Sample records for identifying altered unsaturated

  1. Alteration in levels of unsaturated fatty acids in mutants of Escherichia coli defective in DNA replication.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-07-01

    We previously reported that mutations in the dnaA gene which encodes the initiator of chromosomal DNA replication in Escherichia coli caused an alteration in the levels of unsaturated fatty acids of phospholipids in membranes. In this study, we examined fatty acid compositions in other mutants which are defective in DNA replication. As in the case of temperature-sensitive dnaA mutants, temperature-sensitive dnaC and dnaE mutants, which have defects in initiation and elongation, respectively, of DNA replication showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) compared with the wild-type strain, especially at high temperatures. On the other hand, temperature-sensitive mutants defective in cellular processes other than DNA replication, such as RNA synthesis and cell division, did not show a lower level of unsaturation of fatty acids compared with the wild-type strain. These results suggest that the inhibition of DNA replication causes a lower level of unsaturation of fatty acids in Escherichia coli cells.

  2. Alteration in the contents of unsaturated fatty acids in dnaA mutants of Escherichia coli.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-04-01

    DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, has a high affinity for acidic phospholipids containing unsaturated fatty acids. We have examined here the fatty acid composition of phospholipids in dnaA mutants. A temperature-sensitive dnaA46 mutant showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) at 42 degrees C (non-permissive temperature) and at 37 degrees C (semi-permissive temperature), but not at 28 degrees C (permissive temperature), compared with the wild-type strain. Plasmid complementation analysis revealed that the dnaA46 mutation is responsible for the phenotype. Other temperature-sensitive dnaA mutants showed similar results. On the other hand, a cold-sensitive dnaAcos mutant, in which over-initiation of DNA replication occurs at low temperature (28 degrees C), showed a higher level of unsaturation of fatty acids at 28 degrees C. Based on these observations, we discuss the role of phospholipids in the regulation of the activity of DnaA protein.

  3. Pumping-Induced Unsaturated Regions Beneath a Perennial River

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Jasperse, J.; Seymour, D.; Constantz, J.; Delaney, C.; Zhou, Q.

    2006-12-01

    The development of an unsaturated region beneath a streambed during groundwater pumping near streams reduces the capacity of the pumping system, changes flow paths, and alters the types of biological transformations in the streambed sediments. To investigate the formation of an unsaturated region beneath the streambed during near-stream groundwater pumping, a three-dimensional, multi-phase flow model was developed using TOUGH2 of the region near two horizontal collector wells operated by the Sonoma County Water Agency along the Russian River near Forestville, California. The simulations focus on the impact of streambed permeability on the development of an unsaturated region since streambed permeability controls the flux of river water entering and recharging the aquifer. The results indicate that as the streambed permeability decreases relative to the aquifer permeability, the size of the unsaturated region beneath the streambed increases. The simulations also demonstrate that the streambed permeabilities over which the aquifer beneath the streambed is unsaturated and able to extract water at the specified rate of 3200 m3/hr occurs over a relatively narrow range of values. Field measurements of streambed flow velocities, volumetric water content, and temperatures near the collector wells are also presented and compared with the simulation results. This work was supported by the Sonoma County Water Agency, through U.S. Department of Energy Contract No. DE-AC03-76SF00098.

  4. Trans unsaturated fatty acids inhibit lecithin: cholesterol acyltransferase and alter its positional specificity.

    PubMed

    Subbaiah, P V; Subramanian, V S; Liu, M

    1998-07-01

    Although dietary trans unsaturated fatty acids (TUFA) are known to decrease plasma HDL, the underlying mechanisms for this effect are unclear. We tested the hypothesis that the decreased HDL is due to an inhibition of lecithin:cholesterol acyltransferase (LCAT), the enzyme essential for the formation of HDL, by determining the activity of purified LCAT in the presence of synthetic phosphatidylcholine (PC) substrates containing TUFA. Both human and rat LCATs exhibited significantly lower activity (-37% to -50%) with PCs containing 18:1t or 18:2t, when compared with the PCs containing corresponding cis isomers. TUFA-containing PCs also inhibited the enzyme activity competitively, when added to egg PC substrate. The inhibition of LCAT activity was not due to changes in the fluidity of the substrate particle. However, the inhibition depended on the position occupied by TUFA in the PC, as well as on the paired fatty acid. Thus, for human LCAT, 18:1t was more inhibitory when present at sn-2 position of PC, than at sn-1, when paired with 16:0. In contrast, when paired with 20:4, 18:1t was more inhibitory at sn-1 position of PC. Both human and rat LCATs, which are normally specific for the sn-2 acyl group of PC, exhibited an alteration in their positional specificity when 16:0-18:1t PC or 16:1t-20:4 PC was used as substrate, deriving 26-86% of the total acyl groups for cholesterol esterification from the sn-1 position. These results show that the trans fatty acids decrease high density lipoprotein through their inhibition of lecithin: cholesterol acyltransferase (LCAT) activity, and also alter LCAT's positional specificity, inducing the formation of more saturated cholesteryl esters, which are more atherogenic.

  5. ARID1B alterations identify aggressive tumors in neuroblastoma.

    PubMed

    Lee, Soo Hyun; Kim, Jung-Sun; Zheng, Siyuan; Huse, Jason T; Bae, Joon Seol; Lee, Ji Won; Yoo, Keon Hee; Koo, Hong Hoe; Kyung, Sungkyu; Park, Woong-Yang; Sung, Ki W

    2017-07-11

    Targeted panel sequencing was performed to determine molecular targets and biomarkers in 72 children with neuroblastoma. Frequent genetic alterations were detected in ALK (16.7%), BRCA1 (13.9%), ATM (12.5%), and PTCH1 (11.1%) in an 83-gene panel. Molecular targets for targeted therapy were identified in 16 of 72 patients (22.2%). Two-thirds of ALK mutations were known to increase sensitivity to ALK inhibitors. Sequence alterations in ARID1B were identified in 5 of 72 patients (6.9%). Four of five ARID1B alterations were detected in tumors of high-risk patients. Two of five patients with ARID1B alterations died of disease progression. Relapse-free survival was lower in patients with ARID1B alterations than in those without (p = 0.01). In analysis confined to high-risk patients, 3-year overall survival was lower in patients with an ARID1B alteration (33.3 ± 27.2%) or MYCN amplification (30.0 ± 23.9%) than in those with neither ARID1B alteration nor MYCN amplification (90.5 ± 6.4%, p = 0.05). These results provide possibilities for targeted therapy and a new biomarker identifying a subgroup of neuroblastoma patients with poor prognosis.

  6. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    PubMed

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hydrology of the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Lecain, Gary D.; Stuckless, John S.

    2012-01-01

    The unsaturated zone at Yucca Mountain was investigated as a possible site for the nation's first high-level nuclear waste repository. Scientific investigations included infiltration studies, matrix properties testing, borehole testing and monitoring, underground excavation and testing, and the development of conceptual and numerical models of the hydrologic processes at Yucca Mountain. Infiltration estimates by empirical and geochemical methods range from 0.2 to 1.4 mm/yr and 0.2–6.0 mm/yr, respectively. Infiltration estimates from numerical models range from 4.5 mm/yr to 17.6 mm/yr. Rock matrix properties vary vertically and laterally as the result of depositional processes and subsequent postdepositional alteration. Laboratory tests indicate that the average matrix porosity and hydraulic conductivity values for the main level of the proposed repository (Topopah Spring Tuff middle nonlithophysal zone) are 0.08 and 4.7 × 10−12 m/s, respectively. In situ fracture hydraulic conductivity values are 3–6 orders of magnitude greater. The permeability of fault zones is approximately an order of magnitude greater than that of the surrounding rock unit. Water samples from the fault zones have tritium concentrations that indicate some component of postnuclear testing. Gas and water vapor movement through the unsaturated zone is driven by changes in barometric pressure, temperature-induced density differences, and wind effects. The subsurface pressure response to surface barometric changes is controlled by the distribution and interconnectedness of fractures, the presence of faults and their ability to conduct gas and vapor, and the moisture content and matrix permeability of the rock units. In situ water potential values are generally less than −0.2 MPa (−2 bar), and the water potential gradients in the Topopah Spring Tuff units are very small. Perched-water zones at Yucca Mountain are associated with the basal vitrophyre of the Topopah Spring Tuff or the Calico

  8. Stabilized unsaturated polyesters

    NASA Technical Reports Server (NTRS)

    Vogl, O.; Borsig, E. (Inventor)

    1985-01-01

    An unsaturated polyester, such as propylene glycolmaleic acid phthalic acid prepolymer dissolved in styrene is interpolymerized with an ultraviolet absorber and/or an antioxidant. The unsaturated chain may be filled with H or lower alkyl such as methyl and tertiary alkyl such as tertiary butyl. A polymer stable to exposure to the outdoors without degradation by ultraviolet radiation, thermal and/or photooxidation is formed.

  9. Process for the synthesis of unsaturated alcohols

    DOEpatents

    Maughon, Bob R.; Burdett, Kenneth A.; Lysenko, Zenon

    2007-02-13

    A process of preparing an unsaturated alcohol (olefin alcohol), such as, a homo-allylic mono-alcohol or homo-allylic polyol, involving protecting a hydroxy-substituted unsaturated fatty acid or fatty acid ester, such as methyl ricinoleate, derived from a seed oil, to form a hydroxy-protected unsaturated fatty acid or fatty acid ester; homo-metathesizing or cross-metathesizing the hydroxy-protected unsaturated fatty acid or fatty acid ester to produce a product mixture containing a hydroxy-protected unsaturated metathesis product; and deprotecting the hydroxy-protected unsaturated metathesis product under conditions sufficient to prepare the unsaturated alcohol. Preferably, methyl ricinoleate is converted by cross-metathesis or homo-metathesis into the homo-allylic mono-alcohol 1-decene-4-ol or the homo-allylic polyol 9-octadecene-7,12-diol, respectively.

  10. UNSATURATED AMINO ACIDS V.

    PubMed Central

    Shapira, Jacob; Dittmer, Karl

    1961-01-01

    Shapira, Jacob (Department of Chemistry, Florida State University, Tallahassee) and Karl Dittmer. Unsaturated amino acids. V. Microbiological properties of some halogenated olefinic amino acids. J. Bacteriol. 82:640–647. 1961.—It has been shown previously that several amino acid analogues containing unsaturated linkages were inhibitors of the growth of Escherichia coli and Saccharomyces cerevisiae. This paper reports the results obtained when a series of unsaturated halogen-containing amino acids was examined. The cis isomer of ω-chloroallylglycine showed the greatest toxicity yet found in this series of unsaturated amino acids toward E. coli, whereas the trans-isomer was usually far less toxic. The major effect of cis-ω-chloroallylglycine in E. coli appeared to be to extend the lag phase before the normal rate of growth began. A wide variety of amino acids was capable of partially or completely preventing the toxicity of low levels of these compounds. At higher levels, relatively few amino acids (primarily valine, leucine, and glutamic acid) were effective. In E. coli, cis-ω-chloroallylglycine showed an unusual [Formula: see text] relationship with both glutamic acid and valine over a wide range in concentration. PMID:13911278

  11. Mechanistic Insights on the Hydrogenation of α,β-Unsaturated Ketones and Aldehydes to Unsaturated Alcohols over Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, Matthew S.; Hao, Bing; Neurock, Matthew

    The selective hydrogenation of unsaturated ketones (methyl vinyl ketone and benzalacetone) and unsaturated aldehydes (crotonaldehyde and cinnamaldehyde) was carried out with H₂ at 2 bar absolute over Pd/C, Pt/C, Ru/C, Au/C, Au/TiO₂, or Au/Fe₂O₃ catalysts in ethanol or water solvent at 333 K. Comparison of the turnover frequencies revealed Pd/C to be the most active hydrogenation catalyst, but the catalyst failed to produce unsaturated alcohols, indicating hydrogenation of the C=C bond was highly preferred over the C=O bond on Pd. The Pt and Ru catalysts were able to produce unsaturated alcohols from unsaturated aldehydes, but not from unsaturated ketones. Althoughmore » Au/ Fe₂O₃ was able to partially hydrogenate unsaturated ketones to unsaturated alcohols, the overall hydrogenation rate over gold was the lowest of all of the metals examined. First-principles density functional theory calculations were therefore used to explore the reactivity trends of methyl vinyl ketone (MVK) and benzalacetone (BA) hydrogenation over model Pt(111) and Ru(0001) surfaces. The observed selectivity over these metals is likely controlled by the significantly higher activation barriers to hydrogenate the C=O bond compared with those required to hydrogenate the C=C bond. Both the unsaturated alcohol and the saturated ketone, which are the primary reaction products, are strongly bound to Ru and can react further to the saturated alcohol. The lower calculated barriers for the hydrogenation steps over Pt compared with Ru account for the higher observed turnover frequencies for the hydrogenation of MVK and BA over Pt. The presence of a phenyl substituent α to the C=C bond in BA increased the barrier for C=C hydrogenation over those associated with the C=C bond in MVK; however, the increase in barriers with phenyl substitution was not adequate to reverse the selectivity trend.« less

  12. Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Malek-Mohammadi, S.

    2012-12-01

    Preferential flow through deep unsaturated zones of fractured rock is hydrologically important to a variety of contaminant transport and water-resource issues. The unsaturated zone of the English Chalk Aquifer provides an important opportunity for a case study of unsaturated preferential flow in isolation from other flow modes. The chalk matrix has low hydraulic conductivity and stays saturated, owing to its fine uniform pores and the wet climate of the region. Therefore the substantial fluxes observed in the unsaturated chalk must be within fractures and interact minimally with matrix material. Price et al. [2000] showed that irregularities on fracture surfaces provide a significant storage capacity in the chalk unsaturated zone, likely accounting for volumes of water required to explain unexpected dry-season water-table stability during substantial continuing streamflow observed by Lewis et al. [1993] In this presentation we discuss and quantify the dynamics of replenishment and drainage of this unsaturated zone fracture-face storage domain using a modification of the source-responsive model of Nimmo [2010]. This model explains the processes in terms of two interacting flow regimes: a film or rivulet preferential flow regime on rough fracture faces, active on an individual-storm timescale, and a regime of adsorptive and surface-tension influences, resembling traditional diffuse formulations of unsaturated flow, effective mainly on a seasonal timescale. The modified model identifies hydraulic parameters for an unsaturated fracture-facial domain lining the fractures. Besides helping to quantify the unsaturated zone storage described by Price et al., these results highlight the importance of research on the topic of unsaturated-flow relations within a near-fracture-surface domain. This model can also facilitate understanding of mechanisms for reinitiation of preferential flow after temporary cessation, which is important in multi-year preferential flow through deep

  13. Fate and Transport of CL-20 and RDX in Unsaturated Laboratory Columns

    NASA Astrophysics Data System (ADS)

    Lemond, L. A.; Gamerdinger, A. P.; Szecsody, J. E.

    2005-05-01

    This research examines the fate and transport of two explosive compounds, Hexanitrohexaazaisowurtzitane (CL-20) and Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in unsaturated laboratory columns. The transport and fate of these compounds were studied under saturated and unsaturated conditions in three natural soils: coarse sand, sandy loam, and a silt loam. Unsaturated column experiments were conducted using an ultra-centrifugation method. Sorption and degradation parameters were determined by moment analysis and hydrodynamic parameters were assessed with a two-region flow model. Differences in these parameters were evaluated as a function of water content. The fate and transport of CL-20 is highly dependent on 1) the soil type and 2) the compound's residence time in the soil and 3) water content of the media. Sorption of CL-20 was rate-limited. CL-20 degradation in saturated columns produced a half-life of as much as 22hr, but in unsaturated columns the degradation rate increased considerably, producing a half life of as little as 2hr. The fate and transport of RDX are also affected by the soil type, but sorption appeared to be instantaneous. Degradation of RDX was negligible. Our results suggest that at very low water content immobile water regions may become (at least in effect) isolated water regions and significantly alter the retardation of the tracer. In the sandy loam, there was as much as a 20-fold over-prediction of the retardation factor in the unsaturated saturated columns when predicted by Kd values derived from saturated columns. In the coarse sand, Kd values derived from saturated columns over-predicted retardation in the unsaturated columns by as much as 30%. In the silt loam, retardation factors were over-predicted by as much as 80%. At very low water contents, predictions of tracer behavior become very difficult because of changes in the flow regime that cannot be directly accounted for.

  14. 40 CFR 721.3025 - Fatty acids C12-18, C18 unsaturated, C12-18 alkyl esters (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids C12-18, C18 unsaturated... Significant New Uses for Specific Chemical Substances § 721.3025 Fatty acids C12-18, C18 unsaturated, C12-18... chemical substance identified generically as fatty acids C12-18, C18 unsaturated, C12-18 alkyl esters (PMNs...

  15. Microarray expression profiling identifies genes with altered expression in HDL-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.

    2000-05-05

    Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared withmore » the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.« less

  16. High-fat feeding reduces endothelium-dependent vasodilation in rats: differential mechanisms for saturated and unsaturated fatty acids?

    PubMed

    Song, Guang-Yao; Gao, Yu; Di, Yu-Wei; Pan, Li-Li; Zhou, Yu; Ye, Ji-Ming

    2006-08-01

    1. Chronic feeding with a high-fat diet can cause metabolic syndrome in rodents similar to humans, but the role of saturated versus unsaturated fats in vascular tension remains unclear. 2. The present study shows that rats on a diet rich in either saturated or unsaturated fat had higher blood pressure compared with chow-fed rats (approximately 130 vs 100 mmHg, respectively), along with hyperlipidaemia and insulin resistance. Compared with responses of phenylephrine-preconstricted artery segments from chow-fed rats, vasorelaxation of isolated renal arteries from high-fat fed rats was reduced substantially (> 50%) in response to acetylcholine (0.01-10 micromol/L) and moderately to nitroprusside (>or=1 micromol/L) at low concentrations. Acetylcholine-induced vasorelaxation of arteries from high-fat fed rats was also more sensitive to inhibition by the nitric oxide (NO) synthase inhibitors NG-nitro-L-arginine and methylene blue. 3. In human umbilical vein endothelial cells, the production of NO and endothelin-1 was significantly inhibited by unsaturated fatty acids. In comparison, saturated fatty acids stimulated endothelin-1 production without altering NO production. 4. The data indicate that both saturated and unsaturated high-fat feeding may result in an increase in blood pressure owing to reduced endothelium-dependent vasorelaxation in the arterial system. The impaired endothelium-dependent vasorelaxation induced by saturated and unsaturated fatty acids may involve different mechanisms.

  17. Biogenic Volatile Organic Compounds as Indicators of Change in a Deep Arid Unsaturated Zone, Amargosa Desert, USA

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Baker, R. J.; Luo, W.; Andraski, B. J.; Haase, K.; Stonestrom, D. A.

    2016-12-01

    Biogenic volatile organic compounds (bVOCs) are important agents in atmospheric chemistry, climatic forcing, plant physiology, and ecologic signaling. Despite a marked increase in scientific attention to bVOCs since the 1990s, relatively little is known about bVOC dynamics in soils and virtually nothing is known about bVOCs in deep unsaturated zones. The goal of this study was to systematically explore subsurface bVOCs through characterization and analysis of deep unsaturated zone VOCs in an arid setting. A wide range of VOCs have been sampled from the unsaturated zone at the Amargosa Desert Research Site (ADRS) at least annually for over a decade in the vicinity of a hazardous waste repository in southwestern Nevada. Grid- and transect-based soil gas samples were collected at shallow (0.5-m and 1.5-m) depths, and vertical arrays of samples were collected from three unsaturated zone boreholes ( 10m intervals from 0 to 110 m below ground surface), one of which is in an undisturbed area 3000 m from the waste repository. The VOC data were analyzed to identify bVOCs and processes related to bVOC transport in the deep unsaturated zone. Locally generated bVOCs were identified on the basis of (1) frequency of detections at the remote borehole location, (2) patterns of distribution in shallow unsaturated zone samples around the waste repository, (3) comparisons with atmospheric concentrations, and (4) comparisons with travel blank samples. Several dozen compounds met the criteria to be characterized as bVOCs. The relatively abundant compound m,p-xylene was selected as a tracer for subsequent modeling analysis of vertical and horizontal transport processes in the unsaturated zone. Targeted processes comprised (1) changes in vertical bVOC profiles as a result of ecological shifts, and (2) predominantly horizontal transport of unsaturated-zone gases following installation of the low level nuclear waste repository at the ADRS. To the best of our knowledge the results document

  18. Base flow recession from unsaturated-saturated porous media considering lateral unsaturated discharge and aquifer compressibility

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith

    2017-09-01

    Unsaturated flow is an important process in base flow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. The effects of the lateral discharge of the unsaturated zone and aquifer compressibility are specifically taken into consideration. Semianalytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. A larger dimensionless constitutive exponent κD (a smaller retention capacity) of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. The compressibility of the aquifer has a nonnegligible impact on the discharge at early times. For late times, the power index b of the recession curve -dQ/dt˜ aQb, is 1 and independent of κD, where Q is the base flow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→0. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  19. Milk fatty acid unsaturation: genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1).

    PubMed

    Schennink, A; Heck, J M L; Bovenhuis, H; Visker, M H P W; van Valenberg, H J F; van Arendonk, J A M

    2008-05-01

    With regard to human health aspects of milk fat, increasing the amount of unsaturated fatty acids in milk is an important selection objective. The cow's diet has an influence on the degree of unsaturation, but literature suggests that genetics also plays a role. To estimate genetic variation in milk fatty acid unsaturation indices, milk fatty acid composition of 1,933 Dutch Holstein Friesian heifers was measured and unsaturation indices were calculated. An unsaturation index represents the concentration of the unsaturated product proportional to the sum of the unsaturated product and the saturated substrate. Intraherd heritabilities were moderate, ranging from 0.23 +/- 0.07 for conjugated linoleic acid (CLA) index to 0.46 +/- 0.09 for C16 index. We genotyped the cows for the SCD1 A293V and DGAT1 K232A polymorphisms, which are known to alter milk fatty acid composition. Both genes explain part of the genetic variation in unsaturation indices. The SCD1 V allele is associated with lower C10, C12, and C14 indices, and with higher C16, C18, and CLA indices in comparison to the SCD1 A allele, with no differences in total unsaturation index. In comparison to the DGAT1 K allele, the DGAT1 A allele is associated with lower C10, C12, C14, and C16 indices and with higher C18, CLA, and total indices. We conclude that selective breeding can contribute to higher unsaturation indices, and that selective breeding can capitalize on genotypic information of both the SCD1 A293V and the DGAT1 K232A polymorphism.

  20. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids.

    PubMed

    Wei, Yongyue; Wang, Zhaoxi; Chang, Chiung-yu; Fan, Tianteng; Su, Li; Chen, Feng; Christiani, David C

    2013-01-01

    Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans. To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure. The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry. Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5) exposure (p<0.05). The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [β(95% CI) = -0.013(-0.022 ≈ -0.004); p = 0.005], docosapentaenoic acid n3 [β(95% CI) = -0.010(-0.018 ≈ -0.002); p = 0.017], and docosapentaenoic acid n6 [β(95% CI) = -0.007(-0.013 ≈ -0.001); p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study-2011 = 0.025; p Study-2012 = 0.021; p Combined = 0.009). The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders. High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.

  1. Modeling Coupled Thermal-Hydrological-Chemical Processes in the Unsaturated Fractured Rock of Yucca Mountain, Nevada: Heterogeneity and Seepage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Mukhopadhyay; E.L. Donnenthal; N. Spycher

    An understanding of processes affecting seepage into emplacement tunnels is needed for correctly predicting the performance of underground radioactive waste repositories. It has been previously estimated that the capillary and vaporization barriers in the unsaturated fractured rock of Yucca Mountain are enough to prevent seepage under present day infiltration conditions. It has also been thought that a substantially elevated infiltration flux will be required to cause seepage after the thermal period is over. While coupled thermal-hydrological-chemical (THC) changes in Yucca Mountain host rock due to repository heating has been previously investigated, those THC models did not incorporate elements of themore » seepage model. In this paper, we combine the THC processes in unsaturated fractured rock with the processes affecting seepage. We observe that the THC processes alter the hydrological properties of the fractured rock through mineral precipitation and dissolution. We show that such alteration in the hydrological properties of the rock often leads to local flow channeling. We conclude that such local flow channeling may result in seepage under certain conditions, even with nonelevated infiltration fluxes.« less

  2. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.

    PubMed

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.

  3. Volatile organic compounds in the unsaturated zone from radioactive wastes

    USGS Publications Warehouse

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  4. Measurement and modeling of unsaturated hydraulic conductivity

    USGS Publications Warehouse

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others. This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K. The parameters that describe the K curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  5. ICan: An Integrated Co-Alteration Network to Identify Ovarian Cancer-Related Genes

    PubMed Central

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Background Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. Results We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). Conclusion In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data. PMID:25803614

  6. Numerical model for thermodynamical behaviors of unsaturated soil

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuji; Yamada, Mitsuhide; Sako, Kazunari; Araki, Kohei; Kitamura, Ryosuke

    Kitamura et al. have proposed the numerical models to establish the unsaturated soil mechanics aided by probability theory and statistics, and to apply the unsaturated soil mechanics to the geo-simulator, where the numerical model for the thermodynamical behaviors of unsaturated soil are essential. In this paper the thermodynamics is introduced to investigate the heat transfer through unsaturated soil and the evaporation of pore water in soil based on the first and second laws of thermodynamics, i.e., the conservation of energy, and increasing entropy. On the other hand the lysimeter equipment is used to obtain the data for the evaporation of pore water during fine days and seepage of rain water during rainy days. The numerical simulation is carried out by using the proposed numerical model and the results are compared with those obtained from the lysimeter test.

  7. Global Metabolomic Profiling Reveals an Association of Metal Fume Exposure and Plasma Unsaturated Fatty Acids

    PubMed Central

    Chang, Chiung-yu; Fan, Tianteng; Su, Li; Chen, Feng; Christiani, David C.

    2013-01-01

    Background Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans. Objectives To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure. Methods The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry. Results Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5) exposure (p<0.05). The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [(95% CI) = −0.013(−0.022∼−0.004); p = 0.005], docosapentaenoic acid n3 [(95% CI) = −0.010(−0.018∼−0.002); p = 0.017], and docosapentaenoic acid n6 [(95% CI) = −0.007(−0.013∼−0.001); p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study−2011 = 0.025; p Study−2012 = 0.021; p Combined = 0.009). The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders. Conclusions High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders. PMID:24143234

  8. Biomarkers for visceral hypersensitivity identified by classification of electroencephalographic frequency alterations

    NASA Astrophysics Data System (ADS)

    Graversen, Carina; Brock, Christina; Mohr Drewes, Asbjørn; Farina, Dario

    2011-10-01

    Abdominal pain is frequently related to visceral hypersensitivity. This is associated with increased neuronal excitability in the central nervous system (CNS), which can be manifested as discrete electroencephalographic (EEG) alterations. In the current placebo-controlled study, visceral hypersensitivity was evoked by chemical irritation of the esophagus with acid and capsaicin perfusion. The resulting hyperexcitability of the CNS was evaluated by evoked brain potentials following painful electrical stimulations of a remote organ—the rectosigmoid colon. Alterations in individual EEG power distributions between baseline and after perfusion were quantified by extracting features from the evoked brain potentials using an optimized discrete wavelet transform. Visceral hypersensitivity was identified as increased EEG power in the delta, theta and alpha frequency bands. By applying a support vector machine in regression mode, the individual baseline corrected alterations after sensitization were discriminated from alterations caused by placebo perfusions. An accuracy of 91.7% was obtained (P < 0.01). The regression value representing the overall alteration of the EEG correlated with the degree of hyperalgesia (P = 0.03). In conclusion, this study showed that classification of EEG can be used to detect biomarkers reflecting central neuronal changes. In the future, this may be used in studies of pain physiology and pharmacological interventions.

  9. Studies on unsaturated flow in dual-scale fiber fabrics

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Yan, Shilin; Li, Yongjing

    2018-03-01

    Fiber fabrics in liquid composite molding (LCM) can be recognized as a dual-scale structure. As sink theory developed, this unsaturated flow behavior has already been simulated successfully; however, most of simulated results based on a unit cell under ideal status, thus making results were not agreement with experiment. In this study, an experimental method to establish sink function was proposed. After compared the simulation results by this sink function, it shows high accuracy with the experimental data. Subsequently, the key influencing factors for unsaturated flow have been further investigated; results show that the filling time for unsaturated flow was much longer than saturated flow. In addition, the injection pressure and permeability were the key factors lead to unsaturated flow.

  10. TU-CD-BRB-10: 18F-FDG PET Image-Derived Tumor Features Highlight Altered Pathways Identified by Trancriptomic Analysis in Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tixier, F; INSERM UMR1101 LaTIM, Brest; Cheze-Le-Rest, C

    2015-06-15

    Purpose: Several quantitative features can be extracted from 18F-FDG PET images, such as standardized uptake values (SUVs), metabolic tumor volume (MTV), shape characterization (SC) or intra-tumor radiotracer heterogeneity quantification (HQ). Some of these features calculated from baseline 18F-FDG PET images have shown a prognostic and predictive clinical value. It has been hypothesized that these features highlight underlying tumor patho-physiological processes at smaller scales. The objective of this study was to investigate the ability of recovering alterations of signaling pathways from FDG PET image-derived features. Methods: 52 patients were prospectively recruited from two medical centers (Brest and Poitiers). All patients underwentmore » an FDG PET scan for staging and biopsies of both healthy and primary tumor tissues. Biopsies went through a transcriptomic analysis performed in four spates on 4×44k chips (Agilent™). Primary tumors were delineated in the PET images using the Fuzzy Locally Adaptive Bayesian algorithm and characterized using 10 features including SUVs, SC and HQ. A module network algorithm followed by functional annotation was exploited in order to link PET features with signaling pathways alterations. Results: Several PET-derived features were found to discriminate differentially expressed genes between tumor and healthy tissue (fold-change >2, p<0.01) into 30 co-regulated groups (p<0.05). Functional annotations applied to these groups of genes highlighted associations with well-known pathways involved in cancer processes, such as cell proliferation and apoptosis, as well as with more specific ones such as unsaturated fatty acids. Conclusion: Quantitative features extracted from baseline 18F-FDG PET images usually exploited only for diagnosis and staging, were identified in this work as being related to specific altered pathways and may show promise as tools for personalizing treatment decisions.« less

  11. Structural Analysis of Unsaturated Glycosphingolipids Using Shotgun Ozone-Induced Dissociation Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Barrientos, Rodell C.; Vu, Ngoc; Zhang, Qibin

    2017-08-01

    Glycosphingolipids are essential biomolecules widely distributed across biological kingdoms yet remain relatively underexplored owing to both compositional and structural complexity. While the glycan head group has been the subject of most studies, there is paucity of reports on the lipid moiety, particularly the location of unsaturation. In this paper, ozone-induced dissociation mass spectrometry (OzID-MS) implemented in a traveling wave-based quadrupole time-of-flight (Q-ToF) mass spectrometer was applied to study unsaturated glycosphingolipids using shotgun approach. Resulting high resolution mass spectra facilitated the unambiguous identification of diagnostic OzID product ions. Using [M+Na]+ adducts of authentic standards, we observed that the long chain base and fatty acyl unsaturation had distinct reactivity with ozone. The reactivity of unsaturation in the fatty acyl chain was about 8-fold higher than that in the long chain base, which enables their straightforward differentiation. Influence of the head group, fatty acyl hydroxylation, and length of fatty acyl chain on the oxidative cleavage of double bonds was also observed. Application of this technique to bovine brain galactocerebrosides revealed co-isolated isobaric and regioisomeric species, which otherwise would be incompletely identified using contemporary collision-induced dissociation (CID) alone. These results highlight the potential of OzID-MS in glycosphingolipids research, which not only provides complementary structural information to existing CID technique but also facilitates de novo structural determination of these complex biomolecules. [Figure not available: see fulltext.

  12. Pumping Test Determination of Unsaturated Aquifer Properties

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum

  13. Autoxidation of unsaturated lipids in food emulsion.

    PubMed

    Sun, Yue-E; Wang, Wei-Dong; Chen, Hong-Wei; Li, Chao

    2011-05-01

    Unsaturated lipids having various physiological roles are of significance in biochemistry, nutrition, medicine, and food. However, the susceptibility of lipids to oxidation is a major cause of quality deterioration in food emulsions. The reaction mechanism and factors that influence oxidation are appreciably different for emulsified lipids and bulk lipids. This article gives a brief overview of the current knowledge on autoxidation of oil-in-water food emulsions, especially those that contain unsaturated lipids, which are important in the food industry. Autoxidation of unsaturated lipids in oil-in-water emulsion is discussed, and so also their oxidation mechanism, the major factors influencing oxidation, determination measures, research status, and the problems encountered in recent years. Some effective strategies for controlling lipid oxidation in food emulsion have been presented in this review.

  14. Acoustic waves in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison

    2013-09-01

    Seminal papers by Brutsaert (1964) and Brutsaert and Luthin (1964) provided the first rigorous theoretical framework for examining the poroelastic behavior of unsaturated soils, including an important application linking acoustic wave propagation to soil hydraulic properties. Theoretical developments during the 50 years that followed have led Lo et al., (2005) to a comprehensive model of these phenomena, but the relationship of its elasticity parameters to standard poroelasticity parameters measured in hydrogeology has not been established. In the present study, we develop this relationship for three key parameters, the Gassman modulus, Skempton coefficient, and Biot-Willis coefficient by generalizing them to an unsaturated porous medium. We demonstrate the remarkable result that well-known and widely applied relationships among these parameters for a porous medium saturated by a single fluid are also valid under very general conditions for unsaturated soils. We show further that measurement of the Biot-Willis coefficient along with three of the six elasticity coefficients in the model of Lo et al. (2005) is sufficient to characterize poroelastic behavior. The elasticity coefficients in the model of Lo et al. (2005) are sensitive to the dependence of capillary pressure on water saturation and its viscous-drag coefficients are functions of relative permeability, implying that hysteresis in the water retention curve and hydraulic conductivity function should affect acoustic wave behavior in unsaturated soils. To quantify these as-yet unknown effects, we performed numerical simulations for Dune sand at two representative wave excitation frequencies. Our results show that the acoustic wave investigated by Brutsaert and Luthin (1964) propagates at essentially the same speed during imbibition and drainage, but is attenuated more during drainage than imbibition. Overall, effects on acoustic wave behavior caused by hysteresis become more significant as the excitation

  15. Large-scale integrative network-based analysis identifies common pathways disrupted by copy number alterations across cancers

    PubMed Central

    2013-01-01

    Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/. PMID:23822816

  16. Development of an Unsaturated Region Below a Perennial River

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Zhou, Q.; Constantz, J.; Hatch, C.

    2004-12-01

    Field observations at the Russian River Bank Filtration Facility in Sonoma County, California indicate that an unsaturated region exists below the streambed near two adjacent groundwater pumping wells located along the riverbank. Understanding the conditions that give rise to unsaturated flow below the streambed is critical for improving and optimizing riverbank well pumping operations. To investigate the development of an unsaturated region below a perennial river near pumping wells, a three-dimensional model was developed using the multi-phase subsurface flow model, TOUGH2. The model is based on the region around the two pumping wells in the Russian River Bank Filtration Facility. The pumping wells consist of 9 perforated pipes that are projected horizontally into the aquifer at a depth of approximately 20 m below the land surface. A grid was developed for the TOUGH2 model with finer resolution near the wells to represent individual pipes. The effect of varying the pumping operation and the streambed permeability on the extent of the unsaturated region was investigated with the TOUGH2 model. The formation remained saturated below the streambed when only one of the wells was pumped at a rate of 1600 m3/hr, but an unsaturated region developed below the streambed when the two wells each pumped at a rate of 1600 m3/hr. This unsaturated region was deeper when the permeability of the streambed was lower than the aquifer material compared to when the streambed and aquifer permeabilities were the same.

  17. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    PubMed Central

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θ s - θ r), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process. PMID:24672332

  18. Analysis of rainfall infiltration law in unsaturated soil slope.

    PubMed

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  19. Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.

    2016-12-01

    /s over a volumetric water content range from 0.1938 to 0.4311 m3/m3. Using these measured properties, the water content estimated from geophysical measurements has been used to identify the unsaturated hydraulic conductivity indicative of the steady component of the aquifer recharge rate at Canosa.

  20. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali N.; Or, Dani

    2014-09-01

    The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were

  1. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer.

    PubMed

    Starr, Timothy K; Allaei, Raha; Silverstein, Kevin A T; Staggs, Rodney A; Sarver, Aaron L; Bergemann, Tracy L; Gupta, Mihir; O'Sullivan, M Gerard; Matise, Ilze; Dupuy, Adam J; Collier, Lara S; Powers, Scott; Oberg, Ann L; Asmann, Yan W; Thibodeau, Stephen N; Tessarollo, Lino; Copeland, Neal G; Jenkins, Nancy A; Cormier, Robert T; Largaespada, David A

    2009-03-27

    Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.

  2. Predicting Unsaturated Zone Nitrogen Mass Balances in Agricultural Settings of the United States

    USDA-ARS?s Scientific Manuscript database

    Unsaturated zone N fate and transport were evaluated at four sites to identify the predominant pathways of N cycling: an almond orchard and cornfield in the lower Merced River study basin, California (CA); and corn-soybean rotations in study basins at Maple Creek, Nebraska (NE) and at Morgan Creek, ...

  3. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    NASA Astrophysics Data System (ADS)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  4. Photosensitized oxidation of unsaturated polymers

    NASA Technical Reports Server (NTRS)

    Golub, M. A.

    1979-01-01

    The photosensitized oxidation or singlet oxygenation of unsaturated hydrocarbon polymers and of their model compounds was reviewed. Emphasis was on cis and trans forms of 1,4-polyisoprene, 1,4-polybutadiene and 1,2-poly(1,4-hexadiene), and on 1,4-poly(2,3-dimethyl-1,3-butadiene). The microstructural changes which occur in these polymers on reaction with O2-1 in solution were investigated by infrared H-1 and C-13 NMR spectroscopy. The polymers were shown to yield allylic hydroperoxides with shifted double bonds according to the ene mechanism established for simple olefins. The photosensitized oxidation of the above unsaturated polymer exhibited zero order kinetics, the relative rates paralleling the reactivities of the corresponding simple olefins towards O2-1.

  5. Microgravity effects on water flow and distribution in unsaturated porous media: Analyses of flight experiments

    NASA Astrophysics Data System (ADS)

    Jones, Scott B.; Or, Dani

    1999-04-01

    Plants grown in porous media are part of a bioregenerative life support system designed for long-duration space missions. Reduced gravity conditions of orbiting spacecraft (microgravity) alter several aspects of liquid flow and distribution within partially saturated porous media. The objectives of this study were to evaluate the suitability of conventional capillary flow theory in simulating water distribution in porous media measured in a microgravity environment. Data from experiments aboard the Russian space station Mir and a U.S. space shuttle were simulated by elimination of the gravitational term from the Richards equation. Qualitative comparisons with media hydraulic parameters measured on Earth suggest narrower pore size distributions and inactive or nonparticipating large pores in microgravity. Evidence of accentuated hysteresis, altered soil-water characteristic, and reduced unsaturated hydraulic conductivity from microgravity simulations may be attributable to a number of proposed secondary mechanisms. These are likely spawned by enhanced and modified paths of interfacial flows and an altered force ratio of capillary to body forces in microgravity.

  6. Response to Germann's "Comment on 'theory for source-responsive and free-surface film modeling of unsaturated flow'"

    USGS Publications Warehouse

    Nimmo, J.R.

    2010-01-01

    Germann's (2010) comment helpfully presents supporting evidence that I have missed, notes items that need clarification or correction, and stimulates discussion of what is needed for improved theory of unsaturated flow. Several points from this comment relate not only to specific features of the content of my paper (Nimmo, 2010), but also to the broader question of what methodology is appropriate for developing an applied earth science. Accordingly, before addressing specific points that Germann identified, I present here some considerations of purpose and background relevant to evaluation of the unsaturated flow model of Nimmo (2010).

  7. Screening of Chlorinated Paraffins and Unsaturated Analogues in Commercial Mixtures: Confirmation of Their Occurrences in the Atmosphere.

    PubMed

    Li, Tong; Gao, Shixiong; Ben, Yujie; Zhang, Hong; Kang, Qiyue; Wan, Yi

    2018-02-20

    Characterizing the detailed compositions of chlorinated paraffins (CPs) commercial mixtures is crucial to understand their environmental sources, fates, and potential risks. In this study, dichloromethane (DCM)-enhanced UPLC-ESI-QTOFMS analysis combined with characteristic isotope chlorine peaks is applied to screen all CPs and their structural analogues in the three most commonly produced CP commercial mixtures (CP-42, CP-52, and CP-70). Mass fractions of total short-chain CPs (SCCPs), medium-chain CPs (MCCPs) and long-chain CPs (LCCPs) ranged from 0.64 to 31.9%, 0.64 to 21.8%, and 0.04 to 43.9%, respectively, in the three commercial mixtures. 113 unsaturated SCCPs, MCCPs, and LCCPs were identified in the commercial mixtures. The detailed mass percentages of saturated and unsaturated CPs with carbon numbers of 10-30, chlorine numbers of 5-28, and unsaturated degrees of 0-7 were characterized in all commercial mixtures. Occurrences of the predominant saturated and unsaturated CPs were further confirmed in air samples collected in Guangdong Province, one of the major CP production areas in China, over one year. The profiles of the detected compounds indicated that LCCPs in air samples might come mainly from the production and usage of CP-52, and unsaturated C 24-29 -LCCPs were specifically originated from CP-70 used in the area.

  8. Effects of unsaturated zone on ground-water mounding

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Marino, M.A.

    1999-01-01

    The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding-an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water table, or the interception of the basin floor by the capillary fringe.The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding - an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the

  9. Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol.

    PubMed

    Kirpich, Irina A; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Arteel, Gavin E; Falkner, K Cameron; Barve, Shirish S; McClain, Craig J

    2013-05-01

    Alcohol and dietary fat both play an important role in alcohol-mediated multi-organ pathology, including gut and liver. In the present study we hypothesized that the combination of alcohol and dietary unsaturated fat (USF) would result in intestinal inflammatory stress and mucus layer alterations, thus contributing to disruption of intestinal barrier integrity. C57BL/6N mice were fed Lieber-DeCarli liquid diets containing EtOH and enriched in USF (corn oil/linoleic acid) or SF (medium chain triglycerides: beef tallow) for 8 weeks. Intestinal histology, morphometry, markers of inflammation, as well as levels of mucus protective factors were evaluated. Alcohol and dietary USF triggered an intestinal pro-inflammatory response, characterized by increase in Tnf-α, MCP1, and MPO activity. Further, alcohol and dietary USF, but not SF, resulted in alterations of the intestinal mucus layer, characterized by decreased expression of Muc2 in the ileum. A strong correlation was observed between down-regulation of the antimicrobial factor Cramp and increased Tnf-α mRNA. Therefore, dietary unsaturated fat (corn oil/LA enriched) is a significant contributing factor to EtOH-mediated intestinal inflammatory response and mucus layer alterations in rodents. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Intravenous iron-dextran: studies on unsaturated iron-binding capacity

    PubMed Central

    Cox, J. S. G.; Moss, G. F.; Bremner, I.; Reason, Janet

    1968-01-01

    A method is described for measuring the plasma unsaturated iron-binding capacity in the presence of very high concentrations of iron as iron-dextran. The procedure utilizes 59Fe to label the apotransferrin with subsequent separation of ionic iron from transferrin-bound iron on an ion exchange or Sephadex G.25 column. The unsaturated iron-binding capacity has been measured in rabbits and dogs after intravenous injection of iron-dextran and in human subjects after total dose infusion of iron-dextran. No evidence of saturation of the unsaturated iron-binding capacity was found even when the plasma iron values were greater than 40,000 μg Fe/100 ml. PMID:5697365

  11. Biological variability of transferrin saturation and unsaturated iron binding capacity

    PubMed Central

    Adams, PC; Reboussin, DM; Press, RD; Barton, JC; Acton, RT; Moses, GC; Leiendecker-Foster, C; McLaren, GD; Dawkins, FW; Gordeuk, VR; Lovato, L; Eckfeldt, JH

    2007-01-01

    Background Transferrin saturation is widely considered the preferred screening test for hemochromatosis. Unsaturated iron binding capacity has similar performance at lower cost. However, the within-person biological variability of both these tests may limit their ability at commonly used cut points to detect HFE C282Y homozygous patients. Methods The Hemochromatosis and Iron Overload Screening (HEIRS) Study screened 101,168 primary care participants for iron overload using tansferrin saturation, unsaturated iron binding capacity, ferritin and HFE C282Y and H63D genotyping. Transferrin saturation and unsaturated iron binding capacity were performed at initial screening and again when selected participants and controls returned for a clinical examination several months later. A missed case was defined as a C282Y homozygote who had transferrin saturation below cut point (45 % women, 50 % men) or unsaturated iron binding capacity above cut point (150 μmol/L women, 125 μmol/L men) at either the initial screening or clinical examination, or both, regardless of serum ferritin. Results There were 209 C282Y previously undiagnosed homozygotes with transferrin saturation and unsaturated iron binding capacity testing done at initial screening and clinical examination. Sixty-eight C282Y homozygotes (33%) would have been missed at these transferrin saturation cut points (19 men, 49 women, median SF 170 μg/L, first and third quartiles 50 and 474 μg/L), and 58 homozygotes (28 %) would have been missed at the unsaturated iron binding capacity cut points (20 men, 38 women, median SF 168 μg/L, quartiles 38 and 454 μg/L). There was no advantage to using fasting samples. Conclusions The within-person biological variability of transferrin saturation and unsaturated iron binding capacity limit their usefulness as an initial screening test for expressing C282Y homozygotes. PMID:17976429

  12. Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling Unsaturated Flow Between the Land Surface and the Water Table with MODFLOW-2005

    USGS Publications Warehouse

    Niswonger, Richard G.; Prudic, David E.; Regan, R. Steven

    2006-01-01

    Percolation of precipitation through unsaturated zones is important for recharge of ground water. Rain and snowmelt at land surface are partitioned into different pathways including runoff, infiltration, evapotranspiration, unsaturated-zone storage, and recharge. A new package for MODFLOW-2005 called the Unsaturated-Zone Flow (UZF1) Package was developed to simulate water flow and storage in the unsaturated zone and to partition flow into evapotranspiration and recharge. The package also accounts for land surface runoff to streams and lakes. A kinematic wave approximation to Richards? equation is solved by the method of characteristics to simulate vertical unsaturated flow. The approach assumes that unsaturated flow occurs in response to gravity potential gradients only and ignores negative potential gradients; the approach further assumes uniform hydraulic properties in the unsaturated zone for each vertical column of model cells. The Brooks-Corey function is used to define the relation between unsaturated hydraulic conductivity and water content. Variables used by the UZF1 Package include initial and saturated water contents, saturated vertical hydraulic conductivity, and an exponent in the Brooks-Corey function. Residual water content is calculated internally by the UZF1 Package on the basis of the difference between saturated water content and specific yield. The UZF1 Package is a substitution for the Recharge and Evapotranspiration Packages of MODFLOW-2005. The UZF1 Package differs from the Recharge Package in that an infiltration rate is applied at land surface instead of a specified recharge rate directly to ground water. The applied infiltration rate is further limited by the saturated vertical hydraulic conductivity. The UZF1 Package differs from the Evapotranspiration Package in that evapotranspiration losses are first removed from the unsaturated zone above the evapotranspiration extinction depth, and if the demand is not met, water can be removed

  13. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas.

    PubMed

    Zhang, Jinghui; Wu, Gang; Miller, Claudia P; Tatevossian, Ruth G; Dalton, James D; Tang, Bo; Orisme, Wilda; Punchihewa, Chandanamali; Parker, Matthew; Qaddoumi, Ibrahim; Boop, Fredrick A; Lu, Charles; Kandoth, Cyriac; Ding, Li; Lee, Ryan; Huether, Robert; Chen, Xiang; Hedlund, Erin; Nagahawatte, Panduka; Rusch, Michael; Boggs, Kristy; Cheng, Jinjun; Becksfort, Jared; Ma, Jing; Song, Guangchun; Li, Yongjin; Wei, Lei; Wang, Jianmin; Shurtleff, Sheila; Easton, John; Zhao, David; Fulton, Robert S; Fulton, Lucinda L; Dooling, David J; Vadodaria, Bhavin; Mulder, Heather L; Tang, Chunlao; Ochoa, Kerri; Mullighan, Charles G; Gajjar, Amar; Kriwacki, Richard; Sheer, Denise; Gilbertson, Richard J; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Baker, Suzanne J; Ellison, David W

    2013-06-01

    The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.

  14. Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping

    NASA Astrophysics Data System (ADS)

    Tartakovsky, G.; Neuman, S. P.

    2005-12-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown

  15. Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California

    NASA Astrophysics Data System (ADS)

    Izbicki, John A.; Flint, Alan L.; O'Leary, David R.; Nishikawa, Tracy; Martin, Peter; Johnson, Russell D.; Clark, Dennis A.

    2015-05-01

    Mobilization of natural and septic nitrate from the unsaturated zone as a result of managed aquifer recharge has degraded water quality from public-supply wells near Yucca Valley in the western Mojave Desert, California. The effect of nitrate storage and potential for denitrification in the unsaturated zone to mitigate increasing nitrate concentrations were investigated. Storage of water extractable nitrate in unsaturated alluvium up to 160 meters (m) thick, ranged from 420 to 6600 kilograms per hectare (kg/ha) as nitrogen (N) beneath undeveloped sites, from 6100 to 9200 kg/ha as N beneath unsewered sites. Nitrate reducing and denitrifying bacteria were less abundant under undeveloped sites and more abundant under unsewered sites; however, δ15N-NO3, and δ18O-NO3 data show only about 5-10% denitrification of septic nitrate in most samples-although as much as 40% denitrification occurred in some parts the unsaturated zone and near the top of the water table. Storage of nitrate in thick unsaturated zones and dilution with low-nitrate groundwater are the primary attenuation mechanisms for nitrate from septic discharges in the study area. Numerical simulations of unsaturated flow, using the computer program TOUGH2, showed septic effluent movement through the unsaturated zone increased as the number and density of the septic tanks increased, and decreased with increased layering, and increased slope of layers, within the unsaturated zone. Managing housing density can delay arrival of septic discharges at the water table, especially in layered unsaturated alluvium, allowing time for development of strategies to address future water-quality issues.

  16. Microbially mediated alteration of crystalline basalts as identified from analogical reactive percolation experiments

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte; Stéphant, Sylvian; Dupraz, Sébastien; Ranchou-Peyruse, Magali; Ranchou-Peyruse, Anthony; Gérard, Emmanuelle

    2017-04-01

    Alteration in the ocean crust through fluid circulation is an ongoing process affecting the first kilometers and at low temperatures some alteration may be microbially mediated. Hydrothermal activity through the hard rock basement supports diverse microbial communities within the rock by providing nutrient and energy sources. Currently, the impact of basement hosted microbial communities on alteration is poorly understood. In order to identify and quantify the nature of microbially mediated alteration two reactive percolation experiments mimicking circulation of CO2 enriched ground water were performed at 35 °C and 30 bar for 21 days each. The experiments were performed using a crystalline basalt substrate from an earlier drilled deep Icelandic aquifer. One experiment was conducted on sterile rock while the other was conducted with the addition of a microbial inoculate derived from groundwater enrichment cultures obtained from the same aquifer. µCT on the experimental basaltic substrate before and after the reactive percolation experiment along with synchrotron radiation x-ray tomographic microscopy and the mineralogical characterization of resulting material allows for the comparative volumetric quantification of dissolution and precipitation. The unique design of this experiment allows for the identification of alteration which occurs solely abiotically and of microbially mediated alteration. Experimental results are compared to natural basaltic cores from Iceland retrieved following a large field CO2 injection experiment that stimulated microbial activity at depth.

  17. Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California

    USGS Publications Warehouse

    Izbicki, John A.; Flint, Alan L.; O'Leary, David R.; Nishikawa, Tracy; Martin, Peter; Johnson, Russell D.; Clark, Dennis A.

    2015-01-01

    Mobilization of natural and septic nitrate from the unsaturated zone as a result of managed aquifer recharge has degraded water quality from public-supply wells near Yucca Valley in the western Mojave Desert, California. The effect of nitrate storage and potential for denitrification in the unsaturated zone to mitigate increasing nitrate concentrations were investigated. Storage of water extractable nitrate in unsaturated alluvium up to 160 meters (m) thick, ranged from 420 to 6600 kilograms per hectare (kg/ha) as nitrogen (N) beneath undeveloped sites, from 6100 to 9200 kg/ha as N beneath unsewered sites. Nitrate reducing and denitrifying bacteria were less abundant under undeveloped sites and more abundant under unsewered sites; however, δ15N–NO3, and δ18O–NO3 data show only about 5–10% denitrification of septic nitrate in most samples—although as much as 40% denitrification occurred in some parts the unsaturated zone and near the top of the water table. Storage of nitrate in thick unsaturated zones and dilution with low-nitrate groundwater are the primary attenuation mechanisms for nitrate from septic discharges in the study area. Numerical simulations of unsaturated flow, using the computer program TOUGH2, showed septic effluent movement through the unsaturated zone increased as the number and density of the septic tanks increased, and decreased with increased layering, and increased slope of layers, within the unsaturated zone. Managing housing density can delay arrival of septic discharges at the water table, especially in layered unsaturated alluvium, allowing time for development of strategies to address future water-quality issues.

  18. Transport of citrate-coated silver nanoparticles in unsaturated sand

    NASA Astrophysics Data System (ADS)

    Kumahor, Samuel; Hron, Pavel; Metreveli, George; Schaumann, Gabriele; Vogel, Hans-Jörg

    2015-04-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Unlike for saturated transport, studies on unsaturated transport as typical for soil are currently scarce. We investigated the mobility of citrate-coated Ag NPs in unsaturated sand (grain diameter: 0.1-0.3 mm). For three flux rates and a given pore-water ionic strength (1 mM KNO3), the citrate-coated Ag NPs were less mobile at pH = 5 compared to pH = 9. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggests unfavorable deposition conditions at both, the air-water interface and solid-water interface. Breakthrough curves measured under quasi-steady state unsaturated flow showed retardation of the citrate-coated Ag NPs compared to inert solute (KBr). After flushing with nanoparticle-free 1 mM KNO3 solution (pH-adjusted), retention was much lower in deeper depths compared to the surface where the particles entered the flow field. The results show a non-linear dependence of nanoparticle (NP) mobility on flux rate and water content. Especially the observed retardation similar to equilibrium sorption is in contrast to observations under saturated flow conditions. A convection-dispersion and reaction model that combines a reversible equilibrium process and a non-equilibrium interaction process reproduced the measured breakthrough curves reasonably well. From comparison between saturated and unsaturated experiments we conclude that the air-water interface is responsible for the reversible equilibrium process while the water-solid interface accounts for irreversible soption.

  19. STRUCTURE TOXICITY IN RELATIONSHIPS FOR A,B-UNSATURATED ALCOHOLS IN FISH

    EPA Science Inventory

    Previous toxicity testing with fathead minnows (Pimephales promelas) indicated that some unsaturated acetylenic and allylic alcohols can be metabolically activated, via alcohol dehydrogenase, to highly toxic a,B-unsaturated aldehydes and ketones or allene derivatives. lthough sev...

  20. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  1. Identifying Alteration and Water on MT. Baker, WA with Geophysics: Implications for Volcanic Landslide Hazards

    NASA Astrophysics Data System (ADS)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P.; Minsley, B. J.

    2016-12-01

    Helicopter magnetic and electromagnetic (HEM) data, along with rock property measurements, local ground-based gravity, time domain electromagnetic (TEM) and nuclear magnetic resonance (NMR) data help identify alteration and water-saturated zones on Mount Baker, Washington. Hydrothermally altered rocks, particularly if water-saturated, can weaken volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. At Mount Baker volcano, collapses of hydrothermally altered rocks from the edifice have generated numerous debris flows that constitute their greatest volcanic hazards. Critical to quantifying this hazard is knowledge of the three-dimensional distribution of pervasively altered rock, shallow groundwater and ice that plays an important role in transforming debris avalanches to far traveled lahars. The helicopter geophysical data, combined with geological mapping and rock property measurements, indicate the presence of localized zones of less than 100 m thickness of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. New stochastic inversions of the HEM data indicate variations in resistivity in inferred perched aquifers—distinguishing between fresh and saline waters, possibly indicating the influence of nearby alteration and/or hydrothermal systems on water quality. The new stochastic results better resolve ice thickness than previous inversions, and also provide important estimates of uncertainty on ice thickness and other parameters. New gravity data will help constrain the thickness of the ice and alteration. Nuclear magnetic resonance data indicate that the hydrothermal clays contain 50% water with no evidence for water beneath the ice. The HEM data identify water-saturated fresh volcanic rocks from the surface to the detection limit ( 100 m) over the entire summit of Mt. Baker. Localized time domain EM soundings indicate that

  2. Hydraulic Properties of Unsaturated Soils

    USDA-ARS?s Scientific Manuscript database

    Many agrophysical applications require knowledge of the hydraulic properties of unsaturated soils. These properties reflect the ability of a soil to retain or transmit water and its dissolved constituents. The objective of this work was to develop an entry for the Encyclopedia of Agrophysics that w...

  3. THE RETC CODE FOR QUANTIFYING THE HYDRAULIC FUNCTIONS OF UNSATURATED SOILS

    EPA Science Inventory

    This report describes the RETC computer code for analyzing the soil water retention and hydraulic conductivity functions of unsaturated soils. These hydraulic properties are key parameters in any quantitative description of water flow into and through the unsaturated zone of soil...

  4. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    NASA Astrophysics Data System (ADS)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  5. Importance of unsaturated zone flow for simulating recharge in a humid climate

    USGS Publications Warehouse

    Hunt, R.J.; Prudic, David E.; Walker, J.F.; Anderson, M.P.

    2008-01-01

    Transient recharge to the water table is often not well understood or quantified. Two approaches for simulating transient recharge in a ground water flow model were investigated using the Trout Lake watershed in north-central Wisconsin: (1) a traditional approach of adding recharge directly to the water table and (2) routing the same volume of water through an unsaturated zone column to the water table. Areas with thin (less than 1 m) unsaturated zones showed little difference in timing of recharge between the two approaches; when water was routed through the unsaturated zone, however, less recharge was delivered to the water table and more discharge occurred to the surface because recharge direction and magnitude changed when the water table rose to the land surface. Areas with a thick (15 to 26 m) unsaturated zone were characterized by multimonth lags between infiltration and recharge, and, in some cases, wetting fronts from precipitation events during the fall overtook and mixed with infiltration from the previous spring snowmelt. Thus, in thicker unsaturated zones, the volume of water infiltrated was properly simulated using the traditional approach, but the timing was different from simulations that included unsaturated zone flow. Routing of rejected recharge and ground water discharge at land surface to surface water features also provided a better simulation of the observed flow regime in a stream at the basin outlet. These results demonstrate that consideration of flow through the unsaturated zone may be important when simulating transient ground water flow in humid climates with shallow water tables.

  6. A feasibility study of returning clinically actionable somatic genomic alterations identified in a research laboratory.

    PubMed

    Arango, Natalia Paez; Brusco, Lauren; Mills Shaw, Kenna R; Chen, Ken; Eterovic, Agda Karina; Holla, Vijaykumar; Johnson, Amber; Litzenburger, Beate; Khotskaya, Yekaterina B; Sanchez, Nora; Bailey, Ann; Zheng, Xiaofeng; Horombe, Chacha; Kopetz, Scott; Farhangfar, Carol J; Routbort, Mark; Broaddus, Russell; Bernstam, Elmer V; Mendelsohn, John; Mills, Gordon B; Meric-Bernstam, Funda

    2017-06-27

    Molecular profiling performed in the research setting usually does not benefit the patients that donate their tissues. Through a prospective protocol, we sought to determine the feasibility and utility of performing broad genomic testing in the research laboratory for discovery, and the utility of giving treating physicians access to research data, with the option of validating actionable alterations in the CLIA environment. 1200 patients with advanced cancer underwent characterization of their tumors with high depth hybrid capture sequencing of 201 genes in the research setting. Tumors were also tested in the CLIA laboratory, with a standardized hotspot mutation analysis on an 11, 46 or 50 gene platform. 527 patients (44%) had at least one likely somatic mutation detected in an actionable gene using hotspot testing. With the 201 gene panel, 945 patients (79%) had at least one alteration in a potentially actionable gene that was undetected with the more limited CLIA panel testing. Sixty-four genomic alterations identified on the research panel were subsequently tested using an orthogonal CLIA assay. Of 16 mutations tested in the CLIA environment, 12 (75%) were confirmed. Twenty-five (52%) of 48 copy number alterations were confirmed. Nine (26.5%) of 34 patients with confirmed results received genotype-matched therapy. Seven of these patients were enrolled onto genotype-matched targeted therapy trials. Expanded cancer gene sequencing identifies more actionable genomic alterations. The option of CLIA validating research results can provide alternative targets for personalized cancer therapy.

  7. Adaptive probabilistic collocation based Kalman filter for unsaturated flow problem

    NASA Astrophysics Data System (ADS)

    Man, J.; Li, W.; Zeng, L.; Wu, L.

    2015-12-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the Polynomial Chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so called "cure of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF is even more computationally expensive than EnKF. Motivated by recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problem. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to alleviate the inconsistency between model parameters and states. The performance of RAPCKF is tested by unsaturated flow numerical cases. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  8. Impact of Microorganisms on Unsatured Flow within Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daphne L. Stoner; Robert D. Stedtfeld; Tina L. Tyler

    An experiment is described in which a groundwater bacterium, Sphingomonas sp., influenced the dynamics of unsaturated flow at a fracture intersection. A washed cell suspension increased by three-fold the length of time that water pooled at the fracture intersection. On the other hand, the addition of growth substrates resulted in cell growth and the conversion from intermittent to continuous flow behavior at the fracture intersection. The results suggest that microbial properties and processes need to be included with other important variables for understanding unsaturated flow in fractured geomatrices.

  9. TRPA1-dependent reversible opening of tight junction by natural compounds with an α,β-unsaturated moiety and capsaicin.

    PubMed

    Kanda, Yusuke; Yamasaki, Youhei; Sasaki-Yamaguchi, Yoshie; Ida-Koga, Noriko; Kamisuki, Shinji; Sugawara, Fumio; Nagumo, Yoko; Usui, Takeo

    2018-02-02

    The delivery of hydrophilic macromolecules runs into difficulties such as penetration of the cell membrane lipid bilayer. Our prior experiment demonstrated that capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. Herein, we screened paracellular permeability enhancers other than capsaicin. As TJ opening by capsaicin is associated with Ca 2+ influx, we first screened the compounds that induce Ca 2+ influx in layered MDCK II cells, and then we determined the compounds' abilities to open TJs. Our results identified several natural compounds with α,β-unsaturated moiety. A structure-activity relationship (SAR) analysis and the results of pretreatment with reducing reagent DTT suggested the importance of α,β-unsaturated moiety. We also examined the underlying mechanisms, and our findings suggest that the actin reorganization seen in capsaicin treatment is important for the reversibility of TJ opening. Furthermore, our analyses revealed that TRPA1 is involved in the Ca 2+ influx and TJ permeability increase not only by an α,β-unsaturated compound but also by capsaicin. Our results indicate that the α,β-unsaturated moiety can be a potent pharmacophore for TJ opening.

  10. Pd-Catalyzed Carbonylative Conjugate Addition of Dialkylzinc Reagents to Unsaturated Carbonyls

    PubMed Central

    Custar, Daniel W.; Le, Hai; Morken, James P.

    2010-01-01

    The Pd-catalyzed addition of organozinc reagents to unsaturated carbonyls in the presence of carbon monoxide provides 1,4-diketones in good yield. The reaction was studied with a number of substituted cyclic and acyclic ketones as well as α,β-unsaturated aldehydes. PMID:20687574

  11. Bacterial uptake of antibiotics in model unsaturated systems

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Chen, Z.; Zhang, Y.; Zhao, Z.; Wang, G.; Gao, Y.; Boyd, S. A.; Zhu, D.; Li, H.

    2016-12-01

    Anthropogenic antibiotics are ubiquitously present in the environment due to large uses in human medicine and animal agriculture, and are causing unintended consequence to human and ecosystem health. Bacterial uptake of antibiotics could exert selection pressure on antibiotic resistance development among bacteria population. Therefore, understanding environmental factors controlling bioavailability of antibiotics to bacteria is critical to better assessing exposure risks and developing mitigation strategies. Nonetheless, conventional bioavailability assays are often performed in water-saturated systems that do not represent unsaturated soils where most bacteria live, therefore neglecting soil water as a controlling factor in determining the extent of antibiotic bacterial uptake. Therefore, we propose to study bacterial uptake of antibiotics in model unsaturated systems using GFP-tagged Escherichia coli bioreporter for tetracyclines. Our preliminary studies demonstrated the important role of water content (or water matric potential) in determining the bioavailability of antibiotics, and complex interactions of water potential, tetracycline diffusion, and E. coli growth. Therefore, unsaturated processes are important for understanding antibiotic resistance development and developing mitigation strategies.

  12. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    PubMed

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  13. Effect of grain-coating mineralogy on nitrate and sulfate storage in the unsaturated zone

    USGS Publications Warehouse

    Reilly, T.J.; Fishman, N.S.; Baehr, A.L.

    2009-01-01

    Unsaturated-zone sediments and the chemistry of shallow groundwater underlying a small (???8-km2) watershed were studied to identify the mechanisms responsible for anion storage within the Miocene Bridgeton Formation and weathered Coastal Plain deposits in southern New Jersey. Lower unsaturated-zone sediments and shallow groundwater samples were collected and concentrations of selected ions (including NO3- and SO42-) from 11 locations were determined. Grain size, sorting, and color of the lower unsaturated-zone sediments were determined and the mineralogy of these grains and the composition of coatings were analyzed by petrographic examination, scanning electron microscopy and energy dispersive analysis of x-rays, and quantitative whole-rock x-ray diffraction. The sediment grains, largely quartz and chert (80-94% w/w), are coated with a very fine-grained (<20 ??m), complex mixture of kaolinite, halloysite, goethite, and possibly gibbsite and lepidocrocite. The mineral coatings are present as an open fabric, resulting in a large surface area in contact with pore water. Significant correlations between the amount of goethite in the grain coatings and the concentration of sediment-bound SO42- were observed, indicative of anion sorption. Other mineral-chemical relations indicate that negatively charged surfaces and competition with SO 42- results in exclusion of NO3- from inner sphere exchange sites. The observed NO3- storage may be a result of matrix forces within the grain coatings and outer sphere complexation. The results of this study indicate that the mineralogy of grain coatings can have demonstrable effects on the storage of NO 3- and SO42- in the unsaturated zone. ?? Soil Science Society of America. All rights reserved.

  14. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    DOT National Transportation Integrated Search

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  15. Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease.

    PubMed

    Kirpich, Irina A; Petrosino, Joseph; Ajami, Nadim; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Barve, Shirish S; Yin, Xinmin; Wei, Xiaoli; Zhang, Xiang; McClain, Craig J

    2016-04-01

    Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  17. Artificial recharge through a thick, heterogeneous unsaturated zone

    USGS Publications Warehouse

    Izbicki, J.A.; Flint, A.L.; Stamos, C.L.

    2008-01-01

    Thick, heterogeneous unsaturated zones away from large streams in desert areas have not previously been considered suitable for artificial recharge from ponds. To test the potential for recharge in these settings, 1.3 ?? 10 6 m3 of water was infiltrated through a 0.36-ha pond along Oro Grande Wash near Victorville, California, between October 2002 and January 2006. The pond overlies a regional pumping depression 117 m below land surface and is located where thickness and permeability of unsaturated deposits allowed infiltration and saturated alluvial deposits were sufficiently permeable to allow recovery of water. Because large changes in water levels caused by nearby pumping would obscure arrival of water at the water table, downward movement of water was measured using sensors in the unsaturated zone. The downward rate of water movement was initially as high as 6 m/d and decreased with depth to 0.07 m/d; the initial time to reach the water table was 3 years. After the unsaturated zone was wetted, water reached the water table in 1 year. Soluble salts and nitrate moved readily with the infiltrated water, whereas arsenic and chromium were less mobile. Numerical simulations done using the computer program TOUGH2 duplicated the downward rate of water movement, accumulation of water on perched zones, and its arrival at the water table. Assuming 10 ?? 10 6 m3 of recharge annually for 20 years, a regional ground water flow model predicted water level rises of 30 m beneath the ponds, and rises exceeding 3 m in most wells serving the nearby urban area.

  18. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids.

    PubMed

    van Weeghel, Michel; te Brinke, Heleen; van Lenthe, Henk; Kulik, Wim; Minkler, Paul E; Stoll, Maria S K; Sass, Jörn Oliver; Janssen, Uwe; Stoffel, Wilhelm; Schwab, K Otfried; Wanders, Ronald J A; Hoppel, Charles L; Houten, Sander M

    2012-10-01

    Mitochondrial enoyl-CoA isomerase (ECI1) is an auxiliary enzyme involved in unsaturated fatty acid oxidation. In contrast to most of the other enzymes involved in fatty acid oxidation, a deficiency of ECI1 has yet to be identified in humans. We used wild-type (WT) and Eci1-deficient knockout (KO) mice to explore a potential presentation of human ECI1 deficiency. Upon food withdrawal, Eci1-deficient mice displayed normal blood β-hydroxybutyrate levels (WT 1.09 mM vs. KO 1.10 mM), a trend to lower blood glucose levels (WT 4.58 mM vs. KO 3.87 mM, P=0.09) and elevated blood levels of unsaturated acylcarnitines, in particular C12:1 acylcarnitine (WT 0.03 μM vs. KO 0.09 μM, P<0.01). Feeding an olive oil-rich diet induced an even greater increase in C12:1 acylcarnitine levels (WT 0.01 μM vs. KO 0.04 μM, P<0.01). Overall, the phenotypic presentation of Eci1-deficient mice is mild, possibly caused by the presence of a second enoyl-CoA isomerase (Eci2) in mitochondria. Knockdown of Eci2 in Eci1-deficient fibroblasts caused a more pronounced accumulation of C12:1 acylcarnitine on incubation with unsaturated fatty acids (12-fold, P<0.05). We conclude that Eci2 compensates for Eci1 deficiency explaining the mild phenotype of Eci1-deficient mice. Hypoglycemia and accumulation of C12:1 acylcarnitine might be diagnostic markers to identify ECI1 deficiency in humans.

  19. Gas transport in unsaturated porous media: the adequacy of Fick's law

    USGS Publications Warehouse

    Thorstenson, D.C.; Pollock, D.W.

    1989-01-01

    The increasing use of natural unsaturated zones as repositories for landfills and disposal sites for hazardous wastes (chemical and radioactive) requires a greater understanding of transport processes in the unsaturated zone. For volatile constituents an important potential transport mechanism is gaseous diffusion. Diffusion, however, cannot be treated as an independent isolated transport mechanism. A complete understanding of multicomponent gas transport in porous media (unsaturated zones) requires a knowledge of Knudsen transport, the molecular and nonequimolar components of diffusive flux, and viscous (pressure driven) flux. This review presents a brief discussion of the underlying principles and interrelationships among each of the above flux mechanisms. -from Authors

  20. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    PubMed Central

    Lee, Seung Eun; Park, Yong Seek

    2013-01-01

    Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction. PMID:23819013

  1. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Whelan, J.F.; Neymark, L.A.; Moscati, R.J.; Marshall, B.D.; Roedder, E.

    2008-01-01

    Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (Th) up to ???80 ??C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite ??18O values, and depositional timing is constrained by the 207Pb/235U ages of chalcedony or opal in the deposits. Fluid inclusion Th from 50 samples of calcite and four samples of fluorite range from ???35 to ???90 ??C. Calcite ??18O values range from ???0 to ???22??? (SMOW) but most fall between 12 and 20???. The highest Th and the lowest ??18O values are found in the older calcite. Calcite Th and ??18O values indicate that most calcite precipitated from water with ??18O values between -13 and -7???, similar to modern meteoric waters. Twenty-two 207Pb/235U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from ???9.5 to 1.9 Ma. New and published 207Pb/235U and 230Th/Uages coupled with the Th values and estimates of temperature from calcite ??18O values indicate that maximum unsaturated zone temperatures probably predate ???10 Ma and that the unsaturated zone had cooled to near-present-day temperatures (24-26 ??C at a depth of 250 m) by 2-4 Ma. The evidence

  2. Different stabilities of liposomes containing saturated and unsaturated lipids toward the addition of cyclodextrins.

    PubMed

    Ikeda, Atsushi; Funada, Rikushi; Sugikawa, Kouta

    2016-06-14

    Liposomes composed of unsaturated lipids were more stable than those containing saturated lipids toward DMe-β-CDx, DMe-α-CDx and DMe-β-CDx. The Hill coefficient values (n) indicated that the saturated lipid·DMe-CDx complexes had stoichiometric ratios in the range of 1 : 3-1 : 4, while the unsaturated lipid·DMe-CDx complexes had ratios in the range of 1 : 1.5-1 : 3. That is, a cis alkene group in the unsaturated lipids prevented complexation with a second DMe-CDx in the direction toward each acyl chain. Furthermore, the liposomes composed of the unsaturated lipids were much slower to form precipitates upon the addition of α-CDx than those of the saturated lipids. To the best of our knowledge, this is the first example showing that CDxs interact with unsaturated lipids.

  3. An updated model of induced airflow in the unsaturated zone

    USGS Publications Warehouse

    Baehr, Arthur L.; Joss, Craig J.

    1995-01-01

    Simulation of induced movement of air in the unsaturated zone provides a method to determine permeability and to design vapor extraction remediation systems. A previously published solution to the airflow equation for the case in which the unsaturated zone is separated from the atmosphere by a layer of lower permeability (such as a clay layer) has been superseded. The new solution simulates airflow through the layer of lower permeability more rigorously by defining the leakage in terms of the upper boundary condition rather than by adding a leakage term to the governing airflow equation. This note presents the derivation of the new solution. Formulas for steady state pressure, specific discharge, and mass flow in the domain are obtained for the new model and for the case in which the unsaturated zone is in direct contact with the atmosphere.

  4. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2010-07-01

    We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.

  5. integIRTy: a method to identify genes altered in cancer by accounting for multiple mechanisms of regulation using item response theory.

    PubMed

    Tong, Pan; Coombes, Kevin R

    2012-11-15

    Identifying genes altered in cancer plays a crucial role in both understanding the mechanism of carcinogenesis and developing novel therapeutics. It is known that there are various mechanisms of regulation that can lead to gene dysfunction, including copy number change, methylation, abnormal expression, mutation and so on. Nowadays, all these types of alterations can be simultaneously interrogated by different types of assays. Although many methods have been proposed to identify altered genes from a single assay, there is no method that can deal with multiple assays accounting for different alteration types systematically. In this article, we propose a novel method, integration using item response theory (integIRTy), to identify altered genes by using item response theory that allows integrated analysis of multiple high-throughput assays. When applied to a single assay, the proposed method is more robust and reliable than conventional methods such as Student's t-test or the Wilcoxon rank-sum test. When used to integrate multiple assays, integIRTy can identify novel-altered genes that cannot be found by looking at individual assay separately. We applied integIRTy to three public cancer datasets (ovarian carcinoma, breast cancer, glioblastoma) for cross-assay type integration which all show encouraging results. The R package integIRTy is available at the web site http://bioinformatics.mdanderson.org/main/OOMPA:Overview. kcoombes@mdanderson.org. Supplementary data are available at Bioinformatics online.

  6. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    NASA Astrophysics Data System (ADS)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  7. Predicting unsaturated zone nitrogen mass balances in agricultural settings of the United States

    USGS Publications Warehouse

    Nolan, Bernard T.; Puckett, Larry J.; Ma, Liwang; Green, Christopher T.; Bayless, E. Randall; Malone, Robert W.

    2009-01-01

    Unsaturated zone N fate and transport were evaluated at four sites to identify the predominant pathways of N cycling: an almond [Prunus dulcis (Mill.) D.A. Webb] orchard and cornfield (Zea mays L.) in the lower Merced River study basin, California; and corn–soybean [Glycine max (L.) Merr.] rotations in study basins at Maple Creek, Nebraska, and at Morgan Creek, Maryland. We used inverse modeling with a new version of the Root Zone Water Quality Model (RZWQM2) to estimate soil hydraulic and nitrogen transformation parameters throughout the unsaturated zone; previous versions were limited to 3-m depth and relied on manual calibration. The overall goal of the modeling was to derive unsaturated zone N mass balances for the four sites. RZWQM2 showed promise for deeper simulation profiles. Relative root mean square error (RRMSE) values for predicted and observed nitrate concentrations in lysimeters were 0.40 and 0.52 for California (6.5 m depth) and Nebraska (10 m), respectively, and index of agreement (d) values were 0.60 and 0.71 (d varies between 0 and 1, with higher values indicating better agreement). For the shallow simulation profile (1 m) in Maryland, RRMSE and d for nitrate were 0.22 and 0.86, respectively. Except for Nebraska, predictions of average nitrate concentration at the bottom of the simulation profile agreed reasonably well with measured concentrations in monitoring wells. The largest additions of N were predicted to come from inorganic fertilizer (153–195 kg N ha−1 yr−1 in California) and N fixation (99 and 131 kg N ha−1 yr−1 in Maryland and Nebraska, respectively). Predicted N losses occurred primarily through plant uptake (144–237 kg N ha−1 yr−1) and deep seepage out of the profile (56–102 kg N ha−1 yr−1). Large reservoirs of organic N (up to 17,500 kg N ha−1 m−1 at Nebraska) were predicted to reside in the unsaturated zone, which has implications for potential future transfer of nitrate to groundwater.

  8. Liposomes composed of unsaturated lipids for membrane modification of human erythrocytes.

    PubMed

    Stoll, Christoph; Holovati, Jelena L; Acker, Jason P; Wolkers, Willem F

    2011-01-01

    Previous studies have shown that certain saturated lipids protect red blood cells (RBCs) during hypothermic storage but provide little protection during freezing or freeze-drying, whereas various unsaturated lipids destabilize RBCs during hypothermic storage but protect during freezing and freeze-drying. The protective effect of liposomes has been attributed to membrane modifications. We have previously shown that cholesterol exchange and lipid transfer between liposomes composed of saturated lipids and RBCs critically depends on the length of the lipid acyl chains. In this study the effect of unsaturated lipids with differences in their number of unsaturated bonds (18:0/18:1, 18:1/18:1, 18:2/18:2) on RBC membrane properties has been studied. RBCs were incubated in the presence of liposomes and both the liposomal and RBC fraction were analyzed by Fourier transform infrared spectroscopy (FTIR) after incubation. The liposomes caused an increase in RBC membrane conformational disorder at suprazero temperatures. The fluidizing effect of the liposomes on the RBC membranes, however, was found to be similar for the different lipids irrespective of their unsaturation level. The gel to liquid crystalline phase transition temperature of the liposomes increased after incubation with RBCs. RBC membrane fluidity increased linearly during the first 8 hours of incubation in the presence of liposomes. The increase in RBC membrane fluidity was found to be temperature dependent and displayed Arrhenius behaviour between 20 and 40°C, with an activation energy of 88 kJ mol⁻¹. Taken together, liposomes composed of unsaturated lipids increase RBC membrane conformational disorder, which could explain their cryoprotective action.

  9. Project Summary. THE RETC CODE FOR QUANTIFYING THE HYDRAULIC FUNCTIONS OF UNSATURATED SOILS

    EPA Science Inventory

    This summary describes the RETC computer code for analyzing the soil water retention and hydraulic conductivity functions of unsaturated soils. These hydraulic properties are key parameters in any quantitative description of water flow into and through the unsaturated zone of soi...

  10. Process for making unsaturated hydrocarbons using microchannel process technology

    DOEpatents

    Tonkovich, Anna Lee [Dublin, OH; Yuschak, Thomas [Lewis Center, OH; LaPlante, Timothy J [Columbus, OH; Rankin, Scott [Columbus, OH; Perry, Steven T [Galloway, OH; Fitzgerald, Sean Patrick [Columbus, OH; Simmons, Wayne W [Dublin, OH; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  11. Experimental Study on Shear Strength of Unsaturated Loess Based on Different Water Content in Xining Area

    NASA Astrophysics Data System (ADS)

    guibo, Bao; hui, Li; yu, Zhang; wuyu, Zhang; ningshan, Jiang

    2018-05-01

    Today, the study of shear strength of unsaturated soils has become a hot topic in unsaturated soil mechanics research. There are any number of factors affecting the strength of unsaturated soils. Among these factors, the moisture content has the most significant effect on the shear strength. In this paper, unsaturated loess in Xining is taken as the research object, the triaxial test without consolidation and undrain is used to determine the shear strength and its parameters under the condition of different water content, then the relationship between unsaturated loess’ water content and shear strength parameters is explored, and curve fitting is performed. The relevantily approximate mathematics formulas are obtained. The study can provide strength parameter for slope stability and foundation pit support in Xining.

  12. Short communication: Estimates of heritabilities and genetic correlations among milk fatty acid unsaturation indices in Canadian Holsteins.

    PubMed

    Bilal, G; Cue, R I; Mustafa, A F; Hayes, J F

    2012-12-01

    The objectives of the present study were to estimate genetic parameters of milk fatty acid unsaturation indices in Canadian Holsteins. Data were available on milk fatty acid composition of 2,573 Canadian Holstein cows from 46 commercial herds enrolled in the Québec Dairy Production Centre of Expertise, Valacta (Sainte-Anne-de-Bellevue, Quebec, Canada). Individual fatty acid percentages (g/100 g of total fatty acids) were determined for each milk sample by gas chromatography. The unsaturation indices were calculated as the ratio of an unsaturated fatty acid to the sum of that unsaturated fatty acid and its corresponding substrate fatty acid, multiplied by 100. A mixed linear model was fitted under REML for the statistical analysis of milk fatty acid unsaturation indices. The statistical model included the fixed effects of parity, age at calving, and stage of lactation, each nested within parity, and the random effects of herd-year-season of calving, animal, and residual. Estimates of heritabilities for the C14, C16, C18, conjugated linoleic acid, and total unsaturation indices were 0.48, 0.25, 0.29, 0.14, and 0.19, respectively. Phenotypic and genetic correlation estimates among unsaturation indices were all positive and ranged from 0.20 to 0.65 and 0.23 to 0.81, respectively. The estimates of heritabilities and genetic correlations for milk fatty acid unsaturation indices suggest that genetic variation exists among cows in milk fatty acid unsaturation, and the proportions of desirable unsaturated fatty acids from a human health point of view may be increased in bovine milk through genetic selection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Distribution of gases in the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Striegl, Robert G.

    1988-01-01

    The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)

  14. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    USGS Publications Warehouse

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  15. Field investigation into unsaturated flow and transport in a fault: Model analyses

    USGS Publications Warehouse

    Liu, H.-H.; Salve, R.; Wang, J.-S.; Bodvarsson, G.S.; Hudson, D.

    2004-01-01

    Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model. ?? 2004 Published by Elsevier B.V.

  16. Virus removal by unsaturated wastewater filtration: effects of biofilm accumulation and hydrophobicity.

    PubMed

    Heistad, A; Scott, T; Skaarer, A M; Seidu, R; Hanssen, J F; Stenström, T A

    2009-01-01

    Enhanced treatment of septic tank effluent can improve the hydraulic function and performance of infiltration systems and constructed wetlands. By intermittent spray application of septic tank effluent onto a coarse-grained filter media, an unsaturated flow regime beneficial for pathogen removal is created. A column filtration study showed an increase in PRD-1 removal by time of operation with corresponding biofilm accumulation in the filter material. The same increased removal was observed for 1 mum polystyrene beads, irrespective of their hydrophilic/hydrophobic surface properties. A control experiment with sorption of 1 mum hydrophobic and hydrophilic polystyrene beads to different glass surfaces with hydrophobic and hydrophilic properties indicate that mechanisms other than hydrophobic interactions may govern the rate of attachment to the filter media. For a given volumetric flow-rate in the columns, the presence of biofilm altered the hydrodynamic characteristics and this resulted in increased retention time and particle removal.

  17. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  18. Creep model of unsaturated sliding zone soils and long-term deformation analysis of landslides

    NASA Astrophysics Data System (ADS)

    Zou, Liangchao; Wang, Shimei; Zhang, Yeming

    2015-04-01

    Sliding zone soil is a special soil layer formed in the development of a landslide. Its creep behavior plays a significant role in long-term deformation of landslides. Due to rainfall infiltration and reservoir water level fluctuation, the soils in the slide zone are often in unsaturated state. Therefore, the investigation of creep behaviors of the unsaturated sliding zone soils is of great importance for understanding the mechanism of the long-term deformation of a landslide in reservoir areas. In this study, the full-process creep curves of the unsaturated soils in the sliding zone in different net confining pressure, matric suctions and stress levels were obtained from a large number of laboratory triaxial creep tests. A nonlinear creep model for unsaturated soils and its three-dimensional form was then deduced based on the component model theory and unsaturated soil mechanics. This creep model was validated with laboratory creep data. The results show that this creep model can effectively and accurately describe the nonlinear creep behaviors of the unsaturated sliding zone soils. In order to apply this creep model to predict the long-term deformation process of landslides, a numerical model for simulating the coupled seepage and creep deformation of unsaturated sliding zone soils was developed based on this creep model through the finite element method (FEM). By using this numerical model, we simulated the deformation process of the Shuping landslide located in the Three Gorges reservoir area, under the cycling reservoir water level fluctuation during one year. The simulation results of creep displacement were then compared with the field deformation monitoring data, showing a good agreement in trend. The results show that the creeping deformations of landslides have strong connections with the changes of reservoir water level. The creep model of unsaturated sliding zone soils and the findings obtained by numerical simulations in this study are conducive to

  19. Fractal Analysis of Permeability of Unsaturated Fractured Rocks

    PubMed Central

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model. PMID:23690746

  20. Fractal analysis of permeability of unsaturated fractured rocks.

    PubMed

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model.

  1. Estimating Unsaturated Zone N Fluxes and Travel Times to Groundwater at Watershed Scales

    NASA Astrophysics Data System (ADS)

    Liao, L.; Green, C. T.; Harter, T.; Nolan, B. T.; Juckem, P. F.; Shope, C. L.

    2016-12-01

    Nitrate concentrations in groundwater vary at spatial and temporal scales. Local variability depends on soil properties, unsaturated zone properties, hydrology, reactivity, and other factors. For example, the travel time in the unsaturated zone can cause contaminant responses in aquifers to lag behind changes in N inputs at the land surface, and variable leaching-fractions of applied N fertilizer to groundwater can elevate (or reduce) concentrations in groundwater. In this study, we apply the vertical flux model (VFM) (Liao et al., 2012) to address the importance of travel time of N in the unsaturated zone and its fraction leached from the unsaturated zone to groundwater. The Fox-Wolf-Peshtigo basins, including 34 out of 72 counties in Wisconsin, were selected as the study area. Simulated concentrations of NO3-, N2 from denitrification, O2, and environmental tracers of groundwater age were matched to observations by adjusting parameters for recharge rate, unsaturated zone travel time, fractions of N inputs leached to groundwater, O2 reduction rate, O2 threshold for denitrification, denitrification rate, and dispersivity. Correlations between calibrated parameters and GIS parameters (land use, drainage class and soil properties etc.) were evaluated. Model results revealed a median of recharge rate of 0.11 m/yr, which is comparable with results from three independent estimates of recharge rates in the study area. The unsaturated travel times ranged from 0.2 yr to 25 yr with median of 6.8 yr. The correlation analysis revealed that relationships between VFM parameters and landscape characteristics (GIS parameters) were consistent with expected relationships. Fraction N leached was lower in the vicinity of wetlands and greater in the vicinity of crop lands. Faster unsaturated zone transport in forested areas was consistent with results of studies showing rapid vertical transport in forested soils. Reaction rate coefficients correlated with chemical indicators such as Fe

  2. Percolation induced heat transfer in deep unsaturated zones

    USGS Publications Warehouse

    Lu, N.; LeCain, G.D.

    2003-01-01

    Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.

  3. Mechanics-Based Definition of Safety Factors Against Flow Failure in Unsaturated Shallow Slopes

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.; Lizarraga-Barrera, J.

    2014-12-01

    Physical models for landslide forecasting rely on the combination of hydrologic models for water infiltration and stability criteria based on infinite slope mechanics. Such concepts can be used to derive safety factors for shallow landsliding, in which the mobilization of the soil cover is associated with the attainment of critical values of pore water pressures expressed as a function of the frictional strength. While such models capture the role of important geomorphic features and geotechnical properties, their performance depends on the validity of the postulate of frictional failure. As a result, the safety factors do not to consider a broader range of solid-fluid interactions promoting different slope failure mechanisms, such as flow slides. This work combines principles of soil stability, unsaturated soil mechanics and plasticity theory to derive an alternative set of safety factors. While frictional slips are included in the study as a particular case, the proposed analytical methodology can also be applied to cases in which an increase in degree of saturation promotes liquefaction instabilities, i.e. possible transitions from solid- to fluid-like response. The study shows that the incorporation of principles of unsaturated soil mechanics into slope stability analyses generates suction-dependent coefficients that alter the value of the safety factors. As a result, while the proposed approach can still be combined with standard hydrologic models simulating the evolution of pore pressures in the near-surface, it can also provide a spatially distributed assessment of evolving safety conditions in landscapes susceptible to landslides of the flow type.

  4. Unsaturated flow processes in structurally-variable pathways in wildfire-affected soils and ash

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.

    2016-12-01

    Prediction of flash flood and debris flow generation in wildfire-affected soils and ash hinges on understanding unsaturated flow processes. Water resources issues, such as groundwater recharge, also rely on our ability to quantify subsurface flow. Soil-hydraulic property data provide insight into unsaturated flow processes and timescales. A literature review and synthesis of existing data from the literature for wildfire-affected soils, including ash and unburned soils, facilitated calculating metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and the Green-Ampt wetting front parameter (Ψf) were significantly lower in burned soils compared to unburned soils, while field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity was substantially reduced in burned soils, leading to faster ponding times in response to rainfall. Ash had large values of S and Kfs compared to unburned and burned soils but intermediate values of Ψf, suggesting that ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant ( 100 mm) for unburned soils, but was more variable in burned soils. Post-wildfire changes in this ratio suggested that unburned soils had a balance between gravity and capillarity contributions to infiltration, which may depend on soil organic matter, while burning shifted infiltration more towards gravity contributions by reducing S. Taken together, the changes in post-wildfire soil-hydraulic properties increased the propensity for surface runoff generation and may have enhanced subsurface preferential flow through pathways altered by wildfire.

  5. Differences in optoelectronic properties between H-saturated and unsaturated GaN nanowires with DFT method

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-05-01

    To investigate the influences of dangling bonds on GaN nanowires surface, the differences in optoelectronic properties between H-saturated and unsaturated GaN nanowires are researched through first-principles study. The GaN nanowires along the [0001] growth direction with diameters of 3.7, 7.5 and 9.5 Å are considered. According to the results, H-saturated GaN nanowires are more stable than the unsaturated ones. With increasing nanowire diameter, unsaturated GaN nanowires become more stable, while the stability of H-saturated GaN nanowires has little change. After geometry optimization, the atomic displacements of unsaturated and H-saturated models are almost reversed. In (0001) crystal plane, Ga atoms tend to move inwards and N atoms tend to move outwards slightly for the unsaturated nanowires, while Ga atoms tend to move outwards and N atoms tend to move inwards slightly for the H-saturated nanowires. Besides, with increasing nanowire diameter, the conduction band minimum of H-saturated nanowire moves to the lower energy side, while that of the unsaturated nanowire changes slightly. The bandgaps of H-saturated nanowires are approaching to bulk GaN as the diameter increases. Absorption curves and reflectivity curves of the unsaturated and H-saturated nanowires exhibit the same trend with the change of energy except the H-saturated models which show larger variations. Through all the calculated results above, we can better understand the effects of dangling bonds on the optoelectronic properties of GaN nanowires and select more proper calculation models and methods for other calculations.

  6. Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2010-12-01

    Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.

  7. Highly versatile enantioselective conjugate addition of Grignard reagents to alpha,beta-unsaturated thioesters.

    PubMed

    Ruiz, Beatriz Maciá; Geurts, Koen; Fernández-Ibáñez, M Angeles; ter Horst, Bjorn; Minnaard, Adriaan J; Feringa, Ben L

    2007-11-22

    Herein, we report efficient catalysts for the asymmetric copper-catalyzed conjugate addition of Grignard reagents to alpha,beta-unsaturated thioesters. MeMgBr adds to aromatic alpha,beta-unsaturated thioesters with excellent enantioselectivities and moderate to good yields using Josiphos/CuBr and Tol-BINAP/CuI complexes. The use of bulky Grignard reagents leads to unprecedented enantioselectivities in the 1,4-addition to a broad range of aromatic and aliphatic alpha,beta-unsaturated thioesters using Tol-BINAP/CuI. The highest enantioselectivities reported so far for the addition of Grignard reagents to crowded beta-substituted aliphatic substrates are achieved with Tol-BINAP/CuI.

  8. Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts.

    PubMed

    Ren, Hui; Yu, Weiting; Salciccioli, Michael; Chen, Ying; Huang, Yulin; Xiong, Ke; Vlachos, Dionisios G; Chen, Jingguang G

    2013-05-01

    Which cleavage do you prefer? With a combination of density functional theory (DFT) calculations, surface science studies, and reactor evaluations, Mo(2)C is identified as a highly selective HDO catalyst to selectively convert biomass-derived oxygenates to unsaturated hydrocarbons through selective C-O bond scissions without C-C bond cleavage. This provides high-value HDO products for utilization as feedstocks for chemicals and fuels; this also reduces the overall consumption of H2 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Geraniol attenuates hydrogen peroxide-induced liver fatty acid alterations in male rats.

    PubMed

    Ozkaya, Ahmet; Sahin, Zafer; Gorgulu, Ahmet Orhan; Yuce, Abdurrauf; Celik, Sait

    2017-01-01

    Hydrogen peroxide (H 2 O 2 ) is an oxidant agent and this molecule naturally occurs in the body as a product of aerobic metabolism. Geraniol is a plant-derived natural antioxidant. The aim of this study was to determine the role of geraniol on hepatic fatty acids alterations following H 2 O 2 -induced oxidative stress in male rats. After randomization, male Wistar rats were divided into four groups ( n = 7 each group). Geraniol (50 mg/kg, dissolved in corn oil) and H 2 O 2 (16 mg/kg, dissolved in distilled water) were administered by an intraperitoneal injection. Administrations were performed during 30 days with 1-day interval. Administration of H 2 O 2 resulted with a significant increase in malondialdehyde (MDA) and a significant decrease in glutathione (GSH) peroxidase glutathione level; geraniol restored its effects on liver. However, hepatic catalase (CAT) activities were significantly higher in H 2 O 2 , geraniol, and geraniol+H 2 O 2 groups than control group. The ratio of hepatic total saturated fatty acids increased in H 2 O 2 -treated animals compared with control. In addition, hepatic total unsaturated fatty acids reduced in H 2 O 2 group compared with control. The percentages of both hepatic total saturated and unsaturated fatty acids were not different between geraniol+H 2 O 2 and control groups. H 2 O 2 -induced oxidative stress may affect fatty acid composition in liver and body. Geraniol can partly restore oxidative hepatic damage because it cannot completely reverse the H 2 O 2 -induced increase in hepatic CAT activities. Moreover, this natural compound can regulate hepatic total saturated and unsaturated fatty acids percentages against H 2 O 2 -induced alterations.

  10. Data from a thick unsaturated zone in Joshua Tree, San Bernardino County, California, 2007--09

    USGS Publications Warehouse

    Burgess, Matthew; Izbicki, John; Teague, Nicholas; O'Leary, David R.; Clark, Dennis; Land, Michael

    2012-01-01

    Data were collected on the physical properties of unsaturated alluvial deposits, the chemical composition of leachate extracted from unsaturated alluvial deposits, the chemical and isotopic composition of groundwater and unsaturated-zone water, and the chemical composition of unsaturated-zone gas at four monitoring sites in the southwestern part of the Mojave Desert in the town of Joshua Tree, San Bernardino County, California. The presence of denitrifying and nitrate-reducing bacteria from unsaturated alluvial deposits was evaluated for two of these monitoring sites that underlie unsewered residential development. Four unsaturated-zone monitoring sites were installed in the Joshua Tree area—two in an unsewered residential development and two adjacent to a proposed artificial-recharge site in an undeveloped area. The two boreholes in residential development areas were installed by using the ODEX air-hammer method. One borehole was drilled through the unsaturated zone to a depth of 541 ft (feet) below land surface; a well screened across the water table was installed. Groundwater was sampled from this well. The second borehole was drilled to a depth of 81 ft below land surface. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described. Core material was analyzed for water content, bulk density, matric potential, particle size, and water retention. The leachate from over 500 subsamples of cores and cuttings was analyzed for soluble anions, including fluoride, sulfate, bromide, chloride, nitrate, nitrite, and orthophosphate. Groundwater was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone water from suction-cup lysimeters was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone gas samples were analyzed for argon, oxygen, nitrogen, methane, carbon dioxide, ethane

  11. Improved solution for saturated-unsaturated flow to a partially penetrating well in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2009-12-01

    Tartakovsky and Neuman [2007] developed an analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value. Both exponential functions were characterized by a common exponent. We present an improved solution in which relative hydraulic conductivity and water content are characterized by separate parameters and the unsaturated zone has finite thickness. Our four-parameter representation of these functions is more flexible than the three-parameter version of Mathias and Butler [2006], who consider flow in the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. We investigate the effects of unsaturated zone thickness and constitutive parameters on drawdown in the unsaturated and saturated zones as functions of position and time. We then use our new solution to analyze data from synthetic and real pumping tests.

  12. In-situ arsenic removal during groundwater recharge through unsaturated alluvium

    USGS Publications Warehouse

    O'Leary, David; Izbicki, John; T.J. Kim,; Clark Ajawani,; Suarez, Donald; Barnes, Thomas; Thomas Kulp,; Burgess, Matthew K.; Tseng, Iwen

    2015-01-01

    OBJECTIVES The purpose of this study was to determine the feasibility and sustainability of in-situ removal of arsenic from water infiltrated through unsaturated alluvium. BACKGROUND Arsenic is naturally present in aquifers throughout the southwestern United States and elsewhere. In January 2006, the U.S. Environmental Protection Agency (EPA) lowered the Maximum Contaminant Level (MCL) for arsenic from 50 to 10 micrograms per liter (g/L). This raised concerns about naturally-occurring arsenic in groundwater. Although commercially available systems using sorbent iron or aluminum oxide resins are available to treat high-arsenic water, these systems are expensive to build and operate, and may generate hazardous waste. Iron and aluminum oxides occur naturally on the surfaces of mineral grains that compose alluvial aquifers. In areas where alluvial deposits are unsaturated, these oxides may sorb arsenic in the same manner as commercial resins, potentially providing an effective low-cost alternative to commercially engineered treatment systems. APPROACH The Antelope Valley within the Mojave Desert of southern California contains a shallow water-table aquifer with arsenic concentrations of 5 g/L, and a deeper aquifer with arsenic concentrations of 30 g/L. Water was pumped from the deep aquifer into a pond and infiltrated through an 80 m-thick unsaturated zone as part of field-scale and laboratory experiments to treat high-arsenic groundwater and recharge the shallow water table aquifer at the site. The field-scale recharge experiment included the following steps: 1) construction of a recharge pond 2) test drilling for sample collection and instrument installation adjacent to the pond 3) monitoring downward migration of water infiltrated from the pond 4) monitoring changes in selected trace-element concentrations as water infiltrated through the unsaturated zone Data from instruments within the borehole adjacent to the pond were supplemented with borehole and

  13. Comparison of different filter methods for data assimilation in the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Lange, Natascha; Berkhahn, Simon; Erdal, Daniel; Neuweiler, Insa

    2016-04-01

    The unsaturated zone is an important compartment, which plays a role for the division of terrestrial water fluxes into surface runoff, groundwater recharge and evapotranspiration. For data assimilation in coupled systems it is therefore important to have a good representation of the unsaturated zone in the model. Flow processes in the unsaturated zone have all the typical features of flow in porous media: Processes can have long memory and as observations are scarce, hydraulic model parameters cannot be determined easily. However, they are important for the quality of model predictions. On top of that, the established flow models are highly non-linear. For these reasons, the use of the popular Ensemble Kalman filter as a data assimilation method to estimate state and parameters in unsaturated zone models could be questioned. With respect to the long process memory in the subsurface, it has been suggested that iterative filters and smoothers may be more suitable for parameter estimation in unsaturated media. We test the performance of different iterative filters and smoothers for data assimilation with a focus on parameter updates in the unsaturated zone. In particular we compare the Iterative Ensemble Kalman Filter and Smoother as introduced by Bocquet and Sakov (2013) as well as the Confirming Ensemble Kalman Filter and the modified Restart Ensemble Kalman Filter proposed by Song et al. (2014) to the original Ensemble Kalman Filter (Evensen, 2009). This is done with simple test cases generated numerically. We consider also test examples with layering structure, as a layering structure is often found in natural soils. We assume that observations are water content, obtained from TDR probes or other observation methods sampling relatively small volumes. Particularly in larger data assimilation frameworks, a reasonable balance between computational effort and quality of results has to be found. Therefore, we compare computational costs of the different methods as well

  14. Biscarbene palladium(II) complexes. reactivity of saturated versus unsaturated N-heterocyclic carbenes.

    PubMed

    Fu, Ching-Feng; Lee, Chun-Chin; Liu, Yi-Hung; Peng, Shie-Ming; Warsink, Stefan; Elsevier, Cornelis J; Chen, Jwu-Ting; Liu, Shiuh-Tzung

    2010-03-15

    A series of designed palladium biscarbene complexes including saturated and unsaturated N-heterocyclic carbene (NHC) moieties have been prepared by the carbene transfer methods. All of these complexes have been characterized by (1)H and (13)C NMR spectroscopy as well as X-ray diffraction analysis. The reactivity of Pd-C((saturated NHC)) is distinct from that of Pd-C((unsaturated NHC)). The Pd-C((saturated NHC)) bonds are fairly stable toward reagents such as CF(3)COOH, AgBF(4) and I(2), whereas Pd-C((unsaturated NHC)) bonds are readily cleaved under the similar conditions. Notably, the catalytically activity of these palladium complexes on Suzuki-Miyaura coupling follows the order: (sat-NHC)(2)PdCl(2) > (sat-NHC)(unsat-NHC)PdCl(2 )> (unsat-NHC)(2)PdCl(2).

  15. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  16. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  17. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  18. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  19. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  20. Documentation of the Streamflow-Routing (SFR2) Package to Include Unsaturated Flow Beneath Streams - A Modification to SFR1

    USGS Publications Warehouse

    Niswonger, Richard G.; Prudic, David E.

    2005-01-01

    Many streams in the United States, especially those in semiarid regions, have reaches that are hydraulically disconnected from underlying aquifers. Ground-water withdrawals have decreased water levels in valley aquifers beneath streams, increasing the occurrence of disconnected streams and aquifers. The U.S. Geological Survey modular ground-water model (MODFLOW-2000) can be used to model these interactions using the Streamflow-Routing (SFR1) Package. However, the approach does not consider unsaturated flow between streams and aquifers and may not give realistic results in areas with significantly deep unsaturated zones. This documentation describes a method for extending the capabilities of MODFLOW-2000 by incorporating the ability to simulate unsaturated flow beneath streams. A kinematic-wave approximation to Richards' equation was solved by the method of characteristics to simulate unsaturated flow beneath streams in SFR1. This new package, called SFR2, includes all the capabilities of SFR1 and is designed to be used with MODFLOW-2000. Unlike SFR1, seepage loss from the stream may be restricted by the hydraulic conductivity of the unsaturated zone. Unsaturated flow is simulated independently of saturated flow within each model cell corresponding to a stream reach whenever the water table (head in MODFLOW) is below the elevation of the streambed. The relation between unsaturated hydraulic conductivity and water content is defined by the Brooks-Corey function. Unsaturated flow variables specified in SFR2 include saturated and initial water contents; saturated vertical hydraulic conductivity; and the Brooks-Corey exponent. These variables are defined independently for each stream reach. Unsaturated flow in SFR2 was compared to the U.S. Geological Survey's Variably Saturated Two-Dimensional Flow and Transport (VS2DT) Model for two test simulations. For both test simulations, results of the two models were in good agreement with respect to the magnitude and downward

  1. Implications of surfactant-induced flow for miscible-displacement estimation of air-water interfacial areas in unsaturated porous media.

    PubMed

    Costanza-Robinson, Molly S; Zheng, Zheng; Henry, Eric J; Estabrook, Benjamin D; Littlefield, Malcolm H

    2012-10-16

    Surfactant miscible-displacement experiments represent a conventional means of estimating air-water interfacial area (A(I)) in unsaturated porous media. However, changes in surface tension during the experiment can potentially induce unsaturated flow, thereby altering interfacial areas and violating several fundamental method assumptions, including that of steady-state flow. In this work, the magnitude of surfactant-induced flow was quantified by monitoring moisture content and perturbations to effluent flow rate during miscible-displacement experiments conducted using a range of surfactant concentrations. For systems initially at 83% moisture saturation (S(W)), decreases of 18-43% S(W) occurred following surfactant introduction, with the magnitude and rate of drainage inversely related to the surface tension of the surfactant solution. Drainage induced by 0.1 mM sodium dodecyl benzene sulfonate, commonly used for A(I) estimation, resulted in effluent flow rate increases of up to 27% above steady-state conditions and is estimated to more than double the interfacial area over the course of the experiment. Depending on the surfactant concentration and the moisture content used to describe the system, A(I) estimates varied more than 3-fold. The magnitude of surfactant-induced flow is considerably larger than previously recognized and casts doubt on the reliability of A(I) estimation by surfactant miscible-displacement.

  2. A Similarity Theory for Unsaturated Downdrafts within Clouds.

    NASA Astrophysics Data System (ADS)

    Emanuel, Kerry A.

    1981-08-01

    Recent observations of cumulus clouds strongly support the hypothesis of Squires (1958) that much of the mixing within such clouds is associated with downward propagating currents initiated near their tops. A similarity theory is here proposed to describe the properties of such currents; the use of similarity is defended on the basis of the observed and predicted scale of the downdrafts. The theory suggests that downward-propagating unsaturated thermals are pervasive throughout all but the largest convective clouds and that quasi-steady unsaturated downdraft plumes may exist in the lower portions of cumulonimbi. In addition to providing a reasonable explanation for the microstructure of and liquid water distribution within cumulus clouds, the theory appears to account for certain severe convective phenomena, including down-bursts. A new but related cloud instability is proposed to account for the occurrence of mamma.

  3. Surface oxidation under ambient air--not only a fast and economical method to identify double bond positions in unsaturated lipids but also a reminder of proper lipid processing.

    PubMed

    Zhou, Ying; Park, Hyejung; Kim, Philseok; Jiang, Yan; Costello, Catherine E

    2014-06-17

    A simple, fast approach elucidated carbon-carbon double bond positions in unsaturated lipids. Lipids were deposited onto various surfaces and the products from their oxidation in ambient air were observed by electrospray ionization (ESI) mass spectrometry (MS). The most common oxidative products, aldehydes, were detected as transformations at the cleaved double bond positions. Ozonides and carboxylic acids were generated in certain lipids. Investigations of the conditions controlling the appearance of these products indicated that the surface oxidation depends on light and ambient air. Since the lipid oxidation was slower in a high concentration of ozone, singlet oxygen appeared to be a parallel oxidant for unsaturated lipids. The 3-hydroxyl group in the sphingoid base of sulfatides offered some protection from oxidation for the Δ4,5-double bond, slowing its oxidation rate relative to that of the isolated double bond in the N-linked fatty acyl chain. Direct sampling by thin-layer chromatography (TLC)-ESI-MS provides a powerful approach to elucidate detailed structural information on biological samples. Co-localization of the starting lipids and their oxidation products after TLC separation allowed assignment of the native unsaturation sites. Phosphatidylserine and N,N-dimethyl phosphatidylethanolamine isomers in a bovine brain total lipid extract were distinguished on the basis of their oxidation products. Meanwhile, the findings reported herein reveal a potential pitfall in the assignment of structures to lipids extracted from TLC plates because of artifactual oxidation after the plate development.

  4. Pesticide fate and transport throughout unsaturated zones in five agricultural settings, USA

    USGS Publications Warehouse

    Hancock, T.C.; Sandstrom, M.W.; Vogel, J.R.; Webb, R.M.T.; Bayless, E.R.; Barbash, J.E.

    2008-01-01

    Pesticide transport through the unsaturated zone is a function of chemical and soil characteristics, application, and water recharge rate. The fate and transport of 82 pesticides and degradates were investigated at five different agricultural sites. Atrazine and metolachlor, as well as several of the degradates of atrazine, metolachlor, acetochlor, and alachlor, were frequently detected in soil water during the 2004 growing season, and degradates were generally more abundant than parent compounds. Metolachlor and atrazine were applied at a Nebraska site the same year as sampling, and focused recharge coupled with the short time since application resulted in their movement in the unsaturated zone 9 m below the surface. At other sites where the herbicides were applied 1 to 2 yr before sampling, only degradates were found in soil water. Transformations of herbicides were evident with depth and during the 4-mo sampling time and reflected the faster degradation of metolachlor oxanilic acid and persistence of metolachor ethanesulfonic acid. The fraction of metolachlor ethanesulfonic acid relative to metolachlor and metolachlor oxanilic acid increased from 0.3 to > 0.9 at a site in Maryland where the unsaturated zone was 5 m deep and from 0.3 to 0.5 at the shallowest depth. The flux of pesticide degradates from the deepest sites to the shallow ground water was greatest (3.0–4.9 μmol m−2 yr−1) where upland recharge or focused flow moved the most water through the unsaturated zone. Flux estimates based on estimated recharge rates and measured concentrations were in agreement with fluxes estimated using an unsaturated-zone computer model (LEACHM).

  5. BIODEGRADATION OF HYDROCARBON VAPORS IN THE UNSATURATED ZONE

    EPA Science Inventory

    The time-averaged concentration of hydrocarbon and oxygen vapors were measured in the unsaturated zone above the residually contaminated capillary fringe at the U.S. Coast Guard Air Station in Traverse City, Michigan. Total hydrocarbon and oxygen vapor concentrations were observe...

  6. Water movement through thick unsaturated zones overlying the central High Plains aquifer, southwestern Kansas, 2000-2001

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, K.F.; Michel, R.L.; Sophocleous, M.A.; Ellett, K.M.; Hurlbut, D.B.

    2003-01-01

    The role of irrigation as a driving force for water and chemical movement to the central High Plains aquifer is uncertain because of the thick unsaturated zone overlying the aquifer. Water potentials and profiles of tritium, chloride, nitrate, and pesticide concentrations were used to evaluate water movement through thick unsaturated zones overlying the central High Plains aquifer at three sites in southwestern Kansas. One site was located in rangeland and two sites were located in areas dominated by irrigated agriculture. In 2000?2001, the depth to water at the rangeland site was 50 meters and the depth to water at the irrigated sites was about 45.4 meters. Irrigation at the study sites began in 1955?56. Measurements of matric potential and volumetric water content indicate wetter conditions existed in the deep unsaturated zone at the irrigated sites than at the rangeland site. Total water potentials in the unsaturated zone at the irrigated sites systematically decreased with depth to the water table, indicating a potential existed for downward water movement from the unsaturated zone to the water table at those sites. At the rangeland site, total water potentials in the deep unsaturated zone indicate small or no potential existed for downward water movement to the water table. Postbomb tritium was not detected below a depth of 1.9 meters in the unsaturated zone or in ground water at the rangeland site. In contrast, postbomb tritium was detected throughout most of the unsaturated zone and in ground water at both irrigated sites. These results indicate post-1953 water moved deeper in the unsaturated zone at the irrigated sites than at the rangeland site. The depth of the interface between prebomb and postbomb tritium and a tritium mass-balance method were used to estimate water fluxes in the unsaturated zone at each site. The average water fluxes at the rangeland site were 5.4 and 4.4 millimeters per year for the two methods, which are similar to the average water

  7. Hydro-mechanical mechanism and thresholds of rainfall-induced unsaturated landslides

    NASA Astrophysics Data System (ADS)

    Yang, Zongji; Lei, Xiaoqin; Huang, Dong; Qiao, Jianping

    2017-04-01

    The devastating Ms 8 Wenchuan earthquake in 2008 created the greatest number of co-seismic mountain hazards ever recorded in China. However, the dynamics of rainfall induced mass remobilization and transport deposits after giant earthquake are not fully understood. Moreover, rainfall intensity and duration (I-D) methods are the predominant early warning indicators of rainfall-induced landslides in post-earthquake region, which are a convenient and straight-forward way to predict the hazards. However, the rainfall-based criteria and thresholds are generally empirical and based on statistical analysis,consequently, they ignore the failure mechanisms of the landslides. This study examines the mechanism and hydro-mechanical behavior and thresholds of these unsaturated deposits under the influence of rainfall. To accomplish this, in situ experiments were performed in an instrumented landslide deposit, The field experimental tests were conducted on a natural co-seismic fractured slope to 1) simulate rainfall-induced shallow failures in the depression channels of a debris flow catchment in an earthquake-affected region, 2)explore the mechanisms and transient processes associated with hydro-mechanical parameter variations in response to the infiltration of rainfall, and 3) identify the hydrologic parameter thresholds and critical criteria of gravitational erosion in areas prone to mass remobilization as a source of debris flows. These experiments provided instrumental evidence and directly proved that post-earthquake rainfall-induced mass remobilization occurred under unsaturated conditions in response to transient rainfall infiltration, and revealed the presence of transient processes and the dominance of preferential flow paths during rainfall infiltration. A hydro-mechanical method was adopted for the transient hydrologic process modelling and unsaturated slope stability analysis. and the slope failures during the experimental test were reproduced by the model

  8. On Unsaturated Soil Mechanics - Personal Views on Current Research

    NASA Astrophysics Data System (ADS)

    Pande, G. N.; Pietruszczak, S.

    2015-09-01

    This paper presents the authors' personal views on current research being conducted by various research groups around the world in the broad area of mechanics of unsaturated geomaterials in general and soils in particular. The topic is of interest to a wide spectrum of scientists and engineers working in diverse areas such as geology and geophysics, powder technology, agricultural, petroleum, chemical, geotechnical, civil, environmental and nuclear engineering. Even if we restrict ourselves to civil, geotechnical and environmental engineering, it is noted that a plethora of hypotheses as well as a number of empirical and semi-empirical relations have been introduced for describing the mechanics of unsaturated porous media. However, many of these proposed advances as well as methods of testing may lack sound theoretical basis.

  9. Effects of Unsaturated Zones on Baseflow Recession: Analytical Solution and Application

    NASA Astrophysics Data System (ADS)

    Zhan, H.; Liang, X.; Zhang, Y. K.

    2017-12-01

    Unsaturated flow is an important process in baseflow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. Semi-analytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. The result indicates that a larger dimensionless constitutive exponent κD of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. For late times, the power index b of the recession curve-dQ/dt aQb, is 1 and independent of κD, where Q is the baseflow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→1. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  10. A soil alteration index based on phospholipid fatty acids.

    PubMed

    Puglisi, Edoardo; Nicelli, Marco; Capri, Ettore; Trevisan, Marco; Del Re, Attilio A M

    2005-12-01

    Phospholipid fatty acid (PLFA) analysis has gained great importance in the study of soil microbial community structure. This structure can give indication of the soil status. Purpose of the present paper is to analyse PLFA patterns in altered agricultural soils in order to develop a soil status alteration index. Soils subjected either to intensive agricultural exploitation, or to overflow by municipal and industrial wastes, or to irrigation with saline waters were analysed for PLFA content and compared to adjacent untreated soils by means of different statistical techniques. Principal component analysis separated PLFAs in three groups: unsaturated PLFAs (first axis, 48% of total variance), monounsaturated and cyclopropane PLFAs (second axis, 28% of total variance) and polyunsaturated PLFAs (third axis, 24% of total variance). By means of canonical discriminant analysis, a soil alteration index (SAI) was produced from 15 PLFAs using two data sets. A third data set was used to test the SAI general validity together with other data sets reported in literature. The index validity was confirmed in most cases: SAI gave higher scores for control soils and was generally able to classify soils according to their reported degree of alteration.

  11. On the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Liu, Jin

    2017-03-01

    Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow process. This study concerns the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells positioned in an unconfined aquifer. A mathematical model is established with special consideration of the coupled unsaturated-saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace-finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W) during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in unconfined aquifers affected from above by the unsaturated flow process.

  12. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressuremore » is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at

  13. The Soil Foam Drainage Equation - an alternative model for unsaturated flow in porous media

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Lehmann, Peter; Hoogland, Frouke; Or, Dani

    2017-04-01

    The analogy between the geometry and dynamics of wet foam drainage and gravity drainage of unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation - SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. Potential advantages of the proposed drainage foam formalism include direct description of transient flow without requiring constitutive functions; evolution of capillary cross sections that provides consistent description of self-regulating internal fluxes (e.g., towards field capacity); and a more intuitive geometrical picture of capillary flow across textural boundaries. We will present new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions that are in good agreement with the numerical solution of the SFDE and experimental results. The foam drainage methodology expands the range of tools available for describing and quantifying unsaturated flows and provides geometrically tractable links between evolution of liquid configuration and flow dynamics in unsaturated porous media. The resulting geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.

  14. Water movement within the unsaturated zone in four agricultural areas of the United States

    USGS Publications Warehouse

    Fisher, L.H.; Healy, R.W.

    2008-01-01

    Millions of tons of agricultural fertilizer and pesticides are applied annually in the USA. Due to the potential for these chemicals to migrate to groundwater, a study was conducted in 2004 using field data to calculate water budgets, rates of groundwater recharge and times of water travel through the unsaturated zone and to identify factors that influence these phenomena. Precipitation was the only water input at sites in Indiana and Maryland; irrigation accounted for about 80% of total water input at sites in California and Washington. Recharge at the Indiana site (47.5 cm) and at the Maryland site (31.5 cm) were equivalent to 51 and 32%, respectively, of annual precipitation and occurred between growing seasons. Recharge at the California site (42.3 cm) and Washington site (11.9 cm) occurred in response to irrigation events and was about 29 and 13% of total water input, respectively. Average residence time of water in the unsaturated zone, calculated using a piston-flow approach, ranged from less than 1 yr at the Indiana site to more than 8 yr at the Washington site. Results of bromide tracer tests indicate that at three of the four sites, a fraction of the water applied at land surface may have traveled to the water table in less than 1 yr. The timing and intensity of precipitation and irrigation were the dominant factors controlling recharge, suggesting that the time of the year at which chemicals are applied may be important for chemical transport through the unsaturated zone. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  15. Rhodium-catalyzed asymmetric hydroboration of γ,δ-unsaturated amide derivatives: δ-borylated amides.

    PubMed

    Hoang, G L; Zhang, S; Takacs, J M

    2018-05-08

    γ,δ-Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodium-catalyzed δ-borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the γ-borylation of γ,δ-unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regiochemistry is coupled with a reversal in the sense of π-facial selectivity.

  16. Movement of Water Through the Chalk Unsaturated zone

    NASA Astrophysics Data System (ADS)

    Butler, A.; Ireson, A.; Wheater, H.; Mathias, S.; Finch, J.

    2006-12-01

    been developed using data from one of the above catchments. The model was defined by nine parameters, five of which were identified a priori from observed soil moisture characteristic curves at various elevations, the remaining four by calibration of the numerical model to detailed time series datasets. Effects of parameter identifiability were explored using Monte Carlo analysis. Using a performance criterion based on fitting to matric potentials at a range of depths (from 20 cm to 4 m) over a calendar year, the set of acceptable results appears to support the ECM representation and indicates that fractures in the near- surface competent and weathered rock play an important role in the storage and release of groundwater recharge, whereas the rock matrix is crucial for its transmission to a water table tens of metres below. This conclusion has helped to resolve the debate on the respective roles of fractures and matrix in unsaturated water movement in the Chalk. Furthermore, the model simulations indicate that groundwater recharge can occur continually throughout the year. This helps to explain the apparently enhanced groundwater yields calculated during drought conditions compared with results obtained from pumping tests. It also indicates that current recharge models for the Chalk may need to be revised.

  17. The Staphylococcus aureus Response to Unsaturated Long Chain Free Fatty Acids: Survival Mechanisms and Virulence Implications

    PubMed Central

    Kenny, John G.; Ward, Deborah; Josefsson, Elisabet; Jonsson, Ing-Marie; Hinds, Jason; Rees, Huw H.; Lindsay, Jodi A.; Tarkowski, Andrej; Horsburgh, Malcolm J.

    2009-01-01

    Staphylococcus aureus is an important human commensal and opportunistic pathogen responsible for a wide range of infections. Long chain unsaturated free fatty acids represent a barrier to colonisation and infection by S. aureus and act as an antimicrobial component of the innate immune system where they are found on epithelial surfaces and in abscesses. Despite many contradictory reports, the precise anti-staphylococcal mode of action of free fatty acids remains undetermined. In this study, transcriptional (microarrays and qRT-PCR) and translational (proteomics) analyses were applied to ascertain the response of S. aureus to a range of free fatty acids. An increase in expression of the σB and CtsR stress response regulons was observed. This included increased expression of genes associated with staphyloxanthin synthesis, which has been linked to membrane stabilisation. Similarly, up-regulation of genes involved in capsule formation was recorded as were significant changes in the expression of genes associated with peptidoglycan synthesis and regulation. Overall, alterations were recorded predominantly in pathways involved in cellular energetics. In addition, sensitivity to linoleic acid of a range of defined (sigB, arcA, sasF, sarA, agr, crtM) and transposon-derived mutants (vraE, SAR2632) was determined. Taken together, these data indicate a common mode of action for long chain unsaturated fatty acids that involves disruption of the cell membrane, leading to interference with energy production within the bacterial cell. Contrary to data reported for other strains, the clinically important EMRSA-16 strain MRSA252 used in this study showed an increase in expression of the important virulence regulator RNAIII following all of the treatment conditions tested. An adaptive response by S. aureus of reducing cell surface hydrophobicity was also observed. Two fatty acid sensitive mutants created during this study were also shown to diplay altered pathogenesis as assessed

  18. Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites

    DTIC Science & Technology

    2001-11-01

    Montmorillonite Composites DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites A. Baran Inceoglu and Ulku Yilmazer Middle East Technical University, Chemical...analysed the nature of the curing agent on structure. Kornmann, Berglund and Giannelis [8] studied nanocomposites based on montmorillonite modified

  19. Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth.

    PubMed

    Diomandé, Sara Esther; Nguyen-the, Christophe; Abee, Tjakko; Tempelaars, Marcel H; Broussolle, Véronique; Brillard, Julien

    2015-11-20

    Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Oxygen transport and pyrite oxidation in unsaturated coal-mine spoil

    USGS Publications Warehouse

    Guo, Weixing; Cravotta, Charles A.

    1996-01-01

    An understanding of the mechanisms of oxygen (02) transport in unsaturated mine spoil is necessary to design and implement effective measures to exclude 02 from pyritic materials and to control the formation of acidic mine drainage. Partial pressure of oxygen (Po2) in pore gas, chemistry of pore water, and temperature were measured at different depths in unsaturated spoil at two reclaimed surface coal mines in Pennsylvania. At mine 1, where spoil was loose, blocky sandstone, Po2 changed little with depth, decreasing from 21 volume percent (vol%) at the ground surface to a minimum of about 18 vol% at 10 m depth. At mine 2, where spoil was compacted, friable shale, Po2 decreased to less than 2 vol% at depth of about 10 m. Although pore-water chemistry and temperature data indicate that acid-forming reactions were active at both mines, the pore-gas data indicate that mechanisms for 0 2 transport were different at each mine. A numerical model was developed to simulate 02 transport and pyrite oxidation in unsaturated mine spoil. The results of the numerical simulations indicate that differences in 02 transport at the two mines can be explained by differences in the air permeability of spoil. Po2 changes little with depth if advective transport of 02 dominates as at mine 1, but decreases greatly with depth if diffusive transport of 02 dominates, as in mine 2. Model results also indicate that advective transport becomes significant if the air permeability of spoil is greater than 10-9 m2, which is expected for blocky sandstone spoil. In the advective-dominant system, thermally-induced convective air flow, as a consequence of the exothermic oxidation of pyrite, supplies the 02 to maintain high Po2 within the deep unsaturated zone.

  1. Focused Flow During Infiltration Into Ethanol-Contaminated Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Jazwiec, A.; Smith, J. E.

    2017-12-01

    The increasing commercial and industrial use of ethanol, e.g. in biofuels, has generated increased incidents of vadose zone contamination by way of ethanol spills and releases. This has increased the interest in better understanding behaviors of ethanol in unsaturated porous media and it's multiphase interactions in the vadose zone. This study uses highly controlled laboratory experiments in a 2-D (0.6mx0.6mx0.01m) flow cell to investigate water infiltration behaviors into ethanol-contaminated porous media. Ethanol and water were applied by either constant head or constant flux methods onto the surface of sands homogenously packed into the flow cell. The constant flux experiments at both low and high application rates were conducted using a rainulator with a row of hypodermic needles connected to a peristaltic pump. The constant head experiments were conducted using an 8cm diameter tension disk infiltrometer set to both low and high tensions. The presence of ethanol contamination generated solute-dependent capillarity induced focused flow (SCIFF) of water infiltration, which was primarily due to decreases in interfacial tensions at the air-liquid interfaces in the unsaturated sands as a function of ethanol concentration. SCIFF was clearly expressed as an unsaturated water flow phenomenon comprised of narrowly focused vertical flow fingers of water within the initially ethanol contaminated porous media. Using analyses of photos and video, comparisons were made between constant flux and constant head application methods. Further comparisons were made between low and high infiltration rates and the two sand textures used. A high degree of sensitivity to minor heterogeneity in relatively homogeneous sands was also observed. The results of this research have implications for rainfall infiltration into ethanol contaminated vadose zones expressing SCIFF, including implications for associated mass fluxes and the nature of flushing of ethanol from the unsaturated zone to

  2. Selected techniques for monitoring water movement through unsaturated alluvium during managed aquifer recharge

    USGS Publications Warehouse

    Nawikas, Joseph M.; O'Leary, David R.; Izbicki, John A.; Burgess, Matthew K.

    2016-10-21

    Managed aquifer recharge is used to augment natural recharge to aquifers. It can be used to replenish aquifers depleted by pumping or to store water during wetter years for withdrawal during drier years. Infiltration from ponds is a commonly used, inexpensive approach for managed aquifer recharge.At some managed aquifer-recharge sites, the time when infiltrated water arrives at the water table is not always clearly shown by water-level data. As part of site characterization and operation, it can be desirable to track downward movement of infiltrated water through the unsaturated zone to identify when it arrives at the water table.

  3. Quasi‐steady centrifuge method for unsaturated hydraulic properties

    USGS Publications Warehouse

    Caputo, Maria C.; Nimmo, John R.

    2005-01-01

    We have developed the quasi‐steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi‐steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  4. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    PubMed Central

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  5. Unsaturated fatty acids supplementation reduces blood lead level in rats.

    PubMed

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: "super lecithin" (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05).

  6. Damping Effect of an Unsaturated-Saturated System on Tempospatial Variations of Pressure Head and Specific Flux

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zhang, Y. K.; Liang, X.

    2014-12-01

    Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.

  7. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    PubMed

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  8. Balancing practicality and hydrologic realism: a parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow

    USGS Publications Warehouse

    Mirus, Benjamin B.; Nimmo, J.R.

    2013-01-01

    The impact of preferential flow on recharge and contaminant transport poses a considerable challenge to water-resources management. Typical hydrologic models require extensive site characterization, but can underestimate fluxes when preferential flow is significant. A recently developed source-responsive model incorporates film-flow theory with conservation of mass to estimate unsaturated-zone preferential fluxes with readily available data. The term source-responsive describes the sensitivity of preferential flow in response to water availability at the source of input. We present the first rigorous tests of a parsimonious formulation for simulating water table fluctuations using two case studies, both in arid regions with thick unsaturated zones of fractured volcanic rock. Diffuse flow theory cannot adequately capture the observed water table responses at both sites; the source-responsive model is a viable alternative. We treat the active area fraction of preferential flow paths as a scaled function of water inputs at the land surface then calibrate the macropore density to fit observed water table rises. Unlike previous applications, we allow the characteristic film-flow velocity to vary, reflecting the lag time between source and deep water table responses. Analysis of model performance and parameter sensitivity for the two case studies underscores the importance of identifying thresholds for initiation of film flow in unsaturated rocks, and suggests that this parsimonious approach is potentially of great practical value.

  9. Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer's disease.

    PubMed

    Leskovjan, Andreana C; Kretlow, Ariane; Miller, Lisa M

    2010-04-01

    Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p < 0.01) but remained low and relatively constant in PSAPP mice. Thus, these findings indicate that unsaturated lipid content is reduced in hippocampal white matter during amyloid pathogenesis and that maintaining unsaturated lipid content early in the disease may be critical in avoiding progression of the disease.

  10. LNAPL Removal from Unsaturated Porous Media using Surfactant Infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Oostrom, Martinus

    A series of unsaturated column experiments was performed to evaluate light non-aqueous phase liquid (LNAPL) fate and removal during surfactant solution infiltration. Surfactant-LNAPL phase behavior tests were conducted to optimize the remedial solutions. Packed sand and site sediment columns were first processed to establish representative LNAPL smear zone under unsaturated conditions. Infiltration of low-concentration surfactant was then applied in a stepwise flush mode, with 0.3 column pore volume (PV) of solution in each flush. The influence of infiltrated surfactant solution volume and pH on LNAPL removal was assessed. A LNAPL bank was observed at the very front of the firstmore » surfactant infiltration in each column, indicating that a very low surfactant concentration is needed to reduce the LNAPL-water interfacial tension sufficiently enough to mobilize trapped LNAPL under unsaturated conditions. More LNAPL was recovered as additional steps of surfactant infiltration were applied. Up to 99% LNAPL was removed after six infiltration steps, with less than 2.0 PV of total surfactant solution application, suggesting surfactant infiltration may be an effective method for vadose zone LNAPL remediation. The influence of pH tested in this study (3.99~10.85) was insignificant because the buffering capacity of the sediment kept the pH in the column higher than the zero point charge, pHzpc, of the sediment and therefore the difference between surfactant sorption was negligible.« less

  11. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-04-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3-) input functions by characterizing unsaturated zone NO3- transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous "vertical flux method" (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3- source concentration factor (which determines the local NO3- input concentration); unsaturated zone travel time; NO3- concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3- "extinction depth", the eventual steady state depth of the NO3- front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 - 0.86 and 0.22 - 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing

  12. Domino-hydroformylation/aldol condensation catalysis: highly selective synthesis of α,β-unsaturated aldehydes from olefins.

    PubMed

    Fang, Xianjie; Jackstell, Ralf; Franke, Robert; Beller, Matthias

    2014-10-06

    A general and highly chemo-, regio-, and stereoselective synthesis of α,β-unsaturated aldehydes by a domino hydroformylation/aldol condensation reaction has been developed. A variety of olefins and aromatic aldehydes were efficiently converted into various substituted α,β-unsaturated aldehydes in good to excellent yields in the presence of a rhodium phosphine/acid-base catalyst system. In view of the easy availability of the substrates, the high atom-efficiency, the excellent selectivity, and the mild conditions, this method is expected to complement current methodologies for the preparation of α,β-unsaturated aldehydes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Transport of environmental tracers through a karst system with a thick unsaturated zone

    NASA Astrophysics Data System (ADS)

    Geyer, Tobias; Sültenfuss, Jürgen; Eichinger, Florian; Sauter, Martin

    2010-05-01

    The transport of the environmental tracers tritium (3H), krypton-85 (85Kr) and helium (3He) in a karst system is investigated. Differences between mean tracer ages determined in spring water are explained by slow percolation of water through the thick unsaturated zone reflecting the importance of slow and diffuse unsaturated flow processes in these systems. Mean tracer ages on the Gallusquelle spring (Swabian Alb) were determined with lumped parameter modeling and decrease in the following order: 3H >> 85Kr > 3He. Since 3H is part of the water molecule it enters a karst system via precipitation, i.e. the mean 3H age is a measure of water flow through the whole karst system, including the unsaturated and saturated zone. The mean 85Kr age and 3H/3He age are measures of time since groundwater recharge arrived at the water table. Therefore our results indicate a long travel time of 3H through the unsaturated zone of the karst system. The interpretation is supported by a two-dimensional numerical simulation of flow and transport in a fissured matrix block that contains a thick unsaturated zone (ca. 100 m) and is drained by a conduit. Transport simulation is performed in the sense of backtracking, i.e. the flow field is reversed, and the boundary conditions are adapted accordingly. At any position in the model domain, the time required for a water molecule to reach the outlet is estimated corresponding to the "life expectancy" (Cornaton and Perrochet 2006), i.e. the life expectancy on the outlet is zero. The simulation of life expectancy of water in the matrix block shows (1) the importance of heterogeneities for interpretation of groundwater ages, (2) the location of stagnant zones in areas of low hydraulic permeability and/or low hydraulic gradient and (3) that flow through unsaturated fissured matrix blocks may cause a considerable travel time of water through a karst system. The travel time of water from the recharge area to the discharge point for the shown example

  14. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus. Copyright © 2014 the American Physiological Society.

  15. Saturated and unsaturated salt transport in peat from a constructed fen

    NASA Astrophysics Data System (ADS)

    Simhayov, Reuven B.; Weber, Tobias K. D.; Price, Jonathan S.

    2018-02-01

    The underlying processes governing solute transport in peat from an experimentally constructed fen peatland were analyzed by performing saturated and unsaturated solute breakthrough experiments using Na+ and Cl- as reactive and non-reactive solutes, respectively. We tested the performance of three solute transport models, including the classical equilibrium convection-dispersion equation (CDE), a chemical non-equilibrium one-site adsorption model (OSA) and a model to account for physical non-equilibrium, the mobile-immobile (MIM) phases. The selection was motivated by the fact that the applicability of the MIM in peat soils finds a wide consensus. However, results from inverse modeling and a robust statistical evaluation of this peat provide evidence that the measured breakthrough of the conservative tracer, Cl-, could be simulated well using the CDE. Furthermore, the very high Damköhler number (which approaches infinity) suggests instantaneous equilibration between the mobile and immobile phases underscoring the redundancy of the MIM approach for this particular peat. Scanning electron microscope images of the peat show the typical multi-pore size distribution structures have been homogenized sufficiently by decomposition, such that physical non-equilibrium solute transport no longer governs the transport process. This result is corroborated by the fact the soil hydraulic properties were adequately described using a unimodal van Genuchten-Mualem model between saturation and a pressure head of ˜ -1000 cm of water. Hence, MIM was not the most suitable choice, and the long tailing of the Na+ breakthrough curve was caused by chemical non-equilibrium. Successful description was possible using the OSA model. To test our results for the unsaturated case, we conducted an unsaturated steady-state evaporation experiment to drive Na+ and Cl- transport. Using the parameterized transport models from the saturated experiments, we could numerically simulate the unsaturated

  16. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  17. New Hydrologic Insights to Advance Geophysical Investigation of the Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Perkins, K. S.

    2015-12-01

    Advances in hydrology require information from the unsaturated zone, especially for problems related to groundwater contamination, water-supply sustainability, and ecohydrology. Unsaturated-zone processes are notoriously difficult to quantify; soils and rocks are visually opaque, spatially variable in the extreme, and easily disturbed by instrument installation. Thus there is great value in noninvasive techniques that produce water-related data of high density in space and time. Methods based on resistivity and electromagnetic waves have already produced significant new understanding of percolation processes, root-zone water retention, influences of evapotranspiration on soil-water, and effects of preferential flow. Further developments are underway for such purposes as noninvasive application to greater depths, increased resolution, adaptation for lab-scale experiments, and calibration in heterogeneous media. Beyond these, however, there is need for a stronger marriage of hydrologic and geophysical knowledge and perspective. Possible means to greater and faster progress include: Apply the latest hydrologic understanding, both pore-scale and macroscopic, to the detection of preferential flow paths and their degree of activation. In the continuing advancement of hardware and techniques, draw creatively from developments in such fields as high-energy physics, medical imaging, astrogeology, high-tech semiconductors, and bioinstrumentation. Sidestep the imaging process where possible to measure essential properties and fluxes more directly. Pose questions that have a strong end-use character, like "how does storm intensity relate to aquifer recharge rate" rather than "what is the shape of the wetting front". The greatest advances in geophysical investigation of the unsaturated zone will come from methods informed by the latest understanding of unsaturated systems and processes, and aimed as directly as possible at the answers to important hydrologic questions.

  18. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  19. Preferential dealkylation reactions of s-triazine herbicides in the unsaturated zone

    USGS Publications Warehouse

    Mills, M.S.; Michael, Thurman E.

    1994-01-01

    The preferential dealkylation pathways of the s-triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), propazine [2-chloro-4,6-bis(isopropylamino)-s-triazine], and simazine [2-chloro-4,6-bis(ethylamino)-s-triazine], and two monodealkylated triazine metabolites, deisopropylatrazine (DIA: 2-amino-4-chloro-6-ethylamino-s-triazine) and deethylatrazine (DEA: 2-amino-4-chloro-6-isopropylamino-s-triazine) were investigated on two adjacent Eudora silt-loam plots growing corn (Zea mays L.). Results from the shallow unsaturated zone and surface-water runoff showed preferential removal of an ethyl side chain from atrazine, simazine, and DIA relative to an isopropyl side chain from atrazine, propazine, and DEA. It is hypothesized that deethylation reactions may proceed at 2-3 times the rate of deisopropylation reactions. It is concluded that small concentrations of DIA reportedly associated with the degradation of atrazine may be due to a rapid turnover rate of the metabolite in the unsaturated zone, not to small production levels. Because of continued dealkylation of both monodealkylated metabolites, a strong argument is advanced for the presence of a didealkylated metabolite in the unsaturated zone.

  20. Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters.

    PubMed

    Feng, Youjun; Cronan, John E

    2011-04-01

    Two transcriptional regulators, the FadR activator and the FabR repressor, control biosynthesis of unsaturated fatty acids in Escherichia coli. FabR represses expression of the two genes, fabA and fabB, required for unsaturated fatty acid synthesis and has been reported to require the presence of an unsaturated thioester (of either acyl carrier protein or CoA) in order to bind the fabA and fabB promoters in vitro. We report in vivo experiments in which unsaturated fatty acid synthesis was blocked in the absence of exogenous unsaturated fatty acids in a ΔfadR strain and found that the rates of transcription of fabA and fabB were unaffected by the lack of unsaturated thioesters. To examine the discrepancy between our in vivo results and the prior in vitro results we obtained active, natively folded forms of the E. coli and Vibrio cholerae FabRs by use of an in vitro transcription-translation system. We report that FabR bound the intact promoter regions of both fabA and fabB in the absence of unsaturated acyl thioesters, but bound the two promoters differently. Native FabR bound the fabA promoter region provided that the canonical FabR binding site is extended by inclusion of flanking sequences that overlap the neighbouring FadR binding site. In contrast, although binding to the fabB operator also required a flanking sequence, a non-specific sequence could suffice. However, unsaturated thioesters did allow FabR binding to the minimal FabR operator sites of both promoters which otherwise were not bound. Thus unsaturated thioester ligands were not essential for FabR/target DNA interaction, but acted to enhance binding. The gel mobility shift data plus in vivo expression data indicate that despite the remarkably similar arrangements of promoter elements, FadR predominately regulates fabA expression whereas FabR is the dominant regulator of fabB expression. We also report that E. coli fabR expression is not autoregulated. Complementation, qRT-PCR and fatty acid

  1. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  2. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, Harold H.; Chaar, Mohamed A.

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  3. Characterization and quantification of geochemical reaction rates in mine waste piles using unsaturated zone gases

    NASA Astrophysics Data System (ADS)

    Birkham, T.; Hendry, J.; Kirkland, R.; Bradley, S.; Mendoza, C.; Wassenaar, L.

    2003-04-01

    From 1997 to the present, we have installed and monitored 240 gas probes (maximum depth of 43 m) in unsaturated waste rock, overburden and tailings piles at a uranium mine in northern Saskatchewan, Canada and an oil sands mine in northern Alberta, Canada. Depth profiles of O2, CO2, N2 and CH4 pore-gas concentrations, temperature, and moisture content were measured in the field and used to characterize and quantifyin situ geochemical reaction rates. An innovative field-portable GC system has been developed to monitor pore-gas concentrations. At most sites, gas migration has been attributed to diffusion. At sites where advective transport may be important, subsurface total pressure measurements have been used to assess the contribution of advection to gas migration. The stable isotopes of molecular O2 (16O2 and 18O16O) and C in CO2 (12CO2 and 13CO2) have also been measured and modeled. At the uranium mine, the modelling of the O2, CO2, δ18OO2, and δ13CCO2 depth profiles was used to identify an alternative mechanism of O2 consumption and CO2 production in mine waste-rock piles. At the oil sands mine, a complex and unique system involving O2, CO2, and CH4 fluxes in the unsaturated zone and across the capillary fringe has been identified and is currently being modeled.

  4. Addition of electrophilic lipids to actin alters filament structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.

    2006-11-03

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-{delta}{sup 12,14}-PGJ{sub 2} (15d-PGJ{sub 2}) and PGA{sub 1} in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA{sub 1} and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is importantmore » for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ{sub 2} or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ{sub 2} at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.« less

  5. A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope

    NASA Astrophysics Data System (ADS)

    Hsu, H.-H.

    2012-04-01

    The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.

  6. A shallow water table fluctuation model in response to precipitation with consideration of unsaturated gravitational flow

    NASA Astrophysics Data System (ADS)

    Park, E.; Jeong, J.

    2017-12-01

    A precise estimation of groundwater fluctuation is studied by considering delayed recharge flux (DRF) and unsaturated zone drainage (UZD). Both DRF and UZD are due to gravitational flow impeded in the unsaturated zone, which may nonnegligibly affect groundwater level changes. In the validation, a previous model without the consideration of unsaturated flow is benchmarked where the actual groundwater level and precipitation data are divided into three periods based on the climatic condition. The estimation capability of the new model is superior to the benchmarked model as indicated by the significantly improved representation of groundwater level with physically interpretable model parameters.

  7. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone

    NASA Astrophysics Data System (ADS)

    Kennedy, Jeffrey; Ferré, Ty P. A.; Creutzfeldt, Benjamin

    2016-09-01

    Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).

  8. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Ferre, Ty P.A.; Creutzfeldt, Benjamin

    2016-01-01

    Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).

  9. Degree of fatty acyl chain unsaturation in biliary lecithin dictates cholesterol nucleation and crystal growth.

    PubMed

    Tazuma, S; Ochi, H; Teramen, K; Yamashita, Y; Horikawa, K; Miura, H; Hirano, N; Sasaki, M; Aihara, N; Hatsushika, S

    1994-11-17

    To clarify factors involved in the formation of cholesterol gallstones, we studied the relationship between the degree of fatty acyl chain unsaturation of biliary lecithin and bile metastability. We used supersaturated model bile solutions (molar taurocholate/lecithin/cholesterol ratio (73:19.5:7.5), total lipid concentration 9 g/dl) that contained equimolar egg yolk or soybean lecithins or a sn-1 palmitoyl, sn-2 linoleoyl phosphatidylcholine. Gel permeation chromatographic studies showed that the vesicular cholesterol distribution and dimension were inversely related to the degree of unsaturation of the lecithin species, estimated by reverse phase, high-performance liquid chromatography. Differential interference contrast microscopy and assay of cholesterol crystal growth showed that a higher degree of fatty acyl chain unsaturation of the lecithin species was associated with a faster nucleation time and rate of crystal growth. Our results suggest that vesicular lecithins containing more unsaturated fatty acyl chains bind less tightly to cholesterol than lecithins containing predominantly saturated fatty acids, and that the biliary lecithin species dictates, in part, the nucleation and growth of cholesterol crystals in bile.

  10. Preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, Makarand Ratnakar; Spivey, James Jerry; Zoeller, Joseph Robert

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  11. Preparation of {alpha},{beta}-unsaturated carboxylic acids and esters

    DOEpatents

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1998-09-15

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  12. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    NASA Astrophysics Data System (ADS)

    Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.

    2017-03-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  13. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    USGS Publications Warehouse

    Nimmo, John R.; Creasey, Kaitlyn M; Perkins, Kimberlie; Mirus, Benjamin B.

    2017-01-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  14. A new lumped-parameter model for flow in unsaturated dual-porosity media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Robert W.; Hadgu, Teklu; Bodvarsson, Gudmundur S.

    A new lumped-parameter approach to simulating unsaturated flow processes in dual-porosity media such as fractured rocks or aggregated soils is presented. Fluid flow between the fracture network and the matrix blocks is described by a non-linear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. Unlike a Warren-Root-type equation, this equation is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into an existing unsaturated flow simulator, to serve as a source/sink term for fracture gridblocks. Flow processes are then simulated usingmore » only fracture gridblocks in the computational grid. This new lumped-parameter approach has been tested on two problems involving transient flow in fractured/porous media, and compared with simulations performed using explicit discretization of the matrix blocks. The new procedure seems to accurately simulate flow processes in unsaturated fractured rocks, and typically requires an order of magnitude less computational time than do simulations using fully-discretized matrix blocks. [References: 37]« less

  15. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    DOE R&D Accomplishments Database

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  16. Determination of Matric Suction and Saturation Degree for Unsaturated Soils, Comparative Study - Numerical Method versus Analytical Method

    NASA Astrophysics Data System (ADS)

    Chiorean, Vasile-Florin

    2017-10-01

    Matric suction is a soil parameter which influences the behaviour of unsaturated soils in both terms of shear strength and permeability. It is a necessary aspect to know the variation of matric suction in unsaturated soil zone for solving geotechnical issues like unsaturated soil slopes stability or bearing capacity for unsaturated foundation ground. Mathematical expression of the dependency between soil moisture content and it’s matric suction (soil water characteristic curve) has a powerful character of nonlinearity. This paper presents two methods to determine the variation of matric suction along the depth included between groundwater level and soil level. First method is an analytical approach to emphasize one direction steady state unsaturated infiltration phenomenon that occurs between the groundwater level and the soil level. There were simulated three different situations in terms of border conditions: precipitations (inflow conditions on ground surface), evaporation (outflow conditions on ground surface), and perfect equilibrium (no flow on ground surface). Numerical method is finite element method used for steady state, two-dimensional, unsaturated infiltration calculus. Regarding boundary conditions there were simulated identical situations as in analytical approach. For both methods, was adopted the equation proposed by van Genuchten-Mualen (1980) for mathematical expression of soil water characteristic curve. Also for the unsaturated soil permeability prediction model was adopted the equation proposed by van Genuchten-Mualen. The fitting parameters of these models were adopted according to RETC 6.02 software in function of soil type. The analyses were performed in both methods for three major soil types: clay, silt and sand. For each soil type were concluded analyses for three situations in terms of border conditions applied on soil surface: inflow, outflow, and no flow. The obtained results are presented in order to highlight the differences

  17. The transport and behaviour of isoproturon in unsaturated chalk cores

    NASA Astrophysics Data System (ADS)

    Besien, T. J.; Williams, R. J.; Johnson, A. C.

    2000-04-01

    A batch sorption study, a microcosm degradation study, and two separate column leaching studies were used to investigate the transport and fate of isoproturon in unsaturated chalk. The column leaching studies used undisturbed core material obtained from the field by dry percussion drilling. Each column leaching study used 25 cm long, 10 cm wide unsaturated chalk cores through which a pulse of isoproturon and bromide was eluted. The cores were set-up to simulate conditions in the unsaturated zone of the UK Chalk aquifer by applying a suction of 1 kPa (0.1 m H 2O) to the base of each column, and eluting at a rate corresponding to an average recharge rate through the unsaturated Chalk. A dye tracer indicated that the flow was through the matrix under these conditions. The results from the first column study showed high recovery rates for both isoproturon (73-92%) and bromide (93-96%), and that isoproturon was retarded by a factor of about 1.23 relative to bromide. In the second column study, two of the four columns were eluted with non-sterile groundwater in place of the sterile groundwater used on all other columns, and this study showed high recovery rates for bromide (85-92%) and lower recovery rates for isoproturon (66-79% — sterile groundwater, 48-61% — non-sterile groundwater). The enhanced degradation in the columns eluted with non-sterile groundwater indicated that groundwater microorganisms had increased the degradation rate within these columns. Overall, the reduced isoproturon recovery in the second column study was attributed to increased microbial degradation as a result of the longer study duration (162 vs. 105 days). The breakthrough curves (BTCs) for bromide had a characteristic convection-dispersion shape and were accurately simulated with the minimum of calibration using a simple convection-dispersion model (LEACHP). However, the isoproturon BTCs had an unusual shape and could not be accurately simulated.

  18. Investigations of novel unsaturated bile salts of male sea lamprey as potential chemical cues

    USGS Publications Warehouse

    Johnson, Nicholas S.; Yun, Sang-Seon; Li, Weiming

    2014-01-01

    Sulfated bile salts function as chemical cues that coordinate reproduction in sea lamprey, Petromyzon marinus. 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) is the most abundant known bile salt released by sexually mature male sea lampreys and attracts ovulated females. However, previous studies showed that the male-produced pheromone consists of unidentified components in addition to 3kPZS. Here, analysis of water conditioned with mature male sea lampreys indicated the presence of 4 oxidized, unsaturated compounds with molecular weights of 466 Da, 468 Da, and 2 of 470 Da. These compounds were not detectable in water conditioned with immature male sea lampreys. By using mass spectrometry, 4 A-ring unsaturated sulfated bile salts were tentatively identified from male washings as 2 4-ene, a 1-ene, and a 1,4-diene analogs. These were synthesized to determine if they attracted ovulated female sea lampreys to spawning nests in natural streams. One of the novel synthetic bile salts, 3 keto-1-ene PZS, attracted ovulated females to the point of application at a concentration of 10-12 M. This study reveals the structural diversity of bile salts in sea lamprey, some of which have been demonstrated to be pheromonal cues.

  19. Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jun; Li, Weixuan; Zeng, Lingzao

    2016-06-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so-called "curse of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF could be even more computationally expensive than EnKF. Motivated by most recent developments in uncertainty quantification, we proposemore » a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to eliminate the inconsistency between model parameters and states. The performance of RAPCKF is tested with numerical cases of unsaturated flow models. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.« less

  20. QSAR models to predict mutagenicity of acrylates, methacrylates and alpha,beta-unsaturated carbonyl compounds.

    PubMed

    Pérez-Garrido, Alfonso; Helguera, Aliuska Morales; Rodríguez, Francisco Girón; Cordeiro, M Natália D S

    2010-05-01

    The purpose of this study is to develop a quantitative structure-activity relationship (QSAR) model that can distinguish mutagenic from non-mutagenic species with alpha,beta-unsaturated carbonyl moiety using two endpoints for this activity - Ames test and mammalian cell gene mutation test - and also to gather information about the molecular features that most contribute to eliminate the mutagenic effects of these chemicals. Two data sets were used for modeling the two mutagenicity endpoints: (1) Ames test and (2) mammalian cells mutagenesis. The first one comprised 220 molecules, while the second one 48 substances, ranging from acrylates, methacrylates to alpha,beta-unsaturated carbonyl compounds. The QSAR models were developed by applying linear discriminant analysis (LDA) along with different sets of descriptors computed using the DRAGON software. For both endpoints, there was a concordance of 89% in the prediction and 97% confidentiality by combining the three models for the Ames test mutagenicity. We have also identified several structural alerts to assist the design of new monomers. These individual models and especially their combination are attractive from the point of view of molecular modeling and could be used for the prediction and design of new monomers that do not pose a human health risk. 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  2. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  3. Numerical convergence improvements for porflow unsaturated flow simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, Greg

    2017-08-14

    Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. (http://www.acricfd.com/default.htm) to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.

  4. Copper-Catalyzed Enantioselective Henry Reaction of β,γ-Unsaturated α-Ketoesters with Nitromethane in Water.

    PubMed

    Li, Yanan; Huang, Yekai; Gui, Yang; Sun, Jianan; Li, Jindong; Zha, Zhenggen; Wang, Zhiyong

    2017-12-01

    A highly enantioselective Henry reaction of β,γ-unsaturated α-ketoesters with nitromethane in water by virtue of chiral copper complexes has been developed. A series of unsaturated β-nitro-α-hydroxy esters bearing tetrasubstituted carbon stereocenters were obtained exclusively with high yields and excellent enantioselectivities. This method could avoid tedious anaerobic anhydrous manipulation and reduce the environmental pollution caused by organic solvents.

  5. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  6. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.

    PubMed

    Soe, Cho Z; Codd, Rachel

    2014-04-18

    To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical

  7. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, In C.

    1994-07-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone watermore » on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site.« less

  8. Estimation of deep infiltration in unsaturated limestone environments using cave lidar and drip count data

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.

    2016-01-01

    Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management, and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger-scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of Golgotha Cave, south-western Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology, and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012 to 2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip rate time series are interpreted in terms of flow patterns, cave chamber morphology, and lithology. Moreover, we develop a new technique to estimate recharge in large-scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focussed areas of recharge and can help to better

  9. Controls on atrazine leaching through a soil-unsaturated fractured limestone sequence at Brévilles, France.

    PubMed

    Roulier, Stéphanie; Baran, Nicole; Mouvet, Christophe; Stenemo, Fredrik; Morvan, Xavier; Albrechtsen, Hans-Jørgen; Clausen, Liselotte; Jarvis, Nicholas

    2006-03-01

    The objective of this study was to identify the main controls on atrazine leaching through luvisols and calcisols overlying fissured limestone using the dual-permeability model MACRO. The model parameterisation was based on a combination of direct measurements (e.g. hydraulic properties, adsorption and degradation), literature data and calibration against bromide leaching experiments in field plots. A Monte Carlo sensitivity analysis was carried out for a typical application pattern, considering two different depths of unsaturated limestone (15 and 30 m). MACRO calibrations to the field experiments demonstrated the occurrence of strong macropore flow in the luvisol, while transport in the calcisol could be described by the advection-dispersion equation. MACRO simulations of tritium and atrazine leaching qualitatively matched tritium concentration profiles measured in the limestone and atrazine concentrations measured in piezometers and in aquifer discharge via a spring. The sensitivity analysis suggested that the thickness of the limestone, as well as the transport properties and processes occurring in the unsaturated rock (e.g. matrix vs. fissure flow) will have little significant long-term effect on atrazine leaching, mainly because degradation is very slow in the limestone. No mineralization of atrazine was detected in one-year incubations and a mean half-life of 10 years was assumed in the simulations. Instead, processes occurring in the soil exerted the main control on predicted atrazine leaching, especially variations in the degradation rate and the strength of sorption and macropore flow. However, fissure flow in unsaturated rock is expected to exert a much more significant control on groundwater contamination for compounds that degrade more readily in the deep vadose zone.

  10. Analysis of Infiltration-Suction Response in Unsaturated Residual Soil Slope in Gelugor, Penang

    NASA Astrophysics Data System (ADS)

    Ashraf Mohamad Ismail, Mohd; Hasliza Hamzah, Nur; Min, Ng Soon; Hazreek Zainal Abidin, Mohd; Tajudin, Saiful Azhar Ahmad; Madun, Aziman

    2018-04-01

    Rainfall infiltration on residual soil slope may impair slope stability by altering the pore-water pressure in the soil. A study has been carried out on unsaturated residual soil slope in Gelugor, Penang to determine the changes in matric suction of residual soils at different depth due to rainwater infiltration. The sequence of this study includes the site investigation, field instrumentation, laboratory experiment and numerical modeling. Void ratio and porosity of soil were found to be decreasing with depth while the bulk density and dry density of soil increased due to lower porosity of soil at greater depth. Soil infiltration rate and matric suction of all depths decrease with the increase of volumetric water content as well as the degree of saturation. Numerical modeling was used to verify and predict the relationship between infiltration-suction response and degree of saturation. Numerical models can be used to integrate the rainfall scenarios into quantitative landslide hazard assessments. Thus, development plans and mitigation measures can be designed for estimated impacts from hazard assessments based on collected data.

  11. CHEMFLO: ONE-DIMENSIONAL WATER AND CHEMICAL MOVEMENT IN UNSATURATED SOILS

    EPA Science Inventory

    An interactive software system was developed to enable decision-makers, regulators, policy-makers, scientists, consultants, and students to simulate the movement of waterand chemicals in unsaturated soils. Water movement is modeled using Richards (1931) - equation. Chemical trans...

  12. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    USGS Publications Warehouse

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-01-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3−) input functions by characterizing unsaturated zone NO3− transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous “vertical flux method” (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3− source concentration factor (which determines the local NO3− input concentration); unsaturated zone travel time; NO3− concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3− “extinction depth”, the eventual steady state depth of the NO3−front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 – 0.86 and 0.22 – 0.38, respectively, and predictions were compiled as maps of the above

  13. Virus transport during infiltration of a wetting front into initially unsaturated sand columns.

    PubMed

    Kenst, Andrew B; Perfect, Edmund; Wilhelm, Steven W; Zhuang, Jie; McCarthy, John F; McKay, Larry D

    2008-02-15

    We investigated the effect of different flow conditions on the transport of bacteriophage phiX174 in Memphis aquifer sand. Virus transport associated with a wetting front moving into an initially unsaturated horizontal sand column was experimentally compared with that observed under steady-state saturated vertical flow. Results obtained by sectioning the sand columns showthattotal (retained and free) resident virus concentrations decreased approximately exponentially with the travel distance. The rate of decline was similar under both transient unsaturated flow and steady-state saturated flow conditions. Total resident virus concentrations near the inlet were an order of magnitude greater than the virus concentration of the influent solution in both experiments, indicating continuous virus sorption during flow through this zone. Virus retardation was quantified using the ratio of the centroids of the relative saturation and virus concentration versus relative distance functions. The mean retardation factors were 6.43 (coefficient of variation, CV = 14.4%) and 8.22 (CV = 8.22%) for the transient unsaturated and steady-state saturated flow experiments, respectively. Attest indicated no significant difference between these values at P < 0.05. Air-water and air-water-solid interfaces are thought to enhance virus inactivation and sorption to solid particles. The similar retardation factors obtained may be attributable to the reduced presence of these interfaces in the two flow systems investigated as compared to steady-state unsaturated flow experiments in which these interfaces occur throughout the entire column.

  14. Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport

    USGS Publications Warehouse

    Baehr, A.L.; Hoag, G.E.; Marley, M.C.

    1989-01-01

    Organic liquids inadvertently spilled and then distributed in the unsaturated zone can pose a long-term threat to ground water. Many of these substances have significant volatility, and thereby establish a premise for contaminant removal from the unsaturated zone by inducing advective air-phase transport with wells screened in the unsaturated zone. In order to focus attention on the rates of mass transfer from liquid to vapour phases, sand columns were partially saturated with gasoline and vented under steady air-flow conditions. The ability of an equilibrium-based transport model to predict the hydrocarbon vapor flux from the columns implies an efficient rate of local phase transfer for reasonably high air-phase velocities. Thus the success of venting remediations will depend primarily on the ability to induce an air-flow field in a heterogeneous unsaturated zone that will intersect the distributed contaminant. To analyze this aspect of the technique, a mathematical model was developed to predict radially symmetric air flow induced by venting from a single well. This model allows for in-situ determinations of air-phase permeability, which is the fundamental design parameter, and for the analysis of the limitations of a single well design. A successful application of the technique at a site once contaminated by gasoline supports the optimism derived from the experimental and modeliing phases of this study, and illustrates the well construction and field methods used to document the volatile contaminant recovery. ?? 1989.

  15. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets

    PubMed Central

    Lu, Songjian; Lu, Kevin N.; Cheng, Shi-Yuan; Hu, Bo; Ma, Xiaojun; Nystrom, Nicholas; Lu, Xinghua

    2015-01-01

    An important goal of cancer genomic research is to identify the driving pathways underlying disease mechanisms and the heterogeneity of cancers. It is well known that somatic genome alterations (SGAs) affecting the genes that encode the proteins within a common signaling pathway exhibit mutual exclusivity, in which these SGAs usually do not co-occur in a tumor. With some success, this characteristic has been utilized as an objective function to guide the search for driver mutations within a pathway. However, mutual exclusivity alone is not sufficient to indicate that genes affected by such SGAs are in common pathways. Here, we propose a novel, signal-oriented framework for identifying driver SGAs. First, we identify the perturbed cellular signals by mining the gene expression data. Next, we search for a set of SGA events that carries strong information with respect to such perturbed signals while exhibiting mutual exclusivity. Finally, we design and implement an efficient exact algorithm to solve an NP-hard problem encountered in our approach. We apply this framework to the ovarian and glioblastoma tumor data available at the TCGA database, and perform systematic evaluations. Our results indicate that the signal-oriented approach enhances the ability to find informative sets of driver SGAs that likely constitute signaling pathways. PMID:26317392

  16. Synergies between Unsaturated Zn/Cu Doping Sites in Carbon Dots Provide New Pathways for Photocatalytic Oxidation

    DOE PAGES

    Wu, Wenting; Zhang, Qinggang; Wang, Ruiqin; ...

    2017-12-07

    Unsaturated metal species (UMS) confined in nanomaterials play important roles for electron transfer in a wide range of catalytic reactions. However, the limited fabrication methods of UMS restrict their wider catalytic applications. Here in this paper, we report on the synergy of unsaturated Zn and Cu dopants confined in carbon dots (ZnCu-CDs) to produce enhanced electron transfer and photooxidation processes in the doped CDs. The Zn/Cu species chelate with the carbon matrix mainly through Cu-O(N)-Zn-O(N)-Cu complexes. Within this structure, Cu 2+ acts as a mild oxidizer that facilely increases the unsaturated Zn content and also precisely tunes the unsaturated Znmore » valence state to Zn d+, where d is between 1 and 2, instead of Zn. With the help of UMS, electron-transfer pathways are produced, enhancing both the electron donating (7.0 times) and-accepting (5.3 times) abilities relative to conventional CDs. Because of these synergistic effects, the photocatalytic efficiency of CDs in photooxidation reactions is shown to improve more than 5-fold.« less

  17. Quantifying the Effects of Biofilm on the Hydraulic Properties of Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Volk, E.; Iden, S.; Furman, A.; Durner, W.; Rosenzweig, R.

    2017-12-01

    Quantifying the effects of biofilms on hydraulic properties of unsaturated soils is necessary for predicting water and solute flow in soil with extensive microbial presence. This can be relevant to bioremediation processes, soil aquifer treatment and effluent irrigation. Previous works showed a reduction in the hydraulic conductivity and an increase in water content due to the addition of biofilm analogue materials. The objective of this research is to quantify soil hydraulic properties of unsaturated soil (water retention and hydraulic conductivity) using real soil biofilm. In this work, Hamra soil was incubated with Luria Broth (LB) and biofilm-producing bacteria (Pseudomonas Putida F1). Hydraulic conductivity and water retention were measured by the evaporation method, Dewpoint method and a constant head permeameter. Biofilm was quantified using viable counts and the deficit of TOC. The results show that the presence of biofilms increases soil retention in the `dry' range of the curve and reduces the hydraulic conductivity (see figure). This research shows that biofilms may have a non-negligible effect on flow and transport in unsaturated soils. These findings contribute to modeling water flow in biofilm amended soil.

  18. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.

    PubMed

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O

    2014-12-01

    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding

  19. Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy.

    PubMed

    Heinrich, Christoph; Hofer, Alexander; Ritsch, Andreas; Ciardi, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2008-02-18

    Wide-field Coherent Anti-Stokes Raman Scattering (CARS) microscopy is employed to identify saturated and unsaturated fatty acids in micro-emulsions and cells, using the ratio between the strong -C-H CARS signal at 2850 cm(-1) and the weak signal of the =C-H vibration around 3015 cm(-1) for distinction. Quantitative CARS imaging at the =C-H resonance is challenging, since it yields only a low CARS signal, and small differences on the order of 5% in the concentration of polyunsaturated fatty lipids have to be detected. For this purpose we draw advantage of the high signal-to-noise ratio of wide-field CARS microscopy that is achieved by an excitation geometry involving a "sheet-of-light"-type illumination.

  20. UNSODA UNSATURATED SOIL HYDRAULIC DATABASE USER'S MANUAL VERSION 1.0

    EPA Science Inventory

    This report contains general documentation and serves as a user manual of the UNSODA program. UNSODA is a database of unsaturated soil hydraulic properties (water retention, hydraulic conductivity, and soil water diffusivity), basic soil properties (particle-size distribution, b...

  1. Two-carbon homologation of aldehydes and ketones to α,β-unsaturated aldehydes.

    PubMed

    Petroski, Richard J; Vermillion, Karl; Cossé, Allard A

    2011-06-17

    Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched α,β-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a protected aldehyde group instead of the usual ester group. A homologation cycle entailed condensation of the reagent with the starting aldehyde, followed by removal of the dimethylhydrazone protective group with a biphasic mixture of 1 M HCl and petroleum ether. This robust two-step process worked with a variety of aldehydes and ketones. Overall isolated yields of unsaturated aldehyde products ranged from 71% to 86% after the condensation and deprotection steps.

  2. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor.

    PubMed

    Sousa, Marcelo R; Jones, Jon P; Frind, Emil O; Rudolph, David L

    2013-01-01

    In contaminant travel from ground surface to groundwater receptors, the time taken in travelling through the unsaturated zone is known as the unsaturated zone time lag. Depending on the situation, this time lag may or may not be significant within the context of the overall problem. A method is presented for assessing the importance of the unsaturated zone in the travel time from source to receptor in terms of estimates of both the absolute and the relative advective times. A choice of different techniques for both unsaturated and saturated travel time estimation is provided. This method may be useful for practitioners to decide whether to incorporate unsaturated processes in conceptual and numerical models and can also be used to roughly estimate the total travel time between points near ground surface and a groundwater receptor. This method was applied to a field site located in a glacial aquifer system in Ontario, Canada. Advective travel times were estimated using techniques with different levels of sophistication. The application of the proposed method indicates that the time lag in the unsaturated zone is significant at this field site and should be taken into account. For this case, sophisticated and simplified techniques lead to similar assessments when the same knowledge of the hydraulic conductivity field is assumed. When there is significant uncertainty regarding the hydraulic conductivity, simplified calculations did not lead to a conclusive decision. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Widespread natural perchlorate in unsaturated zones of the southwest United States

    USGS Publications Warehouse

    Rao, Balaji; Anderson, Todd A.; Orris, Greta J.; Rainwater, Ken A.; Rajagopalan, Srinath; Sandvig, Renee M.; Scanlon, Bridget R.; Stonestrom, David A.; Walvoord, Michelle Ann; Jackson, W Andrew

    2007-01-01

    A substantial reservoir (up to 1 kg ha-1) of natural perchlorate is present in diverse unsaturated zones of the arid and semi-arid southwestern United States. The perchlorate co-occurs with meteoric chloride that has accumulated in these soils throughout the Holocene [0 to 10−15 ka (thousand years ago)] and possibly longer periods. Previously, natural perchlorate widely believed to be limited to the Atacama Desert, now appears widespread in steppe-to-desert ecoregions. The perchlorate reservoir becomes sufficiently large to affect groundwater when recharge from irrigation or climate change flushes accumulated salts from the unsaturated zone. This new source may help explain increasing reports of perchlorate in dry region agricultural products and should be considered when evaluating overall source contributions.

  4. Transient Point Infiltration In The Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Buecker-Gittel, M.; Mohrlok, U.

    The risk assessment of leaking sewer pipes gets more and more important due to urban groundwater management and environmental as well as health safety. This requires the quantification and balancing of transport and transformation processes based on the water flow in the unsaturated zone. The water flow from a single sewer leakage could be described as a point infiltration with time varying hydraulic conditions externally and internally. External variations are caused by the discharge in the sewer pipe as well as the state of the leakage itself. Internal variations are the results of microbiological clogging effects associated with the transformation processes. Technical as well as small scale laboratory experiments were conducted in order to investigate the water transport from an transient point infiltration. From the technical scale experiment there was evidence that the water flow takes place under transient conditions when sewage infiltrates into an unsaturated soil. Whereas the small scale experiments investigated the hydraulics of the water transport and the associated so- lute and particle transport in unsaturated soils in detail. The small scale experiment was a two-dimensional representation of such a point infiltration source where the distributed water transport could be measured by several tensiometers in the soil as well as by a selective measurement of the discharge at the bottom of the experimental setup. Several series of experiments were conducted varying the boundary and initial con- ditions in order to derive the important parameters controlling the infiltration of pure water from the point source. The results showed that there is a significant difference between the infiltration rate in the point source and the discharge rate at the bottom, that could be explained by storage processes due to an outflow resistance at the bottom. This effect is overlayn by a decreasing water content decreases over time correlated with a decreasing infiltration

  5. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    EPA Science Inventory

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  6. Stereoselective synthesis of unsaturated α-amino acids.

    PubMed

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  7. Surface quality of unsaturated polyester resin processed via continuous multi-shot rotational molding

    NASA Astrophysics Data System (ADS)

    Ogila, K. O.; Yang, W.; Shao, M.; Tan, J.

    2017-05-01

    Unsaturated Polyester Resin is a versatile and cost efficient thermosetting plastic whose application in rotational molding is currently limited by its relatively high initial viscosity and heat of reaction. These material characteristics result in uneven material distribution, poor surface finish and imperfections in the moldings especially when large wall thicknesses are required. The current work attempts to remedy these shortcomings through the development of a continuous multi-shot system which adds predetermined loads of unsaturated polyester resin into a rotating mold at various intervals. As part of this system, a laboratory-scale uniaxial rotational molding machine was used to produce Unsaturated Polyester Resin moldings in single and double shots. Optimal processing conditions were determined through visual studies, three dimensional microscopic studies, thickness distribution analysis and Fourier Transform Infrared spectroscopy. Volume filling fractions of 0.049-0.065, second shot volumes of 0.5-0.75 from the first shot, rotational speeds of 15-20 rpm and temperatures of 30-50 °C resulted in moldings of suitable quality on both the inner and outer surfaces.

  8. Structural requirements for the cytoprotective actions of mono-unsaturated fatty acids in the pancreatic β-cell line, BRIN-BD11

    PubMed Central

    Dhayal, S; Welters, H J; Morgan, N G

    2008-01-01

    Background and purpose: Exposure of pancreatic β-cells to long-chain free fatty acids leads to differential responses according to the chain length and degree of unsaturation. In particular, long-chain saturated molecules such as palmitate (C16:0) cause apoptosis, whereas equivalent mono-unsaturated species (for example, palmitoleate (C16:1)) are not overtly toxic. Moreover, mono-unsaturates exert a powerful cytoprotective response against a range of proapoptotic stimuli. However, the structural requirements that determine cytoprotection have not been determined and form the basis of the present study. Experimental approach: BRIN-BD11 and INS-1 β-cells were exposed either to the saturated fatty acid palmitate, or to serum withdrawal, to mediate cytotoxicity. The protective effects of a wide range of mono-unsaturated fatty acid derivatives were tested in cytotoxicity assays. Effector caspase activity was also measured and correlated with viability. Key results: The cytotoxic actions of palmitate were inhibited dose-dependently by long-chain mono-unsaturated fatty acids with a defined potency order C18:1>C16:1≫C14:1. The configuration of the double bond was also important with cis forms being more potent than trans forms. Alkylated mono-unsaturated fatty-acid derivates were also cytoprotective, although their efficacy declined as the alkyl chain length increased. Cytoprotection was achieved rapidly on addition of mono-unsaturates and correlated with a rapid and dramatic inhibition of caspase-3/7 activity in palmitate-treated cells. Conclusions and implications: The data reveal the structural requirements that dictate the cytoprotective actions of mono-unsaturated fatty acids in pancreatic β-cells. Metabolic activation is not required and the data point at the potential involvement of a fatty acid receptor in mediating cytoprotection. PMID:18297101

  9. (Bio-)remediation of VCHC contaminants in a Technosol under unsaturated conditions.

    PubMed

    Baumgarten, W; Fleige, H; Peth, S; Horn, R

    2013-07-01

    The remediation of dense non-aqueous phase liquids has always been a concern of both public and scientific interest groups. In this research work a modified physical concept of (bio)remediation of a volatile chlorinated hydrocarbon (VCHC) contamination was elaborated under laboratory conditions and modeled with HYDRUS-2D. In field dechlorination is influenced by both physicochemical and hydraulic properties of the substrate, e.g. texture, pore size distribution, pore liquid characteristics, e.g. viscosity, pH, surface tension, and dependent on the degree of saturation of the vadose zone. Undisturbed soil cores (100 cm³) were sampled from a Spolic Technosol. Considering hydraulic properties and functions, unsaturated percolation was performed with vertically and horizontally structured samples. VCHC concentrations were calculated prior, during, and after each percolation cycle. According to laboratory findings, microemulsion showed the most efficient results with regard to flow behavior in the unsaturated porous media and its accessibility for bacteria as nutrient. The efficiency of VCHC remediation could be increased by the application of a modified pump-and-treat system: the injection of bacteria Dehalococcoides ethanogenes with microemulsion, and extraction at a constant matric potential level of -6 kPa. Achieved data was used for HYDRUS-2D simulations, modeling in situ conditions, demonstrating the practical relevance (field scale) of performed unsaturated percolation (core scale), and in order to exclude capillary barrier effects.

  10. Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  11. Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.

    1998-01-20

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  12. Conversion of Cn-Unsaturated into Cn-2-Saturated LCFA Can Occur Uncoupled from Methanogenesis in Anaerobic Bioreactors.

    PubMed

    Cavaleiro, Ana J; Pereira, Maria Alcina; Guedes, Ana P; Stams, Alfons J M; Alves, M Madalena; Sousa, Diana Z

    2016-03-15

    Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.

  13. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fracturedmore » rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.« less

  14. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    PubMed Central

    2015-01-01

    Summary The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams. PMID:25977728

  15. Role of air-water interfaces on retention of viruses under unsaturated conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.; van den Berg, H. H. J. L.

    2006-12-01

    We investigated transport of viruses through saturated and unsaturated sand columns. Unsaturated experiments were conducted under conditions of uniform saturation and steady state water flow. The water saturation ranged from 1 to 0.5. Bacteriophages MS2 and ϕX174 were used as surrogates for pathogenic viruses in these studies. Phosphate-buffered solutions with different pH values (7.5, 6.2, 5.5, and 5) were utilized. Virus transport was modeled assuming first-order kinetic adsorption for interactions to the solid-water interface (SWI) and the air-water interface (AWI). Under saturated conditions, virus retention increased as pH decreased, and a one-site kinetic model produced a good fit to the breakthrough curves. Under unsaturated conditions a two-site kinetic model was needed to fit the breakthrough curves satisfactorily. The second site was attributed to the adsorption of phages to the AWI. According to our results, ϕX174 exhibits a high affinity to the AWI at pH values below 6.6 (the isoelectric point of ϕX174). Although it is believed that MS2 is more hydrophobic than ϕX174, MS2 had a lower affinity to the AWI than ϕX174, presumably because of the lower isoelectric point of MS2, which is equal to 3.9. Under unsaturated conditions, viruses captured within the column could be recovered in the column outflow by resaturating and immediately draining the column. Draining columns under saturated conditions, however, did not result in any recovery of viruses. Therefore the recovery can be attributed to the release of viruses adsorbed to the AWI. Our results suggest that electrostatic interactions of viruses with the AWI are much more important than hydrophobicity.

  16. Ground resistivity method and DCIP2D forward and inversion modelling to identify alteration at the Midwest uranium deposit, northern Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Long, Samuel R. M.; Smith, Richard S.; Hearst, Robert B.

    2017-06-01

    Resistivity methods are commonly used in mineral exploration to map lithology, structure, sulphides and alteration. In the Athabasca Basin, resistivity methods are used to detect alteration associated with uranium. At the Midwest deposit, there is an alteration zone in the Athabasca sandstones that is above a uraniferous conductive graphitic fault in the basement and below a conductive lake at surface. Previous geophysical work in this area has yielded resistivity sections that we feel are ambiguous in the area where the alteration is expected. Resolve® and TEMPEST sections yield an indistinct alteration zone, while two-dimensional (2D) inversions of the ground resistivity data show an equivocal smeared conductive feature in the expected location between the conductive graphite and the conductive lake. Forward modelling alone cannot identify features in the pseudosections that are clearly associated with alteration, as the section is dominated by the feature associated with the near-surface conductive lake; inverse modelling alone produces sections that are smeared and equivocal. We advocate an approach that uses a combination of forward and inverse modelling. We generate a forward model from a synthetic geoelectric section; this forward data is then inverse modelled and compared with the inverse model generated from the field data using the same inversion parameters. The synthetic geoelectric section is then adjusted until the synthetic inverse model closely matches the field inverse model. We found that this modelling process required a conductive alteration zone in the sandstone above the graphite, as removing the alteration zone from the sandstone created an inverse section very dissimilar to the inverse section derived from the field data. We therefore conclude that the resistivity method is able to identify conductive alteration at Midwest even though it is below a conductive lake and above a conductive graphitic fault. We also concluded that resistivity

  17. Estimation of deep infiltration in unsaturated limestone environments using cave LiDAR and drip count data

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.

    2015-09-01

    Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of the Golgotha Cave, South-West Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012-2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip-rate time series are interpreted in terms of flow patterns, cave chamber morphology and lithology. Moreover, we develop a new technique to estimate recharge in large scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focused areas of recharge and can help to better estimate

  18. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study.

    PubMed

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H

    2016-03-11

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted.

  19. Two-Carbon Homologation of Ketones to 3-Methyl Unsaturated Aldehydes

    USDA-ARS?s Scientific Manuscript database

    The usual scheme of two-carbon homologation of ketones to 3-methyl unsaturated aldehydes by Horner-Wadsworth-Emmons condensations with phosphonate esters, such as triethyl-2-phosphonoacetate, involves three steps. The phosphonate condensation step results in extension of the carbon chain by two carb...

  20. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.

    PubMed

    Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja

    2011-03-01

    The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.

  1. Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Guzel D.; Neuman, Shlomo P.

    2007-01-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman (1972, 1974) by accounting for unsaturated flow above the water table. Three-dimensional, axially symmetric flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length or, equivalently, a dimensionless exponent κD = κb, where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan (1975), who, however, have ignored internal (artesian) aquifer storage. According to Kroszynski and Dagan, aquifers that are not excessively shallow have values of κD (their parameter a) much greater than 10. We find that in such typical cases, unsaturated flow has little impact on early and late dimensionless time drawdown a short distance below the water table. Unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian-dominated to a late water-table-dominated flow regime. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as κD → ∞, this effect dies out, and drawdown is controlled entirely by delayed decline in the water table as in the model of Neuman. The unsaturated zone has a major impact on drawdown at intermediate time and a significant impact at early and late times, in the atypical case of κD ≤ 1, becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant). Our

  2. Identifying cancer patients who alter care or lifestyle due to treatment-related financial distress.

    PubMed

    Nipp, Ryan D; Zullig, Leah L; Samsa, Gregory; Peppercorn, Jeffrey M; Schrag, Deborah; Taylor, Donald H; Abernethy, Amy P; Zafar, S Yousuf

    2016-06-01

    Cancer patients may experience financial distress as a side effect of their care. Little is known about which patients are at greatest risk for altering their care or lifestyle due to treatment-related financial distress. We conducted a cross-sectional survey study to determine which patients are at greatest risk for altering their care or lifestyle due to treatment-related financial distress. Eligible patients were adults receiving cancer treatment enrolled between June 2010 and May 2011. We grouped coping strategies as lifestyle altering or care altering. We assessed coping strategies and relationships between covariates using descriptive statistics and analysis of variance. Among 174 participants, 89% used at least one lifestyle-altering coping strategy, while 39% used a care-altering strategy. Care-altering coping strategies adopted by patients included the following: not filling a prescription (28%) and taking less medication than prescribed (23%). Lifestyle-altering strategies included the following: spending less on leisure activities (77%), spending less on basics like food and clothing (57%), borrowing money (54%), and spending savings (50%). Younger patients were more likely than older patients to use coping strategies (p < 0.001). Lower-income patients adopted care-altering strategies more than higher-income patients (p = 0.03). Participants with more education and shorter duration of chemotherapy used lifestyle-altering strategies more than their counterparts (both p < 0.05). As a means of coping with treatment-related financial distress, patients were more likely to use lifestyle-altering approaches, but more than one-third adopted potentially harmful care-altering strategies. Younger age, lower income, higher education, and shorter duration of chemotherapy were characteristics associated with greater use of coping strategies. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Unsaturated fatty acids promote bioaccessibility and basolateral secretion of carotenoids and α-tocopherol by Caco-2 cells.

    PubMed

    Failla, Mark L; Chitchumronchokchai, Chureeporn; Ferruzzi, Mario G; Goltz, Shellen R; Campbell, Wayne W

    2014-06-01

    Bioavailability of carotenoids and tocopherols from foods is determined by the efficiency of transfer from food/meal to mixed micelles during digestion, incorporation into chylomicrons for trans-epithelial transport to lymphatic/blood system, and distribution to target tissues. Fats and oils are important factors for facilitating the absorption of lipophilic compounds. However, dietary fats and oils are composed of various types of saturated and unsaturated fatty acids which may differentially impact the bioavailability of carotenoids and tocopherols from foods. We have investigated the effects of several common commercial lipids on bioavailability using an in vitro digestion model and Caco-2 human intestinal cells. Meals consisted of mixed salad vegetables containing a single test lipid. Micellarization and cellular uptake of β-carotene (βC) and lycopene (LYC) during small intestinal digestion was increased by lipids rich in unsaturated fatty acids: soybean oil > olive > canola > butter. In contrast, type of lipid minimally affected the bioaccessibility of lutein (LUT) and zeaxanthin (ZEA). To examine the influence of type of dietary triglyceride on uptake and basolateral secretion of carotenoids, Caco-2 cells grown on Transwell membranes were incubated with micellar mixtures of fatty acids (1.0 mM) mimicking the types and ratio of saturated to unsaturated (mono- + poly-unsaturated) fatty acids (FA) present in butter (70 : 30), olive oil (7 : 93) and soybean oil (11 : 89). Cells were exposed to micelles containing βC, LUT, α-tocopherol (α-TC) and a mixture of test fatty acids. Uptake and basolateral secretion of βC, LUT and α-TC were greater in cells pre-treated with mixtures enriched in unsaturated compared to saturated FA and these effects were mediated by increased assembly and secretion of chylomicrons. These results suggest that dietary fats/oils rich in unsaturated fatty acids promote carotenoid and α-TC bioavailability by enhancing their

  4. Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites

    NASA Astrophysics Data System (ADS)

    Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.

    2018-04-01

    This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.

  5. Using ambient ozone for assignment of double bond position in unsaturated lipids.

    PubMed

    Ellis, Shane R; Hughes, Jessica R; Mitchell, Todd W; in het Panhuis, Marc; Blanksby, Stephen J

    2012-03-07

    Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.

  6. Simulated fate and transport of metolachlor in the unsaturated zone, Maryland, USA

    USGS Publications Warehouse

    Bayless, E.R.; Capel, P.D.; Barbash, J.E.; Webb, R.M.T.; Hancock, T.L.C.; Lampe, D.C.

    2008-01-01

    An unsaturated-zone transport model was used to examine the transport and fate of metolachlor applied to an agricultural site in Maryland, USA. The study site was instrumented to collect data on soil-water content, soil-water potential, ground water levels, major ions, pesticides, and nutrients from the unsaturated zone during 2002-2004. The data set was enhanced with site-specific information describing weather, soils, and agricultural practices. The Root Zone Water Quality Model was used to simulate physical, chemical, and biological processes occurring in the unsaturated zone. Model calibration to bromide tracer concentrations indicated flow occurred through the soil matix. Simulated recharge rates were within the measured range of values. The pesticide transport model was calibrated to the intensive data collection period (2002-2004), and the calibrated model was then used to simulate the period 1984 through 2004 to examine the impact of sustained agricultural management practices on the concentrations of metolachlor and its degradates at the study site. Simulation results indicated that metolachlor degrades rapidly in the root zone but that the degradates are transported to depth in measurable quantities. Simulations indicated that degradate transport is strongly related to the duration of sustained use of metolachlor and the extent of biodegradation. 

  7. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    USGS Publications Warehouse

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  8. Altered standards of care during an influenza pandemic: identifying ethical, legal, and practical principles to guide decision making.

    PubMed

    Levin, Donna; Cadigan, Rebecca Orfaly; Biddinger, Paul D; Condon, Suzanne; Koh, Howard K

    2009-12-01

    Although widespread support favors prospective planning for altered standards of care during mass casualty events, the literature includes few, if any, accounts of groups that have formally addressed the overarching policy considerations at the state level. We describe the planning process undertaken by public health officials in the Commonwealth of Massachusetts, along with community and academic partners, to explore the issues surrounding altered standards of care in the event of pandemic influenza. Throughout 2006, the Massachusetts Department of Public Health and the Harvard School of Public Health Center for Public Health Preparedness jointly convened a working group comprising ethicists, lawyers, clinicians, and local and state public health officials to consider issues such as allocation of antiviral medications, prioritization of critical care, and state seizure of private assets. Community stakeholders were also engaged in the process through facilitated discussion of case scenarios focused on these and other issues. The objective of this initiative was to establish a framework and some fundamental principles that would subsequently guide the process of establishing specific altered standards of care protocols. The group collectively identified 4 goals and 7 principles to guide the equitable allocation of limited resources and establishment of altered standards of care protocols. Reviewing and analyzing this process to date may serve as a resource for other states.

  9. High-quality unsaturated zone hydraulic property data for hydrologic applications

    USGS Publications Warehouse

    Perkins, Kimberlie; Nimmo, John R.

    2009-01-01

    In hydrologic studies, especially those using dynamic unsaturated zone moisture modeling, calculations based on property transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values has become increasingly common with the use of neural networks. High-quality data are needed for databases used in this way and for theoretical and property transfer model development and testing. Hydraulic properties predicted on the basis of existing databases may be adequate in some applications but not others. An obvious problem occurs when the available database has few or no data for samples that are closely related to the medium of interest. The data set presented in this paper includes saturated and unsaturated hydraulic conductivity, water retention, particle-size distributions, and bulk properties. All samples are minimally disturbed, all measurements were performed using the same state of the art techniques and the environments represented are diverse.

  10. Transport and time lag of chlorofluorocarbon gases in the unsaturated zone, Rabis Creek, Denmark

    USGS Publications Warehouse

    Engesgaard, Peter; Højberg, Anker L.; Hinsby, Klaus; Jensen, Karsten H.; Laier, Troels; Larsen, Flemming; Busenberg, Eurybiades; Plummer, Niel

    2004-01-01

    Transport of chlorofluorocarbon (CFC) gases through the unsaturated zone to the water table is affected by gas diffusion, air–water exchange (solubility), sorption to the soil matrix, advective–dispersive transport in the water phase, and, in some cases, anaerobic degradation. In deep unsaturated zones, this may lead to a time lag between entry of gases at the land surface and recharge to groundwater. Data from a Danish field site were used to investigate how time lag is affected by variations in water content and to explore the use of simple analytical solutions to calculate time lag. Numerical simulations demonstrate that either degradation or sorption of CFC-11 takes place, whereas CFC-12 and CFC-113 are nonreactive. Water flow did not appreciably affect transport. An analytical solution for the period with a linear increase in atmospheric CFC concentrations (approximately early 1970s to early 1990s) was used to calculate CFC profiles and time lags. We compared the analytical results with numerical simulations. The time lags in the 15-m-deep unsaturated zone increase from 4.2 to between 5.2 and 6.1 yr and from 3.4 to 3.9 yr for CFC-11 and CFC-12, respectively, when simulations change from use of an exponential to a linear increase in atmospheric concentrations. The CFC concentrations at the water table before the early 1990s can be estimated by displacing the atmospheric input function by these fixed time lags. A sensitivity study demonstrates conditions under which a time lag in the unsaturated zone becomes important. The most critical parameter is the tortuosity coefficient. The analytical approach is valid for the low range of tortuosity coefficients (τ = 0.1–0.4) and unsaturated zones greater than approximately 20 m in thickness. In these cases the CFC distribution may still be from either the exponential or linear phase. In other cases, the use of numerical models, as described in our work and elsewhere, is an option.

  11. Solute transport along preferential flow paths in unsaturated fractures

    USGS Publications Warehouse

    Su, Grace W.; Geller, Jil T.; Pruess, Karsten; Hunt, James R.

    2001-01-01

    Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock‐replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors‐in‐series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.

  12. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids.

    PubMed

    Sousa, Diana Z; Smidt, Hauke; Alves, Maria M; Stams, Alfons J M

    2009-06-01

    Syntrophic relationships are the key for biodegradation in methanogenic environments. We review the ecological and physiological features of syntrophic communities involved in the degradation of saturated and unsaturated long-chain fatty acids (LCFA), as well as their potential application to convert lipids/fats containing waste to biogas. Presently, about 14 species have been described with the ability to grow on fatty acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae. The principle pathway of LCFA degradation is through beta-oxidation, but the initial steps in the conversion of unsaturated LCFA are unclear. Communities enriched on unsaturated LCFA also degrade saturated LCFA, but the opposite generally is not the case. For efficient methane formation, the physical and inhibitory effects of LCFA on methanogenesis need to be considered. LCFA adsorbs strongly to biomass, which causes encapsulation of active syntrophic communities and hampers diffusion of substrate and products in and out of the biomass. Quantification of archaea by real-time PCR analysis suggests that potential LCFA inhibitory effect towards methanogens might be reversible. Rather, the conversion of adsorbed LCFA in batch assays was shown to result in a significant increase of archaeal cell numbers in anaerobic sludge samples.

  13. Discovery of Rigidified α,β-Unsaturated Imines as New Resistance-breaking Insecticides for Malaria Vector Control.

    PubMed

    Arlt, Alexander; Böhnke, Niels; Horstmann, Sebastian; Vermeer, Arnoldus W P; Werner, Stefan; Velten, Robert

    2016-10-01

    During our continuous search for new resistance-breaking insecticides applicable to malaria vector control, a new class of α,β-unsaturated imines was identified by applying the principle of conformational rigidification as a powerful tool for compound optimisation. Herein we describe the successful synthesis of these compounds and their biological test results. Our lead compound 16 from this insecticidal class outperforms market standards, notably for the control of mosquito strains that exhibit either metabolic or target-site resistance to these established insecticides. In our model system for insecticide-treated mosquito nets the compound reveals long-lasting efficacy for up to several months.

  14. Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: Laboratory sandbox experiments

    NASA Astrophysics Data System (ADS)

    Berg, Steven J.; Illman, Walter A.

    2012-11-01

    SummaryInterpretation of pumping tests in unconfined aquifers has largely been based on analytical solutions that disregard aquifer heterogeneity. In this study, we investigate whether the prediction of drawdown responses in a heterogeneous unconfined aquifer and the unsaturated zone above it with a variably saturated groundwater flow model can be improved by including information on hydraulic conductivity (K) and specific storage (Ss) from transient hydraulic tomography (THT). We also investigate whether these predictions are affected by the use of unsaturated flow parameters estimated through laboratory hanging column experiments or calibration of in situ drainage curves. To investigate these issues, we designed and conducted laboratory sandbox experiments to characterize the saturated and unsaturated properties of a heterogeneous unconfined aquifer. Specifically, we conducted pumping tests under fully saturated conditions and interpreted the drawdown responses by treating the medium to be either homogeneous or heterogeneous. We then conducted another pumping test and allowed the water table to drop, similar to a pumping test in an unconfined aquifer. Simulations conducted using a variably saturated flow model revealed: (1) homogeneous parameters in the saturated and unsaturated zones have a difficult time predicting the responses of the heterogeneous unconfined aquifer; (2) heterogeneous saturated hydraulic parameter distributions obtained via THT yielded significantly improved drawdown predictions in the saturated zone of the unconfined aquifer; and (3) considering heterogeneity of unsaturated zone parameters produced a minor improvement in predictions in the unsaturated zone, but not the saturated zone. These results seem to support the finding by Mao et al. (2011) that spatial variability in the unsaturated zone plays a minor role in the formation of the S-shape drawdown-time curve observed during pumping in an unconfined aquifer.

  15. Specific reaction of alpha,beta-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage.

    PubMed

    Ishiguro, Kazuhiro; Ando, Takafumi; Watanabe, Osamu; Goto, Hidemi

    2008-10-15

    6-Shogaol and 6-gingerol are ginger components with similar chemical structures. However, while 6-shogaol damages microtubules, 6-gingerol does not. We have investigated the molecular mechanism of 6-shogaol-induced microtubule damage and found that the action of 6-shogaol results from the structure of alpha,beta-unsaturated carbonyl compounds. alpha,beta-Unsaturated carbonyl compounds such as 6-shogaol react with sulfhydryl groups of cysteine residues in tubulin, and impair tubulin polymerization. The reaction with sulfhydryl groups depends on the chain length of alpha,beta-unsaturated carbonyl compounds. In addition, alpha,beta-unsaturated carbonyl compounds are more reactive with sulfhydryl groups in tubulin than in 2-mercaptoethanol, dithiothreitol, glutathione and papain, a cysteine protease.

  16. Cigarette smoke and α,β-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts

    PubMed Central

    Volpi, Giorgia; Facchinetti, Fabrizio; Moretto, Nadia; Civelli, Maurizio; Patacchini, Riccardo

    2011-01-01

    BACKGROUND AND PURPOSE Vascular endothelial growth factor (VEGF) is an angiogenic factor known to be elevated in the sputum of asymptomatic smokers as well as smokers with bronchitis type of chronic obstructive pulmonary disease. The aim of this study was to investigate whether acute exposure to cigarette smoke extract altered VEGF production in lung parenchymal cells. EXPERIMENTAL APPROACH We exposed human airway smooth muscle cells (ASMC), normal human lung fibroblasts (NHLF) and small airways epithelial cells (SAEC) to aqueous cigarette smoke extract (CSE) in order to investigate the effect of cigarette smoke on VEGF expression and release. KEY RESULTS Vascular endothelial growth factor release was elevated by sub-toxic concentrations of CSE in both ASMC and NHLF, but not in SAEC. CSE-evoked VEGF release was mimicked by its component acrolein at concentrations (10–100 µM) found in CSE, and prevented by the antioxidant and α,β-unsaturated aldehyde scavenger, N-acetylcysteine (NAC). Both CSE and acrolein (30 µM) induced VEGF mRNA expression in ASMC cultures, suggesting an effect at transcriptional level. Crotonaldehyde and 4-hydroxy-2-nonenal, an endogenous α,β-unsaturated aldehyde, stimulated VEGF release, as did H2O2. CSE-evoked VEGF release was accompanied by rapid and lasting phosphorylation of p38 MAPK (mitogen-activated protein kinase), which was abolished by NAC and mimicked by acrolein. Both CSE- and acrolein-evoked VEGF release were blocked by selective inhibition of p38 MAPK signalling. CONCLUSIONS AND IMPLICATIONS α,β-Unsaturated aldehydes and possibly reactive oxygen species contained in cigarette smoke stimulate VEGF expression and release from pulmonary cells through p38 MAPK signalling. PMID:21306579

  17. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  18. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  19. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  20. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  1. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  2. TAGCNA: A Method to Identify Significant Consensus Events of Copy Number Alterations in Cancer

    PubMed Central

    Yuan, Xiguo; Zhang, Junying; Yang, Liying; Zhang, Shengli; Chen, Baodi; Geng, Yaojun; Wang, Yue

    2012-01-01

    Somatic copy number alteration (CNA) is a common phenomenon in cancer genome. Distinguishing significant consensus events (SCEs) from random background CNAs in a set of subjects has been proven to be a valuable tool to study cancer. In order to identify SCEs with an acceptable type I error rate, better computational approaches should be developed based on reasonable statistics and null distributions. In this article, we propose a new approach named TAGCNA for identifying SCEs in somatic CNAs that may encompass cancer driver genes. TAGCNA employs a peel-off permutation scheme to generate a reasonable null distribution based on a prior step of selecting tag CNA markers from the genome being considered. We demonstrate the statistical power of TAGCNA on simulated ground truth data, and validate its applicability using two publicly available cancer datasets: lung and prostate adenocarcinoma. TAGCNA identifies SCEs that are known to be involved with proto-oncogenes (e.g. EGFR, CDK4) and tumor suppressor genes (e.g. CDKN2A, CDKN2B), and provides many additional SCEs with potential biological relevance in these data. TAGCNA can be used to analyze the significance of CNAs in various cancers. It is implemented in R and is freely available at http://tagcna.sourceforge.net/. PMID:22815924

  3. A GENERAL MASS-CONSERVATIVE NUMERICAL SOLUTION FOR THE UNSATURATED FLOW EQUATION

    EPA Science Inventory

    Numerical approximations based on different forms of the governing partial differential equation can lead to significantly different results for unsaturated flow problems. Numerical solution based on the standard h-based form of Richards equation generally yields poor results, ch...

  4. Effect of isolated fractures on accelerated flow in unsaturated porous rock

    USGS Publications Warehouse

    Su, Grace W.; Nimmo, John R.; Dragila, Maria I.

    2003-01-01

    Fractures that begin and end in the unsaturated zone, or isolated fractures, have been ignored in previous studies because they were generally assumed to behave as capillary barriers and remain nonconductive. We conducted a series of experiments using Berea sandstone samples to examine the physical mechanisms controlling flow in a rock containing a single isolated fracture. The input fluxes and fracture orientation were varied in these experiments. Visualization experiments using dyed water in a thin vertical slab of rock were conducted to identify flow mechanisms occurring due to the presence of the isolated fracture. Two mechanisms occurred: (1) localized flow through the rock matrix in the vicinity of the isolated fracture and (2) pooling of water at the bottom of the fracture, indicating the occurrence of film flow along the isolated fracture wall. These mechanisms were observed at fracture angles of 20 and 60 degrees from the horizontal, but not at 90 degrees. Pooling along the bottom of the fracture was observed over a wider range of input fluxes for low‐angled isolated fractures compared to high‐angled ones. Measurements of matrix water pressures in the samples with the 20 and 60 degree fractures also demonstrated that preferential flow occurred through the matrix in the fracture vicinity, where higher pressures occurred in the regions where faster flow was observed in the visualization experiments. The pooling length at the terminus of a 20 degree isolated fracture was measured as a function of input flux. Calculations of the film flow rate along the fracture were made using these measurements and indicated that up to 22% of the flow occurred as film flow. These experiments, apparently the first to consider isolated fractures, demonstrate that such features can accelerate flow through the unsaturated zone and should be considered when developing conceptual models.

  5. Influences of rich in saturated and unsaturated fatty acids diets in rat myocardium.

    PubMed

    Pinotti, Matheus Fécchio; Silva, Maeli Dal-Pai; Sugizaki, Mário Mateus; Novelli, Yeda Santana Diniz; Sant'ana, Lea Sílvia; Aragon, Flávio Ferrari; Padovani, Carlos Roberto; Novelli, Ethel Lourenzi Barbosa; Cicogna, Antonio Carlos

    2007-03-01

    To study the influence of saturated (SFA) and unsaturated fatty acid (UFA) rich diets on mechanical function, morphology and oxidative stress in rat myocardium. Male, 60-day-old Wistar rats were fed a control (n=8), a SFA (n=8), or a UFA-rich diet (n=8) for sixty days. Mechanical function was studied in isolated left ventricle papillary muscle under isometric and isotonic contractions, in basal conditions (1.25 mM calcium chloride) and after 5.2 mM calcium chloride and beta-adrenergic stimuli with 1.0 microM isoproterenol. Left ventricle fragments were used to study oxidative stress and morphology under light and electron microscopy. SFA and UFA-rich diets did not change myocardium mechanical function. Both diets caused oxidative stress, with high lipid hydroperoxide and low superoxide-dismutase concentrations. UFA rich diet decreased catalase expression and SFA rich diet decreased the amount of myocardial glutathione-peroxidase. Both diets promoted light ultrastructural injuries such as lipid deposits and cell membrane injuries. Results suggest that SFA and UFA rich diets do not alter isolated muscle mechanical function, but promote light myocardial morphological injuries and oxidative stress.

  6. Integrated assessment on groundwater nitrate by unsaturated zone probing and aquifer sampling with environmental tracers.

    PubMed

    Yuan, Lijuan; Pang, Zhonghe; Huang, Tianming

    2012-12-01

    By employing chemical and isotopic tracers ((15)N and (18)O in NO(3)(-)), we investigated the main processes controlling nitrate distribution in the unsaturated zone and aquifer. Soil water was extracted from two soil cores drilled in a typical agricultural cropping area of the North China Plain (NCP), where groundwater was also sampled. The results indicate that evaporation and denitrification are the two major causes of the distribution of nitrate in soil water extracts in the unsaturated zone. Evaporation from unsaturated zone is evidenced by a positive correlation between chloride and nitrate, and denitrification by a strong linear relationship between [Formula: see text] and ln(NO(3)(-)/Cl). The latter is estimated to account for up to 50% of the nitrate loss from soil drainage. In the saturated zone, nitrate is reduced at varying extents (100 mg/L and 10 mg/L at two sites, respectively), largely by dilution of the aquifer water. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Pathological hypertrophy and cardiac dysfunction are linked to aberrant endogenous unsaturated fatty acid metabolism

    PubMed Central

    Salomé Campos, Dijon Henrique; Grippa Sant’Ana, Paula; Okoshi, Katashi; Padovani, Carlos Roberto; Masahiro Murata, Gilson; Nguyen, Son; Kolwicz, Stephen C.; Cicogna, Antonio Carlos

    2018-01-01

    Pathological cardiac hypertrophy leads to derangements in lipid metabolism that may contribute to the development of cardiac dysfunction. Since previous studies, using high saturated fat diets, have yielded inconclusive results, we investigated whether provision of a high-unsaturated fatty acid (HUFA) diet was sufficient to restore impaired lipid metabolism and normalize diastolic dysfunction in the pathologically hypertrophied heart. Male, Wistar rats were subjected to supra-valvar aortic stenosis (SVAS) or sham surgery. After 6 weeks, diastolic dysfunction and pathological hypertrophy was confirmed and both sham and SVAS rats were treated with either normolipidic or HUFA diet. At 18 weeks post-surgery, the HUFA diet failed to normalize decreased E/A ratios or attenuate measures of cardiac hypertrophy in SVAS animals. Enzymatic activity assays and gene expression analysis showed that both normolipidic and HUFA-fed hypertrophied hearts had similar increases in glycolytic enzyme activity and down-regulation of fatty acid oxidation genes. Mass spectrometry analysis revealed depletion of unsaturated fatty acids, primarily linoleate and oleate, within the endogenous lipid pools of normolipidic SVAS hearts. The HUFA diet did not restore linoleate or oleate in the cardiac lipid pools, but did maintain body weight and adipose mass in SVAS animals. Overall, these results suggest that, in addition to decreased fatty acid oxidation, aberrant unsaturated fatty acid metabolism may be a maladaptive signature of the pathologically hypertrophied heart. The HUFA diet is insufficient to reverse metabolic remodeling, diastolic dysfunction, or pathologically hypertrophy, possibly do to preferentially partitioning of unsaturated fatty acids to adipose tissue. PMID:29494668

  8. Heuristical Strategies on the Study Theme "The Unsaturated Hydrocarbons -- Alkenes"

    ERIC Educational Resources Information Center

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2011-01-01

    The influence of heuristical strategies upon the level of two experimental classes is studied in this paper. The didactic experiment took place at secondary school in Cluj-Napoca, in 2008-2009 school year. The study theme "The Unsaturated Hydrocarbons--Alkenes" has been efficiently learned by using the most active methods: laboratory…

  9. Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian J.; Krabbenhoft, D.P.; Striegl, Robert G.

    2008-01-01

    Mercury contained in buried landfill waste may be released via upward emission to the atmosphere or downward leaching to groundwater. Data from the US Geological Survey’s Amargosa Desert Research Site (ADRS) in arid southwestern Nevada reveal another potential pathway of Hg release: long-distance (102 m) lateral migration of elemental Hg (Hg0) through the unsaturated zone. Gas collected from multiple depths from two instrumented boreholes that sample the entire 110-m unsaturated zone thickness and are located 100 and 160 m away from the closest waste burial trench exhibit gaseous Hg concentrations of up to 33 and 11 ng m−3, respectively. The vertical distribution of gaseous Hg in the borehole closest to the disposal site shows distinct subsurface peaks in concentration at depths of 1.5 and 24 m that cannot be explained by radial diffusive transport through a heterogeneous layered unsaturated zone. The inability of current models to explain gaseous Hg distribution at the ADRS highlights the need to advance the understanding of gas-phase contaminant transport in unsaturated zones to attain a comprehensive model of landfill Hg release.

  10. Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.

    2014-05-01

    Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline,more » sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.« less

  11. Synthesis of α,β-unsaturated aldehydes as potential substrates for bacterial luciferases.

    PubMed

    Brodl, Eveline; Ivkovic, Jakov; Tabib, Chaitanya R; Breinbauer, Rolf; Macheroux, Peter

    2017-02-15

    Bacterial luciferase catalyzes the monooxygenation of long-chain aldehydes such as tetradecanal to the corresponding acid accompanied by light emission with a maximum at 490nm. In this study even numbered aldehydes with eight, ten, twelve and fourteen carbon atoms were compared with analogs having a double bond at the α,β-position. These α,β-unsaturated aldehydes were synthesized in three steps and were examined as potential substrates in vitro. The luciferase of Photobacterium leiognathi was found to convert these analogs and showed a reduced but significant bioluminescence activity compared to tetradecanal. This study showed the trend that aldehydes, both saturated and unsaturated, with longer chain lengths had higher activity in terms of bioluminescence than shorter chain lengths. The maximal light intensity of (E)-tetradec-2-enal was approximately half with luciferase of P. leiognathi, compared to tetradecanal. Luciferases of Vibrio harveyi and Aliivibrio fisheri accepted these newly synthesized substrates but light emission dropped drastically compared to saturated aldehydes. The onset and the decay rate of bioluminescence were much slower, when using unsaturated substrates, indicating a kinetic effect. As a result the duration of the light emission is doubled. These results suggest that the substrate scope of bacterial luciferases is broader than previously reported. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Fundamental role of the fostriecin unsaturated lactone and implications for selective protein phosphatase inhibition.

    PubMed

    Buck, Suzanne B; Hardouin, Christophe; Ichikawa, Satoshi; Soenen, Danielle R; Gauss, C-M; Hwang, Inkyu; Swingle, Mark R; Bonness, Kathy M; Honkanen, Richard E; Boger, Dale L

    2003-12-24

    Key derivatives and analogues of fostriecin were prepared and examined that revealed a fundamental role for the unsaturated lactone and confirmed the essential nature of the phosphate monoester. Thus, an identical 200-fold reduction in protein phosphatase 2A (PP2A) inhibition is observed with either the saturated lactone (7) or with an analogue that lacks the entire lactone (15). This 200-fold increase in PP2A inhibition attributable to the unsaturated lactone potentially may be due to reversible C269 alkylation within the PP beta12-beta13 active site loop accounting for PP2A/4 potency and selectivity.

  13. Climate variability controls on unsaturated water and chemical movement, High Plains aquifer, USA

    USGS Publications Warehouse

    Gurdak, J.J.; Hanson, R.T.; McMahon, P.B.; Bruce, B.W.; McCray, J.E.; Thyne, G.D.; Reedy, R.C.

    2007-01-01

    Responses in the vadose zone and groundwater to interannual, interdecadal, and multidecadal climate variability have important implications for groundwater resource sustainability, yet they are poorly documented and not well understood in most aquifers of the USA. This investigation systematically examines the role of interannual to multidecadal climate variability on groundwater levels, deep infiltration (3-23 m) events, and downward displacement (>1 m) of chloride and nitrate reservoirs in thick (15-50 m) vadose zones across the regionally extensive High Plains aquifer. Such vadose zone responses are unexpected across much of the aquifer given a priori that unsaturated total-potential profiles indicate upward water movement from the water table toward the root zone, mean annual potential evapotranspiration exceeds mean annual precipitation, and millennia-scale evapoconcentration results in substantial vadose zone chloride and nitrate reservoirs. Using singular spectrum analysis (SSA) to reconstruct precipitation and groundwater level time-series components, variability was identified in all time series as partially coincident with known climate cycles, such as the Pacific Decadal Oscillation (PDO) (10-25 yr) and the El Nin??o/Southern Oscillation (ENSO) (2-6 yr). Using these lag-correlated hydrologic time series, a new method is demonstrated to estimate climate-varying unsaturated water flux. The results suggest the importance of interannual to interdecadal climate variability on water-flux estimation in thick vadose zones and provide better understanding of the climate-induced transients responsible for the observed deep infiltration and chemical-mobilization events. Based on these results, we discuss implications for climate-related sustainability of the High Plains aquifer. ?? Soil Science Society of America.

  14. Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing

    NASA Astrophysics Data System (ADS)

    Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.

    2014-12-01

    In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.

  15. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.

    2010-01-01

    Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.

  16. Transport of viruses through saturated and unsaturated columns packed with sand

    USGS Publications Warehouse

    Anders, R.; Chrysikopoulos, C.V.

    2009-01-01

    Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.

  17. Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury.

    PubMed

    Lima, Alexandre; van Rooij, Tom; Ergin, Bulent; Sorelli, Michele; Ince, Yasin; Specht, Patricia A C; Mik, Egbert G; Bocchi, Leonardo; Kooiman, Klazina; de Jong, Nico; Ince, Can

    2018-05-15

    We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. Prospective controlled animal experiment study. Hospital-affiliated animal research institution. Fifteen female pigs. The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. In our lipopolysaccharide model, with resuscitation targeted at blood pressure, the contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.

  18. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential

    DOEpatents

    HUbbell, Joel M.

    2014-08-19

    The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.

  19. Limited denitrification in glacial deposit aquifers having thick unsaturated zones (Long Island, USA)

    NASA Astrophysics Data System (ADS)

    Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert

    2013-12-01

    The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3-41.1 μmol L-1) and high dissolved oxygen concentrations (58-100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.

  20. Fingering and Intermittent Flow in Unsaturated Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Or, D.; Ghezzehei, T. A.

    2003-12-01

    Because of the dominance of gravitational forces over capillary and viscous forces in relatively large fracture apertures, flow processes in unsaturated fractures are considerably different from flow in rock matrix or in unsaturated soils. Additionally, variations in fracture geometry and properties perturb the delicate balance between gravitational, capillary, and viscous forces, leading to liquid fragmentation, fingering and intermittent flows. We developed a quantitative framework for modeling fluid fragmentation and the subsequent flow behavior of discrete fluid elements (slugs). The transition from a slowly growing but stationary liquid cluster to a finger-forming mobile slug in a non horizontal fracture is estimated from the force balance between retarding capillary forces dominated by contact angle hysteresis, and the weight and shape of the cluster. For a steady flux we developed a model for liquid fragmentation within the fracture plane that gives rise to intermittent discharge, as has been observed experimentally. Intermittency is shown to be a result of interplay between capillary, viscous, and gravitational forces, much like internal dripping. Liquid slug size, detachment interval, and travel velocity are dependent primarily on the local fracture-aperture geometry shaping the seed cluster, rock-surface roughness and wetness, and liquid flux feeding the bridge (either by film flow or from the rock matrix). We show that the presence of even a few irregularities in a vertical fracture surface could affect liquid cluster formation and growth, resulting in complicated flux patterns at the fracture bottom. Such chaotic-like behavior has been observed in previous studies involving gravity-driven unsaturated flow. Inferences based on statistical description of fracture-aperture variations and simplified representation of the fragmentation processes yield insights regarding magnitude and frequency of liquid avalanches. The study illustrates that attempts at

  1. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    NASA Astrophysics Data System (ADS)

    Revil, A.; Mahardika, H.

    2013-02-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the

  2. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    PubMed Central

    Revil, A; Mahardika, H

    2013-01-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the

  3. Renewable unsaturated polyesters from muconic acid

    DOE PAGES

    Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; ...

    2016-09-27

    cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a

  4. Renewable unsaturated polyesters from muconic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.

    cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a

  5. Preferential flow occurs in unsaturated conditions

    USGS Publications Warehouse

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  6. Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.R.; Liszewski, M.J.

    1997-08-01

    The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile{sup 2} area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite dome. Stratigraphic units were identified and correlated using the data from numerous outcrops and 26 continuous cores and 328 natural-gamma logs available in December 1993. Basalt flows make up about 85% of the volume of deposits underlying the area.

  7. Coexpression network analysis identifies transcriptional modules associated with genomic alterations in neuroblastoma.

    PubMed

    Yang, Liulin; Li, Yun; Wei, Zhi; Chang, Xiao

    2018-06-01

    Neuroblastoma is a highly complex and heterogeneous cancer in children. Acquired genomic alterations including MYCN amplification, 1p deletion and 11q deletion are important risk factors and biomarkers in neuroblastoma. Here, we performed a co-expression-based gene network analysis to study the intrinsic association between specific genomic changes and transcriptome organization. We identified multiple gene coexpression modules which are recurrent in two independent datasets and associated with functional pathways including nervous system development, cell cycle, immune system process and extracellular matrix/space. Our results also indicated that modules involved in nervous system development and cell cycle are highly associated with MYCN amplification and 1p deletion, while modules responding to immune system process are associated with MYCN amplification only. In summary, this integrated analysis provides novel insights into molecular heterogeneity and pathogenesis of neuroblastoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017. Published by Elsevier B.V.

  8. Increased Degree of Unsaturation in the Lipid of Antifungal Cationic Amphiphiles Facilitates Selective Fungal Cell Disruption.

    PubMed

    Steinbuch, Kfir B; Benhamou, Raphael I; Levin, Lotan; Stein, Reuven; Fridman, Micha

    2018-05-11

    Antimicrobial cationic amphiphiles derived from aminoglycosides act through cell membrane permeabilization but have limited selectivity for microbial cell membranes. Herein, we report that an increased degree of unsaturation in the fatty acid segment of antifungal cationic amphiphiles derived from the aminoglycoside tobramycin significantly reduced toxicity to mammalian cells. A collection of tobramycin-derived cationic amphiphiles substituted with C 18 lipid chains varying in degree of unsaturation and double bond configuration were synthesized. All had potent activity against a panel of important fungal pathogens including strains with resistance to a variety of antifungal drugs. The tobramycin-derived cationic amphiphile substituted with linolenic acid with three cis double bonds (compound 6) was up to an order of magnitude less toxic to mammalian cells than cationic amphiphiles composed of lipids with a lower degree of unsaturation and than the fungal membrane disrupting drug amphotericin B. Compound 6 was 12-fold more selective (red blood cell hemolysis relative to antifungal activity) than compound 1, the derivative with a fully saturated lipid chain. Notably, compound 6 disrupted the membranes of fungal cells without affecting the viability of cocultured mammalian cells. This study demonstrates that the degree of unsaturation and the configuration of the double bond in lipids of cationic amphiphiles are important parameters that, if optimized, result in compounds with broad spectrum and potent antifungal activity as well as reduced toxicity toward mammalian cells.

  9. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiwamoto, R., E-mail: reiko.kiwamoto@wur.nl; Spenkelink, A.; Rietjens, I.M.C.M.

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of sixmore » selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.« less

  10. Biodegradation, sorption, and transport of 2,4-dichlorophenoxyacetic acid in saturated and unsaturated soils.

    PubMed Central

    Estrella, M R; Brusseau, M L; Maier, R S; Pepper, I L; Wierenga, P J; Miller, R M

    1993-01-01

    The fate of an organic contaminant in soil depends on many factors, including sorption, biodegradation, and transport. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model compound to illustrate the impact of these interacting factors on the fate of an organic contaminant. Batch and column experiments performed with a sandy loam soil mixture under saturated and unsaturated conditions were used to determine the effects of sorption and biodegradation on the fate and transport of 2,4-D. Sorption of 2,4-D was found to have a slight but significant effect on transport of 2,4-D under saturated conditions (retardation factor, 1.8) and unsaturated conditions (retardation factor, 3.4). Biodegradation of 2,4-D was extensive under both batch and column conditions and was found to have a significant impact on 2,4-D transport in column experiments. In batch experiments, complete mineralization of 2,4-D (100 mg kg-1) occurred over a 4-day period following a 3-day lag phase under both saturated and unsaturated conditions. The biodegradation rate parameters calculated for batch experiments were found to be significantly different from those estimated for column experiments. PMID:8285717

  11. Metabolic Flux Between Unsaturated and Saturated Fatty Acids is Controlled by the FabA:FabB Ratio in the Fully Reconstituted Fatty Acid Biosynthetic Pathway of E. coli#

    PubMed Central

    Xiao, Xirui; Yu, Xingye; Khosla, Chaitan

    2013-01-01

    The entire fatty acid biosynthetic pathway from Escherichia coli, starting from the acetyl-CoA carboxylase, has been reconstituted in vitro from fourteen purified protein components. Radiotracer analysis verified stoichiometric conversion of acetyl-CoA and NAD(P)H into the free fatty acid product, allowing implementation of a facile spectrophotometric assay for kinetic analysis of this multi-enzyme system. At steady state, a maximum turnover rate of 0.5 s−1 was achieved. Under optimal turnover conditions, the predominant products were C16 and C18 saturated as well as monounsaturated fatty acids. The reconstituted system allowed us to quantitatively interrogate the factors that influence metabolic flux toward unsaturated versus saturated fatty acids. In particular, the concentrations of the dehydratase FabA and the β-ketoacyl synthase FabB were found to be crucial for controlling this property. By altering these variables, the percentage of unsaturated fatty acid produced could be adjusted between 10 and 50% without significantly affecting the maximum turnover rate of the pathway. Our reconstituted system provides a powerful tool to understand and engineer rate-limiting and regulatory steps in this complex and practically significant metabolic pathway. PMID:24147979

  12. Highly stereoselective three-component reactions of phenylselenomagnesium bromide, acetylenic sulfones, and saturated aldehydes/ketones or alpha,beta-unsaturated enals or enones.

    PubMed

    Huang, Xian; Xie, Meihua

    2002-12-13

    beta-Phenylseleno-alpha-tolylsulfonyl-substituted alkenes were synthesized via the three-component conjugate-nucleophilic addition of acetylenic sulfones, phenylselenomagnesium bromide, and carbonyl compounds, such as aldehydes, aliphatic ketones, or alpha,beta-unsaturated enals or enones. The reaction is highly regio- and stereoselective with moderate to good yields. Functionalized allylic alcohols were obtained in the case of aldehydes and aliphatic ketones. In the case of alpha,beta-unsaturated enones, functionalized allylic alcohols or functionalized gamma,delta-unsaturated ketones were obtained, depending on the structures of the ketones.

  13. 40 CFR 721.642 - Amines, N-(C14-18 and C16-16 unsaturated alkyl)] dipropylene-tri-, tripropylenetetra-, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substances amines, N-(C14-18 and C16-18 unsaturated alkyl)] dipropylenetri-, (PMN P-94-1244... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, N-(C14-18 and C16-16... Amines, N-(C14-18 and C16-16 unsaturated alkyl)] dipropylene-tri-, tripropylenetetra-, and...

  14. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  15. Binary Phase Behavior of Saturated-Unsaturated Mixed-Acid Triacylglycerols-A Review.

    PubMed

    Zhang, Lu; Ueno, Satoru; Sato, Kiyotaka

    2018-06-01

    Most natural lipids contain a complex mixture of individual triacylglycerols (TAGs). An in-depth knowledge of the mixing behavior of TAGs is necessary for the rational design and engineering of food materials. The binary phase diagram of TAGs is a simplified model that can be explored to help foster an understanding of the phase behavior of complex fats and oils. This article reviews recent research on the binary phase behavior of saturated-unsaturated mixed-acid TAGs, with special emphasis on the stearicunsaturated and palmitic-unsaturated diacid TAGs. The occurrence of polymorphic forms and mutual solubility of TAG mixtures are strongly related to the glycerol conformation of the saturated-oleic diacid TAGs; it appears to be most influenced by the chain-length mismatch in saturated-elaidic diacid TAGs. In addition, the polymorphism of pure enantiomers and racemic mixture of chiral TAGs was also reviewed, while the effect of chirality on mixing behavior was discussed.

  16. Prediction of unsaturated flow and water backfill during infiltration in layered soils

    NASA Astrophysics Data System (ADS)

    Cui, Guotao; Zhu, Jianting

    2018-02-01

    We develop a new analytical infiltration model to determine water flow dynamics around layer interfaces during infiltration process in layered soils. The model mainly involves the analytical solutions to quadratic equations to determine the flux rates around the interfaces. Active water content profile behind the wetting front is developed based on the solution of steady state flow to dynamically update active parameters in sharp wetting front infiltration equations and to predict unsaturated flow in coarse layers before the front reaches an impeding fine layer. The effect of water backfill to saturate the coarse layers after the wetting front encounters the impeding fine layer is analytically expressed based on the active water content profiles. Comparison to the numerical solutions of the Richards equation shows that the new model can well capture water dynamics in relation to the arrangement of soil layers. The steady state active water content profile can be used to predict the saturation state of all layers when the wetting front first passes through these layers during the unsteady infiltration process. Water backfill effect may occur when the unsaturated wetting front encounters a fine layer underlying a coarse layer. Sensitivity analysis shows that saturated hydraulic conductivity is the parameter dictating the occurrence of unsaturated flow and water backfill and can be used to represent the coarseness of soil layers. Water backfill effect occurs in coarse layers between upper and lower fine layers when the lower layer is not significantly coarser than the upper layer.

  17. Two-carbon homologation of aldehydes and ketones to a,ß-unsaturated aldehydes

    USDA-ARS?s Scientific Manuscript database

    Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched a,ß-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a...

  18. Supplementation with bypass fat in silvopastoral systems diminishes the ratio of milk saturated/unsaturated fatty acids.

    PubMed

    Mahecha, L; Angulo, J; Salazar, B; Cerón, M; Gallo, J; Molina, C H; Molina, E J; Suárez, J F; Lopera, J J; Olivera, M

    2008-04-01

    This study was conducted to evaluate if supplementing bypass fat to cows under silvopastoral systems, increases the concentration of unsaturated fatty acids in milk, thus improving the saturated/ unsaturated ratio without a negative effect on total milk yield in fat or protein. Two concentrations of two different sources of bypass fat were evaluated for 40 days, each in a group of 24 multiparous Lucerna (Colombian breed) cows. A cross-over design of 8 Latin squares 3 x 3 was used. The variables submitted to analysis were body condition, daily milk production and milk composition. Body condition, milk yield and milk quality were not different but there was a significant decrease in the amount of saturated fatty acid in both experiments while the unsaturated fat increased significantly in experiment 1 and remained stable in experiment 2. Results, such as these have as far as we know, not been reported previously and they provide an approach for the improvement of milk as a "functional food".

  19. Production of 8,11-dihydroxy and 8-hydroxy unsaturated fatty acids from unsaturated fatty acids by recombinant Escherichia coli expressing 8,11-linoleate diol synthase from Penicillium chrysogenum.

    PubMed

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-03-01

    Hydroxy unsaturated fatty acids can be used as antimicrobial surfactants. 8,11-Linoleate diol synthase (8,11-LDS) catalyzes the conversion of unsaturated fatty acid to 8-hydroperoxy unsaturated fatty acid, and it is subsequently isomerized to 8,11-dihydroxy unsaturated fatty acid by the enzyme. The optimal reaction conditions of recombinant Escherichia coli expressing Penicillium chrysogenum 8,11-LDS for the production of 8,11-dihydroxy-9,12(Z,Z)-octadecadienoic acid (8,11-DiHODE), 8,11-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid (8,11-DiHOTrE), 8-hydroxy-9(Z)-hexadecenoic acid (8-HHME), and 8-hydroxy-9(Z)-octadecenoic acid (8-HOME) were pH 7.0, 25°C, 10 g/L linoleic acid, and 20 g/L cells; pH 6.0, 25°C, 6 g/L α-linolenic acid, and 60 g/L cells; pH 7.0, 25°C, 8 g/L palmitoleic acid, and 25 g/L cells; and pH 8.5, 30°C, 6 g/L oleic acid, and 25 g/L cells, respectively. Under these optimized conditions, the recombinant cells produced 6.0 g/L 8,11-DiHODE for 60 min, with a conversion of 60% (w/w) and a productivity of 6.0 g/L/h; 4.3 g/L 8,11-DiHOTrE for 60 min, with a conversion of 72% (w/w) and a productivity of 4.3 g/L/h; 4.3 g/L 8-HHME acid for 60 min, with a conversion of 54% (w/w) and a productivity of 4.3 g/L/h; and 0.9 g/L 8-HOME for 30 min, with a conversion of 15% (w/w) and a productivity of 1.8 g/L/h. To best of our knowledge, this is the first report on the biotechnological production of 8,11-DiHODE, 8,11-DiHOTrE, 8-HHME, and 8-HOME. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:390-396, 2017. © 2017 American Institute of Chemical Engineers.

  20. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.

    PubMed

    Delin, Geoffrey N; Herkelrath, William N

    2017-05-01

    A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites. Published by Elsevier B.V.

  1. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.

    PubMed

    Rose, Amy E; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega Y Saenz de Miera, Eleazar C; Medicherla, Ratna; Christos, Paul J; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-04-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathologic, and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (6.0; Affymetrix) with gene expression array (U133A 2.0; Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N = 114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, and ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P < 0.05; Spearman's rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene MTAP (methylthioadenosine phosphorylase) in SSM resulted in reduced cell growth. The differential expression of another metabolic-related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level by using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM.

  2. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression

    PubMed Central

    Rose, Amy E.; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega y Saenz de Miera, Eleazar C.; Medicherla, Ratna; Christos, Paul J.; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-01-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathological and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (SNP 6.0, Affymetrix) with gene expression array (U133A 2.0, Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N=114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P<0.05, Spearman’s rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene methylthioadenosine phosphorylase (MTAP) in SSM resulted in reduced cell growth. The differential expression of another metabolic related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM. PMID:21343389

  3. Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis.

    PubMed

    Bakkar, Nadine; Kovalik, Tina; Lorenzini, Ileana; Spangler, Scott; Lacoste, Alix; Sponaugle, Kyle; Ferrante, Philip; Argentinis, Elenee; Sattler, Rita; Bowser, Robert

    2018-02-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with no effective treatments. Numerous RNA-binding proteins (RBPs) have been shown to be altered in ALS, with mutations in 11 RBPs causing familial forms of the disease, and 6 more RBPs showing abnormal expression/distribution in ALS albeit without any known mutations. RBP dysregulation is widely accepted as a contributing factor in ALS pathobiology. There are at least 1542 RBPs in the human genome; therefore, other unidentified RBPs may also be linked to the pathogenesis of ALS. We used IBM Watson ® to sieve through all RBPs in the genome and identify new RBPs linked to ALS (ALS-RBPs). IBM Watson extracted features from published literature to create semantic similarities and identify new connections between entities of interest. IBM Watson analyzed all published abstracts of previously known ALS-RBPs, and applied that text-based knowledge to all RBPs in the genome, ranking them by semantic similarity to the known set. We then validated the Watson top-ten-ranked RBPs at the protein and RNA levels in tissues from ALS and non-neurological disease controls, as well as in patient-derived induced pluripotent stem cells. 5 RBPs previously unlinked to ALS, hnRNPU, Syncrip, RBMS3, Caprin-1 and NUPL2, showed significant alterations in ALS compared to controls. Overall, we successfully used IBM Watson to help identify additional RBPs altered in ALS, highlighting the use of artificial intelligence tools to accelerate scientific discovery in ALS and possibly other complex neurological disorders.

  4. Filtrates and Residues: Saturated and Unsaturated Fats: An Organic Chemistry Demonstration.

    ERIC Educational Resources Information Center

    Broniec, Rick

    1985-01-01

    Background information and procedures are provided for an experiment in which an oxidation reaction is used to distinguish saturated from unsaturated fats. Results of the experiment lead to discussions and investigations of such areas as digestion chemistry, enzymes, hydrogenation, and the relationship between heart disease and fat consumption.…

  5. Characterization of unsaturated zone hydrogeologic units using matrix properties and depositional history in a complex volcanic environment

    USGS Publications Warehouse

    Flint, Lorraine E.; Buesch, David C.; Flint, Alan L.

    2006-01-01

    Characterization of the physical and unsaturated hydrologic properties of subsurface materials is necessary to calculate flow and transport for land use practices and to evaluate subsurface processes such as perched water or lateral diversion of water, which are influenced by features such as faults, fractures, and abrupt changes in lithology. Input for numerical flow models typically includes parameters that describe hydrologic properties and the initial and boundary conditions for all materials in the unsaturated zone, such as bulk density, porosity, and particle density, saturated hydraulic conductivity, moisture-retention characteristics, and field water content. We describe an approach for systematically evaluating the site features that contribute to water flow, using physical and hydraulic data collected at the laboratory scale, to provide a representative set of physical and hydraulic parameters for numerically calculating flow of water through the materials at a site. An example case study from analyses done for the heterogeneous, layered, volcanic rocks at Yucca Mountain is presented, but the general approach for parameterization could be applied at any site where depositional processes follow deterministic patterns. Hydrogeologic units at this site were defined using (i) a database developed from 5320 rock samples collected from the coring of 23 shallow (<100 m) and 10 deep (500–1000 m) boreholes, (ii) lithostratigraphic boundaries and corresponding relations to porosity, (iii) transition zones with pronounced changes in properties over short vertical distances, (iv) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (v) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. Model parameters developed in this study, and the relation of flow properties to porosity, can be used to produce detailed and

  6. Synthesis of 2-acyl-1,4-diketones via the diacylation of {alpha},{beta}-unsaturated ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, N.S.; Yu, S.; Kabalka, G.W.

    1998-08-17

    The first example of a diacylation of the carbon-carbon double bond in {alpha},{beta}-unsaturated ketones is described. The reaction of acylcyanocuprate reagents with {alpha},{beta}-unsaturated ketones, followed by C-acylation, produces 2-acyl-1,4-diketones in good yields (50--89%). The 1,4-addition of organocuprate reagents to conjugated enones, followed by trapping of the enolate intermediates with various electrophiles, is one of the most useful synthetic reactions. However, to the best of the authors` knowledge, 1,4-acylation followed by trapping of the enolate intermediates with acid chloride has not been reported.

  7. Water movement in the unsaturated zone at a low-level radioactive-waste burial site near Barnwell, South Carolina

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1987-01-01

    Four unsaturated zone monitoring sites and a meteorologic station were installed at the low level radioactive waste burial site near Barnwell, South Carolina, to investigate the geohydrologic and climatologic factors affecting water movement in the unsaturated zone. The study site is located in the Atlantic Coastal Plain. The unsaturated zone consists of a few centimeters to > 1 m of surface sand, underlain by up to 15 m of clayey sand. Two monitoring sites were installed in experimental trenches and two were installed in radioactive waste trenches. Two different trench designs were evaluated at the monitoring sites. A meteorologic station was used to measure precipitation and to calculate actual evapotranspiration using the Bowen ratio method. Soil-moisture tensiometers, soil-moisture conductance probes, and temperature sensors were used to monitor soil-water movement in and adjacent to the trenches. Tracer tests using sodium chloride were conducted at each monitoring site. Data collection at the monitoring sites began in January 1982 and continued until early May 1984. Tensiometer data show that the unsaturated materials had their highest percent saturations in the winter and spring. Saturations in the backfill sand varied from 20 to 100%. They varied from about 75 to 100% in the adjacent undisturbed and overlying compacted clayey sand. Additionally, because tensiometer data indicate negligible water storage changes in the unsaturated zone, it is estimated that approximately 43 cm of recharge reached the water table. During 1984, the rise and fall of ponded water in an experimental trench was continuously monitored with a digital recorder. A cross-sectional finite element model of variably saturated flow was used to test the conceptual model of water movement in the unsaturated zone and to illustrate the effect of trench design on water movement into the experimental trenches. Monitoring and model results show that precipitation on trenches infiltrated the trench

  8. Deep installations of monitoring instrumentation in unsaturated welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, S.

    1985-12-31

    The major goal of this research is to develop low cost techniques to measure matric potential, moisture content, and to sample liquid and vapor for chemical analysis in the deep unsaturated zones of the arid areas of Nevada. This work has been prompted by the high level waste repository proposed in the unsaturated zone of Yucca Mountain. The work presented focuses on two deep (250 meter) boreholes planned for completion at the southern end of Yucca Mountain in fractured tuff. One borehole will be drilled without water and cased to slightly below the zone of saturation in order to measuremore » the depth to saturation and to collect water samples for analysis. This hole will also be used for routine quarterly neutron logging. Between loggings, vapor liquid water samplers will be suspended in the borehole and packed off at selective screened intervals to collect water vapor for isotopic analysis. The second borehole will be drilled to slightly above the water table and serve as a multiple interval psychrometer installation. Thermocouple psychrometers will be placed in isolated screened intervals within the casing. These boreholes will be used for instrument testing, interference and permeability testing, and to monitor short term fluctuations of soil and rock moisture due to precipitation and recharge.« less

  9. Iron-catalyzed regio- and stereoselective substitution of gamma,delta-epoxy-alpha,beta-unsaturated esters and amides with Grignard reagents.

    PubMed

    Hata, Takeshi; Bannai, Rie; Otsuki, Mamoru; Urabe, Hirokazu

    2010-03-05

    When gamma,delta-epoxy-alpha,beta-unsaturated esters or amides were treated with 2 equiv of Grignard reagents in the presence of 10-24 mol % FeCl(2), regio- and stereoselective substitution of the epoxide moiety with the Grignard reagent occurred to give exclusively delta-hydroxy-gamma-alkyl or aryl-alpha,beta-unsaturated esters or amides in good yields.

  10. Geohydrology, water quality, and nitrogen geochemistry in the saturated and unsaturated zones beneath various land uses, Riverside and San Bernardino counties, California, 1991-93

    USGS Publications Warehouse

    Rees, Terry F.; Bright, Daniel J.; Fay, Ronald G.; Christensen, Allen H.; Anders, Robert; Baharie, Brian S.; Land, Michael T.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Eastern Municipal Water District, the Metropolitan Water District of Southern California, and the Orange County Water District, has completed a detailed study of the Hemet groundwater basin. The quantity of ground water stored in the basin in August 1992 is estimated to be 327,000 acre-feet. Dissolved-solids concentration ranged from 380 to 700 mg/L (milligrams per liter), except in small areas where the concentration exceeded 1,000 mg/L. Nitrate concentrations exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 10 mg/L nitrate (as nitrogen) in the southeastern part of the basin, in the Domenigoni Valley area, and beneath a dairy in the Diamond Valley area. Seven sites representing selected land uses-- residential, turf grass irrigated with reclaimed water, citrus grove, irrigated farm, poultry farm, and dairy (two sites)--were selected for detailed study of nitrogen geochemistry in the unsaturated zone. For all land uses, nitrate was the dominant nitrogen species in the unsaturated zone.Although nitrate was seasonally present in the shallow unsaturated zone beneath the residential site, it was absent at moderate depths, suggesting negligible migration of nitrate from the surface at this time. Microbial denitrification probably is occurring in the shallow unsaturated zone. High nitrate concentrations in the deep unsaturated zone (greater than 100 ft) suggest either significantly higher nitrate loading at some time in the past, or lateral movement of nitrate at depth. Nitrate also is seasonally present in the shallow unsaturated zone beneath the reclaimed-water site, and (in contrast with the residential site), nitrate is perennially present in the deeper unsaturated zone. Microbial denitrification in the unsaturated zone and in the capillary fringe above the water table decreases the concentrations of nitrate in pore water to below the MCL before reaching the water table

  11. Limited denitrification in glacial deposit aquifers having thick unsaturated zones (Long Island, USA)

    USGS Publications Warehouse

    Young, Caitlin; Kroeger, Kevin D.; Hanson, Gilbert

    2013-01-01

    The goal of this study was to demonstrate how the extent of denitrification, which is indirectly related to dissolved organ carbon and directly related to oxygen concentrations, can also be linked to unsaturated-zone thickness, a mappable aquifer property. Groundwater from public supply and monitoring wells in Northport on Long Island, New York state (USA), were analyzed for denitrification reaction progress using dissolved N2/Ar concentrations by membrane inlet mass spectrometry. This technique allows for discernment of small amounts of excess N2, attributable to denitrification. Results show an average 15 % of total nitrogen in the system was denitrified, significantly lower than model predictions of 35 % denitrification. The minimal denitrification is due to low dissolved organic carbon (29.3–41.1 μmol L−1) and high dissolved oxygen concentrations (58–100 % oxygen saturation) in glacial sediments with minimal solid-phase electron donors to drive denitrification. A mechanism is proposed that combines two known processes for aquifer re-aeration in unconsolidated sands with thick (>10 m) unsaturated zones. First, advective flux provides 50 % freshening of pore space oxygen in the upper 2 m due to barometric pressure changes. Then, oxygen diffusion across the water-table boundary occurs due to high volumetric air content in the unsaturated-zone catchment area.

  12. Does water content or flow rate control colloid transport in unsaturated porous media?

    PubMed

    Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B

    2014-04-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  13. Unsaturated Fatty Acids Improve Atherosclerosis Markers in Obese and Overweight Non-diabetic Elderly Patients.

    PubMed

    de Oliveira, Patrícia Amante; Kovacs, Cristiane; Moreira, Priscila; Magnoni, Daniel; Saleh, Mohamed Hassan; Faintuch, Joel

    2017-10-01

    Several studies have demonstrated the benefits of replacing trans and saturated fats with unsaturated fatty acids on cardiovascular diseases. We aimed to demonstrate the effect of polyunsaturated and monounsaturated fat supplementation on the biochemical and endothelial markers of atherosclerotic disease in obese or overweight non-diabetic elderly patients. Seventy-nine patients were randomly divided into three groups: flaxseed oil, olive oil, and sunflower oil; patients in each group received 30 mL of oil for 90 days. Patients were subjected to anthropometric and bioimpedance assessments; biochemical and endothelial evaluations were performed through ultrasonography of the brachial artery and carotid artery for endothelium-dependent dilation and intima-media thickness assessment, respectively, before and after the intervention. The participants' usual diet remained unchanged. The flaxseed oil group had improved ultra-sensitive C-reactive protein levels (p = 0.074) and reduced carotid intima-media thickness (CIMT) (p = 0.028); the olive oil group exhibited an improved apolipoprotein (Apo)B/ApoA ratio (p = 0.021), reduced CIMT (p = 0.028), and improved flow-mediated vasodilation (FMV) (p = 0.054); and similarly, the sunflower oil group showed an improved ApoB/ApoA ratio (p = 0.024), reduced CIMT (p = 0.048), and improved FMV (p = 0.001). Unsaturated fatty acid supplementation using the three vegetable oils attenuated pro-inflammatory properties and improved prothrombotic conditions. Therefore, introducing or replacing saturated and trans fat with unsaturated fatty acids is beneficial for cardiovascular risk reduction in obese or overweight non-diabetic elderly people. Further studies are needed to determine which unsaturated fat best prevents cardiovascular disease in elderly patients.

  14. Modeling water infiltration and pesticides transport in unsaturated zone of a sedimentary aquifer

    NASA Astrophysics Data System (ADS)

    Sidoli, Pauline; Angulo-Jaramillo, Rafael; Baran, Nicole; Lassabatère, Laurent

    2015-04-01

    Groundwater quality monitoring has become an important environmental, economic and community issue since increasing needs drinking water at the same time with high anthropic pressure on aquifers. Leaching of various contaminants as pesticide into the groundwater is closely bound to water infiltration in the unsaturated zone which whom solute transport can occur. Knowledge's about mechanisms involved in the transfer of pesticides in the deep unsaturated zone are lacking today. This study aims to evaluate and to model leaching of pesticides and metabolites in the unsaturated zone, very heterogeneous, of a fluvio-glacial aquifer, in the South-East of France, where contamination of groundwater resources by pesticides is frequently observed as a consequence of intensive agricultural activities. Water flow and pesticide transport were evaluated from column tests under unsaturated conditions and from adsorption batch experiments onto the predominant lithofacies collected, composed of a mixture of sand and gravel. A maize herbicide, S-metolachlor, applied on the study site and worldwide and its two major degradation products (metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were studied here. A conservative tracer, bromide ion, was used to determine water dispersive parameters of porous media. Elution curves were obtained from pesticide concentrations analyzed by an ultra-performance liquid chromatography system interfaced to a triple quadrupole mass spectrometer and from bromide concentrations measured by ionic chromatography system. Experimental data were implemented into Hydrus to model flow and solute transfer through a 1D profile in the vadose zone. Nonequilibrium solute transport model based on dual-porosity model with mobile and immobile water is fitting correctly elution curves. Water dispersive parameters show flow pattern realized in the mobile phase. Exchanges between mobile and immobile water are very limited. Because of low adsorptions onto

  15. Unsaturation level decreased in bone marrow fat of postmenopausal women with low bone density using high resolution magic angle spinning (HRMAS) 1H NMR spectroscopy.

    PubMed

    Li, Xiaojuan; Shet, Keerthi; Xu, Kaipin; Rodríguez, Juan Pablo; Pino, Ana María; Kurhanewicz, John; Schwartz, Ann; Rosen, Clifford J

    2017-12-01

    There are increasing evidences suggesting bone marrow adiposity tissue (MAT) plays a critical role in affecting both bone quantity and quality. However, very limited studies that have investigated the association between the composition of MAT and bone mineral density (BMD). The goal of this study was to quantify MAT unsaturation profile of marrow samples from post-menopausal women using ex vivo high-resolution magic angle spinning (HRMAS) proton nuclear magnetic resonance ( 1 H NMR) spectroscopy, and to investigate the relationship between MAT composition and BMD. Bone marrow samples were obtained by iliac crest aspiration during surgical procedures from 24 postmenopausal women (65-89years) who had hip surgery due to bone fracture or arthroplasty. Marrow fat composition parameters, in particular, unsaturation level (UL), mono-unsaturation level (MUL) and saturation level (SL), were quantified using HRMAS 1 H NMR spectroscopy. The patients were classified into three groups based on the DXA BMD T-scores: controls, osteopenia and osteoporosis. Marrow fat composition was compared between these three groups as well as between subjects with and without factures using ANOCOVA, adjusted for age. Subjects with lower BMD (n=17) had significantly lower MUL (P=0.003) and UL (P=0.039), and significantly higher SL (P=0.039) compared to controls (n=7). When separating lower BMD into osteopenia (n=9) and osteoporosis (n=8) groups, subjects with osteopenia had significantly lower MUL (P=0.002) and UL (P=0.010), and significantly higher SL (P=0.010) compared to healthy controls. No significant difference was observed between subjects with osteopenia and osteoporosis. Using HRMAS 1 H NMR, significantly lower unsaturation and significantly higher saturation levels were observed in the marrow fat of subjects with lower BMD. HRMAS 1 H NMR was shown to be a powerful tool for identifying novel MR markers of marrow fat composition that are associated with bone quality and potentially

  16. Rh(III)-Catalyzed Decarboxylative Coupling of Acrylic Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators

    PubMed Central

    2015-01-01

    α,β-Unsaturated carboxylic acids undergo Rh(III)-catalyzed decarboxylative coupling with α,β-unsaturated O-pivaloyl oximes to provide substituted pyridines in good yield. The carboxylic acid, which is removed by decarboxylation, serves as a traceless activating group, giving 5-substituted pyridines with very high levels of regioselectivity. Mechanistic studies rule out a picolinic acid intermediate, and an isolable rhodium complex sheds further light on the reaction mechanism. PMID:24512241

  17. Non-methylene-interrupted fatty acids with Δ5 unsaturation in Sargassum species.

    PubMed

    Kim, Gwang-Woo; Itabashi, Yutaka

    2012-01-01

    Detailed fatty acid compositions of five species of the brown algae Sargassum (S. fulvellum, S. horneri, S. boreale, S. thunbergii, and S. yezoense) were determined using silver ion solid phase extraction, gas chromatography (GC), and GC-mass spectrometry (GC-MS) techniques. In addition to a high number of typical saturated and unsaturated fatty acids, the GC-MS spectra of the 4,4-dimethyloxazoline derivatives of fatty acids revealed the occurrence of small amounts of unusual non-methylene-interrupted (NMI) fatty acids with Δ5 unsaturation, namely, 5,9-eicosadienoic (5,9-20:2), 5,11,14-eicosatrienoic (5,11,14-20:3), and 5,11,14,17-eicosatetraenoic (5,11,14,17-20:4) acids. Of these three NMI acids, the 5,9-20:2 acid was found to be the most abundant (0.4%-2.3% of the total fatty acids) and was detected for the first time in algae.

  18. Gold-catalyzed heterogeneous aerobic dehydrogenative amination of α,β-unsaturated aldehydes to enaminals.

    PubMed

    Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2014-01-07

    Although enaminals (β-enaminals) are very important compounds and have been utilized as useful synthons for various important compounds, they have been synthesized through non-green and/or limited procedures until now. Herein, we have successfully developed a green synthetic procedure using a heterogeneous catalyst. In the presence of gold nanoparticles supported on manganese-oxide-based octahedral molecular sieves OMS-2 (Au/OMS-2), dehydrogenative amination of α,β-unsaturated aldehydes with amines proceeded efficiently, with the corresponding enaminals isolated in moderate to high yields (50-97 %). The catalysis was truly heterogeneous, and Au/OMS-2 could be reused. Furthermore, the formal Wacker-type oxidation of α,β-unsaturated aldehydes to enaminones has been realized. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Graphene oxide-facilitated transport of levofloxacin and ciprofloxacin in saturated and unsaturated porous media.

    PubMed

    Sun, Kaixuan; Dong, Shunan; Sun, Yuanyuan; Gao, Bin; Du, Wenchao; Xu, Hongxia; Wu, Jichun

    2018-04-15

    In this work, effects of graphene oxide (GO) on the co-transport of the two typical Fluoroquinolones (FQs) - levofloxacin (LEV) and ciprofloxacin (CIP) in saturated and unsaturated quartz sand media were studied. The adsorption isotherms showed that GO had much larger sorption capacities to LEV and CIP than sand with the largest Langmuir adsorption capacity of 409 mg g -1 (CIP-GO); while the sorption affinity of the two FQs onto the two adsorbents might follow the order of CIP-sand > LEV-sand > LEV-GO > CIP-GO. GO promoted the mobility of the two FQs in both saturated and unsaturated porous media due to its strong mobility and sorption capacity. The GO-bound LEV/CIP was responsible for the LEV/CIP transport in the porous media, and transport of GO-bound FQs increased with the increasing of initial GO concentration. Under unsaturated conditions, moisture showed little effect on the transport of GO-bound CIP; however, the mobility of GO-bound LEV reduced with the decreasing of moisture content, suggesting the transport of adsorbed LEV from GO to air-water interface. GO sorption reduced the antibacterial ability of the two FQs, but they were still effective in inhibiting E. coli growth. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Enantioselective Diels-Alder reactions of unsaturated beta-ketoesters catalyzed by chiral ruthenium PNNP complexes.

    PubMed

    Schotes, Christoph; Mezzetti, Antonio

    2011-01-01

    We report here dicationic ruthenium PNNP complexes that promote the enantioselective Diels-Alder reaction of alpha-methylene beta-ketoesters with various dienes. Complex [Ru(OEt2)2(PNNP)](PF6)2, formed in situ from [RuCl2,(PNNP)] and (Et3O)PF6 (2 equiv.), catalyzes the Diels-Alder reaction of such unsaturated beta-ketoesters to give novel alkoxycarbonyltetrahydro-1-indanone derivatives (nine examples) with up to 93% ee. The crystal structure of the substrate-catalyst adduct shows that the lower face of the substrate is shielded by a phenyl ring of the PNNP ligand, which accounts for the high enantioselectivity. The attack of the diene from the open re enantioface of the unsaturated beta-ketoester is consistent with the absolute configuration of the product. A useful application of this method is the reaction with Dane's diene to give estrone derivatives with up to 99% ee and an ester-exo:endo ratio of up to 145:1 (after recrystallization). Besides the enantioselective formation of all-carbon quaternary centers, this methodology is notable because unsaturated beta-ketoesters have been rarely used in Diels-Alder reactions. Furthermore, enantiomerically pure estrone derivatives are interesting in view of their potential applications, including the treatment of breast cancer.

  1. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation.

    PubMed

    Brouyère, Serge; Dassargues, Alain; Hallet, Vincent

    2004-08-01

    This paper presents the results of a detailed field investigation that was performed for studying groundwater recharge processes and solute downward migration mechanisms prevailing in the unsaturated zone overlying a chalk aquifer in Belgium. Various laboratory measurements were performed on core samples collected during the drilling of boreholes in the experimental site. In the field, experiments consisted of well logging, infiltration tests in the unsaturated zone, pumping tests in the saturated zone and tracer tests in both the saturated and unsaturated zones. Results show that gravitational flows govern groundwater recharge and solute migration mechanisms in the unsaturated zone. In the variably saturated chalk, the migration and retardation of solutes is strongly influenced by recharge conditions. Under intense injection conditions, solutes migrate at high speed along the partially saturated fissures, downward to the saturated zone. At the same time, they are temporarily retarded in the almost immobile water located in the chalk matrix. Under normal recharge conditions, fissures are inactive and solutes migrate slowly through the chalk matrix. Results also show that concentration dynamics in the saturated zone are related to fluctuations of groundwater levels in the aquifer. A conceptual model is proposed to explain the hydrodispersive behaviour of the variably saturated chalk. Finally, the vulnerability of the chalk to contamination issues occurring at the land surface is discussed.

  2. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  3. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  4. Micromechanics Models for Unsaturated, Saturated, and Dry Sands.

    DTIC Science & Technology

    1988-01-25

    AUTHOR(S) J. K. Jeyapalan , M. Thiyagar, and W. E. Saleira 13a. TYPE OF REPORT 113b TIME COVF ED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE CQUNT...8 -015 4 I MICROMECHANICS MODELS FOR UNSATURATED, SATURATED, AND DRY SANDS By Jey K. Jeyapalan M. Thiyagaram W., E. Saleira 2304 Engi neering Building...UNSAYURATED SATURATED AND DRY 2 SANDS(U) WISCONSIN UNIV-MADISON J K JEYAPALAN ET AL UN IED25 JAN 88 AFOSR-TR-88-@i54 AFOSR-84-8898 UNCLASSIFIEDI F/G 8/1

  5. Mechanical properties of three layer glass fibre reinforced unsaturated polyester filled with P84 Polyimide

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nik Noor Idayu Nik; Mamauod, Siti Nur Liyana; Romli, Ahmad Zafir

    2017-12-01

    The glass fibre reinforced orthophthalic unsaturated polyester composite was widely used in the pipeline industry as a replacement to the corroded steel pipes. A filler which possesses high mechanical performance at high temperature; P84 Polyimide used as the particulate reinforcement in the unsaturated polyester matrix system to increase the mechanical performance of the glass fibre reinforced unsaturated polyester. The glass fibre composite laminates were prepared through a hand lay-up technique and fabricated into three layer laminate. Prior to be used as the matrix system in the lamination process, the unsaturated polyester resin was mixed with masterbatch P84 Polyimide at three loadings amount of 1, 3, and 5 wt%. The addition of P84 Polyimide at 1, 3, and 5 wt% increased the tensile properties and flexural properties especially at 1 wt% filler loading. As the filler loading increased, the tensile properties and flexural properties showed decreasing pattern. In the dynamic mechanical analysis, the values of storage modulus were taken at two points; 50 °C and 150 °C which were the storage modulus before and after the glass transition temperature. All storage modulus showed fluctuation trend for both before and after Tg. However, the storage modulus of the filled composite laminates after Tg showed higher values than unfilled composite laminates at all filler loading. Since the P84 Polyimide possesses high thermal stability, the presence of P84 Polyimide inside the composite system had assisted in delaying the Tg. In terms of the filler dispersion, the Cole-Cole plot showed an imperfect semi-circular shape which indicated good filler dispersion.

  6. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes.

    PubMed

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure-activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    NASA Astrophysics Data System (ADS)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  8. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease.

    PubMed

    Wang, Sheng; Yang, Feng; Petyuk, Vladislav A; Shukla, Anil K; Monroe, Matthew E; Gritsenko, Marina A; Rodland, Karin D; Smith, Richard D; Qian, Wei-Jun; Gong, Cheng-Xin; Liu, Tao

    2017-09-01

    Protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer's disease (AD); however, detailed molecular characterization of this important protein post-translational modification at the proteome level has been highly challenging, owing to its low stoichiometry and labile nature. Herein, we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in postmortem human brain tissues with and without AD by the use of isobaric tandem mass tag labelling, chemoenzymatic photocleavage enrichment, and liquid chromatography coupled to mass spectrometry. A total of 1850 O-GlcNAc peptides covering 1094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. One hundred and thirty-one O-GlcNAc peptides covering 81 proteins were altered in AD brains as compared with controls (q < 0.05). Moreover, alteration of O-GlcNAc peptide abundance could be attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic AD. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids.

    PubMed

    Brewster, Robert; Safran, Samuel A

    2010-03-17

    A simple model of the line activity of a hybrid lipid (e.g., POPC) with one fully saturated chain and one partially unsaturated chain demonstrates that these lipids preferentially pack at curved interfaces between phase-separated saturated and unsaturated domains. We predict that the domain sizes typically range from tens to hundreds of nm, depending on molecular interactions and parameters such as molecular volume and area per headgroup in the bulk fluid phase. The role of cholesterol is taken into account by an effective change in the headgroup areas and the domain sizes are predicted to increase with cholesterol concentration. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Unsaturated hydraulic properties of porous sedimentary rocks explained by mercury porosimetry

    NASA Astrophysics Data System (ADS)

    Clementina Caputo, Maria; Turturro, Celeste; Gerke, Horst H.

    2016-04-01

    The understanding of hydraulic properties is essential in the modeling of flow and solute transport including contaminants through the vadose zone, which consists of the soil as well as of the underlying porous sediments or rocks. The aim of this work is to study the relationships between unsaturated hydraulic properties of porous rocks and their pore size distribution. For this purpose, two different lithotypes belonging to Calcarenite di Gravina Formation, a Plio-Pleistocene sedimentary rock of marine origin, were investigated. The two lithotypes differ mainly in texture and came from two distinct quarry districts, Canosa di Puglia (C) and Massafra (M) in southern Italy, respectively. This relatively porous rock formation (porosities range between 43% for C and 41% for M) often constitutes a thick layer of vadose zone in several places of Mediterranean basin. The water retention curves (WRCs) and the unsaturated hydraulic conductivity functions were determined using four different experimental methods that cover the full range from low to high water contents: the WP4 psychrometer test, the Wind's evaporation method, the Stackman's method and the Quasi-steady centrifuge method. Pore size estimation by means of mercury intrusion porosimetry (MIP) was performed. WRCs were compared with the pore size distributions to understand the influence of fabric, in terms of texture and porosity, features of pores and pore size distribution on the hydraulic behavior of rocks. The preliminary results show that the pore size distributions obtained by MIP do not cover the entire pore size range of the investigated Calcarenite. In fact, some pores in the rock samples of both lithotypes were larger than the maximum size that could be investigated by MIP. This implies that for explaining the unsaturated hydraulic properties over the full moisture range MIP results need to be combined with results obtained by other methods such as image analysis and SEM.

  11. Two Dimensional Polyamides Prepared From Unsaturated Carboxylic Acids And Amines.

    DOEpatents

    McDonald, William F.; Huang, Zhi Heng; Wright, Stacy C.; Danzig, Morris; Taylor, Andrew C.

    2002-07-17

    A polyamide and a process for preparing the polyamide are disclosed. The process comprises reacting in a reaction mixture a monomer selected from unsaturated carboxylic acids, esters of unsaturated carboxylic acids, anhydrides of unsaturated carboxylic acids, and mixtures thereof, and a first amine to form an intermediate reaction product in the reaction mixture, wherein the first amine is selected from RR.sub.1 NH, RNH.sub.2, RR.sub.1 NH.sub.2.sup.+, RNH.sub.3.sup.+ and mixtures thereof, wherein R and R.sub.1 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, and reacting the intermediate reaction product and a second amine to form a polyamide, wherein the second amine is selected from R.sub.2 R.sub.3 NH, R.sub.2 NH.sub.2, R.sub.2 R.sub.3 NH.sub.2.sup.+, R.sub.2 NH.sub.3.sup.+ and mixtures thereof wherein R.sub.2 and R.sub.3 can be the same or different and each contain between about 1 and 50 carbon atoms and are optionally substituted with heteroatoms oxygen, nitrogen, sulfur, and phosphorus and combinations thereof, wherein multiple of the R, R.sub.1, R.sub.2, and R.sub.3 are in vertically aligned spaced relationship along a backbone formed by the polyamide. In one version of the invention, the monomer is selected from maleic anhydride, maleic acid esters, and mixtures thereof. In another version of the invention, the first amine is an alkylamine, such as tetradecylamine, and the second amine is a polyalkylene polyamine, such as pentaethylenehexamine. In yet another version of the invention, the first amine and the second amine are olefinic or acetylenic amines, such as the reaction products of an alkyldiamine and an acetylenic carboxylic acid. The first amine and the second amine may be the same or different depending on the desired polyamide polymer structure.

  12. Water movement in the unsaturated zone at a low-level radioactive-waste burial site near Barnwell, South Carolina

    USGS Publications Warehouse

    Dennehy, Kevin F.; McMahon, Peter B.

    1989-01-01

    Four unsaturated-zone monitoring sites and a meteorologic station were installed at the low-level radioactive-waste burial site near Barnwell, S.C., to investigate the geohydrologic and climatologic factors affecting water movement in the unsaturated zone. The study site is located in the Atlantic Coastal Plain. The unsaturated zone consists of a few centimeters to more than 1 meter of surface sand, underlain by up to 15 meters of clayey sand. Two monitoring sites were installed in experimental trenches, and two were installed in radioactive-waste trenches. Two different trench designs were evaluated at the monitoring sites. A meteorologic station was used to measure precipitation and to calculate actual evapotranspiration using the Bowen ratio method. Soil-moisture tensiometers, soil-moisture conductance probes, and temperature sensors were used to monitor soil-water movement in and adjacent to the trenches. Tracer tests using sodium chloride were conducted at each monitoring site. Hydrologic properties of unsaturated-zone materials were also determined. Data collection at the monitoring sites began in January 1982 and continued until early May 1984. Tensiometer data show that the unsaturated materials had their highest percent saturations in winter and spring. Saturations in the backfill sand varied from 20 to 100 percent, and in the adjacent undisturbed and overlying compacted clayey sand, from about 75 to 100 percent. The same pattern generally was observed at all four monitoring sites. The tracer-test data indicate that water movement occurred mainly during the recharge period, winter and spring. The tracer-test results enabled computation of rates of unsaturated flow in the compacted clayey-sand cap, the compacted clayey-sand barrier, and the backfill sand. A micro-scale hydrologic budget was determined for an undisturbed part of the site from July 1983 through June 1984.Total precipitation was 144 centimeters, and actual evapotranspiration was 101

  13. CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Striegl, Robert G.; Prudic, David E.; Stonestrom, David A.

    2005-01-01

    Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured δ13C (in CO2), and δ14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ∼97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ∼0.1 mol m−2 yr−1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled δ14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.

  14. Evaluation of unsaturated zone water fluxes in heterogeneous alluvium at a Mojave Basin Site

    USGS Publications Warehouse

    Nimmo, John R.; Deason, Jeffrey A.; Izbicki, John A.; Martin, Peter

    2002-01-01

    Vertical and horizontal water fluxes in the unsaturated zone near intermittent streams critically affect ecosystems, water supply, and contaminant transport in arid and semiarid regions. The subsurface near the Oro Grande Wash is typical in having great textural diversity, pronounced layer contrasts, and extremely low hydraulic conductivities associated with nearly dry media. These features prevent a straightforward application of the Darcian method for recharge estimation, which has provided high‐quality flux estimates at simpler, wetter sites. We have augmented the basic Darcian method with theoretical developments such that a small number of core sample unsaturated hydraulic property measurements, combined with additional, easily obtained data (e.g., drillers' logs) can provide useful flux estimates and knowledge of two‐dimensional water behavior beneath the wash.

  15. Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding

    PubMed Central

    Nile, Aaron H.; Mukund, Susmith; Stanger, Karen; Wang, Weiru; Hannoush, Rami N.

    2017-01-01

    Frizzled (FZD) receptors mediate Wnt signaling in diverse processes ranging from bone growth to stem cell activity. Moreover, high FZD receptor expression at the cell surface contributes to overactive Wnt signaling in subsets of pancreatic, ovarian, gastric, and colorectal tumors. Despite the progress in biochemical understanding of Wnt–FZD receptor interactions, the molecular basis for recognition of Wnt cis-unsaturated fatty acyl groups by the cysteine-rich domain (CRD) of FZD receptors remains elusive. Here, we determined a crystal structure of human FZD7 CRD unexpectedly bound to a 24-carbon fatty acid. We also report a crystal structure of human FZD5 CRD bound to C16:1 cis-Δ9 unsaturated fatty acid. Both structures reveal a dimeric arrangement of the CRD. The lipid-binding groove exhibits flexibility and spans both monomers, adopting a U-shaped geometry that accommodates the fatty acid. Re-evaluation of the published mouse FZD8 CRD structure reveals that it also shares the same architecture as FZD5 and FZD7 CRDs. Our results define a common molecular mechanism for recognition of the cis-unsaturated fatty acyl group, a necessary posttranslational modification of Wnts, by multiple FZD receptors. The fatty acid bridges two CRD monomers, implying that Wnt binding mediates FZD receptor dimerization. Our data uncover possibilities for the arrangement of Wnt–FZD CRD complexes and shed structural insights that could aide in the identification of pharmacological strategies to modulate FZD receptor function. PMID:28377511

  16. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones

    NASA Astrophysics Data System (ADS)

    Rivett, Michael O.; Wealthall, Gary P.; Dearden, Rachel A.; McAlary, Todd A.

    2011-04-01

    Reliable prediction of the unsaturated zone transport and attenuation of dissolved-phase VOC (volatile organic compound) plumes leached from shallow source zones is a complex, multi-process, environmental problem. It is an important problem as sources, which include solid-waste landfills, aqueous-phase liquid discharge lagoons and NAPL releases partially penetrating the unsaturated zone, may persist for decades. Natural attenuation processes operating in the unsaturated zone that, uniquely for VOCs includes volatilisation, may, however, serve to protect underlying groundwater and potentially reduce the need for expensive remedial actions. Review of the literature indicates that only a few studies have focused upon the overall leached VOC source and plume scenario as a whole. These are mostly modelling studies that often involve high strength, non-aqueous phase liquid (NAPL) sources for which density-induced and diffusive vapour transport is significant. Occasional dissolved-phase aromatic hydrocarbon controlled infiltration field studies also exist. Despite this lack of focus on the overall problem, a wide range of process-based unsaturated zone — VOC research has been conducted that may be collated to build good conceptual model understanding of the scenario, particularly for the much studied aromatic hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). In general, the former group is likely to be attenuated in the unsaturated zone due to their ready aerobic biodegradation, albeit with rate variability across the literature, whereas the fate of the latter is far less likely to be dominated by a single mechanism and dependent upon the relative importance of the various attenuation processes within individual site — VOC scenarios. Analytical and numerical modelling tools permit effective process representation of the whole scenario, albeit with potential for inclusion of additional processes — e.g., multi-mechanistic sorption phase partitioning, and

  17. Stimulation by unsaturated fatty acid of squalene uptake in rat liver microsomes.

    PubMed

    Chin, J; Bloch, K

    1985-07-01

    Supernatant protein factor (SPF) and anionic phospholipids such as phosphatidylglycerol (PG) stimulate squalene epoxidase activity in rat liver microsomes by promoting [3H]squalene uptake as well as substrate translocation (Chin, J., and K. Bloch. 1984. J. Biol. Chem. 259: 11735-11738). This process is postulated to be membrane-mediated and not carrier-mediated. Here we show that treatment of PG with phospholipase A2 in the presence of bovine serum albumin abolishes the stimulatory effect of SPF on epoxidase activity. Disaturated fatty acyl-PGs are not as effective as egg yolk lecithin PG in the SPF effect. These findings suggest an important role for the unsaturated fatty acid moiety of PG. We also show that at submicellar concentrations, cis-unsaturated fatty acids stimulate microsomal epoxidase activity whereas saturated fatty acids do not. This effect is due to an increase in substrate uptake which in turn may facilitate substrate availability to the enzyme.

  18. Eco-friendly polyethylene glycol promoted Michael addition reactions of α,β-unsaturated carbonyl compounds

    EPA Science Inventory

    Abstract- Intra- and inter-nucleophilic addition reactions of different unsaturated compounds were found to be highly effective without any additives in PEG-400 as a recyclable reaction medium under neutral conditions.

  19. Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies.

    PubMed Central

    Feller, S E; Yin, D; Pastor, R W; MacKerell, A D

    1997-01-01

    A potential energy function for unsaturated hydrocarbons is proposed and is shown to agree well with experiment, using molecular dynamics simulations of a water/octene interface and a dioleoyl phosphatidylcholine (DOPC) bilayer. The simulation results verify most of the assumptions used in interpreting the DOPC experiments, but suggest a few that should be reconsidered. Comparisons with recent results of a simulation of a dipalmitoyl phosphatidylcholine (DPPC) lipid bilayer show that disorder is comparable, even though the temperature, hydration level, and surface area/lipid for DOPC are lower. These observations highlight the dramatic effects of unsaturation on bilayer structure. Images FIGURE 3 PMID:9370424

  20. YUCCA Mountain Project - Argonne National Laboratory, Annual Progress Report, FY 1997 for activity WP 1221 unsaturated drip condition testing of spent fuel and unsaturated dissolution tests of glass.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, J. K.; Buck, E. C.; Emery, J. W.

    1998-09-18

    This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division of Argonne National Laboratory in the period of October 1996 through September 1997. Studies have been performed to evaluate the behavior of nuclear waste glass and spent fuel samples under the unsaturated conditions (low-volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with actinide-doped waste glasses, in progress for over 11 years, indicate that the transuranic element release is dominated by colloids that continuously form andmore » span from the glass surface. The nature of the colloids that form in the glass and spent fuel testing programs is being investigated by dynamic light scattering to determine the size distribution, by autoradiography to determine the chemistry, and by zeta potential to measure the electrical properties of the colloids. Tests with UO{sub 2} have been ongoing for 12 years. They show that the oxidation of UO{sub 2} occurs rapidly, and the resulting paragenetic sequence of secondary phases forming on the sample surface is similar to that observed for uranium found in natural oxidizing environments. The reaction of spent fuel samples in conditions similar to those used with UO{sub 2} have been in progress for over six years, and the results suggest that spent fuel forms many of the same alteration products as UO{sub 2}. With spent fuel, the bulk of the reaction occurs via a through-grain reaction process, although grain boundary attack is sufficient to have reacted all of the grain boundary regions in the samples. New test methods are under development to evaluate the behavior of spent fuel samples with intact cladding: the rate at which alteration and radionuclide release occurs when water penetrates fuel sections and whether the reaction causes the cladding to split. Alteration phases have been formed on fine

  1. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    PubMed

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not

  2. Evolution of strain localization in variable-width three-dimensional unsaturated laboratory-scale cut slopes

    USGS Publications Warehouse

    Morse, Michael S.; Lu, Ning; Wayllace, Alexandra; Godt, Jonathan W.

    2017-01-01

    To experimentally validate a recently developed theory for predicting the stability of cut slopes under unsaturated conditions, the authors measured increasing strain localization in unsaturated slope cuts prior to abrupt failure. Cut slope width and moisture content were controlled and varied in a laboratory, and a sliding door that extended the height of the free face of the slope was lowered until the cut slope failed. A particle image velocimetry tool was used to quantify soil displacement in the x-y">x-y (horizontal) and x-z">x-z (vertical) planes, and strain was calculated from the displacement. Areas of maximum strain localization prior to failure were shown to coincide with the location of the eventual failure plane. Experimental failure heights agreed with the recently developed stability theory for unsaturated cut slopes (within 14.3% relative error) for a range of saturation and cut slope widths. A theoretical threshold for sidewall influence on cut slope failures was also proposed to quantify the relationship between normalized sidewall width and critical height. The proposed relationship was consistent with the cut slope experiment results, and is intended for consideration in future geotechnical experiment design. The experimental data of evolution of strain localization presented herein provide a physical basis from which future numerical models of strain localization can be validated.

  3. Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.H.

    2012-02-23

    Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at amore » location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.« less

  4. Monitoring radionuclide contamination in the unsaturated zone - Lessons learned at the Amargosa Desert Research Site, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Abraham, Jared D.; Andraski, Brian J.; Baker, Ronald J.; Mayers, C. Justin; Michel, Robert L.; Prudic, David E.; Striegl, Robert G.; Walvoord, Michelle Ann

    2004-01-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey’s Amargosa Desert Research Site (A DRS), adjacent to the Nation’s first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Results relevant to long- term monitoring of radionuclides are summarized as follows. Contaminant plumes have unexpected histories and spatial configurations due to uncertainties in the: (1) geologic framework, (2) biochemical reactions involving waste components, (3) interactions between plume components and unsaturated-zone materials, (4) disposal practices, and (5) physical transport processes. Information on plume dynamics depends on ex-situ wet-chemical techniques because in-situ sensors for the radionuclides of interest do not exist. As at other radioactive-waste disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs). Carbon-dioxide and VOC anomalies provide proxies for radioactive contamination. Contaminants in the unsaturated zone migrate along preferential pathways. Effective monitoring thus requires accurate geologic characterization. Direct- current electrical-resistivity imaging successfully mapped geologic units controlling preferential transport at the ADRS. Direct sampling of water from the unsaturated zone is complex and time consuming. Sampling plant water is an efficient alternative for mapping shallow tritium contamination.

  5. Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2011-05-01

    Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the [1980]- [1976] model; use our solution to analyze 11 transducer-measured drawdown records from a seven-day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually-measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by [2008], (b) on the basis of 11 transducer-measured drawdown records by [2007], (c) our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer-measured drawdown

  6. Kinetic study of the degradation of C5 and C6 unsaturated aldehydes and alcohols by ozone

    NASA Astrophysics Data System (ADS)

    Kalalian, Carmen; Roth, Estelle; Chakir, Abdelkhaleq

    2017-04-01

    Emissions of biogenic volatile organic compounds (VOCs) are higher than those from anthropogenic sources. They are therefore likely to have a great influence on atmospheric chemistry both locally and regionally, through their impact on the HOx balance (HOx = HO + HO2), ozone production and ability to form secondary organic aerosols (SOA). Among the volatile organic compounds of biogenic origin are the family of C5 and C6 unsaturated aldehydes and alcohols. Few information exist regarding the fate of these compounds in the atmosphere especially there reaction with ozone. In this work, we studied the kinetics of the reaction of three unsaturated aldehydes (trans-2-pentenal, trans-2-hexenal and 2-methyl-2-pentenal) and three unsaturated alcohols (1-penten-3-ol, cis-2-penten-1-ol and trans-3-hexen-1-ol) with ozone O3 in a rigid atmospheric simulation chamber coupled to an FTIR spectrometer at four different temperatures (273, 298, 333 and 353 K) and at atmospheric pressure. The rate constants of the ozonolysis reaction of the unsaturated aldehydes and the unsaturated alcohols studied were determined and the following Arrhenius expression was obtained (cm3 molecule -1 s -1): k (Trans -2-pentenal)= (3.83 ± 3.71) x 10-16 exp (- (1706 ± 295) / T) k (Trans-2-hexenal)= (1.43 ± 0.67) x 10-16 exp (- (1369 ± 141) / T) k(2-Methyl-2-pentenal)= (3.62± 0.22) x 10-18 exp (- (121 ± 20) / T) k(1-penten-3-ol) = (1.42 ± 1.24) x 10-16 exp (- (642 ± 250) / T) k(Cis-2-penten-1-ol)= (3.14 ± 0.45) x 10-15 exp (- (1045 ± 40) / T) k(Trans-3-hexen-1-ol)= (6.38 ± 1.75) x 10-16 exp (- (686 ± 89) / T) The obtained data will be discussed in terms of structure-reactivity relationship and compared with the reported reactivity with OH radicals. The atmospheric implications derived from this study are discussed as well.

  7. The Basicity of Unsaturated Hydrocarbons as probed by H-Bond Acceptor Ability. Bifurcated N–H+⋯π Hydrogen Bonding

    PubMed Central

    Stoyanov, Evgenii S.; Stoyanova, Irina V.; Reed, Christopher A.

    2009-01-01

    The competitive substitution of the anion in contact ion pairs of the type [Oct3NH+]B(C6F5)4− by unsaturated hydrocarbons L in accordance with the equilibrium Oct3NH+⋯Anion− + nL ↔ [Oct3NH+⋯Ln]Anion− has been studied in CCl4 solution. On the basis of equilibrium constants K and shifts of νNH to low frequency, it is established that complexed Oct3NH+⋯Ln cations with n = 1 and 2 are formed, having unidentate and bifurcated N–H+⋯π hydrogen bonds, respectively. Bifurcated H-bonds to unsaturated hydrocarbons have not been observed previously. The unsaturated hydro-carbons studied include benzene and methylbenzenes, fused-ring aromatics, alkenes, conjugated dienes, and alkynes. From the magnitude of the red shifts in N-H stretching frequencies, ΔνNH, a new scale for ranking the π-basicity of unsaturated hydrocarbons is proposed: fused-ring aromatics ≤ benzene < toluene < xylene < mesitylene < durene < conjugated dienes ∼ 1-alkynes < pentamethylbenzene < hexamethyl-benzene < internal alkynes ∼ cyclo-alkenes < 1-methylcycloalkenes. This scale is relevant to the discussion of π complexes for incipient protonation reactions and to understanding N–H+⋯π hydrogen bonding in proteins and molecular crystals. PMID:18637650

  8. Camelina sativa cake improved unsaturated fatty acids in ewe's milk.

    PubMed

    Szumacher-Strabel, Malgorzata; Cieślak, Adam; Zmora, Pawel; Pers-Kamczyc, Emilia; Bielińska, Sylwia; Stanisz, Marek; Wójtowski, Jacek

    2011-08-30

    Camelina sativa cake (CSC), a rich source of unsaturated fatty acids, in the case of ruminants, may improve the energy value of a diet and also increase the unsaturated fatty acid content in milk. Effects of basal diet (control), basal diet plus 30 g kg(-1) of CSC in dietary dry matter (DM), basal diet plus 60 g kg(-1) of CSC in dietary dry matter on milk production and the fatty acid composition of ewe's milk with particular emphasis on the monoenes and conjugated isomers of linoleic acid content were examined. Elevated concentration of total monounsaturated fatty acids, the effect of an increase in monounsaturated fatty acids in the trans configuration, as well as the increased content of total polyunsaturated fatty acids, resulted from CSC supplementation. Total saturated fatty acid concentration was decreased. Milk from CSC-supplemented ewes was characterized by increased levels of beneficial nutritional factors, including mono- and n-3 polyunsaturated fatty acids, and was also by lower atherogenic and thrombogenic indices. Taking into consideration all the obtained results and recommended fat concentrations in a daily ruminant ration, we recommend supplementing a dairy ewe's diet with 30 g kg(-1) DM of CSC cake in practice. Copyright © 2011 Society of Chemical Industry.

  9. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    PubMed Central

    Ji, Youjun; Zhang, Linzhi; Yue, Jiannan

    2014-01-01

    Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199

  10. Determination of unsaturation grade and trans isomers generated during thermal oxidation of edible oils and fats by FTIR

    NASA Astrophysics Data System (ADS)

    Moya Moreno, M. C. M.; Mendoza Olivares, D.; Amézquita López, F. J.; Gimeno Adelantado, J. V.; Bosch Reig, F.

    1999-05-01

    The oxidative deterioration of culinary oils and fats during episodes of heating associated with normal usage (80°C-300°C, 20-40 min) was monitored by FTIR spectroscopy. The thermal oxidation of polyunsaturated fatty acids during heating was studied by the determination of unsaturation percentage and trans isomers at various temperatures and heating times. Oils frequently used in food frying such as olive oil, sunflower oil, corn oil and seeds oil (sunflower, safflower and canola seed), and lard were studied. The Absorbance Correction Method is proposed to correct the spectral interference and allows the analytic use of signal which would not be initially valid for quantitative analysis. The results show that there is a decrease in unsaturation and an increase in trans isomers starting at 150°C and becomes more pronounced at temperatures around 250°C. This variation in unsaturation grade and conformation provides evidence of the transformation of essential polyunsaturated fatty acids and subsequent decrease in the oils' nutritional value.

  11. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2017-12-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS.

  12. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.

    PubMed

    Gu, Yunyan; Wang, Hongwei; Qin, Yao; Zhang, Yujing; Zhao, Wenyuan; Qi, Lishuang; Zhang, Yuannv; Wang, Chenguang; Guo, Zheng

    2013-03-01

    The heterogeneity of genetic alterations in human cancer genomes presents a major challenge to advancing our understanding of cancer mechanisms and identifying cancer driver genes. To tackle this heterogeneity problem, many approaches have been proposed to investigate genetic alterations and predict driver genes at the individual pathway level. However, most of these approaches ignore the correlation of alteration events between pathways and miss many genes with rare alterations collectively contributing to carcinogenesis. Here, we devise a network-based approach to capture the cooperative functional modules hidden in genome-wide somatic mutation and copy number alteration profiles of glioblastoma (GBM) from The Cancer Genome Atlas (TCGA), where a module is a set of altered genes with dense interactions in the protein interaction network. We identify 7 pairs of significantly co-altered modules that involve the main pathways known to be altered in GBM (TP53, RB and RTK signaling pathways) and highlight the striking co-occurring alterations among these GBM pathways. By taking into account the non-random correlation of gene alterations, the property of co-alteration could distinguish oncogenic modules that contain driver genes involved in the progression of GBM. The collaboration among cancer pathways suggests that the redundant models and aggravating models could shed new light on the potential mechanisms during carcinogenesis and provide new indications for the design of cancer therapeutic strategies.

  13. Comparison between iteration schemes for three-dimensional coordinate-transformed saturated-unsaturated flow model

    NASA Astrophysics Data System (ADS)

    An, Hyunuk; Ichikawa, Yutaka; Tachikawa, Yasuto; Shiiba, Michiharu

    2012-11-01

    SummaryThree different iteration methods for a three-dimensional coordinate-transformed saturated-unsaturated flow model are compared in this study. The Picard and Newton iteration methods are the common approaches for solving Richards' equation. The Picard method is simple to implement and cost-efficient (on an individual iteration basis). However it converges slower than the Newton method. On the other hand, although the Newton method converges faster, it is more complex to implement and consumes more CPU resources per iteration than the Picard method. The comparison of the two methods in finite-element model (FEM) for saturated-unsaturated flow has been well evaluated in previous studies. However, two iteration methods might exhibit different behavior in the coordinate-transformed finite-difference model (FDM). In addition, the Newton-Krylov method could be a suitable alternative for the coordinate-transformed FDM because it requires the evaluation of a 19-point stencil matrix. The formation of a 19-point stencil is quite a complex and laborious procedure. Instead, the Newton-Krylov method calculates the matrix-vector product, which can be easily approximated by calculating the differences of the original nonlinear function. In this respect, the Newton-Krylov method might be the most appropriate iteration method for coordinate-transformed FDM. However, this method involves the additional cost of taking an approximation at each Krylov iteration in the Newton-Krylov method. In this paper, we evaluated the efficiency and robustness of three iteration methods—the Picard, Newton, and Newton-Krylov methods—for simulating saturated-unsaturated flow through porous media using a three-dimensional coordinate-transformed FDM.

  14. Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States

    USGS Publications Warehouse

    Green, C.T.; Fisher, L.H.; Bekins, B.A.

    2008-01-01

    The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 1 to 22 m. Chemical analyses of water from lysimeters and shallow wells indicate that advective transport of nitrate is the dominant process affecting the flux of N below the root zone. Vertical profiles of (i) nitrogen species, (ii) stable isotopes of nitrogen and oxygen, and (iii) oxygen, N, and argon in unsaturated zone air and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. As a result, physical factors, such as N application rate, water inputs, and evapotranspiration, control the differences in concentrations among the sites. Concentrations of N in shallow lysimeters exhibit seasonal variation, whereas concentrations in lysimeters deeper than a few meters are relatively stable. Based on concentration and recharge estimates, fluxes of N through the deep unsaturated zone range from 7 to 99 kg ha-1 yr-1. Vertical fluxes of N in ground water are lower due to spatial and historical changes in N inputs. High N fluxes are associated with coarse sediments and high N application rates. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  15. Single-sweep spectral analysis of contact heat evoked potentials: a novel approach to identify altered cortical processing after morphine treatment

    PubMed Central

    Hansen, Tine M; Graversen, Carina; Frøkjær, Jens B; Olesen, Anne E; Valeriani, Massimiliano; Drewes, Asbjørn M

    2015-01-01

    Aims The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep characteristics to identify alterations induced by morphine. Methods In a crossover study 15 single-sweep CHEPs were analyzed from 62 electroencephalography electrodes in 26 healthy volunteers before and after administration of morphine or placebo. Each sweep was decomposed by a continuous wavelet transform to obtain normalized spectral indices in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–32 Hz) and gamma (32–80 Hz) bands. The average distribution over all sweeps and channels was calculated for the four recordings for each volunteer, and the two recordings before treatments were assessed for reproducibility. Baseline corrected spectral indices after morphine and placebo treatments were compared to identify alterations induced by morphine. Results Reproducibility between baseline CHEPs was demonstrated. As compared with placebo, morphine decreased the spectral indices in the delta and theta bands by 13% (P = 0.04) and 9% (P = 0.007), while the beta and gamma bands were increased by 10% (P = 0.006) and 24% (P = 0.04). Conclusion The decreases in the delta and theta band are suggested to represent a decrease in the pain specific morphology of the CHEPs, which indicates a diminished pain response after morphine administration. Hence, assessment of spectral indices in single-sweep CHEPs can be used to study cortical mechanisms induced by morphine treatment. PMID:25556985

  16. Nitrate transport and transformation processes in unsaturated porous media

    USGS Publications Warehouse

    Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.

    1995-01-01

    A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil

  17. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  18. Field determination of vertical permeability to air in the unsaturated zone

    USGS Publications Warehouse

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  19. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments.

    PubMed

    Khan, Ali M; Wick, Lukas Y; Harms, Hauke; Thullner, Martin

    2016-04-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synthesis of Unsaturated Polyester Resins from Various Bio-Derived Platform Molecules.

    PubMed

    Farmer, Thomas J; Castle, Rachael L; Clark, James H; Macquarrie, Duncan J

    2015-07-02

    Utilisation of bio-derived platform molecules in polymer synthesis has advantages which are, broadly, twofold; to digress from crude oil dependence of the polymer industry and secondly to reduce the environmental impact of the polymer synthesis through the inherent functionality of the bio-derived platform molecules. Bulk polymerisation of bio-derived unsaturated di-acids has been employed to produce unsaturated polyester (UPEs) which have been analysed by GPC, TGA, DSC and NMR spectroscopy, advancing on the analysis previously reported. UPEs from the diesters of itaconic, succinic, and fumaric acids were successfully synthesised with various diols and polyols to afford resins of MN 480-477,000 and Tg of -30.1 to -16.6 °C with solubilities differing based on starting monomers. This range of properties allows for many applications and importantly due to the surviving Michael acceptor moieties, solubility and cross-linking can be specifically tailored, post polymerisation, to the desired function. An improved synthesis of itaconate and succinate co-polymers, via the initial formation of an itaconate bis-diol, is also demonstrated for the first time, resulting in significantly improved itaconate incorporation.

  1. DNA Repair Alterations in Children With Pediatric Malignancies: Novel Opportunities to Identify Patients at Risk for High-Grade Toxicities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebe, Claudia E., E-mail: claudia.ruebe@uks.e; Fricke, Andreas; Schneider, Ruth

    Purpose: To evaluate, in a pilot study, the phosphorylated H2AX ({gamma}H2AX) foci approach for identifying patients with double-strand break (DSB) repair deficiencies, who may overreact to DNA-damaging cancer therapy. Methods and Materials: The DSB repair capacity of children with solid cancers was analyzed compared with that of age-matched control children and correlated with treatment-related normal-tissue responses (n = 47). Double-strand break repair was investigated by counting {gamma}H2AX foci in blood lymphocytes at defined time points after irradiation of blood samples. Results: Whereas all healthy control children exhibited proficient DSB repair, 3 children with tumors revealed clearly impaired DSB repair capacities,more » and 2 of these repair-deficient children developed life-threatening or even lethal normal-tissue toxicities. The underlying mutations affecting regulatory factors involved in DNA repair pathways were identified. Moreover, significant differences in mean DSB repair capacity were observed between children with tumors and control children, suggesting that childhood cancer is based on genetic alterations affecting DSB repair function. Conclusions: Double-strand break repair alteration in children may predispose to cancer formation and may affect children's susceptibility to normal-tissue toxicities. Phosphorylated H2AX analysis of blood samples allows one to detect DSB repair deficiencies and thus enables identification of children at risk for high-grade toxicities.« less

  2. Dose-dependent DNA adduct formation by cinnamaldehyde and other food-borne α,β-unsaturated aldehydes predicted by physiologically based in silico modelling.

    PubMed

    Kiwamoto, R; Ploeg, D; Rietjens, I M C M; Punt, A

    2016-03-01

    Genotoxicity of α,β-unsaturated aldehydes shown in vitro raises a concern for the use of the aldehydes as food flavourings, while at low dose exposures the formation of DNA adducts may be prevented by detoxification. Unlike many α,β-unsaturated aldehydes for which in vivo data are absent, cinnamaldehyde was shown to be not genotoxic or carcinogenic in vivo. The present study aimed at comparing dose-dependent DNA adduct formation by cinnamaldehyde and 18 acyclic food-borne α,β-unsaturated aldehydes using physiologically based kinetic/dynamic (PBK/D) modelling. In rats, cinnamaldehyde was predicted to induce higher DNA adducts levels than 6 out of the 18 α,β-unsaturated aldehydes, indicating that these 6 aldehydes may also test negative in vivo. At the highest cinnamaldehyde dose that tested negative in vivo, cinnamaldehyde was predicted to form at least three orders of magnitude higher levels of DNA adducts than the 18 aldehydes at their respective estimated daily intake. These results suggest that for all the 18 α,β-unsaturated aldehydes DNA adduct formation at doses relevant for human dietary exposure may not raise a concern. The present study illustrates a possible use of physiologically based in silico modelling to facilitate a science-based comparison and read-across on the possible risks posed by DNA reactive agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ion Diffusion Within Water Films in Unsaturated Porous Media.

    PubMed

    Tokunaga, Tetsu K; Finsterle, Stefan; Kim, Yongman; Wan, Jiamin; Lanzirotti, Antonio; Newville, Matthew

    2017-04-18

    Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb + and Br - in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10 -15 m 2 s -1 at θ = 1.0 × 10 -4 m 3 m -3 , where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o ) of Rb + and Br - in bulk water (30 °C) are both ∼2.4 × 10 -9 m 2 s -1 , we found the impedance factor f = D e /(θD o ) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τ a ) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.

  4. The effects of poly-unsaturated fatty acids on the physiology of hibernation in a South American marsupial, Dromiciops gliroides.

    PubMed

    Contreras, Carolina; Franco, Marcela; Place, Ned J; Nespolo, Roberto F

    2014-11-01

    Many mammals hibernate, which is a profound lethargic state of several weeks or months during winter, that represents a transitory episode of hetherothermy. As with other cases of dormancy, the main benefit of hibernation seems to be energy saving. However, the depth and duration of torpor can be experimentally modified by the composition of food, especially by fattyacid composition. In eutherians, diets rich in unsaturated fatty acids (i.e., fatty acids with at least one double bond) lengthen torpor, reduce metabolism and permit hibernation at lower temperatures. Here we studied whether diets varying in fatty acid composition have an effect on the physiology of hibernation in a South American marsupial, Dromiciops gliroides. We designed a factorial experiment where thermal acclimation (two levels: natural versus constant temperature) was combined with diet acclimation: saturated (i.e., diets with high concentration of saturated fatty acids) versus unsaturated (i.e., diets with high concentration of unsaturated fatty acids). We measured energy metabolism in active and torpid individuals, as well as torpor duration, and a suite of 12 blood biochemical parameters. After a cafeteria test, we found that D. gliroides did not show any preference for a given diet. Also, we did not find effects of diet on body temperature during torpor, or its duration. However, saturated diets, combined with high temperatures provoked a disproportionate increase in fat utilization, leading to body mass reduction. Those animals were more active, and metabolized more fats than those fed with a high proportion of unsaturated fatty acids (="unsaturated diets"). These results contrast with previous studies, which showed a significant effect of fatty acid composition of diets on food preferences and torpor patterns in mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayer, M.J.; Jones, T.L.

    1990-04-01

    This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet thismore » need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.« less

  6. High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding*

    PubMed Central

    Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.

    2012-01-01

    Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487

  7. Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction.

    PubMed

    Park, Ju Yeon; Lee, Sang-Hak; Shin, Min-Jeong; Hwang, Geum-Sook

    2015-01-01

    Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.

  8. The Effect of Dynamic Evaporation Rates on the Mobility of Pharmaceuticals in Unsaturated Environments

    NASA Astrophysics Data System (ADS)

    Normile, H.; Papelis, C.; Kibbey, T. C. G.

    2015-12-01

    The focus of this work was on investigating how dynamic rates of evaporation affect the fate and transport of pharmaceutical compounds in unsaturated porous media. The environmental processes of saturation and evaporation control local concentrations of contaminants in pore water of porous media. Specifically, the rate of evaporation can affect the identity and extent of solid formation of a pharmaceutical compound. A range of experiments with different evaporation rates were conducted on sand columns saturated with a solution of ciprofloxacin, a fluoroquinolone antibiotic. Experiments were designed to simulate increased and decreased pore-water concentrations of a compound due to evaporation and resaturation, respectively. Results suggest that varied rates of evaporation cause differences in compound adsorption behavior. This result has significant implications for understanding fate and transport within the unsaturated zone. Preliminary models exploring the impact on contaminant mobility are discussed.

  9. A GIS and statistical approach to identify variables that control water quality in hydrothermally altered and mineralized watersheds, Silverton, Colorado, USA

    USGS Publications Warehouse

    Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.

    2013-01-01

    Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.

  10. Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C=C Unsaturation on Reaction Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zugic, Branko; Karakalos, Stavros; Stowers, Kara J.

    2016-03-04

    Here we demonstrate the gas-phase catalytic production of methyl acrylates by oxygen-assisted coupling of methanol with the unsaturated alcohols allyl alcohol and methylallyl alcohol over nanoporous gold (npAu) at atmospheric pressure. Analogous investigations on O-activated Au(110) exhibit the same pattern of reactivity and are used to establish that the competition between methoxy and allyloxy (or methallyloxy) reaction intermediates for adsorption sites, mediated by the reactants themselves, determines the selectivity of reaction. Our results clearly show that the C=C bond substantially increases the binding efficacy of the allyloxy (or methallyloxy), thus requiring extremely high methanol mole fractions (>0.99) in order tomore » achieve comparable surface concentrations of methoxy and produce optimum yields of either methacrylate or methyl methacrylate. Allyloxy and methallyloxy were favored by factors of ~100 and ~450, respectively, vs methoxy. These values are more than 1 order of magnitude greater than those measured for competitive binding of ethoxy and 1-butoxy vs methoxy, demonstrating the strong effect of the carbon–carbon bond unsaturation. The 4.5-fold increase due to the addition of the methyl group in methylallyl alcohol vs allyl alcohol indicates the significant effect of the additional van der Waals interactions between the methyl group and the surface. Gas-phase acidity is also shown to be a good qualitative indicator for the relative binding strength of the alkoxides. This work provides insight into the control of reaction selectivity for coupling reactions and demonstrates the value of fundamental studies on single crystals for establishing key principles governing reaction selectivity. Notably, these oxygen-assisted coupling reactions occur without oxidation of the C=C bond.« less

  11. Continuous Catalytic Production of Methyl Acrylates from Unsaturated Alcohols by Gold: The Strong Effect of C=C Unsaturation on Reaction Selectivity

    DOE PAGES

    Zugic, Branko; Karakalos, Stavros; Stowers, Kara J.; ...

    2016-02-02

    We demonstrate the gas-phase catalytic production of methyl acrylates by oxygen-assisted coupling of methanol with the unsaturated alcohols allyl alcohol and methylallyl alcohol over nanoporous gold (npAu) at atmospheric pressure. Analogous investigations on O-activated Au(110) exhibit the same pattern of reactivity and are used to establish that the competition between methoxy and allyloxy (or methallyloxy) reaction intermediates for adsorption sites, mediated by the reactants themselves, determines the selectivity of reaction. These results clearly show that the C=C bond substantially increases the binding efficacy of the allyloxy (or methallyloxy), thus requiring extremely high methanol mole fractions (>0.99) in order to achievemore » comparable surface concentrations of methoxy and produce optimum yields of either methacrylate or methyl methacrylate. Allyloxy and methallyloxy were favored by factors of ~100 and ~450, respectively, vs methoxy. These values are more than 1 order of magnitude greater than those measured for competitive binding of ethoxy and 1-butoxy vs methoxy, demonstrating the strong effect of the carbon–carbon bond unsaturation. The 4.5-fold increase due to the addition of the methyl group in methylallyl alcohol vs allyl alcohol indicates the significant effect of the additional van der Waals interactions between the methyl group and the surface. Gas-phase acidity is also shown to be a good qualitative indicator for the relative binding strength of the alkoxides. This work then provides insight into the control of reaction selectivity for coupling reactions and demonstrates the value of fundamental studies on single crystals for establishing key principles governing reaction selectivity. Notably, these oxygen-assisted coupling reactions occur without oxidation of the C=C bond.« less

  12. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  13. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids.

    PubMed

    Tran, Nhiem; Mulet, Xavier; Hawley, Adrian M; Fong, Celesta; Zhai, Jiali; Le, Tu C; Ratcliffe, Julian; Drummond, Calum J

    2018-02-27

    Mesophase structures of self-assembled lyotropic liquid crystalline nanoparticles are important factors that directly influence their ability to encapsulate and release drugs and their biological activities. However, it is difficult to predict and precisely control the mesophase behavior of these materials, especially in complex systems with several components. In this study, we report the controlled manipulation of mesophase structures of monoolein (MO) and phytantriol (PHYT) nanoparticles by adding unsaturated fatty acids (FAs). By using high throughput formulation and small-angle X-ray scattering characterization methods, the effects of FAs chain length, cis-trans isomerism, double bond location, and level of chain unsaturation on self-assembled systems are determined. Additionally, the influence of temperature on the phase behavior of these nanoparticles is analyzed. We found that in general, the addition of unsaturated FAs to MO and PHYT induces the formation of mesophases with higher Gaussian surface curvatures. As a result, a rich variety of lipid polymorphs are found to correspond with the increasing amounts of FAs. These phases include inverse bicontinuous cubic, inverse hexagonal, and discrete micellar cubic phases and microemulsion. However, there are substantial differences between the phase behavior of nanoparticles with trans FA, cis FAs with one double bond, and cis FAs with multiple double bonds. Therefore, the material library produced in this study will assist the selection and development of nanoparticle-based drug delivery systems with desired mesophase.

  14. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes

    NASA Technical Reports Server (NTRS)

    Hong, Mee Young; Chapkin, Robert S.; Barhoumi, Rola; Burghardt, Robert C.; Turner, Nancy D.; Henderson, Cara E.; Sanders, Lisa M.; Fan, Yang-Yi; Davidson, Laurie A.; Murphy, Mary E.; hide

    2002-01-01

    We have shown that a combination of fish oil (high in n-3 fatty acids) with the butyrate-producing fiber pectin, upregulates apoptosis in colon cells exposed to the carcinogen azoxymethane, protecting against colon tumor development. We now hypothesize that n-3 fatty acids prime the colonocytes such that butyrate can initiate apoptosis. To test this, 30 Sprague-Dawley rats were provided with diets differing in the fatty acid composition (corn oil, fish oil or a purified fatty acid ethyl ester diet). Intact colon crypts were exposed ex vivo to butyrate, and analyzed for reactive oxygen species (ROS), mitochondrial membrane potential (MMP), translocation of cytochrome C to the cytosol, and caspase-3 activity (early events in apoptosis). The fatty acid composition of the three major mitochondrial phospholipids was also determined, and an unsaturation index calculated. The unsaturation index in cardiolipin was correlated with ROS levels (R = 0.99; P = 0.02). When colon crypts from fish oil and FAEE-fed rats were exposed to butyrate, MMP decreased (P = 0.041); and translocation of cytochrome C to the cytosol (P = 0.037) and caspase-3 activation increased (P = 0.032). The data suggest that fish oil may prime the colonocytes for butyrate-induced apoptosis by enhancing the unsaturation of mitochondrial phospholipids, especially cardiolipin, resulting in an increase in ROS and initiating apoptotic cascade.

  15. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    PubMed

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  16. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome.

    PubMed

    Chang, Alice Y; Lalia, Antigoni Z; Jenkins, Gregory D; Dutta, Tumpa; Carter, Rickey E; Singh, Ravinder J; Nair, K Sreekumaran

    2017-06-01

    Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. This multiethnic, obese sample was matched by age (PCOS, 37±6; MetS, 40±6years) and body mass index (BMI) (PCOS, 34.6±5.1; MetS, 33.7±5.2kg/m 2 ). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P=.02), essential amino acids (P=.03), the essential amino acid lysine (P=.02), and the lysine metabolite α-aminoadipic acid (P=.02) in models adjusted for surrogate variables representing technical variation in metabolites. No significant differences between

  17. Combining a Nontargeted and Targeted Metabolomics Approach to Identify Metabolic Pathways Significantly Altered in Polycystic Ovary Syndrome

    PubMed Central

    Chang, Alice Y.; Lalia, Antigoni Z.; Jenkins, Gregory D.; Dutta, Tumpa; Carter, Rickey E.; Singh, Ravinder J.; Sreekumaran Nair, K.

    2017-01-01

    Objective Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Methods Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. Results This multiethnic, obese sample was matched by age (PCOS, 37 ± 6; MetS, 40 ± 6 years) and body mass index (BMI) (PCOS, 34.6 ± 5.1; MetS, 33.7 ± 5.2 kg/m2). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P = .02), essential amino acids (P = .03), the essential amino acid lysine (P = .02), and the lysine metabolite α-aminoadipic acid (P = .02) in models adjusted for surrogate variables representing technical variation in

  18. Protective Effect of Unsaturated Fatty Acids on Palmitic Acid-Induced Toxicity in Skeletal Muscle Cells is not Mediated by PPARδ Activation.

    PubMed

    Tumova, Jana; Malisova, Lucia; Andel, Michal; Trnka, Jan

    2015-10-01

    Unsaturated free fatty acids (FFA) are able to prevent deleterious effects of saturated FFA in skeletal muscle cells although the mechanisms involved are still not completely understood. FFA act as endogenous ligands of peroxisome proliferator-activated receptors (PPAR), transcription factors regulating the expression of genes involved in lipid metabolism. The aim of this study was to determine whether activation of PPARδ, the most common PPAR subtype in skeletal muscle, plays a role in mediating the protective effect of unsaturated FFA on saturated FFA-induced damage in skeletal muscle cells and to examine an impact on mitochondrial respiration. Mouse C2C12 myotubes were treated for 24 h with different concentrations of saturated FFA (palmitic acid), unsaturated FFA (oleic, linoleic and α-linolenic acid), and their combinations. PPARδ agonist GW501516 and antagonist GSK0660 were also used. Both mono- and polyunsaturated FFA, but not GW501516, prevented palmitic acid-induced cell death. Mono- and polyunsaturated FFA proved to be effective activators of PPARδ compared to saturated palmitic acid; however, in combination with palmitic acid their effect on PPARδ activation was blocked and stayed at the levels observed for palmitic acid alone. Unsaturated FFA at moderate physiological concentrations as well as GW501516, but not palmitic acid, mildly uncoupled mitochondrial respiration. Our results indicate that although unsaturated FFA are effective activators of PPARδ, their protective effect on palmitic acid-induced toxicity is not mediated by PPARδ activation and subsequent induction of lipid regulatory genes in skeletal muscle cells. Other mechanisms, such as mitochondrial uncoupling, may underlie their effect.

  19. Reduction of unsaturated compounds under interstellar conditions: chemoselective reduction of C≡C and C=C bonds over C=O functional group

    NASA Astrophysics Data System (ADS)

    Jonusas, Mindaugas; Guillemin, Jean-Claude; Krim, Lahouari

    2017-07-01

    The knowledge of the H-addition reactions on unsaturated organic molecules bearing a triple or a double carbon-carbon bond such as propargyl or allyl alcohols and a CO functional group such as propynal, propenal or propanal may play an important role in the understanding of the chemical complexity of the interstellar medium. Why different aldehydes like methanal, ethanal, propynal and propanal are present in dense molecular clouds while the only alcohol detected in those cold regions is methanol? In addition, ethanol has only been detected in hot molecular cores. Are those saturated and unsaturated aldehyde and alcohol species chemically linked in molecular clouds through solid phase H-addition surface reactions or are they formed through different chemical routes? To answer such questions, we have investigated a hydrogenation study of saturated and unsaturated aldehydes and alcohols at 10 K. We prove through this experimental study that while pure unsaturated alcohol ices bombarded by H atoms lead to the formation of the corresponding fully or partially saturated alcohols, surface H-addition reactions on unsaturated aldehyde ices exclusively lead to the formation of fully saturated aldehyde. Such results show that in addition to a chemoselective reduction of C≡C and C=C bonds over the C=O group, there is no link between aldehydes and their corresponding alcohols in reactions involving H atoms in dense molecular clouds. Consequently, this could be one of the reasons why some aldehydes such as propanal are abundant in dense molecular clouds in contrast to the non-detection of alcohol species larger than methanol.

  20. Review on airflow in unsaturated zones induced by natural forcings

    NASA Astrophysics Data System (ADS)

    Kuang, Xingxing; Jiao, Jiu Jimmy; Li, Hailong

    2013-10-01

    Subsurface airflow in unsaturated zones induced by natural forcings is of importance in many environmental and engineering fields, such as environmental remediation, water infiltration and groundwater recharge, coastal soil aeration, mine and tunnel ventilation, and gas exchange between soil and atmosphere. This review synthesizes the published literature on subsurface airflow driven by natural forcings such as atmospheric pressure fluctuations, topographic effect, water table fluctuations, and water infiltration. The present state of knowledge concerning the mechanisms, analytical and numerical models, and environmental and engineering applications related to the naturally occurring airflow is discussed. Airflow induced by atmospheric pressure fluctuations is studied the most because of the applications to environmental remediation and transport of trace gases from soil to atmosphere, which are very important in understanding biogeochemical cycling and global change. Airflow induced by infiltration is also an extensively investigated topic because of its implications in rainfall infiltration and groundwater recharge. Airflow induced by water table fluctuations is important in coastal areas because it plays an important role in coastal environmental remediation and ecological systems. Airflow induced by topographic effect is studied the least. However, it has important applications in unsaturated zone gas transport and natural ventilation of mines and tunnels. Finally, the similarities and differences in the characteristics of the air pressure and airflow are compared and future research efforts are recommended.

  1. Identifying the Barriers and Opportunities for Enhanced Coherence between Agriculture and Public Health Policies: Improving the Fat Supply in India.

    PubMed

    Downs, Shauna M; Thow, Anne Marie; Ghosh-Jerath, Suparna; Leeder, Stephen R

    2015-01-01

    The national Government of India has published draft regulation proposing a 5% upper limit of trans fat in partially hydrogenated vegetable oils (PHVOs). Global recommendations are to replace PHVOs with unsaturated fat but it is not known whether this will be feasible in India. We systematically identified policy options to address the three major underlying agricultural sector issues that influence reformulation with healthier oils: the low productivity of domestically produced oilseeds leading to a reliance on palm oil imports, supply chain wastage, and the low availability of oils high in unsaturated fats. Strengthening domestic supply chains in India will be necessary to maximize health gains associated with product reformulation.

  2. Silent genetic alterations identified by targeted next-generation sequencing in pheochromocytoma/paraganglioma: A clinicopathological correlations.

    PubMed

    Pillai, Suja; Gopalan, Vinod; Lo, Chung Y; Liew, Victor; Smith, Robert A; Lam, Alfred King Y

    2017-02-01

    The goal of this pilot study was to develop a customized, cost-effective amplicon panel (Ampliseq) for target sequencing in a cohort of patients with sporadic phaeochromocytoma/paraganglioma. Phaeochromocytoma/paragangliomas from 25 patients were analysed by targeted next-generation sequencing approach using an Ion Torrent PGM instrument. Primers for 15 target genes (NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, MAX, MEN1, KIF1Bβ, EPAS1, CDKN2 & PHD2) were designed using ion ampliseq designer. Ion Reporter software and Ingenuity® Variant Analysis™ software (www.ingenuity.com/variants) from Ingenuity Systems were used to analysis these results. Overall, 713 variants were identified. The variants identified from the Ion Reporter ranged from 64 to 161 per patient. Single nucleotide variants (SNV) were the most common. Further annotation with the help of Ingenuity variant analysis revealed 29 of these 713variants were deletions. Of these, six variants were non-pathogenic and four were likely to be pathogenic. The remaining 19 variants were of uncertain significance. The most frequently altered gene in the cohort was KIF1B followed by NF1. Novel KIF1B pathogenic variant c.3375+1G>A was identified. The mutation was noted in a patient with clinically confirmed neurofibromatosis. Chromosome 1 showed the presence of maximum number of variants. Use of targeted next-generation sequencing is a sensitive method for the detecting genetic changes in patients with phaeochromocytoma/paraganglioma. The precise detection of these genetic changes helps in understanding the pathogenesis of these tumours. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Synopsis of hydrologic data collected by waste management for characterization of unsaturated transport at Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E.

    1998-03-01

    Data which have been collected by Los Alamos National Laboratory waste management for the hydrologic characterization of the subsurface at the low level radioactive waste disposal facility, Area G, are reported and discussed briefly. The data includes Unsaturated Flow Apparatus measurements of the unsaturated conductivity in samples from borehole G-5. Analysis compares these values to the predictions from van Genuchten estimates, and the implications for transport and data matching are discussed, especially at the location of the Vapor Phase Notch (VPN). There, evaporation drives a significant vapor flux and the liquid flux cannot be measured accurately by the UFA device.more » Data also include hydrologic characterization of samples from borehole G-5, Area G surface soils, Los Alamos (Cerros de Rio) basalt, Tsankawi and Cerro-Toledo layers, the Vapor Phase Notch (VPN), and additional new samples from the uppermost tuff layer at Area G. Hydraulic properties from these sample groups can be used to supplement the existing data base. The data in this report can be used to improve the accuracy and reduce the uncertainty in future computational modeling of the unsaturated transport at Area G. This report supports the maintenance plan for the Area G Performance Assessment.« less

  4. Archaeology and public perception of a trans-scientific problem; disposal of toxic wastes in the unsaturated zone

    USGS Publications Warehouse

    Winograd, Isaac Judah

    1986-01-01

    Predicting the effects of toxic-waste disposal on the environment over periods of millenia to hundreds of millenia is a transscientific problem; that is, one not fully addressed by quantitative scientific and engineering endeavors. Archaeology is a pertinent adjunct to such predictions in several ways. First, and foremost, archaeological records demonstrate that delicate, as well as durable, objects buried in thick unsaturated zones of arid and semiarid environments may survive intact for millenia to tens of millenia. This successful preservation of Late Paleolithic to Iron Age artifacts provides independent support for the tentative favorable conclusions of earth scientists regarding the general utility of thick unsaturated zones for toxic-waste isolation. By analogy with the archaeological record, solidified toxic wastes of low solubility that are buried in arid unsaturated zones should remain isolated from the environment indefinitely; modern man presumably should be able to improve upon the techniques used by his ancestors to isolate and preserve their sacred and utilitarian objects. Second, archaeological evidence pertinent to the fate of objects buried in unsaturated zones-although qualitative in nature and subject to the limitations of arguments by analogy-is meaningful to the public and to the courts who, with some scientists and engineers, are reluctant to rely exclusively on computer-generated predictions of the effects of buried toxic wastes on the environment. Third, the archaeological record issues a warning that our descendants may intrude into our waste disposal sites and that we must therefore take special measures to minimize such entry and, if it occurs, to warn of the dangers by a variety of symbols. And fourth, archaeology provides a record of durable natural and manmade materials that may prove to be suitable for encapsulation of our wastes and from which we can construct warning markers that will last for millenia. For these four reasons

  5. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    PubMed

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  6. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    USGS Publications Warehouse

    Milly, Paul C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (<1 mm y−1), as it may be at many locations in a desert landscape, the thermal vapor flux must be balanced mostly by a matric‐potential‐induced upward flux of water. This return flux may include both vapor and liquid components. Below any near‐surface zone of weather‐related fluctuations of matric potential, maintenance of this upward flux requires an increase with depth in the annual mean matric potential; this theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions

  7. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-06-01

    Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data

  8. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-01-01

    Yucca Mountain is an arid site proposed for consideration as the United States’ first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500–1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5–4.5 mm/yr, or 2–3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data

  9. HYDROGENATION OF UNSATURATED CARBONYLS IN SCCO2 AS REACTION MEDIUM OVER NI-SUPPORTED CATALYSTS

    EPA Science Inventory

    Selective hydrogenation of a, a unsaturated carbonyls where molecules containing C=C and C=O double bonds has both practical importance for fine chemicals industry and theoretical significance. Various studies are reported to enhance the selective hydrogenation of C=O over group...

  10. Effect of hydrofracking fluid on colloid transport in the unsaturated zone.

    PubMed

    Sang, Wenjing; Stoof, Cathelijne R; Zhang, Wei; Morales, Verónica L; Gao, Bin; Kay, Robert W; Liu, Lin; Zhang, Yalei; Steenhuis, Tammo S

    2014-07-15

    Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32-36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants.

  11. Effect of Hydrofracking Fluid on Colloid Transport in the Unsaturated Zone

    PubMed Central

    2014-01-01

    Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32–36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants. PMID:24905470

  12. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry.

    PubMed

    Stinson, Craig A; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. Graphical Abstract ᅟ.

  13. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. [Figure not available: see fulltext.

  14. Asymmetric or symmetric bilayer formation during oblique drop impact depends on rheological properties of saturated and unsaturated lipid monolayers.

    PubMed

    Vranceanu, Marcel; Terinte, Nicoleta; Nirschl, Hermann; Leneweit, Gero

    2011-02-01

    Bilayer structures are formed by approaching two liquid surfaces with phospholipid monolayers, which are brought into contact by oblique drop impact on a liquid surface. Asymmetric bilayers can be produced by the coupling of drop and target monolayers. In contrast, symmetric bilayers or multilayers are formed by collapse of the compressed target monolayer. We show that under all studied conditions bilayer/multilayer synthesis takes place. The experimental conditions for the synthesis of asymmetric or symmetric bilayers are described quantitatively in terms of the surface rheological (surface elasticity and dilational viscosity) and the hydrodynamical parameters (Weber number and impact angle). The composition and mechanical properties of the phospholipid monolayers strongly influences the patterns of drop impact and the bilayer/multilayer formation. Cholesterol stiffens unsaturated phospholipid monolayers and fluidifies saturated monolayers. All monolayers form asymmetric vesicle-like structures, which are stable in the aqueous medium. Additionally, unsaturated phospholipid monolayers without cholesterol form symmetric vesicles by folding parts of the target monolayer. Sufficient presence of cholesterol in unsaturated phospholipid monolayers inhibits the folding of the target monolayer and the subsequent formation of symmetric bilayers. The rheological properties of saturated and unsaturated phospholipid monolayers and their mixtures with cholesterol are discussed. Based on drop impact results it is shown that the state of a so far undefined region in the DPPC/cholesterol phase diagram is a fluid phase. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana

    NASA Astrophysics Data System (ADS)

    Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson

    2017-05-01

    Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.

  16. Measurement and modeling of unsaturated hydraulic conductivity: Chapter 21

    USGS Publications Warehouse

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K(). The parameters that describe the K() curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  17. Free-Field Ground Shock Pressures from Buried Detonations in Saturated and Unsaturated Soils

    DTIC Science & Technology

    1983-05-01

    pressures are, therefore, which is shown in Figure 4 and compared to the higher at various standoff distances, unsaturated soil solution and test data on...IK-82 an4 ?g-84 bombs. As can be seen, the hydrodynamic Instead of using a soil solution , the propaga- solution works much better and predicts much

  18. Sophorolipid-derived unsaturated and epoxy fatty acid estolides as plasticizers for poly(3-hydroxybutyrate)

    USDA-ARS?s Scientific Manuscript database

    Unsaturated and epoxy fatty acid estolides were synthesized from the omega and omega-1 hydroxy fatty acids derived from sophorolipids (SLs) prepared by fermentation from glucose:soybean oil and glucose:oleic acid, respectively. These estolides were utilized as additives in solution-cast poly(3-hydro...

  19. Selective α-arylation of α,β-unsaturated imides mediated by a visible light photoredox catalyst.

    PubMed

    Ando, Yuki; Kamatsuka, Takuto; Shinokubo, Hiroshi; Miyake, Yoshihiro

    2017-08-10

    Visible light-mediated α-arylation of α,β-unsaturated imides is achieved via aminium radicals generated from diarylalkylamines using a photoredox catalyst. On the basis of emission quenching experiments, a plausible pathway of the reaction is discussed.

  20. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal site

    USGS Publications Warehouse

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas:Estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge);Analyzing the hydrologic performance of engineered components of a facility;Evaluating the application of models to the prediction of facility performance; andEstimating the uncertainty in predicted facility performance.An estimate of recharge at a LLW site is important since recharge is a principal factor in controlling the release of contaminants via the groundwater pathway. The most common methods for estimating recharge are discussed in Chapter 2. Many factors affect recharge; the natural recharge at an undisturbed site is not necessarily representative either of the recharge that will occur after the site has been disturbed or of the flow of water into a disposal facility at the site. Factors affecting recharge are discussed in Chapter 2.At many sites engineered components are required for a LLW facility to meet performance requirements. Chapter 3 discusses the use of engineered barriers to control the flow of water in a LLW facility, with a particular emphasis on cover systems. Design options and the potential performance and degradation mechanisms of engineered components are also discussed.Water flow in a LLW disposal facility must be evaluated before construction of the facility. In addition, hydrologic performance must be predicted over a very long time frame. For these reasons, the hydrologic evaluation relies on the use of predictive modeling. In Chapter 4, the evaluation of unsaturated water flow modeling is discussed. A checklist of items is presented to guide the evaluation

  1. 40 CFR 180.1284 - Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ammonium salts of higher fatty acids... Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the requirement of a tolerance. Ammonium salts of C8-C18 saturated and C8-C12 unsaturated higher fatty acids are...

  2. 40 CFR 180.1284 - Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Ammonium salts of higher fatty acids... Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the requirement of a tolerance. Ammonium salts of C8-C18 saturated and C8-C12 unsaturated higher fatty acids are...

  3. Vapor-phase interactions and diffusion of organic solvents in the unsaturated zone

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1990-01-01

    This article presents an analysis of the interactions and static movement of 37 organic solvents as vapors through the unsaturated soil zone. The physicochemical interactions of the organic vapors with unsaturated soil materials were emphasized with focus on diffusive, and adsorptive interactions. Fick's Law and porous media diffusion coefficients for most of the solvent vapors were either compiled or estimated; coefficients were not available for some of the fluorinated solvents. The adsorption of some of the solvent vapors by silica was concluded to be due to hydrogen bond formation with surface silanol groups. Heats of adsorption data for different adsorbents were also compiled. There were very few data on the adsorption of these solvent vapors by soils, but it appears that the magnitude of adsorption of nonpolar solvents is reduced as the relative humidity of the vapor-solid system is increased. Consequently, the interaction of the vapors may then separated into two processes; (1) gas-water partitioning described by Henry's Law constants, and (2) solid-water adsorption coefficients which may be estimated from liquid-solid partition coefficients (Kd values). ?? 1990 Springer-Verlag New York Inc.

  4. Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss

    NASA Astrophysics Data System (ADS)

    Golubev, V.; Whittington, P.

    2018-04-01

    Due to the non-vascular nature of Sphagnum mosses, the capitula (growing surface) of the moss must rely solely on capillary action to receive water from beneath. Moss subsides and swells in accordance with water table levels, an effect called "mire-breathing", which has been thought to be a self-preservation mechanism, although no systematic studies have been done to demonstrate exactly how volume change affects hydrophysical properties of moss. In this study, the unsaturated hydraulic conductivity (Kunsat) and water content of two different species of Sphagnum moss were measured at different compression rates, up to the maximum of 77%. The findings show that the Kunsat increases by up to an order of magnitude (10×) with compression up to a certain bulk density of the moss, after which higher levels of compression result in lowered unsaturated hydraulic conductivity. This was coupled with an increase in soil water retention with increased compression. The increase of the Kunsat with compression suggests that the mire-breathing effect should be considered a self-preservation mechanism to provide sufficient amount of water to growing moss in times of low water availability.

  5. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities and discrete fracture patterns

    USGS Publications Warehouse

    Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.

    2006-01-01

    A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum

  6. A set of constitutive relationships accounting for residual NAPL in the unsaturated zone.

    PubMed

    Wipfler, E L; van der Zee, S E

    2001-07-01

    Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.

  7. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors.

    PubMed

    Walter, Vonn; Du, Ying; Danilova, Ludmila; Hayward, Michele C; Hayes, D Neil

    2018-06-15

    Integrated analyses of multiple genomic datatypes are now common in cancer profiling studies. Such data present opportunities for numerous computational experiments, yet analytic pipelines are limited. Tools such as the cBioPortal and Regulome Explorer, although useful, are not easy to access programmatically or to implement locally. Here, we introduce the MVisAGe R package, which allows users to quantify gene-level associations between two genomic datatypes to investigate the effect of genomic alterations (e.g., DNA copy number changes on gene expression). Visualizing Pearson/Spearman correlation coefficients according to the genomic positions of the underlying genes provides a powerful yet novel tool for conducting exploratory analyses. We demonstrate its utility by analyzing three publicly available cancer datasets. Our approach highlights canonical oncogenes in chr11q13 that displayed the strongest associations between expression and copy number, including CCND1 and CTTN , genes not identified by copy number analysis in the primary reports. We demonstrate highly concordant usage of shared oncogenes on chr3q, yet strikingly diverse oncogene usage on chr11q as a function of HPV infection status. Regions of chr19 that display remarkable associations between methylation and gene expression were identified, as were previously unreported miRNA-gene expression associations that may contribute to the epithelial-to-mesenchymal transition. Significance: This study presents an important bioinformatics tool that will enable integrated analyses of multiple genomic datatypes. Cancer Res; 78(12); 3375-85. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. Does flowpath alteration by centrifugal force cause deviation from Darcy's law?

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Turturro, A. C.; MA, B.; Caputo, M. C.; Perkins, K. S.

    2016-12-01

    . Further tests are needed because deviation would be more likely in cases such as higher water contents or greater heterogeneity. The observed good agreement, perhaps surprisingly, indicates that any force-caused alterations of the shape of air-water interfaces do not significantly affect unsaturated K.

  9. Theoretical and Numerical Investigations on Shallow Tunnelling in Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Soranzo, Enrico; Wu, Wei

    2013-04-01

    Excavation of shallow tunnels with the New Austrian Tunnelling Method (NATM) requires proper assessing of the tunnel face stability, to enable an open-face excavation, and the estimation of the correspondent surface settlements. Soils in a partially saturated condition exhibit a higher cohesion than in a fully saturated state, which can be taken into account when assessing the stability of the tunnel face. For the assessment of the face support pressure, different methods are used in engineering practice, varying from simple empirical and analytical formulations to advanced finite element analysis. Such procedures can be modified to account for the unsaturated state of soils. In this study a method is presented to incorporate the effect of partial saturation in the numerical analysis. The results are then compared with a simple analytical formulation derived from parametric studies. As to the numerical analysis, the variation of cohesion and of Young's modulus with saturation can be considered when the water table lies below the tunnel in a soil exhibiting a certain capillary rise, so that the tunnel is driven in a partially saturated layer. The linear elastic model with Mohr-Coulomb failure criterion can be extended to partially saturated states and calibrated with triaxial tests on unsaturated. In order to model both positive and negative pore water pressure (suction), Bishop's effective stress is incorporated into Mohr-Coulomb's failure criterion. The effective stress parameter in Bishop's formulation is related to the degree of saturation as suggested by Fredlund. If a linear suction distribution is assumed, the degree of saturation can be calculated from the Soil Water Characteristic Curve (SWCC). Expressions exist that relate the Young's modulus of unsaturated soils to the net mean stress and the matric suction. The results of the numerical computation can be compared to Vermeer & Ruse's closed-form formula that expresses the limit support pressure of the

  10. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions.

    PubMed

    Dhakal, Krishna Hari; Jung, Ki-Hwal; Chae, Jong-Hyun; Shannon, J Grover; Lee, Jeong-Dong

    2014-12-01

    Oleic acid and oleic acid rich foods may have beneficial health effects in humans. Soybeans with high oleic acid (around 80% in seed oil) have been developed. Soybean sprouts are an important vegetable in Korea, Japan and China. The objective of this study was to investigate the variation of unsaturated fatty acids, oleic, linoleic and α-linolenic acids, in sprouts from soybeans with normal and high oleic acid concentration. Twelve soybean accessions with six high oleic acid lines, three parents of high oleic acid lines, and three checks with normal and high oleic acid concentration were used in this study. The unsaturated fatty acid concentration in sprouts from each genotype was similar to the concentration in the ungerminated seed. The oleic acid concentration in the sprouts of high oleic acid lines (up to 80%) was still high (>70%) compared to the ungerminated seed. Thus, high oleic soybean varieties developed for sprout production could add valuable health benefits to sprouts and the individuals who consume this vegetable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis

    NASA Astrophysics Data System (ADS)

    Fang, Xianjie; Cacherat, Bastien; Morandi, Bill

    2017-11-01

    The synthesis of carboxylic acid derivatives from unsaturated hydrocarbons is an important process for the preparation of polymers, pharmaceuticals, cosmetics and agrochemicals. Despite its industrial relevance, the traditional Reppe-type carbonylation reaction using pressurized CO is of limited applicability to laboratory-scale synthesis because of: (1) the safety hazards associated with the use of CO, (2) the need for special equipment to handle pressurized gas, (3) the low reactivity of several relevant nucleophiles and (4) the necessity to employ different, often tailor-made, catalytic systems for each nucleophile. Herein we demonstrate that a shuttle-catalysis approach enables a CO- and HCl-free transfer process between an inexpensive reagent, butyryl chloride, and a wide range of unsaturated substrates to access the corresponding acid chlorides in good yields. This new transformation provides access to a broad range of carbonyl-containing products through the in situ transformation of the reactive acid chloride intermediate. In a broader context, this work demonstrates that isodesmic shuttle-catalysis reactions can unlock elusive catalytic reactions.

  12. A semi-analytical solution for slug tests in an unconfined aquifer considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Sun, Hongbing

    2016-01-01

    A semi-analytical solution considering the vertical unsaturated flow is developed for groundwater flow in response to a slug test in an unconfined aquifer in Laplace space. The new solution incorporates the effects of partial penetrating, anisotropy, vertical unsaturated flow, and a moving water table boundary. Compared to the Kansas Geological Survey (KGS) model, the new solution can significantly improve the fittings of the modeled to the measured hydraulic heads at the late stage of slug tests in an unconfined aquifer, particularly when the slug well has a partially submerged screen and moisture drainage above the water table is significant. The radial hydraulic conductivities estimated with the new solution are comparable to those from the KGS, Bouwer and Rice, and Hvorslev methods. In addition, the new solution also can be used to examine the vertical conductivity, specific storage, specific yield, and the moisture retention parameters in an unconfined aquifer based on slug test data.

  13. Palaeoclimate Records in Dryland Dunes: Progress and Remaining Challenges Utilizing the Unsaturated Zone for Palaeomoisture Reconstruction.

    NASA Astrophysics Data System (ADS)

    Stone, A.

    2016-12-01

    Reconstructions of past rainfall in dryland regions underpin our understanding the links between climatic forcing and palaeohydrological response. However, there are only few proxies in drylands that record palaeorainfall, or palaeomoisture, in a straightforward manner. The unsaturated zone (USZ) has very significant potential as a novel dryland palaeomoisture archive. The approach is simple, based on variations in the concentration of pore-moisture tracers with depth, representing a hydrostratigraphical record through time. The tracer input is meteoric, with the concentration of this tracer established in the near-surface zone as a function of the level of evapotranspiration before that pore-moisture is transmitted vertically down to the water table. This presentation will highlight key regions where hydrostratigraphies have been successfully applied in drylands. It will also set out challenges regarding the assumptions of the approach, with the intention to stimulate discussion regarding the future development of the unsaturated zone as a palaeoclimate archive over a range of timescales and resolutions. Depending on the rate of moisture flux and the depth of the unsaturated zone, dryland hydrostratigraphies may record (i) broad climatic shifts since the last interglacial at low temporal resolution or multi-millennial length palaeomoisture records with a decadal temporal resolution. USZ hydrostratigraphies may also contain a record of changes in the amount of infiltration (and groundwater recharge) caused by changes to land-use.

  14. Quantification of natural vapor fluxes of trichloroethene in the unsaturated zone at Picatinny Arsenal, New Jersey

    USGS Publications Warehouse

    Smith, James A.; Tisdale, Amy K.; Cho, H. Jean

    1996-01-01

    The upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-month period. Vertical gas-phase diffusion fluxes were estimated indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick's law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that mechanisms other than steady-state vapor diffusion are contributing to the vertical transport of TCE vapors through the unsaturated zone. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream. The net upward flux of TCE is reduced significantly during a storm event, presumably due to the mass transfer of TCE from the soil gas to the infiltrating rainwater and its subsequent downward advection. Several potential problems associated with the measurement of total gas-phase fluxes are discussed.

  15. Saturated and Unsaturated Fatty Acids Differently Modulate Colonic Goblet Cells In Vitro and in Rat Pups.

    PubMed

    Benoit, Bérengère; Bruno, Jérémie; Kayal, Fanny; Estienne, Monique; Debard, Cyrille; Ducroc, Robert; Plaisancié, Pascale

    2015-08-01

    High-fat diets induce intestinal barrier alterations and promote intestinal diseases. Little is known about the effects of long-chain fatty acids (LCFAs) on mucin 2 (MUC2) production by goblet cells, which are crucial for intestinal protection. We investigated the effects of LCFAs on the differentiation of colonic goblet cells, MUC2 expression, and colonic barrier function. Upon reaching confluence, human colonic mucus-secreting HT29-MTX cells were stimulated (21 d) with a saturated LCFA (palmitic or stearic acid), a monounsaturated LCFA (oleic acid), or a polyunsaturated LCFA (linoleic, γ-linolenic, α-linolenic, or eicosapentaenoic acid). In addition, rat pups underwent oral administration of oil (palm, rapeseed, or sunflower oil) or water (10 μL/g body weight, postnatal days 10-15). Subsequently, colon goblet cells were studied by Western blotting, reverse transcriptase-quantitative polymerase chain reaction, and immunohistochemistry and colonic transmucosal electrical resistance was measured by using Ussing chambers. In vitro, palmitic acid enhanced MUC2 production (140% of control) and hepatocyte nuclear factor 4α expression, whereas oleic, linoleic, γ-linolenic, α-linolenic, and eicosapentaenoic acids reduced MUC2 expression (at least -50% of control). All unsaturated LCFAs decreased the expression of human atonal homolog 1, a transcription factor controlling goblet cell differentiation (at least -31% vs. control). In vivo, rats fed palm oil had higher palmitic acid concentrations (3-fold) in their colonic contents and increased mucus granule surfaces in their goblet cells (>2-fold) than did all other groups. Palm oil also increased colonic transmucosal electrical resistance (245% of control), yet had no effect on occludin and zonula occludens-1 expression. In contrast, sunflower and rapeseed oils decreased goblet cell number when compared with control (at least -10%) and palm oil (at least -14%) groups. Palm oil in rat pups and palmitic acid in HT29-MTX

  16. Unsaturated flow dynamics during irrigation with wastewater: field and modelling study

    NASA Astrophysics Data System (ADS)

    Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.

    2012-04-01

    To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters

  17. Exploration of a mechanism for the production of highly unsaturated fatty acids in Scenedesmus sp. at low temperature grown on oil crop residue based medium.

    PubMed

    Lu, Qian; Li, Jun; Wang, Jinghan; Li, Kun; Li, Jingjing; Han, Pei; Chen, Paul; Zhou, Wenguang

    2017-11-01

    The ability of algae to produce lipids comprising of unsaturated fatty acids varies with strains and culture conditions. This study investigates the effect of temperature on the production of unsaturated fatty acids in Scenedesmus sp. grown on oil crop residue based medium. At low temperature (10°C), synthesis of lipids compromising of high contents of unsaturated fatty acids took place primarily in the early stage while protein accumulation mainly occurred in the late stage. This stepwise lipid-protein synthesis process was found to be associated with the contents of acetyl-CoA and α-KG in the algal cells. A mechanism was proposed and tested through simulation experiments which quantified the carbon flux allocation in algal cells at different cultivation stages. It is concluded that low culture temperature such as 10°C is suitable for the production of lipids comprising of unsaturated fatty acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. EXPOXIDATION OF OLEFINS AND α,β-UNSATURATED KEYTONES OVER SONOCHEMICALLY PREPARED HYDROXYAPATITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An effective and environmentally friendly protocol for the epoxidation of olefins and α,β-unsaturated ketones in the presence of hydroxyapatite as catalyst using hydrogen peroxide is described. The catalyst is active and reusable for the selective epoxidation of a variety...

  19. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic

  20. Sorption Equilibria of Vapor Phase Organic Pollutants on Unsaturated Soils and Soil Minerals

    DTIC Science & Technology

    1990-04-01

    Sorbent Characterization .. ........ .......... 6 a. Description of Inorganic Solids and Soils. .... ........ 6 b. Moisture Content...compounds (TCE and toluene) is compared for a cored depth profile obtained from an unsaturated soil and for simulated profiles using inorganic solids. The...Sorbent Characterization a. Description of Inorganic Solids and Soils Inorganic solids were used for initial sorption studies to develop experimental

  1. Laser Capture Microdissection of Pancreatic Acinar Cells to Identify Proteomic Alterations in a Murine Model of Caerulein-Induced Pancreatitis

    PubMed Central

    Shapiro, John P; Komar, Hannah M; Hancioglu, Baris; Yu, Lianbo; Jin, Ming; Ogata, Yuko; Hart, Phil A; Cruz-Monserrate, Zobeida; Lesinski, Gregory B; Conwell, Darwin L

    2017-01-01

    Objectives: Chronic pancreatitis (CP) is characterized by inflammation and fibrosis of the pancreas, leading to pain, parenchymal damage, and loss of exocrine and endocrine function. There are currently no curative therapies; diagnosis remains difficult and aspects of pathogenesis remain unclear. Thus, there is a need to identify novel biomarkers to improve diagnosis and understand pathophysiology. We hypothesize that pancreatic acinar regions contain proteomic signatures relevant to disease processes, including secreted proteins that could be detected in biofluids. Methods: Acini from pancreata of mice injected with or without caerulein were collected using laser capture microdissection followed by mass spectrometry analysis. This protocol enabled high-throughput analysis that captured altered protein expression throughout the stages of CP. Results: Over 2,900 proteins were identified, whereas 331 were significantly changed ≥2-fold by mass spectrometry spectral count analysis. Consistent with pathogenesis, we observed increases in proteins related to fibrosis (e.g., collagen, P<0.001), several proteases (e.g., trypsin 1, P<0.001), and altered expression of proteins associated with diminished pancreas function (e.g., lipase, amylase, P<0.05). In comparison with proteomic data from a public data set of CP patients, a significant correlation was observed between proteomic changes in tissue from both the caerulein model and CP patients (r=0.725, P<0.001). CONCLUSIONS: This study illustrates the ability to characterize proteome changes of acinar cells isolated from pancreata of caerulein-treated mice and demonstrates a relationship between signatures from murine and human CP. PMID:28406494

  2. Suitability of parametric models to describe the hydraulic properties of an unsaturated coarse sand and gravel

    USGS Publications Warehouse

    Mace, Andy; Rudolph, David L.; Kachanoski , R. Gary

    1998-01-01

    The performance of parametric models used to describe soil water retention (SWR) properties and predict unsaturated hydraulic conductivity (K) as a function of volumetric water content (θ) is examined using SWR and K(θ) data for coarse sand and gravel sediments. Six 70 cm long, 10 cm diameter cores of glacial outwash were instrumented at eight depths with porous cup ten-siometers and time domain reflectometry probes to measure soil water pressure head (h) and θ, respectively, for seven unsaturated and one saturated steady-state flow conditions. Forty-two θ(h) and K(θ) relationships were measured from the infiltration tests on the cores. Of the four SWR models compared in the analysis, the van Genuchten (1980) equation with parameters m and n restricted according to the Mualem (m = 1 - 1/n) criterion is best suited to describe the θ(h) relationships. The accuracy of two models that predict K(θ) using parameter values derived from the SWR models was also evaluated. The model developed by van Genuchten (1980) based on the theoretical expression of Mualem (1976) predicted K(θ) more accurately than the van Genuchten (1980) model based on the theory of Burdine (1953). A sensitivity analysis shows that more accurate predictions of K(θ) are achieved using SWR model parameters derived with residual water content (θr) specified according to independent measurements of θ at values of h where θ/h ∼ 0 rather than model-fit θr values. The accuracy of the model K(θ) function improves markedly when at least one value of unsaturated K is used to scale the K(θ) function predicted using the saturated K. The results of this investigation indicate that the hydraulic properties of coarse-grained sediments can be accurately described using the parametric models. In addition, data collection efforts should focus on measuring at least one value of unsaturated hydraulic conductivity and as complete a set of SWR data as possible, particularly in the dry range.

  3. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    NASA Astrophysics Data System (ADS)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  4. Extracellular DNA in single- and multiple-species unsaturated biofilms.

    PubMed

    Steinberger, R E; Holden, P A

    2005-09-01

    The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.

  5. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    PubMed

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Unsaturated free fatty acids increase benzodiazepine receptor agonist binding depending on the subunit composition of the GABAA receptor complex.

    PubMed

    Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M

    1996-11-01

    It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.

  7. ULTRASOUND-ASSISTED EPOXIDATION OF OLEFINS AND A,B-UNSATURATED KETONES OVER HYDROTALCITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An efficient ultrasound-assisted epoxidation of olefins and a,B-unsaturated ketones over hydrotacite catalysts in the presence of hydrogen peroxide and acetonitrile is described. This general and selective protocol is relatively fast and is applicable to a wide variety of substra...

  8. Sediment properties and water movement through shallow unsaturated alluvium at an arid site for disposal of low-level radioactive waste near Beatty, Nye County, Nevada

    USGS Publications Warehouse

    Fischer, Jeffrey M.

    1992-01-01

    A commercial disposal facility for low-level radioactive waste has been in operation near Beatty, Nevada, since 1962. The facility is in the arid Amargosa Desert where wastes are buried in trenches excavated into unsaturated alluvial sediments. Thick unsaturated zones in arid environments offer many potential advantages for disposal of radioactive wastes, but little is known about the natural movement of water near such facilities. Thus, a study was begun in 1982 to better define the direction and rates of water movement through the unsaturated zone in undisturbed sediments near the disposal facility. This report discusses the analyses of data collected between 1983 and 1988.

  9. Relative stability and proton transfer reactions of unsaturated isocyanides and cyanides

    NASA Astrophysics Data System (ADS)

    Adamson, Aiko; Kaljurand, Ivari; Guillemin, Jean-Claude; Burk, Peeter

    2016-09-01

    The typical Gibbs free energy difference between hydrocarbon substituted isocyanides and the corresponding cyanides is 25 to 28 kcal/mol in favor of the cyanides and is mostly independent of the substituent. Triple bonded species with a -C ≡ C-RN,C (RN,C = CN, NC) structure can be considered as exceptions. Because isocyanide and cyanide species have very similar structures, the relative energy is independent of the pressure and temperature conditions. Theoretical and experimental gas-phase investigations show that basicity of isocyanides ranges from 182.1 to 198.2 kcal/mol which is 14.0 to 19.7 kcal/mol higher than the basicity of respective cyanides. The most favored protonation centers are located on isocyanide or cyanide group depending on the species. The biggest increase of basicity was caused by bulkier substituents. The substitutions have greater influence on the basicity of cyanides than on the basicity of isocyanides. In regard to deprotonation, the cyanides are more acidic than the corresponding isocyanides. For most of the unsaturated cyanide and isocyanide species the (N,C)-CHR' hydrogen (the one connected to the carbon next to cyanide/isocyanide group) is the most acidic. Our work suggests that for derivatives bearing unsaturated substituent the favored deprotonation center may be different and some cyanides and isocyanides are unstable towards gas-phase deprotonation equilibrium as the formed anion tends to isomerize.

  10. The Effect of Ambient Ozone on Unsaturated Tear Film Wax Esters.

    PubMed

    Paananen, Riku O; Rantamäki, Antti H; Parshintsev, Jevgeni; Holopainen, Juha M

    2015-12-01

    Tear film lipid layer (TFLL) is constantly exposed to reactive ozone in the surrounding air, which may have detrimental effects on ocular health. Behenyl oleate (BO), a representative tear film wax ester, was used to study the reaction with ozone at the air-water interface. Time-dependent changes in mean molecular area of BO monolayers were measured at different ozone concentrations and surface pressures. In addition, the effect of ascorbic acid on the reaction rate was determined. Reaction was followed using thin-layer chromatography and reaction products were identified using liquid chromatography-electrospray ionization mass spectrometry (LC-MS). Tear fluid samples from healthy subjects were analyzed with LC-MS for any ozonolysis reaction products. Behenyl oleate was found to undergo rapid ozonolysis at the air-water interface at normal indoor ozone concentrations. The reaction was observed as an initial expansion followed by a contraction of the film area. Ascorbic acid was found to decrease the rate of ozonolysis. Main reaction products were identified as behenyl 9-oxononanoate and behenyl 8-(5-octyl-1,2,4-trioxolan-3-yl)octanoate. Similar ozonolysis products were not detected in the tear fluid samples. At the air-water interface, unsaturated wax esters react readily with ozone in ambient air. However, no signs of ozonolysis products were found in the tear fluid. This is most likely due to the antioxidant systems present in tear fluid. Last, the results show that ozonolysis needs to be controlled in future surface chemistry studies on tear film lipids.

  11. The Influence of Soil Suction on the Shear Strength of Unsaturated Soil

    DTIC Science & Technology

    1990-09-01

    the shear strength parameters c’ and 0’ for montmorillonitic and kaolinitic clays increased following the addition of divalent calcium hydroxide to...503-513. Sridharan, A., Rao, S.N., and Rao, G.V. (1971), "Shear Strength Char- acteristics of Saturated Montmorillonite and Kaolinite Clays," Soils...Summary of Shear Strengths of Unsaturated Specimens of Compacted Kaolinite and Compacted Red Earth (After Murthy, Sridharan and Nagaraj, 1987

  12. Chromosome 17 alterations identify good-risk and poor-risk tumors independently of clinical factors in medulloblastoma

    PubMed Central

    McCabe, Martin G.; Bäcklund, L. Magnus; Leong, Hui Sun; Ichimura, Koichi; Collins, V. Peter

    2011-01-01

    Current risk stratification schemas for medulloblastoma, based on combinations of clinical variables and histotype, fail to accurately identify particularly good- and poor-risk tumors. Attempts have been made to improve discriminatory power by combining clinical variables with cytogenetic data. We report here a pooled analysis of all previous reports of chromosomal copy number related to survival data in medulloblastoma. We collated data from previous reports that explicitly quoted survival data and chromosomal copy number in medulloblastoma. We analyzed the relative prognostic significance of currently used clinical risk stratifiers and the chromosomal aberrations previously reported to correlate with survival. In the pooled dataset metastatic disease, incomplete tumor resection and severe anaplasia were associated with poor outcome, while young age at presentation was not prognostically significant. Of the chromosomal variables studied, isolated 17p loss and gain of 1q correlated with poor survival. Gain of 17q without associated loss of 17p showed a trend to improved outcome. The most commonly reported alteration, isodicentric chromosome 17, was not prognostically significant. Sequential multivariate models identified isolated 17p loss, isolated 17q gain, and 1q gain as independent prognostic factors. In a historical dataset, we have identified isolated 17p loss as a marker of poor outcome and 17q gain as a novel putative marker of good prognosis. Biological markers of poor-risk and good-risk tumors will be critical in stratifying treatment in future trials. Our findings should be prospectively validated independently in future clinical studies. PMID:21292688

  13. Addition of CF3 across unsaturated moieties: a powerful functionalization tool

    PubMed Central

    2014-01-01

    In the last few years, the efficient introduction of trifluoromethyl groups in organic molecules has become a major research focus. This review highlights the recent developments enabling the incorporation of CF3 groups across unsaturated moieties, preferentially alkenes, and the mechanistic scenarios governing these transformations. We have specially focused on methods involving the simultaneous formation of C–CF3 and C–C or C–heteroatom bonds by formal addition reactions across π-systems, as such difunctionalization processes hold valuable synthetic potential. PMID:24789472

  14. Targeted sequencing identifies genetic alterations that confer primary resistance to EGFR tyrosine kinase inhibitor (Korean Lung Cancer Consortium).

    PubMed

    Lim, Sun Min; Kim, Hye Ryun; Cho, Eun Kyung; Min, Young Joo; Ahn, Jin Seok; Ahn, Myung-Ju; Park, Keunchil; Cho, Byoung Chul; Lee, Ji-Hyun; Jeong, Hye Cheol; Kim, Eun Kyung; Kim, Joo-Hang

    2016-06-14

    Non-small-cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations may exhibit primary resistance to EGFR tyrosine kinase inhibitor (TKI). We aimed to examine genomic alterations associated with de novo resistance to gefitinib in a prospective study of NSCLC patients. One-hundred and fifty two patients with activating EGFR mutations were included in this study and 136 patients' tumor sample were available for targeted sequencing of genomic alterations in 22 genes using the Colon and Lung Cancer panel (Ampliseq, Life Technologies). All 132 patients with EGFR mutation were treated with gefitinib for their treatment of advanced NSCLC. Twenty patients showed primary resistance to EGFR TKI, and were classified as non-responders. A total of 543 somatic single-nucleotide variants (498 missense, 13 nonsense) and 32 frameshift insertions/deletions, with a median of 3 mutations per sample. TP53 was most commonly mutated (47%) and mutations in SMAD4 was also common (19%), as well as DDR2 (16%), PIK3CA (15%), STK11 (14%), and BRAF (7%). Genomic mutations in the PI3K/Akt/mTOR pathway were commonly found in non-responders (45%) compared to responders (27%), and they had significantly shorter progression-free survival and overall survival compared to patients without mutations (2.1 vs. 12.8 months, P=0.04, 15.7 vs. not reached, P<0.001). FGFR 1-3 alterations, KRAS mutations and TP53 mutations were more commonly detected in non-responders compared to responders. Genomic mutations in the PI3K/Akt/mTOR pathway were commonly identified in non-responders and may confer resistance to EGFR TKI. Screening lung adenocarcinoma patients with clinical cancer gene test may aid in selecting out those who show primary resistance to EGFR TKI (NCT01697163).

  15. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  16. Unsaturation of Very-Long-Chain Ceramides Protects Plant from Hypoxia-Induced Damages by Modulating Ethylene Signaling in Arabidopsis

    PubMed Central

    Yu, Lu-Jun; Huang, Li; Chen, Liang; Wang, Feng-Zhu; Xia, Fan-Nv; Zhu, Tian-Ren; Wu, Jian-Xin; Yin, Jian; Liao, Bin; Shi, Jianxin; Zhang, Jian-Hua; Aharoni, Asaph; Yao, Nan; Shu, Wensheng; Xiao, Shi

    2015-01-01

    Lipid remodeling is crucial for hypoxic tolerance in animals, whilst little is known about the hypoxia-induced lipid dynamics in plants. Here we performed a mass spectrometry-based analysis to survey the lipid profiles of Arabidopsis rosettes under various hypoxic conditions. We observed that hypoxia caused a significant increase in total amounts of phosphatidylserine, phosphatidic acid and oxidized lipids, but a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Particularly, significant gains in the polyunsaturated species of PC, PE and phosphatidylinositol, and losses in their saturated and mono-unsaturated species were evident during hypoxia. Moreover, hypoxia led to a remarkable elevation of ceramides and hydroxyceramides. Disruption of ceramide synthases LOH1, LOH2 and LOH3 enhanced plant sensitivity to dark submergence, but displayed more resistance to submergence under light than wild type. Consistently, levels of unsaturated very-long-chain (VLC) ceramide species (22:1, 24:1 and 26:1) predominantly declined in the loh1, loh2 and loh3 mutants under dark submergence. In contrast, significant reduction of VLC ceramides in the loh1-1 loh3-1 knockdown double mutant and lacking of VLC unsaturated ceramides in the ads2 mutants impaired plant tolerance to both dark and light submergences. Evidence that C24:1-ceramide interacted with recombinant CTR1 protein and inhibited its kinase activity in vitro, enhanced ER-to-nucleus translocation of EIN2-GFP and stabilization of EIN3-GFP in vivo, suggests a role of ceramides in modulating CTR1-mediated ethylene signaling. The dark submergence-sensitive phenotypes of loh mutants were rescued by a ctr1-1 mutation. Thus, our findings demonstrate that unsaturation of VLC ceramides is a protective strategy for hypoxic tolerance in Arabidopsis. PMID:25822663

  17. Isolation and Characterization of the cis-trans-Unsaturated Fatty Acid Isomerase of Pseudomonas oleovorans GPo12

    PubMed Central

    Pedrotta, Valerian; Witholt, Bernard

    1999-01-01

    Pseudomonas oleovorans contains an isomerase which catalyzes the cis-trans conversion of the abundant unsaturated membrane fatty acids 9-cis-hexadecenoic acid (palmitoleic acid) and 11-cis-octadecenoic acid (vaccenic acid). We purified the isomerase from the periplasmic fraction of Pseudomonas oleovorans. The molecular mass of the enzyme was estimated to be 80 kDa under denaturing conditions and 70 kDa under native conditions, suggesting a monomeric structure of the active enzyme. N-terminal sequencing showed that the isomerase derives from a precursor with a signal sequence which is cleaved from the primary translation product in accord with the periplasmic localization of the enzyme. The purified isomerase acted only on free unsaturated fatty acids and not on esterified fatty acids. In contrast to the in vivo cis-trans conversion of lipids, this in vitro isomerization of free fatty acids did not require the addition of organic solvents. Pure phospholipids, even in the presence of organic solvents, could not serve as substrate for the isomerase. However, when crude membranes from Pseudomonas or Escherichia coli cells were used as phospholipid sources, a cis-trans isomerization was detectable which occurred only in the presence of organic solvents. These results indicate that isolated membranes from Pseudomonas or E. coli cells must contain factors which, activated by the addition of organic solvents, enable and control the cis-trans conversion of unsaturated acyl chains of membrane phospholipids by the periplasmic isomerase. PMID:10322030

  18. Regional coupling of unsaturated and saturated flow and transport modeling - implementation at an alpine foothill aquifer in Austria

    NASA Astrophysics Data System (ADS)

    Klammler, G.; Rock, G.; Kupfersberger, H.; Fank, J.

    2012-04-01

    For many European countries nitrate leaching from the soil zone into the aquifer due to surplus application of mineral fertilizer and animal manure by farmers constitutes the most important threat to groundwater quality. Since this is a diffuse pollution situation measures to change agricultural production have to be investigated at the aquifer scale. In principal, the problem could be solved by the 3 dimensional equation describing variable saturated groundwater flow and solute transport. However, this is computationally prohibitive due to the temporal and spatial scope of the task, particularly in the framework of running numerous simulations to compromise between conflicting interests (i.e. good groundwater status and high agricultural yield). For the aquifer 'Westliches Leibnitzer Feld' we break down this task into 1d vertical movement of water and nitrate mass in the unsaturated zone and 2d horizontal flow of water and solutes in the saturated compartment. The aquifer is located within the Mur Valley about 20 km south of Graz and consists of early Holocene gravel with varying amounts of sand and some silt. The unsaturated flow and nitrate leaching package SIMWASER/STOTRASIM (Stenitzer, 1988; Feichtinger, 1998) is calibrated to the lysimeter data sets and further on applied to so called hydrotopes which are unique combinations of soil type and agricultural management. To account for the unknown regional distribution of crops grown and amount, timing and kind of fertilizers used a stochastic tool (Klammler et al, 2011) is developed that generates sequences of crop rotations derived from municipal statistical data. To match the observed nitrate concentrations in groundwater with a saturated nitrate transport model it is of utmost importance to apply a realistic input distribution of nitrate mass in terms of spatial and temporal characteristics. A table is generated by running SIMWASER/STOTRASIM that consists of unsaturated water and nitrate fluxes for each 10 cm

  19. Herbicide Transport and Transformations in the Unsaturated Zone of Three Small Agricultural Basins with Corn and Soybean Row Crops

    NASA Astrophysics Data System (ADS)

    Hancock, T. C.; Vogel, J. R.; Sandstrom, M. W.; Capel, P. D.; Bayless, R. E.; Webb, R. M.

    2006-05-01

    In the United States, herbicides are among the most significant nonpoint-source pollutants and were applied to 95% of all fields in corn production and 97% of all fields in soybean production in 2003 and 2004. The United States Geological Survey (USGS) has conducted a study on select herbicides in the unsaturated zone under corn and soybean fields in three predominantly agricultural basins: Morgan Creek (Maryland), Leary Weber Ditch within Sugar Creek (Indiana), and Maple Creek (Nebraska). In 2004, the Morgan Creek and Leary Weber Ditch fields were in soybeans and the Maple Creek fields were in corn. The Maple Creek fields were irrigated, whereas those in Morgan Creek and Leary Weber Ditch were not. Similarities and differences in agricultural management practices, climatic conditions, and natural features, such as soil types and geology, were evaluated as part of the study. In general, the amounts of herbicides entering the unsaturated zone from rain in these basins were minor (1%) compared to amounts commonly applied to the land surface during agricultural practices. Few herbicides were detected on solid core samples from the unsaturated zones of these basins. An exception was found at a Morgan Creek site in an upland recharge area with sandier soils. Here, atrazine concentrations were highest in the near surface solids and decreased with depth. In the unsaturated-zone porewater of the Morgan Creek Basin, parent triazine and acetanilide herbicides were detected and only at the site in the upland recharge area at relatively low concentrations at depths greater than 4 meters, probably because these compounds had not been applied for several years. At the Morgan Creek and Leary Weber Ditch sites, acetanilide metabolites were frequently detected in the unsaturated-zone porewater. In general, the fraction of metolachlor ethane sulfonic acid (ESA) relative to the total mass of parent and metabolites increased with depth overall and at several individual sampling

  20. Field-scale water transport in unsaturated crystalline rock

    NASA Astrophysics Data System (ADS)

    Gimmi, T.; Schneebeli, M.; Flühler, H.; Wydler, H.; Baer, T.

    1997-04-01

    Safe disposal of toxic wastes in geologic formations requires minimal water and gas movement in the vicinity of storage areas. Ventilation of repository tunnels or caverns built in solid rock can desaturate the near field up to a distance of meters from the rock surface, even when the surrounding geological formation is saturated and under hydrostatic pressures. A tunnel segment at the Grimsel test site located in the Aare granite of the Bernese Alps (central Switzerland) has been subjected to a resaturation and, subsequently, to a controlled desaturation. Using thermocouple psychrometers (TP) and time domain reflectometry (TDR), the water potentials ψ and water contents θ were measured within the unsaturated granodiorite matrix near the tunnel wall at depths between 0 and 160 cm. During the resaturation the water potentials in the first 30 cm from the rock surface changed within weeks from values of less than -1.5 MPa to near saturation. They returned to the negative initial values during desaturation. The dynamics of this saturation-desaturation regime could be monitored very sensitively using the thermocouple psychrometers. The TDR measurements indicated that water contents changed close to the surface, but at deeper installation depths the observed changes were within the experimental noise. The field-measured data of the desaturation cycle were used to test the predictive capabilities of the hydraulic parameter functions that were derived from the water retention characteristics ψ(θ) determined in the laboratory. A depth-invariant saturated hydraulic conductivity ks = 3.0 × 10-11m s-1 was estimated from the ψ(t) data at all measurement depths, using the one-dimensional, unsaturated water flow and transport model HYDRUS [Vogel et al., 1996]. For individual measurement depths, the estimated ks varied between 9.8 × 10-12 and 6.1 × 10-11 m s-1. The fitted ks values fell within the range of previously estimated s for this location and led to a satisfactory

  1. Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters.

    PubMed

    Böhme, Alexander; Thaens, Diana; Schramm, Franziska; Paschke, Albrecht; Schüürmann, Gerrit

    2010-12-20

    A recently introduced chemoassay has been used to determine second-order rate constants of the electrophile-nucleophile reaction of 15 α,β-unsaturated aldehydes with glutathione. The respective kGSH values vary for more than 3 orders of magnitude, and are within the range determined previously for 31 α,β-unsaturated ketones and esters. Structure-reactivity analyses yield distinct relationships between kGSH and structural features of the compounds. Moreover, increasing kGSH increases the aldehyde toxicity toward ciliates in terms of 48 h-EC50 values (effective concentration yielding 50% growth inhibition of Tetrahymena pyriformis within 48 h). A respective log-log regression equation including both kGSH and the octanol/water partition coefficient, Kow, yields a squared correlation coefficient of 0.96. Comparative analysis with corresponding data for 15 ketones and 16 esters reveals systematic differences between the three compound classes with regard to the individual contributions of hydrophobicity and electrophilic reactivity to aquatic toxicity. The former is particularly pronounced for aldehydes, while the ester toxicity is largely governed by reactivity, with ketones showing an intermediate pattern that is more similar to the one of esters than of aldehydes. It follows that within the Michael acceptor domain of α,β-unsaturated carbonyls, a distinction between aldehydes and nonaldehydic derivatives appears necessary when employing electrophilic reactivity as a component for the quantitative prediction of their reactive toxicity toward aquatic organisms.

  2. In situ crystallization and transformation kinetics of polymorphic forms of saturated-unsaturated-unsaturated triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol.

    PubMed

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2016-07-01

    We examined the influence of dynamic thermal treatment (variation of cooling/heating rates) on the polymorphic crystallization and transformation pathways of 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), which are major saturated-unsaturated-unsaturated (SUU) triacylglycerols (TAGs) of vegetable oils and animal fats (e.g., palm oil, olive oil, and Iberian ham fat). Using mainly a combination of differential scanning calorimetry (DSC) and synchrotron radiation X-ray diffraction (SR-XRD), we analyzed the polymorphic behavior of TAGs when high (15°Cmin -1 ), intermediate (2°Cmin -1 ), and low (0.5°Cmin -1 ) cooling and heating rates were applied. Multiple polymorphic forms were detected in POO, SOO, and POL (sub-α, α, β' 2 , and β' 1 ). Transient disordered phases, defined as kinetic liquid crystal (KLC) phases, were determined in POO and SOO for the first time. The results demonstrated that more stable forms were directly obtained from the melt by decreasing the cooling rates, whereas less stable forms predominated at high cooling rates, as confirmed in our previous work. Regarding heating rate variation, we confirmed that the nature of the polymorphic transformations observed (solid-state, transformation through KLC phase, or melt-mediation) depended largely on the heating rate. These results were discussed considering the activation energies involved in each process and compared with previous studies on TAGs with different saturated-unsaturated structures (1,3-dioleoyl-2-palmitoylglycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, trioleoyl glycerol, and 1,2-dioleoyl-3-linoleoyl glycerol). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Design and laboratory testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions.

    PubMed

    Tillman, Fred D; Smith, James A

    2004-11-01

    To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.

  4. Mineralization of isoproturon, mecoprop and acetochlor in a deep unsaturated limestone and sandy aquifer.

    PubMed

    Janniche, G S; Lindberg, E; Mouvet, C; Albrechtsen, H-J

    2010-11-01

    Isoproturon (N,N-dimethyl-N'-[4-(1-methylethyl)phenyl]urea), mecoprop (MCPP) (2-(4-chloro-2-methylphenoxy)propanoic acid) and acetochlor (2-chloro-N-(2-ethoxymethyl)-N-(2-ethyl-6-methylphenyl)acetamide) are agricultural pesticides that may leach through the vadose zone down to groundwater. Sediment samples were collected from intact sediment cores from 0 to 59 m below surface, including soil, unsaturated limestone and aquifer sand. In the unsaturated limestone, the initial pesticide concentrations (0.5-100 μg kg(-1)) did not systematically affect the proportion of mineralized pesticides or the kinetics. However, in the aquifer, mecoprop and to some degree isoproturon mineralization was found to increase with increasing initial concentration (0.5-100 μg L(-1) equivalent to 1-220 μg kg(-1)) demonstrating the importance of using environmentally relevant concentrations when predicting pesticide fate. The mineralization of isoproturon, mecoprop and acetochlor was studied in 40 samples at low concentrations (1-3 μg L(-1)) and specific pesticide-mineralizing bacteria were enumerated using 14C-MPN. Presence of the mineralizers documented a degradation potential of the pesticides within the catchment. The number of mineralizers varied from <0.18 to >16000 g(-1) and was not found to correlate with depth. Mecoprop, isoproturon and acetochlor were substantially mineralized in the soils (19-44% after 8months incubation at 1 μg kg(-1)), in sub-surface unsaturated limestone samples (≤2% for acetochlor, ≤21% for isoproturon and ≤31% for mecoprop) and in aquifer samples (4-28% for mecoprop, ≤4.7% for isoproturon and ≤5.6% for acetochlor). The finding of isoproturon and acetochlor mineralization in deep aquifers is novel and important for the evaluation of the fate of these pesticides, as even low mineralization rates can be important in aquifers exhibiting long residence times. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Characterizing genomic alterations in cancer by complementary functional associations.

    PubMed

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  6. Airflow dispersion in unsaturated soil.

    PubMed

    Gidda, T; Cann, D; Stiver, W H; Zytner, R G

    2006-01-05

    Dispersion data is abundant for water flow in the saturated zone but is lacking for airflow in unsaturated soil. However, for remediation processes such as soil vapour extraction, characterization of airflow dispersion is necessary for improved modelling and prediction capabilities. Accordingly, gas-phase tracer experiments were conducted in five soils ranging from uniform sand to clay at air-dried and wetted conditions. The disturbed soils were placed in one-dimensional stainless steel columns, with sulfur hexafluoride used as the inert tracer. The tested interstitial velocities were typical of those present in the vicinity of a soil vapour extraction well, while wetting varied according to the water-holding capacity of the soils. Results gave dispersivities that varied between 0.42 and 2.6 cm, which are typical of values in the literature. In air-dried soils, dispersion was found to increase with the pore size variability of the soil. For wetted soils, particle shape was an important factor at low water contents, while at high water contents, the proportion of macroporous space filled with water was important. The relative importance of diffusion decreased with increasing interstitial velocity and water content and was, in general, found to be minor compared to mechanical mixing across all conditions studied.

  7. Chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Warren, R.G.; Hagan, R.C.

    1986-10-01

    The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less

  8. Diene Hydroacylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones

    PubMed Central

    Shibahara, Fumitoshi; Bower, John F.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, isoprene couples to benzylic and aliphatic alcohols 1a–1g to deliver β,γ-unsaturated ketones 3a–3g in good to excellent isolated yields. Under identical conditions, aldehydes 2a–2g couple to isoprene to provide an identical set of β,γ-unsaturated ketones 3a–3g in good to excellent isolated yields. As demonstrated by the coupling of butadiene, myrcene and 1,2-dimethylbutadiene to representative alcohols 1b, 1c and 1e, diverse acyclic dienes participate in transfer hydrogenative coupling to form β,γ-unsaturated ketones. In all cases, complete branch-regioselectivity is observed and, with the exception of adduct 3j, isomerization to the conjugated enone is not detected. Thus, formal intermolecular diene hydroacylation is achieved from the alcohol or aldehyde oxidation level. In earlier studies employing a related ruthenium catalyst, acyclic dienes were coupled to carbonyl partners from the alcohol or aldehyde oxidation level to furnish branched homoallylic alcohols. Thus, under transfer hydrogenative coupling conditions, all oxidations levels of substrate (alcohol or aldehyde) and product (homoallyl alcohol or β,γ-unsaturated ketone) are accessible. PMID:18841895

  9. Ordered Nanostructured Amphiphile Self-Assembly Materials from Endogenous Nonionic Unsaturated Monoethanolamide Lipids in Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena

    2010-08-23

    The self-assembly, solid state and lyotropic liquid crystalline phase behavior of a series of endogenous n-acylethanolamides (NAEs) with differing degrees of unsaturation, viz., oleoyl monoethanolamide, linoleoyl monoethanolamide, and linolenoyl monoethanolamide, have been examined. The studied molecules are known to possess inherent biological function. Both the monoethanolamide headgroup and the unsaturated hydrophobe are found to be important in dictating the self-assembly behavior of these molecules. In addition, all three molecules form lyotropic liquid crystalline phases in water, including the inverse bicontinuous cubic diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) phases. The ability of the NAE's to form inverse cubicmore » phases and to be dispersed into ordered nanostructured colloidal particles, cubosomes, in excess water, combined with their endogenous nature and natural medicinal properties, makes this new class of soft mesoporous amphiphile self-assembly materials suitable candidates for investigation in a variety of advanced multifunctional applications, including encapsulation and controlled release of therapeutic agents and incorporation of medical imaging agents.« less

  10. Thermodynamics of the clusterization process of cis isomers of unsaturated fatty acids at the air/water interface.

    PubMed

    Vysotsky, Yu B; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Aksenenko, E V; Miller, R

    2009-04-02

    In the framework of the semiempirical PM3 method, the thermodynamic parameters of cis isomers of unsaturated carboxylic acids at the air/water interface are studied. The model systems used are unsaturated cis fatty acid of the composition Delta = 12-15 and omega = 6-11, where Delta and omega refer to the number of carbon atoms between the functional group and double bond, and that between the double bond and methyl group, respectively. For dimers, trimers, and tetramers of the four acid series, the thermodynamic parameters of clusterization are calculated. It is shown that the position of the double bond does not significantly affect the values of thermodynamic parameters of formation and clusterization of carboxylic acids for equal chain lengths (n = Delta + omega). The calculated results show that for cis unsaturated fatty acid with odd Delta values the spontaneous clusterization threshold corresponds to n = 17-18 carbon atoms in the alkyl chain, while for monounsaturated acids with even Delta values this threshold corresponds to n = 18-19 carbon atoms in the alkyl chain. These differences in the clusterization threshold between the acids with even and odd Delta values are attributed to the formation of additional intermolecular hydrogen bonds between the ketonic oxygen atom of one monomer and the hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with odd Delta values or between the hydroxyl oxygen atom of one monomer and hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with even Delta values. The results obtained in the study agree satisfactorily with our experimental data for cis unsaturated nervonic (Delta15, omega9) and erucic acids (Delta13, omega9), and published data for some fatty acids, namely cis-16-heptadecenoic (Delta16, omega1), cis-9-hexadecenoic (Delta7, omega9), cis-11-eicosenoic (Delta11, omega9) and cis-9-octadecenoic acid (Delta9, omega9).

  11. Modeling a thick unsaturated zone at San Gorgonio Pass, California: lessons learned after five years of artificial recharge

    USGS Publications Warehouse

    Flint, Alan L.; Ellett, Kevin M.; Christensen, Allen H.; Martin, Peter

    2012-01-01

    The information flow among the tasks of framework assessment, numerical modeling, model forecasting and hind casting, and system-performance monitoring is illustrated. Results provide an understanding of artificial recharge in high-altitude desert settings where large vertical distances may separate application ponds from their target aquifers.Approximately 3.8 million cubic meters of surface water was applied to spreading ponds from 2003–2007 to artificially recharge the underlying aquifer through a 200-meter thick unsaturated zone in the San Gorgonio Pass area in southern California. A study was conducted between 1997 and 2003, and a numerical model was developed to help determine the suitability of the site for artificial recharge. Ongoing monitoring results indicated that the existing model needed to be modified and recalibrated to more accurately predict artificial recharge at the site. The objective of this work was to recalibrate the model by using observation of the application rates, the rise and fall of the water level above a perching layer, and the approximate arrival time to the water table during the 5-yr monitoring period following initiation of long-term artificial recharge. Continuous monitoring of soil-matric potential, temperature, and water levels beneath the site indicated that artificial recharge reached the underlying water table between 3.75 and 4.5 yr after the initial application of the recharge water. The model was modified to allow the simulation to more adequately match the perching layer dynamics and the time of arrival at the water table. The instrumentation also showed that the lag time between changes in application of water at the surface and the response at the perching layer decreased from about 4 mo to less than 1 mo due to the wet-up of the unsaturated zone and the increase in relative permeability. The results of this study demonstrate the importance of iteratively monitoring and modeling the unsaturated zone in layered

  12. Recent advances in the chemical modification of unsaturated polymers

    NASA Technical Reports Server (NTRS)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  13. Experimental investigations on mechanical behavior of unsaturated subgrade soil with lime stabilization and fiber reinforcement : final report.

    DOT National Transportation Integrated Search

    2003-11-01

    In the present report, experimental investigations on mechanical behavior of unsaturated subgrade soil : with fiber reinforcement and lime stabilization were conducted. : The soil samples were collected from the soil/aggregate laboratory at the Maryl...

  14. C–H Functionalization of Cyclic Amines: Redox-Annulations with α,β-Unsaturated Carbonyl Compounds

    PubMed Central

    Kang, YoungKu; Richers, Matthew T.; Sawicki, Conrad H.; Seidel, Daniel

    2015-01-01

    Cyclic amines such as pyrrolidine and 1,2,3,4-tetrahydroisoquinoline undergo redox-annulations with α,β-unsaturated aldehydes and ketones. Carboxylic acid promoted generation of a conjugated azomethine ylide is followed by 6π-electrocylization, and, in some cases, tautomerization. The resulting ring-fused pyrrolines are readily oxidized to the corresponding pyrroles or reduced to pyrrolidines. PMID:26051897

  15. Investigation of Episodic Flow from Unsaturated Porous Media into a Macropore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. K. Podgorney; J. P. Fairley

    Th e recent literature contains numerous observations of episodic or intermittent fl ow in unsaturated flow systems under both constant fl ux and ponded boundary conditions. Flow systems composed of a heterogeneous porous media, as well as discrete fracture networks, have been cited as examples of systems that can exhibit episodic fl ow. Episodic outfl ow events are significant because relatively large volumes of water can move rapidly through an unsaturated system, carrying water and contaminants to depth greatly ahead of a wetting front predicted by a one-dimensional, gravity-driven diff usive infiltration model. In this study, we model the behaviormore » of water flow through a sand column underlain by an impermeable-walled macropore. Relative permeability and capillary pressure relationships were developed that capture the complex interrelationships between the macropore and the overlying porous media that control fl ow out of the system. The potential for episodic flow is assessed and compared to results of conventional modeling approaches and experimental data from the literature. Model results using coupled matrix–macropore relative permeability and capillary pressure relationships capture the behavior observed in laboratory experiments remarkably well, while simulations using conventional relative permeability and capillary pressure functions fail to capture some of the observed fl ow dynamics. Capturing the rapid downward movement of water suggests that the matrix-macropore capillary pressure and relative permeability functions developed have the potential to improve descriptions of fl ow and transport processes in heterogeneous, variably saturated media.« less

  16. Sampling silica and ferrihydrite colloids with fiberglass wicks under unsaturated conditions.

    PubMed

    Shira, Jason M; Williams, Barbara C; Flury, Markus; Czigány, Szabolcs; Tuller, Markus

    2006-01-01

    The suitability of passive capillary samplers (PCAPS) for collection of representative colloid samples under partially saturated conditions was evaluated by investigating the transport of negatively and positively charged colloids in fiberglass wicks. A synthetic pore water solution was used to suspend silica microspheres (330 nm in diameter) and ferrihydrite (172 nm in diameter) for transport experiments on fiberglass wicks. Breakthrough curves were collected for three unsaturated flow rates with silica microspheres and one unsaturated flow rate with ferrihydrite colloids. A moisture characteristic curve, relating tensiometer measurements of matric potential to moisture content, was developed for the fiberglass wick. Results indicate that retention of the silica and the ferrihydrite on the wick occurred; that is, the wicks did not facilitate quantitative sampling of the colloids. For silica microspheres, 90% of the colloids were transmitted through the wicks. For ferrihydrite, 80 to 90% of the colloids were transmitted. The mechanisms responsible for the retention of the colloids on the fiberglass wicks appeared to be physicochemical attachment and not thin-film, triple-phase entrapment, or mechanical straining. Visualization of pathways by iron staining indicates that flow is preferential at the center of twisted bundles of filaments. Although axial preferential flow in PCAPS may enhance their hydraulic suitability for sampling mobile colloids, we conclude that without specific preparation to reduce attachment or retention, fiberglass wicks should only be used for qualitative sampling of pore water colloids.

  17. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, I.C.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions ofmore » Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.« less

  18. Aedes aegypti (Diptera: culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids

    USDA-ARS?s Scientific Manuscript database

    In this study we systematically evaluated for the first time the biting deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti [yellow fever mosquito (Diptera: Culicidae)] using the K & D bioassay system (Klun et al 2005). The saturated fatty acids (C6:0 to C16...

  19. Assimilation of ambient seismic noise in hydrological models allows estimation of hydraulic conductivity in unsaturated media

    NASA Astrophysics Data System (ADS)

    Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.

    2016-12-01

    Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.

  20. Fragrant unsaturated aldehydes elicit activation of the Keap1/Nrf2 system leading to the upregulation of thioredoxin expression and protection against oxidative stress.

    PubMed

    Masutani, Hiroshi; Otsuki, Ryoko; Yamaguchi, Yoshimi; Takenaka, Masahiro; Kanoh, Nobue; Takatera, Koji; Kunimoto, Yuji; Yodoi, Junji

    2009-05-01

    Thioredoxin, a key molecule in redox regulation, and many redox enzymes are regulated through the antioxidant responsive element (ARE). To search for antioxidative constituents, we screened extracts from vegetables and found that the extracts of Perilla frutescens and Artemisia princeps have potent thioredoxin-inducing activities. By activity-guided purification of Perilla frutescens extracts, we identified perillaldehyde as a novel thioredoxin inducer. Fragrant unsaturated aldehydes, such as trans-cinnamaldehyde, safranal, 2,4-octadienal, citral, trans-2, cis-6-nonadienal, and trans-2-hexenal showed the ability to activate ARE. Perillaldehyde-induced activation through the ARE was suppressed by the overexpression of wild-type Keap1, whereas sulforaphane-induced activation seemed to be partially suppressed. Mutant Keap1 (R272A/K287A or C273A/C288A) did not suppress this activation. Pretreatment with perillaldehyde reduced the H(2)O(2)-induced cytotoxicity. Thus, we show that fragrant unsaturated aldehydes from edible plants are novel thioredoxin inducers and ARE activators and may be beneficial for protection against oxidative stress-induced cellular damage. These results also suggest that perillaldehyde activates the Nrf2-Keap1 system and that the lysine and arginine residues juxtaposed to the critical cysteine residues of Keap1 are required for signal sensing.

  1. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity.

    PubMed Central

    Heipieper, H J; Diefenbach, R; Keweloh, H

    1992-01-01

    A trans unsaturated fatty acid was found as a major constituent in the lipids of Pseudomonas putida P8. The fatty acid was identified as 9-trans-hexadecenoic acid by gas chromatography, argentation thin-layer chromatography, and infrared absorption spectrometry. Growing cells of P. putida P8 reacted to the presence of sublethal concentrations of phenol in the medium with changes in the fatty acid composition of the lipids, thereby increasing the degree of saturation. At phenol concentrations which completely inhibited the growth of P. putida, the cells were still able to increase the content of the trans unsaturated fatty acid and simultaneously to decrease the proportion of the corresponding 9-cis-hexadecenoic acid. This conversion of fatty acids was also induced by 4-chlorophenol in nongrowing cells in which the de novo synthesis of lipids had stopped, as shown by incorporation experiments with labeled acetate. The isomerization of the double bond in the presence of chloramphenicol indicates a constitutively operating enzyme system. The cis-to-trans modification of the fatty acids studied here apparently is a new way of adapting the membrane fluidity to the presence of phenols, thereby compensating for the elevation of membrane permeability induced by these toxic substances. PMID:1622260

  2. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations.

    PubMed

    Narayanan, Sruthi; Tamura, Pamela J; Roth, Mary R; Prasad, P V Vara; Welti, Ruth

    2016-04-01

    Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate-resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization-tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat-tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3-containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd-numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0-acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0-ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT. © 2015 John Wiley & Sons Ltd.

  3. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations

    PubMed Central

    Narayanan, Sruthi; Tamura, Pamela J.; Roth, Mary R.; Vara Prasad, P.V.; Welti, Ruth

    2016-01-01

    Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate-resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization-tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat-tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared to optimum temperature. The lower unsaturation was predominantly due to lower levels of 18:3 and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3-containing triacylglycerols increased 3-fold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodeling. Phospholipids containing odd-numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0-acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0-ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, that some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT. PMID:26436679

  4. Nitrogen fluxes through unsaturated zones in five agricultural settings across the USA

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Fisher, L. H.; Bekins, B. A.

    2006-12-01

    The main controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Washington, Nebraska, Indiana, and Maryland in 2004 and 2005. Sites included irrigated and non-irrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 0.5 to 20 m. Chemical analyses of water from lysimeters, shallow wells, and sediment cores indicate that advective transport of nitrate is the dominant process affecting the rate of N transport below the root zone. Vertical profiles of (1) N species, (2) stable N and O isotopes, and (3) oxygen gas in unsaturated zone air and shallow ground water, and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. Relatively stable concentrations at depths greater than a few meters allow calculation of nitrogen fluxes to the saturated zone. These fluxes are equivalent to 14 - 64% of the N application rates. At the same locations, median vertical fluxes of N in ground water are generally lower, ranging from 4 - 37% of N application rates. The lower nitrate fluxes in ground water reflect processes including lateral flow to tile drains and denitrification in the capillary fringe, as well as historical changes in N inputs.

  5. Dietary unsaturated fatty acids differently affect catecholamine handling by adrenal chromaffin cells.

    PubMed

    Gomes, Andreia; Correia, Gustavo; Coelho, Marisa; Araújo, João Ricardo; Pinho, Maria João; Teixeira, Ana Luisa; Medeiros, Rui; Ribeiro, Laura

    2015-05-01

    Catecholamines (CA) play an important role in cardiovascular (CDV) disease risk. Namely, noradrenaline (NA) levels positively correlate whereas adrenaline (AD) levels negatively correlate with obesity and/or CDV disease. Western diets, which are tipically rich in Ω-6 fatty acids (FAs) and deficient in Ω-3 FAs, may contribute to the development of obesity, type 2 diabetes and/or coronary artery disease. Taking this into consideration and the fact that our group has already described that saturated FAs affect catecholamine handling by adrenal chromaffin cells, this work aimed to investigate the effect of unsaturated FAs upon catecholamine handling in the same model. Our results showed that chronic exposure to unsaturated FAs differently modulated CA cellular content and release, regardless of both FA series and number of carbon atoms. Namely, the Ω-6 arachidonic and linoleic acids, based on their effect on CA release and cellular content, seemed to impair NA and AD vesicular transport, whereas γ-linolenic acid selectively impaired AD synthesis and release. Within the Ω-9 FAs, oleic acid was devoid of effect, and elaidic acid behaved similarly to γ-linolenic acid. Eicosapentaenoic and docosahexaenoic acids (Ω-3 series) impaired the synthesis and release of both NA and AD. These results deserve attention and future development, namely, in what concerns the mechanisms involved and correlative effects in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.

    2017-12-01

    Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.

  7. Asymmetric conjugate 1,4-addition of arylboronic acids to alpha, beta-unsaturated esters catalyzed by Rhodium(I)/(S)-binap

    PubMed

    Sakuma; Sakai; Itooka; Miyaura

    2000-09-22

    Arylboronic acids underwent the conjugate 1,4-addition to alpha, beta-unsaturated esters to give beta-aryl esters in high yields in the presence of a rhodium(I) catalyst. The addition of arylboronic acids to isopropyl crotonate resulted in high yields and high enantioselectivity exceeding 90% ee in the presence of 3 mol % of Rh(acac)(C(2)H(4))(2) and (S)-binap at 100 degrees C. The rhodium/(S)-binap complex provided (R)-3-phenylbutanoate in the addition of phenylboronic acid to benzyl crotonate. The effects on the enantioselectivity of chiral phosphine ligands, rhodium precursors, and substituents on alpha,beta-unsaturated esters are discussed, as well as the mechanistic aspect of the catalytic cycle.

  8. Effects of carbon dioxide variations in the unsaturated zone on water chemistry in a glacial-outwash aquifer

    USGS Publications Warehouse

    Lee, R.W.

    1997-01-01

    The research site at Otis Air Base, Cape Cod, Massachusetts, has been developed for hydrogeological and geochemical studies of sewage-effluent contaminated groundwater since 1982. Research of hydrologic properties, transport, and chemical and biological processes is ongoing, but the origin of background water chemistry has not been determined. The principal geochemical process giving rise to the observed background water chemistry is CO2-controlled hydrolysis of Na feldspar. Geochemical modeling demonstrated that CO2 sources could vary over the project area. Analyses of unsaturated zone gases showed variations in CO2 which were dependent on land use and vegetative cover in the area of groundwater recharge. Measurements of CO2 in unsaturated-zone gases showed that concentrations of total inorganic C in recharge water should range from about 0.035 to 1.0 mmoles/L in the vicinity of Otis Air Base. Flux of CO2 from the unsaturated zone varied for a principal land uses, ranging from 86 gC/m2/yr for low vegetated areas to 1630 gC/m2/yr for a golf course. Carbon dioxide flux from woodlands was 220 gC/m2/yr, lower than reported fluxes of 500 to 600 gC/m2/yr for woodlands in a similar climate. Carbon dioxide flux from grassy areas was 540 gC/m2/yr, higher than reported fluxes of 230 to 490 gC/m2/yr for grasslands in a similar climate.

  9. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones

    NASA Astrophysics Data System (ADS)

    Gehrels, J. C.; van Geer, F. C.; de Vries, J. J.

    1994-05-01

    Time series analysis of the fluctuations in shallow groundwater levels in the Netherlands lowlands have revealed a large-scale decline in head during recent decades as a result of an increase in land drainage and groundwater withdrawal. The situation is more ambiguous in large groundwater bodies located in the eastern part of the country, where the unsaturated zone increases from near zero along the edges to about 40 m in the centre of the area. As depth of the unsaturated zone increases, groundwater level reacts with an increasing delay to fluctuations in climate and influences of human activities. The aim of the present paper is to model groundwater level fluctuations in these areas using a linear stochastic transfer function model, relating groundwater levels to estimated precipitation excess, and to separate artificial components from the natural groundwater regime. In this way, the impact of groundwater withdrawal and the reclamation of a 1000 km 2 polder area on the groundwater levels in the adjoining higher ground could be assessed. It became evident that the linearity assumption of the transfer functions becomes a serious drawback in areas with the deepest groundwater levels, because of non-linear processes in the deep unsaturated zone and the non-synchronous arrival of recharge in the saturated zone. Comparison of the results from modelling the influence of reclamation with an analytical solution showed that the lowering of groundwater level is partly compensated by reduced discharge and therefore is less than expected.

  10. A topological substructural molecular design approach for predicting mutagenesis end-points of alpha, beta-unsaturated carbonyl compounds.

    PubMed

    Pérez-Garrido, Alfonso; Helguera, Aliuska Morales; López, Gabriel Caravaca; Cordeiro, M Natália D S; Escudero, Amalio Garrido

    2010-01-31

    Chemically reactive, alpha, beta-unsaturated carbonyl compounds are common environmental pollutants able to produce a wide range of adverse effects, including, e.g. mutagenicity. This toxic property can often be related to chemical structure, in particular to specific molecular substructures or fragments (alerts), which can then be used in specialized software or expert systems for predictive purposes. In the past, there have been many attempts to predict the mutagenicity of alpha, beta-unsaturated carbonyl compounds through quantitative structure activity relationships (QSAR) but considering only one exclusive endpoint: the Ames test. Besides, even though those studies give a comprehensive understanding of the phenomenon, they do not provide substructural information that could be useful forward improving expert systems based on structural alerts (SAs). This work reports an evaluation of classification models to probe the mutagenic activity of alpha, beta-unsaturated carbonyl compounds over two endpoints--the Ames and mammalian cell gene mutation tests--based on linear discriminant analysis along with the topological Substructure molecular design (TOPS-MODE) approach. The obtained results showed the better ability of the TOPS-MODE approach in flagging structural alerts for the mutagenicity of these compounds compared to the expert system TOXTREE. Thus, the application of the present QSAR models can aid toxicologists in risk assessment and in prioritizing testing, as well as in the improvement of expert systems, such as the TOXTREE software, where SAs are implemented. 2009 Elsevier Ireland Ltd. All rights reserved.

  11. Estimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, Using a Source-Responsive Preferential-Flow Model

    USGS Publications Warehouse

    Ebel, Brian A.; Nimmo, John R.

    2009-01-01

    Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated

  12. Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian A. Ebel; John R. Nimmo

    2009-09-11

    Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travelmore » within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the

  13. Modeling Raw Sewage Leakage and Transport in the Unsaturated Zone of Carbonate Aquifer Using Carbamazepine as an Indicator

    NASA Astrophysics Data System (ADS)

    Yakirevich, A.; Kuznetsov, M.; Livshitz, Y.; Gasser, G.; Pankratov, I.; Lev, O.; Adar, E.; Dvory, N. Z.

    2016-12-01

    Fast contamination of groundwater in karstic aquifers can be caused due to leaky sewers, for example, or overflow from sewer networks. When flowing through a karst system, wastewater has the potential to reach the aquifer in a relatively short time. The Western Mountain Aquifer (Yarkon-Taninim) of Israel is one of the country's major water resources. During late winter 2013, maintenance actions were performed on a central sewage pipe that caused raw sewage to leak into the creek located in the study area. The subsequent infiltration of sewage through the thick ( 100 m) fractured/karst unsaturated zone led to a sharp increase in contaminant concentrations in the groundwater, which was monitored in a well located 29 meters from the center of the creek. Carbamazepine (CBZ) was used as an indicator for the presence of untreated raw sewage and its quantification in groundwater. The ultimate research goal was to develop a mathematical model for quantifying flow and contaminant transport processes in the fractured-porous unsaturated zone and karstified groundwater system. A quasi-3D dual permeability numerical model, representing the 'vadose zone - aquifer' system, was developed by a series of 1D equations solved in variably-saturated zone and by 3D-saturated flow and transport equation in groundwater. The 1D and 3D equations were coupled at the moving phreatic surface. The model was calibrated and applied to a simulated water flow scenario and CBZ transport during and after the observed sewage leakage event. The results of simulation showed that after the leakage stopped, significant amounts of CBZ were retained in the porous matrix of the unsaturated zone below the creek. Water redistribution and slow recharge during the dry summer season contributed to elevated CBZ concentrations in the groundwater in the vicinity of the creek and tens of meters downstream. The resumption of autumn rains enhanced flushing of CBZ from the unsaturated zone and led to an increase in

  14. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method

    USDA-ARS?s Scientific Manuscript database

    This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...

  15. SIMULATING RADIONUCLIDE FATE AND TRANSPORT IN THE UNSATURATED ZONE: EVALUATION AND SENSITIVITY ANALYSES OF SELECT COMPUTER MODELS

    EPA Science Inventory

    Numerical, mathematical models of water and chemical movement in soils are used as decision aids for determining soil screening levels (SSLs) of radionuclides in the unsaturated zone. Many models require extensive input parameters which include uncertainty due to soil variabil...

  16. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    USDA-ARS?s Scientific Manuscript database

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  17. Transient Infiltration Analysis for Infinite Slopes using the Modified Function of Unsaturated Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Oh, Seboong; Achmad Zaky, Fauzi; Mog Park, Young

    2016-04-01

    The hydraulic behaviors in the soil layer are crucial to the transient infiltration analysis into natural slopes, in which unsaturated hydraulic conductivity (HC) can be evaluated theoretically from soil water retention curves (SWRC) by Mualem's equation. In the nonlinear infiltration analysis, the solution by some of smooth SWRCs is not converge for heavy rainfall condition, since the gradient of HCs is extremely steep near saturation. The van Genuchten's SWRC model has been modified near saturation and subsequently an analytical HC function was proposed to improve the van Genuchten-Mualem HC. Using the examples on 1-D infiltration analysis by the modified HC model, it is validated that any solutions can be converged for various rainfall conditions to keep numerical stability. Stability analysis based on unsaturated effective stress could simulate the infinite slope failure by the proposed HC model. The pore water pressure and the ratio of saturation increased from the surface to shallow depth (˜1m) and the factor of safety decreased gradually due to infiltration. Acknowledgements This research is supported by grants from Korean NRF (2012M3A2A1050974 and 2015R1A2A2A01), which are greatly appreciated.

  18. Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release.

    PubMed

    Conway, Jon R; Keller, Arturo A

    2016-07-01

    The gravity-driven transport of TiO2, CeO2, and Cu(OH)2 engineered nanomaterials (ENMs) and their effects on soil pH and nutrient release were measured in three unsaturated soils. ENM transport was found to be highly limited in natural soils collected from farmland and grasslands, with the majority of particles being retained in the upper 0-3 cm of the soil profile, while greater transport depth was seen in a commercial potting soil. Physical straining appeared to be the primary mechanism of retention in natural soils as ENMs immediately formed micron-scale aggregates, which was exacerbated by coating particles with Suwannee River natural organic matter (NOM) which promote steric hindrance. Small changes in soil pH were observed in natural soils contaminated with ENMs that were largely independent of ENM type and concentration, but differed from controls. These changes may have been due to enhanced release of naturally present pH-altering ions (Mg(2+), H(+)) in the soil via substitution processes. These results suggest ENMs introduced into soil will likely be highly retained near the source zone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular ringsmore » within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.« less

  20. Physicochemical controls on adsorbed water film thickness in unsaturated geological media

    NASA Astrophysics Data System (ADS)

    Tokunaga, Tetsu K.

    2011-08-01

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here the problem of adsorbed water film thickness is examined by combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable and showed that pendular rings within drained porous media retain most of the "residual" water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double-layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double-layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (<10 mol m-3) on surfaces with higher-magnitude electrostatic potentials (more negative than ≈-50 mV). Adsorbed water films are predicted to usually range in thickness from ≈1 to 20 nm in drained pores and fractures of unsaturated environments.

  1. Genomic profiling of Sézary Syndrome identifies alterations of key T-cell signaling and differentiation genes

    PubMed Central

    Wang, Linghua; Ni, Xiao; Covington, Kyle R.; Yang, Betty Y.; Shiu, Jessica; Zhang, Xiang; Xi, Liu; Meng, Qingchang; Langridge, Timothy; Drummond, Jennifer; Donehower, Lawrence A.; Doddapaneni, Harshavardhan; Muzny, Donna M.; Gibbs, Richard A.; Wheeler, David A.; Duvic, Madeleine

    2016-01-01

    Sézary Syndrome is a rare leukemic form of cutaneous T-cell lymphoma defined as erythroderma, adenopathy, and circulating atypical T-lymphocytes. It is rarely curable with poor prognosis. Here we present a multi-platform genomic analysis of 37 Sézary Syndrome patients that implicates dysregulation of the cell cycle checkpoint and T-cell signaling. Frequent somatic alterations were identified in TP53, CARD11, CCR4, PLCG1, CDKN2A, ARID1A, RPS6KA1, and ZEB1. Activating CCR4 and CARD11 mutations were detected in nearly a third of patients. ZEB1, a transcription repressor essential for T-cell differentiation, was deleted in over half of patients. IL32 and IL2RG were over-expressed in nearly all cases. Analysis of T-cell receptor Vβ and Vα expression revealed ongoing rearrangement of the receptors after the expansion of a malignant clone in one third of subjects. Our results demonstrate profound disruption of key signaling pathways in Sézary Syndrome and suggest potential targets for novel therapies. PMID:26551670

  2. Tung oil-based unsaturated co-ester macromonomer for thermosetting polymers: Synergetic synthesis and copolymerization with styrene

    USDA-ARS?s Scientific Manuscript database

    A novel unsaturated co-ester (co-UE) macromonomer containing both maleates and acrylates was synthesized from tung oil (TO) and its chemical structure was characterized by FT-IR, 1H-NMR, 13C-NMR, and gel permeation chromatography (GPC). The monomer was synthesized via a new synergetic modification o...

  3. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.

    PubMed

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina

    2017-02-01

    Experimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments. The breakthrough curves and retention profiles of bacteria were simulated using the modified Mobile-IMmobile (MIM) model, to identify physico-chemical attachment or physical straining mechanisms involved in bacteria retention. These results indicated that both mechanisms might occur in both sand. However, the attachment was found to be a reversible process, because attachment coefficients were similar to those of detachment. DLVO calculations supported these results: the primary minimum did not exist, suggesting no permanent retention of bacteria to solid-water and air-water interfaces. Calculated hydrodynamic and resisting torques predicted that bacteria detachment in the secondary minimum might occur. The capillary potential energy was greater than DLVO, hydrophobic and hydrodynamic potential energies, suggesting that film straining by capillary forces might largely govern bacteria deposition under unsaturated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. RISK OF UNSATURATED/SATURATED TRANSPORT AND TRANSFORMATION OF CHEMICAL CONCENTRATIONS (RUSTIC): VOLUME 1. THEORY AND CODE VERIFICATION

    EPA Science Inventory

    The RUSTIC program links three subordinate models--PRZM, VADOFT, and SAFTMOD--in order to predict pesticide transport and transformation through the crop root zone, the unsaturated zone, and the saturated zone to drinking water wells. PRZM is a one-dimensional finite-difference m...

  5. Soil Gas Dynamics and Microbial Activity in the Unsaturated Zone of a Regulated River

    NASA Astrophysics Data System (ADS)

    Christensen, H.; Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.

    2017-12-01

    Over 60% of the world's rivers are dammed, and are therefore regulated. In some river systems, river regulation is the dominant factor governing fluid exchange and soil gas dynamics in the hyporheic region and overlying unsaturated zone of the river banks. Where this is the case, it is important to understand the effects that an artificially-induced change in river stage can have on the chemical, plant, and microbial components of the unsaturated zone. Daily releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River east of Austin, Texas. For this study, we utilized an array of water and gas wells along a transect perpendicular to the river to investigate the biogeochemical process occurring in this mixing zone. The gas wells were installed at several depths up to 1.5 meters, and facilitated the continuous monitoring of soil gases as the pulse percolated through the river bank. Water samples collected from the screened wells penetrated to depths below the water table and were analyzed for nutrients, carbon, and major ions. Additionally, two soil cores were taken at different distances from the river and analyzed for soil moisture and grain size. These cores were also analyzed for microbial activity using the total heterotroph count method and the acetylene inhibition technique, a sensitive method of measuring denitrifying activity. The results provide a detailed picture of soil gas flux and biogeochemical processes in the bank environment in a regulated river. Findings indicate that a river pulse that causes a meter-scale change in river stage causes small, centimeter-scale pulses in the water table. We propose that these conditions create an area of elevated microbial respiration at the base of the unsaturated zone that appears to be decoupled from normal diurnal fluctuations. Along the transect, CO2 concentrations increased with increasing depth down to the water table. CO2 concentrations were highest in the time following a pulse

  6. An improved analysis of gravity drainage experiments for estimating the unsaturated soil hydraulic functions

    NASA Astrophysics Data System (ADS)

    Sisson, James B.; van Genuchten, Martinus Th.

    1991-04-01

    The unsaturated hydraulic properties are important parameters in any quantitative description of water and solute transport in partially saturated soils. Currently, most in situ methods for estimating the unsaturated hydraulic conductivity (K) are based on analyses that require estimates of the soil water flux and the pressure head gradient. These analyses typically involve differencing of field-measured pressure head (h) and volumetric water content (θ) data, a process that can significantly amplify instrumental and measurement errors. More reliable methods result when differencing of field data can be avoided. One such method is based on estimates of the gravity drainage curve K'(θ) = dK/dθ which may be computed from observations of θ and/or h during the drainage phase of infiltration drainage experiments assuming unit gradient hydraulic conditions. The purpose of this study was to compare estimates of the unsaturated soil hydraulic functions on the basis of different combinations of field data θ, h, K, and K'. Five different data sets were used for the analysis: (1) θ-h, (2) K-θ, (3) K'-θ (4) K-θ-h, and (5) K'-θ-h. The analysis was applied to previously published data for the Norfolk, Troup, and Bethany soils. The K-θ-h and K'-θ-h data sets consistently produced nearly identical estimates of the hydraulic functions. The K-θ and K'-θ data also resulted in similar curves, although results in this case were less consistent than those produced by the K-θ-h and K'-θ-h data sets. We conclude from this study that differencing of field data can be avoided and hence that there is no need to calculate soil water fluxes and pressure head gradients from inherently noisy field-measured θ and h data. The gravity drainage analysis also provides results over a much broader range of hydraulic conductivity values than is possible with the more standard instantaneous profile analysis, especially when augmented with independently measured soil water retention data.

  7. Using ASD data to identify the altered minerals for exploring of gold deposit in the Beishan area, North China

    NASA Astrophysics Data System (ADS)

    Ren, G. L.; Yi, H.; Yang, M.; Liang, N.; Li, J. Q.; Yang, J. L.

    2016-11-01

    Hyperspectral information of altered minerals plays an important role in the identifications of mineralized zones. In this study, the altered minerals of two gold deposits from Fangshankou-Laojinchang regions of Beishan metallogenic belt were measured by ASD field Spectrometer. Many gold deposits would have a close relationship with Variscan magma intrusion, which have been found in study region. The alteration minerals have been divided six types by the spectral results, i.e. sericite, limonite, dolomite, chlorite, epidote and calcite. The distribution characteristics and formations of altered minerals were discussed here. By the ASD, the spectral curve of different geological units in the Jintanzi and Fangshankou gold deposits were analysed and summarized. The results show that the sericite and limonite are mainly related with the gold mineralization and widely occurred in the gold deposits. Therefore, we proposed that the sericite and limonite are the iconic alteration mineral assemblages for gold mineralization and the models of altered minerals for gold deposits could be established in this region.

  8. Medical image integrity control and forensics based on watermarking--approximating local modifications and identifying global image alterations.

    PubMed

    Huang, H; Coatrieux, G; Shu, H Z; Luo, L M; Roux, Ch

    2011-01-01

    In this paper we present a medical image integrity verification system that not only allows detecting and approximating malevolent local image alterations (e.g. removal or addition of findings) but is also capable to identify the nature of global image processing applied to the image (e.g. lossy compression, filtering …). For that purpose, we propose an image signature derived from the geometric moments of pixel blocks. Such a signature is computed over regions of interest of the image and then watermarked in regions of non interest. Image integrity analysis is conducted by comparing embedded and recomputed signatures. If any, local modifications are approximated through the determination of the parameters of the nearest generalized 2D Gaussian. Image moments are taken as image features and serve as inputs to one classifier we learned to discriminate the type of global image processing. Experimental results with both local and global modifications illustrate the overall performances of our approach.

  9. Coupled Hydromechanical and Electromagnetic Responses in Unsaturated Porous Media: Theory, Observation, and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Mahardika, Harry

    Hydromechanical energy can be partially converted into electromagnetic energy due to electrokinetic effect, where mechanical energy causes the relative displacement of the charged pore water with respect to the solid skeleton of the porous material and generated electrical current density. An application of this phenomenon is seismoelectric method, a geophysical method in which electromagnetic signals are recorded and associated with the propagation of seismic waves. Due to its coupling nature, seismoelectric method promises advantages in characterizing the subsurface properties and geometry compared to independent employments of seismic or electromagnetic acquisition alone. Since the recorded seismoelectric signal are sensitive to water content changes this method have been applied for groundwater studies to delineates vadoze zone-aquifer boundary since the last twenty years. The problem, however, the existing governing equations of coupled seismic and electromagnetic are not accounted for unsaturated conditions and its petrophysical sensitivity to water content. In this thesis we extend the applications of seismoelectric method for unsaturated porous medium for several geophysical problems. (1) We begin our study with numerical study to localize and characterize a seismic event induced by hydraulic fracturing operation sedimentary rocks. In this problem, we use the fully-saturated case of seismoelectric method and we propose a new joint inversion scheme (seismic and seismoelectric) to determine the position and moment tensor that event. (2) We expand the seismoelectric theory for unsaturated condition and show that the generation of electrical current density are depend on several important petrophysical properties that are sensitive to water content. This new expansion of governing equation provide us theory for developing a new approach for seismoelectric method to image the oil water encroachment front during water flooding of an oil reservoir or an aquifer

  10. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    NASA Astrophysics Data System (ADS)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  11. The acyl desaturase CER17 is involved in producing wax unsaturated primary alcohols and cutin monomers

    USDA-ARS?s Scientific Manuscript database

    We report here n-6 mono-unsaturated primary alcohols (the C26:1, C28:1, and C30:1 homologues) in the cuticular waxes of Arabidopsis inflorescence stem, a class of wax compound not previously reported in Arabidopsis. Further, we used mutation and transgenic complementation analyses to demonstrate tha...

  12. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  13. The mycotoxin patulin reacts with DNA bases with and without previous conjugation to GSH: implication for related α,β-unsaturated carbonyl compounds?

    PubMed

    Pfenning, Carolin; Esch, Harald L; Fliege, Ralph; Lehmann, Leane

    2016-02-01

    The α,β-unsaturated carbonyl group is recognized as alert for mutagenicity, attributed to (1) its direct reaction with DNA, counteractable by glutathione (GSH), and (2) oxidative stress caused indirectly by GSH depletion. Accordingly, the α,β,γ,δ-unsaturated lactone patulin (PAT), a mycotoxin detected in fruits and products derived thereof, is known to induce gene, chromosome, and genome mutations in vitro, its mutagenicity correlating inversely with intracellular GSH levels. Thus, the reactivity of PAT against DNA bases and nucleosides in the absence and presence of GSH and glutathione S-transferases (GSTs) was investigated under cell-free conditions using HPLC mass spectrometry techniques for identification of reaction products. Adduct formation with all four nucleobases as well as with purine base nucleosides occurred even in the presence of GSH, revealing several adducts of PAT, mono- and disubstituted with nucleobases/nucleosides as well as novel GSH-PAT adducts. In addition, novel mixed GSH-PAT-nucleobase adducts were observed. These adducts exhibited a ketohexanoic acid-type structure of the PAT molecule, C6 substituted with GSH and linking C1 of PAT with nitrogens of nucleobases/nucleosides via an amide bond. Formation of GSH-PAT-adenine adducts was not prevented by GSTs, and excess of GSH needed to reduce their formation was higher than for PAT-adenine adducts. The formation of mixed GSH-DNA base adducts has not been described for PAT or any other α,β-unsaturated carbonyl before, although the reaction mechanism seems to be applicable to a variety of α,β-unsaturated carbonyls occurring in food and in the environment.

  14. A research park for studying processes in unsaturated fractured media

    NASA Astrophysics Data System (ADS)

    Baker, Kristine; McLing, Travis; Street, Leah; Schafer, Annette; Ansley, Shannon; Hull, Larry; Holt, Robert; Roback, Robert; Jones, Catherine

    A field research site has been developed to explore the combined use of physical experiments and mathematical modeling to analyze large-scale infiltration and chemical transport through the unsaturated media overlying the Snake River Plain Aquifer in southeastern Idaho. This site offers opportunities to observe water and contaminant migration influenced by fluid dynamics and microbial activity through heterogeneous-porous and fractured media.At many waste disposal facilities, the presence of toxic or radioactive wastes between the land surface and underlying aquifers poses a serious and ongoing threat to public health and safety.To reduce the risk associated with these industrial and Cold War by-products, a combination of remediation and long-term monitoring will be required.

  15. Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids.

    PubMed

    Breton, Marie; Amirkavei, Mooud; Mir, Lluis M

    2015-10-01

    Giant unilamellar vesicles (GUV) are widely used cell membrane models. GUVs have a cell-like diameter and contain the same phospholipids that constitute cell membranes. The most frequently used protocol to obtain these vesicles is termed electroformation, since key steps of this protocol consist in the application of an electric field to a phospholipid deposit. The potential oxidation of unsaturated phospholipids due to the application of an electric field has not yet been considered even though the presence of oxidized lipids in the membrane of GUVs could impact their permeability and their mechanical properties. Thanks to mass spectrometry analyses, we demonstrated that the electroformation technique can cause the oxidation of polyunsaturated phospholipids constituting the vesicles. Then, using flow cytometry, we showed that the amplitude and the duration of the electric field impact the number and the size of the vesicles. According to our results, the oxidation level of the phospholipids increases with their level of unsaturation as well as with the amplitude and the duration of the electric field. However, when the level of lipid oxidation exceeds 25 %, the diameter of the vesicles is decreased and when the level of lipid oxidation reaches 40 %, the vesicles burst or reorganize and their rate of production is reduced. In conclusion, the classical electroformation method should always be optimized, as a function of the phospholipid used, especially for producing giant liposomes of polyunsaturated phospholipids to be used as a cell membrane model.

  16. Metallophosphite-Catalyzed Asymmetric Acylation of α,β -Unsaturated Amides

    PubMed Central

    Nahm, Mary R.; Potnick, Justin R.; White, Peter S.; Johnson, Jeffrey S.

    2007-01-01

    The l-menthone-derived TADDOL phosphite 6b catalyzes highly enantioselective conjugate additions of acyl silanes to α,β-unsaturated amides. p-Methoxybenzoyl cyclohexyldimethylsilane adds to a variety of N,N-dimethyl acrylamide derivatives in the presence of the lithium salt of 6b. In many instances the α-silyl-γ-ketoamide product undergoes facile enantioenrichment (to 97–99% ee) upon recrystallization. Desilylation with HF·pyr affords the formal Stetter addition products. Baeyer–Villiger oxidation of the desilylated γ-ketoamides affords useful ester products. An X-ray diffraction study of 6b reveals that the isopropyl group of the menthone ketal influences the position of the syn-pseudoaxial phenyl group in the TADDOL structure. Through a crossover experiment, the silicon migration step in the reaction mechanism is shown to be strictly intramolecular. PMID:16492064

  17. Unsaturated Lipids Change in Olive Tree Drupe and Seed during Fruit Development and in Response to Cold-Stress and Acclimation

    PubMed Central

    D’Angeli, Simone; Altamura, Maria Maddalena

    2016-01-01

    The olive tree is a plant of economic value for the oil of its drupe. It is a cultigen complex composed of genotypes with differences in cold-hardiness. About 90% of the oil is stored in oil bodies (OBs) in the drupe during the oleogenic phase. Phenols and lipids contribute to oil quality, but the unsaturated fatty acid (FA) fraction is emerging as the most important for quality, because of the very high content in oleic acid, the presence of ω6-linoleic acid and ω3-linolenic acid, and the very low saturated FA content. Another 10% of oil is produced by the seed. Differences in unsaturated FA-enriched lipids exist among seed coat, endosperm, and embryo. Olive oil quality is also affected by the environmental conditions during fruit growth and genotype peculiarities. Production of linoleic and α-linolenic acids, fruit growth, fruit and leaf responses to low temperatures, including cuticle formation, and cold-acclimation are related processes. The levels of unsaturated FAs are changed by FA-desaturase (FAD) activities, involving the functioning of chloroplasts and endoplasmic reticulum. Cold induces lipid changes during drupe and seed development, affecting FADs, but its effect is related to the genotype capability to acclimate to the cold. PMID:27845749

  18. Targeted lipidomics analysis identified altered serum lipid profiles in patients with polymyositis and dermatomyositis.

    PubMed

    Raouf, Joan; Idborg, Helena; Englund, Petter; Alexanderson, Helene; Dastmalchi, Maryam; Jakobsson, Per-Johan; Lundberg, Ingrid E; Korotkova, Marina

    2018-05-02

    Polymyositis (PM) and dermatomyositis (DM) are severe chronic autoimmune diseases, characterized by muscle fatigue and low muscle endurance. Conventional treatment includes high doses of glucocorticoids and immunosuppressive drugs; however, few patients recover full muscle function. One explanation of the persistent muscle weakness could be altered lipid metabolism in PM/DM muscle tissue as we previously reported. Using a targeted lipidomic approach we aimed to characterize serum lipid profiles in patients with PM/DM compared to healthy individuals (HI) in a cross-sectional study. Also, in the longitudinal study we compared serum lipid profiles in patients newly diagnosed with PM/DM before and after immunosuppressive treatment. Lipidomic profiles were analyzed in serum samples from 13 patients with PM/DM, 12 HI and 8 patients newly diagnosed with PM/DM before and after conventional immunosuppressive treatment using liquid chromatography tandem mass spectrometry (LC-MS/MS) and a gas-chromatography flame ionization detector (GC-FID). Functional Index (FI), as a test of muscle performance and serum levels of creatine kinase (s-CK) as a proxy for disease activity were analyzed. The fatty acid (FA) composition of total serum lipids was altered in patients with PM/DM compared to HI; the levels of palmitic (16:0) acid were significantly higher while the levels of arachidonic (20:4, n-6) acid were significantly lower in patients with PM/DM. The profiles of serum phosphatidylcholine and triacylglycerol species were changed in patients with PM/DM compared to HI, suggesting disproportionate levels of saturated and polyunsaturated FAs that might have negative effects on muscle performance. After immunosuppressive treatment the total serum lipid levels of eicosadienoic (20:2, n-6) and eicosapentaenoic (20:5, n-3) acids were increased and serum phospholipid profiles were altered in patients with PM/DM. The correlation between FI or s-CK and levels of several lipid species

  19. Attenuation of Landfill Leachate In Unsaturated Sandstone

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Brook, C.; Godley, A.; Lewin, K.; Young, C. P.

    Landfill leachate emanating from old "dilute and disperse" sites represents a potential (and in many cases actual) threat to the integrity of groundwater. Indeed, this concern has been included in EU legislation (80/86/EEC), where key contaminants (e.g. ammonia, various toxic organic compounds and heavy metals) are explicitly highlighted in terms of their impact on groundwater. In the UK, whilst there are a substantial number of unlined landfills sited on major aquifers, many of these are in locations where there is a substantial unsaturated zone. Thus, there exists the opportunity for the modification and attenuation of contaminants prior to it encountering the water table. An understanding of likely changes in leachate content and concentrations at such sites will enable a more comprehensive assessment of the potential risks and liabilities posed by such sites to be evaluated. The Burntstump landfill, situated 8 km north of Nottingham (UK), is sited on an outcrop of Sherwood sandstone. The fine friable sand has been quarried since the 1960s and the excavated volume used to store municipal waste. Filling at the site commenced in the mid 1970s and originally was unlined. In 1978 the first of what was to become a series of boreholes was installed within an area of roughly 5 m radius over one of the original waste cells. Cores of the waste and underlying sandstone were extracted and analysed for a range of physical and chemical parameters. The most recent set of analyses were obtained in 2000. The series of investigations therefore provide an important record of leachate migration and modification through the unsaturated zone for over twenty years. The progression of the leachate front is clearly delineated by the chloride concentration profile with an average velocity of around 1.6 m.yr-1. Combining this value with an average (and reasonably uniform) measured moisture content of about 7% gives a mean inter-granular specific discharge of 110 mm.yr-1. An interesting

  20. Visible light-induced oxidation of unsaturated components of cutins: a significant process during the senescence of higher plants.

    PubMed

    Rontani, Jean-François; Rabourdin, Adélaïde; Pinot, Franck; Kandel, Sylvie; Aubert, Claude

    2005-02-01

    9-Hydroperoxy-18-hydroxyoctadec-10(trans)-enoic and 10-hydroperoxy-18-hydroxyoctadec-8(trans)-enoic acids deriving from type II (i.e. involving 1O2) photooxidation of 18-hydroxyoleic acid were detected after visible light-induced senescence experiments carried out with Petroselinum sativum and subsequent cutin depolymerisation. These results showed that in senescent plants, where the 1O2 formation rate exceeds the quenching capacity of the photoprotective system, 1O2 can migrate outside the chloroplasts and affect the unsaturated components of cutins. Significant amounts of 9,18-dihydroxyoctadec-10(trans)-enoic and 10,18-dihydroxyoctadec-8(trans)-enoic acids resulting from the reduction of these photoproducts of 18-hydroxyoleic acid were also detected in different natural samples. These results well support the significance of the photooxidation of the unsaturated components of higher plant cutins in the natural environment.

  1. GC-MS Metabolomics Identifies Metabolite Alterations That Precede Subclinical Mastitis in the Blood of Transition Dairy Cows.

    PubMed

    Dervishi, Elda; Zhang, Guanshi; Dunn, Suzanna M; Mandal, Rupasri; Wishart, David S; Ametaj, Burim N

    2017-02-03

    The objectives of this study were to determine alterations in the serum metabolites related to amino acid (AA), carbohydrate, and lipid metabolism in transition dairy cows before diagnosis of subclinical mastitis (SCM), during, and after diagnosis of disease. A subclinical mastitis case was determined as a cow having somatic cell count (SCC) > 200 000/mL of milk for two or more consecutive reports. Blood samples were collected from 100 Holstein dairy cows at five time points at -8 and -4 weeks before parturition, at the week of SCM diagnosis, and +4 and +8 weeks after parturition. Twenty healthy control cows (CON) and six cows that were diagnosed with SCM were selected for serum analysis with GC-MS. At -8 weeks a total of 13 metabolites were significantly altered in SCM cows. In addition, at the week of SCM diagnosis 17 metabolites were altered in these cows. Four weeks after parturition 10 metabolites were altered in SCM cows and at +8 weeks 11 metabolites were found to be different between the two groups. Valine (Val), serine (Ser), tyrosine (Tyr), and phenylalanine (Phe) had very good predictive abilities for SCM and could be used at -8 weeks and -4 weeks before calving. Combination of Val, isoleucine (Ile), Ser, and proline (Pro) can be used as diagnostic biomarkers of SCM during early stages of lactation at +4 to +8 weeks after parturition. In conclusion, SCM is preceded and followed by alteration in AA metabolism.

  2. Synthesis of new simplified hemiasterlin derivatives with α,β-unsaturated carbonyl moiety.

    PubMed

    The, Chinh Pham; Thi, Tuyet Anh Dang; Hoang, Thi Phuong; Ngo, Quoc Anh; Doan, Duy Tien; Thi, Thu Ha Nguyen; Thi, Tham Pham; Thi, Thu Ha Vu; Jean, M; van de Weghe, P; Van, Tuyen Nguyen

    2014-05-15

    In this Letter, we report a convenient and efficient method for the synthesis of new simplified derivatives of hemiasterlin in which the α,α-dimethylbenzylic moiety A is replaced by α,β-unsaturated aryl groups as Michael acceptor. Most of these derivatives have a strong cytotoxic activity on three human tumor cell lines (KB, Hep-G2 and MCF7). Analogs 17b and 17f showed a high cytotoxicity against KB and Hep-G2 cancer cell lines comparable to paclitaxel and ellipticine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L. (Editor); Ming, Doug W. (Editor); Henninger, Don (Editor)

    2002-01-01

    This NASA Technical Memorandum is a compilation of presentations and discussions in the form of minutes from a workshop entitled 'Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media' held at NASA's Johnson Space Center, July 24-25, 2000. This workshop arose from the growing belief within NASA's Advanced Life Support Program that further advances and improvements in plant production systems for microgravity would benefit from additional knowledge of fundamental processes occurring in the root zone. The objective of the workshop was to bring together individuals who had expertise in various areas of fluid physics, soil physics, plant physiology, hardware development, and flight tests to identify, discuss, and prioritize critical issues of water and air flow through porous media in microgravity. Participants of the workshop included representatives from private companies involved in flight hardware development and scientists from universities and NASA Centers with expertise in plant flight tests, plant physiology, fluid physics, and soil physics.

  4. Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance.

    PubMed

    Saunus, Jodi M; Quinn, Michael C J; Patch, Ann-Marie; Pearson, John V; Bailey, Peter J; Nones, Katia; McCart Reed, Amy E; Miller, David; Wilson, Peter J; Al-Ejeh, Fares; Mariasegaram, Mythily; Lau, Queenie; Withers, Teresa; Jeffree, Rosalind L; Reid, Lynne E; Da Silva, Leonard; Matsika, Admire; Niland, Colleen M; Cummings, Margaret C; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Kassahn, Karin S; Narayanan, Vairavan; Taib, Nur Aishah; Teo, Soo-Hwang; Chow, Yock Ping; kConFab; Jat, Parmjit S; Brandner, Sebastian; Flanagan, Adrienne M; Khanna, Kum Kum; Chenevix-Trench, Georgia; Grimmond, Sean M; Simpson, Peter T; Waddell, Nicola; Lakhani, Sunil R

    2015-11-01

    Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2)  = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting

  5. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.

    PubMed

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2006-02-01

    A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  6. Aspects of hysteresis in unsaturated porous media flow

    NASA Astrophysics Data System (ADS)

    van Duijn, Hans

    2016-04-01

    About 20 years ago, Peter Raats and I wrote a technical note related to the horizontal redistribution in unsaturated porous media with hysteresis in the capillary pressure (P.A.C. Raats & C.J. van Duijn, A note on horizontal redistribution with capillary hysteresis, WWR 31, p. 231-232, 1995). In the first part of my presentation, I will revisit the results of that paper. In particular the cases of unconventional flow, where the water flows from the dry region to the wet region. A comparison will be made with results obtained with the current interface area models as introduced by Gray & Hassanizadeh. I will explain and outline the differences. In the second part, travelling wave solutions of Richards equation with gravity and with hysteresis in both the capillary pressure and relative permeability will be discussed. It will be explained why such solutions oscillate in space-time and how they behave as the hysteresis regularization vanishes.

  7. Impact of Diverse Hydrologic Pathways, 3D Failure Geometries, and Unsaturated Soil Suctions on Shallow Landsliding

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Iverson, R. M.; Brien, D. L.; Iverson, N. R.; Lahusen, R. G.; Logan, M.

    2016-12-01

    Shallow landslides and ensuing debris flows can be triggered by diverse hydrologic phenomena such as groundwater inflow, prolonged moderate-intensity precipitation, or bursts of high-intensity precipitation. However, hazard assessments typically rely on simplistic hydrologic models that disregard this diversity. We used the USGS debris-flow flume to conduct controlled, field-scale slope failure experiments designed to investigate the effects of diverse hydrologic pathways, as well as the effects of 3D landslide geometries and suction stresses in unsaturated soil. Using overhead sprinklers or groundwater injectors on the flume bed, we induced failures in 6 m3 (0.65-m thick and 2-m wide) prisms of loamy sand on a 31º slope. We used 50 sensors to monitor soil deformation, variably saturated pore pressures, and moisture changes. We also determined shear strength, hydraulic conductivity, and unsaturated moisture retention characteristics from ancillary tests. The three hydrologic scenarios noted above led to different behaviors. Groundwater injection and prolonged infiltration created differing soil moisture patterns. Intense sprinkling bursts caused rapid failure without development of widespread positive pore pressures. We simulated these observed differences numerically by coupling 2D variably saturated groundwater flow modeling and 3D limit-equilibrium analysis. We also simulated the time evolution of changes in factors of safety, and quantified the mechanical effects of 3D geometry and unsaturated soil suction on stability. When much of the soil became relatively wet, effects of 3D geometry and soil suction produced slight increases ( 10-20%) in factors of safety. Suction effects were more pronounced with drier soils. Our results indicate that simplistic models cannot consistently predict the timing of slope failure, and that high frequency monitoring (with sampling periods < 60 s) is needed to measure and interpret the effects of rapid hydrologic triggers.

  8. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media.

    PubMed

    Lyu, Ying; Brusseau, Mark L; Chen, Wei; Yan, Ni; Fu, Xiaori; Lin, Xueyu

    2018-06-26

    Miscible-displacement experiments are conducted with perfluorooctanoic acid (PFOA) to determine the contribution of adsorption at the air-water interface to retention during transport in water-unsaturated porous media. Column experiments were conducted with two sands of different diameter at different PFOA input concentrations, water saturations, and pore-water velocities to evaluate the impact of system variables on retardation. The breakthrough curves for unsaturated conditions exhibited greater retardation than those obtained for saturated conditions, demonstrating the significant impact of air-water interfacial adsorption on PFOA retention. Retardation was greater for lower water saturations and smaller grain diameter, consistent with the impact of system conditions on the magnitude of air-water interfacial area in porous media. Retardation was greater for lower input concentrations of PFOA for a given water saturation, consistent with the nonlinear nature of surfactant fluid-fluid interfacial adsorption. Retardation factors predicted using independently determined parameter values compared very well to the measured values. The results showed that adsorption at the air-water interface is a significant source of retention for PFOA, contributing approximately 50-75% of total retention, for the test systems. The significant magnitude of air-water interfacial adsorption measured in this work has ramifications for accurate determination of PFAS migration potential in vadose zones.

  9. Cooperative dual catalysis: application to the highly enantioselective conjugate cyanation of unsaturated imides.

    PubMed

    Sammis, Glenn M; Danjo, Hiroshi; Jacobsen, Eric N

    2004-08-18

    Cooperative heterobimetallic catalysis was used as a design principle to achieve a highly reactive system for the enantioselective conjugate addition of cyanide to alpha,beta-unsaturated imides. A dual-catalyst pathway involving chiral (salen)Al complex 1b and chiral (pybox)Er complex 4b provides measurable improvements in rates and enantioselectivities relative to single-catalyst systems. Mechanistic studies point to a cooperative bimetallic mechanism involving activation of the imide by the Al complex and activation of cyanide by the Er complex.

  10. Synthesis, antimycobacterial and cytotoxic activity of α,β-unsaturated amides and 2,4-disubstituted oxazoline derivatives.

    PubMed

    Avalos-Alanís, Francisco G; Hernández-Fernández, Eugenio; Carranza-Rosales, Pilar; López-Cortina, Susana; Hernández-Fernández, Jorge; Ordóñez, Mario; Guzmán-Delgado, Nancy E; Morales-Vargas, Alejandro; Velázquez-Moreno, Víctor M; Santiago-Mauricio, María G

    2017-02-15

    The synthesis of six α,β,-unsaturated amides and six 2,4-disubstituted oxazolines derivatives and their evaluation against two Mycobacterium tuberculosis strains (sensitive H37Rv and a resistant clinical isolate) is reported. 2,4-Disubstituted oxazolines (S)-3b,d,e were the most active in the sensitive strain with a MIC of 14.2, 13.6 and 10.8μM, respectively, and the compounds (S)-3d,f were the most active against resistant strain with a MIC of 6.8 and 7.4μM. The ex-vivo evaluation of hepatotoxicity on precision-cut rat liver slices was also tested for the α,β-unsaturated amides (S)-2b and (S)-2d,f and for the oxazolines (S)-3b and (S)-3d,f at different concentrations (5, 15 and 30μg/mL). The results indicate that these compounds possess promising antimycobacterial activity and at the same time are not hepatotoxic. These findings open the possibility for development of new drugs against tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Using a bias aware EnKF to account for unresolved structure in an unsaturated zone model

    NASA Astrophysics Data System (ADS)

    Erdal, D.; Neuweiler, I.; Wollschläger, U.

    2014-01-01

    When predicting flow in the unsaturated zone, any method for modeling the flow will have to define how, and to what level, the subsurface structure is resolved. In this paper, we use the Ensemble Kalman Filter to assimilate local soil water content observations from both a synthetic layered lysimeter and a real field experiment in layered soil in an unsaturated water flow model. We investigate the use of colored noise bias corrections to account for unresolved subsurface layering in a homogeneous model and compare this approach with a fully resolved model. In both models, we use a simplified model parameterization in the Ensemble Kalman Filter. The results show that the use of bias corrections can increase the predictive capability of a simplified homogeneous flow model if the bias corrections are applied to the model states. If correct knowledge of the layering structure is available, the fully resolved model performs best. However, if no, or erroneous, layering is used in the model, the use of a homogeneous model with bias corrections can be the better choice for modeling the behavior of the system.

  12. Evaluation of probabilistic flow in two unsaturated soils

    NASA Astrophysics Data System (ADS)

    Boateng, Samuel

    2001-11-01

    A variably saturated flow model is coupled to a first-order reliability algorithm to simulate unsaturated flow in two soils. The unsaturated soil properties are considered as uncertain variables with means, standard deviations, and marginal probability distributions. Thus, each simulation constitutes an unsaturated probability flow event. Sensitivities of the uncertain variables are estimated for each event. The unsaturated hydraulic properties of a fine-textured soil and a coarse-textured soil are used. The properties are based on the van Genuchten model. The flow domain has a recharge surface, a seepage boundary along the bottom, and a no-flow boundary along the sides. The uncertain variables are saturated water content, residual water content, van Genuchten model parameters alpha (α) and n, and saturated hydraulic conductivity. The objective is to evaluate the significance of each uncertain variable to the probabilistic flow. Under wet conditions, saturated water content and residual water content are the most significant uncertain variables in the sand. For dry conditions in the sand, however, the van Genuchten model parameters α and n are the most significant. Model parameter n and saturated hydraulic conductivity are the most significant for the wet clay loam. Saturated water content is most significant for the dry clay loam. Résumé. Un modèle d'écoulement variable en milieu saturé est couplé à un algorithme d'exactitude de premier ordre pour simuler les écoulements en milieu non saturé dans deux sols. Les propriétés des sols non saturés sont considérés comme des variables incertaines avec des moyennes, des écarts-types et des distributions de probabilité marginale. Ainsi chaque simulation constitue un événement d'écoulement non saturé probable. La sensibilité des variables incertaines est estimée pour chaque événement. Les propriétés hydrauliques non saturées d'un sol à texture fine et d'un sol à texture grossière sont utilis

  13. Production of saturated and unsaturated silahydrocarbon mixtures using rhodium catalyst, and to products produced thereby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onopchenki, A.; Sabourin, E.T.

    1986-02-25

    This patent describes a process for the production of a mixture of saturated and unstaurated silahydrocarbons. This process contacts an admixture consisting of (A) at least one alpha-olefin containing from 2 to about 20 carbon atoms per molecule, and (B) at least one alkylsilane selected from the group consisting of (i) a dialkylsilane (ii) a trialkylsilane (iii) mixtures thereof, with a catalyst consisting of a homogeneous monomeric rhodium-containing catalyst having a basicity substantially equal to or less than that provided by a rhodium-containing catalyst having a triphenyl phosphine ligand or a heterogeneous rhodium-containing catalyst in a halogen-free inert solvent. Themore » process conducted at a temperature of from about 30/sup 0/ to about 200/sup 0/C., a weight ratio of olefin to alkylsilane of from about 0.5 to about 20 to one and a catalyst concentration of from about 1 x 10-/sup 5/ to about 1 x 10-/sup 2/ millimoles of catalyst per millimole alkylsilane, to produce a mixture containing saturated silane hydrocarbons and an unsaturated silahydrocarbon. Inclusive with the proviso that the molecular weight of the unsaturated silane hydrocarbon is above 300.« less

  14. Partial Hydrothermal Oxidation of High Molecular Weight Unsaturated Carboxylic Acids for Upgrading of Biodiesel Fuel

    NASA Astrophysics Data System (ADS)

    Kawasaki, K.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.

    2007-03-01

    With increasing environmental awareness and crude oil price, biodiesel fuel (BDF) is gaining recognition as a renewable fuel which may be used as an alternative diesel fuel without any modification to the engine. The cold flow and viscosity of BDF, however, is a major drawback that limited its use in cold area. In this study, therefore, we investigated that partial oxidation of high molecular weight unsaturated carboxylic acids in subcritical water, which major compositions in BDF, to upgrade biodiesel fuel. Oleic acid, (HOOC(CH2)7CH=CH(CH2)7CH3), was selected as a model compound of high molecular weight unsaturated carboxylic acids. All experiments were performed with a batch reactor made of SUS 316 with an internal volume of 5.7 cm3. Oleic acid was oxidized at 300 °C with oxygen supply varying from 1-10 %. Results showed that a large amount of carboxylic acids and aldehydes having 8-9 carbon atoms were formed. These experimental results suggest that the hydrothermal oxidative cleavage may mainly occur at double bonds and the cleavage of double bonds could improve the cold flow and viscosity of BDF.

  15. Imaging and Measurements of Flow Phenomena and Impact of Soil Associated Constituents Through Unsaturated Porous Media in a 2D System

    NASA Astrophysics Data System (ADS)

    Pales, A. R.; Li, B.; Clifford, H.; Edayilam, N.; Montgomery, D.; Dogan, M.; Tharayil, N.; Martinez, N. E.; Moysey, S. M.; Darnault, C. J. G.

    2016-12-01

    This research aims to build upon past two-dimension (2D) tank light transmission methods to quantify real-time flow in unsaturated porous media (ASTM silica sand; US Silica, Ottawa, IL, USA) and how exudates effect unstable flow patterns. A 2D tank light transmission method was created using a transparent flow through tank coupled with a random rainfall simulator; a commercial LED light and a complementary metal oxide semiconductor digital single lens reflex (CMOS DSLR) Nikon D5500 camera were used to capture the real-time flow images. The images were broken down from red-green-blue (RGB) into hue-saturation-intensity (HVI) and analyzed in Matlab to produce quantifiable data about finger formation and water saturation distribution. Contact angle and surface tension of the chemical plant exudate solutions was measured using a Kruss EasyDrop FM40Mk2 (Kruss GmbH Germany). The exudates (oxalate, citrate, tannic acid, and Suwannee River Natural Organic Matter) had an increased wettability effect compared to control rain water (0.01M NaCl). This resulted in variable finger formation and speed of finger propagation; dependent on exudate type and concentration. Water saturation along the vertical and horizontal profile (Matlab) was used to quantify the finger more objectively than by eye assessment alone. The changes in finger formation and speed of propagation between the control rain water (0.01M NaCl) and the solutions containing plant exudates illustrates that the plant exudates increased the wettability (mobility) of water moving through unsaturated porous media. This understanding of plant exudates effect on unsaturated flow is important for future works in this study to analyze how plants, their roots and exudates, may affect the mobility of radionuclides in unsaturated porous media.

  16. Measurements of HFC-134a and HCFC-22 in groundwater and unsaturated-zone air: implications for HFCs and HCFCs as dating tracers

    USGS Publications Warehouse

    Haase, Karl B.; Busenberg, Eurybiades; Plummer, Niel; Casile, Gerolamo; Sanford, Ward E.

    2014-01-01

    A new analytical method using gas chromatography with an atomic emission detector (GC–AED) was developed for measurement of ambient concentrations of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) in soil, air, and groundwater, with the goal of determining their utility as groundwater age tracers. The analytical detection limits of HCFC-22 (difluorochloromethane, CHClF2) and HFC-134a (1,2,2,2-tetrafluoroethane, C2H2F4) in 1 L groundwater samples are 4.3 × 10− 1 and 2.1 × 10− 1 pmol kg− 1, respectively, corresponding to equilibrium gas-phase mixing ratios of approximately 5–6 parts per trillion by volume (pptv). Under optimal conditions, post-1960 (HCFC-22) and post-1995 (HFC-134a) recharge could be identified using these tracers in stable, unmixed groundwater samples. Ambient concentrations of HCFC-22 and HFC-134a were measured in 50 groundwater samples from 27 locations in northern and western parts of Virginia, Tennessee, and North Carolina (USA), and 3 unsaturated-zone profiles were collected in northern Virginia. Mixing ratios of both HCFC-22 and HFC-134a decrease with depth in unsaturated-zone gas profiles with an accompanying increase in CO2 and loss of O2. Apparently, ambient concentrations of HCFC-22 and HFC-134a are readily consumed by methanotrophic bacteria under aerobic conditions in the unsaturated zone. The results of this study indicate that soils are a sink for these two greenhouse gases. These observations contradict the previously reported results from microcosm experiments that found that degradation was limited above-ambient HFC-134a. The groundwater HFC and HCFC concentrations were compared with concentrations of chlorofluorocarbons (CFCs, CFC-11, CFC-12, CFC-113) and sulfur hexafluoride (SF6). Nearly all samples had measured HCFC-22 or HFC-134a that were below concentrations predicted by the CFCs and SF6, with many samples showing a complete loss of HCFC-22 and HFC-134a. This study indicates that HCFC-22 and HFC-134

  17. Acrolein with an alpha, beta-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

    USDA-ARS?s Scientific Manuscript database

    Acrolein is a highly electrophilic a,ß-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear factor-kB (NF-kB) activation by lipopolysac...

  18. The paleohydrology of unsaturated and saturated zones at Yucca Mountain, Nevada, and vicinity

    USGS Publications Warehouse

    Paces, James B.; Whelan, Joseph F.; Stuckless, John S.

    2012-01-01

    Surface, unsaturated-zone, and saturated-zone hydrologic conditions at Yucca Mountain responded to past climate variations and are at least partly preserved by sediment, fossil, and mineral records. Characterizing past hydrologic conditions in surface and subsurface environments helps to constrain hydrologic responses expected under future climate conditions and improve predictions of repository performance. Furthermore, these records provide a better understanding of hydrologic processes that operate at time scales not readily measured by other means. Pleistocene climates in southern Nevada were predominantly wetter and colder than the current interglacial period. Cyclic episodes of aggradation and incision in Fortymile Wash, which drains the eastern slope of Yucca Mountain, are closely linked to Pleistocene climate cycles. Formation of pedogenic cement is favored under wetter Pleistocene climates, consistent with increased soil moisture and vegetation, higher chemical solubility, and greater evapotranspiration relative to Holocene soil conditions. The distribution and geochemistry of secondary minerals in subsurface fractures and cavities reflect unsaturated-zone hydrologic conditions and the response of the hydrogeologic system to changes in temperature and percolation flux over the last 12.8 m.y. Physical and fluid-inclusion evidence indicates that secondary calcite and opal formed in air-filled cavities from fluids percolating downward through connected fracture pathways in the unsaturated zone. Oxygen, strontium, and carbon isotope data from calcite are consistent with a descending meteoric water source but also indicate that water compositions and temperatures evolved through time. Geochronological data indicate that secondary mineral growth rates are less than 1–5 mm/m.y., and have remained approximately uniform over the last 10 m.y. or longer. These data are interpreted as evidence for hydrological stability despite large differences in surface moisture

  19. Graphene Oxide Affects Mobility and Antibacterial Ability of Levofloxacin and Ciprofloxacin in Saturated and Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Kaixuan, S.

    2017-12-01

    Understand the fate and impact of fluoroquinolone antibiotics (FQs) in soil and groundwater systems is critical to the safety of ecosystem and public health. In this work, laboratory batch sorption, column transport, and bacterial growth experiments were conducted to improve current understanding of the interactions between two typical FQs (levofloxacin (LEV) and ciprofloxacin (CIP)) and graphene oxide (GO) in quartz sand media under various conditions. Studies showed that both GO and quartz sand adsorbed LEV and CIP in aqueous solutions and sand was capable to compete with GO for the antibiotics. While GO showed much larger sorption capacity, the sand had stronger sorption affinity to the two antibiotics. As a result, neither LEV nor CIP showed any signs of breakthrough in saturated or unsaturated porous media. When the two antibiotics were premixed with GO, their mobility in porous media increased for both saturate and unsaturated conditions and the amount of LEV or CIP in the effluents increased with the increasing of initial GO concentration. During their transport in saturated porous media, some of the GO-bound antibiotics, especially those sorbed via relatively weak interactions, transferred from GO to the quartz sand. Under unsaturated conditions, GO-bound LEV might also transfer from GO to the air-water interface due to the strong affiliation between LEV and air-water interface. Sorption onto GO reduced the antibacterial ability of LEV and CIP, however, the GO-bound antibiotics still effectively inhibited the growth of E coli. Findings from this work indicated that mobile GO affected not only the mobility but also the ecotoxicity of LEV and CIP in porous media.

  20. The unsaturated flow in porous media with dynamic capillary pressure

    NASA Astrophysics Data System (ADS)

    Milišić, Josipa-Pina

    2018-05-01

    In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [13] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed-derivative term by combining the information from the capillary pressure with the obtained a priori estimates on the saturation.