2012-08-01

    Many diabetic patients with vertebral fractures remain undiagnosed and untreated. We found that more than two-thirds of osteoporotic diabetic women could not be identified for pharmacological treatment according to the NOF guidelines if without radiographic vertebral assessment. This study shows the importance of radiographic vertebral assessment for identifying patients who need treatment for osteoporosis in diabetic women. Diagnosis of vertebral fracture (VF) is important for identifying patients who need pharmacologic therapy for osteoporosis. However, many patients with vertebral fractures remain undiagnosed and untreated. This study evaluated the number of patients with VFs who would be unrecognized as candidates for osteoporosis treatments according to the National Osteoporosis Foundation (NOF) Clinician’s Guidelines to the Treatment of Osteoporosis, among postmenopausal diabetic Korean women without spinal imaging. A total of 873 postmenopausal diabetic women were enrolled. Lateral plain radiographs of the thoracolumbar spine and total hip BMD were obtained. The Fracture Risk Assessment Tool (FRAX®) probability was computed using the algorithm available online at http://www.shef.ac.uk/FRAX (South Korea version). The subjects with and without VFs were classified into candidates for osteoporosis treatment [Tx+by NOF] and not candidates for osteoporosis treatment [Tx−by NOF] according to the NOF pharmacologic treatment guidelines, regardless of the presence of VFs. Forty-six percent of postmenopausal diabetic womenhad morphometric VFs. Among the subjects with morphometric VFs, only 2% of the patients had previously diagnosed VFs by medical doctors. In addition, 73.6% of the patients with VFs were not included in the [Tx+by NOF] group, given the assumption of no radiographic diagnosis of VFs. With regard to increased risk of VFs in postmenopausal Korean women with type 2 diabetes mellitus, radiographic vertebral assessment would be useful for the clinical

  5. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model

    PubMed Central

    Fields, Peter D.; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-01-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis

  6. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

    PubMed

    Bento, Gilberto; Routtu, Jarkko; Fields, Peter D; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-02-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis.

  7. Immunosenescence in vertebrates and invertebrates.

    PubMed

    Müller, Ludmila; Fülöp, Tamas; Pawelec, Graham

    2013-04-02

    There is an established consensus that it is primarily the adaptive arm of immunity, and the T cell subset in particular, that is most susceptible to the deleterious changes with age known as "immunosenescence". Can we garner any clues as to why this might be by considering comparative immunology and the evolutionary emergence of adaptive and innate immunity? The immune system is assumed to have evolved to protect the organism against pathogens, but the way in which this is accomplished is different in the innate-vs-adaptive arms, and it is unclear why the latter is necessary. Are there special characteristics of adaptive immunity which might make the system more susceptible to age-associated dysfunction? Given recent accumulating findings that actually there are age-associated changes to innate immunity and that these are broadly similar in vertebrates and invertebrates, we suggest here that it is the special property of memory in the adaptive immune system which results in the accumulation of cells with a restricted receptor repertoire, dependent on the immunological history of the individual's exposures to pathogens over the lifetime, and which is commonly taken as a hallmark of "immunosenescence". However, we further hypothesize that this immunological remodelling per se does not necessarily convey a disadvantage to the individual (ie. is not necessarily "senescence" if it is not deleterious). Indeed, under certain circumstances, or potentially even as a rule, this adaptation to the individual host environment may confer an actual survival advantage.

  8. Origins of gonadotropin-releasing hormone (GnRH) in vertebrates: identification of a novel GnRH in a basal vertebrate, the sea lamprey.

    PubMed

    Kavanaugh, Scott I; Nozaki, Masumi; Sower, Stacia A

    2008-08-01

    We cloned a cDNA encoding a novel (GnRH), named lamprey GnRH-II, from the sea lamprey, a basal vertebrate. The deduced amino acid sequence of the newly identified lamprey GnRH-II is QHWSHGWFPG. The architecture of the precursor is similar to that reported for other GnRH precursors consisting of a signal peptide, decapeptide, a downstream processing site, and a GnRH-associated peptide; however, the gene for lamprey GnRH-II does not have introns in comparison with the gene organization for all other vertebrate GnRHs. Lamprey GnRH-II precursor transcript was widely expressed in a variety of tissues. In situ hybridization of the brain showed expression and localization of the transcript in the hypothalamus, medulla, and olfactory regions, whereas immunohistochemistry using a specific antiserum showed only GnRH-II cell bodies and processes in the preoptic nucleus/hypothalamus areas. Lamprey GnRH-II was shown to stimulate the hypothalamic-pituitary axis using in vivo and in vitro studies. Lamprey GnRH-II was also shown to activate the inositol phosphate signaling system in COS-7 cells transiently transfected with the lamprey GnRH receptor. These studies provide evidence for a novel lamprey GnRH that has a role as a third hypothalamic GnRH. In summary, the newly discovered lamprey GnRH-II offers a new paradigm of the origin of the vertebrate GnRH family. We hypothesize that due to a genome/gene duplication event, an ancestral gene gave rise to two lineages of GnRHs: the gnathostome GnRH and lamprey GnRH-II.

  9. Zygotic Genome Activation in Vertebrates.

    PubMed

    Jukam, David; Shariati, S Ali M; Skotheim, Jan M

    2017-08-21

    The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host.

    PubMed

    Klemm, Elizabeth J; Gkrania-Klotsas, Effrossyni; Hadfield, James; Forbester, Jessica L; Harris, Simon R; Hale, Christine; Heath, Jennifer N; Wileman, Thomas; Clare, Simon; Kane, Leanne; Goulding, David; Otto, Thomas D; Kay, Sally; Doffinger, Rainer; Cooke, Fiona J; Carmichael, Andrew; Lever, Andrew Ml; Parkhill, Julian; MacLennan, Calman A; Kumararatne, Dinakantha; Dougan, Gordon; Kingsley, Robert A

    2016-03-01

    Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts 1 . Host adaptation can potentially progress to host restriction where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis ( S . Enteritidis) infection covering 15 years in an interleukin (IL)-12 β-1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harbored a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process.

  11. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches.

    PubMed

    Martinsen, Ellen S; Perkins, Susan L; Schall, Jos J

    2008-04-01

    Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.

  12. Posterior internal fixation plus vertebral bone implantation under navigational aid for thoracolumbar fracture treatment

    PubMed Central

    ZHOU, WEI; KONG, WEIQING; ZHAO, BIZHEN; FU, YISHAN; ZHANG, TAO; XU, JIANGUANG

    2013-01-01

    The aim of this study was to investigate the method of posterior thoracolumbar vertebral pedicle screw reduction and fixation combined with vertebral bone implantation via the affected vertebral body under navigational aid for the treatment of thoracolumbar fractures. The efficacy of the procedure was also measured. Between June 2005 and March 2011, posterior thoracolumbar vertebral pedicle screw reduction and fixation plus artificial bone implantation via the affected vertebral pedicle under navigational aid was used to treat 30 patients with thoracolumbar fractures, including 18 males and 12 females, ranging in age from 21 to 57 years. Compared with the values prior to surgery, intraspinal occupation, vertebral height ratio and Cobb angle at the follow-up were significantly improved. At the long-term follow-up, the postoperative Cobb angle loss was <1° and the anterior vertebral body height loss was <2 mm. Posterior thoracolumbar vertebral pedicle screw reduction and fixation combined with vertebral bone implantation via the affected vertebral body under navigational aid may increase the accuracy and safety of surgery, and it is an ideal method of internal implantation. Bone implantation via the affected vertebral body may increase vertebral stability. PMID:23935737

  13. Sensing disease and danger: A survey of vertebrate PRRs and their origins

    USGS Publications Warehouse

    Hansen, John D.; Vojtech, Lucia N.; Laing, Kerry J.

    2011-01-01

    A key facet of the innate immune response lays in its ability to recognize and respond to invading microorganisms and cellular disturbances. Through the use of germ-line encoded PRRs, the innate immune system is capable of detecting invariant pathogen motifs termed pathogen-associated molecular patterns (PAMPS) that are distinct from host encoded proteins or products released from dying cells, which are known as damage-associated molecular patterns (DAMPs). PAMPs and DAMPs include both protein and nucleic acids for the detection and response to pathogens and metabolic "danger" signals. This is by far one of the most active areas of research as recent studies have shown retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain, leucine-rich repeat containing proteins (NLRs) and Toll-like receptors (TLRs) and the recently described AIM-like receptors (ALRs) are responsible for initiating interferon production or the assembly and activation of the inflammasome, ultimately resulting in the release of bioactive IL-1 family members. Overall, the vertebrate PRR recognition machinery consists of seven domains (e.g., Death, NACHT, CARD, TIR, LRR, PYD, helicase), most of which can be traced to the very origins of the deuterostomes. This review is intended to provide an overview of the basic components that are used by vertebrates to detect and respond to pathogens, with an emphasis on these receptors in fish as well as a brief note on their likely origins.

  14. Genome-wide association study for radiographic vertebral fractures: A potential role for the 16q24 BMD locus

    PubMed Central

    Oei, Ling; Estrada, Karol; Duncan, Emma L.; Christiansen, Claus; Liu, Ching-Ti; Langdahl, Bente L.; Obermayer-Pietsch, Barbara; Riancho, José A.; Prince, Richard L.; van Schoor, Natasja M.; McCloskey, Eugene; Hsu, Yi-Hsiang; Evangelou, Evangelos; Ntzani, Evangelia; Evans, David M.; Alonso, Nerea; Husted, Lise B.; Valero, Carmen; Hernandez, Jose L.; Lewis, Joshua R.; Kaptoge, Stephen K.; Zhu, Kun; Cupples, L. Adrienne; Medina-Gómez, Carolina; Vandenput, Liesbeth; Kim, Ghi Su; Lee, Seung Hun; Castaño-Betancourt, Martha C.; Oei, Edwin H.G.; Martinez, Josefina; Daroszewska, Anna; van der Klift, Marjolein; Mellström, Dan; Herrera, Lizbeth; Karlsson, Magnus K.; Hofman, Albert; Ljunggren, Östen; Pols, Huibert A.P.; Stolk, Lisette; van Meurs, Joyce B.J.; Ioannidis, John P.A.; Zillikens, M. Carola; Lips, Paul; Karasik, David; Uitterlinden, André G.; Styrkarsdottir, Unnur; Brown, Matthew A.; Koh, Jung-Min; Richards, J. Brent; Reeve, Jonathan; Ohlsson, Claes; Ralston, Stuart H.; Kiel, Douglas P.; Rivadeneira, Fernando

    2014-01-01

    Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey–Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey–Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han–Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p < 5 × 10−8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p=4.6×10−8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98–1.14; p = 0.17), displaying high degree of heterogeneity (I2=57%; Qhet p =0.0006). Under Han–Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is

  15. Diagnosis and Management of Vertebral Compression Fractures.

    PubMed

    McCarthy, Jason; Davis, Amy

    2016-07-01

    Vertebral compression fractures (VCFs) are the most common complication of osteoporosis, affecting more than 700,000 Americans annually. Fracture risk increases with age, with four in 10 white women older than 50 years experiencing a hip, spine, or vertebral fracture in their lifetime. VCFs can lead to chronic pain, disfigurement, height loss, impaired activities of daily living, increased risk of pressure sores, pneumonia, and psychological distress. Patients with an acute VCF may report abrupt onset of back pain with position changes, coughing, sneezing, or lifting. Physical examination findings are often normal, but can demonstrate kyphosis and midline spine tenderness. More than two-thirds of patients are asymptomatic and diagnosed incidentally on plain radiography. Acute VCFs may be treated with analgesics such as acetaminophen, nonsteroidal anti-inflammatory drugs, narcotics, and calcitonin. Physicians must be mindful of medication adverse effects in older patients. Other conservative therapeutic options include limited bed rest, bracing, physical therapy, nerve root blocks, and epidural injections. Percutaneous vertebral augmentation, including vertebroplasty and kyphoplasty, is controversial, but can be considered in patients with inadequate pain relief with nonsurgical care or when persistent pain substantially affects quality of life. Family physicians can help prevent vertebral fractures through management of risk factors and the treatment of osteoporosis.

  16. Humans recognize emotional arousal in vocalizations across all classes of terrestrial vertebrates: evidence for acoustic universals.

    PubMed

    Filippi, Piera; Congdon, Jenna V; Hoang, John; Bowling, Daniel L; Reber, Stephan A; Pašukonis, Andrius; Hoeschele, Marisa; Ocklenburg, Sebastian; de Boer, Bart; Sturdy, Christopher B; Newen, Albert; Güntürkün, Onur

    2017-07-26

    Writing over a century ago, Darwin hypothesized that vocal expression of emotion dates back to our earliest terrestrial ancestors. If this hypothesis is true, we should expect to find cross-species acoustic universals in emotional vocalizations. Studies suggest that acoustic attributes of aroused vocalizations are shared across many mammalian species, and that humans can use these attributes to infer emotional content. But do these acoustic attributes extend to non-mammalian vertebrates? In this study, we asked human participants to judge the emotional content of vocalizations of nine vertebrate species representing three different biological classes-Amphibia, Reptilia (non-aves and aves) and Mammalia. We found that humans are able to identify higher levels of arousal in vocalizations across all species. This result was consistent across different language groups (English, German and Mandarin native speakers), suggesting that this ability is biologically rooted in humans. Our findings indicate that humans use multiple acoustic parameters to infer relative arousal in vocalizations for each species, but mainly rely on fundamental frequency and spectral centre of gravity to identify higher arousal vocalizations across species. These results suggest that fundamental mechanisms of vocal emotional expression are shared among vertebrates and could represent a homologous signalling system. © 2017 The Author(s).

  17. The role of the notochord in amniote vertebral column segmentation.

    PubMed

    Ward, Lizzy; Pang, Angel S W; Evans, Susan E; Stern, Claudio D

    2018-07-01

    The vertebral column is segmented, comprising an alternating series of vertebrae and intervertebral discs along the head-tail axis. The vertebrae and outer portion (annulus fibrosus) of the disc are derived from the sclerotome part of the somites, whereas the inner nucleus pulposus of the disc is derived from the notochord. Here we investigate the role of the notochord in vertebral patterning through a series of microsurgical experiments in chick embryos. Ablation of the notochord causes loss of segmentation of vertebral bodies and discs. However, the notochord cannot segment in the absence of the surrounding sclerotome. To test whether the notochord dictates sclerotome segmentation, we grafted an ectopic notochord. We find that the intrinsic segmentation of the sclerotome is dominant over any segmental information the notochord may possess, and no evidence that the chick notochord is intrinsically segmented. We propose that the segmental pattern of vertebral bodies and discs in chick is dictated by the sclerotome, which first signals to the notochord to ensure that the nucleus pulposus develops in register with the somite-derived annulus fibrosus. Later, the notochord is required for maintenance of sclerotome segmentation as the mature vertebral bodies and intervertebral discs form. These results highlight differences in vertebral development between amniotes and teleosts including zebrafish, where the notochord dictates the segmental pattern. The relative importance of the sclerotome and notochord in vertebral patterning has changed significantly during evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The origin of conodonts and of vertebrate mineralized skeletons

    USGS Publications Warehouse

    Murdock, Duncan J.E.; Dong, Xi-Ping; Repetski, John E.; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C.J.

    2013-01-01

    Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the ‘inside-out’ hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.

  19. A new heart for a new head in vertebrate cardiopharyngeal evolution

    PubMed Central

    Diogo, Rui; Kelly, Robert G.; Christiaen, Lionel; Levine, Michael; Ziermann, Janine M.; Molnar, Julia L.; Noden, Drew M.; Tzahor, Eldad

    2015-01-01

    It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts — both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates. PMID:25903628

  20. The Gills of Reef Fish Support a Distinct Microbiome Influenced by Host-Specific Factors.

    PubMed

    Pratte, Zoe A; Besson, Marc; Hollman, Rebecca D; Stewart, Frank J

    2018-05-01

    Teleost fish represent the most diverse of the vertebrate groups and play important roles in food webs, as ecosystem engineers, and as vectors for microorganisms. However, the microbial ecology of fishes remains underexplored for most host taxa and for certain niches on the fish body. This is particularly true for the gills, the key sites of respiration and waste exchange in fishes. Here we provide a comprehensive analysis of the gill microbiome. We focus on ecologically diverse taxa from coral reefs around Moorea, sampling the gills and intestines of adults and juveniles representing 15 families. The gill microbiome composition differed significantly from that of the gut for both adults and juveniles, with fish-associated niches having lower alpha diversity values and higher beta diversity values than those for seawater, sediment, and alga-associated microbiomes. Of ∼45,000 operational taxonomic units (OTUs) detected across all samples, 11% and 13% were detected only in the gill and the intestine, respectively. OTUs most enriched in the gill included members of the gammaproteobacterial genus Shewanella and the family Endozoicimonaceae In adult fish, both gill and intestinal microbiomes varied significantly among host species grouped by diet category. Gill and intestinal microbiomes from the same individual were more similar to one another than to gill and intestinal microbiomes from different individuals. These results demonstrate that distinct body sites are jointly influenced by host-specific organizing factors operating at the level of the host individual. The results also identify taxonomic signatures unique to the gill and the intestine, confirming fish-associated niches as distinct reservoirs of marine microbial diversity. IMPORTANCE Fish breathe and excrete waste through their gills. The gills are also potential sites of pathogen invasion and colonization by other microbes. However, we know little about the microbial communities that live on the gill and

  1. A Common Fold Mediates Vertebrate Defense and Bacterial Attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.

    2008-10-02

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterialmore » and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.« less

  2. Hepatocyte Nuclear Factor 4α (HNF4α) Is a Transcription Factor of Vertebrate Fatty Acyl Desaturase Gene as Identified in Marine Teleost Siganus canaliculatus

    PubMed Central

    Dong, Yewei; Wang, Shuqi; Chen, Junliang; Zhang, Qinghao; Liu, Yang; You, Cuihong; Monroig, Óscar; Tocher, Douglas R.; Li, Yuanyou

    2016-01-01

    Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understand regulatory mechanisms of transcription of Δ4 Fad, the gene promoter was cloned and characterized in the present study. An upstream sequence of 1859 bp from the initiation codon ATG was cloned as the promoter candidate. On the basis of bioinformatic analysis, several binding sites of transcription factors (TF) including GATA binding protein 2 (GATA-2), CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), nuclear factor Y (NF-Y), hepatocyte nuclear factor 4α (HNF4α) and sterol regulatory element (SRE), were identified in the promoter by site-directed mutation and functional assays. HNF4α and NF-1 were confirmed to interact with the core promoter of Δ4 Fad by gel shift assay and mass spectrometry. Moreover, over-expression of HNF4α increased promoter activity in HEK 293T cells and mRNA level of Δ4 Fad in rabbitfish primary hepatocytes, respectively. The results indicated that HNF4α is a TF of rabbitfish Δ4 Fad. To our knowledge, this is the first report on promoter structure of a Δ4 Fad, and also the first demonstration of HNF4α as a TF of vertebrate Fad gene involved in transcription regulation of LC-PUFA biosynthesis. PMID:27472219

  3. Novel high throughput pooled shRNA screening identifies NQO1 as a potential drug target for host directed therapy for tuberculosis

    PubMed Central

    Li, Qing; Karim, Ahmad F.; Ding, Xuedong; Das, Biswajit; Dobrowolski, Curtis; Gibson, Richard M.; Quiñones-Mateu, Miguel E.; Karn, Jonathan; Rojas, Roxana E.

    2016-01-01

    Chemical regulation of macrophage function is one key strategy for developing host-directed adjuvant therapies for tuberculosis (TB). A critical step to develop these therapies is the identification and characterization of specific macrophage molecules and pathways with a high potential to serve as drug targets. Using a barcoded lentivirus-based pooled short-hairpin RNA (shRNA) library combined with next generation sequencing, we identified 205 silenced host genes highly enriched in mycobacteria-resistant macrophages. Twenty-one of these “hits” belonged to the oxidoreductase functional category. NAD(P)H:quinone oxidoreductase 1 (NQO1) was the top oxidoreductase “hit”. NQO1 expression was increased after mycobacterial infection, and NQO1 knockdown increased macrophage differentiation, NF-κB activation, and the secretion of pro-inflammatory cytokines TNF-α and IL-1β in response to infection. This suggests that mycobacteria hijacks NQO1 to down-regulate pro-inflammatory and anti-bacterial functions. The competitive inhibitor of NQO1 dicoumarol synergized with rifampin to promote intracellular killing of mycobacteria. Thus, NQO1 is a new host target in mycobacterial infection that could potentially be exploited to increase antibiotic efficacy in vivo. Our findings also suggest that pooled shRNA libraries could be valuable tools for genome-wide screening in the search for novel druggable host targets for adjunctive TB therapies. PMID:27297123

  4. Orientation-Selective Retinal Circuits in Vertebrates

    PubMed Central

    Antinucci, Paride; Hindges, Robert

    2018-01-01

    Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such ‘orientation-selective’ neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates. PMID:29467629

  5. Orientation-Selective Retinal Circuits in Vertebrates.

    PubMed

    Antinucci, Paride; Hindges, Robert

    2018-01-01

    Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such 'orientation-selective' neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.

  6. A finite element evaluation of the moment arm hypothesis for altered vertebral shear failure force.

    PubMed

    Howarth, Samuel J; Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    The mechanism of vertebral shear failure is likely a bending moment generated about the pars interarticularis by facet contact, and the moment arm length (MAL) between the centroid of facet contact and the location of pars interarticularis failure has been hypothesised to be an influential modulator of shear failure force. To quantitatively evaluate this hypothesis, anterior shear of C3 over C4 was simulated in a finite element model of the porcine C3-C4 vertebral joint with each combination of five compressive force magnitudes (0-60% of estimated compressive failure force) and three postures (flexed, neutral and extended). Bilateral locations of peak stress within C3's pars interarticularis were identified along with the centroids of contact force on the inferior facets. These measurements were used to calculate the MAL of facet contact force. Changes in MAL were also related to shear failure forces measured from similar in vitro tests. Flexed and extended vertebral postures respectively increased and decreased the MAL by 6.6% and 4.8%. The MAL decreased by only 2.6% from the smallest to the largest compressive force. Furthermore, altered MAL explained 70% of the variance in measured shear failure force from comparable in vitro testing with larger MALs being associated with lower shear failure forces. Our results confirmed that the MAL is indeed a significant modulator of vertebral shear failure force. Considering spine flexion is necessary when assessing low-back shear injury potential because of the association between altered facet articulation and lower vertebral shear failure tolerance.

  7. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature.

    PubMed

    Machado, Ricardo Ar; McClure, Mark; Hervé, Maxime R; Baldwin, Ian T; Erb, Matthias

    2016-06-29

    Endogenous jasmonates are important regulators of plant defenses. If and how they enable plants to maintain their reproductive output when facing community-level herbivory under natural conditions, however, remains unknown. We demonstrate that jasmonate-deficient Nicotiana attenuata plants suffer more damage by arthropod and vertebrate herbivores than jasmonate-producing plants in nature. However, only damage by vertebrate herbivores translates into a significant reduction in flower production. Vertebrate stem peeling has the strongest negative impact on plant flower production. Stems are defended by jasmonate-dependent nicotine, and the native cottontail rabbit Sylvilagus nuttallii avoids jasmonate-producing N. attenuata shoots because of their high levels of nicotine. Thus, endogenous jasmonates enable plants to resist different types of herbivores in nature, and jasmonate-dependent defenses are important for plants to maintain their reproductive potential when facing vertebrate herbivory. Ecological and evolutionary models on plant defense signaling should aim at integrating arthropod and vertebrate herbivory at the community level.

  8. Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution.

    PubMed

    Roth, Olivia; Beemelmanns, Anne; Barribeau, Seth M; Sadd, Ben M

    2018-06-18

    Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring's immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa.

  9. High prevalence of radiological vertebral fractures in HIV-infected males.

    PubMed

    Torti, Carlo; Mazziotti, Gherardo; Soldini, Pier Antonio; Focà, Emanuele; Maroldi, Roberto; Gotti, Daria; Carosi, Giampiero; Giustina, Andrea

    2012-06-01

    Age-related co-morbidities including osteoporosis are relevant in patients responding to combination antiretroviral therapy (cART). Vertebral fractures are common osteoporotic fractures and their diagnosis is useful for managing at-risk individuals. However, there are few data from HIV-infected patients. Therefore, the aim of this study was to determine the prevalence of and factors associated with vertebral fractures in a population of HIV-infected males. A cross-sectional study of 160 HIV-infected patients with available chest X-rays was conducted from 1998 to 2010. One hundred and sixty-three males with comparable age and with no history of HIV infection were recruited as controls. Semi-quantitative evaluation of vertebral heights in lateral chest X-rays and quantitative morphometry assessment of centrally digitized images using dedicated morphometry software were utilized to detect prevalent vertebral fractures. The result showed that the vertebral fractures were detected in 43/160 (26.9%) HIV-infected patients and in 21/163 (12.9%) controls (P = 0.002). In HIV-infected patients with fractures, 27 had two or more fractures and ten patients had severe fractures. The prevalence of any fractures and multiple fractures in HIV-infected patients receiving cART (29.6 and 20.0%) was slightly higher than in HIV-infected patients not exposed to cART (17.1 and 5.7%), but significantly higher than control subjects (12.9 and 3.7%). At multivariable analyses, body mass index and diabetes mellitus were independently correlated with vertebral fractures in HIV-infected patients. We concluded that a significant proportion of HIV-infected males receiving cART showed vertebral fractures. Furthermore, proactive diagnosis of vertebral fragility fractures is particularly relevant in patients who are overweight or suffer from diabetes.

  10. Thoracic kyphosis and rate of incident vertebral fractures: the Fracture Intervention Trial.

    PubMed

    Katzman, W B; Vittinghoff, E; Kado, D M; Lane, N E; Ensrud, K E; Shipp, K

    2016-03-01

    Biomechanical analyses support the theory that thoracic spine hyperkyphosis may increase risk of new vertebral fractures. While greater kyphosis was associated with an increased rate of incident vertebral fractures, our analysis does not show an independent association of kyphosis on incident fracture, after adjustment for prevalent vertebral fracture. Excessive kyphosis may still be a clinical marker for prevalent vertebral fracture. Biomechanical analyses suggest hyperkyphosis may increase risk of incident vertebral fracture by increasing the load on vertebral bodies during daily activities. We propose to assess the association of kyphosis with incident radiographic vertebral fracture. We used data from the Fracture Intervention Trial among 3038 women 55-81 years of age with low bone mineral density (BMD). Baseline kyphosis angle was measured using a Debrunner kyphometer. Vertebral fractures were assessed at baseline and follow-up from lateral radiographs of the thoracic and lumbar spine. We used Poisson models to estimate the independent association of kyphosis with incident fracture, controlling for age and femoral neck BMD. Mean baseline kyphosis was 48° (SD = 12) (range 7-83). At baseline, 962 (32%) participants had a prevalent fracture. There were 221 incident fractures over a median of 4 years. At baseline, prevalent fracture was associated with 3.7° greater average kyphosis (95% CI 2.8-4.6, p < 0.0005), adjusting for age and femoral neck BMD. Before adjusting for prevalent fracture, each 10° greater kyphosis was associated with 22% increase (95% CI 8-38%, p = 0.001) in annualized rate of new radiographic vertebral fracture, adjusting for age and femoral neck BMD. After additional adjustment for prevalent fracture, estimated increased annualized rate was attenuated and no longer significant, 8% per 10° kyphosis (95% CI -4 to 22%, p = 0.18). While greater kyphosis increased the rate of incident vertebral fractures, our analysis does not

  11. Thoracic kyphosis and rate of incident vertebral fractures: the Fracture Intervention Trial

    PubMed Central

    Vittinghoff, E.; Kado, D. M.; Lane, N. E.; Ensrud, K. E.; Shipp, K.

    2016-01-01

    Summary Biomechanical analyses support the theory that thoracic spine hyperkyphosis may increase risk of new vertebral fractures. While greater kyphosis was associated with an increased rate of incident vertebral fractures, our analysis does not show an independent association of kyphosis on incident fracture, after adjustment for prevalent vertebral fracture. Excessive kyphosis may still be a clinical marker for prevalent vertebral fracture. Introduction Biomechanical analyses suggest hyperkyphosis may increase risk of incident vertebral fracture by increasing the load on vertebral bodies during daily activities. We propose to assess the association of kyphosis with incident radiographic vertebral fracture. Methods We used data from the Fracture Intervention Trial among 3038 women 55–81 years of age with low bone mineral density (BMD). Baseline kyphosis angle was measured using a Debrunner kyphometer. Vertebral fractures were assessed at baseline and follow-up from lateral radiographs of the thoracic and lumbar spine. We used Poisson models to estimate the independent association of kyphosis with incident fracture, controlling for age and femoral neck BMD. Results Mean baseline kyphosis was 48° (SD = 12) (range 7–83). At baseline, 962 (32 %) participants had a prevalent fracture. There were 221 incident fractures over a median of 4 years. At baseline, prevalent fracture was associated with 3.7° greater average kyphosis (95 % CI 2.8–4.6, p < 0.0005), adjusting for age and femoral neck BMD. Before adjusting for prevalent fracture, each 10° greater kyphosis was associated with 22 % increase (95 % CI 8–38 %, p = 0.001) in annualized rate of new radiographic vertebral fracture, adjusting for age and femoral neck BMD. After additional adjustment for prevalent fracture, estimated increased annualized rate was attenuated and no longer significant, 8 % per 10° kyphosis (95 % CI −4 to 22 %, p = 0.18). Conclusions While greater kyphosis increased the rate of

  12. The Australian scincid lizard Menetia greyii: a new instance of widespread vertebrate parthenogenesis.

    PubMed

    Adams, Mark; Foster, Ralph; Hutchinson, Mark N; Hutchinson, Rhonda G; Donnellan, Steve C

    2003-11-01

    Molecular data derived from allozymes and mitochondrial nucleotide sequences, in combination with karyotypes, sex ratios, and inheritance data, have revealed the widespread Australian lizard Menetia greyii to be a complex of sexual and triploid unisexual taxa. Three sexual species, three presumed parthenogenetic lineages, and one animal of uncertain status were detected amongst 145 animals examined from south-central Australia, an area representing less than one-seventh of the total distribution of the complex. Parthenogenesis appears to have originated via interspecific hybridization, although presumed sexual ancestors could only be identified in two cases. The allozyme and mtDNA data reveal the presence of many distinct clones within the presumed parthenogenetic lineages. This new instance of vertebrate parthenogenesis is a first for the Scincidae and only the second definitive case of unisexuality in an indigenous Australian vertebrate.

  13. Identification of non-visual photomotor response cells in the vertebrate hindbrain

    PubMed Central

    Kokel, David; Dunn, Timothy W.; Ahrens, Misha B.; Alshut, Rüdiger; Cheung, Chung Yan J.; Saint-Amant, Louis; Bruni, Giancarlo; Mateus, Rita; van Ham, Tjakko J.; Shiraki, Tomoya; Fukada, Yoshitaka; Kojima, Daisuke; Yeh, Jing-Ruey J.; Mikut, Ralf; von Lintig, Johannes; Engert, Florian; Peterson, Randall T.

    2013-01-01

    Non-visual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of non-visual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light, but does not require the eyes, pineal gland or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical non-visual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain. PMID:23447595

  14. Evolutionary perspectives on clonal reproduction in vertebrate animals

    PubMed Central

    Avise, John C.

    2015-01-01

    A synopsis is provided of different expressions of whole-animal vertebrate clonality (asexual organismal-level reproduction), both in the laboratory and in nature. For vertebrate taxa, such clonal phenomena include the following: human-mediated cloning via artificial nuclear transfer; intergenerational clonality in nature via parthenogenesis and gynogenesis; intergenerational hemiclonality via hybridogenesis and kleptogenesis; intragenerational clonality via polyembryony; and what in effect qualifies as clonal replication via self-fertilization and intense inbreeding by simultaneous hermaphrodites. Each of these clonal or quasi-clonal mechanisms is described, and its evolutionary genetic ramifications are addressed. By affording an atypical vantage on standard vertebrate reproduction, clonality offers fresh perspectives on the evolutionary and ecological significance of recombination-derived genetic variety. PMID:26195735

  15. Bilateral aortic origins of the vertebral arteries with right vertebral artery arising distal to left subclavian artery: case report.

    PubMed

    Al-Okaili, Riyadh; Schwartz, Eric D

    2007-02-01

    Bilateral aortic origins of the vertebral arteries are a rare anatomic variant, with fewer than 20 cases reported in the literature. This particular variant has only been reported twice. A 35-year-old woman presented to the emergency department after trauma to the head and a witnessed convulsion. Subsequent workup included MRI/MRA, which resulted in identification of the anomaly. The clinical importance of aortic arch anomalies lies in that it may be a source of misinterpretation, as one may conclude occlusion of the vertebral artery if the aberrant origin is not included in the MRA or CTA imaging parameters. Therefore, it is important to scan through the entire aortic arch to just below the level of the ligamentum arteriosum when performing these noninvasive modalities. In addition, vertebral arteries arising from the aortic arch have an increased risk of dissection.

  16. Relevant signs of stable and unstable thoracolumbar vertebral column trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehweiler, J.A.; Daffner, R.H.; Osborne, R.L.

    1981-12-01

    One-hundred and seventeen patients with acute thoracolumbar vertebral column fracture or fracture-dislocations were analyzed and classified into stable (36%) and unstable (64%). Eight helpful roentgen signs were observed that may serve to direct attention to serious underlying, often occult, fractures and dislocations. The changes fall into four principal groups: abnormal soft tissues, abnormal vertebral alignment, abnormal joints, and widened vertebral canal. All stable and unstable lesions showed abnormal soft tissues, while 70% demonstrated kyphosis and/or scoliosis, and an abnormal adjacent intervertebral disk space. All unstable lesions showed one or more of the following signs: displaced vertebra, widened interspinous space, abnormalmore » apophyseal joint(s), and widened vertebral canal.« less

  17. Hyperconcavity of the lumbar vertebral endplates in the elite football lineman.

    PubMed

    Moorman, Claude T; Johnson, David C; Pavlov, Helene; Barnes, Ronnie; Warren, Russell F; Speer, Kevin P; Guettler, Joseph H

    2004-09-01

    Hyperconcavity of the vertebral endplates is a previously unreported radiologic phenomenon. To analyze hyperconcavity of the vertebral endplates with expansion of the disk space in pre-National Football League lineman and to determine its clinical significance. Descriptive anatomical study. Over a 2-year period (1992-1993), 266 elite football linemen were evaluated at the National Football League scouting combine held in Indianapolis, Indiana. Evaluation focused on the lumbosacral spine and included history, physical examination, and lateral radiographs. Measurements were taken of all the vertebral endplate defects of involved vertebrae and compared with an age-matched control group of 110 patients. The analyzed data revealed the following: (1) hyperconcavity of the vertebral endplates appeared as a distinct entity in a high percentage of pre-National Football League lineman (33%) compared with age-matched controls (8%), (2) there was a trend toward a lower incidence of lumbosacral spine symptoms in those players who displayed hyperconcavity of the vertebral endplates (16%) versus those who did not (25%), and (3) when hyperconcavity of the vertebral endplates was present, all 5 lumbosacral disk spaces were commonly affected. Hyperconcavity of the vertebral endplates and hypertrophy of the disk space are likely adaptive changes occurring over time in response to the repetitive high loading and axial stress experienced in football line play.

  18. Anomalous Origin of the Right Vertebral Artery: Incidence and Significance.

    PubMed

    Maiti, Tanmoy Kumar; Konar, Subhas Kanti; Bir, Shyamal; Nanda, Anil; Cuellar, Hugo

    2016-05-01

    Detailed knowledge about anatomic variations of the aortic arch and its multiple branches is extremely important to endovascular and diagnostic radiologists. It is often hypothesized that anomalous origin and distribution of large aortic vessels may alter the cerebral hemodynamics and potentially lead to a vascular pathology. In this article, we describe a case of anomalous origin of the right vertebral artery, which was detected during an intervention. We further reviewed the available literature of anomalous origin of the right vertebral artery. The probable embryologic development and clinical significance are discussed. The incidence of anomalous origin of a vertebral artery seems to be underestimated in recent literature. A careful review of the literature shows more than 100 such cases. The right vertebral artery can arise from the aortic arch or one of its branches. Dual origin of the vertebral artery is not uncommon. The embryologic developmental hypotheses are contradictory and complex. Anomalous origin of the right vertebral artery may not be the sole reason behind a disease process. However, it can certainly lead to a misdiagnosis during diagnostic vascular studies. Detailed information is essential for any surgery or endovascular intervention in this location. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis

    PubMed Central

    Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim

  20. Physical performance and radiographic and clinical vertebral fractures in older men.

    PubMed

    Cawthon, Peggy M; Blackwell, Terri L; Marshall, Lynn M; Fink, Howard A; Kado, Deborah M; Ensrud, Kristine E; Cauley, Jane A; Black, Dennis; Orwoll, Eric S; Cummings, Steven R; Schousboe, John T

    2014-09-01

    In men, the association between poor physical performance and likelihood of incident vertebral fractures is unknown. Using data from the MrOS study (N = 5958), we describe the association between baseline physical performance (walking speed, grip strength, leg power, repeat chair stands, narrow walk [dynamic balance]) and incidence of radiographic and clinical vertebral fractures. At baseline and follow-up an average of 4.6 years later, radiographic vertebral fractures were assessed using semiquantitative (SQ) scoring on lateral thoracic and lumbar radiographs. Logistic regression modeled the association between physical performance and incident radiographic vertebral fractures (change in SQ grade ≥1 from baseline to follow-up). Every 4 months after baseline, participants self-reported fractures; clinical vertebral fractures were confirmed by centralized radiologist review of the baseline study radiograph and community-acquired spine images. Proportional hazards regression modeled the association between physical performance with incident clinical vertebral fractures. Multivariate models were adjusted for age, bone mineral density (BMD, by dual-energy X-ray absorptiometry [DXA]), clinical center, race, smoking, height, weight, history of falls, activity level, and comorbid medical conditions; physical performance was analyzed as quartiles. Of 4332 men with baseline and repeat radiographs, 192 (4.4%) had an incident radiographic vertebral fracture. With the exception of walking speed, poorer performance on repeat chair stands, leg power, narrow walk, and grip strength were each associated in a graded manner with an increased risk of incident radiographic vertebral fracture (p for trend across quartiles <0.001). In addition, men with performance in the worst quartile on three or more exams had an increased risk of radiographic fracture (odds ratio [OR] = 1.81, 95% confidence interval [CI] 1.33-2.45) compared with men with better performance on all exams