Sample records for identifying bioenergy-related policies

  1. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, thismore » project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.« less

  2. How can land-use modelling tools inform bioenergy policies?

    PubMed Central

    Davis, Sarah C.; House, Joanna I.; Diaz-Chavez, Rocio A.; Molnar, Andras; Valin, Hugo; DeLucia, Evan H.

    2011-01-01

    Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished. PMID

  3. Global land-use and market interactions between climate and bioenergy policies

    NASA Astrophysics Data System (ADS)

    Golub, A.; Hertel, T. W.; Rose, S. K.

    2011-12-01

    Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG

  4. ACMECS Bioenergy Network: Implementing a transnational science-based policy network on bioenergy

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor J.; Haruthaithanasan, Maliwan; Kraxner, Florian; Brenner, Anna

    2017-04-01

    Despite the currently low prices for fossil energy resulting from a number of geopolitical reasons, intergovernmental efforts are being made towards a transition to a sustainable bio-economy. The main reasons for this include climate change mitigation, decreasing dependencies fossil fuel imports and hence external market fluctuations, diversification of energy generation and feedstock production for industrial processes. Since 2012, the ACMECS bioenergy network initiative leads negotiations and organizes workshops to set up a regional bioenergy network in Indochina, with the aim to promote biomass and -energy markets, technology transfer, rural development and income generation. Policy development is guided by the International Union of Forest Research Institutions (IUFRO) Task Force "Sustainable Forest Bioenergy Network". In this paper, we highlight the achievements so far and present results of a multi-stakeholder questionnaire in combination with a quantitative analysis of the National Bioenergy Development Plans (NBDP's). We found that traditional fuelwood is still the most important resource for generating thermal energy in the region, especially in rural settings, and it will remain an important resource even in 25 years. However, less fuelwood will be sourced from natural forests as compared to today. NBDP's have a focus on market development, technology transfer and funding possibilities of a regional bioenergy strategy, while the responses of the questionnaire favored more altruistic goals, i.e. sustainable resource management, environmental protection and climate change mitigation, generation of rural income and community involvement etc. This is surprising, since a sub-population of the (anonymous) questionnaire respondents was actually responsible drafting the NBDP's. We therefore suggest the following measures to ensure regulations that represent the original aims of the network (climate change mitigation, poverty alleviation, sustainable resource use

  5. An integrated policy framework for the sustainable exploitation of biomass for bioenergy from marginal lands

    NASA Astrophysics Data System (ADS)

    Panoutsou, Calliope

    2017-04-01

    Currently, there are not sufficiently tailored policies focusing on biomass and bioenergy from marginal lands. This paper will provide an integrated policy framework and recommendations to facilitate understanding for the market sectors involved and the key principles which can be used to form future sustainable policies for this issue. The work will focus at EU level policy recommendations and discuss how these can interrelate with national and regional level policies to promote the usage of marginal lands for biomass and bioenergy. Recommended policy measures will be based on the findings of the Biomass Policies (www.biomasspolicies.eu) and S2Biom (www.s2biom.eu) projects and will be prepared taking into account the key influencing factors (technical, environmental, social and economic) on biomass and bioenergy from marginal lands: • across different types of marginality (biophysical such as: low temperature, dryness, excess soil moisture, poor chemical properties, steep slope, etc., and socio-economic resulting from lack of economic competitiveness in certain regions and crops, abandonment or rural areas, etc.) • across the different stages of the biomass value chain (supply, logistics, conversion, distribution and end-use). The aim of recommendations will be to inform policy makers on how to distinguish key policy related attributes across biomass and bioenergy from marginal lands, measure them and prioritise actions with a 'system' based approach.

  6. Policies to Enable Bioenergy Deployment: Key Considerations and Good Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolinksi, Sharon; Cox, Sadie

    2016-05-01

    Bioenergy is renewable energy generated from biological source materials, and includes electricity, transportation fuels and heating. Source materials are varied types of biomass, including food crops such as corn and sugarcane, non-edible lignocellulosic materials such as agricultural and forestry waste and dedicated crops, and municipal and livestock wastes. Key aspects of policies for bioenergy deployment are presented in this brief as part of the Clean Energy Solutions Center's Clean Energy Policy Brief Series.

  7. IEA Bioenergy Countries' Report: Bioenergy policies and status of implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacovsky, Dina; Ludwiczek, Nikolaus; Pointner, Christian

    2016-08-05

    This report was prepared from IEA statistical data, information from IRENA, and IEA Bioenergy Tasks’ country reports, combined with data provided by the IEA Bioenergy Executive Committee. All individual country reports were reviewed by the national delegates to the IEA Bioenergy Executive Committee, who have approved the content. In the first section of each country report, national renewable energy targets are presented (first table in each country report), and the main pieces of national legislation are discussed. In the second section of each country report the total primary energy supply (TPES) by resources and the contribution of bioenergy are presented.more » All data is taken from IEA statistics for the year 2014. Where 2014 data was not available, 2013 data was used. It is worth noting that data reported in national statistics can differ from the IEA data presented, as the reporting categories and definitions are different. In the third section of each country report, the research focus related to bioenergy is discussed. Relevant funding programs, major research institutes and projects are described. In the fourth section, recent major bioenergy developments are described. Finally, in the fifth section, links to sources of information are provided.« less

  8. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas.

    PubMed

    Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  9. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas

    NASA Astrophysics Data System (ADS)

    Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  10. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.

    PubMed

    Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M

    2010-10-01

    Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.

  11. Correcting a fundamental error in greenhouse gas accounting related to bioenergy.

    PubMed

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-06-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of 'additional biomass' - biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy - can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.

  12. Correcting a fundamental error in greenhouse gas accounting related to bioenergy

    PubMed Central

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K.; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-01-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy. PMID:23576835

  13. Global impacts of U.S. bioenergy production and policy: A general equilibrium perspective

    NASA Astrophysics Data System (ADS)

    Evans, Samuel Garner

    The conversion of biomass to energy represents a promising pathway forward in efforts to reduce fossil fuel use in the transportation and electricity sectors. In addition to potential benefits, such as greenhouse gas reductions and increased energy security, bioenergy production also presents a unique set of challenges. These challenges include tradeoffs between food and fuel production, distortions in energy markets, and terrestrial emissions associated with changing land-use patterns. Each of these challenges arises from market-mediated responses to bioenergy production, and are therefore largely economic in nature. This dissertation directly addresses these opportunities and challenges by evaluating the economic impacts of U.S. bioenergy production and policy, focusing on both existing and future biomass-to-energy pathways. The analysis approaches the issue from a global, economy-wide perspective, reflecting two important facts. First, that large-scale bioenergy production connects multiple sectors of the economy due to the use of agricultural land resources for biomass production, and competition with fossil fuels in energy markets. Second, markets for both agricultural and energy commodities are highly integrated globally, causing domestic policies to have international effects. The reader can think of this work as being comprised of three parts. Part I provides context through an extensive review of the literature on the market-mediated effects of conventional biofuel production (Chapter 2) and develops a general equilibrium modeling framework for assessing the extent to which these phenomenon present a challenge for future bioenergy pathways (Chapter 3). Part II (Chapter 4) explores the economic impacts of the lignocellulosic biofuel production targets set in the U.S. Renewable Fuel Standard on global agricultural and energy commodity markets. Part III (Chapter 5) extends the analysis to consider potential inefficiencies associated with policy

  14. Tweak, adapt, or transform: Policy scenarios in response to emerging bioenergy markets in the U.S

    Treesearch

    Ryan. C. Atwell; Lisa. A. Schulte; Lynne M. Westphal

    2011-01-01

    Emerging bioenergy markets portend both boon and bane for regions of intensive agricultural production worldwide. To understand and guide the effects of bioenergy markets on agricultural landscapes, communities, and economies, we engaged leaders in the Corn Belt state of Iowa in a participatory workshop and follow-up interviews to develop future policy scenarios....

  15. Bioenergy and biodiversity: Key lessons from the Pan American region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the Unitedmore » States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. Lastly, we propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.« less

  16. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    NASA Astrophysics Data System (ADS)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  17. 2015 Bioenergy Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Ethan; Moriarty, Kristi; Lewis, John

    This report is an update to the 2013 report and provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of 2015. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This version features details on the two major bioenergy markets: biofuels and biopower and an overview of bioproducts that enable bioenergy production. The information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of themore » key energy and regulatory drivers of bioenergy markets.« less

  18. The role of bioenergy in a climate-changing world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Glaucia Mendes; Ballester, Maria Victoria R.; de Brito Cruz, Carlos Henrique

    Bioenergy has been under intense scrutiny over the last ten years with significant research efforts in many countries taking place to define and measure sustainable practices. We describe here the main challenges and policy issues and provide policy recommendations for scaling up sustainable bioenergy approaches globally. The 2016 Intended Nationally Determined Contributions (INDCs defined under the UN Framework Convention on Climate Change) (UNFCCC) Conference of the Parties (COP21) will not reach global Greenhouse Gas (GHG) emission targets of 2 °C. Sustainable biomass production can make a significant contribution. Substantive evidence exists that many bioenergy cropping systems can bring multiple benefitsmore » and off-set environmental problems associated with fossil fuels usage as well as intensive food production and urbanization. We provide evidence that there are many approaches to land use for bioenergy expansion that do not lead to competition for food or other needs. We should focus on how to manage these approaches on a synergistic basis and how to reduce tradeoffs at landscape scales. Priorities include successful synergies between bioenergy and food security (integrated resource management designed to improve both food security and access to bioenergy), investments in technology, rural extension, and innovations that build capacity and infrastructure, promotion of stable prices to incentivize local production and use of double cropping and flex crops (plants grown for both food and non-food markets) that provide food and energy as well as other services. The sustainable production of biomass requires appropriate policies to secure long-term support to improve crop productivity and also to ensure environmental as well as economic and social benefits of bioenergy cropping systems. Continuous support for cropping, infrastructure, agricultural management and related policies is needed to foster positive synergies between food crops and bioenergy

  19. The role of bioenergy in a climate-changing world

    DOE PAGES

    Souza, Glaucia Mendes; Ballester, Maria Victoria R.; de Brito Cruz, Carlos Henrique; ...

    2017-02-24

    Bioenergy has been under intense scrutiny over the last ten years with significant research efforts in many countries taking place to define and measure sustainable practices. We describe here the main challenges and policy issues and provide policy recommendations for scaling up sustainable bioenergy approaches globally. The 2016 Intended Nationally Determined Contributions (INDCs defined under the UN Framework Convention on Climate Change) (UNFCCC) Conference of the Parties (COP21) will not reach global Greenhouse Gas (GHG) emission targets of 2 °C. Sustainable biomass production can make a significant contribution. Substantive evidence exists that many bioenergy cropping systems can bring multiple benefitsmore » and off-set environmental problems associated with fossil fuels usage as well as intensive food production and urbanization. We provide evidence that there are many approaches to land use for bioenergy expansion that do not lead to competition for food or other needs. We should focus on how to manage these approaches on a synergistic basis and how to reduce tradeoffs at landscape scales. Priorities include successful synergies between bioenergy and food security (integrated resource management designed to improve both food security and access to bioenergy), investments in technology, rural extension, and innovations that build capacity and infrastructure, promotion of stable prices to incentivize local production and use of double cropping and flex crops (plants grown for both food and non-food markets) that provide food and energy as well as other services. The sustainable production of biomass requires appropriate policies to secure long-term support to improve crop productivity and also to ensure environmental as well as economic and social benefits of bioenergy cropping systems. Continuous support for cropping, infrastructure, agricultural management and related policies is needed to foster positive synergies between food crops and bioenergy

  20. Functional genomics of bio-energy plants and related patent activities.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2013-04-01

    With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.

  1. Net land-atmosphere flows of biogenic carbon related to bioenergy: towards an understanding of systemic feedbacks.

    PubMed

    Haberl, Helmut

    2013-07-01

    The notion that biomass combustion is carbon neutral vis-a-vis the atmosphere because carbon released during biomass combustion is absorbed during plant regrowth is inherent in the greenhouse gas accounting rules in many regulations and conventions. But this 'carbon neutrality' assumption of bioenergy is an oversimplification that can result in major flaws in emission accounting; it may even result in policies that increase, instead of reduce, overall greenhouse gas emissions. This commentary discusses the systemic feedbacks and ecosystem succession/land-use history issues ignored by the carbon neutrality assumption. Based on recent literature, three cases are elaborated which show that the C balance of bioenergy may range from highly beneficial to strongly detrimental, depending on the plants grown, the land used (including its land-use history) as well as the fossil energy replaced. The article concludes by proposing the concept of GHG cost curves of bioenergy as a means for optimizing the climate benefits of bioenergy policies.

  2. Carbon accounting of forest bioenergy: from model calibrations to policy options (Invited)

    NASA Astrophysics Data System (ADS)

    Lamers, P.

    2013-12-01

    Programs to stimulate biomass use for the production of heating/cooling and electricity have been implemented in many countries as part of their greenhouse gas emission reduction strategies. Critiques claim however that the use of forest biomass, e.g. as a replacement of hard-coal in large-scale power plants or mineral oil fuelled residential heating boilers, countervails carbon saving and thus also climate change mitigation strategies, at least in the short-term, as forest biomass combustion releases previously stored biogenic carbon back into the atmosphere. While there seems general agreement that carbon emitted from bioenergy combustion was and will again be sequestered from the atmosphere given a sustainable biomass management system, there is inherent concern that carbon release and sequestration rates may not be in temporal balance with each other and eventually jeopardize mid-century carbon/temperature/climate targets. So far, biomass carbon accounting systems (including those that are part of regulatory standards) have not incorporated this potential temporal imbalance or ';carbon debt'. The potential carbon debt caused by wood harvest and the resulting time spans needed to reach pre-harvest carbon levels (payback) or those of a reference case (parity) have become important parameters for climate and bioenergy policy developments. The present range of analyses however varies in assumptions, regional scopes, and conclusions. Policy makers are confronted with this portfolio while needing to address the temporal carbon aspect in current regulations. In order to define policies for our carbon constrained world, it is critical to better understand the dimensions and regional differences of these carbon cycles. This paper/presentation discusses to what extent and under which circumstances (i.e. bioenergy systems) a temporal forest carbon imbalance could jeopardize future temperature and eventually climate targets. It further reviews the current state of

  3. Modeling Pollinator Community Response to Contrasting Bioenergy Scenarios

    PubMed Central

    Bennett, Ashley B.; Meehan, Timothy D.; Gratton, Claudio; Isaacs, Rufus

    2014-01-01

    In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation. PMID:25365559

  4. Developing tools to identify marginal lands and assess their potential for bioenergy production

    NASA Astrophysics Data System (ADS)

    Galatsidas, Spyridon; Gounaris, Nikolaos; Dimitriadis, Elias; Rettenmaier, Nils; Schmidt, Tobias; Vlachaki, Despoina

    2017-04-01

    The term "marginal land" is currently intertwined in discussions about bioenergy although its definition is neither specific nor firm. The uncertainty arising from marginal land classification and quantification is one of the major constraining factors for its potential use. The clarification of political aims, i.e. "what should be supported?" is also an important constraining factor. Many approaches have been developed to identify marginal lands, based on various definitions according to the management goals. Concerns have been frequently raised regarding the impacts of marginal land use on environment, ecosystem services and sustainability. Current tools of soil quality and land potentials assessment fail to meet the needs of marginal land identification and exploitation for biomass production, due to the lack of comprehensive analysis of interrelated land functions and their quantitative evaluation. Land marginality is determined by dynamic characteristics in many cases and may therefore constitute a transitional state, which requires reassessment in due time. Also, marginal land should not be considered simply a dormant natural resource waiting to be used, since it may already provide multiple benefits and services to society relating to wildlife, biodiversity, carbon sequestration, etc. The consequences of cultivating such lands need to be fully addressed to present a balanced view of their sustainable potential for bioenergy. This framework is the basis for the development of the SEEMLA tools, which aim at supporting the identification, assessment, management of marginal lands in Europe and the decision-making for sustainable biomass production of them using appropriate bioenergy crops. The tools comprise two applications, a web-based one (independent of spatial data) and a GIS-based application (land regionalization on the basis of spatial data), which both incorporate: - Land resource characteristics, restricting the cultivation of agricultural crops but

  5. Modeling Joint Climate and Bioenergy Policies: Challenges of integrating economic and environmental data. (Invited)

    NASA Astrophysics Data System (ADS)

    Hellwinckel, C. M.; West, T. O.; de La Torre Ugarte, D.; Perlack, R.

    2010-12-01

    In the coming decades agriculture will be asked to play a significant role in reducing carbon emissions and reducing our use of foreign oil. The Renewable Fuels Standard combined with possible climate legislation will alter the economic landscape effecting agricultural land use decisions. The joint implementation of these two policies could potentially work against one another. We have integrated biogeophysical data into the POLYSYS economic model to analyze the effects of climate change and bioenergy legislation upon regional land-use change, soil carbon, carbon emissions, biofuel production, and agricultural income. The purpose of the analysis was to use the integrated model to identify carbon and bioenergy policies that could act synergistically to meet Renewable Fuel Standard goals, reduce net emissions of carbon, and increase agricultural incomes. The heterogeneous nature of soils, crop yields, and management practices presented challenges to the modeling process. Regional variation in physical data can significantly affect economic land use decisions and patterns. For this reason, we disaggregated the economic component of the model to the county level, with sub-county soils and land-use data informing the county level decisions. Modeling carbon offset dynamics presented unique challenges, as the physical responses of local soils impact the economic incentives offered, and conversely, the resulting land-use changes impact characteristics of local soils. Additionally, using data from different resolution levels led to questions of appropriate scale of analysis. This presentation will describe the integrated model, present some significant results from our analysis, and discuss appropriate steps forward given what we learned.

  6. Forest Carbon Accounting Considerations in US Bioenergy Policy

    Treesearch

    Reid A. Miner; Robert C. Abt; Jim L. Bowyer; Marilyn A. Buford; Robert W. Malmsheimer; Jay O' Laughlin; Elaine E. Oneil; Roger A. Sedjo; Kenneth E. Skog

    2014-01-01

    Four research-based insights are essential to understanding forest bioenergy and “carbon debts.” (1) As long as wood-producing land remains in forest, long-lived wood products and forest bioenergy reduce fossil fuel use and long-term carbon emission impacts. (2) Increased demand for wood can trigger investments that increase forest area and forest productivity and...

  7. Bioenergy production and sustainable development: science base for policymaking remains limited.

    PubMed

    Robledo-Abad, Carmenza; Althaus, Hans-Jörg; Berndes, Göran; Bolwig, Simon; Corbera, Esteve; Creutzig, Felix; Garcia-Ulloa, John; Geddes, Anna; Gregg, Jay S; Haberl, Helmut; Hanger, Susanne; Harper, Richard J; Hunsberger, Carol; Larsen, Rasmus K; Lauk, Christian; Leitner, Stefan; Lilliestam, Johan; Lotze-Campen, Hermann; Muys, Bart; Nordborg, Maria; Ölund, Maria; Orlowsky, Boris; Popp, Alexander; Portugal-Pereira, Joana; Reinhard, Jürgen; Scheiffle, Lena; Smith, Pete

    2017-03-01

    The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion of whether and how bioenergy production contributes to sustainable development. We undertook a systematic review of the scientific literature to illuminate this relationship and found a limited scientific basis for policymaking. Our results indicate that knowledge on the sustainable development impacts of bioenergy production is concentrated in a few well-studied countries, focuses on environmental and economic impacts, and mostly relates to dedicated agricultural biomass plantations. The scope and methodological approaches in studies differ widely and only a small share of the studies sufficiently reports on context and/or baseline conditions, which makes it difficult to get a general understanding of the attribution of impacts. Nevertheless, we identified regional patterns of positive or negative impacts for all categories - environmental, economic, institutional, social and technological. In general, economic and technological impacts were more frequently reported as positive, while social and environmental impacts were more frequently reported as negative (with the exception of impacts on direct substitution of GHG emission from fossil fuel). More focused and transparent research is needed to validate these patterns and develop a strong science underpinning for establishing policies and governance agreements that prevent/mitigate negative and promote positive impacts from bioenergy production.

  8. Advancing Sustainable Bioenergy: Evolving Stakeholder Interests and the Relevance of Research

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Lawrence; Bielicki, Jeffrey M.; Dodder, Rebecca S.; Hilliard, Michael R.; Ozge Kaplan, P.; Andrew Miller, C.

    2013-02-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different—and potentially conflicting—values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote "sustainable" bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  9. Advancing sustainable bioenergy: evolving stakeholder interests and the relevance of research.

    PubMed

    Johnson, Timothy Lawrence; Bielicki, Jeffrey M; Dodder, Rebecca S; Hilliard, Michael R; Kaplan, P Ozge; Miller, C Andrew

    2013-02-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different-and potentially conflicting-values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote "sustainable" bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  10. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy L; Bielicki, Dr Jeffrey M; Dodder, Rebecca

    2013-01-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts tomore » define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.« less

  11. Applying consequential LCA to support energy policy: land use change effects of bioenergy production.

    PubMed

    Vázquez-Rowe, Ian; Marvuglia, Antonino; Rege, Sameer; Benetto, Enrico

    2014-02-15

    Luxembourg aims at complying with the EU objective of attaining a 14% use of bioenergy in the national grid by 2020. The increase of biomethane production from energy crops could be a valuable option in achieving this objective. However, the overall environmental benefit of such option is yet to be proven. Consequential Life Cycle Assessment (CLCA) has shown to be a useful tool to evaluate the environmental suitability of future energy scenarios and policies. The objective of this study was, therefore, to evaluate the environmental consequences of modifying the Luxembourgish agricultural system to increase maize production for biomethane generation. A total of 10 different scenarios were modelled using a partial equilibrium (PE) model to identify changes in land cultivation based on farmers' revenue maximisation, which were then compared to the baseline scenario, i.e. the state of the agricultural sector in 2009. The results were divided into three different consequential decision contexts, presenting differing patterns in terms of land use changes (LUCs) but with minor shifts in environmental impacts. Nevertheless, energy from maize production would imply substantially higher environmental impacts when compared with the current use of natural gas, mainly due to increases in climate change and agricultural land occupation impacts. The results are discussed based on the consequences they may generate on the bioenergy policy, the management of arable land, the changes in import-export flows in Luxembourg and LUCs in the domestic agricultural system. In addition, the specific PE+LCA method presented intends to be of use for other regional studies in which a high level of site-specific data is available. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Bioenergy Sustainability in China: Potential and Impacts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Gentry, Randall W.; Yu, Gui-Rui; Sayler, Gary S.; Bickham, John W.

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China’s bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  13. Reconciling food security and bioenergy: priorities for action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L.; Msangi, Siwa; Dale, Virginia H.

    Addressing the challenges of understanding and managing complex interactions among food security, biofuels, and land management requires a focus on specific contextual problems and opportunities. The United Nations 2030 Sustainable Development Goals prioritize food and energy security and bioenergy links these two priorities. Effective food security programs begin by clearly defining the problem and asking, What options will be effective to assist people at high risk? Headlines and cartoons that blame biofuels for food insecurity reflect good intentions but mislead the public and policy makers because they obscure or miss the main drivers of local food insecurity and opportunities formore » biofuels to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near- and long- term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy do not compete for land but food and bioenergy systems can and do work together to improve resource management, (3) investing in innovations to build capacity and infrastructure such as rural agricultural extension and technology, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders in identifying and assessing specific opportunities for biofuels to improve food security. In conclusion, systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.« less

  14. Reconciling food security and bioenergy: priorities for action

    DOE PAGES

    Kline, Keith L.; Msangi, Siwa; Dale, Virginia H.; ...

    2016-06-14

    Addressing the challenges of understanding and managing complex interactions among food security, biofuels, and land management requires a focus on specific contextual problems and opportunities. The United Nations 2030 Sustainable Development Goals prioritize food and energy security and bioenergy links these two priorities. Effective food security programs begin by clearly defining the problem and asking, What options will be effective to assist people at high risk? Headlines and cartoons that blame biofuels for food insecurity reflect good intentions but mislead the public and policy makers because they obscure or miss the main drivers of local food insecurity and opportunities formore » biofuels to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near- and long- term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy do not compete for land but food and bioenergy systems can and do work together to improve resource management, (3) investing in innovations to build capacity and infrastructure such as rural agricultural extension and technology, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders in identifying and assessing specific opportunities for biofuels to improve food security. In conclusion, systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.« less

  15. Modeling carbon dynamics and social drivers of bioenergy agroecosystems

    NASA Astrophysics Data System (ADS)

    Hunt, Natalie D.

    satellite data. The most important stakeholder in bioenergy sustainability and feasibility research is the farmer. Chapter 5 identified and measured the influence of bioenergy feedstock choice drivers using logistic regression choice models constructed from survey and geospatial data. The strongest choice drivers among farmers willing to participate in a proposed bioenergy feedstock production program included socioeconomic, biophysical, and environmental attitudes. Outcomes of this research will be useful in designing further bioenergy policy and economic incentives.

  16. Bioenergy and African transformation.

    PubMed

    Lynd, Lee R; Sow, Mariam; Chimphango, Annie Fa; Cortez, Luis Ab; Brito Cruz, Carlos H; Elmissiry, Mosad; Laser, Mark; Mayaki, Ibrahim A; Moraes, Marcia Afd; Nogueira, Luiz Ah; Wolfaardt, Gideon M; Woods, Jeremy; van Zyl, Willem H

    2015-01-01

    Among the world's continents, Africa has the highest incidence of food insecurity and poverty and the highest rates of population growth. Yet Africa also has the most arable land, the lowest crop yields, and by far the most plentiful land resources relative to energy demand. It is thus of interest to examine the potential of expanded modern bioenergy production in Africa. Here we consider bioenergy as an enabler for development, and provide an overview of modern bioenergy technologies with a comment on application in an Africa context. Experience with bioenergy in Africa offers evidence of social benefits and also some important lessons. In Brazil, social development, agricultural development and food security, and bioenergy development have been synergistic rather than antagonistic. Realizing similar success in African countries will require clear vision, good governance, and adaptation of technologies, knowledge, and business models to myriad local circumstances. Strategies for integrated production of food crops, livestock, and bioenergy are potentially attractive and offer an alternative to an agricultural model featuring specialized land use. If done thoughtfully, there is considerable evidence that food security and economic development in Africa can be addressed more effectively with modern bioenergy than without it. Modern bioenergy can be an agent of African transformation, with potential social benefits accruing to multiple sectors and extending well beyond energy supply per se. Potential negative impacts also cut across sectors. Thus, institutionally inclusive multi-sector legislative structures will be more effective at maximizing the social benefits of bioenergy compared to institutionally exclusive, single-sector structures.

  17. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes

    PubMed Central

    Werling, Ben P.; Dickson, Timothy L.; Isaacs, Rufus; Gaines, Hannah; Gratton, Claudio; Gross, Katherine L.; Liere, Heidi; Malmstrom, Carolyn M.; Meehan, Timothy D.; Ruan, Leilei; Robertson, Bruce A.; Robertson, G. Philip; Schmidt, Thomas M.; Schrotenboer, Abbie C.; Teal, Tracy K.; Wilson, Julianna K.; Landis, Douglas A.

    2014-01-01

    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands—farmland suboptimal for food crops—could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks—primarily annual grain crops—on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services. PMID:24474791

  18. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topicsmore » in further detail.« less

  19. Consensus, uncertainties and challenges for perennial bioenergy crops and land use.

    PubMed

    Whitaker, Jeanette; Field, John L; Bernacchi, Carl J; Cerri, Carlos E P; Ceulemans, Reinhart; Davies, Christian A; DeLucia, Evan H; Donnison, Iain S; McCalmont, Jon P; Paustian, Keith; Rowe, Rebecca L; Smith, Pete; Thornley, Patricia; McNamara, Niall P

    2018-03-01

    Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land-use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost-effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence-based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land-use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land-use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life-cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence

  20. Legal framework for a sustainable biomass production for bioenergy on Marginal Lands

    NASA Astrophysics Data System (ADS)

    Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    The EU H2020 funded project SEEMLA is aiming at the sustainable exploitation of biomass for bioenergy from marginal lands in Europe. Partners from Germany, Italy, Ukraine and Greece are involved in this project. Whereas Germany can be considered as well-established and leading country with regard to the production of bioenergy, directly followed by Italy and Greece, Ukraine is doing its first steps in becoming independent from fossil energy resources, also heading for the 2020+ goals. A basic, overarching regulation is the Renewable Energy Directive (RED) which has been amended in 2015; these amendments will be set in force in 2017. A new proposal for the period after 2020, the so called RED II, is under preparation. With cross-compliance and greening, the Common Agricultural Policy (CAP) offers measures for an efficient and ecological concept for a sustainable agriculture in Europe. In country-specific National Renewable Energy Action Plans (NREAP) a concept for 2020 targets is given for practical implementation until 2030 which covers e.g. individual renewable energy targets for electricity, heating and cooling, and transport sectors, the planned mix of different renewables technologies, national policies to develop biomass resources, and measures to ensure that biofuels are used to meet renewable energy targets are in compliance with the EU's sustainability criteria. While most of the NREAP have been submitted in 2010, the Ukrainian NREAP was established in 2014. In addition, the legal framework considering the protection of nature, e.g. Natura 2000, and its compartments soil, water, and atmosphere are presented. The SEEMLA approach will be developed in agreement with this already existing policy framework, following a sustainable principle for growing energy plants on marginal lands (MagL). Secondly, legislation regarding bioenergy and biomass potentials in the EU-28 and partner countries is introduced. For each SEEMLA partner an overview of regulatory

  1. Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications

    NASA Astrophysics Data System (ADS)

    Rhodes, James S., III

    2007-12-01

    Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("Mt

  2. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capareda, Sergio; El-Halwagi, Mahmoud; Hall, Kenneth R.

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previousmore » findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum

  3. A framework for selecting indicators of bioenergy sustainability

    DOE PAGES

    Dale, Virginia H.; Efroymson, Rebecca Ann; Kline, Keith L.; ...

    2015-05-11

    A framework for selecting and evaluating indicators of bioenergy sustainability is presented. This framework is designed to facilitate decision-making about which indicators are useful for assessing sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability indicators in the United States and Europe are reviewed. The first steps of the framework for indicator selection are defining the sustainability goals and other goals for a bioenergy project or program, gaining an understanding of the context, and identifying the values of stakeholders. From the goals, context, and stakeholders, the objectives for analysis and criteria for indicator selection can be developed.more » The user of the framework identifies and ranks indicators, applies them in an assessment, and then evaluates their effectiveness, while identifying gaps that prevent goals from being met, assessing lessons learned, and moving toward best practices. The framework approach emphasizes that the selection of appropriate criteria and indicators is driven by the specific purpose of an analysis. Realistic goals and measures of bioenergy sustainability can be developed systematically with the help of the framework presented here.« less

  4. Whole system analysis of second generation bioenergy production and Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar; Smith, Pete; Davies, Christian; McNamara, Niall

    2017-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy that has higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by current climate change. It is important to establish how second generation bioenergy crops (Miscanthus, SRC willow and poplar) can contribute by closing the gap between reducing fossil fuel use and increasing the use of other renewable sources in a sustainable way. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). We will present estimated yields for the above named crops in Europe using the ECOSSE, DayCent, SalixFor and MiscanFor models. These yields will be brought into context with a whole system analysis, detailing trade-offs and synergies for land use change, food security, GHG emissions and soil and water security. Methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be used to estimate and visualise the impacts of increased use of second generation bioenergy crops on the above named ecosystem services. The results will be linked to potential yields to generate "inclusion or exclusion areas" in Europe in order to establish suitable areas for bioenergy crop production and the extent of use possible. Policy is an important factor for using second generation bioenergy crops in a sustainable way. We will present how whole system analysis can be used to create scenarios for countries or on a continental scale. As an

  5. Chapter 9, Land and Bioenergy in Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods J, Lynd LR; Laser, M; Batistella M, De Castro D

    In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr inmore » 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.« less

  6. Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, John B.; Nassauer, Joan I.; Currie, William S.

    Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees. Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations. Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5% and 28.8% of agricultural landmore » converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape. Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale. Moreover, strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.« less

  7. Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area

    DOE PAGES

    Graham, John B.; Nassauer, Joan I.; Currie, William S.; ...

    2017-03-25

    Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees. Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations. Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5% and 28.8% of agricultural landmore » converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape. Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale. Moreover, strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.« less

  8. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT.

    PubMed

    Guo, Tian; Cibin, Raj; Chaubey, Indrajeet; Gitau, Margaret; Arnold, Jeffrey G; Srinivasan, Raghavan; Kiniry, James R; Engel, Bernard A

    2018-02-01

    Large quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeedstock systems. SWAT2012 with a new tile drainage routine and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, and nutrient losses under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US. Simulated results from bioenergy crop scenarios were compared with those from the baseline. The results showed that simulated annual crop yields were similar to observed county level values for corn and soybeans, and were reasonable for Miscanthus, switchgrass and hybrid poplar. Removal of 38% of corn stover (3.74Mg/ha/yr) with Miscanthus production on highly erodible areas and marginal land (17.49Mg/ha/yr) provided the highest biofeedstock production (279,000Mg/yr). Streamflow, tile flow, erosion and nutrient losses were reduced under bioenergy crop scenarios of bioenergy crops on highly erodible areas and marginal land. Corn stover removal did not result in significant water quality changes. The increase in sediment and nutrient losses under corn stover removal could be offset with the combination of other bioenergy crops. Potential areas for bioenergy crop production when meeting the criteria above were small (10.88km 2 ), thus the ability to produce biomass and improve water quality was not substantial. The study showed that corn stover removal with bioenergy crops both on highly erodible areas and marginal land could provide more biofuel production relative to the baseline, and was beneficial to water quality at the watershed scale, providing guidance for further research on evaluation of bioenergy crop scenarios in a typical extensively tile

  9. Bioenergy for sustainable development: An African context

    NASA Astrophysics Data System (ADS)

    Mangoyana, Robert Blessing

    This paper assesses the sustainability concerns of bioenergy systems against the prevailing and potential long term conditions in Sub-Saharan Africa with a special attention on agricultural and forestry waste, and cultivated bioenergy sources. Existing knowledge and processes about bioenergy systems are brought into a “sustainability framework” to support debate and decisions about the implementation of bioenergy systems in the region. Bioenergy systems have been recommended based on the potential to (i) meet domestic energy demand and reduce fuel importation (ii) diversify rural economies and create employment (iii) reduce poverty, and (iv) provide net energy gains and positive environmental impacts. However, biofuels will compete with food crops for land, labour, capital and entrepreneurial skills. Moreover the environmental benefits of some feedstocks are questionable. These challenges are, however, surmountable. It is concluded that biomass energy production could be an effective way to achieve sustainable development for bioenergy pathways that (i) are less land intensive, (ii) have positive net energy gains and environmental benefits, and (iii) provide local socio-economic benefits. Feasibility evaluations which put these issues into perspective are vital for sustainable application of agricultural and forest based bioenergy systems in Sub-Saharan Africa. Such evaluations should consider the long run potential of biofuels accounting for demographic, economic and technological changes and the related implications.

  10. Large-scale bioenergy production: how to resolve sustainability trade-offs?

    NASA Astrophysics Data System (ADS)

    Humpenöder, Florian; Popp, Alexander; Bodirsky, Benjamin Leon; Weindl, Isabelle; Biewald, Anne; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Klein, David; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Stevanovic, Miodrag

    2018-02-01

    SDG agenda. Based on this, we argue that the development of policies for regulating externalities of large-scale bioenergy production should rely on broad sustainability assessments to discover potential trade-offs with the SDG agenda before implementation.

  11. Land-Use and Environmental Pressures Resulting from Current and Future Bioenergy Crop Expansion: A Review

    ERIC Educational Resources Information Center

    Miyake, Saori; Renouf, Marguerite; Peterson, Ann; McAlpine, Clive; Smith, Carl

    2012-01-01

    Recent energy and climate policies, particularly in the developed world, have increased demand for bioenergy as an alternative, which has led to both direct and indirect land-use changes and an array of environmental and socio-economic concerns. A comprehensive understanding of the land-use dynamics of bioenergy crop production is essential for…

  12. BioEnergy Feasibility in South Africa

    NASA Astrophysics Data System (ADS)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural

  13. BioEnergy Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The BioEnergy Science Center, led by Oak Ridge National Laboratory, has been making advances in biofuels for over a decade. These achievements in plant genomics, microbial engineering, biochemistry, and plant physiology will carry over into the Center for Bioenergy Innovation, a new Department of Energy bioenergy research center.

  14. Bioenergy: America's Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Bruce; Volz, Sara; Male, Johnathan

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  15. Bioenergy: America's Energy Future

    ScienceCinema

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2018-01-16

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  16. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    scenario" under which more biomass feedstock can be produced and harvested, so that less area would be affected by harvesting and other management activities. Intensification through optimal forest management can lead to a substantial reduction of the area necessary for bioenergy feedstock supply. This in turn means that the "spared" area and the associated ecosystem services can be designated for conservation or other uses. This insight provides support to policy and decision makers in considering the optimal "mix" or "co-existence" of different ecosystem services and economic demands from a modern landscape management approach.

  17. A causal analysis framework for land-use change and the potential role of bioenergy policy

    DOE PAGES

    Efroymson, Rebecca A.; Kline, Keith L.; Angelsen, Arild; ...

    2016-10-05

    Here we propose a causal analysis framework to increase the reliability of land-use change (LUC) models and the accuracy of net greenhouse gas (GHG) emissions calculations for biofuels. The health-sciences-inspired framework is used here to determine probable causes of LUC, with an emphasis on bioenergy and deforestation. Calculations of net GHG emissions for LUC are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under national (U.S., U.K.), state (California), and European Union regulations. Biofuel policymakers and scientists continue to discuss whether presumed indirect land-use change (ILUC) estimates, which often involve deforestation, should be includedmore » in GHG accounting for biofuel pathways. Current estimates of ILUC for bioenergy rely largely on economic simulation models that focus on causal pathways involving global commodity trade and use coarse land cover data with simple land classification systems. ILUC estimates are highly uncertain, partly because changes are not clearly defined and key causal links are not sufficiently included in the models. The proposed causal analysis framework begins with a definition of the change that has occurred and proceeds to a strength-of-evidence approach based on types of epidemiological evidence including plausibility of the relationship, completeness of the causal pathway, spatial co-occurrence, time order, analogous agents, simulation model results, and quantitative agent response relationships.Lastly, we discuss how LUC may be allocated among probable causes for policy purposes and how the application of the framework has the potential to increase the validity of LUC models and resolve ILUC and biofuel controversies.« less

  18. A causal analysis framework for land-use change and the potential role of bioenergy policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, Rebecca A.; Kline, Keith L.; Angelsen, Arild

    Here we propose a causal analysis framework to increase the reliability of land-use change (LUC) models and the accuracy of net greenhouse gas (GHG) emissions calculations for biofuels. The health-sciences-inspired framework is used here to determine probable causes of LUC, with an emphasis on bioenergy and deforestation. Calculations of net GHG emissions for LUC are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under national (U.S., U.K.), state (California), and European Union regulations. Biofuel policymakers and scientists continue to discuss whether presumed indirect land-use change (ILUC) estimates, which often involve deforestation, should be includedmore » in GHG accounting for biofuel pathways. Current estimates of ILUC for bioenergy rely largely on economic simulation models that focus on causal pathways involving global commodity trade and use coarse land cover data with simple land classification systems. ILUC estimates are highly uncertain, partly because changes are not clearly defined and key causal links are not sufficiently included in the models. The proposed causal analysis framework begins with a definition of the change that has occurred and proceeds to a strength-of-evidence approach based on types of epidemiological evidence including plausibility of the relationship, completeness of the causal pathway, spatial co-occurrence, time order, analogous agents, simulation model results, and quantitative agent response relationships.Lastly, we discuss how LUC may be allocated among probable causes for policy purposes and how the application of the framework has the potential to increase the validity of LUC models and resolve ILUC and biofuel controversies.« less

  19. Land-use legacies regulate decomposition dynamics following bioenergy crop conversion

    DOE PAGES

    Kallenbach, Cynthia M.; Stuart Grandy, A.

    2014-07-14

    Land-use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land-use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land-use legacies with current management and litter quality. To evaluate how land-use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape-scale litterbag decomposition experiment. We proposed land-use legacies regulate decomposition, but their effects are weakened under higher quality litter andmore » when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and

  20. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT

    USDA-ARS?s Scientific Manuscript database

    Large quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeeds...

  1. Biomass for energy in the European Union - a review of bioenergy resource assessments

    PubMed Central

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  2. Bioenergy, the Carbon Cycle, and Carbon Policy

    NASA Astrophysics Data System (ADS)

    Kammen, D. M.

    2003-12-01

    The evolving energy and land-use policies across North America and Africa provide critical case studies in the relationship between regional development, the management of natural resources, and the carbon cycle. Over 50 EJ of the roughly 430 EJ total global anthropogenic energy budget is currently utilized in the form of direct biomass combustion. In North America 3 - 4 percent of total energy is derived from biomass, largely in combined heat and power (CHP) combustion applications. By contrast Africa, which is a major consumer of 'traditional' forms of biomass, uses far more total bioenergy products, but largely in smaller batches, with quantities of 0.5 - 2 tons/capita at the household level. Several African nations rely on biomass for well over 90 percent of household energy, and in some nations major portions of the industrial energy supply is also derived from biomass. In much of sub-Saharan Africa the direct combustion of biomass in rural areas is exceeded by the conversion of wood to charcoal for transport to the cities for household use there. There are major health, and environmental repercussions of these energy flows. The African, as well as Latin American and Asian charcoal trade has a noticeable signature on the global greenhouse gas cycles. In North America, and notably Scandinavia and India as well, biomass energy and emerging conversion technologies are being actively researched, and provide tremendous opportunities for the evolution of a sustainable, locally based, energy economy for many nations. This talk will examine aspects of these current energy and carbon flows, and the potential that gassification and new silvicultural practices hold for clean energy systems in the 21st century. North America and Africa will be examined in particular as both sources of innovation in this field, and areas with specific promise for application of these energy technologies and biomass/land use practices to further energy and global climate management.

  3. Watershed scale impacts of bioenergy, landscape changes, and ecosystem response

    NASA Astrophysics Data System (ADS)

    Chaubey, Indrajeet; Cibin, Raj; Chiang, Li-Chi

    2013-04-01

    loading at watershed outlet were reduced with bioenergy scenarios except for stover removal scenarios with reduction ranging between 2.4% to 30.5%. Based on the simulation results for different bioenergy crop production scenario, we have also developed a multi-level spatial optimization framework (MLSOPT) to optimize production of food and energy crops under various sustainability objective functions. The method works in two levels, first level divides large watershed into small subareas and optimum solutions for individually for these subareas are identified. The second level uses these optimum solutions from the first level to identify watershed scale optimum solutions. The framework is tested with a complex spatial optimization case study designed to maximize crop residue (corn stover) harvest with minimum environmental impacts in a 2000 km2 watershed, located in Indiana, USA. In this presentation, results related to optimize sustainability of bioenergy crops will also be discussed.

  4. Bioenergy potential of the United States constrained by satellite observations of existing productivity

    USGS Publications Warehouse

    Reed, Sasha C.; Smith, William K.; Cleveland, Cory C.; Miller, Norman L.; Running, Steven W.

    2012-01-01

    Background/Question/Methods Currently, the United States (U.S.) supplies roughly half the world’s biofuel (secondary bioenergy), with the Energy Independence and Security Act of 2007 (EISA) stipulating an additional three-fold increase in annual production by 2022. Implicit in such energy targets is an associated increase in annual biomass demand (primary bioenergy) from roughly 2.9 to 7.4 exajoules (EJ; 1018 Joules). Yet, many of the factors used to estimate future bioenergy potential are relatively unresolved, bringing into question the practicality of the EISA’s ambitious bioenergy targets. Here, our objective was to constrain estimates of primary bioenergy potential (PBP) for the conterminous U.S. using satellite-derived net primary productivity (NPP) data (measured for every 1 km2 of the 7.2 million km2 of vegetated land in the conterminous U.S) as the most geographically explicit measure of terrestrial growth capacity. Results/Conclusions We show that the annual primary bioenergy potential (PBP) of the conterminous U.S. realistically ranges from approximately 5.9 (± 1.4) to 22.2 (± 4.4) EJ, depending on land use. The low end of this range represents current harvest residuals, an attractive potential energy source since no additional harvest land is required. In contrast, the high end represents an annual harvest over an additional 5.4 million km2 or 75% of vegetated land in the conterminous U.S. While we identify EISA energy targets as achievable, our results indicate that meeting such targets using current technology would require either an 80% displacement of current croplands or the conversion of 60% of total rangelands. Our results differ from previous evaluations in that we use high resolution, satellite-derived NPP as an upper-envelope constraint on bioenergy potential, which removes the need for extrapolation of plot-level observed yields over large spatial areas. Establishing realistically constrained estimates of bioenergy potential seems a

  5. Decision support framework for evaluating the operational environment of forest bioenergy production and use: Case of four European countries.

    PubMed

    Pezdevšek Malovrh, Špela; Kurttila, Mikko; Hujala, Teppo; Kärkkäinen, Leena; Leban, Vasja; Lindstad, Berit H; Peters, Dörte Marie; Rhodius, Regina; Solberg, Birger; Wirth, Kristina; Zadnik Stirn, Lidija; Krč, Janez

    2016-09-15

    Complex policy-making situations around bioenergy production and use require examination of the operational environment of the society and a participatory approach. This paper presents and demonstrates a three-phase decision-making framework for analysing the operational environment of strategies related to increased forest bioenergy targets. The framework is based on SWOT (strengths, weaknesses, opportunities and threats) analysis and the Simple Multi-Attribute Rating Technique (SMART). Stakeholders of four case countries (Finland, Germany, Norway and Slovenia) defined the factors that affect the operational environments, classified in four pre-set categories (Forest Characteristics and Management, Policy Framework, Technology and Science, and Consumers and Society). The stakeholders participated in weighting of SWOT items for two future scenarios with SMART technique. The first scenario reflected the current 2020 targets (the Business-as-Usual scenario), and the second scenario contained a further increase in the targets (the Increase scenario). This framework can be applied to various problems of environmental management and also to other fields where public decision-making is combined with stakeholders' engagement. The case results show that the greatest differences between the scenarios appear in Germany, indicating a notably negative outlook for the Increase scenario, while the smallest differences were found in Finland. Policy Framework was a highly rated category across the countries, mainly with respect to weaknesses and threats. Intensified forest bioenergy harvesting and utilization has potentially wide country-specific impacts which need to be anticipated and considered in national policies and public dialogue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Switchgrass for forage and bioenergy

    USDA-ARS?s Scientific Manuscript database

    Switchgrass is a native warm-season grass that has been used for hay, forage, and conservation purposes for decades and switchgrass research in Nebraska has been ongoing since 1936. Recently, switchgrass has been identified as a model perennial grass for bioenergy in the Great Plains and Midwest. Si...

  7. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy

    PubMed Central

    Brenton, Zachary W.; Cooper, Elizabeth A.; Myers, Mathew T.; Boyles, Richard E.; Shakoor, Nadia; Zielinski, Kelsey J.; Rauh, Bradley L.; Bridges, William C.; Morris, Geoffrey P.; Kresovich, Stephen

    2016-01-01

    With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production

  8. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy.

    PubMed

    Brenton, Zachary W; Cooper, Elizabeth A; Myers, Mathew T; Boyles, Richard E; Shakoor, Nadia; Zielinski, Kelsey J; Rauh, Bradley L; Bridges, William C; Morris, Geoffrey P; Kresovich, Stephen

    2016-09-01

    With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production

  9. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    PubMed Central

    Blank, Peter J.; Sample, David W.; Williams, Carol L.; Turner, Monica G.

    2014-01-01

    Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes. PMID:25299593

  10. More food, more bioenergy and fewer greenhouse gas emissions (GHGe) - is it possible?

    NASA Astrophysics Data System (ADS)

    Long, S. P.

    2012-12-01

    Global demand for our four major food and feed crops is beginning to out-strip supply, at a time when year-on-year yield per unit area increases are stagnating and while emerging climate trends may further threaten supply. In this context it seems unlikely that in the medium term the continued use of land suited to food and feed production for bioenergy will be either socially acceptable or economically viable. It will be argued that the use of food crops, which have been developed to meet nutritional needs, for bioenergy is environmentally flawed and sub-optimal with respect to net GHGe. It will be shown that using Miscanthus, canes, agave and poplars as examples, there are many opportunities, some partially realized, to achieve very substantial quantities of bioenergy on abandoned or non-agricultural land, globally, with positive GHGe benefits and without unsustainable impacts on food production. Achieving all three goals will depend on new policies based on a holistic view of these demands on land rather than the disaggregated policy development based on single issues, which has characterised this arena in recent years.

  11. Willow bioenergy plantation research in the Northeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E.H.; Abrahamson, L.P.; Kopp, R.F.

    1993-12-31

    Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are nowmore » being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.« less

  12. An assessment of the influence of bioenergy and marketed land amenity values on land uses in the midwestern US

    Treesearch

    Suk-Won Choi; Brent Sohngen; Ralph Alig

    2011-01-01

    There is substantial concern that bioenergy policies could swamp other considerations, such as environmental values, and lead to large-scale conversions of land from forest to crops. This study examines how bioenergy and marketed environmental rents for forestland potentially influence land use in the Midwestern US. We hypothesize that current land uses reflect market...

  13. BioenergyKDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Aaron T; Movva, Sunil; Karthik, Rajasekar

    2014-01-01

    The Bioenergy Knowledge Discovery Framework (BioenergyKDF) is a scalable, web-based collaborative environment for scientists working on bioenergy related research in which the connections between data, literature, and models can be explored and more clearly understood. The fully-operational and deployed system, built on multiple open source libraries and architectures, stores contributions from the community of practice and makes them easy to find, but that is just its base functionality. The BioenergyKDF provides a national spatiotemporal decision support capability that enables data sharing, analysis, modeling, and visualization as well as fosters the development and management of the U.S. bioenergy infrastructure, which ismore » an essential component of the national energy infrastructure. The BioenergyKDF is built on a flexible, customizable platform that can be extended to support the requirements of any user community especially those that work with spatiotemporal data. While there are several community data-sharing software platforms available, some developed and distributed by national governments, none of them have the full suite of capabilities available in BioenergyKDF. For example, this component-based platform and database independent architecture allows it to be quickly deployed to existing infrastructure and to connect to existing data repositories (spatial or otherwise). As new data, analysis, and features are added; the BioenergyKDF will help lead research and support decisions concerning bioenergy into the future, but will also enable the development and growth of additional communities of practice both inside and outside of the Department of Energy. These communities will be able to leverage the substantial investment the agency has made in the KDF platform to quickly stand up systems that are customized to their data and research needs.« less

  14. The High School Students' Perceptions and Attitudes toward Bioenergy

    ERIC Educational Resources Information Center

    Özbas, Serap

    2016-01-01

    This research, which was tried with 217 high school students, was carried out to determine the perceptions and attitudes related to the usage of bioenergy. The research results showed that the students had the perception that there would be lack of food due to global warming, but bioenergy would prevent the world from global warming. Moreover,…

  15. Halophytes As Bioenergy Crops

    PubMed Central

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K.

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops. PMID:27679645

  16. Indicators for assessing socioeconomic sustainability of bioenergy systems. A short list of practical measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Efroymson, Rebecca Ann; Kline, Keith L.

    2012-10-16

    Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services. Indicators were selected to be practical, sensitive to stresses, unambiguous, anticipatory, predictive, calibrated with known variability, and sufficient when considered collectively. The utility of each indicator, methods for its measurement,more » and applications appropriate for the context of particular bioenergy systems are described along with future research needs. Together, this suite of indicators is hypothesized to reflect major socioeconomic effects of the full supply chain for bioenergy, including feedstock production and logistics, conversion to biofuels, biofuel logistics and biofuel end uses. Ten of those 16 indicators are proposed to be the minimum list of practical measures of socioeconomic aspects of bioenergy sustainability. Coupled with locally-prioritized environmental indicators, we propose that these socioeconomic indicators can provide a basis to quantify and evaluate sustainability of bioenergy systems across many regions in which they will be deployed.« less

  17. Life Cycle Assessment of Bioenergy from Lignocellulosic Crops Cultivated on Marginal Land in Europe

    NASA Astrophysics Data System (ADS)

    Rettenmaier, Nils; Schmidt, Tobias; Gärtner, Sven; Reinhardt, Guido

    2017-04-01

    systems such as heat and/or power as well as transport fuels from fossil energy carriers. Results are obtained for various environmental impact categories including climate change, non-renewable energy use, acidification and eutrophication. Preliminary results show that all investigated bioenergy carriers are associated with environmental advantages and disadvantages compared to the conventional reference systems. Nevertheless, bioenergy carriers showing most environmental benefits could be identified. However, it also became clear that LCA is less suited to address local environmental impacts (e.g. on biodiversity and water). Therefore, the classical LCA approach is supplemented with a separate life cycle environmental impact assessment (LC-EIA). Final results will indicate the best performing crops and conversion technologies, the process steps and parameters that strongly determine the results and the optimisation potentials. From these results, recommendations will be made to various stakeholders including policy makers and farmers, e.g. regarding the criteria that should be met in order to advocate bioenergy production from biomass cultivated on marginal land in Europe.

  18. Joint BioEnergy Institute

    ScienceCinema

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2018-05-11

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  19. How willing are landowners to supply land for bioenergy crops in the Northern Great Lakes Region?

    DOE PAGES

    Swinton, Scott M.; Tanner, Sophia; Barham, Bradford L.; ...

    2016-04-30

    Land to produce biomass is essential if the United States is to expand bioenergy supply. Use of agriculturally marginal land avoids the food vs. fuel problems of food price rises and carbon debt that are associated with crop and forestland. Recent remote sensing studies have identified large areas of US marginal land deemed suitable for bioenergy crops. Yet the sustainability benefits of growing bioenergy crops on marginal land only pertain if land is economically available. Scant attention has been paid to the willingness of landowners to supply land for bioenergy crops. Focusing on the northern tier of the Great Lakes,more » where grassland transitions to forest and land prices are low, this contingent valuation study reports on the willingness of a representative sample of 1124 private, noncorporate landowners to rent land for three bioenergy crops: corn, switchgrass, and poplar. Of the 11% of land that was agriculturally marginal, they were willing to make available no more than 21% for any bioenergy crop (switchgrass preferred on marginal land) at double the prevailing land rental rate in the region. At the same generous rental rate, of the 28% that is cropland, they would rent up to 23% for bioenergy crops (corn preferred), while of the 55% that is forestland, they would rent up to 15% for bioenergy crops (poplar preferred). Regression results identified deterrents to land rental for bioenergy purposes included appreciation of environmental amenities and concern about rental disamenities. In sum, like landowners in the southern Great Lakes region, landowners in the Northern Tier are reluctant to supply marginal land for bioenergy crops. If rental markets existed, they would rent more crop and forestland for bioenergy crops than they would marginal land, which would generate carbon debt and opportunity costs in wood product and food markets.« less

  20. How willing are landowners to supply land for bioenergy crops in the Northern Great Lakes Region?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinton, Scott M.; Tanner, Sophia; Barham, Bradford L.

    Land to produce biomass is essential if the United States is to expand bioenergy supply. Use of agriculturally marginal land avoids the food vs. fuel problems of food price rises and carbon debt that are associated with crop and forestland. Recent remote sensing studies have identified large areas of US marginal land deemed suitable for bioenergy crops. Yet the sustainability benefits of growing bioenergy crops on marginal land only pertain if land is economically available. Scant attention has been paid to the willingness of landowners to supply land for bioenergy crops. Focusing on the northern tier of the Great Lakes,more » where grassland transitions to forest and land prices are low, this contingent valuation study reports on the willingness of a representative sample of 1124 private, noncorporate landowners to rent land for three bioenergy crops: corn, switchgrass, and poplar. Of the 11% of land that was agriculturally marginal, they were willing to make available no more than 21% for any bioenergy crop (switchgrass preferred on marginal land) at double the prevailing land rental rate in the region. At the same generous rental rate, of the 28% that is cropland, they would rent up to 23% for bioenergy crops (corn preferred), while of the 55% that is forestland, they would rent up to 15% for bioenergy crops (poplar preferred). Regression results identified deterrents to land rental for bioenergy purposes included appreciation of environmental amenities and concern about rental disamenities. In sum, like landowners in the southern Great Lakes region, landowners in the Northern Tier are reluctant to supply marginal land for bioenergy crops. If rental markets existed, they would rent more crop and forestland for bioenergy crops than they would marginal land, which would generate carbon debt and opportunity costs in wood product and food markets.« less

  1. Air-quality and Climatic Consequences of Bioenergy Crop Cultivation

    NASA Astrophysics Data System (ADS)

    Porter, William Christian

    Bioenergy is expected to play an increasingly significant role in the global energy budget. In addition to the use of liquid energy forms such as ethanol and biodiesel, electricity generation using processed energy crops as a partial or full coal alternative is expected to increase, requiring large-scale conversions of land for the cultivation of bioenergy feedstocks such as cane, grasses, or short rotation coppice. With land-use change identified as a major contributor to changes in the emission of biogenic volatile organic compounds (BVOCs), many of which are known contributors to the pollutants ozone (O 3) and fine particulate matter (PM2.5), careful review of crop emission profiles and local atmospheric chemistry will be necessary to mitigate any unintended air-quality consequences. In this work, the atmospheric consequences of bioenergy crop replacement are examined using both the high-resolution regional chemical transport model WRF/Chem (Weather Research and Forecasting with Chemistry) and the global climate model CESM (Community Earth System Model). Regional sensitivities to several representative crop types are analyzed, and the impacts of each crop on air quality and climate are compared. Overall, the high emitting crops (eucalyptus and giant reed) were found to produce climate and human health costs totaling up to 40% of the value of CO 2 emissions prevented, while the related costs of the lowest-emitting crop (switchgrass) were negligible.

  2. 2016 Bioenergy Industry Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, Kristen L.; Milbrandt, Anelia R.; Warner, Ethan

    This report provides a snapshot of the bioenergy industry status at the end of 2016. The report compliments other annual market reports from the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy offices and is supported by DOE’s Bioenergy Technologies Office (BETO). The 2016 Bioenergy Industry Status Report focuses on past year data covering multiple dimensions of the bioenergy industry and does not attempt to make future market projections. The report provides a balanced and unbiased assessment of the industry and associated markets. It is openly available to the public and is intended to compliment Internationalmore » Energy Agency and industry reports with a focus on DOE stakeholder needs.« less

  3. Creating dedicated bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    Bioenergy is one of the current mechanisms of producing renewable energy to reduce our use of nonrenewable fossil fuels and to reduce carbon emissions into the atmosphere. Humans have been using bioenergy since we first learned to create and control fire - burning manure, peat, and wood to cook food...

  4. Bioenergy potential of the United States constrained by satellite observations of existing productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Miller, Norman L.; Running, Steven W.

    2012-01-01

    United States (U.S.) energy policy includes an expectation that bioenergy will be a substantial future energy source. In particular, the Energy Independence and Security Act of 2007 (EISA) aims to increase annual U.S. biofuel (secondary bioenergy) production by more than 3-fold, from 40 to 136 billion liters ethanol, which implies an even larger increase in biomass demand (primary energy), from roughly 2.9 to 7.4 EJ yr–1. However, our understanding of many of the factors used to establish such energy targets is far from complete, introducing significgant uncertainty into the feasibility of current estimates of bioenergy potential. Here, we utilized satellite-derived net primary productivity (NPP) data—measured for every 1 km2 of the 7.2 million km2 of vegetated land in the conterminous U.S.—to estimate primary bioenergy potential (PBP). Our results indicate that PBP of the conterminous U.S. ranges from roughly 5.9 to 22.2 EJ yr–1, depending on land use. The low end of this range represents the potential when harvesting residues only, while the high end would require an annual biomass harvest over an area more than three times current U.S. agricultural extent. While EISA energy targets are theoretically achievable, we show that meeting these targets utilizing current technology would require either an 80% displacement of current crop harvest or the conversion of 60% of rangeland productivity. Accordingly, realistically constrained estimates of bioenergy potential are critical for effective incorporation of bioenergy into the national energy portfolio.

  5. Life-Cycle Assessment of a Distributed-Scale Thermochemical Bioenergy Conversion System

    Treesearch

    Hongmei Gu; Richard Bergman

    2016-01-01

    Expanding bioenergy production from woody biomass has the potential to decrease net greenhouse gas (GHG) emissions and improve the energy security of the United States. Science-based and internationally accepted life-cycle assessment (LCA) is an effective tool for policy makers to make scientifically informed decisions on expanding renewable energy production from...

  6. Communicating about bioenergy sustainability.

    PubMed

    Dale, Virginia H; Kline, Keith L; Perla, Donna; Lucier, Al

    2013-02-01

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives in a way that allows decision makers to compare options. Scientists also need to develop approaches that contribute information about problems and opportunities relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that non-scientists can understand; and (3) the implications of methods, assumptions, and limitations should be clear. The scientists' job is to analyze information to build a better understanding of environmental, cultural, and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on "Sustainability of Bioenergy Systems: Cradle to Grave" because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which

  7. Bioenergy Knowledge Discovery Framework Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Bioenergy Knowledge Discovery Framework (KDF) supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner.

  8. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

    PubMed Central

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L.; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-01-01

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.— Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.— Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences

  9. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project.

    PubMed

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-04-06

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: - Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.- Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.- Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences

  10. A methodology and decision support tool for informing state-level bioenergy policymaking: New Jersey biofuels as a case study

    NASA Astrophysics Data System (ADS)

    Brennan-Tonetta, Margaret

    This dissertation seeks to provide key information and a decision support tool that states can use to support long-term goals of fossil fuel displacement and greenhouse gas reductions. The research yields three outcomes: (1) A methodology that allows for a comprehensive and consistent inventory and assessment of bioenergy feedstocks in terms of type, quantity, and energy potential. Development of a standardized methodology for consistent inventorying of biomass resources fosters research and business development of promising technologies that are compatible with the state's biomass resource base. (2) A unique interactive decision support tool that allows for systematic bioenergy analysis and evaluation of policy alternatives through the generation of biomass inventory and energy potential data for a wide variety of feedstocks and applicable technologies, using New Jersey as a case study. Development of a database that can assess the major components of a bioenergy system in one tool allows for easy evaluation of technology, feedstock and policy options. The methodology and decision support tool is applicable to other states and regions (with location specific modifications), thus contributing to the achievement of state and federal goals of renewable energy utilization. (3) Development of policy recommendations based on the results of the decision support tool that will help to guide New Jersey into a sustainable renewable energy future. The database developed in this research represents the first ever assessment of bioenergy potential for New Jersey. It can serve as a foundation for future research and modifications that could increase its power as a more robust policy analysis tool. As such, the current database is not able to perform analysis of tradeoffs across broad policy objectives such as economic development vs. CO2 emissions, or energy independence vs. source reduction of solid waste. Instead, it operates one level below that with comparisons of kWh or

  11. Bioenergy Sustainability Analysis | Bioenergy | NREL

    Science.gov Websites

    and bioenergy systems produce benefits and also impacts to air, water, and land locally, regionally overlap are photos of water, a tree branch with a city in the background, two children walking in a field photo and contains the text: Environmental Sustainability: Climate, Soil quality, Water quality and

  12. Bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Kevin; Gresham, Garold

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  13. Bioenergy

    ScienceCinema

    Kenney, Kevin; Gresham, Garold

    2018-06-06

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  14. Bioenergy costs and potentials with special attention to implications for the land system

    NASA Astrophysics Data System (ADS)

    Popp, A.; Lotze-Campen, H.; Dietrich, J.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.

    2011-12-01

    In the coming decades, an increasing competition for global land and water resources can be expected, due to rising demand for agricultural products, goals of nature conservation, and changing production conditions due to climate change. Especially biomass from cellulosic bioenergy crops, such as Miscanthus or poplar, is being proposed to play a substantial role in future energy systems if climate policy aims at stabilizing greenhouse gas (GHG) concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements, land availability for biomass plantations, and implications for the land system. In order to explore the cost-effective contribution of bioenergy to a low carbon transition with special attention to implications for the land system, we present a modeling framework with detailed biophysical and economic representation of the land and energy sector: We have linked the global dynamic vegetation and water balance model LPJmL (Bondeau et al. 2007, Rost et al. 2008), the global land and water use model MAgPIE (Lotze-Campen et al. 2008, Popp et al. 2010), and the global energy-economy-climate model ReMIND (Leimbach et al. 2009). In this modeling framework LPJmL supplies spatially explicit (0.5° resolution) agricultural yields as well as carbon and water stocks and fluxes. Based on this biophysical input MAgPIE delivers cost-optimized land use patterns (0.5° resolution), associated GHG emissions and rates of future yield increases in agricultural production. Moreover, shadow prices are calculated for irrigation water (as an indicator for water scarcity), food commodities, and bioenergy (as an indicator for changes in production costs) under different land use constraints such as forest conservation for climate change mitigation and as a contribution to biodiversity conservation. The energy-economy-climate model ReMIND generates the demand for

  15. The global potential of bioenergy on abandoned agriculture lands.

    PubMed

    Campbell, J Elliott; Lobell, David B; Genova, Robert C; Field, Christopher B

    2008-08-01

    Converting forest lands into bioenergy agriculture could accelerate climate change by emitting carbon stored in forests, while converting food agriculture lands into bioenergy agriculture could threaten food security. Both problems are potentially avoided by using abandoned agriculture lands for bioenergy agriculture. Here we show the global potential for bioenergy on abandoned agriculture lands to be less than 8% of current primary energy demand, based on historical land use data, satellite-derived land cover data, and global ecosystem modeling. The estimated global area of abandoned agriculture is 385-472 million hectares, or 66-110% of the areas reported in previous preliminary assessments. The area-weighted mean production of above-ground biomass is 4.3 tons ha(-1) y(-1), in contrast to estimates of up to 10 tons ha(-1) y(-1) in previous assessments. The energy content of potential biomass grown on 100% of abandoned agriculture lands is less than 10% of primary energy demand for most nations in North America, Europe, and Asia, but it represents many times the energy demand in some African nations where grasslands are relatively productive and current energy demand is low.

  16. Identifying geoscience knowledge likely to affect foreign policy

    NASA Astrophysics Data System (ADS)

    Kelmelis, J. A.

    2006-12-01

    The earth sciences play an important role in foreign policy and have done so throughout history. Whether it is access to resources, knowledge of weather or other earth system conditions, planning for or responding to disasters, protecting the environment, facilitating transportation and communication, or any of a number of other important topics, the geosciences continue to inform our decision making. The importance of science, technology, and health (STH) is being increasingly recognized in the foreign policy community. The National Research Council (NRC) recommended that the Department of State (State) expand its scientific base to address the importance of STH issues. In part, this consists of increasing the number of scientists within State. Another important aspect is not only identifying the STH issues that are of current concern, but also the issues that will be of importance in the future. A number of studies funded by the U.S. Government have identified some important STH areas of concern at a high level. These provide a basis for more in-depth investigations. However, there are additional phenomena, beyond those identified in the studies, which have foreign policy implications. The scientific findings may be well known to scientists but their foreign policy importance is not always obvious. The scientific and foreign policy communities could improve their dialog to better develop strategies for foreign policy and future scientific research. One way to help facilitate that is to ease identification of scientific issues with potential significance to foreign policy and to clarify uncertainties around those issues. A qualitative method relating the likelihood that the scientific finding has foreign policy importance to the potential level of foreign policy importance has been used to clarify the significance of a variety of scientific findings including Arctic warming, methane hydrates, atmospheric dust, disease, and natural hazards. From a foreign policy

  17. Bioenergy | NREL

    Science.gov Websites

    Bioenergy Two men in a laboratory, one is holding a plastic bottle. An international research team plastics. Read more about improving plastic-degrading enzymes One man stands behind some laboratory

  18. Climate, economic, and environmental impacts of producing wood for bioenergy

    NASA Astrophysics Data System (ADS)

    Birdsey, Richard; Duffy, Philip; Smyth, Carolyn; Kurz, Werner A.; Dugan, Alexa J.; Houghton, Richard

    2018-05-01

    Increasing combustion of woody biomass for electricity has raised concerns and produced conflicting statements about impacts on atmospheric greenhouse gas (GHG) concentrations, climate, and other forest values such as timber supply and biodiversity. The purposes of this concise review of current literature are to (1) examine impacts on net GHG emissions and climate from increasing bioenergy production from forests and exporting wood pellets to Europe from North America, (2) develop a set of science-based recommendations about the circumstances that would result in GHG reductions or increases in the atmosphere, and (3) identify economic and environmental impacts of increasing bioenergy use of forests. We find that increasing bioenergy production and pellet exports often increase net emissions of GHGs for decades or longer, depending on source of feedstock and its alternate fate, time horizon of analysis, energy emissions associated with the supply chain and fuel substitution, and impacts on carbon cycling of forest ecosystems. Alternative uses of roundwood often offer larger reductions in GHGs, in particular long-lived wood products that store carbon for longer periods of time and can achieve greater substitution benefits than bioenergy. Other effects of using wood for bioenergy may be considerable including induced land-use change, changes in supplies of wood and other materials for construction, albedo and non-radiative effects of land-cover change on climate, and long-term impacts on soil productivity. Changes in biodiversity and other ecosystem attributes may be strongly affected by increasing biofuel production, depending on source of material and the projected scale of biofuel production increases.

  19. Investigating hydrometeorological impacts of perennial bioenergy crops under realistic scenario expansions

    NASA Astrophysics Data System (ADS)

    Wagner, M.; Wang, M.; Miguez-Macho, G.; Miller, J. N.; Bagley, J. E.; Bernacchi, C.; Georgescu, M.

    2016-12-01

    Perennial bioenergy crops, such as switchgrass and miscanthus, have been posed as a more sustainable energy pathway relative to annual bioenergy crops due to their reduced carbon footprint and ability to grow on abandoned and degraded land, thereby, avoiding competition with food crops. Previous studies that replaced annual bioenergy crops with perennial crops noted regional cooling associated with enhanced ET due to their deeper rooting systems extracting deeper soil moisture. This study provides a more realistic assessment by (1) analyzing perennial bioenergy expansion only in suitable abandoned and degraded farmlands, and (2) using field scale measurements of albedo in conjunction with known vegetation fraction and leaf area index (LAI) values. High-resolution (2 km grid spacing) simulations were performed using a state-of-the-art atmospheric model (Weather Research and Forecasting system) dynamically coupled to a land surface model system over the Southern Plains of the U.S., during a normal precipitation year (2007) and a drought year (2011). Our results show that perennial bioenergy crop expansion leads to regional cooling (1-2 oC), that is driven primarily by enhanced reflection of shortwave radiation, and secondarily, by enhanced ET. Perennial bioenergy crop expansion was also shown to mitigate drought impacts through moistening and cooling of the near-surface environment. These impacts, however, were reduced during the drought year as a result of differential environmental conditions, when compared to those of the normal cimate year. This study serves as a major step towards assessing the sustainability of perennial bioenergy crop expansion under diverse hydrometeorological conditions by highlighting the driving mechanisms and processes associated with this energy pathway.

  20. Selecting Metrics for Sustainable Bioenergy Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H; Kline, Keith L; Mulholland, Patrick J

    biomass crop. Small watershed studies have been used for several decades to identify effects of vegetation type, disturbance, and land use and agriculture practices on hydrology and water quality. An ideal experimental design to determine the effects of conversion to switchgrass on surface water hydrology and quality would involve (1) small catchment (5-20 ha) drained by a perennial or ephemeral stream, (2) crop treatments including conversion from row crops to switchgrass; pasture to switchgrass (other likely scenarios); controls (no change in vegetation), (3) treatments to compare different levels of fertilization and pesticide application, (4) riparian treatments to compare riparian buffers with alternative cover types, and a treatment with no buffer, and (5) 3-4 replicates of each treatment or BACI (before-after, control-intervention) design for unreplicated treatments (ideally with several years of measurements prior to the imposition of treatments for BACI design). Hydrologic measurements would include soil moisture patterns with depth and over time; nitrogen and phosphorus chemistry; soil solution chemistry - major anions and cations, inorganic and organic forms of carbon, nitrogen and phosphorus; precipitation amount and chemical deposition; stream discharge; and streamwater chemistry. These water quality metrics would need to be put into context of the other environmental and social conditions that are altered by growth of bioenergy feedstocks. These conditions include farm profits and yield of food and fuel, carbon storage and release, and a variety of ecosystem services such as enhanced biodiversity and pollinator services. Innovations in landscape design for bioenergy feedstocks take into account environmental and socioeconomic dynamics and consequences with consideration of alternative bioenergy regimes and policies. The ideal design would be scale-sensitive so that economic, social, and environmental constraints can be measured via metrics applicable at

  1. Potential for Woody Bioenergy Crops Grown on Marginal Lands in the US Midwest to Reduce Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.; Hurtt, G. C.; Fisk, J. P.; Izaurralde, R. C.; Zhang, X.

    2012-12-01

    While cellulosic biofuels are widely considered to be a low carbon energy source for the future, a comprehensive assessment of the environmental sustainability of existing and future biofuel systems is needed to assess their utility in meeting US energy and food needs without exacerbating environmental harm. To assess the carbon emission reduction potential of cellulosic biofuels, we need to identify lands that are initially not storing large quantities of carbon in soil and vegetation but are capable of producing abundant biomass with limited management inputs, and accurately model forest production rates and associated input requirements. Here we present modeled results for carbon emission reduction potential and cellulosic ethanol production of woody bioenergy crops replacing existing native prairie vegetation grown on marginal lands in the US Midwest. Marginal lands are selected based on soil properties describing use limitation, and are extracted from the SSURGO (Soil Survey Geographic) database. Yield estimates for existing native prairie vegetation on marginal lands modeled using the process-based field-scale model EPIC (Environmental Policy Integrated Climate) amount to ~ 6.7±2.0 Mg ha-1. To model woody bioenergy crops, the individual-based terrestrial ecosystem model ED (Ecosystem Demography) is initialized with the soil organic carbon stocks estimated at the end of the EPIC simulation. Four woody bioenergy crops: willow, southern pine, eucalyptus and poplar are parameterized in ED. Sensitivity analysis of model parameters and drivers is conducted to explore the range of carbon emission reduction possible with variation in woody bioenergy crop types, spatial and temporal resolution. We hypothesize that growing cellulosic crops on these marginal lands can provide significant water quality, biodiversity and GHG emissions mitigation benefits, without accruing additional carbon costs from the displacement of food and feed production.

  2. Changes in Soil Carbon Turnover after Five Years of Bioenergy Cropping Systems from a Long-Term Incubation Experiment and Radiocarbon Measurements.

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Sanford, G. R.; Heckman, K. A.; Jackson, R. D.; Marin-Spiotta, E.

    2016-12-01

    In the face of climate change, the global production of bioenergy crops has increased in response to policies calling for non-fossil energy sources as a means to mitigate rising atmospheric carbon (C) concentrations. To provide overall C sequestration benefits, identifying biomass crops that can maintain or enhance soil resources is desirable for sustainable bioenergy production. The objective of our study was to compare the effects of four bioenergy cropping systems on SOM dynamics in two agricultural soils: Mollisols at the University of Wisconsin Agricultural Research Station in Arlington, Wisconsin and Alfisols at Kellogg Biological Station in Hickory Corners, Michigan, USA. We used fresh soils collected in 2013 and archived soils collected in 2008 to measure differences among biofuel crops after 5 years of management. Using a 365-day laboratory soil incubation and radiocarbon measurements of bulk soil and respired C, we separated soils into three SOM pools and determined their corresponding turnover times. Total soil C respired from surface soils increased in the order: mixed species perennials > monoculture perennials > monoculture annuals. More C was associated with the active fraction in the sandy loam Alfisol and with the slow-cycling fraction in the silt loam Mollisol. Radiocarbon content of respired CO2 did not differ between corn and switchgrass, but did differ between 2008 and 2013. The respiration of more radiocarbon-depleted C after 5 years of cultivation may be due to an initial flux of young C following tillage in 2008 or to depletion of labile plant inputs with continued harvest. All bioenergy cropping systems lost soil C after 5 years. Monoculture perennial switchgrass systems did not provide significant C sequestration benefits, as expected, compared to monoculture annual corn systems. Bioenergy crop land-use change affects soil C dynamics, with implications for assessing C costs associated with biofuel production.

  3. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    PubMed

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  4. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    PubMed Central

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. PMID:23576836

  5. Design and development of synthetic microbial platform cells for bioenergy

    PubMed Central

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy. PMID:23626588

  6. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-01

    This is the November 2014 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  7. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2015-03-01

    This is the March 2015 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  8. Potential Impact of Bioenergy Demand on the Sustainability of the Southern Forest Resource

    Treesearch

    Karen L. Abt; Robert C. Abt

    2012-01-01

    The use of woody biomass for the production of domestic bioenergy to meet policy-driven demands could lead to significant changes in the forest resource. These impacts may be limited if woody biomass from forests is defined as only the residues from logging. Yet, if only residue is used, the contribution of woody biomass to a renewable energy portfolio will also be...

  9. Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest.

    PubMed

    SooHoo, William M; Wang, Cuizhen; Li, Huixuan

    2017-04-01

    Agricultural land use change, especially corn expansion since 2000s, has been accelerating to meet the growing bioenergy demand of the United States. This study identifies the environmentally sensitive lands (ESLs) in the U.S. Midwest using the distance-weighted Revised Universal Soil Loss Equation (RUSLE) associated with bioenergy land uses extracted from USDA Cropland Data Layers. The impacts of soil erosion to downstream wetlands and waterbodies in the river basin are counted in the RUSLE with an inverse distance weighting approach. In a GIS-ranking model, the ESLs in 2008 and 2011 (two representative years of corn expansion) are ranked based on their soil erosion severity in crop fields. Under scenarios of bioenergy land use change (corn to grass and grass to corn) on two land types (ESLs and non-ESLs) at three magnitudes (5%, 10% and 15% change), this study assesses the potential environmental impacts of bioenergy land use at a basin level. The ESL distributions and projected trends vary geographically responding to different agricultural conversions. Results support the idea of re-planting native prairie grasses in the identified High and Severe rank ESLs for sustainable bioenergy management in this important agricultural region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Using corngrass1 to engineer poplar as a bioenergy crop

    DOEpatents

    Meilan, Richard; Rubinelli, Peter Marius; Chuck, George

    2016-05-10

    Embodiments of the present invention relate generally to new bioenergy crops and methods of creating new bioenergy crops. For example, genes encoding microRNAs (miRNAs) are used to create transgenic crops. In some embodiments, over-expression of miRNA is used to produce transgenic perennials, such as trees, with altered lignin content or composition. In some embodiments, the transgenic perennials are Populus spp. In some embodiments, the miRNA is a member of the miR156 family. In some embodiments, the gene is Zea mays Cg1.

  11. Alternative Land-Use Scenarios for Bioenergy Production in the U.S. and Brazil

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Spak, S.; Tsao, C. C.; Mena, M.; Chen, Y.

    2015-12-01

    Agriculture is historically a dominant form of global environmental degradation, and the potential for increased future degradation may be enhanced by growing demand for biofuels. Here, we apply high-resolution cropland inventories and agronomic models to characterize land-use impacts and mitigation scenarios for bioenergy production in the U.S. and Brazil. In the U.S., our gridded historical cropland maps show potential for production in the U.S. on 68 Mha of abandoned croplands in the U.S. which is as much as 70% larger than previous estimates due to a reduction in aggregation effects. In Brazil, a critical land-use impact is associated with non-GHG air pollutants from the management and expansion of sugarcane feedstocks. Our bottom-up estimate for these Brazilian land-use emissions is seven times larger than estimated from remote-sensing data due to the improved spatial resolution of our approach. While current land-use policies in Brazil and the U.S. seek to reduce life-cycle biofuel emissions, these policies may not support the mitigation alternatives identified here.

  12. A bioenergy feedstock/vegetable double-cropping system

    USDA-ARS?s Scientific Manuscript database

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  13. Finnish bioenergy research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinen, H.

    1993-12-31

    Finland is one of the leading countries in the use of biofuels. The share of wood derived fuels of the total primary energy requirement was about 14% (ca. 4 million toe) and peat about 5% (1.4 million toe). The possibilities for increasing the use of biofuels in Finland are significant. There is theoretically about 10 million m{sup 3}/a (about 2 million toe/a) of harvestable wood. Areas suitable for fuel peat production (0.5 million ha) could produce ca. 420 million toe of peat. At present rates of use, the peat reserves are adequate for centuries. During the next few years 0.5--1more » million hectares of fields withdrawn from farming could be used for biofuel production. The production potential of this field area is estimated to be about 0.2--0.5 million toe. In addition, the use of wastes in energy production could be increased. The aim of the new Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. New economically competitive biofuels, new equipment and methods for production, handling and use of biofuels will also be developed. The main research areas are production of wood fuels, peat production, use of bioenergy and conversion of biomass.« less

  14. Growing and Sustaining Communities with Bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havill, Alice; Schultz, Donny; Falcon, Nigel

    From Vero Beach, Florida, to Hugoton, Kansas, to Emmetsburg, Iowa, cellulosic ethanol biorefineries have had major impacts on communities and their residents. In other areas, bioenergy has significant potential to transform current and establish new industry. This short video illustrates how biorefineries and other bioenergy developments can benefit citizens, businesses, and whole communities, helping America’s rural economies grow and thrive.

  15. Facilities | Bioenergy | NREL

    Science.gov Websites

    Facilities Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design options. Photo of interior of industrial, two-story building with high-bay, piping, and large processing

  16. Effects of bioenergy production on European nature conservation options

    NASA Astrophysics Data System (ADS)

    Schleupner, C.; Schneider, U. A.

    2009-04-01

    agriculture and forestry including bioenergy options. Results reveal that bioenergy targets have significant effects on conservation planning and nature conservation. The additional land utilization demands driven by bioenergy targets influence not only the restoration costs of wetland areas. Also wetland conservation targets in one place stimulate land use intensification elsewhere due to market linkages. It also implies that environmental stresses (to wetlands) may be transferred to other countries. In all the results show that an integrated modelling of environmental and land use changes in European scale is able to estimate the impacts of policy decisions in nature conservation and agriculture. As shown by the case study, the implementation of any targets concerning resource utilization need to be followed by adequate land use planning. References Schleupner C. (2007). Estimation of wetland distribution potentials in Europe. FNU-135, Hamburg University and Centre for Marine and Atmospheric Science, Hamburg. Schneider U.A., J Balkovic, S. De Cara, O. Franklin, S. Fritz, P. Havlik, I. Huck, K. Jantke , A.M.I. Kallio, F. Kraxner, A. Moiseyev, M. Obersteiner, C.I. Ramos, C. Schleupner, E. Schmid, D. Schwab & R. Skalsky (2008). The European Forest and Agricultural Sector Optimization Model - EUFASOM. FNU-156, Hamburg University and Centre for Marine and Atmospheric Science, Hamburg.

  17. A life-cycle approach to low-invasion potential bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Increasing demand for energy has increased economic incentives to develop and deploy novel bioenergy crops for biomass production. Similarities in plant traits between many candidate bioenergy crops and known invasive species have raised concerns about the potential for bioenergy crops to escape pro...

  18. Uncertainty in Bioenergy Scenarios for California: Lessons Learned in Communicating with Different Stakeholder Groups

    NASA Astrophysics Data System (ADS)

    Youngs, H.

    2013-12-01

    Projecting future bioenergy use involves incorporating several critical inter-related parameters with high uncertainty. Among these are: technology adoption, infrastructure and capacity building, investment, political will, and public acceptance. How, when, where, and to what extent the various bioenergy options are implemented has profound effects on the environmental impacts incurred. California serves as an interesting case study for bioenergy implementation because it has very strong competing forces that can influence these critical factors. The state has aggressive greenhouse gas reduction goals, which will require some biofuels, and has invested accordingly on new technology. At the same time, political will and public acceptance of bioenergy has wavered, seriously stalling bioenergy expansion efforts. We have constructed scenarios for bioenergy implementation in California to 2050, in conjunction with efforts to reach AB32 GHG reduction goals of 80% below 1990 emissions. The state has the potential to produce 3 to 10 TJ of biofuels and electricity; however, this potential will be severely limited in some scenarios. This work examines sources of uncertainty in bioenergy implementation, how uncertainty is or is not incorporated into future bioenergy scenarios, and what this means for assessing environmental impacts. How uncertainty is communicated and perceived also affects future scenarios. Often, there is a disconnect between scenarios for widespread implementation and the actual development of individual projects, resulting in "artificial uncertainty" with very real impacts. Bringing stakeholders to the table is only the first step. Strategies to tailor and stage discussions of uncertainty to stakeholder groups is equally important. Lessons learned in the process of communicating the Calfornia's Energy Future biofuels assessment will be discussed.

  19. Growing and Sustaining Communities with Bioenergy

    ScienceCinema

    Havill, Alice; Schultz, Donny; Falcon, Nigel; Reetz, Harold; Rowden, Jack; Van Horn, Ruth; Nordling, Debbie; Naig, Mike

    2018-06-12

    From Vero Beach, Florida, to Hugoton, Kansas, to Emmetsburg, Iowa, cellulosic ethanol biorefineries have had major impacts on communities and their residents. In other areas, bioenergy has significant potential to transform current and establish new industry. This short video illustrates how biorefineries and other bioenergy developments can benefit citizens, businesses, and whole communities, helping America’s rural economies grow and thrive.

  20. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shujiang; Kline, Keith L; Nair, S. Surendran

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulatedmore » a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.« less

  1. NREL: News - Director of National Bioenergy Center Named

    Science.gov Websites

    coordinating NREL's activities with bioenergy research at Oak Ridge National Laboratory (ORNL) and other organizations. Pacheco will represent the NBC, NREL, ORNL, DOE, and the interests of bioenergy programs to

  2. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds.

    PubMed

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-07-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union.

  3. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds

    PubMed Central

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-01-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union. PMID:26681982

  4. Development of the policy indicator checklist: a tool to identify and measure policies for calorie-dense foods and sugar-sweetened beverages across multiple settings.

    PubMed

    Lee, Rebecca E; Hallett, Allen M; Parker, Nathan; Kudia, Ousswa; Kao, Dennis; Modelska, Maria; Rifai, Hanadi; O'Connor, Daniel P

    2015-05-01

    We developed the policy indicator checklist (PIC) to identify and measure policies for calorie-dense foods and sugar-sweetened beverages to determine how policies are clustered across multiple settings. In 2012 and 2013 we used existing literature, policy documents, government recommendations, and instruments to identify key policies. We then developed the PIC to examine the policy environments across 3 settings (communities, schools, and early care and education centers) in 8 communities participating in the Childhood Obesity Research Demonstration Project. Principal components analysis revealed 5 components related to calorie-dense food policies and 4 components related to sugar-sweetened beverage policies. Communities with higher youth and racial/ethnic minority populations tended to have fewer and weaker policy environments concerning calorie-dense foods and healthy foods and beverages. The PIC was a helpful tool to identify policies that promote healthy food environments across multiple settings and to measure and compare the overall policy environments across communities. There is need for improved coordination across settings, particularly in areas with greater concentration of youths and racial/ethnic minority populations. Policies to support healthy eating are not equally distributed across communities, and disparities continue to exist in nutrition policies.

  5. The Policy Delphi: A Method for Identifying Intended and Unintended Consequences of Educational Policy

    ERIC Educational Resources Information Center

    Manley, R. Adam

    2013-01-01

    This article highlights a rarely utilized but effective technique for identifying intended and unintended consequences of past or current policy or policy change. The author guides the reader through the process of identifying potential participants, contacting participants, developing the policy Delphi instrument, and analyzing the findings by…

  6. Incorporating bioenergy into sustainable landscape designs

    DOE PAGES

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.; ...

    2015-12-30

    In this paper, we describe an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along themore » bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. In conclusion, devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.« less

  7. Incorporating bioenergy into sustainable landscape designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.

    In this paper, we describe an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along themore » bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. In conclusion, devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.« less

  8. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, D. N.; Smith, P.; Davies, C.; McNamara, N. P.

    2016-12-01

    Bioenergy crops are an important source of renewable energy and likely to play a major role in transitioning to a lower CO2 energy system. There is, however, uncertainty about the impacts of the growth of bioenergy crops on broader sustainability encompassed by ecosystem services, further enhanced by ongoing climate change. The goal of this project is to develop a comprehensive model that covers ecosystem services at a continental scale including biodiversity and pollination, water and air security, erosion control and soil security, GHG emissions, soil C and cultural services like tourism value. The technical distribution potential and likely yield of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC; willow and poplar) was modelled using ECOSSE, DayCent, SalixFor and MiscanFor models. In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models are utilised. We will present results for synergies and trade-offs between land use change and ecosystem services, impact on food security and land management. Further, we will show modelled yield maps for different cultivars of Miscanthus, willow and poplar in Europe and constraint/opportunity maps based on projected yield and other factors e.g. total economic value, technical potential, current land use, climate change and trade-offs and synergies. It will be essential to include multiple ecosystem services when assessing the potential for bioenergy production/expansion that does not impact other land uses or provisioning services. Considering that the soil GHG balance is dominated by change in soil organic carbon (SOC) and the difference among Miscanthus and SRC is largely determined by yield, an important target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation. This research could inform future policy decisions on bioenergy crops in

  9. Chapter 10: Research and Deployment of Renewable Bioenergy Production from Microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M; Glasser, Melodie

    Recent progress towards the implementation of renewable bioenergy production has included microalgae, which have potential to significantly contribute to a viable future bioeconomy. In a current challenging energy landscape, where an increased demand for renewable fuels is projected and accompanied by plummeting fossil fuels' prices, economical production of algae-based fuels becomes more challenging. However, in the context of mitigating carbon emissions with the potential of algae to assimilate large quantities of CO2, there is a route to drive carbon sequestration and utilization to support a sustainable and secure global energy future. This chapter places international energy policy in the contextmore » of the current and projected energy landscape. The contribution that algae can make, is summarized as both a conceptual contribution as well as an overview of the commercial infrastructure installed globally. Some of the major recent developments and crucial technology innovations are the results of global government support for the development of algae-based bioenergy, biofuels and bioproduct applications, which have been awarded as public private partnerships and are summarized in this chapter.« less

  10. Investment risk in bioenergy crops

    DOE PAGES

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia; ...

    2015-11-18

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  11. Investment risk in bioenergy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  12. Functional Genomics of Drought Tolerance in Bioenergy Crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hengfu; Chen, Rick; Yang, Jun

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understandingmore » of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.« less

  13. Development of the Policy Indicator Checklist: A Tool to Identify and Measure Policies for Calorie-Dense Foods and Sugar-Sweetened Beverages Across Multiple Settings

    PubMed Central

    Hallett, Allen M.; Parker, Nathan; Kudia, Ousswa; Kao, Dennis; Modelska, Maria; Rifai, Hanadi; O’Connor, Daniel P.

    2015-01-01

    Objectives. We developed the policy indicator checklist (PIC) to identify and measure policies for calorie-dense foods and sugar-sweetened beverages to determine how policies are clustered across multiple settings. Methods. In 2012 and 2013 we used existing literature, policy documents, government recommendations, and instruments to identify key policies. We then developed the PIC to examine the policy environments across 3 settings (communities, schools, and early care and education centers) in 8 communities participating in the Childhood Obesity Research Demonstration Project. Results. Principal components analysis revealed 5 components related to calorie-dense food policies and 4 components related to sugar-sweetened beverage policies. Communities with higher youth and racial/ethnic minority populations tended to have fewer and weaker policy environments concerning calorie-dense foods and healthy foods and beverages. Conclusions. The PIC was a helpful tool to identify policies that promote healthy food environments across multiple settings and to measure and compare the overall policy environments across communities. There is need for improved coordination across settings, particularly in areas with greater concentration of youths and racial/ethnic minority populations. Policies to support healthy eating are not equally distributed across communities, and disparities continue to exist in nutrition policies. PMID:25790397

  14. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  15. Exploring the Potential for Sustainable Future Bioenergy Production in the Arkansas-White-Red River Basin

    NASA Astrophysics Data System (ADS)

    Baskaran, L.; Jager, H.; Kreig, J.

    2016-12-01

    Bioenergy production in the US has been projected to increase in the next few years and this has raised concerns over environmentally sustainable production. Specifically, there are concerns that managing lands to produce bioenergy feedstocks in the Mississippi-Atchafalaya River Basin (MARB) may have impacts over the water quality in the streams draining these lands and hamper with efforts to reduce the size of the Gulf of Mexico's "Dead Zone" (hypoxic waters). However, with appropriate choice of feedstocks and good conservation practices, bioenergy production systems can be environmentally and economically sustainable. We evaluated opportunities for producing 2nd generation cellulosic feedstocks that are economically sustainable and improve water quality in the Arkansas-White-Red (AWR) river basin, which is major part of the MARB. We generated a future bioenergy landscape by downscaling county-scale projections of bioenergy crop production produced by an economic model, POLYSYS, at a market price of $60 per dry ton and a 1% annual yield increase. Our future bioenergy landscape includes perennial grasses (switchgrass and miscanthus), short-rotated woody crops (poplar and willow) and annual crops (high yield sorghum, sorghum stubble, corn stover and wheat straw). Using the Soil and Water Assessment Tool (SWAT) we analyzed changes in water quality and quantity by simulating a baseline scenario with the current landscape (2014 land cover) and a future scenario with the bioenergy landscape. Our results over the AWR indicate decreases in median nutrient and sediment loadings from the baseline scenario. We also explored methods to evaluate if conservation practices (such as reducing fertilizer applications, incorporating filter strips, planting cover crops and moving to a no-till system) can improve water quality, while maintaining biomass yield. We created a series of SWAT simulations with varying levels of conservation practices by crop and present our methods towards

  16. Technoeconomic and policy drivers of project performance for bioenergy alternatives using biomass from beetle-killed trees

    Treesearch

    Robert M. Campbell; Nathaniel M. Anderson; Daren E. Daugaard; Helen T. Naughton

    2018-01-01

    As a result of widespread mortality from beetle infestation in the forests of the western United States, there are substantial stocks of biomass suitable as a feedstock for energy production. This study explored the financial viability of four production pathway scenarios for the conversion of beetle-killed pine to bioenergy and bioproducts in the Rocky Mountains....

  17. Perennial Forages as Second Generation Bioenergy Crops

    PubMed Central

    Sanderson, Matt A.; Adler, Paul R.

    2008-01-01

    The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa (Medicago sativa L.). An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production. PMID:19325783

  18. Quantifying the climate effects of bioenergy – Choice of reference system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koponen, Kati; Soimakallio, Sampo; Kline, Keith L.

    In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study. Transparency of reference system assumptions is essential for proper interpretation of bioenergy assessments. This paper presentsmore » guidance for selecting suitable reference systems. Particular attention is given to choosing the land reference. If the goal is to study the climate effects of bioenergy as a part of total anthropogenic activity the reference system should illustrate what is expected in the absence of human activities. In such a case the suitable land reference is natural regeneration, and energy or material reference systems are not relevant. If the goal is to assess the effect of a change in bioenergy use, the reference system should incorporate human activities. In this case suitable reference systems describe the most likely alternative uses of the land, energy and materials in the absence of the change in bioenergy use. The definition of the reference system is furthermore subject to the temporal scope of the study. In practice, selecting and characterizing reference systems will involve various choices and uncertainties which should be considered carefully. As a result, it can be instructive to consider how alternative reference systems influence the results and conclusions drawn from bioenergy assessments.« less

  19. Quantifying the climate effects of bioenergy – Choice of reference system

    DOE PAGES

    Koponen, Kati; Soimakallio, Sampo; Kline, Keith L.; ...

    2017-06-27

    In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study. Transparency of reference system assumptions is essential for proper interpretation of bioenergy assessments. This paper presentsmore » guidance for selecting suitable reference systems. Particular attention is given to choosing the land reference. If the goal is to study the climate effects of bioenergy as a part of total anthropogenic activity the reference system should illustrate what is expected in the absence of human activities. In such a case the suitable land reference is natural regeneration, and energy or material reference systems are not relevant. If the goal is to assess the effect of a change in bioenergy use, the reference system should incorporate human activities. In this case suitable reference systems describe the most likely alternative uses of the land, energy and materials in the absence of the change in bioenergy use. The definition of the reference system is furthermore subject to the temporal scope of the study. In practice, selecting and characterizing reference systems will involve various choices and uncertainties which should be considered carefully. As a result, it can be instructive to consider how alternative reference systems influence the results and conclusions drawn from bioenergy assessments.« less

  20. The Endurance Bioenergy Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laible, Philip; Michaund, Matt

    2012-07-03

    Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor—a device that contains bacteria that can convert energy from the sun into fuel molecules.

  1. The Vermont Bioenergy Initiative: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, Chris; Sawyer, Scott; Kahler, Ellen

    The purpose of the Vermont Bioenergy Initiative (VBI) was to foster the development of sustainable, distributed, small-scale biodiesel and grass/mixed fiber industries in Vermont in order to produce bioenergy for local transportation, agricultural, and thermal applications, as a replacement for fossil fuel based energy. The VBI marked the first strategic effort to reduce Vermont’s dependency on petroleum through the development of homegrown alternatives.

  2. Bioenergy as a Mitigation Measure

    NASA Astrophysics Data System (ADS)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these

  3. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negri, M. Cristina; Ssegane, H.

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  4. Biomass, Bioenergy and the Sustainability of Soils and Climate: What Role for Biochar?

    NASA Astrophysics Data System (ADS)

    Sohi, Saran

    2013-04-01

    Biochar is the solid, carbon rich product of heating biomass with the exclusion of air (pyrolysis). Whereas charcoal is derived from wood, biochar is a co-product of energy capture and can derive from waste or non-waste, virgin or non-virgin biomass resources. But also, biochar is not a fuel - rather it is intended for the beneficial amendment of soil in agriculture, forestry and horticulture. This results in long-term storage of plant-derived carbon that could improve yield or efficiency of crop production, and/or mitigate trace gas emissions from the land. Life cycle analysis (LCA) shows that pyrolysis bioenergy with biochar production should offer considerably more carbon abatement than combustion, or gasification of the same feedstock. This has potential to link climate change mitigation to bioenergy and sustainable use of soil. But, in economic terms, the opportunity cost of producing biochar (reflecting the calorific value of its stored carbon) is inflated by bioenergy subsidies. This, combined with a lack of clear regulatory position and no mature pyrolysis technologies at large scale, means that pyrolysis-biochar systems (PBS) remain largely conceptual at the current time. Precise understanding of its function and an ability to predict its impact on different soils and crops with certainty, biochar should acquire a monetary value. Combining such knowledge with a system that monetizes climate change mitigation potential (such as carbon markets), could see schemes for producing and using biochar escalate - including a context for its deployment in biomass crops, or through pyrolysis of residues from other bioenergy processes. This talk explores the opportunity, challenges and risks in pursuing biochar production in various bioenergy contexts including enhanced sustainability of soil use in biomass crop production, improving the carbon balance and value chain in biofuel production, and using organic waste streams more effectively (including the processing of

  5. Synergistic microbial consortium for bioenergy generation from complex natural energy sources.

    PubMed

    Wang, Victor Bochuan; Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say; Yang, Liang

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1:9 (v:v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs.

  6. Synergistic Microbial Consortium for Bioenergy Generation from Complex Natural Energy Sources

    PubMed Central

    Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1 : 9 (v : v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs. PMID:25097866

  7. Policies and interventions on employment relations and health inequalities.

    PubMed

    Quinlan, Michael; Muntaner, Carles; Solar, Orielle; Vergara, Montserrat; Eijkemans, Gerry; Santana, Vilma; Chung, Haejoo; Castedo, Antía; Benach, Joan

    2010-01-01

    The association between certain increasingly pervasive employment conditions and serious health inequalities presents a significant policy challenge. A critical starting point is the recognition that these problems have not arisen in a policy vacuum. Rather, policy frameworks implemented by governments over the past 35 years, in conjunction with corporate globalization (itself facilitated by neoliberal policies), have undermined preexisting social protection policies and encouraged the growth of health-damaging forms of work organization. After a brief description of the context in which recent developments should be viewed, this article describes how policies can be reconfigured to address health-damaging employment conditions. A number of key policy objectives and entry points are identified, with a summary of policies for each entry point, relating to particular employment conditions relevant to rich and poor countries. Rather than trying to elaborate these policy interventions in detail, the authors point to several critical issues in relation to these interventions, linking these to illustrative examples.

  8. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will

  9. Switching to switchgrass: Pathways and consequences of bioenergy switchgrass entering the Midwestern landscape

    NASA Astrophysics Data System (ADS)

    Krohn, Brian

    The US has the ambitious goal of producing 60 billion liters of cellulosic biofuel by 2022. Researchers and US Federal Agencies have identified switchgrass (Panicum virgatum L.) as a potential feedstock for next generation biofuels to help meet this goal because of its excellent agronomic and environmental characteristics. With national policy supporting the development of a switchgrass to bioenergy industry two key questions arise: 1) Under what economic and political conditions will switchgrass enter the landscape? 2) Where on the landscape will switchgrass be cultivated given varying economic and political conditions? The goal of this dissertation is to answer these questions by analyzing the adoption of switchgrass across the upper Midwestern US at a high spatial resolution (30m) under varying economic conditions. In the first chapter, I model switchgrass yields at a high resolution and find considerable variability in switchgrass yields across space, scale, time, and nitrogen management. Then in the second chapter, I use the spatial results from chapter one to challenge the assumption that low-input (unmanaged) switchgrass systems cannot compete economically with high-input (managed) switchgrass systems. Finally, in the third chapter, I evaluate the economic and land quality conditions required for switchgrass to be competitive with a corn/soy rotation. I find that switchgrass can displace low-yielding corn/soy on environmentally sensitive land but, to be competitive, it requires economic support through payments for ecosystem services equal to 360 ha-1. With a total expenditure of 4.3 billion annually for ecosystem services, switchgrass could displace corn/soy on 12.2 million hectares of environmentally sensitive land and increase ethanol production above that from the existing corn by 20 billion liters. Thus, ecosystem services can be an effective means of meeting both bioenergy and environmental goals. Taking the three chapters in aggregate it is apparent

  10. Identifying state-level policy and provision domains for physical education and physical activity in high school

    PubMed Central

    2013-01-01

    Background It is important to quickly and efficiently identify policies that are effective at changing behavior; therefore, we must be able to quantify and evaluate the effect of those policies and of changes to those policies. The purpose of this study was to develop state-level physical education (PE) and physical activity (PA) policy domain scores at the high-school level. Policy domain scores were developed with a focus on measuring policy change. Methods Exploratory factor analysis was used to group items from the state-level School Health Policies and Programs Study (SHPPS) into policy domains. Items that related to PA or PE at the High School level were identified from the 7 SHPPS health program surveys. Data from 2000 and 2006 were used in the factor analysis. RESULTS: From the 98 items identified, 17 policy domains were extracted. Average policy domain change scores were positive for 12 policy domains, with the largest increases for “Discouraging PA as Punishment”, “Collaboration”, and “Staff Development Opportunities”. On average, states increased scores in 4.94 ± 2.76 policy domains, decreased in 3.53 ± 2.03, and had no change in 7.69 ± 2.09 policy domains. Significant correlations were found between several policy domain scores. Conclusions Quantifying policy change and its impact is integral to the policy making and revision process. Our results build on previous research offering a way to examine changes in state-level policies related to PE and PA of high-school students and the faculty and staff who serve them. This work provides methods for combining state-level policies relevant to PE or PA in youth for studies of their impact. PMID:23815860

  11. Managing Bioenergy Production on Arable Field Margins for Multiple Ecosystem Services: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Ferrarini, Andrea; Serra, Paolo; Amaducci, Stefano; Trevisan, Marco; Puglisi, Edoardo

    2013-04-01

    Growing crops for bioenergy is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. The debate should shift from "food or fuel" to the more challenging target: how the increasing demand for food and energy can be met in the future, particularly when water and land availability will be limited. As for food crops, also for bioenergy crops it is questioned whether it is preferable to manage cultivation to enhance ecosystem services ("land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand ("land sparing" strategy). Energy crop production systems differ greatly in the supply of ecosystem services. The use of perennial biomass (e.g. Switchgrass, Mischantus, Giant reed) for energy production is considered a promising way to reduce net carbon emissions and mitigate climate change. In addition, regulating and supporting ecosystem services could be provided when specific management of bioenergy crops is implemented. The idea of HEDGE-BIOMASS* project is to convert the arable field margins to bioenergy crop production fostering a win-win strategy at landscape level. Main objective of the project is to improve land management to generate environmental benefits and increase farmer income. The various options available in literature for an improved field boundary management are presented. The positive/unknown/negative effects of growing perennial bioenergy crops on field margins will be discussed relatively to the following soil-related ecosystem services: (I) biodiversity conservation and enhancement, (II) soil nutrient cycling, (III) climate regulation (reduction of GHG emissions and soil carbon sequestration/stabilization, (IV) water regulation (filtering and buffering), (V) erosion regulation, (VI) pollination and pest regulation. From the analysis of available

  12. Optimal policy for mitigating emissions in the European transport sector

    NASA Astrophysics Data System (ADS)

    Leduc, Sylvain; Piera, Patrizio; Sennai, Mesfun; Igor, Staritsky; Berien, Elbersen; Tijs, Lammens; Florian, Kraxner

    2017-04-01

    A geographic explicit techno-economic model, BeWhere (www.iiasa.ac.at/bewhere), has been developed at the European scale (Europe 28, the Balkans countries, Turkey, Moldavia and Ukraine) at a 40km grid size, to assess the potential of bioenergy from non-food feedstock. Based on the minimization of the supply chain from feedstock collection to the final energy product distribution, the model identifies the optimal bioenergy production plants in terms of spatial location, technology and capacity. The feedstock of interests are woody biomass (divided into eight types from conifers and non-conifers) and five different crop residuals. For each type of feedstock, one or multiple technologies can be applied for either heat, electricity or biofuel production. The model is run for different policy tools such as carbon cost, biofuel support, or subsidies, and the optimal mix of technologies and biomass needed is optimized to reach a production cost competitive against the actual reference system which is fossil fuel based. From this approach, the optimal mix of policy tools that can be applied country wide in Europe will be identified. The preliminary results show that high carbon tax and biofuel support contribute to the development of large scale biofuel production based on woody biomass plants mainly located in the northern part of Europe. Finally the highest emission reduction is reached with low biofuel support and high carbon tax evenly distributed in Europe.

  13. Analysis and Characterization | Bioenergy | NREL

    Science.gov Websites

    Analysis and Characterization Analysis and Characterization NREL's team of bioenergy analysts takes equipment in a lab Biomass Characterization Photo of NRELs Biochemical Process Development Unit showing a

  14. Preparing the EPIC Model for Evaluating Bioenergy Production Systems: A Test of the Denitrification Submodel using a Long-Term Dataset

    NASA Astrophysics Data System (ADS)

    Manowitz, D. H.; Schwab, D. E.; Izaurralde, R. C.

    2010-12-01

    As bioenergy production continues to increase, it is important to be able to predict not only the crop yields that are expected from future production, but also the various environmental impacts that will accompany it. Therefore, models that can be used to make such predictions must be validated against as many of these agricultural outputs as possible. The Environmental Policy Integrated Climate (EPIC) model is a widely used and tested model for simulating many agricultural ecosystem processes including plant growth, crop yield, carbon and nutrient cycling, wind and water erosion, runoff, leaching, as well as changes in soil physical and chemical properties. This model has undergone many improvements, including the addition of a process-based denitrification submodel. Here we evaluate the performance of EPIC in its ability to simulate nitrous oxide (N2O) fluxes and related variables as observed in selected treatments of the Long-Term Ecological Research (LTER) cropping systems study at Kellogg Biological Station (KBS). We will provide a brief description of the EPIC model in the context of bioenergy production, describe the denitrification submodel, and compare simulated and observed values of crop yields, N2O emissions, soil carbon dynamics, and soil moisture.

  15. Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion

    NASA Astrophysics Data System (ADS)

    Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.

    2012-12-01

    Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.

  16. Hydrological and sedimentation implications of landscape changes in a Himalayan catchment due to bioenergy cropping

    NASA Astrophysics Data System (ADS)

    Remesan, Renji; Holman, Ian; Janes, Victoria

    2015-04-01

    There is a global effort to focus on the development of bioenergy and energy cropping, due to the generally increasing demand for crude oil, high oil price volatility and climate change mitigation challenges. Second generation energy cropping is expected to increase greatly in India as the Government of India has recently approved a national policy of 20 % biofuel blending by 2017; furthermore, the country's biomass based power generation potential is estimated as around ~24GW and large investments are expected in coming years to increase installed capacity. In this study, we have modelled the environmental influences (e.g.: hydrology and sediment) of scenarios of increased biodiesel cropping (Jatropha curcas) using the Soil and Water Assessment Tool (SWAT) in a northern Indian river basin. SWAT has been applied to the River Beas basin, using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and NCEP Climate Forecast System Reanalysis (CFSR) meteorological data to simulate the river regime and crop yields. We have applied Sequential Uncertainty Fitting Ver. 2 (SUFI-2) to quantify the parameter uncertainty of the stream flow modelling. The model evaluation statistics for daily river flows at the Jwalamukhi and Pong gauges show good agreement with measured flows (Nash Sutcliffe efficiency of 0.70 and PBIAS of 7.54 %). The study has applied two land use change scenarios of (1) increased bioenergy cropping in marginal (grazing) lands in the lower and middle regions of catchment (2) increased bioenergy cropping in low yielding areas of row crops in the lower and middle regions of the catchment. The presentation will describe the improved understanding of the hydrological, erosion and sediment delivery and food production impacts arising from the introduction of a new cropping variety to a marginal area; and illustrate the potential prospects of bioenergy production in Himalayan valleys.

  17. The global technical potential of bio-energy in 2050 considering sustainability constraints

    PubMed Central

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-01-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets (‘technical potential’). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160–270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization (‘cascade utilization’) of biomass flows. PMID:24069093

  18. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  19. Challenge clusters facing LCA in environmental decision-making-what we can learn from biofuels.

    PubMed

    McManus, Marcelle C; Taylor, Caroline M; Mohr, Alison; Whittaker, Carly; Scown, Corinne D; Borrion, Aiduan Li; Glithero, Neryssa J; Yin, Yao

    Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy's sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policy-facing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. The emergence of LCA in bioenergy governance is

  20. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    DOE PAGES

    Dickson, Timothy L.; Gross, Katherine L.

    2015-09-11

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studiesmore » of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Finally, production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of

  1. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, Timothy L.; Gross, Katherine L.

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studiesmore » of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Finally, production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of

  2. Logistic regression models of factors influencing the location of bioenergy and biofuels plants

    Treesearch

    T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu

    2011-01-01

    Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...

  3. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.

    PubMed

    Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K

    2018-03-01

    Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.

  4. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy

    NASA Astrophysics Data System (ADS)

    Sterman, John D.; Siegel, Lori; Rooney-Varga, Juliette N.

    2018-01-01

    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO2 emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO2 over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO2 emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO2 relative to coal. The payback time for this carbon debt ranges from 44-104 years after clearcut, depending on forest type—assuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO2 impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO2 for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.

  5. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits

    PubMed Central

    2012-01-01

    For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities. PMID:23122416

  6. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits.

    PubMed

    Feltus, Frank Alex; Vandenbrink, Joshua P

    2012-11-02

    For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities.

  7. Bioenergy Ecosystem Land-Use Modelling and Field Flux Trial

    NASA Astrophysics Data System (ADS)

    McNamara, Niall; Bottoms, Emily; Donnison, Iain; Dondini, Marta; Farrar, Kerrie; Finch, Jon; Harris, Zoe; Ineson, Phil; Keane, Ben; Massey, Alice; McCalmont, Jon; Morison, James; Perks, Mike; Pogson, Mark; Rowe, Rebecca; Smith, Pete; Sohi, Saran; Tallis, Mat; Taylor, Gail; Yamulki, Sirwan

    2013-04-01

    Climate change impacts resulting from fossil fuel combustion and concerns about the diversity of energy supply are driving interest to find low-carbon energy alternatives. As a result bioenergy is receiving widespread scientific, political and media attention for its potential role in both supplying energy and mitigating greenhouse (GHG) emissions. It is estimated that the bioenergy contribution to EU 2020 renewable energy targets could require up to 17-21 million hectares of additional land in Europe (Don et al., 2012). There are increasing concerns that some transitions into bioenergy may not be as sustainable as first thought when GHG emissions from the crop growth and management cycle are factored into any GHG life cycle assessment (LCA). Bioenergy is complex and encapsulates a wide range of crops, varying from food crop based biofuels to dedicated second generation perennial energy crops and forestry products. The decision on the choice of crop for energy production significantly influences the GHG mitigation potential. It is recognised that GHG savings or losses are in part a function of the original land-use that has undergone change and the management intensity for the energy crop. There is therefore an urgent need to better quantify both crop and site-specific effects associated with the production of conventional and dedicated energy crops on the GHG balance. Currently, there is scarcity of GHG balance data with respect to second generation crops meaning that process based models and LCAs of GHG balances are weakly underpinned. Therefore, robust, models based on real data are urgently required. In the UK we have recently embarked on a detailed program of work to address this challenge by combining a large number of field studies with state-of-the-art process models. Through six detailed experiments, we are calculating the annual GHG balances of land use transitions into energy crops across the UK. Further, we are quantifying the total soil carbon gain or

  8. Identifying Cost-Effective Dynamic Policies to Control Epidemics

    PubMed Central

    Yaesoubi, Reza; Cohen, Ted

    2016-01-01

    We describe a mathematical decision model for identifying dynamic health policies for controlling epidemics. These dynamic policies aim to select the best current intervention based on accumulating epidemic data and the availability of resources at each decision point. We propose an algorithm to approximate dynamic policies that optimize the population’s net health benefit, a performance measure which accounts for both health and monetary outcomes. We further illustrate how dynamic policies can be defined and optimized for the control of a novel viral pathogen, where a policy maker must decide (i) when to employ or lift a transmission-reducing intervention (e.g. school closure) and (ii) how to prioritize population members for vaccination when a limited quantity of vaccines first become available. Within the context of this application, we demonstrate that dynamic policies can produce higher net health benefit than more commonly described static policies that specify a pre-determined sequence of interventions to employ throughout epidemics. PMID:27449759

  9. Advancing Sustainable Bioenergy; Evolving Stakeholder Interests and the Relevance of Research

    EPA Science Inventory

    Sustainable bioenergy production depends on the resolution of both scientific and nontechnical barriers to its development. We focus on the need to recognize and manage stakeholder diversity as an example of the latter. As a complex issue domain, bioenergy involves a disparate se...

  10. Determination of Indonesian palm-oil-based bioenergy sustainability indicators using fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Arkeman, Y.; Rizkyanti, R. A.; Hambali, E.

    2017-05-01

    Development of Indonesian palm-oil-based bioenergy faces an international challenge regarding to sustainability issue, indicated by the establishment of standards on sustainable bioenergy. Currently, Indonesia has sustainability standards limited to palm-oil cultivation, while other standards are lacking appropriateness for Indonesian palm-oil-based bioenergy sustainability regarding to real condition in Indonesia. Thus, Indonesia requires sustainability indicators for Indonesian palm-oil-based bioenergy to gain recognition and easiness in marketing it. Determination of sustainability indicators was accomplished through three stages, which were preliminary analysis, indicator assessment (using fuzzy inference system), and system validation. Global Bioenergy partnership (GBEP) was used as the standard for the assessment because of its general for use, internationally accepted, and it contained balanced proportion between environment, economic, and social aspects. Result showed that the number of sustainability indicators using FIS method are 21 indicators. The system developed has an accuracy of 85%.

  11. Support for the 4th Pan-American Congress on Plants and Bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpita, Nicholas C.

    Intellectual Merit: Following the success of the first three Pan-American Congresses on Plants and BioEnergy held biennially, the 4th congress will be held at the University of Guelph, Canada June 4-7, 2014. We aim to continue a tradition of showcasing major advances in energy crop improvement yet keep in perspective the realities of the economic drivers and pressures that govern the translation of scientific success into a commercial success. The congress is endorsed by the American Society of Plant Biologists and the Canadian Society of Plant Biologists. The program will cover a range of disciplines, including algal and plant systemsmore » for bioenergy, plant genetics and genomics, gene discovery for improvement of bioenergy production and quality, regulatory mechanisms of synthesis and degradation, strategies for 3rd generation biofuel production and the promise of synthetic biology in production of biofuels and bio-based products, cropping systems and productivity for biomass production, and mitigation of environmental impacts of bioenergy production. Broader Impacts: We are requesting support to generate stipends for domestic and permanent-resident students, post-doctorals, and pre-tenured faculty members to attend and benefit from the outstanding program. The stipends will be limited to registration and on-site lodging costs, with partial support for travel in instances of great need. So that as great a number can benefit as possible, airfare costs will be provided for only applicants with great need. ASPB has endorsed this meeting and will assist in advertising and promoting the meeting. ASPB has a long-standing commitment to increase participation and advance the careers in plant biology of women, minorities and underrepresented scientists, and they will assist us in identifying worthy candidates.« less

  12. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    PubMed

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions. Copyright © 2015

  13. NREL National Bioenergy Center Overview

    ScienceCinema

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2018-01-16

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  14. Multi-spatial analysis of forest residue utilization for bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Ryan A.; Keefe, Robert F.; Smith, Alistair M. S.

    2016-06-17

    The alternative energy sector is expanding quickly in the USA since passage of the Energy Policy Act of 2005 and the Energy Independence and Security Act of 2007. Increased interest in wood-based bioenergy has led to the need for robust modeling methods to analyze woody biomass operations at landscape scales. However, analyzing woody biomass operations in regions like the US Inland Northwest is difficult due to highly variable terrain and wood characteristics. We developed the Forest Residue Economic Assessment Model (FREAM) to better integrate with Geographical Information Systems and overcome analytical modeling limitations. FREAM analyzes wood-based bioenergy logistics systems andmore » provides a modeling platform that can be readily modified to analyze additional study locations. We evaluated three scenarios to test the FREAM's utility: a local-scale scenario in which a catalytic pyrolysis process produces gasoline from 181 437 Mg yr-1 of forest residues, a regional-scale scenario that assumes a biochemical process to create aviation fuel from 725 748 Mg yr-1 of forest residues, and an international scenario that assumes a pellet mill producing pellets for international markets from 272 155 Mg yr-1 of forest residues. The local scenario produced gasoline for a modeled cost of $22.33 GJ-1*, the regional scenario produced aviation fuel for a modeled cost of $35.83 GJ-1 and the international scenario produced pellets for a modeled cost of $10.51 GJ-1. Results show that incorporating input from knowledgeable stakeholders in the designing of a model yields positive results.« less

  15. Biomass for biorefining: Resources, allocation, utilization, and policies

    USDA-ARS?s Scientific Manuscript database

    The importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass are discussed in this chapter. Bioenergy development will depend on maximizing the amount of biomass obtained fro...

  16. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.

    PubMed

    Waclawovsky, Alessandro J; Sato, Paloma M; Lembke, Carolina G; Moore, Paul H; Souza, Glaucia M

    2010-04-01

    An increasing number of plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops. Research is increasingly focused on how to design crops specifically for bioenergy production and increased biomass generation for biofuel purposes. The most important biofuel to date is bioethanol produced from sugars (sucrose and starch). Second generation bioethanol is also being targeted for studies to allow the use of the cell wall (lignocellulose) as a source of carbon. If a crop is to be used for bioenergy production, the crop should be high yielding, fast growing, low lignin content and requiring relatively small energy inputs for its growth and harvest. Obtaining high yields in nonprime agricultural land is a key for energy crop development to allow sustainability and avoid competition with food production. Sugarcane is the most efficient bioenergy crop of tropical and subtropical regions, and biotechnological tools for the improvement of this crop are advancing rapidly. We focus this review on the studies of sugarcane genes associated with sucrose content, biomass and cell wall metabolism and the preliminary physiological characterization of cultivars that contrast for sugar and biomass yield.

  17. The water footprint of bioenergy

    PubMed Central

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Y.; van der Meer, Theo H.

    2009-01-01

    All energy scenarios show a shift toward an increased percentage of renewable energy sources, including biomass. This study gives an overview of water footprints (WFs) of bioenergy from 12 crops that currently contribute the most to global agricultural production: barley, cassava, maize, potato, rapeseed, rice, rye, sorghum, soybean, sugar beet, sugar cane, and wheat. In addition, this study includes jatropha, a suitable energy crop. Since climate and production circumstances differ among regions, calculations have been performed by country. The WF of bioelectricity is smaller than that of biofuels because it is more efficient to use total biomass (e.g., for electricity or heat) than a fraction of the crop (its sugar, starch, or oil content) for biofuel. The WF of bioethanol appears to be smaller than that of biodiesel. For electricity, sugar beet, maize, and sugar cane are the most favorable crops [50 m3/gigajoule (GJ)]. Rapeseed and jatropha, typical energy crops, are disadvantageous (400 m3/GJ). For ethanol, sugar beet, and potato (60 and 100 m3/GJ) are the most advantageous, followed by sugar cane (110 m3/GJ); sorghum (400 m3/GJ) is the most unfavorable. For biodiesel, soybean and rapeseed show to be the most favorable WF (400 m3/GJ); jatropha has an adverse WF (600 m3/GJ). When expressed per L, the WF ranges from 1,400 to 20,000 L of water per L of biofuel. If a shift toward a greater contribution of bioenergy to energy supply takes place, the results of this study can be used to select the crops and countries that produce bioenergy in the most water-efficient way. PMID:19497862

  18. Energy Department Announces National Bioenergy Center

    Science.gov Websites

    Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colo., and Oak Ridge National Laboratories (ORNL) in Oak Ridge, Tenn. will lead the Bioenergy Center. The center will link DOE-funded biomass

  19. Impacts of Past Land Use Changes on Water Resources: An Analog for Assessing Effects of Proposed Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Schilling, K.; Young, M.; Duncan, I. J.; Gerbens-Leenes, P.

    2011-12-01

    Interest is increasing in renewable energy sources, including bioenergy. However, potential impacts of bioenergy crops on water resources need to be better understood before large scale expansion occurs. This study evaluates the potential for using past land use change impacts on water resources as an analog for assessing future bioenergy crop effects. Impacts were assessed for two cases and methods: (1) changes from perennial to annual crops in the Midwest U.S. using stream hydrograph separation; and (2) changes from perennial grasses and shrubs to annual crops in the Southwest U.S. using unsaturated zone and groundwater data. Results from the Midwest show that expanding the soybean production area by 80,000 km2 increased stream flow by 32%, based on data from Keokuk station in the Upper Mississippi River Basin. Using these relationships, further expansion of annual corn production for biofuels by 10 - 50% would increase streamflow by up to 40%, with related increases in nitrate, phosphate, and sediment pollutant transport to the Gulf of Mexico. The changes in water partitioning are attributed to reducing evapotranspiration, increasing recharge and baseflow discharge to streams. Similar results were found in the southwestern US, where changes from native perennial grasses and shrubs to annual crops increased recharge from ~0.0 to 24 mm/yr, raising water tables by up to 7 m in some regions and flushing accumulated salts into underlying aquifers in the southern High Plains. The changes in water partitioning are related to changes in rooting depth from deep rooted native vegetation to shallow rooted crops and growing season length. Further expansion of annual bioenergy crops, such as changes from Conservation Reserve Program to corn in the Midwest, will continue the trajectory of reducing ET, thereby increasing recharge and baseflow to streams and nutrient export. We hypothesize that changing bioenergy crops from annual crops to perennial grasses, such as switchgrass

  20. Bioenergy production and forest landscape change in the southeastern United States

    USGS Publications Warehouse

    Costanza, Jennifer K.; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime A.

    2016-01-01

    Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose-grown woody crops grown on marginal lands. Results reveal trade-offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business-as-usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose-grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose-grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land-use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for

  1. A Mixed Methods Approach for Identifying Influence on Public Policy

    ERIC Educational Resources Information Center

    Weaver-Hightower, Marcus B.

    2014-01-01

    Fields from political science to critical education policy studies have long explored power relations in policy processes, showing who influences policy agendas, policy creation, and policy implementation. Yet showing particular actors' influence on specific points in a policy text remains a methodological challenge. This article presents a…

  2. The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems

    USDA-ARS?s Scientific Manuscript database

    Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for b...

  3. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    USGS Publications Warehouse

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime A.; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals

  4. Environmental assessment of bioenergy technologies application in Russia, including their impact on the balance of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Andreeva, Irina; Vasenev, Ivan

    2017-04-01

    In recent years, Russia adopted a policy towards increasing of the share of renewable energy in total amount of used energy, albeit with some delay comparing to the EU countries and the USA. It was expected that the use of biofuels over time will reduce significantly the dependency of Russian economy on fossil fuels, increase its competitiveness, and increase Russian contribution to the prevention of global climate changes. Russia has significant bio-energy potential and resources which are characterized by great diversity due to the large extent of the territory, which require systematic studies and environmental assessment of used bio-energy technologies. Results of research carried at the Laboratory of agroecological monitoring, modeling and prediction of ecosystems RSAU-MTAA demonstrated significant differences in the assessment of the environmental, economic and social effects of biofuel production and use, depending on the species of bio-energy crops, regional soil-ecological and agro-climatic characteristics, applied farming systems and production processes. The total area of temporarily unused and fallow land, which could be allocated to the active agricultural use in Russia, according to various estimates, ranges from 20 to 33 million hectares, which removes the problem, typical of most European countries, of adverse agro-ecological changes in land use connected with the expansion of bio-energy crops cultivation. However, the expansion of biofuel production through the use of fallow land and conversion of natural lands has as a consequence the problem of greenhouse gas emissions due to land use changes, which, according to FAO, could be even higher than CO2 emission from fossil fuels for some of bio-energy raw materials and production systems. Assessment of the total impacts of biofuels on greenhouse gas emissions in the Russian conditions should be based on regionally adapted calculations of flows throughout the entire life cycle of production, taking

  5. Structural integration and performance of inter-sectoral public health-related policy networks: An analysis across policy phases.

    PubMed

    Peters, D T J M; Raab, J; Grêaux, K M; Stronks, K; Harting, J

    2017-12-01

    Inter-sectoral policy networks may be effective in addressing environmental determinants of health with interventions. However, contradictory results are reported on relations between structural network characteristics (i.e., composition and integration) and network performance, such as addressing environmental determinants of health. This study examines these relations in different phases of the policy process. A multiple-case study was performed on four public health-related policy networks. Using a snowball method among network actors, overall and sub-networks per policy phase were identified and the policy sector of each actor was assigned. To operationalise the outcome variable, interventions were classified by the proportion of environmental determinants they addressed. In the overall networks, no relation was found between structural network characteristics and network performance. In most effective cases, the policy development sub-networks were characterised by integration with less interrelations between actors (low cohesion), more equally distributed distances between the actors (low closeness centralisation), and horizontal integration in inter-sectoral cliques. The most effective case had non-public health central actors with less connections in all sub-networks. The results suggest that, to address environmental determinants of health, sub-networks should be inter-sectorally composed in the policy development rather than in the intervention development and implementation phases, and that policy development actors should have the opportunity to connect with other actors, without strong direction from a central actor. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production.

    PubMed

    Gaunt, John L; Lehmann, Johannes

    2008-06-01

    The implications for greenhouse gas emissions of optimizing a slow pyrolysis-based bioenergy system for biochar and energy production rather than solely for energy production were assessed. Scenarios for feedstock production were examined using a life-cycle approach. We considered both purpose grown bioenergy crops (BEC) and the use of crop wastes (CW) as feedstocks. The BEC scenarios involved a change from growing winter wheat to purpose grown miscanthus, switchgrass, and corn as bioenergy crops. The CW scenarios consider both corn stover and winter wheat straw as feedstocks. Our findings show that the avoided emissions are between 2 and 5 times greater when biochar is applied to agricultural land (2--19 Mg CO2 ha(-1) y(-1)) than used solely for fossil energy offsets. 41--64% of these emission reductions are related to the retention of C in biochar, the rest to offsetting fossil fuel use for energy, fertilizer savings, and avoided soil emissions other than CO2. Despite a reduction in energy output of approximately 30% where the slow pyrolysis technology is optimized to produce biochar for land application, the energy produced per unit energy input at 2--7 MJ/MJ is greater than that of comparable technologies such as ethanol from corn. The C emissions per MWh of electricity production range from 91-360 kg CO2 MWh(-1), before accounting for C offset due to the use of biochar are considerably below the lifecycle emissions associated with fossil fuel use for electricity generation (600-900 kg CO2 MWh(-1)). Low-temperature slow pyrolysis offers an energetically efficient strategy for bioenergy production, and the land application of biochar reduces greenhouse emissions to a greater extent than when the biochar is used to offset fossil fuel emissions.

  7. Sustainability analysis of bioenergy based land use change under climate change and variability

    NASA Astrophysics Data System (ADS)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water

  8. Efficient and sustainable deployment of bioenergy with carbon capture and storage in mitigation pathways

    NASA Astrophysics Data System (ADS)

    Kato, E.; Moriyama, R.; Kurosawa, A.

    2016-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise well below 2°C above pre-industrial, which would require net negative carbon emissions at the end of the 21st century. Also, in the Paris agreement from COP21, it is denoted "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century" which could require large scale deployment of negative emissions technologies later in this century. Because of the additional requirement for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of large-scale BECCS. In this study, we present possible development strategies of low carbon scenarios that consider interaction of economically efficient deployment of bioenergy and/or BECCS technologies, biophysical limit of bioenergy productivity, and food production. In the evaluations, detailed bioenergy representations, including bioenergy feedstocks and conversion technologies with and without CCS, are implemented in an integrated assessment model GRAPE. Also, to overcome a general discrepancy about yield development between 'top-down' integrate assessment models and 'bottom-up' estimates, we applied yields changes of food and bioenergy crops consistent with process-based biophysical models; PRYSBI-2 (Process-Based Regional-Scale Yield Simulator with Bayesian Inference) for food crops, and SWAT (Soil and Water Assessment Tool) for bioenergy crops in changing climate conditions. Using the framework, economically viable strategy for implementing sustainable BECCS are evaluated.

  9. Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels

    DOE PAGES

    McManus, Marcelle C.; Taylor, Caroline M.; Mohr, Alison; ...

    2015-08-07

    Purpose: Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods: The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expertmore » submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policy-facing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion: The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManus, Marcelle C.; Taylor, Caroline M.; Mohr, Alison

    Purpose: Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods: The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expertmore » submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policy-facing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion: The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater

  11. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    PubMed

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  12. Short term impacts provide a management window for minimizing invasions from bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    In anticipation of the expansion of perennial bioenergy cultivation, we experimentally introduced Miscanthus sinensis and Miscanthus × giganteus (two non-native candidate bioenergy species) into two different non-crop habitats (old field and flood-plain forest) to evaluate their establishment succes...

  13. Spatio-temporal Assessment Of The Land Use Implications Of Solar PV And Bioenergy Deployment In The UK TM Energy Model

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Z.; Konadu, D. D.; Skelton, S.; Lupton, R.

    2015-12-01

    The UK TIMES model (UKTM) succeeds the UK MARKAL as the underlying model of the UK Department of Energy and Climate Change (DECC) for long term energy system planning and policy development. It generates energy system pathways which achieve the 80% greenhouse gas (GHG) emissions reduction target by 2050, stipulated in the UK Climate Change Act (2008), at the least possible cost. Some of these pathways prescribe large-scale deployment of solar PV and indigenously sourced bioenergy, which are land intensive and could result in significant land use transitions; but would this create competition and stress for UK land use? To answer the above question, this study uses an integrated spatio-temporal modelling approach, ForeseerTM, which characterises the interdependencies between the energy and land systems by evaluating the land required under each pathways for solar PV and bioenergy, based on scenarios of a range of PV conversion efficiencies, and energy crop yield projections. The outcome is compared with availability of suitable locations for solar PV and sustainable limits of agricultural land appropriation for bioenergy production to assess potential stresses and competition with other land use services. Preliminary results show UKTM pathways could pose significant impact on the UK land use system. Bioenergy deployment could potentially compete with other land services by taking up a significant part of the available UK agricultural land thus competing directly with food production, most notably livestock production. For pathways with significant solar PV deployment, direct competition would not be focussed on the high quality land used for food crop production but rather for land used for livestock production and other ecosystem services.

  14. Redefining Agricultural Residues as Bioenergy Feedstocks

    PubMed Central

    Caicedo, Marlon; Barros, Jaime; Ordás, Bernardo

    2016-01-01

    The use of plant biomass is a sustainable alternative to the reduction of CO2 emissions. Agricultural residues are interesting bioenergy feedstocks because they do not compete with food and add extra value to the crop, which might help to manage these residues in many regions. Breeding crops for dual production of food and bioenergy has been reported previously, but the ideal plant features are different when lignocellulosic residues are burnt for heat or electricity, or fermented for biofuel production. Stover moisture is one of the most important traits in the management of agricultural waste for bioenergy production which can be modified by genetic improvement. A delayed leaf senescence or the stay-green characteristic contributes to higher grain and biomass yield in standard, low nutrient, and drought-prone environments. In addition, the stay-green trait could be favorable for the development of dual purpose varieties because this trait could be associated with a reduction in biomass losses and lodging. On the other hand, the stay-green trait could be detrimental for the management of agricultural waste if it is associated with higher stover moisture at harvest, although this hypothesis has been insufficiently tested. In this paper, a review of traits relevant to the development of dual purpose varieties is presented with particular emphasis on stover moisture and stay-green, because less attention has been paid to these important traits in the literature. The possibility of developing new varieties for combined production is discussed from a breeding perspective. PMID:28773750

  15. On the global limits of bioenergy and land use for climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strapasson, Alexandre; Woods, Jeremy; Chum, Helena

    Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land-use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex-systems approach for assessing land-use dynamics. Primary biomass that could provide between 70 EJ year -1 and 360 EJ year -1, globally, by 2050 was simulated in the context of different land-use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture,more » forestry and other land uses by 2050, including not only above-ground biomass-related emissions, but also from changes in soil carbon, from as high as 24 GtCO 2eq year-1 to as low as minus 21 GtCO 2eq year -1, which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. As a result, there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.« less

  16. On the global limits of bioenergy and land use for climate change mitigation

    DOE PAGES

    Strapasson, Alexandre; Woods, Jeremy; Chum, Helena; ...

    2017-05-24

    Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land-use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex-systems approach for assessing land-use dynamics. Primary biomass that could provide between 70 EJ year -1 and 360 EJ year -1, globally, by 2050 was simulated in the context of different land-use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture,more » forestry and other land uses by 2050, including not only above-ground biomass-related emissions, but also from changes in soil carbon, from as high as 24 GtCO 2eq year-1 to as low as minus 21 GtCO 2eq year -1, which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. As a result, there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.« less

  17. Simulation of Biomass Yield and Soil Organic Carbon under Bioenergy Sorghum Production

    PubMed Central

    Dou, Fugen; Wight, Jason P.; Wilson, Lloyd T.; Storlien, Joseph O.; Hons, Frank M.

    2014-01-01

    Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0–50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha−1, while the simulated SOC was from 56.3 to 67.3 Mg C ha−1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management. PMID:25531758

  18. Recent Trends in Intergovernmental Relations: The Resurgence of Local Actors in Education Policy

    ERIC Educational Resources Information Center

    Marsh, Julie A.; Wohlstetter, Priscilla

    2013-01-01

    In this essay, the authors explore trends in intergovernmental relations (IGR) by analyzing recent education policies--No Child Left Behind Act, Common Core State Standards, and local empowerment policies. Identifying a resurgent role for local actors in education policy, the authors argue that recent federal efforts to exert more control have in…

  19. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Treesearch

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  20. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields

    PubMed Central

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.

    2011-01-01

    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply

  1. Assessing the interactions among U.S. climate policy, biomass energy, and agricultural trade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Marshall A.; McJeon, Haewon C.; Calvin, Katherine V.

    Energy from biomass is potentially an important contributor to U.S. climate change mitigation efforts. However, an important consideration to large-scale implementation of bioenergy is that the production of biomass competes with other uses of land. This includes traditionally economically productive uses, such as agriculture and forest products, as well as storage of carbon in forests and non-commercial lands. In addition, in the future, biomass may be more easily traded, meaning that increased U.S. reliance on bioenergy could come with it greater reliance on imported energy. Several approaches could be implemented to address these issues, including limits on U.S. biomass importsmore » and protection of U.S. and global forests. This paper explores these dimensions of bioenergy’s role in U.S. climate policy and the relationship to these alternative measures for ameliorating the trade and land use consequences of bioenergy. It first demonstrates that widespread use of biomass in the U.S. could lead to imports; and it highlights that the relative stringency of domestic and international carbon mitigation policy will heavily influence the degree to which it is imported. Next, it demonstrates that while limiting biomass imports would prevent any reliance on other countries for this energy supply, it would most likely alter the balance of trade in other agricultural products against which biomass competes; for example, it might turn the U.S. from a corn exporter to a corn importer. Finally, it shows that increasing efforts to protect both U.S. and international forests could also affect the balance of trade in other agricultural products.« less

  2. Food supply and bioenergy production within the global cropland planetary boundary.

    PubMed

    Henry, R C; Engström, K; Olin, S; Alexander, P; Arneth, A; Rounsevell, M D A

    2018-01-01

    Supplying food for the anticipated global population of over 9 billion in 2050 under changing climate conditions is one of the major challenges of the 21st century. Agricultural expansion and intensification contributes to global environmental change and risks the long-term sustainability of the planet. It has been proposed that no more than 15% of the global ice-free land surface should be converted to cropland. Bioenergy production for land-based climate mitigation places additional pressure on limited land resources. Here we test normative targets of food supply and bioenergy production within the cropland planetary boundary using a global land-use model. The results suggest supplying the global population with adequate food is possible without cropland expansion exceeding the planetary boundary. Yet this requires an increase in food production, especially in developing countries, as well as a decrease in global crop yield gaps. However, under current assumptions of future food requirements, it was not possible to also produce significant amounts of first generation bioenergy without cropland expansion. These results suggest that meeting food and bioenergy demands within the planetary boundaries would need a shift away from current trends, for example, requiring major change in the demand-side of the food system or advancing biotechnologies.

  3. Food supply and bioenergy production within the global cropland planetary boundary

    PubMed Central

    Olin, S.; Alexander, P.; Arneth, A.; Rounsevell, M. D. A.

    2018-01-01

    Supplying food for the anticipated global population of over 9 billion in 2050 under changing climate conditions is one of the major challenges of the 21st century. Agricultural expansion and intensification contributes to global environmental change and risks the long-term sustainability of the planet. It has been proposed that no more than 15% of the global ice-free land surface should be converted to cropland. Bioenergy production for land-based climate mitigation places additional pressure on limited land resources. Here we test normative targets of food supply and bioenergy production within the cropland planetary boundary using a global land-use model. The results suggest supplying the global population with adequate food is possible without cropland expansion exceeding the planetary boundary. Yet this requires an increase in food production, especially in developing countries, as well as a decrease in global crop yield gaps. However, under current assumptions of future food requirements, it was not possible to also produce significant amounts of first generation bioenergy without cropland expansion. These results suggest that meeting food and bioenergy demands within the planetary boundaries would need a shift away from current trends, for example, requiring major change in the demand-side of the food system or advancing biotechnologies. PMID:29566091

  4. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.

    2013-03-01

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy,more » rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.« less

  5. Research-Related Injury Compensation Policies of U.S. Research Institutions

    PubMed Central

    Resnik, David B.; Parasidis, Efthimios; Carroll, Kelly; Evans, Jennifer M.; Pike, Elizabeth R.; Kissling, Grace E.

    2014-01-01

    Federal research regulations require participants to be informed about whether medical care or compensation for injury is available in more than minimal risk studies and prohibit language in informed consent documents that waives, or appears to waive, legal rights. The objectives of this study were to compare data collected in 2000 and 2012 to identify significant changes in types of institutional compensation policies at U.S. research institutions, and assess the relationship between institutional characteristics and different types of policies. We found that research-related injury compensation policies did not change substantially during the time period. A significant percentage of policies contain language that can be reasonably interpreted as waiving, or appearing to waive, legal rights. Level of funding, public vs. private status, and institutional involvement in clinical research were associated with different types of policies. The lack of substantial change in compensation policies supports arguments for a national policy. PMID:24649739

  6. Bioenergy in a Multifunctional Landscape

    ScienceCinema

    Watts, Chad; Negri, Cristina; Ssegane, Herbert

    2018-06-12

    How can our landscapes be managed most effectively to produce crops for food, feed, and bioenergy, while also protecting our water resources by preventing the loss of nutrients from the soil? Dr. Cristina Negri and her team at the U.S. Department of Energy’s Argonne National Laboratory are tackling this question at an agricultural research site located in Fairbury, Illinois.

  7. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    NASA Astrophysics Data System (ADS)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  8. Identifying Physiological and Yield Related Traits in Sugarcane and Energy Cane

    USDA-ARS?s Scientific Manuscript database

    A growing interest of producing sugarcane (Saccharum spp.) for both sugar and bioenergy and saturation of using organic soils provide an opportunity to expand production on mineral (sand) soils. However, sugarcane yields and profits on sand soils are generally low. Energy cane may be an alternative ...

  9. Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy

    NASA Astrophysics Data System (ADS)

    Booth, Mary S.

    2018-03-01

    Climate mitigation requires emissions to peak then decline within two decades, but many mitigation models include 100 EJ or more of bioenergy, ignoring emissions from biomass oxidation. Treatment of bioenergy as ‘low carbon’ or carbon neutral often assumes fuels are agricultural or forestry residues that will decompose and emit CO2 if not burned for energy. However, for ‘low carbon’ assumptions about residues to be reasonable, two conditions must be met: biomass must genuinely be material left over from some other process; and cumulative net emissions, the additional CO2 emitted by burning biomass compared to its alternative fate, must be low or negligible in a timeframe meaningful for climate mitigation. This study assesses biomass use and net emissions from the US bioenergy and wood pellet manufacturing sectors. It defines the ratio of cumulative net emissions to combustion, manufacturing and transport emissions as the net emissions impact (NEI), and evaluates the NEI at year 10 and beyond for a variety of scenarios. The analysis indicates the US industrial bioenergy sector mostly burns black liquor and has an NEI of 20% at year 10, while the NEI for plants burning forest residues ranges from 41%-95%. Wood pellets have a NEI of 55%-79% at year 10, with net CO2 emissions of 14-20 tonnes for every tonne of pellets; by year 40, the NEI is 26%-54%. Net emissions may be ten times higher at year 40 if whole trees are harvested for feedstock. Projected global pellet use would generate around 1% of world bioenergy with cumulative net emissions of 2 Gt of CO2 by 2050. Using the NEI to weight biogenic CO2 for inclusion in carbon trading programs and to qualify bioenergy for renewable energy subsidies would reduce emissions more effectively than the current assumption of carbon neutrality.

  10. Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee

    DOE PAGES

    Parish, Esther S.; Dale, Virginia H.; English, Burton C.; ...

    2016-02-26

    This paper connects the science of sustainability theory with applied aspects of sustainability deployment. A suite of 35 sustainability indicators spanning six environmental, three economic, and three social categories has been proposed for comparing the sustainability of bioenergy production systems across different feedstock types and locations. A recent demonstration-scale switchgrass-to-ethanol production system located in East Tennessee is used to assess the availability of sustainability indicator data and associated measurements for the feedstock production and logistics portions of the biofuel supply chain. Knowledge pertaining to the available indicators is distributed within a hierarchical decision tree framework to generate an assessment ofmore » the overall sustainability of this no-till switchgrass production system relative to two alternative business-as-usual scenarios of unmanaged pasture and tilled corn production. The relative contributions of the social, economic and environmental information are determined for the overall trajectory of this bioenergy system s sustainability under each scenario. Within this East Tennessee context, switchgrass production shows potential for improving environmental and social sustainability trajectories without adverse economic impacts, thereby leading to potential for overall enhancement in sustainability within this local agricultural system. Given the early stages of cellulosic ethanol production, it is currently difficult to determine quantitative values for all 35 sustainability indicators across the entire biofuel supply chain. This case study demonstrates that integration of qualitative sustainability indicator ratings may increase holistic understanding of a bioenergy system in the absence of complete information.« less

  11. Strategic plan for bioenergy research, 1998--2003, the Canadian Forest Service five-year plan: Implementing the Canadian bioenergy research strategy (in English;French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    This document supersedes the previous one, taking into account changes that have taken place in the CFS Science and Technology (S and T) program structure and organization, and in the structure of the Program of Energy Research and Development, the source of funding for CFS bioenergy research. It explains the rationale and overall objective for the bioenergy research program and briefly reviews the accomplishments to date. It indicates the planning context within which the program operates, states the specific objectives for the period of the plan, and details the strategic priorities developed for this period. Finally, it outlines the implementationmore » process for the plan.« less

  12. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration.

    PubMed

    Woolf, Dominic; Lehmann, Johannes; Lee, David R

    2016-10-21

    Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg -1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg -1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred.

  13. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration

    PubMed Central

    Woolf, Dominic; Lehmann, Johannes; Lee, David R.

    2016-01-01

    Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg−1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg−1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred. PMID:27767177

  14. Candidate perennial bioenergy grasses have a higher albedo than annual row crops in the Midwestern US

    USDA-ARS?s Scientific Manuscript database

    The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observati...

  15. Watershed-scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model

    DOE PAGES

    Cibin, Raj; Trybula, Elizabeth; Chaubey, Indrajeet; ...

    2016-01-08

    Cellulosic bioenergy feedstock such as perennial grasses and crop residues are expected to play a significant role in meeting US biofuel production targets. Here, we used an improved version of the Soil and Water Assessment Tool (SWAT) to forecast impacts on watershed hydrology and water quality by implementing an array of plausible land-use changes associated with commercial bioenergy crop production for two watersheds in the Midwest USA. Watershed-scale impacts were estimated for 13 bioenergy crop production scenarios, including: production of Miscanthus 9 giganteus and upland Shawnee switchgrass on highly erodible landscape positions, agricultural marginal land areas and pastures, removal ofmore » corn stover and combinations of these options. We also measured water quality as erosion and sediment loading; this was forecasted to improve compared to baseline when perennial grasses were used for bioenergy production, but not with stover removal scenarios. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet was reduced between 0 and 8% across these bioenergy crop production scenarios compared to baseline across the study watersheds. Our results indicate that bioenergy production scenarios that incorporate perennial grasses reduced the nonpoint source pollutant load at the watershed outlet compared to the baseline conditions (0–20% for nitrate-nitrogen and 3–56% for mineral phosphorus); but, the reduction rates were specific to site characteristics and management practices.« less

  16. Wood bioenergy and soil productivity research

    Treesearch

    D. Andrew Scott; Deborah S. Page-Dumroese

    2016-01-01

    Timber harvesting can cause both short- and long-term changes in forest ecosystem functions, and scientists from USDA Forest Service (USDA FS) have been studying these processes for many years. Biomass and bioenergy markets alter the amount, type, and frequency at which material is harvested, which in turn has similar yet specific impacts on sustainable productivity....

  17. Competition--supporting or preventing an increased use of bioenergy?

    PubMed

    Thrän, Daniela; Kaltschmitt, Martin

    2007-12-01

    The intensified use of biomass as an energy source is an often-repeated goal of the German and European climate protection policy. Therefore, framework conditions have been created in recent years, which allow for a wider use of biomass within the energy system especially for a provision of electricity and fuels. Due to this policy, Germany, for example, has emerged as the leading producer of biogas from energy crops and fatty methyl ester (FAME) in Europe. However, due to the high energy price level, the use of biomass for heating purposes and as a renewable raw material have increased at the same time. To supply the obviously increased demand for biomass or biobased energy carriers cost efficiently, nationwide and to some extend even global markets are under development at present. As the demand for biomass is expected to continue to increase strongly, it is feared that an increasing competition with the use for food and fodder as well as a raw material might occur in the years to come. Against this background we have analyzed the competitions that can be expected, and the influence that they may have on the further expansion of the use of biomass for energy production. Experiences from Germany are provided exemplarily. Based on this, it is concluded that measures need to be taken to support an efficient and sustainable use of bioenergy in the future.

  18. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    PubMed

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  19. Ecological objectives can be achieved with wood-derived bioenergy

    DOE PAGES

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; ...

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO 2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbonmore » pollution from power plants.« less

  20. Ecological objectives can be achieved with wood-derived bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO 2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbonmore » pollution from power plants.« less

  1. Spatio-temporal Eigenvector Filtering: Application on Bioenergy Crop Impacts

    NASA Astrophysics Data System (ADS)

    Wang, M.; Kamarianakis, Y.; Georgescu, M.

    2017-12-01

    A suite of 10-year ensemble-based simulations was conducted to investigate the hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops across the continental United States. Given the large size of the simulated dataset (about 60Tb), traditional hierarchical spatio-temporal statistical modelling cannot be implemented for the evaluation of physics parameterizations and biofuel impacts. In this work, we propose a filtering algorithm that takes into account the spatio-temporal autocorrelation structure of the data while avoiding spatial confounding. This method is used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations and observational datasets. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.

  2. Nitrogen Recycling and Flowering Time in Perennial Bioenergy Crops

    PubMed Central

    Schwartz, Christopher; Amasino, Richard

    2013-01-01

    Perennials have a number of traits important for profitability and sustainability of a biofuel crop. Perennialism is generally defined as the ability to grow and reproduce in multiple years. In temperate climates, many perennial plants enter dormancy during winter and recycle nutrients, such as nitrogen, to below ground structures for the next growing season. Nitrogen is expensive to produce and application of nitrogen increases the potent greenhouse gas NOx. Perennial bioenergy crops have been evaluated for biomass yields with nitrogen fertilization, location, year, and genotype as variables. Flowering time and dormancy are closely related to the N recycling program. Substantial variation for flowering time and dormancy has been identified in the switchgrass (Panicum virgatum L.) species, which provides a source to identify the genetic components of N recycling, and for use in breeding programs. Some studies have addressed recycling specifically, but flowering time and developmental differences were largely ignored, complicating interpretation of the results. Future studies on recycling need to appreciate plant developmental stage to allow comparison between experiments. A perennial/annual model(s) and more environmentally controlled experiments would be useful to determine the genetic components of nitrogen recycling. Increasing biomass yield per unit of nitrogen by maximizing recycling might mean the difference for profitability of a biofuel crop and has the added benefit of minimizing negative environmental effects from agriculture. PMID:23626592

  3. Human Trafficking in Ethiopia: A Scoping Review to Identify Gaps in Service Delivery, Research, and Policy.

    PubMed

    Beck, Dana C; Choi, Kristen R; Munro-Kramer, Michelle L; Lori, Jody R

    2017-12-01

    The purpose of this review is to integrate evidence on human trafficking in Ethiopia and identify gaps and recommendations for service delivery, research and training, and policy. A scoping literature review approach was used to systematically search nursing, medical, psychological, law, and international databases and synthesize information on a complex, understudied topic. The search yielded 826 articles, and 39 met the predetermined criteria for inclusion in the review. Trafficking in Ethiopia has occurred internally and externally in the form of adult and child labor and sex trafficking. There were also some reports of organ trafficking and other closely related human rights violations, such as child marriage, child soldiering, and exploitative intercountry adoption. Risk factors for trafficking included push factors (poverty, political instability, economic problems, and gender discrimination) and pull factors (demand for cheap labor). Trafficking was associated with poor health and economic outcomes for victims. Key recommendations for service delivery, research and training, and policy are identified, including establishing comprehensive services for survivor rehabilitation and reintegration, conducting quantitative health outcomes research, and reforming policy around migration and trafficking. Implementing the recommendations identified by this review will allow policy makers, researchers, and practitioners to take meaningful steps toward confronting human trafficking in Ethiopia.

  4. Identifying Scalable Policy Solutions: A State-Wide Cross-CDlassified Analysis of Factors Related to Early Childhood Literacy

    ERIC Educational Resources Information Center

    Vagi, Robert L.; Collins, Clarin; Clark, Terri

    2017-01-01

    Given the critical role that literacy plays in children's academic and personal development, policymakers have increasingly focused on policies related to early childhood literacy, particularly among poor and minority students. In this study, authors use a census of data from Arizona, a state with a large and growing population of traditionally…

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldu, Yemane W., E-mail: ywweldem@ucalgary.ca; Assefa, Getachew; Athena Chair in Life Cycle Assessment in Design

    A roadmap for a more sustainable energy strategy is complex, as its development interacts critically with the economic, social, and environmental dimensions of sustainable development. This paper applied an impact matrix method to evaluate the environmental sustainability and to identify the desirable policy objectives of biomass-based energy strategy for the case of Alberta. A matrix with the sustainability domains on one axis and areas of environmental impact on the other was presented to evaluate the nexus effect of policy objectives and bioenergy production. As per to our analysis, economic diversification, technological innovation, and resource conservation came up as the desirablemore » policy objectives of sustainable development for Alberta because they demonstrated environmental benefits in all environmental impact categories, namely climate change, human health, and ecosystem. On the other hand, human health and ecosystem impacts were identified as trade-offs when the policy objectives for sustainability were energy security, job creation, and climate change. Thus, bioenergy can mitigate climate change but may impact human health and ecosystem which then in turn can become issues of concern. Energy strategies may result in shifting of risks from one environmental impact category to another, and from one sustainable domain to another if the technical and policy-related issues are not identified.« less

  6. Identifying the policy implications of competency-based education.

    PubMed

    Taber, Sarah; Frank, Jason R; Harris, Kenneth A; Glasgow, Nicholas J; Iobst, William; Talbot, Martin

    2010-01-01

    At their 2009 consensus conference, the International CBME Collaborators proposed a number of central tenets of CBME in order to advance the field of medical education. Although the proposed conceptualization of CBME offers several advantages and opportunities, including a greater emphasis on outcomes, a mechanism for the promotion of learner-centred curricula, and the potential to move away from time-based training and credentialing in medicine, it is also associated with several significant barriers to adoption. This paper examines the concepts of CBME through a broad educational policy lens, identifying considerations for medical education leaders, health care institutions, and policy-makers at both the meso (program, institutional) and macro (health care system, inter-jurisdictional, and international) levels. Through this analysis, it is clear that CBME is associated with a number of complex challenges and questions, and cannot be considered in isolation from the complex systems in which it functions. Much more work is needed to engage stakeholders in dialogue, to debate the issues, and to identify possible solutions.

  7. Synaptic Activity and Bioenergy Homeostasis: Implications in Brain Trauma and Neurodegenerative Diseases

    PubMed Central

    Khatri, Natasha; Man, Heng-Ye

    2013-01-01

    Powered by glucose metabolism, the brain is the most energy-demanding organ in our body. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly, the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport, and mitochondria translocation. Energy insufficiency is sensed by the AMP-activated protein kinase (AMPK), a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke, and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries. PMID:24376435

  8. Integrated assessment of future land use in Brazil under increasing demand for bioenergy

    NASA Astrophysics Data System (ADS)

    Verstegen, Judith; van der Hilst, Floor; Karssenberg, Derek; Faaij, André

    2014-05-01

    Environmental impacts of a future increase in demand for bioenergy depend on the magnitude, location and pattern of the direct and indirect land use change of energy cropland expansion. Here we aim at 1) projecting the spatiotemporal pattern of sugar cane expansion and the effect on other land uses in Brazil towards 2030, and 2) assessing the uncertainty herein. For the spatio-temporal projection, four model components are used: 1) an initial land use map that shows the initial amount and location of sugar cane and all other relevant land use classes in the system, 2) an economic model to project the quantity of change of all land uses, 3) a spatially explicit land use model that determines the location of change of all land uses, and 4) various analysis to determine the impacts of these changes on water, socio-economics, and biodiversity. All four model components are sources of uncertainty, which is quantified by defining error models for all components and their inputs and propagating these errors through the chain of components. No recent accurate land use map is available for Brazil, so municipal census data and the global land cover map GlobCover are combined to create the initial land use map. The census data are disaggregated stochastically using GlobCover as a probability surface, to obtain a stochastic land use raster map for 2006. Since bioenergy is a global market, the quantity of change in sugar cane in Brazil depends on dynamics in both Brazil itself and other parts of the world. Therefore, a computable general equilibrium (CGE) model, MAGNET, is run to produce a time series of the relative change of all land uses given an increased future demand for bioenergy. A sensitivity analysis finds the upper and lower boundaries hereof, to define this component's error model. An initial selection of drivers of location for each land use class is extracted from literature. Using a Bayesian data assimilation technique and census data from 2007 to 2012 as

  9. Uncertainty assessment of future land use in Brazil under increasing demand for bioenergy

    NASA Astrophysics Data System (ADS)

    van der Hilst, F.; Verstegen, J. A.; Karssenberg, D.; Faaij, A.

    2013-12-01

    Environmental impacts of a future increase in demand for bioenergy depend on the magnitude, location and pattern of the direct and indirect land use change of energy cropland expansion. Here we aim at 1) projecting the spatio-temporal pattern of sugar cane expansion and the effect on other land uses in Brazil towards 2030, and 2) assessing the uncertainty herein. For the spatio-temporal projection, three model components are used: 1) an initial land use map that shows the initial amount and location of sugar cane and all other relevant land use classes in the system, 2) a model to project the quantity of change of all land uses, and 3) a spatially explicit land use model that determines the location of change of all land uses. All three model components are sources of uncertainty, which is quantified by defining error models for all components and their inputs and propagating these errors through the chain of components. No recent accurate land use map is available for Brazil, so municipal census data and the global land cover map GlobCover are combined to create the initial land use map. The census data are disaggregated stochastically using GlobCover as a probability surface, to obtain a stochastic land use raster map for 2006. Since bioenergy is a global market, the quantity of change in sugar cane in Brazil depends on dynamics in both Brazil itself and other parts of the world. Therefore, a computable general equilibrium (CGE) model, MAGNET, is run to produce a time series of the relative change of all land uses given an increased future demand for bioenergy. A sensitivity analysis finds the upper and lower boundaries hereof, to define this component's error model. An initial selection of drivers of location for each land use class is extracted from literature. Using a Bayesian data assimilation technique and census data from 2007 to 2011 as observational data, the model is identified, meaning that the final selection and optimal relative importance of the

  10. Changes in N-Transforming Archaea and Bacteria in Soil during the Establishment of Bioenergy Crops

    PubMed Central

    Mao, Yuejian; Yannarell, Anthony C.; Mackie, Roderick I.

    2011-01-01

    Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community. PMID:21935454

  11. Research Ethics Review: Identifying Public Policy and Program Gaps

    PubMed Central

    Strosberg, Martin A.; Gefenas, Eugenijus; Famenka, Andrei

    2014-01-01

    We present an analytical frame-work for use by fellows of the Fogarty International Center–sponsored Advanced Certificate Program in Research Ethics for Central and Eastern Europe to identify gaps in the public policies establishing research ethics review systems that impede them from doing their job of protecting human research subjects. The framework, illustrated by examples from post-Communist countries, employs a logic model based on the public policy and public management literature. This paper is part of a collection of papers analyzing the Fogarty International Center’s International Research Ethics Education and Curriculum program. PMID:24782068

  12. CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems

    NASA Astrophysics Data System (ADS)

    Zenone, T.

    2012-04-01

    CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems Terenzio Zenone1-2, Jiquan Chen1-2, Ilya Gelfand3-4, G. Philip Robertson3-4 1 Department of Environmental Sciences, University of Toledo, Toledo, OH USA 2 Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA 3 W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI USA 4Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI USA Environmental sustainability of bioenergy crop cultivation represents an important challenge and is a topic of intensive scientific and political debate worldwide due to increasing societal needs for renewable energy. Despite the increasing knowledge related to potential bioenergy systems, the effect of land use change (LUC) on GHG fluxes during the conversion remains poorly understood but is likely to be substantial. In order to tackle this issue the Great lake Bioenergy Research Center (GLBRC) of the US Department of Energy (DOE) has established a field experiment and deployed a cluster of eddy-covariance towers to quantify the magnitude and changes of ecosystem carbon assimilation, loss, and balance during the conversion and establishment years in a permanent prairie and four types of candidate biofuel systems [Conservation Reserve Program (CRP) grassland, switchgrass, mixed-species restored prairie and corn]. Six sites were converted to soybean in 2009 before establishing the bioenergy systems in 2010 while one site was kept grassland as reference. Soil N2O and CH4 fluxes were measured biweekly with static chambers in four replicate locations in each fields, within the footprint of the eddy covariance tower using static chamber GHG flux protocols of the KBS LTER site. Our field observations, made between January 2009 through December 2010, showed that conversion of CRP to soybean induced net C emissions during the conversion year that ranging from 288 g C m-2, to 173 g C m-2 . while

  13. Sorghum as a Versatile Feedstock for Bioenergy Production

    USDA-ARS?s Scientific Manuscript database

    World economy development, population increase, and urban expansion accelerate the depletion of naturally preserved energy (fossil fuel), reduction in arable land, and trend of global climate change. Bioenergy, the forms of energy produced from materials of living organisms, holds special promise in...

  14. Biomass production on marginal lands - catalogue of bioenergy crops

    NASA Astrophysics Data System (ADS)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  15. Sustainability Impact Assessment of two forest-based bioenergy production systems related to mitigation and adaption to Climate Change

    NASA Astrophysics Data System (ADS)

    Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Tuomasjukka, Diana

    2016-04-01

    New forest management strategies are necessary to resist and adapt to Climate Change (CC) and to maintain ecosystem functions such as forest productivity, water storage and biomass production. The increased use of forest-based biomass for energy generation as well as the application of combustion or pyrolysis co-products such as ash or biochar back into forest soils is being suggested as a CC mitigation and adaptation strategy while trying to fulfil the targets of both: (i) Europe 2020 growth strategy in relation to CC and energy sustainability and (ii) EU Action Plan for the Circular Economy. The energy stored in harvested biomass can be released through combustion and used for energy generation to enable national energy security (reduced oil dependence) and the substitution of fossil fuel by renewable biomass can decrease the emission of greenhouse gases.In the end, the wood-ash produced in the process can return to the forest soil to replace the nutrients exported by harvesting. Another way to use biomass in this green circular framework is to pyrolyse it. Pyrolysis of the biomass produce a carbon-rich product (biochar) that can increase carbon sequestration in the soils and liquid and gas co-products of biomass pyrolysis can be used for energy generation or other fuel use thereby offsetting fossil fuel consumption and so avoiding greenhouse gas emissions. Both biomass based energy systems differ in the amount of energy produced, in the co-product (biochar or wood ash) returned to the field, and in societal impacts they have. The Tool for Sustainability Impact Assessment (ToSIA) was used for modelling both energy production systems. ToSIA integrates several different methods, and allows a quantification and objective comparison of economic, environmental and social impacts in a sustainability impact assessment for different decision alternatives/scenarios. We will interpret the results in order to support the bioenergy planning in temperate forests under the

  16. Field windbreaks for bioenergy production and carbon sequestration

    USDA-ARS?s Scientific Manuscript database

    Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...

  17. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS)

    NASA Astrophysics Data System (ADS)

    Muratori, Matteo; Calvin, Katherine; Wise, Marshall; Kyle, Page; Edmonds, Jae

    2016-09-01

    Bioenergy with carbon capture and storage (BECCS) is considered a potential source of net negative carbon emissions and, if deployed at sufficient scale, could help reduce carbon dioxide emissions and concentrations. However, the viability and economic consequences of large-scale BECCS deployment are not fully understood. We use the Global Change Assessment Model (GCAM) integrated assessment model to explore the potential global and regional economic impacts of BECCS. As a negative-emissions technology, BECCS would entail a net subsidy in a policy environment in which carbon emissions are taxed. We show that by mid-century, in a world committed to limiting climate change to 2 °C, carbon tax revenues have peaked and are rapidly approaching the point where climate mitigation is a net burden on general tax revenues. Assuming that the required policy instruments are available to support BECCS deployment, we consider its effects on global trade patterns of fossil fuels, biomass, and agricultural products. We find that in a world committed to limiting climate change to 2 °C, the absence of CCS harms fossil-fuel exporting regions, while the presence of CCS, and BECCS in particular, allows greater continued use and export of fossil fuels. We also explore the relationship between carbon prices, food-crop prices and use of BECCS. We show that the carbon price and biomass and food crop prices are directly related. We also show that BECCS reduces the upward pressure on food crop prices by lowering carbon prices and lowering the total biomass demand in climate change mitigation scenarios. All of this notwithstanding, many challenges, both technical and institutional, remain to be addressed before BECCS can be deployed at scale.

  18. Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient

    Treesearch

    Todd A. Ontl; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka

    2015-01-01

    Bioenergy crops have the potential to enhance soil carbon (C) pools from increased aggregation and the physical protection of organic matter; however, our understanding of the variation in these processes over heterogeneous landscapes is limited. In particular, little is known about the relative importance of soil properties and root characteristics for the physical...

  19. Identifying the science and technology dimensions of emerging public policy issues through horizon scanning.

    PubMed

    Parker, Miles; Acland, Andrew; Armstrong, Harry J; Bellingham, Jim R; Bland, Jessica; Bodmer, Helen C; Burall, Simon; Castell, Sarah; Chilvers, Jason; Cleevely, David D; Cope, David; Costanzo, Lucia; Dolan, James A; Doubleday, Robert; Feng, Wai Yi; Godfray, H Charles J; Good, David A; Grant, Jonathan; Green, Nick; Groen, Arnoud J; Guilliams, Tim T; Gupta, Sunjai; Hall, Amanda C; Heathfield, Adam; Hotopp, Ulrike; Kass, Gary; Leeder, Tim; Lickorish, Fiona A; Lueshi, Leila M; Magee, Chris; Mata, Tiago; McBride, Tony; McCarthy, Natasha; Mercer, Alan; Neilson, Ross; Ouchikh, Jackie; Oughton, Edward J; Oxenham, David; Pallett, Helen; Palmer, James; Patmore, Jeff; Petts, Judith; Pinkerton, Jan; Ploszek, Richard; Pratt, Alan; Rocks, Sophie A; Stansfield, Neil; Surkovic, Elizabeth; Tyler, Christopher P; Watkinson, Andrew R; Wentworth, Jonny; Willis, Rebecca; Wollner, Patrick K A; Worts, Kim; Sutherland, William J

    2014-01-01

    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.

  20. Identifying the Science and Technology Dimensions of Emerging Public Policy Issues through Horizon Scanning

    PubMed Central

    Parker, Miles; Acland, Andrew; Armstrong, Harry J.; Bellingham, Jim R.; Bland, Jessica; Bodmer, Helen C.; Burall, Simon; Castell, Sarah; Chilvers, Jason; Cleevely, David D.; Cope, David; Costanzo, Lucia; Dolan, James A.; Doubleday, Robert; Feng, Wai Yi; Godfray, H. Charles J.; Good, David A.; Grant, Jonathan; Green, Nick; Groen, Arnoud J.; Guilliams, Tim T.; Gupta, Sunjai; Hall, Amanda C.; Heathfield, Adam; Hotopp, Ulrike; Kass, Gary; Leeder, Tim; Lickorish, Fiona A.; Lueshi, Leila M.; Magee, Chris; Mata, Tiago; McBride, Tony; McCarthy, Natasha; Mercer, Alan; Neilson, Ross; Ouchikh, Jackie; Oughton, Edward J.; Oxenham, David; Pallett, Helen; Palmer, James; Patmore, Jeff; Petts, Judith; Pinkerton, Jan; Ploszek, Richard; Pratt, Alan; Rocks, Sophie A.; Stansfield, Neil; Surkovic, Elizabeth; Tyler, Christopher P.; Watkinson, Andrew R.; Wentworth, Jonny; Willis, Rebecca; Wollner, Patrick K. A.; Worts, Kim; Sutherland, William J.

    2014-01-01

    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security. PMID:24879444

  1. Sustainable bioenergy production from Missouri's Ozark forests

    Treesearch

    Henry E. Stelzer; Chris Barnett; Verel W. Bensen

    2008-01-01

    The main source of wood fiber for energy resides in Missouri's forests. Alternative bioenergy systems that can use forest thinning residues are electrical energy, thermal energy, and liquid bio-fuel. By applying a thinning rule and accounting for wood fiber that could go into higher value wood products to all live biomass data extracted from the U.S. Forest...

  2. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition

    Treesearch

    Rose A. Graves; Scott M. Pearson; Monica G. Turner

    2016-01-01

    Rural landscapes face changing climate, shifting development pressure, and loss of agricultural land. Perennial bioenergy crops grown on existing agricultural land may provide an opportunity to conserve rural landscapes while addressing increased demand for biofuels. However, increased bioenergy production and changing land use raise concerns for tradeoffs...

  3. Life cycle assessment of bioenergy systems: state of the art and future challenges.

    PubMed

    Cherubini, Francesco; Strømman, Anders Hammer

    2011-01-01

    The use of different input data, functional units, allocation methods, reference systems and other assumptions complicates comparisons of LCA bioenergy studies. In addition, uncertainties and use of specific local factors for indirect effects (like land-use change and N-based soil emissions) may give rise to wide ranges of final results. In order to investigate how these key issues have been addressed so far, this work performs a review of the recent bioenergy LCA literature. The abundance of studies dealing with the different biomass resources, conversion technologies, products and environmental impact categories is summarized and discussed. Afterwards, a qualitative interpretation of the LCA results is depicted, focusing on energy balance, GHG balance and other impact categories. With the exception of a few studies, most LCAs found a significant net reduction in GHG emissions and fossil energy consumption when bioenergy replaces fossil energy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Predicting the impacts of bioenergy production on farmland birds.

    PubMed

    Rivas Casado, Monica; Mead, Andrew; Burgess, Paul J; Howard, David C; Butler, Simon J

    2014-04-01

    Meeting European renewable energy production targets is expected to cause significant changes in land use patterns. With an EU target of obtaining 20% of energy consumption from renewable sources by 2020, national and local policy makers need guidance on the impact of potential delivery strategies on ecosystem goods and services to ensure the targets are met in a sustainable manner. Within agroecosystems, models are available to explore consequences of such policy decisions for food, fuel and fibre production but few can describe the effect on biodiversity. This paper describes the integration and application of a farmland bird population model within a geographical information system (GIS) to explore the consequences of land use changes arising from different strategies to meet renewable energy production targets. Within a 16,000 ha arable dominated case study area in England, the population growth rates of 19 farmland bird species were predicted under baseline land cover, a scenario maximising wheat production for bioethanol, and a scenario focused on mix of bioenergy sources. Both scenarios delivered renewable energy production targets for the region (>12 kWh per person per day) but, despite differences in resultant landscape composition, the response of the farmland bird community as a whole to each scenario was small and broadly similar. However, this similarity in overall response masked significant intra- and inter-specific variations across the study area and between scenarios suggesting contrasting mechanisms of impact and highlighting the need for context dependent, species-level assessment of land use change impacts. This framework provides one of the first systematic attempts to spatially model the effect of policy driven land use change on the population dynamics of a suite of farmland birds. The GIS framework also facilitates its integration with other ecosystem service models to explore wider synergies and trade offs arising from national or local

  5. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  6. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, Etsushi; Yamagata, Yoshiki

    2014-09-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socioeconomic scenarios that aim to keep mean global temperature rise below 2°C above preindustrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high-fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full postprocess combustion CO2 capture is deployed with a high-fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required; however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise, a conflict of land use with food production is inevitable.

  7. Australian television news coverage of alcohol, health and related policies, 2005 to 2010: implications for alcohol policy advocates.

    PubMed

    Fogarty, Andrea S; Chapman, Simon

    2012-12-01

    To describe television news coverage between 2005 and 2010 of alcohol, health and relevant alcohol-control policies, with a view to informing policy advocacy. A content analysis of all alcohol stories archived by the Australian Health News Research Collaboration. We recorded what triggered a news item, the main topics covered, whether risks to health were communicated, whether alcohol-control policies were featured and which news-actors appeared. We identified 612 stories, where 69.2% were triggered by a particular newsworthy incident or the release of new findings. The most frequently reported alcohol stories were focused on associated harms (30.2%) and 'binge drinking' (19.0%). A majority (75.3%) reported a variety of positive and negative health effects, yet mainly focused on short-term consequences. Combined, 63% mentioned an alcohol-control policy, yet no one particular policy was featured in more than 10% of all stories. The most commonly featured news-actors included public-health professionals (50.0%), members of affected communities (28.4%) and government representatives (24.3%) Problems related to alcohol were well-established foci of news attention and reportage and covered a broad spectrum of issues related to public health goals, yet less coverage centred on long-term health consequences or effective policy solutions. Future policy advocacy could focus on moving the debate away from simple problem definition to better communication of long-term health risks, existing policies, and evidence of their effectiveness and arguments for their adoption. Future research might consider audience understanding of the information. © 2012 The Authors. ANZJPH © 2012 Public Health Association of Australia.

  8. Profitability potential for Pinus taeda L. (loblolly pine) short-rotation bioenergy plantings in the southern USA

    Treesearch

    James H. Perdue; John A. Stanturf; Timothy M. Young; Xia Huang; Derek Dougherty; Michael Pigott; Zhimei Guo

    2017-01-01

    The use of renewable resources is important to the developing bioenergy economy and short rotation woody crops (SRWC) are key renewable feedstocks. A necessary step in advancing SRWC is defining regions suitable for SRWC commercial activities and assessing the relative economic viability among suitable regions. The goal of this study was to assess the potential...

  9. Multi-criteria decision analysis for bioenergy in the Centre Region of Portugal

    NASA Astrophysics Data System (ADS)

    Esteves, T. C. J.; Cabral, P.; Ferreira, A. J. D.; Teixeira, J. C.

    2012-04-01

    With the consumption of fossil fuels, the resources essential to Man's survival are being rapidly contaminated. A sustainable future may be achieved by the use of renewable energies, allowing countries without non-renewable energy resources to guarantee energetic sovereignty. Using bioenergy may mean a steep reduction and/or elimination of the external dependency, enhancing the countries' capital and potentially reducing of the negative effects that outcome from the use of fossil fuels, such as loss of biodiversity, air, water, and soil pollution, … This work's main focus is to increase bioenergy use in the centre region of Portugal by allying R&D to facilitate determination of bioenergy availability and distribution throughout the study area.This analysis is essential, given that nowadays this knowledge is still very limited in the study area. Geographic Information Systems (GIS) was the main tool used to asses this study, due to its unseeingly ability to integrate various types of information (such as alphanumerical, statistical, geographical, …) and various sources of biomass (forest, agricultural, husbandry, municipal and industrial residues, shrublands, used vegetable oil and energy crops) to determine the bioenergy potential of the study area, as well as their spatial distribution. By allying GIS with multi-criteria decision analysis, the initial table-like information of difficult comprehension is transformed into tangible and easy to read results: both intermediate and final results of the created models will facilitate the decision making process. General results show that the major contributors for the bioenergy potential in the Centre Region of Portugal are forest residues, which are mostly located in the inner region of the study area. However, a more detailed analysis should be made to analyze the viability to use energy crops. As a main conclusion, we can say that, although this region may not use only this type of energy to be completely

  10. Global land and water grabbing for food and bioenergy

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.

    2014-12-01

    The increasing demand for food, fibers and biofuels, the consequently escalating prices of agricultural products, and the uncertainty of international food markets have recently drawn the attention of governments and corporations toward investments in productive agricultural land, mostly in developing countries. Since 2000 more than 37 million hectares of arable land have been purchased or leased by foreign investors worldwide. The targeted regions are typically located in areas where crop yields are relatively low because of lack of modern technology. It is expected that in the long run large scale investments in agriculture and the consequent development of commercial farming will bring the technology required to close the existing crop yield gaps. Recently, a number of studies and reports have documented the process of foreign land acquisition, while the associated appropriation of land based resources (e.g., water and crops) has remained poorly investigated. The amount of food this land can produce and the number of people it could feed still needs to be quantified. It is also unclear to what extent the acquired land will be used to for biofuel production and the role played by U.S. and E.U. bioenergy policies as drivers of the ongoing land rush. The environmental impacts of these investments in agriculture require adequate investigation. Here we provide a global quantitative assessment of the rates of water and crop appropriation potentially associated with large scale land acquisitions. We evaluate the associated impacts on the food and energy security of both target and investors' countries, and highlight the societal and environmental implications of the land rush phenomenon.

  11. Ecological Modernisation and Discourses on Rural Non-Wood Bioenergy Production in Finland from 1980 to 2005

    ERIC Educational Resources Information Center

    Huttunen, Suvi

    2009-01-01

    Rural bioenergy production is currently a much debated question worldwide. It is closely connected to questions of environmental protection and rural development in both developing and industrial world. In Finland, rural bioenergy production has traditionally meant the production of wood fuels for heating purposes. The utilisation of forest…

  12. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar; Smith, Pete; Davies, Christian; McNamara, Niall

    2016-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy with higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by the unpredictable climate change currently going on. The goal of this project is to develop a comprehensive model that covers high impact, policy relevant ecosystem services at a Continental scale including biodiversity and pollination, water and air security, erosion control and soil security, GHG emissions, soil C and cultural services like tourism value. The technical distribution potential and likely yield of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC) with willow, poplar, eucalyptus and other broadleaf species and Short Rotation Forestry (SRF), is currently being modelled using ECOSSE, DayCent, SalixFor and MiscanFor, and ecosystem models will be used to examine the impacts of these crops on ecosystem services. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be utilised. Research will focus on optimisation of land use change feedbacks on above named ecosystem services, impact on food security, land management practices and impacts from climate change. We will present results for GHG emissions and soil organic carbon change after different land use change scenarios (e.g. arable to Miscanthus, forest to SRF), and

  13. A new method of identifying target groups for pronatalist policy applied to Australia.

    PubMed

    Chen, Mengni; Lloyd, Chris J; Yip, Paul S F

    2018-01-01

    A country's total fertility rate (TFR) depends on many factors. Attributing changes in TFR to changes of policy is difficult, as they could easily be correlated with changes in the unmeasured drivers of TFR. A case in point is Australia where both pronatalist effort and TFR increased in lock step from 2001 to 2008 and then decreased. The global financial crisis or other unobserved confounders might explain both the reducing TFR and pronatalist incentives after 2008. Therefore, it is difficult to estimate causal effects of policy using econometric techniques. The aim of this study is to instead look at the structure of the population to identify which subgroups most influence TFR. Specifically, we build a stochastic model relating TFR to the fertility rates of various subgroups and calculate elasticity of TFR with respect to each rate. For each subgroup, the ratio of its elasticity to its group size is used to evaluate the subgroup's potential cost effectiveness as a pronatalist target. In addition, we measure the historical stability of group fertility rates, which measures propensity to change. Groups with a high effectiveness ratio and also high propensity to change are natural policy targets. We applied this new method to Australian data on fertility rates broken down by parity, age and marital status. The results show that targeting parity 3+ is more cost-effective than lower parities. This study contributes to the literature on pronatalist policies by investigating the targeting of policies, and generates important implications for formulating cost-effective policies.

  14. A new method of identifying target groups for pronatalist policy applied to Australia

    PubMed Central

    Chen, Mengni; Lloyd, Chris J.

    2018-01-01

    A country’s total fertility rate (TFR) depends on many factors. Attributing changes in TFR to changes of policy is difficult, as they could easily be correlated with changes in the unmeasured drivers of TFR. A case in point is Australia where both pronatalist effort and TFR increased in lock step from 2001 to 2008 and then decreased. The global financial crisis or other unobserved confounders might explain both the reducing TFR and pronatalist incentives after 2008. Therefore, it is difficult to estimate causal effects of policy using econometric techniques. The aim of this study is to instead look at the structure of the population to identify which subgroups most influence TFR. Specifically, we build a stochastic model relating TFR to the fertility rates of various subgroups and calculate elasticity of TFR with respect to each rate. For each subgroup, the ratio of its elasticity to its group size is used to evaluate the subgroup’s potential cost effectiveness as a pronatalist target. In addition, we measure the historical stability of group fertility rates, which measures propensity to change. Groups with a high effectiveness ratio and also high propensity to change are natural policy targets. We applied this new method to Australian data on fertility rates broken down by parity, age and marital status. The results show that targeting parity 3+ is more cost-effective than lower parities. This study contributes to the literature on pronatalist policies by investigating the targeting of policies, and generates important implications for formulating cost-effective policies. PMID:29425220

  15. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.

  16. Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas.

    PubMed

    Gollany, Hero T; Titus, Brian D; Scott, D Andrew; Asbjornsen, Heidi; Resh, Sigrid C; Chimner, Rodney A; Kaczmarek, Donald J; Leite, Luiz F C; Ferreira, Ana C C; Rod, Kenton A; Hilbert, Jorge; Galdos, Marcelo V; Cisz, Michelle E

    2015-12-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.

  17. An integrated landscape designed for commodity and bioenergy crops for a tile-drained agricultural watershed

    DOE PAGES

    Ssegane, Herbert; Negri, M. Cristina

    2016-09-16

    Here, locating bioenergy crops on strategically selected subfield areas of marginal interest for commodity agriculture can increase environmental sustainability. Location and choice of bioenergy crops should improve environmental benefits with minimal disruption of current food production systems. We identified subfield soils of a tile-drained agricultural watershed as marginal if they had areas of low crop productivity index (CPI), were susceptible to nitrate-nitrogen (NO 3–N) leaching, or were susceptible to at least two other forms of environmental degradation (marginal areas). In the test watershed (Indian Creek watershed, IL) with annual precipitation of 852 mm, 3% of soils were CPI areas andmore » 22% were marginal areas. The Soil and Water Assessment Tool was used to forecast the impact of growing switchgrass ( Panicum virgatum L.), willow ( Salix spp.), and big bluestem ( Andropogon gerardi Vitman) in these subfield areas on annual grain yields, NO 3–N and sediment exports, and water yield. Simulated conversion of CPI areas from current land use to bioenergy crops had no significant (p ≤ 0.05) impact on grain production and reduced NO 3–N and sediment exports by 5.0 to 6.0% and 3.0%, respectively. Conversion of marginal areas from current land use to switchgrass forecasted the production of 34,000 t of biomass and reductions in NO 3–N (26.0%) and sediment (33.0%) exports. Alternatively, conversion of marginal areas from current land use to willow forecasted similar reductions as switchgrass for sediment but significantly (p ≤ 0.01) lower reductions in annual NO 3–N export (18.0 vs. 26.0%).« less

  18. An integrated landscape designed for commodity and bioenergy crops for a tile-drained agricultural watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ssegane, Herbert; Negri, M. Cristina

    Here, locating bioenergy crops on strategically selected subfield areas of marginal interest for commodity agriculture can increase environmental sustainability. Location and choice of bioenergy crops should improve environmental benefits with minimal disruption of current food production systems. We identified subfield soils of a tile-drained agricultural watershed as marginal if they had areas of low crop productivity index (CPI), were susceptible to nitrate-nitrogen (NO 3–N) leaching, or were susceptible to at least two other forms of environmental degradation (marginal areas). In the test watershed (Indian Creek watershed, IL) with annual precipitation of 852 mm, 3% of soils were CPI areas andmore » 22% were marginal areas. The Soil and Water Assessment Tool was used to forecast the impact of growing switchgrass ( Panicum virgatum L.), willow ( Salix spp.), and big bluestem ( Andropogon gerardi Vitman) in these subfield areas on annual grain yields, NO 3–N and sediment exports, and water yield. Simulated conversion of CPI areas from current land use to bioenergy crops had no significant (p ≤ 0.05) impact on grain production and reduced NO 3–N and sediment exports by 5.0 to 6.0% and 3.0%, respectively. Conversion of marginal areas from current land use to switchgrass forecasted the production of 34,000 t of biomass and reductions in NO 3–N (26.0%) and sediment (33.0%) exports. Alternatively, conversion of marginal areas from current land use to willow forecasted similar reductions as switchgrass for sediment but significantly (p ≤ 0.01) lower reductions in annual NO 3–N export (18.0 vs. 26.0%).« less

  19. Beetle-kill to carbon-negative bioenergy in the Rockies: stand, enterprise, and regional-scale perspectives

    NASA Astrophysics Data System (ADS)

    Field, J.; Paustian, K.

    2016-12-01

    The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional

  20. The availability and economic analyses of using marginal land for bioenergy production in China

    NASA Astrophysics Data System (ADS)

    Yuqi, Chen; Xudong, Guo; Chunyan, Lv

    2017-04-01

    In recent years, China has witnessed rapid increase in the dependence of foreign oil import. In 2015, the primary energy consumption of China is 543 million tons, of which 328 million tons was imported. The total amount of imported foreign oil increased from 49.8% in 2008 to 60.41% in 2016. To address the national energy security and GHG emission reduction, China has made considerable progress in expanding renewable energy portfolio, especially liquid biofuels. However, under the pressure of high population and vulnerable food security, China's National Development and Reform Commission (NDRC) ruled that bioenergy is only allowed to be produced using non-cereal feedstock. In addition, the energy crops can only be planted on marginal land, which is the land not suitable for growing field crops due to edaphic and/or climatic limitations, and other environmental risks. Although there have been a number of studies about estimating the marginal land for energy plants' cultivation in China, as to the different definition of marginal land and land use data, the results are quite different. Furthermore, even if there is enough marginal land suitable for energy plants' cultivation, economic viability of cultivating energy plants on marginal land is critical. In order to analyze the availability and economic analyses of the marginal land for bioenergy production strategy, firstly, by using of the latest and most authoritative land use data, this study focused on the assessment of marginal land resources and bioenergy potential by planting five species of energy plants including Cassava, Jatropha curcas, Helianthus tuberous L, Pistacia chinensis, Xanthoceras sorbifolia Bunge. The results indicate that there are 289.71 million ha marginal land can be used for these five energy plants' cultivation, which can produce 24.45 million tons bioethanol and 8.77 million tons of biodiesel. Secondly, based on field survey data and literature reviews, we found that, from the farmers

  1. Evapotranspiration of a pine-switchgrass intercropping bioenergy system measured by combined surface renewal and energy balance method

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Noormets, A.; Domec, J. C.; Rosa, R.; Williamson, J.; Boone, J.; Sucre, E.; Trnka, M.; King, J.

    2015-12-01

    Intercropping bioenergy grasses within traditional pine silvicultural systems provides an opportunity for economic diversification and regional bioenergy production in a way that complements existing land use systems. Bioenergy intercropping in pine plantations does not compete with food production for land and it is thought will increase ecosystem resource-use efficiencies. As the frequency and intensity of drought is expected to increase with the changing climate, maximizing water use-efficiency of intercropped bioenergy systems will become increasingly important for long-term economic and environmental sustainability. The presented study is focused on evapotranspiration (ET) of an experimental pine-switchgrass intercropping system in the Lower Coastal Plain of North Carolina. We measured ET of two pure switchgrass fields, two pure pine stands and two pine-switchgrass intercropping systems using combined surface renewal (SR) and energy balance (EB) method throughout 2015. SR is based on high-frequency measurement of air temperature at or above canopy. As previously demonstrated, temperature time series are associated with identifiable, repeated patterns called "turbulent coherent structures". These coherent structures are considered to be responsible for most of the turbulent transport. Statistical analysis of the coherent structures in temperature time series allows quantification of sensible heat flux density (H) from the investigated area. Information about H can be combined with measurement of net radiation and soil heat flux density to indirectly obtain ET estimates as a residual of the energy balance equation. Despite the recent progress in the SR method, there is no standard methodology and each method available includes assumptions which require more research. To validate our SR estimates of ET, we used an eddy covariance (EC) system placed temporarily next to the each SR station as a comparative measurement of H. The conference contribution will include

  2. Public Support for Weight-Related Antidiscrimination Laws and Policies

    PubMed Central

    Hilbert, Anja; Hübner, Claudia; Schmutzer, Gabriele; Danielsdottir, Sigrun; Brähler, Elmar; Puhl, Rebecca

    2017-01-01

    Objective Weight-related discrimination is prevalent and associated with health impairments for those who are targeted, which underscores the need of antidiscrimination legislation. This study is the first to examine public support of weight-related antidiscrimination laws or policies in Germany, compared to the US and Iceland. Methods In a representative German population sample (N = 2,513), public support for general and employment-specific weight-related antidiscrimination policies, weight-based victimization, and weight bias internalization were measured through established self-report questionnaires. Results Half of the German population sample agreed with antidiscrimination policies. General antidiscrimination laws received lower support than employment-specific laws. Support for policies considering obesity a physical disability was greatest in Germany, whereas support for employment-specific antidiscrimination laws was lower in Germany than in the US and Iceland. Total support for weight-related antidiscrimination policies was significantly predicted by lower age, female gender, obese weight status, residence in West Germany, church membership, and readiness to vote in elections. Conclusion German support for weight-related antidiscrimination policies is moderate. Increasing awareness about weight-related discrimination and laws prohibiting this behavior may help to promote policy acceptance. PMID:28384631

  3. Synergies between agriculture and bioenergy in Latin American countries: A circular economy strategy for bioenergy production in Ecuador.

    PubMed

    Vega-Quezada, Cristhian; Blanco, María; Romero, Hugo

    2017-10-25

    This study quantifies the synergies between agriculture and bioenergy considering biodiesel production as part of a set of systemic initiatives. We present a case study in Ecuador taking into account the recent government measures aimed at developing the bioenergy sector. Four scenarios have been evaluated through a newly designed systemic scheme of circular-economy initiatives. These scenarios encompass three production pathways covering three energy crops: palm oil (PO), microalgae in open ponds (M1) and microalgae in laminar photobioreactors (M2). We have applied Benefit-Cost Analysis (BCA) methodology considering the Net Present Value (NPV) and the Benefit-Cost Ratio (BCR) as the main evaluation criteria. In terms of private investment, biodiesel production from PO is more attractive than from M2. However, regarding efficiency and effectiveness of public funds, M2 is superior to PO because the public BCR and NPV are higher, and the pressure on agricultural land is lower. Moreover, M2 as part of a systemic approach presents a better carbon balance. These findings show that, under a systemic approach based on circular economy, strategies like the one analyzed in this study are economically feasible and may have a promising future. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops

    PubMed Central

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S.; Ding, Shi-You; Ciesielski, Peter N.; Yang, Shihui; Tucker, Melvin P.; Himmel, Michael E.

    2015-01-01

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed. PMID:26029221

  5. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops.

    PubMed

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S; Ding, Shi-You; Ciesielski, Peter N; Yang, Shihui; Tucker, Melvin P; Himmel, Michael E

    2015-01-01

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.

  6. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: Implications for the genetic engineering of bioenergy crops

    DOE PAGES

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S.; ...

    2015-05-13

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, for this study, we utilize a CaCl 2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This hasmore » led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. Finally, the implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.« less

  7. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: Implications for the genetic engineering of bioenergy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S.

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, for this study, we utilize a CaCl 2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This hasmore » led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. Finally, the implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.« less

  8. Effects on aquatic and human health due to large scale bioenergy crop expansion.

    PubMed

    Love, Bradley J; Einheuser, Matthew D; Nejadhashemi, A Pouyan

    2011-08-01

    In this study, the environmental impacts of large scale bioenergy crops were evaluated using the Soil and Water Assessment Tool (SWAT). Daily pesticide concentration data for a study area consisting of four large watersheds located in Michigan (totaling 53,358 km²) was estimated over a six year period (2000-2005). Model outputs for atrazine, bromoxynil, glyphosate, metolachlor, pendimethalin, sethoxydim, triflualin, and 2,4-D model output were used to predict the possible long-term implications that large-scale bioenergy crop expansion may have on the bluegill (Lepomis macrochirus) and humans. Threshold toxicity levels were obtained for the bluegill and for human consumption for all pesticides being evaluated through an extensive literature review. Model output was compared to each toxicity level for the suggested exposure time (96-hour for bluegill and 24-hour for humans). The results suggest that traditional intensive row crops such as canola, corn and sorghum may negatively impact aquatic life, and in most cases affect the safe drinking water availability. The continuous corn rotation, the most representative rotation for current agricultural practices for a starch-based ethanol economy, delivers the highest concentrations of glyphosate to the stream. In addition, continuous canola contributed to a concentration of 1.11 ppm of trifluralin, a highly toxic herbicide, which is 8.7 times the 96-hour ecotoxicity of bluegills and 21 times the safe drinking water level. Also during the period of study, continuous corn resulted in the impairment of 541,152 km of stream. However, there is promise with second-generation lignocellulosic bioenergy crops such as switchgrass, which resulted in a 171,667 km reduction in total stream length that exceeds the human threshold criteria, as compared to the base scenario. Results of this study may be useful in determining the suitability of bioenergy crop rotations and aid in decision making regarding the adaptation of large

  9. Rethinking forest carbon assessments to account for policy institutions

    NASA Astrophysics Data System (ADS)

    Macintosh, Andrew; Keith, Heather; Lindenmayer, David

    2015-10-01

    There has been extensive debate about whether the sustainable use of forests (forest management aimed at producing a sustainable yield of timber or other products) results in superior climate outcomes to conservation (maintenance or enhancement of conservation values without commercial harvesting). Most of the relevant research has relied on consequential life-cycle assessment (LCA), with the results tending to show that sustainable use has lower net greenhouse-gas (GHG) emissions than conservation in the long term. However, the literature cautions that results are sensitive to forest- and market-related contextual factors: the carbon density of the forests, silvicultural and wood processing practices, and the extent to which wood products and forest bioenergy displace carbon-intensive alternatives. Depending on these issues, conservation can be better for the climate than sustainable use. Policy institutions are another key contextual factor but, so far, they have largely been ignored. Using a case study on the Southern Forestry Region (SFR) of New South Wales (NSW), Australia, we show how policy institutions can affect the assessed outcomes from alternative forest management strategies. Our results highlight the need for greater attention to be paid to policy institutions in forest carbon research.

  10. A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M. L.; Chen-Glasser, Melodie; McMillan, James D.

    There has been substantial technical progress in developing algae-based bioenergy in recent years and a large part of industry and academic research and deployment projects have pivoted away from a pure biofuels strategy. This letter summarizes the findings of a recently completed, comprehensive report, that represents a collaborative effort of at least 20 co-authors, where we analyzed the prospects for using microalgae and macroalgae as feedstocks for biofuels and bioenergy production. The scope of this report includes a discussion of international activities advancing bioenergy and non-energy bioproducts from algae, progress on the use of macroalgae (both cast and cultivated seaweeds)more » for biogas applications, distinct biochemical and thermochemical conversion pathways, multi-product biorefining opportunities, as well as a thorough review of process economics and sustainability considerations. It is envisioned that a higher value algal biomass-based bioproducts industry will provide the additional revenue needed to reduce the net cost of producing algae-based biofuels. As such, a biorefinery approach that generates multiple high-value products from algae will be essential to fully valorize algal biomass and enable economically viable coproduction of bioenergy. Furthermore, to accelerate the implementation of algae-based production, minimizing energy, water, nutrients and land use footprints of integrated algae-based operations needs to be a primary objective of larger scale demonstrations and future research and development.« less

  11. A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts

    DOE PAGES

    Laurens, Lieve M. L.; Chen-Glasser, Melodie; McMillan, James D.

    2017-04-15

    There has been substantial technical progress in developing algae-based bioenergy in recent years and a large part of industry and academic research and deployment projects have pivoted away from a pure biofuels strategy. This letter summarizes the findings of a recently completed, comprehensive report, that represents a collaborative effort of at least 20 co-authors, where we analyzed the prospects for using microalgae and macroalgae as feedstocks for biofuels and bioenergy production. The scope of this report includes a discussion of international activities advancing bioenergy and non-energy bioproducts from algae, progress on the use of macroalgae (both cast and cultivated seaweeds)more » for biogas applications, distinct biochemical and thermochemical conversion pathways, multi-product biorefining opportunities, as well as a thorough review of process economics and sustainability considerations. It is envisioned that a higher value algal biomass-based bioproducts industry will provide the additional revenue needed to reduce the net cost of producing algae-based biofuels. As such, a biorefinery approach that generates multiple high-value products from algae will be essential to fully valorize algal biomass and enable economically viable coproduction of bioenergy. Furthermore, to accelerate the implementation of algae-based production, minimizing energy, water, nutrients and land use footprints of integrated algae-based operations needs to be a primary objective of larger scale demonstrations and future research and development.« less

  12. Identifying priority medicines policy issues for New Zealand: a general inductive study

    PubMed Central

    Babar, Zaheer-Ud-Din; Francis, Susan

    2014-01-01

    Objectives To identify priority medicines policy issues for New Zealand. Setting Stakeholders from a broad range of healthcare and policy institutions including primary, secondary and tertiary care. Participants Exploratory, semistructured interviews were conducted with 20 stakeholders throughout New Zealand. Primary and secondary outcome measures The interviews were digitally recorded, transcribed and coded into INVIVO 10, then compared and grouped for similarity of theme. Perceptions, experiences and opinions regarding New Zealand's medicines policy issues were recorded. Results A large proportion of stakeholders appeared to be unaware of New Zealand's (NZ) medicines policy. In general, the policy was considered to offer consistency to guide decision-making. In the context of Pharmaceutical Management Agency's (PHARMAC's) fixed budget for procuring and subsidising medicines, there was reasonable satisfaction with the range of medicines available—rare disorder medicines being the clear exception. Concerns raised were by whom and how decisions are made and whether desired health outcomes are being measured. Other concerns included inconsistencies in evidence and across health technologies. Despite attempts to improve the situation, lower socioeconomic groups (including rural residents) Māori and Pacific ethnicities and people with rare disorders face challenges with regards to accessing medicines. Other barriers include, convenience to and affordability of prescribers and the increase of prescription fees from NZ$3 to NZ$5. Concerns related to the PHARMAC of New Zealand included: a constraining budget; non-transparency of in-house analysis; lack of consistency in recommendations between the Pharmacology and Therapeutics Advisory Committee. Constraints and inefficiencies also exist in the submission process to access high-cost medicines. Conclusions The results suggest reasonable satisfaction with the availability of subsidised medicines. However, some of the

  13. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches

    PubMed Central

    Glithero, N.J.; Ramsden, S.J.; Wilson, P.

    2012-01-01

    Climate change and energy security concerns have driven the development of policies that encourage bioenergy production. Meeting EU targets for the consumption of transport fuels from bioenergy by 2020 will require a large increase in the production of bioenergy feedstock. Initially an increase in ‘first generation’ biofuels was observed, however ‘food competition’ concerns have generated interest in second generation biofuels (SGBs). These SGBs can be produced from co-products (e.g. cereal straw) or energy crops (e.g. miscanthus), with the former largely negating food competition concerns. In order to assess the sustainability of feedstock supply for SGBs, the financial, environmental and energy costs and benefits of the farm system must be quantified. Previous research has captured financial costs and benefits through linear programming (LP) approaches, whilst environmental and energy metrics have been largely been undertaken within life cycle analysis (LCA) frameworks. Assessing aspects of the financial, environmental and energy sustainability of supplying co-product second generation biofuel (CPSGB) feedstocks at the farm level requires a framework that permits the trade-offs between these objectives to be quantified and understood. The development of a modelling framework for Managing Energy and Emissions Trade-Offs in Agriculture (MEETA Model) that combines bio-economic process modelling and LCA is presented together with input data parameters obtained from literature and industry sources. The MEETA model quantifies arable farm inputs and outputs in terms of financial, energy and emissions results. The model explicitly captures fertiliser: crop-yield relationships, plus the incorporation of straw or removal for sale, with associated nutrient impacts of incorporation/removal on the following crop in the rotation. Key results of crop-mix, machinery use, greenhouse gas (GHG) emissions per kg of crop product and energy use per hectare are in line with

  14. MSU-Northern Bio-Energy Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kegel, Greg; Windy Boy, Jessica; Maglinao, Randy Latayan

    The goal of this project was to establish the Bio-Energy Center (the Center) of Montana State University Northern (MSUN) as a Regional Research Center of Excellence in research, product development, and commercialization of non-food biomass for the bio-energy industry. A three-step approach, namely, (1) enhance the Center’s research and testing capabilities, (2) develop advanced biofuels from locally grown agricultural crops, and (3) educate the community through outreach programs for public understanding and acceptance of new technologies was identified to achieve this goal. The research activities aimed to address the obstacles concerning the production of biofuels and other bio-based fuel additivesmore » considering feedstock quality, conversion process, economic viability, and public awareness. First and foremost in enhancing the capabilities of the Center is the improvement of its laboratories and other physical facilities for investigating new biomass conversion technologies and the development of its manpower complement with expertise in chemistry, engineering, biology, and energy. MSUN renovated its Auto Diagnostics building and updated its mechanical and electrical systems necessary to house the state-of-the-art 525kW (704 hp) A/C Dynamometer. The newly renovated building was designated as the Advanced Fuels Building. Two laboratories, namely Biomass Conversion lab and Wet Chemistry lab were also added to the Center’s facilities. The Biomass Conversion lab was for research on the production of advanced biofuels including bio-jet fuel and bio-based fuel additives while the Wet Chemistry lab was used to conduct catalyst research. Necessary equipment and machines, such as gas chromatograph-mass spectrometry, were purchased and installed to help in research and testing. With the enhanced capabilities of the Center, research and testing activities were very much facilitated and more precise. New biofuels derived from Camelina sativa (camelina), a locally

  15. Consequences of increasing bioenergy demand on wood and forests: an application of the global forest products model

    Treesearch

    Joseph Buongiorno; Ronald Raunikar; Shushuai Zhu

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial...

  16. Improvement of the Davydov theory of bioenergy transport in protein molecular systems.

    PubMed

    Pang, X F

    2000-11-01

    The Hamiltonian and the wave function in the Davydov theory have simultaneously been improved and extended, based on some physical and biological grounds and on results from other models. The equations of motion for the improved Davydov model with a quasicoherent two-quanta state and a new interaction term in the Hamiltonian describe bioenergy transport along the molecular chains in protein molecules by a soliton mechanism. Some elementary properties of the soliton, including the nonlinear coupling energy and greatly increased binding energy of the soliton, are also given. The results obtained suggest that the model could be a candidate for a bioenergy transport mechanism in protein molecules.

  17. Surveillance of obesity-related policies in multiple environments: the Missouri Obesity, Nutrition, and Activity Policy Database, 2007-2009.

    PubMed

    Haire-Joshu, Debra; Elliott, Michael; Schermbeck, Rebecca; Taricone, Elsa; Green, Scoie; Brownson, Ross C

    2010-07-01

    The objective of this study was to develop the Missouri Obesity, Nutrition, and Activity Policy Database, a geographically representative baseline of Missouri's existing obesity-related local policies on healthy eating and physical activity. The database is organized to reflect 7 local environments (government, community, health care, worksite, school, after school, and child care) and to describe the prevalence of obesity-related policies in these environments. We employed a stratified nested cluster design using key informant interviews and review of public records to sample 2,356 sites across the 7 target environments for the presence or absence of obesity-related policies. The school environment had the most policies (88%), followed by after school (47%) and health care (32%). Community, government, and child care environments reported smaller proportions of obesity-related policies but higher rates of funding for these policies. Worksite environments had low numbers of obesity-related policies and low funding levels (17% and 6%, respectively). Sixteen of the sampled counties had high obesity-related policy occurrence; 65 had moderate and 8 had low occurrences. Except in Missouri schools, the presence of obesity-related policies is limited. More obesity-related policies are needed so that people have access to environments that support the model behaviors necessary to halt the obesity epidemic. The Missouri Obesity, Nutrition, and Activity Policy Database provides a benchmark for evaluating progress toward the development of obesity-related policies across multiple environments in Missouri.

  18. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.

    PubMed

    El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D

    2018-06-04

    Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.

  19. Hydrologic Impacts of Developing Forest-based Bioenergy Feedstock in Wisconsin, USA and Entre Rios, Argentina Watersheds

    NASA Astrophysics Data System (ADS)

    Heidari, A.; Mayer, A. S.; Watkins, D. W., Jr.

    2017-12-01

    Growing demand for biomass-derived fuels has resulted in an increase in bioenergy projects across the Americas in recent years, a trend that is expected to continue. However, the expansion of bioenergy feedstock production might cause unintended environmental consequences. Accordingly, the goal of this research is to investigate how forest-based bioenergy development across the Americas may affect hydrological systems on a watershed scale. This study focuses on biofuel feedstock production with hybrid poplar cultivation in a snow-dominated watershed in northern Wisconsin, USA, and eucalyptus cultivation in a warm and temperate watershed in Entre Rios, Argentina. The Soil and Water Assessment Tool (SWAT), calibrated and validated for the two watersheds, is used to evaluate the effects of land use change corresponding to a range of biofuel development scenarios. The land use change scenarios include rules for limiting the location of the biofuel feedstock, and rotation time. These variables in turn impact the magnitude and timing of runoff and evapotranspiration. In Wisconsin, long term daily streamflow simulations indicate that planting poplar will increase evapotranspiration and decrease water yield, primarily through reduced baseflow contributions to streamflow. Results are also presented in terms of changes in flow relative to biomass production, to understand the sensitivity of potential biofuel generation to hydrologic impacts, and vice versa. In the end, alternative management practices were evaluated to mitigate the impacts. Keywords: Biofuel; Soil and Water Assessment Tool; Poplar; Baseflow; Evapotranspiration

  20. DOE-INES New Planet Bioenergy Technical Report Final Public Version 7-22-16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niederschulte, Mark; Russell, Kelly; Connors, Keith

    INEOS Bio and New Planet Energy Florida formed a joint venture company called INEOS New Planet BioEnergy (“INPB”) in 2009. This venture’s intent was to demonstrate at commercial scale INEOS Bio’s third-generation technology (the “Bio Process”) that converts a variety of lignocellulosic feedstocks into bioethanol and renewable electricity. INPB applied for and was awarded a $50,000,000 Department of Energy (“DOE”) grant in 2009 to support the construction of the commercial demonstration plant. The grant was a cost-sharing arrangement requiring at least 50% equity participation by the grantee. INPB completed construction of the Indian River BioEnergy Center in Vero Beach, Floridamore » in June, 2012. The facility is designed to produce 8 million gallons per year of fuel-grade bioethanol and 6MW of electrical power, with upwards of 2MW exported to the electrical grid. Construction of the Indian River BioEnergy Center was completed on-time and within its capital budget of $121 million.« less

  1. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana.

    PubMed

    Vijay Ramamurthi, Pooja; Cristina Fernandes, Maria; Sieverts Nielsen, Per; Pedro Nunes, Clemente

    2014-12-01

    This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana's energy demands. Major rice growing regions of Ghana have 70-90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5 MWe straw combustion plant were 39.01, 47.52 and 47.89 USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25 MWe husk gasification plant (with roundtrip distance 10 km) was 2.64 USD/t in all regions. Capital cost (66-72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46-48% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Domestic Violence and Pregnancy: A CBPR Coalition Approach to Identifying Needs and Informing Policy.

    PubMed

    Bright, Candace Forbes; Bagley, Braden; Pulliam, Ivie; Newton, Amy Swetha

    2018-01-01

    Community engagement-the collaborative process of addressing issues that impact the well-being of a community-is a strategic effort to address community issues. The Gulf States Health Policy Center (GS-HPC) formed the Hattiesburg Area Health Coalition (HAHC) in November 2014 for the purpose of addressing policies impacting the health of Forrest and Lamar counties in Mississippi. To chronicle the community-based participatory research (CBPR) process used by HAHC's identification of infant and maternal health as a policy area, domestic violence in pregnancy as a priority area within infant and maternal health, and a community action plan (CAP) regarding this priority area. HAHC reviewed data and identified infant and maternal health as a priority area. They then conducted a policy scan of local prenatal health care to determine the policy area of domestic violence in pregnancy. HAHC developed a CAP identifying three goals with regard to domestic violence and pregnancy that together informed policy. Changes included the development of materials specific to resources available in the area. The materials and recommended changes will first be implemented by Southeast Mississippi Rural Health Initiative (SeMRHI) through a screening question for all pregnant patients, and the adoption of policies for providing information and referrals. The lack of community-level data was a challenge to HAHC in identifying focus and priority areas, but this was overcome by shared leadership and community engagement. After completion of the CAP, 100% of expecting mothers receiving prenatal care in the area will be screened for domestic violence.

  3. Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential.

    PubMed

    Ahmad, Muhammad Sajjad; Mehmood, Muhammad Aamer; Al Ayed, Omar S; Ye, Guangbin; Luo, Huibo; Ibrahim, Muhammad; Rashid, Umer; Arbi Nehdi, Imededdine; Qadir, Ghulam

    2017-01-01

    The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin -1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol -1 . The activation energy (E) values were shown to be ranging from 103 through 233 kJmol -1 . Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol -1 and 168 to 172kJmol -1 , calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Bioenergy Watershed Restoration in Regions of the West: What are the Environmental/Community Issues?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, R.L.; Huff, D.D.; Kaufmann, M.R.

    Throughout the western mountainous regions, wildfire risks are elevated due to both fire suppression activities which have changed the forest structure making it more susceptible to stand-killing fires and the expansion of human structures (houses, light commercial) into these same forests, By providing a market for currently noncommercial but flammable materials (small trees, tops, and branches), new and existing bioenergy industries could be a key factor in reducing the regional forest fuel loads. Although bioenergy would appear to be an ideal answer to the problem in many ways, the situation is complicated and numerous issues need resolution. A public fearfulmore » of logging in these regions needs assurance that harvesting for bioenergy is an environmentally and socially responsible solution to the current fuel build up in these forests. This is especially important given that biomass harvesting cannot pay its own way under current energy market conditions and would have to be supported in some fashion.« less

  5. Scaling laws and technology development strategies for biorefineries and bioenergy plants.

    PubMed

    Jack, Michael W

    2009-12-01

    The economies of scale of larger biorefineries or bioenergy plants compete with the diseconomies of scale of transporting geographically distributed biomass to a central location. This results in an optimum plant size that depends on the scaling parameters of the two contributions. This is a fundamental aspect of biorefineries and bioenergy plants and has important consequences for technology development as "bigger is better" is not necessarily true. In this paper we explore the consequences of these scaling effects via a simplified model of biomass transportation and plant costs. Analysis of this model suggests that there is a need for much more sophisticated technology development strategies to exploit the consequences of these scaling effects. We suggest three potential strategies in terms of the scaling parameters of the system.

  6. The DOE Bioenergy Research Centers: History, Operations, and Scientific Output

    DOE PAGES

    Slater, Steven C.; Simmons, Blake A.; Rogers, Tamara S.; ...

    2015-08-20

    Over the past 7 years, the US Department of Energy's Office of Biological and Environmental Research has funded three Bioenergy Research Centers (BRCs). These centers have developed complementary and collaborative research portfolios that address the key technical and economic challenges in biofuel production from lignocellulosic biomass. All three centers have established a close, productive relationship with DOE's Joint Genome Institute (JGI). This special issue of Bioenergy Research samples the breadth of basic science and engineering work required to underpin a diverse, sustainable, and robust biofuel industry. In this report, which was collaboratively produced by all three BRCs, we discuss themore » BRC contributions over their first 7 years to the development of renewable transportation fuels. In additon, we also highlight the BRC research published in the current issue and discuss technical challenges in light of recent progress.« less

  7. A Conversation with Blake Simmons, Vice President, Deconstruction Division, and Jon Magnuson, Director, Fungal Biotechnology Group, Joint BioEnergy Institute, Emeryville, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Blake A.; Magnuson, Jon

    An interview of myself and Blake Simmons conducted by Vicki Glaser, Executive Editor of Industrial Biotechnology. The subject of the interview was the relatively new PNNL led Fungal Biotechnology Group within the Joint BioEnergy Institute (JBEI).

  8. Climate Change Mitigation through Enhanced Weathering in Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Masters, M. D.; Wolz, K. J.; DeLucia, E. H.

    2016-12-01

    Bioenergy crops are a renewable alternative to fossil fuels that reduce the net flux of CO2 to the atmosphere through carbon sequestration in plant tissues and soil. A portion of the remaining atmospheric CO2 is naturally mitigated by the chemical weathering of silica minerals, which sequester carbon as carbonates. The process of mineral weathering can be enhanced by crushing the minerals to increase surface area and applying them to agricultural soils, where warm temperatures, moisture, and plant roots and root exudates accelerate the weathering process. The carbonate byproducts of enhanced weathering are expected accumulate in soil water and reduce soil acidity, reduce nitrogen loss as N2O, and increase availability of certain soil nutrients. To determine the potential of enhanced weathering to alter the greenhouse gas balance in both annual (high disturbance, high fertilizer) and perennial (low disturbance, low fertilizer) bioenergy crops, finely ground basalt was applied to fields of maize, soybeans, and miscanthus at the University of Illinois Energy Farm. All plots showed an immediate soil temperature response at 10 cm depth, with increases of 1- 4 °C at midday. Early season CO2 and N2O fluxes mirrored soil temperature prior to canopy closure in all crops, while total N2O fluxes from miscanthus were lower than corn and soybeans in both basalt treatment and control plots. Mid-season N2O production was reduced in basalt-treated corn compared to controls. Given the increasing footprint of bioenergy crops, the ability to reduce GHG emissions in basalt-treated fields has the potential to mitigate atmospheric warming while benefitting soil fertility with the byproducts of weathering.

  9. Sustainable Biofuels Development Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production andmore » utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.« less

  10. International Policies on Sharing Genomic Research Results with Relatives: Approaches to Balancing Privacy with Access.

    PubMed

    Branum, Rebecca; Wolf, Susan M

    2015-01-01

    Returning genetic research results to relatives raises complex issues. In order to inform the U.S. debate, this paper analyzes international law and policies governing the sharing of genetic research results with relatives and identifies key themes and lessons. The laws and policies from other countries demonstrate a range of approaches to balancing individual privacy and autonomy with family access for health benefit, offering important lessons for further development of approaches in the United States. © 2015 American Society of Law, Medicine & Ethics, Inc.

  11. The Biogeochemistry of Bioenergy Landscapes: Carbon, Nitrogen, and Water Considerations

    USDA-ARS?s Scientific Manuscript database

    The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well-known, increasingl...

  12. 76 FR 62050 - Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... DEPARTMENT OF ENERGY Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for... 2005 (EPAct 2005) to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa) for construction and start-up... combination of biomass feedstocks, such as corn stover and wheat straw, to produce cellulosic ethanol and to...

  13. Identifying the Effects of Environmental and Policy Change Interventions on Healthy Eating

    PubMed Central

    Bowen, Deborah J.; Barrington, Wendy E.; Beresford, Shirley A.A.

    2015-01-01

    Obesity has been characterized as a disease. Strategies to change the incidence and prevalence of this disease include a focus on changing physical and social environments, over and above individual-level strategies, using a multilevel or systems approach. We focus our attention on evidence published between 2008 and 2013 on the effectiveness of interventions in nutrition environments, i.e., environmental interventions designed to influence the intake of healthful foods and amount of energy consumed. An overarching socioecological framework that has guided much of this research was used to characterize different types of environmental strategies. Intervention examples in each area of the framework are provided with a discussion of key findings and related conceptual and methodological issues. The emphasis in this review is on adults, but clearly this literature is only one part of the picture. Much research has been focused on child-specific interventions, including environmental interventions. Some evidence suggests effectiveness of policy-based or other types of interventions that aim to regulate or restructure environments to promote healthy dietary choices, and these strategies would apply to both children and adults. Opportunities to evaluate these policy changes in adults’ social and physical environments are rare. Much of the existing research has been with children. As conceptual and methodological issues continue to be identified and resolved, we hope that future research in this domain will identify environmental strategies that can be included in intervention toolboxes to build healthy nutrition environments for both adults and children. PMID:25785891

  14. Identifying the effects of environmental and policy change interventions on healthy eating.

    PubMed

    Bowen, Deborah J; Barrington, Wendy E; Beresford, Shirley A A

    2015-03-18

    Obesity has been characterized as a disease. Strategies to change the incidence and prevalence of this disease include a focus on changing physical and social environments, over and above individual-level strategies, using a multilevel or systems approach. We focus our attention on evidence published between 2008 and 2013 on the effectiveness of interventions in nutrition environments, i.e., environmental interventions designed to influence the intake of healthful foods and amount of energy consumed. An overarching socioecological framework that has guided much of this research was used to characterize different types of environmental strategies. Intervention examples in each area of the framework are provided with a discussion of key findings and related conceptual and methodological issues. The emphasis in this review is on adults, but clearly this literature is only one part of the picture. Much research has been focused on child-specific interventions, including environmental interventions. Some evidence suggests effectiveness of policy-based or other types of interventions that aim to regulate or restructure environments to promote healthy dietary choices, and these strategies would apply to both children and adults. Opportunities to evaluate these policy changes in adults' social and physical environments are rare. Much of the existing research has been with children. As conceptual and methodological issues continue to be identified and resolved, we hope that future research in this domain will identify environmental strategies that can be included in intervention toolboxes to build healthy nutrition environments for both adults and children.

  15. Social acceptability of bioenergy in the U.S

    Treesearch

    J. Peter Brosius; John Schelhas; Sarah Hitchner

    2013-01-01

    Global interest in bioenergy development has increased dramatically in recent years, due to its promise to reduce dependence on fossil fuel energy supplies, its contribution to global and national energy security, its potential to produce a carbon negative or neutral fuel source and to mitigate climate change, and its potential as a vehicle for rural development....

  16. The impact of biotechnological advances on the future of US bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, Brian H.; Brandt, Craig C.; Guss, Adam M.

    Modern biotechnology has the potential to substantially advance the feasibility, structure, and efficiency of future biofuel supply chains. Advances might be direct or indirect. A direct advance would be improving the efficiency of biochemical conversion processes and feedstock production. Direct advances in processing may involve developing improved enzymes and bacteria to convert lignocellulosic feedstocks to ethanol. Progress in feedstock production could include enhancing crop yields via genetic modification or the selection of specific natural variants and breeds. Other direct results of biotechnology might increase the production of fungible biofuels and bioproducts, which would impact the supply chain. Indirect advances mightmore » include modifications to dedicated bioenergy crops that enable them to grow on marginal lands rather than land needed for food production. This study assesses the feasibility and advantages of near-future (10-year) biotechnological developments for a US biomass-based supply chain for bioenergy production. We assume a simplified supply chain of feedstock, logistics and land use, conversion, and products and utilization. The primary focus is how likely developments in feedstock production and conversion technologies will impact bioenergy and biofuels in the USA; a secondary focus is other innovative uses of biotechnologies in the energy arenas. The assessment addresses near-term biofuels based on starch, sugar, and cellulosic feedstocks and considers some longer-term options, such as oil-crop and algal technologies.« less

  17. The impact of biotechnological advances on the future of US bioenergy

    DOE PAGES

    Davison, Brian H.; Brandt, Craig C.; Guss, Adam M.; ...

    2015-05-14

    Modern biotechnology has the potential to substantially advance the feasibility, structure, and efficiency of future biofuel supply chains. Advances might be direct or indirect. A direct advance would be improving the efficiency of biochemical conversion processes and feedstock production. Direct advances in processing may involve developing improved enzymes and bacteria to convert lignocellulosic feedstocks to ethanol. Progress in feedstock production could include enhancing crop yields via genetic modification or the selection of specific natural variants and breeds. Other direct results of biotechnology might increase the production of fungible biofuels and bioproducts, which would impact the supply chain. Indirect advances mightmore » include modifications to dedicated bioenergy crops that enable them to grow on marginal lands rather than land needed for food production. This study assesses the feasibility and advantages of near-future (10-year) biotechnological developments for a US biomass-based supply chain for bioenergy production. We assume a simplified supply chain of feedstock, logistics and land use, conversion, and products and utilization. The primary focus is how likely developments in feedstock production and conversion technologies will impact bioenergy and biofuels in the USA; a secondary focus is other innovative uses of biotechnologies in the energy arenas. The assessment addresses near-term biofuels based on starch, sugar, and cellulosic feedstocks and considers some longer-term options, such as oil-crop and algal technologies.« less

  18. Development and use of bioenergy feedstocks for semi-arid and arid lands

    DOE PAGES

    Cushman, John C.; Davis, Sarah C.; Yang, Xiaohan; ...

    2015-04-01

    Here we report that global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave andmore » Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C 3 or C 4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C 3 and C 4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO 2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, we note that life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient.« less

  19. Development and use of bioenergy feedstocks for semi-arid and arid lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushman, John C.; Davis, Sarah C.; Yang, Xiaohan

    Here we report that global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave andmore » Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C 3 or C 4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C 3 and C 4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO 2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, we note that life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient.« less

  20. Energycane production for biomass and bioenergy feedstocks in Louisiana

    USDA-ARS?s Scientific Manuscript database

    The poster discusses the results of the first two years of energycane production research conducted in Winnsboro, LA, and Houma, LA, as part of the USDA NIFA AFRI grant. Energycane can contribute greatly to a year around bioenergy industry in Louisiana and other areas of the SE United States. As par...

  1. 78 FR 56264 - Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc., South Texas Oil Co., and Synova Healthcare Group, Inc... concerning the securities of Four Rivers BioEnergy, Inc. because it has not filed any periodic reports since...

  2. Wastewater: A Potential Bioenergy Resource.

    PubMed

    Prakash, Jyotsana; Sharma, Rakesh; Ray, Subhasree; Koul, Shikha; Kalia, Vipin Chandra

    2018-06-01

    Wastewaters are a rich source of nutrients for microorganisms. However, if left unattended the biodegradation may lead to severe environmental hazards. The wastewaters can thus be utilized for the production of various value added products including bioenergy (H 2 and CH 4 ). A number of studies have reported utilization of various wastewaters for energy production. Depending on the nature of the wastewater, different reactor configurations, wastewater and inoculum pretreatments, co-substrate utilizations along with other process parameters have been studied for efficient product formation. Only a few studies have reported sequential utilization of wastewaters for H 2 and CH 4 production despite its huge potential for complete waste degradation.

  3. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China.

    PubMed

    Wang, Wenguo; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Hu, Qichun; He, Mingxiong; Li, Jiatang

    2014-01-01

    Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of "precipitation of the warmest quarter" and "annual mean temperature" were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China.

  4. Predicting the Impacts of Climate Change on the Potential Distribution of Major Native Non-Food Bioenergy Plants in China

    PubMed Central

    Wang, Wenguo; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Hu, Qichun; He, Mingxiong; Li, Jiatang

    2014-01-01

    Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of “precipitation of the warmest quarter” and “annual mean temperature” were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China. PMID:25365425

  5. Assessing the Global Potential and Regional Implications of Promoting Bioenergy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  6. Promoting good policy for leadership and governance of health related rehabilitation: a realist synthesis.

    PubMed

    McVeigh, Joanne; MacLachlan, Malcolm; Gilmore, Brynne; McClean, Chiedza; Eide, Arne H; Mannan, Hasheem; Geiser, Priscille; Duttine, Antony; Mji, Gubela; McAuliffe, Eilish; Sprunt, Beth; Amin, Mutamad; Normand, Charles

    2016-08-24

    Good governance may result in strengthened performance of a health system. Coherent policies are essential for good health system governance. The overall aim of this research is to provide the best available scientific evidence on principles of good policy related leadership and governance of health related rehabilitation services in less resourced settings. This research was also conducted to support development of the World Health Organization's (WHO) Guidelines on health related rehabilitation. An innovative study design was used, comprising two methods: a systematic search and realist synthesis of literature, and a Delphi survey of expert stakeholders to refine and triangulate findings from the realist synthesis. In accordance with Pawson and Tilley's approach to realist synthesis, we identified context mechanism outcome pattern configurations (CMOCs) from the literature. Subsequently, these CMOCs were developed into statements for the Delphi survey, whereby 18 expert stakeholders refined these statements to achieve consensus on recommendations for policy related governance of health related rehabilitation. Several broad principles emerged throughout formulation of recommendations: participation of persons with disabilities in policy processes to improve programme responsiveness, efficiency, effectiveness, and sustainability, and to strengthen service-user self-determination and satisfaction; collection of disaggregated disability statistics to support political momentum, decision-making of policymakers, evaluation, accountability, and equitable allocation of resources; explicit promotion in policies of access to services for all subgroups of persons with disabilities and service-users to support equitable and accessible services; robust inter-sectoral coordination to cultivate coherent mandates across governmental departments regarding service provision; and 'institutionalizing' programmes by aligning them with preexisting Ministerial models of healthcare to

  7. Belief in Food Addiction and Obesity-Related Policy Support.

    PubMed

    Schulte, Erica M; Tuttle, Hannah M; Gearhardt, Ashley N

    2016-01-01

    This study examines whether belief in the food addiction construct is associated with support for obesity-related policies (e.g., restrictions on foods served in schools and workplace cafeterias, subsidies on fruits and vegetables), while simultaneously examining other factors associated with policy support (e.g., political party affiliation). Cross-sectional. Online Community. 200 individuals were recruited through Amazon Mechanical Turk. Participants (n = 193) responded to three questions about belief in food addiction and a measure evaluating support for 13 obesity-related policy initiatives. Individuals also completed the modified Yale Food Addiction Scale (mYFAS), self-reported height and weight, and provided demographic information (age, gender, race, political party affiliation). Belief in food addiction was significantly associated with greater support for obesity-related initiatives, even when accounting for the significant associations of age, gender, and political party. Belief in food addiction and political party both had moderate effect sizes for predicting support for obesity-related policy. There was an interaction between age and belief in food addiction, with significant associations with policy support for both younger and older individuals, though the effect was larger for younger participants. The current study provides evidence that belief in food addiction is associated with increased obesity-related policy support, comparable to the influence of one's political party. Growing evidence for the role of an addictive process in obesity may have important implications for public support of obesity-related policy initiatives.

  8. Belief in Food Addiction and Obesity-Related Policy Support

    PubMed Central

    2016-01-01

    Objectives This study examines whether belief in the food addiction construct is associated with support for obesity-related policies (e.g., restrictions on foods served in schools and workplace cafeterias, subsidies on fruits and vegetables), while simultaneously examining other factors associated with policy support (e.g., political party affiliation). Design Cross-sectional. Setting Online Community. Participants 200 individuals were recruited through Amazon Mechanical Turk. Measurements Participants (n = 193) responded to three questions about belief in food addiction and a measure evaluating support for 13 obesity-related policy initiatives. Individuals also completed the modified Yale Food Addiction Scale (mYFAS), self-reported height and weight, and provided demographic information (age, gender, race, political party affiliation). Results Belief in food addiction was significantly associated with greater support for obesity-related initiatives, even when accounting for the significant associations of age, gender, and political party. Belief in food addiction and political party both had moderate effect sizes for predicting support for obesity-related policy. There was an interaction between age and belief in food addiction, with significant associations with policy support for both younger and older individuals, though the effect was larger for younger participants. Conclusion The current study provides evidence that belief in food addiction is associated with increased obesity-related policy support, comparable to the influence of one’s political party. Growing evidence for the role of an addictive process in obesity may have important implications for public support of obesity-related policy initiatives. PMID:26808427

  9. Wood to energy: using southern interface fuels for bioenergy

    Treesearch

    C. Staudhammer; L.A. Hermansen; D. Carter; Ed Macie

    2011-01-01

    This publications aims to increase awareness of potential uses for woody biomass in the southern wildland-urban interface (WUI) and to disseminate knowledge about putting bioenergy production systems in place, while addressing issues unique to WUI areas. Chapter topics include woody biomass sources in the wildland-urban interface; harvesting, preprocessing and delivery...

  10. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-07-01

    biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.« less

  11. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  12. Evaluation on community tree plantations as sustainable source for rural bioenergy in Indonesia

    NASA Astrophysics Data System (ADS)

    Siregar, U. J.; Narendra, B. H.; Suryana, J.; Siregar, C. A.; Weston, C.

    2017-05-01

    Indonesia has forest plantation resources in rural areas far from the national electricity grid that have potential as feedstock for biomass based electricity generation. Although some fast growing tree plantations have been established for bioenergy, their sustainability has not been evaluated to date. This research aimed to evaluate the growth of several tree species, cultivated by rural communities in Jawa Island, for their sustainability as a source for bio-electricity. For each tree species the biomass was calculated from diameter and height measurements and an estimate made for potential electricity generation based on density of available biomass and calorific content. Species evaluated included Acacia mangium, A. auriculiformis, A. crasicarpa, Anthocephalus cadamba, Calliandra calothirsus, Eucalyptus camaldulensis, Falcataria moluccana, Gmelina arborea, Leucaena leucochephala and Sesbania grandiflora. Among these species Falcataria moluccana and Anthocephalus cadamba showed the best potential for bioenergy production, with up to 133.7 and 67.1 ton/ha biomass respectively, from which 160412 and 80481 Kwh of electricity respectively could be generated. Plantations of these species could potentially meet the estimated demand for biomass feedstock to produce bioenergy in many rural villages, suggesting that community plantations could sustainably provide much needed electricity.

  13. Confocal fluorescence assessment of bioenergy/redox status of dromedary camel (Camelus dromedarius) oocytes before and after in vitro maturation.

    PubMed

    Russo, Roberto; Monaco, Davide; Rubessa, Marcello; El-Bahrawy, Khalid A; El-Sayed, Ashraf; Martino, Nicola A; Beneult, Benedicte; Ciannarella, Francesca; Dell'Aquila, Maria E; Lacalandra, Giovanni M; Filioli Uranio, Manuel

    2014-02-18

    Reproductive biotechnologies in dromedary camel (Camelus dromedarius) are less developed than in other livestock species. The in vitro maturation (IVM) technology is a fundamental step for in vitro embryo production (IVP), and its optimization could represent a way to increase the success rate of IVP. The aim of the present study was to investigate the bioenergy/oxidative status of dromedary camel oocytes before and after IVM by confocal microscopy 3D imaging. Oocytes were retrieved by slicing ovaries collected at local slaughterhouses. Recovered oocytes were examined before and after IVM culture for nuclear chromatin configuration and bioenergy/oxidative status, expressed as mitochondria (mt) distribution and activity, intracellular Reactive Oxygen Species (ROS) levels and distribution and mt/ROS colocalization. The mean recovery rate was 6 oocytes/ovary. After IVM, 61% of oocytes resumed meiosis and 36% reached the Metaphase II stage (MII). Oocyte bioenergy/redox confocal characterization revealed changes upon meiosis progression. Immature oocytes at the germinal vesicle (GV) stage were characterised by prevailing homogeneous mt distribution in small aggregates while MI and MII oocytes showed significantly higher rates of pericortical mt distribution organized in tubular networks (P<0.05). Increased mt activity in MI (P<0.001) and MII (P<0.01) oocytes compared to GV stage oocytes was also observed. At any meiotic stage, homogeneous distribution of intracellular ROS was observed. Intracellular ROS levels also increased in MI (P<0.01) and MII (P<0.05) oocytes compared to GV stage oocytes. The mt/ROS colocalization signal increased in MI oocytes (P<0.05). This study provides indications that qualitative and quantitative indicators of bioenergy and oxidative status in dromedary camel oocytes are modified in relation with oocyte meiotic stage. These data may increase the knowledge of camel oocyte physiology, in order to enhance the efficiency of IVP procedures.

  14. Promoting healthy diets and tackling obesity and diet-related chronic diseases: what are the agricultural policy levers?

    PubMed

    Hawkes, Corinna

    2007-06-01

    Diet-related chronic diseases are now a serious global public health problem. Public health groups are calling for the agricultural sector to play a greater role in tackling the threat. To identify potential points of policy intervention in the agricultural sector that could be leveraged to promote healthy diets and tackle obesity and diet-related chronic diseases. A review of the literature on the dietary implications of agriculture, a conceptual analysis of the issues, and the identification of relevant examples. There are two main potential points of intervention in the agricultural sector that could be leveraged to promote healthy diets: agricultural policies and agricultural production practices. Agricultural policies and practices affect diet through their influence on food availability, price, and nutrient quality, which in turn affects food choices available to consumers. Agricultural policies amenable to intervention include input, production, and trade policies; agricultural production practices amenable to intervention include crop breeding, crop fertilization practices, livestock-feeding practices, and crop systems diversity. It is well-known that agricultural policies and production practices influence what farmers choose to grow. Agricultural policies and production practices could also play a role in influencing what consumers choose to eat. To identify how agricultural policies and practices can usefully contribute toward promoting healthy diets and tackling obesity and diet-related chronic diseases, health policymakers need to examine whether current agricultural policies and production practices are contributing to-or detracting from-efforts to attain dietary goals; where and how could agricultural intervention help achieve dietary goals; and whether there are trade-offs between these interventions and other important concerns, such as undernutrition and the livelihoods of agricultural producers. Given the potential of agriculture to contribute to

  15. Investigation of Factors Relating to the Web-Based Presentation of Policy and Information on Campus Firearm Policy and Smoking Policy

    ERIC Educational Resources Information Center

    McGowan, Veronica F.

    2017-01-01

    In order to explore themes of privilege in regard to policy availability, language accessibility, and underlying bias, policies related to two topics of interest to higher education campus visitors, campus firearm carry policy and smoking policy, are explored to determine how Web-based information is presented to various audiences. Implications of…

  16. Soil quality impacts of perennial bioenergy crops on marginally-productive lands

    USDA-ARS?s Scientific Manuscript database

    Dedicated perennial energy crops grown on marginally-productive croplands can provide a sustainable supply of bioenergy feedstock while improving soil quality and enhancing ecosystem services. Because marginally-productive croplands typically are at higher risk of degradation, growing highly produc...

  17. Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning.

    PubMed

    Hiloidhari, Moonmoon; Baruah, D C; Singh, Anoop; Kataki, Sampriti; Medhi, Kristina; Kumari, Shilpi; Ramachandra, T V; Jenkins, B M; Thakur, Indu Shekhar

    2017-10-01

    Sustainability of a bioenergy project depends on precise assessment of biomass resource, planning of cost-effective logistics and evaluation of possible environmental implications. In this context, this paper reviews the role and applications of geo-spatial tool such as Geographical Information System (GIS) for precise agro-residue resource assessment, biomass logistic and power plant design. Further, application of Life Cycle Assessment (LCA) in understanding the potential impact of agro-residue bioenergy generation on different ecosystem services has also been reviewed and limitations associated with LCA variability and uncertainty were discussed. Usefulness of integration of GIS into LCA (i.e. spatial LCA) to overcome the limitations of conventional LCA and to produce a holistic evaluation of the environmental benefits and concerns of bioenergy is also reviewed. Application of GIS, LCA and spatial LCA can help alleviate the challenges faced by ambitious bioenergy projects by addressing both economics and environmental goals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Identifying and evaluating environmental impacts associated with timber harvest scheduling policies.

    Treesearch

    Robert M. Randall; Robert W. Sassaman

    1979-01-01

    Expected impacts on the ecosystem and nontimber benefits (that is, people's use of the resources—recreation, hunting, fishing, swimming, etc.) resulting from alternative timber harvest scheduling policies are identified and evaluated for the Mount Hood National Forest. Environmental criteria are established and used in evaluations of timber harvest and...

  19. Cellulose factories: advancing bioenergy production from forest trees.

    PubMed

    Mizrachi, Eshchar; Mansfield, Shawn D; Myburg, Alexander A

    2012-04-01

    Fast-growing, short-rotation forest trees, such as Populus and Eucalyptus, produce large amounts of cellulose-rich biomass that could be utilized for bioenergy and biopolymer production. Major obstacles need to be overcome before the deployment of these genera as energy crops, including the effective removal of lignin and the subsequent liberation of carbohydrate constituents from wood cell walls. However, significant opportunities exist to both select for and engineer the structure and interaction of cell wall biopolymers, which could afford a means to improve processing and product development. The molecular underpinnings and regulation of cell wall carbohydrate biosynthesis are rapidly being elucidated, and are providing tools to strategically develop and guide the targeted modification required to adapt forest trees for the emerging bioeconomy. Much insight has already been gained from the perturbation of individual genes and pathways, but it is not known to what extent the natural variation in the sequence and expression of these same genes underlies the inherent variation in wood properties of field-grown trees. The integration of data from next-generation genomic technologies applied in natural and experimental populations will enable a systems genetics approach to study cell wall carbohydrate production in trees, and should advance the development of future woody bioenergy and biopolymer crops.

  20. Carbon debt and carbon sequestration parity in forest bioenergy production

    Treesearch

    S.R. Mitchell; M.E. Harmon; K.B. O' Connell

    2012-01-01

    The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and...

  1. Identifying Decision-Makers’ Science Needs for Adaptation to Climate-Related Impacts on Forest Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Gordon, E.; Lukas, J.

    2009-12-01

    Through the Western Water Assessment RISA program, we are conducting a research project that will produce science synthesis information to help local, state, and federal decision-makers in Colorado and Wyoming develop adaptation strategies to deal with climate-related threats to forest ecosystem services, in particular bark beetle infestations and stand-replacing wildfires. We begin by using the problem orientation framework, a policy sciences methodology, to understand how decision-makers can most effectively address policy problems that threaten the attainment of socially accepted goals. By applying this framework to the challenges facing decision-makers, we more accurately identify specific areas where scientific research can improve decision-making. WWA researchers will next begin to connect decision-makers with relevant scientific literature and identify specific areas of future scientific research that will be most effective at addressing their needs.

  2. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides

    DOE PAGES

    Fahrenkrog, Annette M.; Neves, Leandro G.; Resende, Jr., Marcio F. R.; ...

    2016-09-06

    Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genesmore » in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. Lastly, these polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.« less

  3. Greenhouse gas implications of a 32 billion gallon bioenergy landscape in the US

    NASA Astrophysics Data System (ADS)

    DeLucia, E. H.; Hudiburg, T. W.; Wang, W.; Khanna, M.; Long, S.; Dwivedi, P.; Parton, W. J.; Hartman, M. D.

    2015-12-01

    Sustainable bioenergy for transportation fuel and greenhouse gas (GHGs) reductions may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Here, we implemented an integrated approach to planning bioenergy landscapes by combining spatially-explicit ecosystem and economic models to predict a least-cost land allocation for a 32 billion gallon (121 billion liter) renewable fuel mandate in the US. We find that 2022 GHG transportation emissions are decreased by 7% when 3.9 million hectares of eastern US land are converted to perennial grasses supplemented with corn residue to meet cellulosic ethanol requirements, largely because of gasoline displacement and soil carbon storage. If renewable fuel production is accompanied by a cellulosic biofuel tax credit, CO2 equivalent emissions could be reduced by 12%, because it induces more cellulosic biofuel and land under perennial grasses (10 million hectares) than under the mandate alone. While GHG reducing bioenergy landscapes that meet RFS requirements and do not displace food are possible, the reductions in GHG emissions are 50% less compared to previous estimates that did not account for economically feasible land allocation.

  4. Alternate Careers for Physicists: Science Policy and Government Relations

    NASA Astrophysics Data System (ADS)

    Mack, Gregory

    While physics is an investigation of the world around us, physicists and the practice of physics research exist within the world in combination with aspects of society. This means that physicists and physics research are subject to federal policies and regulations that affect how physics is done. Who decides or influences those policies? Who speaks up on our behalf? Who investigates policy issues from a physics point of view? As physicists, we can lend our expertise and insight in order to ensure a fruitful future for physics and science more broadly, whether it be an occasional policy action taken or a career in science policy and government relations. In this talk I'll share the story of my transition from academia to a policy-focused career at APS and what it means to be a physicist on the frontlines of government relations.

  5. Dissecting the genetics of rhizomatousness: Towards sustainable food, forage, and bioenergy

    USDA-ARS?s Scientific Manuscript database

    Rhizomatousness is a key trait influencing both the perenniality and biomass partitioning of plants. Increased understanding of the genetic control of rhizome growth offers potential towards the creation of more sustainable grain, forage, and bioenergy cropping systems. It is also applicable to th...

  6. Assessing the global potential and regional implications of promoting bio-energy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  7. Next steps in determining the overall sustainability of perennial bioenergy crops

    USDA-ARS?s Scientific Manuscript database

    Perennial bioenergy crops are being developed and evaluated in the United States to partially offset petroleum transport fuels. Accurate accounting of upstream and downstream greenhouse gas (GHG) emissions is necessary to measure the overall carbon intensity of new biofuel feedstocks. For example, c...

  8. International Policies on Sharing Genomic Research Results with Relatives: Approaches to Balancing Privacy with Access

    PubMed Central

    Branum, Rebecca; Wolf, Susan M.

    2015-01-01

    Returning genetic research results to raises complex issues. In order to inform the U.S. debate, this paper analyzes international law and policies governing the sharing of genetic research results with relatives and identifies key themes and lessons. The laws and policies from other countries demonstrate a range of approaches to balancing individual privacy and autonomy with family access for health benefit, offering important lessons for further development of approaches in the United States. PMID:26479568

  9. Modeling the Local Ecological Response to Regional Landscape and Global Change Forcings: A Case Study of Bioenergy in North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Costanza, J. K.; Tarr, N. M.; Apt, R.; Rubino, M. J.

    2015-12-01

    Sustainable energy policies in Europe have led to a growing market for bioenergy, and especially wood pellets, as a means to reduce fossil fuel emissions and the attendant socio-environmental consequences from climate change. However the introduction of this market has the potential to create significant negative ecological impacts whose costs are borne far from Europe. Because of its existing forest products infrastructure and resources, the Southeast US is viewed as an attractive supplier of wood pellets to Europe. Consequently, a new global telecoupling has developed between these two regions linking the natural capital of one region to the energy needs and greenhouse gas abatement policy of the other. Additionally, habitat for many important wildlife species in the Southeast lie within a rapidly urbanizing region characterized by low-density auto-dependent growth. Combined, these two forcings have the potential to rapidly degrade species-rich ecosystems. Here the ecological effects of increased European demand for wood pellets are examined in North Carolina. Future land use and vegetation change were projected using the results from linked urbanization, vegetation dynamics, life cycle analysis, and forest timber economics models. Ecological impacts as measured for 16 amphibian and avian species were evaluated under five bioenergy production scenarios and one urbanization-only scenario. Results indicate that highly vagile or upland species are able to take advantage of the increase in vegetated land cover, even if the majority of new habitat is in intensively managed forests. Conversely, more sessile and range-limited species, particularly those found in coastal plain systems such as bottomland hardwood forest, show steeper declines under the wood pellet scenarios than under the urbanization-only scenario. These results highlight the challenge of evaluating the sustainability of developing markets that seek to mitigate certain aspects of global environmental

  10. Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilna, Paul; Lynd, Lee R.; Mohnen, Debra

    The DOE BioEnergy Science Center has operated as a virtual center with multiple partners for a decade targeting overcoming biomass recalcitrance. BESC has redefined biomass recalcitrance from an observable phenotype to a better understood and manipulatable fundamental and operational property. These manipulations are then the result of deeper biological understanding and can be combined with other advanced biotechnology improvements in biomass conversion to improve bioenergy processes and markets. This article provides an overview of key accomplishments in overcoming recalcitrance via better plants, better microbes, and better tools and combinations. Finally, we present a perspective on the aspects of successful centermore » operation.« less

  11. Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective

    DOE PAGES

    Gilna, Paul; Lynd, Lee R.; Mohnen, Debra; ...

    2017-11-30

    The DOE BioEnergy Science Center has operated as a virtual center with multiple partners for a decade targeting overcoming biomass recalcitrance. BESC has redefined biomass recalcitrance from an observable phenotype to a better understood and manipulatable fundamental and operational property. These manipulations are then the result of deeper biological understanding and can be combined with other advanced biotechnology improvements in biomass conversion to improve bioenergy processes and markets. This article provides an overview of key accomplishments in overcoming recalcitrance via better plants, better microbes, and better tools and combinations. Finally, we present a perspective on the aspects of successful centermore » operation.« less

  12. Farm-level feasibility of bioenergy depends on variations across multiple sectors

    NASA Astrophysics Data System (ADS)

    Myhre, Mitchell; Barford, Carol

    2013-03-01

    The potential supply of bioenergy from farm-grown biomass is uncertain due to several poorly understood or volatile factors, including land availability, yield variability, and energy prices. Although biomass production for liquid fuel has received more attention, here we present a case study of biomass production for renewable heat and power in the state of Wisconsin (US), where heating constitutes at least 30% of total energy demand. Using three bioenergy systems (50 kW, 8.8 MW and 50 MW) and Wisconsin farm-level data, we determined the net farm income effect of producing switchgrass (Panicum virgatum) as a feedstock, either for on-farm use (50 kW system) or for sale to an off-farm energy system operator (8.8 and 50 MW systems). In southern counties, where switchgrass yields approach 10 Mg ha-1 yr-1, the main determinants of economic feasibility were the available land area per farm, the ability to utilize bioheat, and opportunity cost assumptions. Switchgrass yield temporal variability was less important. For the state median farm size and switchgrass yield, at least 25% (50 kW system) or 50% (8.8 MW system) bioheat utilization was required to economically offset propane or natural gas heat, respectively, and purchased electricity. Offsetting electricity only (50 MW system) did not generate enough revenue to meet switchgrass production expenses. Although the opportunity cost of small-scale (50 kW) on-farm bioenergy generation was higher, it also held greater opportunity for increasing farm net income, especially by replacing propane-based heat.

  13. High-resolution techno-ecological modelling of a bioenergy landscape to identify climate mitigation opportunities in cellulosic ethanol production

    NASA Astrophysics Data System (ADS)

    Field, John L.; Evans, Samuel G.; Marx, Ernie; Easter, Mark; Adler, Paul R.; Dinh, Thai; Willson, Bryan; Paustian, Keith

    2018-03-01

    Although dedicated energy crops will probably be an important feedstock for future cellulosic bioenergy production, it is unknown how they can best be integrated into existing agricultural systems. Here we use the DayCent ecosystem model to simulate various scenarios for growing switchgrass in the heterogeneous landscape that surrounds a commercial-scale cellulosic ethanol biorefinery in southwestern Kansas, and quantify the associated fuel production costs and lifecycle greenhouse gas (GHG) emissions. We show that the GHG footprint of ethanol production can be reduced by up to 22 g of CO2 equivalent per megajoule (CO2e MJ-1) through careful optimization of the soils cultivated and corresponding fertilizer application rates (the US Renewable Fuel Standard requires a 56 gCO2e MJ-1 lifecycle emissions reduction for `cellulosic' biofuels compared with conventional gasoline). This improved climate performance is realizable at modest additional costs, less than the current value of low-carbon fuel incentives. We also demonstrate that existing subsidized switchgrass plantings within this landscape probably achieve suboptimal GHG mitigation, as would landscape designs that strictly minimize the biomass collection radius or target certain marginal lands.

  14. Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement

    USDA-ARS?s Scientific Manuscript database

    Genetic modification of dedicated bioenergy crops is in its infancy; however, there are numerous advantages to the use of these tools to improve crops used for biofuels. Potential improved traits through genetic engineering (GE) include herbicide resistance, pest, drought, cold and salt tolerance, l...

  15. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE PAGES

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; ...

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore » Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.« less

  16. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore » Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.« less

  17. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    NASA Astrophysics Data System (ADS)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-01

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O3) and fine particulate matter (PM2.5) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O3 increases of 5-27 ppb in India, 1-9 ppb in China, and 1-6 ppb in the United States, with peak PM2.5 increases of up to 2 μg m-3. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10-100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.

  18. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lijó, Lucía, E-mail: lucia.lijo@usc.es; González-García, Sara; Bacenetti, Jacopo

    Highlights: • Anaerobic monodigestion and codigestion were compared. • The environmental advantages of suitable waste management were proved. • The use of cereal crops as feedstock improves biogas yield. • Cultivation step implies the most important environmental hotspot. • Digestate management options were evaluated. - Abstract: The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidencedmore » the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions.« less

  19. A model for deploying switchgrass for bioenergy in an intensive agricultural landscape

    USDA-ARS?s Scientific Manuscript database

    Switchgrass bioenergy research has been conducted in Nebraska since 1990. In that time, significant progress has been made in switchgrass breeding and genetics, molecular genetics, establishment, fertility management, production economics, production energetics, harvest and storage management, ecos...

  20. Quantifying the Impact of Feedstock Quality on the Design of Bioenergy Supply Chain Networks

    DOE PAGES

    Castillo-Villar, Krystel; Minor-Popocatl, Hertwin; Webb, Erin

    2016-03-01

    Logging residues, which refer to the unused portions of trees cut during logging, are important sources of biomass for the emerging biofuel industry and are critical feedstocks for the first-type biofuel facilities (e.g., corn-ethanol facilities). Logging residues are under-utilized sources of biomass for energetic purposes. To support the scaling-up of the bioenergy industry, it is essential to design cost-effective biofuel supply chains that not only minimize costs, but also consider the biomass quality characteristics. The biomass quality is heavily dependent upon the moisture and the ash contents. Ignoring the biomass quality characteristics and its intrinsic costs may yield substantial economicmore » losses that will only be discovered after operations at a biorefinery have begun. Here this paper proposes a novel bioenergy supply chain network design model that minimizes operational costs and includes the biomass quality-related costs. The proposed model is unique in the sense that it supports decisions where quality is not unrealistically assumed to be perfect. The effectiveness of the proposed methodology is proven by assessing a case study in the state of Tennessee, USA. The results demonstrate that the ash and moisture contents of logging residues affect the performance of the supply chain (in monetary terms). Higher-than-target moisture and ash contents incur in additional quality-related costs. The quality-related costs in the optimal solution (with final ash content of 1% and final moisture of 50%) account for 27% of overall supply chain cost. In conclusion, based on the numeral experimentation, the total supply chain cost increased 7%, on average, for each additional percent in the final ash content.« less

  1. Quantifying the Impact of Feedstock Quality on the Design of Bioenergy Supply Chain Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo-Villar, Krystel; Minor-Popocatl, Hertwin; Webb, Erin

    Logging residues, which refer to the unused portions of trees cut during logging, are important sources of biomass for the emerging biofuel industry and are critical feedstocks for the first-type biofuel facilities (e.g., corn-ethanol facilities). Logging residues are under-utilized sources of biomass for energetic purposes. To support the scaling-up of the bioenergy industry, it is essential to design cost-effective biofuel supply chains that not only minimize costs, but also consider the biomass quality characteristics. The biomass quality is heavily dependent upon the moisture and the ash contents. Ignoring the biomass quality characteristics and its intrinsic costs may yield substantial economicmore » losses that will only be discovered after operations at a biorefinery have begun. Here this paper proposes a novel bioenergy supply chain network design model that minimizes operational costs and includes the biomass quality-related costs. The proposed model is unique in the sense that it supports decisions where quality is not unrealistically assumed to be perfect. The effectiveness of the proposed methodology is proven by assessing a case study in the state of Tennessee, USA. The results demonstrate that the ash and moisture contents of logging residues affect the performance of the supply chain (in monetary terms). Higher-than-target moisture and ash contents incur in additional quality-related costs. The quality-related costs in the optimal solution (with final ash content of 1% and final moisture of 50%) account for 27% of overall supply chain cost. In conclusion, based on the numeral experimentation, the total supply chain cost increased 7%, on average, for each additional percent in the final ash content.« less

  2. Global spatially explicit CO2 emission metrics at 0.25° horizontal resolution for forest bioenergy

    NASA Astrophysics Data System (ADS)

    Cherubini, F.

    2015-12-01

    Bioenergy is the most important renewable energy option in studies designed to align with future RCP projections, reaching approximately 250 EJ/yr in RCP2.6, 145 EJ/yr in RCP4.5 and 180 EJ/yr in RCP8.5 by the end of the 21st century. However, many questions enveloping the direct carbon cycle and climate response to bioenergy remain partially unexplored. Bioenergy systems are largely assessed under the default climate neutrality assumption and the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation is usually ignored. Emission metrics of CO2 from forest bioenergy are only available on a case-specific basis and their quantification requires processing of a wide spectrum of modelled or observed local climate and forest conditions. On the other hand, emission metrics are widely used to aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.), but a spatially explicit analysis of emission metrics with global forest coverage is today lacking. Examples of emission metrics include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Here, we couple a global forest model, a heterotrophic respiration model, and a global climate model to produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy. We show their applications to global emissions in 2015 and until 2100 under the different RCP scenarios. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation), 0.05 ± 0.05 kgCO2-eq. kgCO2-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for GWP, GTP and aSET, respectively. We also present results aggregated at a grid, national and continental level. The metrics are found to correlate with the site-specific turnover times and local climate variables like annual mean temperature and precipitation. Simplified

  3. Water quality effects of short-rotation pine management for bioenergy feedstocks in the southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Jackson, C. Rhett; Bitew, Menberu M.

    There is growing interest in renewable and domestically produced energy which motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10–12 years) to achieve high yields. The primary differences in managing woody feedstocks for bioenergy production vs for pulp/sawtimber production include a higher frequency of pesticide and fertilizer applications, whole-tree removal, and greater ground disturbance (i.e., more bare ground during stand establishment and more frequent disturbance). And while the effects of pulp/sawtimber production on water quality are well-studied, the effects ofmore » growing short-rotation loblolly pine on water quality and the efficacy of current forestry Best Management Practices (BMPs) have not been evaluated for this emerging management system. We used a watershed-scale experiment in a before-after, control-impact design to evaluate the effects of growing loblolly pine for bioenergy on water quality in the Upper Coastal Plain of the southeastern U.S. Intensive management for bioenergy production and implementation of current forestry BMPs occurred on ~50% of two treatment watersheds, with one reference watershed in a minimally managed pine forest. Water quality metrics (nutrient and pesticide concentrations) were measured in stream water, groundwater, and interflow (i.e., shallow subsurface flow) for a two-year pre-treatment period, and for 3.5 years post-treatment. After 3.5 years, there was little change to stream water quality. Here, we report on observations where there were a few occurrences of saturated overland flow, but there were sediments and water dissipated within the streamside management zones in over 75% of these instances. Stream nutrient concentrations were low and temporal changes mainly reflected seasonal patterns in nitrogen cycling. Nitrate concentrations

  4. Water quality effects of short-rotation pine management for bioenergy feedstocks in the southeastern United States

    DOE PAGES

    Griffiths, Natalie A.; Jackson, C. Rhett; Bitew, Menberu M.; ...

    2017-06-12

    There is growing interest in renewable and domestically produced energy which motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10–12 years) to achieve high yields. The primary differences in managing woody feedstocks for bioenergy production vs for pulp/sawtimber production include a higher frequency of pesticide and fertilizer applications, whole-tree removal, and greater ground disturbance (i.e., more bare ground during stand establishment and more frequent disturbance). And while the effects of pulp/sawtimber production on water quality are well-studied, the effects ofmore » growing short-rotation loblolly pine on water quality and the efficacy of current forestry Best Management Practices (BMPs) have not been evaluated for this emerging management system. We used a watershed-scale experiment in a before-after, control-impact design to evaluate the effects of growing loblolly pine for bioenergy on water quality in the Upper Coastal Plain of the southeastern U.S. Intensive management for bioenergy production and implementation of current forestry BMPs occurred on ~50% of two treatment watersheds, with one reference watershed in a minimally managed pine forest. Water quality metrics (nutrient and pesticide concentrations) were measured in stream water, groundwater, and interflow (i.e., shallow subsurface flow) for a two-year pre-treatment period, and for 3.5 years post-treatment. After 3.5 years, there was little change to stream water quality. Here, we report on observations where there were a few occurrences of saturated overland flow, but there were sediments and water dissipated within the streamside management zones in over 75% of these instances. Stream nutrient concentrations were low and temporal changes mainly reflected seasonal patterns in nitrogen cycling. Nitrate concentrations

  5. Evaluating the effects of woody biomass production for bioenergy on water quality and hydrology in the southeastern United States

    Treesearch

    Natalie Griffiths; C. Rhett Jackson; Menberu Bitew; Enhao Du; Kellie Vache' ; Jeffrey J. McDonnell; Julian Klaus; Benjamin M. Rau

    2016-01-01

    Forestry is a dominant industry in the southeastern United States, and there is interest in sustainably growing woody feedstocks for bioenergy in this region. Our project is evaluating the environmental sustainability (water quality, quantity) of growing and managing short-rotation (10-12 yrs) loblolly pine for bioenergy using watershed-scale experimental and modeling ...

  6. Implementing multiple intervention strategies in Dutch public health-related policy networks.

    PubMed

    Harting, Janneke; Peters, Dorothee; Grêaux, Kimberly; van Assema, Patricia; Verweij, Stefan; Stronks, Karien; Klijn, Erik-Hans

    2017-10-13

    Improving public health requires multiple intervention strategies. Implementing such an intervention mix is supposed to require a multisectoral policy network. As evidence to support this assumption is scarce, we examined under which conditions public health-related policy networks were able to implement an intervention mix. Data were collected (2009-14) from 29 Dutch public health policy networks. Surveys were used to identify the number of policy sectors, participation of actors, level of trust, networking by the project leader, and intervention strategies implemented. Conditions sufficient for an intervention mix (≥3 of 4 non-educational strategies present) were determined in a fuzzy-set qualitative comparative analysis. A multisectoral policy network (≥7 of 14 sectors present) was neither a necessary nor a sufficient condition. In multisectoral networks, additionally required was either the active participation of network actors (≥50% actively involved) or active networking by the project leader (≥monthly contacts with network actors). In policy networks that included few sectors, a high level of trust (positive perceptions of each other's intentions) was needed-in the absence though of any of the other conditions. If the network actors were also actively involved, an extra requirement was active networking by the project leader. We conclude that the multisectoral composition of policy networks can contribute to the implementation of a variety of intervention strategies, but not without additional efforts. However, policy networks that include only few sectors are also able to implement an intervention mix. Here, trust seems to be the most important condition. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Yield Response to Mexican Rice Borer (Lepidoptera: Crambidae) Injury in Bioenergy and Conventional Sugarcane and Sorghum.

    PubMed

    Vanweelden, M T; Wilson, B E; Beuzelin, J M; Reagan, T E; Way, M O

    2015-10-01

    The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae) is an invasive stem borer of sugarcane, Saccharum spp., and sorghum, Sorghum bicolor (L.), and poses a threat against the production of dedicated bioenergy feedstocks in the U.S. Gulf Coast region. A 2-yr field study was conducted in Jefferson County, TX, to evaluate yield losses associated with E. loftini feeding on bioenergy and conventional cultivars of sugarcane and sorghum under natural and artificially established E. loftini infestations. Bioenergy sugarcane (energycane) 'L 79-1002' and 'Ho 02-113' and sweet sorghum 'M81E' exhibited reduced E. loftini injury; however, these cultivars, along with high-biomass sorghum cultivar 'ES 5140', sustained greater losses in fresh stalk weight. Negative impacts to sucrose concentration from E. loftini injury were greatest in energycane, high-biomass sorghum, and sweet sorghum cultivars. Even under heavy E. loftini infestations, L 79-1002, Ho 02-113, and 'ES 5200' were estimated to produce more ethanol than all other cultivars under suppressed infestations. ES 5200, Ho 02-113, and L 79-1002 hold the greatest potential as dedicated bioenergy crops for production of ethanol in the Gulf Coast region; however, E. loftini management practices will need to be continued to mitigate yield losses. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Systematic reviews addressing identified health policy priorities in Eastern Mediterranean countries: a situational analysis.

    PubMed

    El-Jardali, Fadi; Akl, Elie A; Karroum, Lama Bou; Kdouh, Ola; Akik, Chaza; Fadlallah, Racha; Hammoud, Rawan

    2014-08-20

    Systematic reviews can offer policymakers and stakeholders concise, transparent, and relevant evidence pertaining to pressing policy priorities to help inform the decision-making process. The production and the use of systematic reviews are specifically limited in the Eastern Mediterranean region. The extent to which published systematic reviews address policy priorities in the region is still unknown. This situational analysis exercise aims at assessing the extent to which published systematic reviews address policy priorities identified by policymakers and stakeholders in Eastern Mediterranean region countries. It also provides an overview about the state of systematic review production in the region and identifies knowledge gaps. We conducted a systematic search of the Health System Evidence database to identify published systematic reviews on policy-relevant priorities pertaining to the following themes: human resources for health, health financing, the role of the non-state sector, and access to medicine. Priorities were identified from two priority-setting exercises conducted in the region. We described the distribution of these systematic reviews across themes, sub-themes, authors' affiliations, and countries where included primary studies were conducted. Out of the 1,045 systematic reviews identified in Health System Evidence on selected themes, a total of 200 systematic reviews (19.1%) addressed the priorities from the Eastern Mediterranean region. The theme with the largest number of systematic reviews included was human resources for health (115) followed by health financing (33), access to medicine (27), and role of the non-state sector (25). Authors based in the region produced only three systematic reviews addressing regional priorities (1.5%). Furthermore, no systematic review focused on the Eastern Mediterranean region. Primary studies from the region had limited contribution to systematic reviews; 17 systematic reviews (8.5%) included primary

  9. Systematic reviews addressing identified health policy priorities in Eastern Mediterranean countries: a situational analysis

    PubMed Central

    2014-01-01

    Background Systematic reviews can offer policymakers and stakeholders concise, transparent, and relevant evidence pertaining to pressing policy priorities to help inform the decision-making process. The production and the use of systematic reviews are specifically limited in the Eastern Mediterranean region. The extent to which published systematic reviews address policy priorities in the region is still unknown. This situational analysis exercise aims at assessing the extent to which published systematic reviews address policy priorities identified by policymakers and stakeholders in Eastern Mediterranean region countries. It also provides an overview about the state of systematic review production in the region and identifies knowledge gaps. Methods We conducted a systematic search of the Health System Evidence database to identify published systematic reviews on policy-relevant priorities pertaining to the following themes: human resources for health, health financing, the role of the non-state sector, and access to medicine. Priorities were identified from two priority-setting exercises conducted in the region. We described the distribution of these systematic reviews across themes, sub-themes, authors’ affiliations, and countries where included primary studies were conducted. Results Out of the 1,045 systematic reviews identified in Health System Evidence on selected themes, a total of 200 systematic reviews (19.1%) addressed the priorities from the Eastern Mediterranean region. The theme with the largest number of systematic reviews included was human resources for health (115) followed by health financing (33), access to medicine (27), and role of the non-state sector (25). Authors based in the region produced only three systematic reviews addressing regional priorities (1.5%). Furthermore, no systematic review focused on the Eastern Mediterranean region. Primary studies from the region had limited contribution to systematic reviews; 17 systematic reviews

  10. Simulated effects of converting pasture to energy cane for bioenergy with the daycent model: predicting changes to greenhouse gas emissions and soil carbon

    USDA-ARS?s Scientific Manuscript database

    Bioenergy related land use change will likely alter biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L.) is a sugarcane variety and an emerging biofuel feedstock for cellulosic bio-ethanol production. It has a potential for high yields and can be grown on f...

  11. Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy.

    PubMed

    Mehmood, Muhammad Aamer; Ye, Guangbin; Luo, Huibo; Liu, Chenguang; Malik, Sana; Afzal, Ifrah; Xu, Jianren; Ahmad, Muhammad Sajjad

    2017-03-01

    The aim of this work was to study the thermal degradation of grass (Cymbopogon schoenanthus) under an inert environment at three heating rates, including 10, 30, and 50°Cmin -1 in order to evaluate its bioenergy potential. Pyrolysis experiments were performed in a simultaneous Thermogravimetry-Differential Scanning Calorimetry analyzer. Thermal data were used to analyze kinetic parameters through isoconversional models of Flynn-Wall-Ozawa (FWO) and Kissenger-Akahira-Sunose (KSA) methods. The pre-exponential factors values have shown the reaction to follow first order kinetics. Activation energy values were shown to be 84-193 and 96-192kJmol -1 as calculated by KSA and FWO methods, respectively. Differences between activation energy and enthalpy of reaction values (∼5 to 6kJmol -1 ) showed product formation is favorable. The Gibb's free energy (173-177kJmol -1 ) and High Heating Value (15.00MJkg -1 ) have shown the considerable bioenergy potential of this low-cost biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Root biomass and soil carbon response to growing perennial grasses for bioenergy

    USDA-ARS?s Scientific Manuscript database

    Dedicated bioenergy crops such as switchgrass (Panicum virgatum L.), miscanthus [Miscanthus x giganteus (Mxg)], indiangrass [Sorghastrum nutans (L.) Nash], and big bluestem (Andropogon gerardii Vitman) can provide cellulosic feedstock for biofuel production while maintaining or improving soil and en...

  13. The South's outlook for sustainable forest bioenergy and biofuels production

    Treesearch

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  14. Best practices guidelines for managing water in bioenergy feedstock production

    Treesearch

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  15. The Giant Knotweed (Fallopia sachalinensis var. Igniscum) as a new plant resource for biomass production for bioenergy

    NASA Astrophysics Data System (ADS)

    Lebzien, S.; Veste, M.; Fechner, H.; Koning, L.; Mantovani, D.; Freese, D.

    2012-04-01

    The cultivation of bioenergy crop for energetic biomass production and biogas will increase in the next decades in Europe and the world. In Germany maize is the most commonly used energy crops for biogas. To optimize the sustainability of bioenergy crop production new land management systems and crop species are needed. Herbaceous perennials have a great potential to fulfill this requirement. A new species for bioenergy production is the Giant Knotweed or Sakhalin Knotweed (Fallopia sachalinensis F. Schmidt ex Maxim., Fam. Polygonaceae) The knotweed is originated from Sakhalin, Korea and Japan .The plant is characterized by a high annual biomass production and can reach heights up to 3-4 m. As a new bioenergy crop the new cultivars IGNISCUM Basic (R) and IGNISCUM Candy (R) were cultured from the wild form and commercially used. Important is that both cultivars are not invasive. IGNISCUM Basic is used for combined heat and power plants. IGNISCUM Candy can be harvested 2-3 times during the growing season and the green biomass can be used for biogas production. Comprehensive test series are carried out to analyze the biogas. First results from lab investigations and experiments in biogas plants show that fresh matter of IGNISCUM Candy can well substitute maize as substrate in biogas power plants. Yields per hectare and the amount of biogas per ton of organic dry matter can be considered as almost equal to maize. Concerning the wooden biomass of IGNISCUM Basic values of combustion can be compared with wood chips from forest trees. For a sustainable and optimal production of biomass we develop cultivation technology for this species. Field experiments are arranged under different climatic and soil conditions across Germany from Schleswig-Holstein to southern Germany to investigate the plant growth and biomass production on the field scale. Physiological parameters are determined for the relations between growth stages, chlorophyll content, photosynthesis and plant

  16. Confocal fluorescence assessment of bioenergy/redox status of dromedary camel (Camelus dromedarius) oocytes before and after in vitro maturation

    PubMed Central

    2014-01-01

    Background Reproductive biotechnologies in dromedary camel (Camelus dromedarius) are less developed than in other livestock species. The in vitro maturation (IVM) technology is a fundamental step for in vitro embryo production (IVP), and its optimization could represent a way to increase the success rate of IVP. The aim of the present study was to investigate the bioenergy/oxidative status of dromedary camel oocytes before and after IVM by confocal microscopy 3D imaging. Methods Oocytes were retrieved by slicing ovaries collected at local slaughterhouses. Recovered oocytes were examined before and after IVM culture for nuclear chromatin configuration and bioenergy/oxidative status, expressed as mitochondria (mt) distribution and activity, intracellular Reactive Oxygen Species (ROS) levels and distribution and mt/ROS colocalization. Results The mean recovery rate was 6 oocytes/ovary. After IVM, 61% of oocytes resumed meiosis and 36% reached the Metaphase II stage (MII). Oocyte bioenergy/redox confocal characterization revealed changes upon meiosis progression. Immature oocytes at the germinal vesicle (GV) stage were characterised by prevailing homogeneous mt distribution in small aggregates while MI and MII oocytes showed significantly higher rates of pericortical mt distribution organized in tubular networks (P < 0.05). Increased mt activity in MI (P < 0.001) and MII (P < 0.01) oocytes compared to GV stage oocytes was also observed. At any meiotic stage, homogeneous distribution of intracellular ROS was observed. Intracellular ROS levels also increased in MI (P < 0.01) and MII (P < 0.05) oocytes compared to GV stage oocytes. The mt/ROS colocalization signal increased in MI oocytes (P < 0.05). Conclusions This study provides indications that qualitative and quantitative indicators of bioenergy and oxidative status in dromedary camel oocytes are modified in relation with oocyte meiotic stage. These data may increase the knowledge of camel

  17. Valorisation to biogas of macroalgal waste streams: a circular approach to bioproducts and bioenergy in Ireland.

    PubMed

    Tedesco, Silvia; Stokes, Joseph

    2017-01-01

    Seaweeds (macroalgae) have been recently attracting more and more interest as a third generation feedstock for bioenergy and biofuels. However, several barriers impede the deployment of competitive seaweed-based energy. The high cost associated to seaweed farming and harvesting, as well as their seasonal availability and biochemical composition currently make macroalgae exploitation too expensive for energy production only. Recent studies have indicated a possible solution to aforementioned challenges may lay in seaweed integrated biorefinery, in which a bioenergy and/or biofuel production step ends an extractions cascade of high-value bioproducts. This results in the double benefit of producing renewable energy while adopting a zero waste approach, as fostered by recent EU societal challenges within the context of the Circular Economy development. This study investigates the biogas potential of residues from six indigenous Irish seaweed species while discussing related issues experienced during fermentation. It was found that Laminaria and Fucus spp. are the most promising seaweed species for biogas production following biorefinery extractions producing 187-195 mL CH 4  gVS -1 and about 100 mL CH 4  gVS -1 , respectively, exhibiting overall actual yields close to raw un-extracted seaweed.

  18. Cover crops for enriching soil carbon and nitrogen under bioenergy sorghum

    USDA-ARS?s Scientific Manuscript database

    Soil carbon (C) and nitrogen (N) can be enriched with cover crops under agronomic crops, but little is known about their enrichment under bioenergy crops. Legume (hairy vetch [Vicia villosa Roth]), nonlegume (rye [Secaele cereale L.]), a mixture of legume and nonlegume (hairy vetch and rye) and a co...

  19. 78 FR 45441 - Sugar Program; Feedstock Flexibility Program for Bioenergy Producers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... sugarcane processors may borrow from CCC, pledging their sugar production as collateral for any such loan... sugar for bioenergy production under FFP as a proactive means for CCC to avoid forfeitures. FFP is... production. In addition, CCC will make quarterly announcements of revised estimates of such quantity. CCC's...

  20. Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion.

    PubMed

    Ventura, Jey-R S; Yang, Benqin; Lee, Yong-Woo; Lee, Kisay; Jahng, Deokjin

    2013-06-01

    With a target production of 1000 ton of dry algae/yr, lipid content of 30 wt.%, and productivity of 30 g/m(2)-d in a 340-day annual operation, four common scenarios of microalgae bioenergy routes were assessed in terms of cost, energy, and CO2 inputs and outputs. Scenario 1 (biodiesel production), Scenario 2 (Scenario 1 with integrated anaerobic digestion system), Scenario 3 (biogas production), and Scenario 4 (supercritical gasification) were evaluated. Scenario 4 outperformed other scenarios in terms of net energy production (1282.42 kWh/ton algae) and CO2 removal (1.32 ton CO2/ton algae) while Scenario 2 surpassed the other three scenarios in terms of net cost. Scenario 1 produced the lowest energy while Scenario 3 was the most expensive bioenergy system. This study evaluated critical parameters that could direct the proper design of the microalgae bioenergy system with an efficient energy production, CO2 removal, and economic feasibility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Prevalence of responsible hospitality policies in licensed premises that are associated with alcohol-related harm.

    PubMed

    Daly, Justine B; Campbell, Elizabeth M; Wiggers, John H; Considine, Robyn J

    2002-06-01

    This study aimed to determine the prevalence of responsible hospitality policies in a group of licensed premises associated with alcohol-related harm. During March 1999, 108 licensed premises with one or more police-identified alcohol-related incidents in the previous 3 months received a visit from a police officer. A 30-item audit checklist was used to determine the responsible hospitality policies being undertaken by each premises within eight policy domains: display required signage (three items); responsible host practices to prevent intoxication and under-age drinking (five items); written policies and guidelines for responsible service (three items); discouraging inappropriate promotions (three items); safe transport (two items); responsible management issues (seven items); physical environment (three items) and entry conditions (four items). No premises were undertaking all 30 items. Eighty per cent of the premises were undertaking 20 of the 30 items. All premises were undertaking at least 17 of the items. The proportion of premises undertaking individual items ranged from 16% to 100%. Premises were less likely to report having and providing written responsible hospitality documentation to staff, using door charges and having entry/re-entry rules. Significant differences between rural and urban premises were evident for four policies. Clubs were significantly more likely than hotels to have a written responsible service of alcohol policy and to clearly display codes of dress and conditions of entry. This study provides an indication of the extent and nature of responsible hospitality policies in a sample of licensed premises that are associated with a broad range of alcohol related harms. The finding that a large majority of such premises appear to adopt responsible hospitality policies suggests a need to assess the validity and reliability of tools used in the routine assessment of such policies, and of the potential for harm from licensed premises.

  2. Growing C4 perennial grass for bioenergy using a new Agro-BGC ecosystem model

    NASA Astrophysics Data System (ADS)

    di Vittorio, A. V.; Anderson, R. S.; Miller, N. L.; Running, S. W.

    2009-12-01

    Accurate, spatially gridded estimates of bioenergy crop yields require 1) biophysically accurate crop growth models and 2) careful parameterization of unavailable inputs to these models. To meet the first requirement we have added the capacity to simulate C4 perennial grass as a bioenergy crop to the Biome-BGC ecosystem model. This new model, hereafter referred to as Agro-BGC, includes enzyme driven C4 photosynthesis, individual live and dead leaf, stem, and root carbon/nitrogen pools, separate senescence and litter fall processes, fruit growth, optional annual seeding, flood irrigation, a growing degree day phenology with a killing frost option, and a disturbance handler that effectively simulates fertilization, harvest, fire, and incremental irrigation. There are four Agro-BGC vegetation parameters that are unavailable for Panicum virgatum (switchgrass), and to meet the second requirement we have optimized the model across multiple calibration sites to obtain representative values for these parameters. We have verified simulated switchgrass yields against observations at three non-calibration sites in IL. Agro-BGC simulates switchgrass growth and yield at harvest very well at a single site. Our results suggest that a multi-site optimization scheme would be adequate for producing regional-scale estimates of bioenergy crop yields on high spatial resolution grids.

  3. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    PubMed

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Stakeholder engagement in scenario development process - bioenergy production and biodiversity conservation in eastern Finland.

    PubMed

    Haatanen, Anniina; den Herder, Michael; Leskinen, Pekka; Lindner, Marcus; Kurttila, Mikko; Salminen, Olli

    2014-03-15

    In this study participatory approaches were used to develop alternative forest resource management scenarios with particular respect to the effects on increased use of forest bioenergy and its effect on biodiversity in Eastern Finland. As technical planning tools, we utilized a forest management planning system (MELA) and the Tool for Sustainability Impact Assessment (ToSIA) to visualize the impacts of the scenarios. We organized a stakeholder workshop where group discussions were used as a participatory method to get the stakeholder preferences and insights concerning forest resource use in the year 2030. Feedback from the workshop was then complemented with a questionnaire. Based on the results of the workshop and a questionnaire we developed three alternative forest resource scenarios: (1) bioenergy 2030 - in which energy production is more centralized and efficient; (2) biodiversity 2030 - in which harvesting methods are more nature friendly and protected forests make up 10% of the total forest area; and (3) mixed bioenergy + biodiversity 2030 scenario - in which wood production, recreation and nature protection are assigned to the most suitable areas. The study showed that stakeholder engagement combined with the MELA and ToSIA tools can be a useful approach in scenario development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production

    PubMed Central

    Ookawa, Taiichiro; Inoue, Kazuya; Matsuoka, Makoto; Ebitani, Takeshi; Takarada, Takeshi; Yamamoto, Toshio; Ueda, Tadamasa; Yokoyama, Tadashi; Sugiyama, Chisato; Nakaba, Satoshi; Funada, Ryo; Kato, Hiroshi; Kanekatsu, Motoki; Toyota, Koki; Motobayashi, Takashi; Vazirzanjani, Mehran; Tojo, Seishu; Hirasawa, Tadashi

    2014-01-01

    Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, ‘Leaf Star’, with superior lodging resistance and a gh phenotype similar to one of its parents, ‘Chugoku 117’. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety. PMID:25298209

  6. The impact of cultivar diversity in bioenergy feedstock production systems on soil carbon sequestration rates

    NASA Astrophysics Data System (ADS)

    De Graaff, M.; Morris, G.; Jastrow, J. D.; SIX, J. W.

    2013-12-01

    Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt, particularly when grown in diverse mixtures, by enhancing soil C sequestration upon land-use change. Native bioenergy candidate species, switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii) show extensive within-species variation, and our preliminary data show that increased cultivar diversity can enhance yield. We aim to assess how shifting C3-dominated nonnative perennial grasslands to C4-dominated native perennial grasslands for use as bioenergy feedstock affects soil C stocks, and how within-species diversity in switchgrass and big bluestem affects soil C sequestration rates. Our experiment is conducted at the Fermilab National Environmental Research Park, and compares different approaches for perennial feedstock production ranging across a biodiversity gradient, where diversity is manipulated at both the species- and cultivar level, and nitrogen (N) is applied at two levels (0 and 67 kg/ha). Preliminary results indicate that switchgrass and big bluestem differentially affect soil C sequstration, and that increasing diversity may enhance soil C sequestration rates.

  7. MSU-Northern Bio-Energy Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kegel, Greg; Alcorn-Windy Boy, Jessica; Abedin, Md. Joynal

    2014-09-30

    MSU-Northern established the Bio-Energy Center (the Center) into a Regional Research Center of Excellence to address the obstacles concerning biofuels, feedstock, quality, conversion process, economic viability and public awareness. The Center built its laboratories and expertise in order to research and support product development and commercialization for the bio-energy industry in our region. The Center wanted to support the regional agricultural based economy by researching biofuels based on feedstock’s that can be grown in our region in an environmentally responsible manner. We were also interested in any technology that will improve the emissions and fuel economy performance of heavy dutymore » diesel engines. The Center had a three step approach to accomplish these goals: 1. Enhance the Center’s research and testing capabilities 2. Develop advanced biofuels from locally grown agricultural crops. 3. Educate and outreach for public understanding and acceptance of new technology. The Center was very successful in completing the tasks as outlined in the project plan. Key successes include discovering and patenting a new chemical conversion process for converting camelina oil to jet fuel, as well as promise in developing a heterogeneous Grubs catalyst to support the new chemical conversion process. The Center also successfully fragmented and deoxygenated naturally occurring lignin with a Ni-NHC catalyst, showing promise for further exploration of using lignin for fuels and fuel additives. This would create another value-added product for lignin that can be sourced from beetle kill trees or waste products from cellulose ethanol fuel facilities.« less

  8. Investigating Sustainability Impacts of Bioenergy Usage Within the Eisenwurzen Region in Austria

    NASA Astrophysics Data System (ADS)

    Putzhuber, F.; Hasenauer, H.

    2009-04-01

    Within the past few years sustainability and bioenergy usage become a key term in emphasizing the relationship between economic progress and the protection of the environment. One key difficulty is the definition of criteria and indicators for assessing sustainability issues and their change over time. This work introduces methods to create linear parametric models of the sustainable impact issues relevant in the establishment of new bio-energetic heating systems. Our application example is the Eisenwurzen region in Austria. The total area covers 5743 km km² and includes 99 municipalities. A total of 11 impact issues covering the economic, social and environmental areas are proposed for developing the linear parametric models. The indicator selection for deriving the impact issues is based on public official data from 68 indicators, as well as stakeholder interviews and the impact assessment framework. In total we obtained 415 variables from the 99 municipalities to create the 68 indicators for the Local Administration Unit 2 (LAU2) over the last (if available) 25 years. The 68 indicators are on a relative scale to address the size differences of the municipalities. The idea of the analysis is to create linear models which derive 11 defined impact issues related to the establishment of new bio-energetic heating systems. Each analysis follows a strict statistical procedure based on (i) independent indicator selection, (ii) remove indicators with higher VIF value grater then 6, (iii) remove indicators with α higher than 0,05, (iv) possible linear transformation, (v) remove the non-significant indicators (p-value >0,05), (vi) model valuation, (vii) remove the out-lines plots and (viii) test of the normality distribution of the residual with a Kolmogorov- Smirnov test. The results suggest that for the 11 sustainable impact issues 21 of the 68 indicators are significant drives. The models revealed that it is possible to create tools for assessing impact issues in a

  9. An outlook for sustainable forest bioenergy production in the Lake States

    Treesearch

    Dennis R. Becker; Kenneth Skog; Allison Hellman; Kathleen E. Halvorsen; Terry Mace

    2009-01-01

    The Lake States region of Minnesota, Wisconsin and Michigan offers significant potential for bioenergy production. We examine the sustainability of regional forest biomass use in the context of existing thermal heating, electricity, and biofuels production, projected resource needs over the next decade including existing forest product market demand, and impacts on...

  10. Exploring perceptions of community health policy in Kenya and identifying implications for policy change.

    PubMed

    McCollum, Rosalind; Otiso, Lilian; Mireku, Maryline; Theobald, Sally; de Koning, Korrie; Hussein, Salim; Taegtmeyer, Miriam

    2016-02-01

    Global interest and investment in close-to-community health services is increasing. Kenya is currently revising its community health strategy (CHS) alongside political devolution, which will result in revisioning of responsibility for local services. This article aims to explore drivers of policy change from key informant perspectives and to study perceptions of current community health services from community and sub-county levels, including perceptions of what is and what is not working well. It highlights implications for managing policy change. We conducted 40 in-depth interviews and 10 focus group discussions with a range of participants to capture plural perspectives, including those who will influence or be influenced by CHS policy change in Kenya (policymakers, sub-county health management teams, facility managers, community health extension worker (CHEW), community health workers (CHWs), clients and community members) in two purposively selected counties: Nairobi and Kitui. Qualitative data were digitally recorded, transcribed, translated and coded before framework analysis. There is widespread community appreciation for the existing strategy. High attrition, lack of accountability for voluntary CHWs and lack of funds to pay CHW salaries, combined with high CHEW workload were seen as main drivers for strategy change. Areas for change identified include: lack of clear supervisory structure including provision of adequate travel resources, current uneven coverage and equity of community health services, limited community knowledge about the strategy revision and demand for home-based HIV testing and counselling. This in-depth analysis which captures multiple perspectives results in robust recommendations for strategy revision informed by the Five Wonders of Change Framework. These recommendations point towards a more people-centred health system for improved equity and effectiveness and indicate priority areas for action if success of policy change through

  11. How do public health policies tackle alcohol-related harm: a review of 12 developed countries.

    PubMed

    Crombie, Iain K; Irvine, Linda; Elliott, Lawrence; Wallace, Hilary

    2007-01-01

    To identify how current public health policies of 12 developed countries assess alcohol-related problems, the goals and targets that are set and the strategic directives proposed. Policy documents on alcohol and on general public heath were obtained through repeated searches of government websites. Documents were reviewed by two independent observers. All the countries studied state that alcohol causes substantial harm to individual health and family well-being, increases crime and social disruption, and results in economic loss through lost productivity. All are concerned about consumption of alcohol by young adults and by heavy and problem drinkers. Few aim to reduce total consumption. Only five of the countries set specific targets for changes in drinking behaviour. Countries vary in their commitment to intervene, particularly on taxation, drink-driving, the drinking environment and for high-risk groups. Australia and New Zealand stand out as having coordinated intervention programmes in most areas. Policies differ markedly in their organization, the goals and targets that are set, the strategic approaches proposed and areas identified for intervention. Most countries could improve their policies by following the recommendations in the World Heath Organization's European Alcohol Action Plan.

  12. Modifying lignin composition and content of sorghum biomass for improved bioenergy conversion

    USDA-ARS?s Scientific Manuscript database

    Sorghum (Sorghum bicolor) is an opportune crop for bioenergy due to its high yield potential, and lower nitrogen and water requirements. Transgenic constructs expressing monolignol biosynthetic genes under control of 35S promoter have been developed and used for sorghum transformation to examine the...

  13. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practicesmore » [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].« less

  14. Land use impacts of low-carbon energy system transition - the case of UK bioenergy deployment under the Carbon Plan

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Sobral Mourao, Z.; Lupton, R.; Skelton, S.

    2015-12-01

    The UK Department of Energy and Climate Change has developed four low-carbon energy transition pathways - the Carbon Plan - towards achieving the legally binding 80% territorial greenhouse gas emissions reduction, stipulated in the 2008 Climate Change Act by 2050. All the pathways require increase in bioenergy deployment, of which a significant amount could be indigenously sourced from crops. But will increased domestic production of energy crops conflict with other land use and ecosystem priorities? To address this question, a coupled analysis of the four energy transition pathways and land use has been developed using an integrated resource accounting platform called ForeseerTM. The two systems are connected by the bioenergy component, and are projected forward in time to 2050, under different scenarios of energy crop composition and yield, and accounting for various constraints on land use for agriculture and ecosystem services. The results show between 7 and 61% of UK agricultural land could be required to meet bioenergy deployment projections under different combinations of crop yield and compositions for the transition pathways. This could result in competition for land for food production and other socio-economic and ecological land uses. Consequently, the potential role of bioenergy in achieving UK emissions reduction targets may face significant deployment challenges.

  15. Comprehensive taxonomy and worldwide trends in pharmaceutical policies in relation to country income status.

    PubMed

    Maniadakis, N; Kourlaba, G; Shen, J; Holtorf, A

    2017-05-25

    Rapidly evolving socioeconomic and technological trends make it challenging to improve access, effectiveness and efficiency in the use of pharmaceuticals. This paper identifies and systematically classifies the prevailing pharmaceutical policies worldwide in relation to a country's income status. A literature search was undertaken to identify and taxonomize prevailing policies worldwide. Countries that apply those policies and those that do not were then grouped by income status. Pharmaceutical policies are linked to a country's socioeconomics. Developed countries have universal coverage and control pharmaceuticals with external and internal price referencing systems, and indirect price-cost controls; they carry out health technology assessments and demand utilization controls. Price-volume and risk-sharing agreements are also evolving. Developing countries are underperforming in terms of coverage and they rely mostly on restrictive state controls to regulate prices and expenditure. There are significant disparities worldwide in the access to pharmaceuticals, their use, and the reimbursement of costs. The challenge in high-income countries is to maintain access to care whilst dealing with trends in technology and aging. Essential drugs should be available to all; however, many low- and middle-income countries still provide most of their population with only poor access to medicines. As economies grow, there should be greater investment in pharmaceutical care, looking to the policies of high-income countries to increase efficiency. Pharmaceutical companies could also develop special access schemes with low prices to facilitate coverage in low-income countries.

  16. Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States.

    PubMed

    Le, Phong V V; Kumar, Praveen; Drewry, Darren T

    2011-09-13

    To meet emerging bioenergy demands, significant areas of the large-scale agricultural landscape of the Midwestern United States could be converted to second generation bioenergy crops such as miscanthus and switchgrass. The high biomass productivity of bioenergy crops in a longer growing season linked tightly to water use highlight the potential for significant impact on the hydrologic cycle in the region. This issue is further exacerbated by the uncertainty in the response of the vegetation under elevated CO(2) and temperature. We use a mechanistic multilayer canopy-root-soil model to (i) capture the eco-physiological acclimations of bioenergy crops under climate change, and (ii) predict how hydrologic fluxes are likely to be altered from their current magnitudes. Observed data and Monte Carlo simulations of weather for recent past and future scenarios are used to characterize the variability range of the predictions. Under present weather conditions, miscanthus and switchgrass utilized more water than maize for total seasonal evapotranspiration by approximately 58% and 36%, respectively. Projected higher concentrations of atmospheric CO(2) (550 ppm) is likely to decrease water used for evapotranspiration of miscanthus, switchgrass, and maize by 12%, 10%, and 11%, respectively. However, when climate change with projected increases in air temperature and reduced summer rainfall are also considered, there is a net increase in evapotranspiration for all crops, leading to significant reduction in soil-moisture storage and specific surface runoff. These results highlight the critical role of the warming climate in potentially altering the water cycle in the region under extensive conversion of existing maize cropping to support bioenergy demand.

  17. Role of Department of Defense Policies in Identifying Traumatic Brain Injuries Among Deployed US Service Members, 2001-2016.

    PubMed

    Agimi, Yll; Regasa, Lemma Ebssa; Ivins, Brian; Malik, Saafan; Helmick, Katherine; Marion, Donald

    2018-05-01

    To examine the role of Department of Defense policies in identifying theater-sustained traumatic brain injuries (TBIs). We conducted a retrospective study of 48 172 US military service members who sustained their first lifetime TBIs between 2001 and 2016 while deployed to Afghanistan or Iraq. We used multivariable negative binomial models to examine the changes in TBI incidence rates following the introduction of Department of Defense policies. Two Army policies encouraging TBI reporting were associated with an increase of 251% and 97% in TBIs identified following their implementation, respectively. Among airmen, the introduction of TBI-specific screening questions to the Post-Deployment Health Assessment was associated with a 78% increase in reported TBIs. The 2010 Department of Defense Directive Type Memorandum 09-033 was associated with another increase of 80% in the likelihood of being identified with a TBI among soldiers, a 51% increase among sailors, and a 124% increase among Marines. Department of Defense and service-specific policies introduced between 2006 and 2013 significantly increased the number of battlefield TBIs identified, successfully improving the longstanding problem of underreporting of TBIs.

  18. Biomass and nutrient mass of Acacia dealbata and Eucalyptus globulus bioenergy plantations

    Treesearch

    Timothy J. Albaugh; Rafael A. Rubilar; Chris A. Maier; Eduardo A. Acuña; Rachel L. Cook

    2017-01-01

    We quantified biomass and nutrient accumulation of Acacia dealbata Link and Eucalyptus globulus Labill. planted at stem densities of 5000 and 15000 ha-1 in a bioenergy plantation in Chile. We tested the hypotheses that species and stocking will not affect biomass or nutrient accumulation. Species and...

  19. Sustainable Land Use for Bioenergy in the 21st Century

    DTIC Science & Technology

    2011-06-01

    as pyrolysis and gasification are also applicable to burn biomass and produce electricity.61–63 Biomass can be used directly in existing co- fired...engineering specifications that may ultimately lead to high process efficiency. COMPARISON OF BIOMASS THERMAL CONVERSION PROCESSES Gasification ...thermal gasification of biomass and its application to electricity and fuel production. Biomass and Bioenergy 2008;32(7):573–581. 62. Caputo AC

  20. Dual-Use Bioenergy-Livestock Feed Potential of Giant Miscanthus, Giant Reed, and Miscane

    USDA-ARS?s Scientific Manuscript database

    High yielding perennial grasses could integrate bioenergy-livestock operations, thereby, offsetting diversions of cropland to lignocellulosic crops, but research is needed to determine chemical composition and digestibility of leaf and stem fractions that might affect downstream uses. The objective...

  1. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens?†

    PubMed Central

    Sattler, Scott E.; Funnell-Harris, Deanna L.

    2013-01-01

    Lignin is a ubiquitous polymer present in cell walls of all vascular plants, where it rigidifies and strengthens the cell wall structure through covalent cross-linkages to cell wall polysaccharides. The presence of lignin makes the cell wall recalcitrant to conversion into fermentable sugars for bioenergy uses. Therefore, reducing lignin content and modifying its linkages have become major targets for bioenergy feedstock development through either biotechnology or traditional plant breeding. In addition, lignin synthesis has long been implicated as an important plant defense mechanism against pathogens, because lignin synthesis is often induced at the site of pathogen attack. This article explores the impact of lignin modifications on the susceptibility of a range of plant species to their associated pathogens, and the implications for development of feedstocks for the second-generation biofuels industry. Surprisingly, there are some instances where plants modified in lignin synthesis may display increased resistance to associated pathogens, which is explored in this article. PMID:23577013

  2. Public opinion on motor vehicle-related injury prevention policies: a systematic review of a decade of research.

    PubMed

    Debinski, Beata; Clegg Smith, Katherine; Gielen, Andrea

    2014-01-01

    Legislation is an effective strategy for reducing road-related fatalities and injuries. Public opinion can be an impetus for passing new laws and can affect the success of their implementation, but little is known about the current state of public opinion toward existing and proposed road-related policies in the United States. This review describes the scope and results of research on public support for state- and local-level evidence-based motor vehicle- and bicycle-related policies. We identify gaps in our understanding of public support for these policies. Published U.S. literature and all reports from the NHTSA from the past decade (2003-2012) were searched for data on opinions about existing or proposed policies related to motor vehicle or bicycle injury prevention. Twenty-six studies fulfilled the inclusion criteria. In all, studies reported public opinion about 7 injury prevention topic areas: all-terrain vehicles (n = 1), automated enforcement with red light and speed cameras (n = 5), distracted driving (n = 4), drinking and driving (n = 5), graduated driver licensing (n = 7), helmets (n = 7), and seat belts (n = 4). Twenty-three studies focused only on one topic, and 3 sought public opinion about multiple topic areas. The studies revealed generally high levels of support for injury prevention policies in all topic areas. Fifteen studies collected information from national samples, and only 7 studies reported data from the state (n = 5) or local (n = 2) level. There is a relatively small evidence base on public opinion related to motor vehicle- and bicycle-related evidence-based policies; even less is less known for state- or county-specific policies. The findings of this review suggest that the public's opinion toward injury prevention legislation is generally favorable. This information can be used to communicate with the media and policy makers to reinforce the need for effective policy solutions to continuing motor vehicle injury problems. More research

  3. Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil.

    PubMed

    Mao, Yuejian; Yannarell, Anthony C; Davis, Sarah C; Mackie, Roderick I

    2013-03-01

    Biomass production for bioenergy may change soil microbes and influence ecosystem properties. To explore the impact of different bioenergy cropping systems on soil microorganisms, the compositions and quantities of soil microbial communities (16S rRNA gene) and N-cycling functional groups (nifH, bacterial amoA, archaeal amoA and nosZ genes) were assessed under maize, switchgrass and Miscanthus x giganteus at seven sites representing a climate gradient (precipitation and temperature) in Illinois, USA. Overall, the site-to-site variation in community composition surpassed the variation due to plant type, and microbial communities under each crop did not converge on a 'typical' species assemblage. Fewer than 5% of archaeal amoA, bacterial amoA, nifH and nosZ OTUs were significantly different among these crops, but the largest differences observed at each site were found between maize and the two perennial grasses. Quantitative PCR revealed that the abundance of the nifH gene was significantly higher in the perennial grasses than in maize, and we also found significantly higher total N in the perennial grass soils than in maize. Thus, we conclude that cultivation of these perennial grasses, instead of maize, as bioenergy feedstocks can improve soil ecosystem nitrogen sustainability by increasing the population size of N-fixing bacteria. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    PubMed

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Environmental, policy, and cultural factors related to physical activity among rural, African American women.

    PubMed

    Sanderson, Bonnie; Littleton, MaryAnn; Pulley, LeaVonne

    2002-01-01

    Sixty-one African American women (ages 20-50 years) from a rural community in Alabama participated in six focus groups. Barriers to and enablers of physical activity were identified and grouped into personal, environmental (social and physical), policy, and cultural themes for qualitative analyses. Personal factors included motivation, perceived health, feeling tired, and lack of time; social environmental factors included support from friends, family, and issues related to child care; physical environmental factors included weather, access to facilities, availability of sidewalks or other places to walk; policy factors included personal safety concerns (loose dogs, traffic, etc.) and inflexible work environments. Some, but not all, women perceived cultural differences as a factor affecting physical activity levels. Differences in socioeconomic levels and time demands among women of different cultures were identified as factors that may influence physical activity. Participants provided suggestions for community-based physical activity interventions using an environmental approach.

  6. Drinker Types, Harm, and Policy-Related Variables: Results from the 2011 International Alcohol Control Study in New Zealand.

    PubMed

    Wall, Martin; Casswell, Sally

    2017-05-01

    The aim was to identify a typology of drinkers in New Zealand based on alcohol consumption, beverage choice, and public versus private drinking locations and investigate the relationship between drinker types, harms experienced, and policy-related variables. Model-based cluster analysis of male and female drinkers including volumes of alcohol consumed in the form of beer, wine, spirits, and ready-to-drinks (RTDs) in off- and on-premise settings. Cluster membership was then related to harm measures: alcohol dependence, self-rated health; and to 3 policy-relevant variables: liking for alcohol adverts, price paid for alcohol, and time of purchase. Males and females were analyzed separately. Men fell into 4 and women into 14 clearly discriminated clusters. The male clusters consumed a relatively high proportion of alcohol in the form of beer. Women had a number of small extreme clusters and some consumed mainly spirits-based RTDs, while others drank mainly wine. Those in the higher consuming clusters were more likely to have signs of alcohol dependency, to report lower satisfaction with their health, to like alcohol ads, and to have purchased late at night. Consumption patterns are sufficiently distinctive to identify typologies of male and female alcohol consumers. Women drinkers are more heterogeneous than men. The clusters relate differently to policy-related variables. Copyright © 2017 by the Research Society on Alcoholism.

  7. Topographic and soil influences on root productivity of three bioenergy cropping systems

    Treesearch

    Todd A. Ontl; Kirsten S. Hofmockel; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka

    2013-01-01

    Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this need by quantifying annual root production of three bioenergy systems (continuous corn, triticale/sorghum, switchgrass) in response to variation in soil properties across a toposequence within a Midwestern...

  8. 29 CFR 1604.10 - Employment policies relating to pregnancy and childbirth.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Employment policies relating to pregnancy and childbirth... COMMISSION GUIDELINES ON DISCRIMINATION BECAUSE OF SEX § 1604.10 Employment policies relating to pregnancy... employment applicants or employees because of pregnancy, childbirth or related medical conditions is in prima...

  9. 29 CFR 1604.10 - Employment policies relating to pregnancy and childbirth.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Employment policies relating to pregnancy and childbirth... COMMISSION GUIDELINES ON DISCRIMINATION BECAUSE OF SEX § 1604.10 Employment policies relating to pregnancy... employment applicants or employees because of pregnancy, childbirth or related medical conditions is in prima...

  10. 29 CFR 1604.10 - Employment policies relating to pregnancy and childbirth.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Employment policies relating to pregnancy and childbirth... COMMISSION GUIDELINES ON DISCRIMINATION BECAUSE OF SEX § 1604.10 Employment policies relating to pregnancy... employment applicants or employees because of pregnancy, childbirth or related medical conditions is in prima...

  11. 29 CFR 1604.10 - Employment policies relating to pregnancy and childbirth.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Employment policies relating to pregnancy and childbirth... COMMISSION GUIDELINES ON DISCRIMINATION BECAUSE OF SEX § 1604.10 Employment policies relating to pregnancy... employment applicants or employees because of pregnancy, childbirth or related medical conditions is in prima...

  12. Identifying genetic relatives without compromising privacy

    PubMed Central

    He, Dan; Furlotte, Nicholas A.; Hormozdiari, Farhad; Joo, Jong Wha J.; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-01-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual’s genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy. PMID:24614977

  13. Identifying genetic relatives without compromising privacy.

    PubMed

    He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-04-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.

  14. Age-dependent population dynamics of the bioenergy crop Miscanthus x giganteus in Illinois

    USDA-ARS?s Scientific Manuscript database

    Rising global demand for liquid fuels, coupled with new technologies for converting biomass to ethanol, have generated intense interest in the development of herbaceous perennial bioenergy crops. Some plant species being considered as biofeedstocks share traits with invasive species and have histori...

  15. Scenarios of global agricultural biomass harvest reveal conflicts and trade-offs for bioenergy with CCS

    NASA Astrophysics Data System (ADS)

    Powell, Tom; Lenton, Tim

    2013-04-01

    We assess the quantitative potential for future land management to help rebalance the global carbon cycle by actively removing carbon dioxide (CO2) from the atmosphere with simultaneous bio-energy offsets of CO2 emissions, whilst meeting global food demand, preserving natural ecosystems and minimising CO2 emissions from land use change. Four alternative future scenarios are considered out to 2050 with different combinations of high or low technology food production and high or low meat diets. Natural ecosystems are protected except when additional land is necessary to fulfil the dietary demands of the global population. Dedicated bio-energy crops can only be grown on land that is already under management but is no longer needed for food production. We find that there is only room for dedicated bio-energy crops if there is a marked increase in the efficiency of food production (sustained annual yield growth of 1%, shifts towards more efficient animals like pigs and poultry, and increased recycling of wastes and residues). If there is also a return to lower meat diets, biomass energy with carbon storage (BECS) as CO2 and biochar could remove up to 4.0 Pg C per year in 2050. With the current trend to higher meat diets there is only room for limited expansion of bio-energy crops after 2035 and instead BECS must be based largely on biomass residues, removing up to 1.5 Pg C per year in. A high-meat, low-efficiency future would be a catastrophe for natural ecosystems (and thus for the humans that depend on their services) with around 8.5 Gha under cultivation in 2050. When included in a simple earth system model with a technological mitigation CO2 emission baseline these produce atmospheric CO2 concentrations of ~ 450-525ppm in 2050. In addition we assess the potential for future biodiversity loss under the scenarios due to three interacting factors; energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change

  16. Enhancing biomass utilization for bioenergy-crop rotation systems and alternative conversion processes

    USDA-ARS?s Scientific Manuscript database

    Biomass for bioenergy has a great deal of potential for decreasing our dependence upon fossil fuels and decreasing the net CO2 accumulation in the atmosphere. Crop residues are often promoted as a means of meeting the total biomass goals to provide sufficient amounts of materials for liquid fuel pro...

  17. Best management practices: Managing cropping systems for soil protection and bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  18. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK.

    PubMed

    Röder, Mirjam; Thornley, Patricia

    2018-04-01

    Considering the urgent need to shift to low carbon energy carriers, waste wood resources could provide an alternative energy feedstock and at the same time reduce emissions from landfill. This research examines the climate change impacts and related emission uncertainties of waste wood based energy. For this, different grades of waste wood and energy application have been investigated using lifecycle assessment. Sensitivity analysis has then been applied for supply chain processes and feedstock properties for the main emission contributing categories: transport, processing, pelletizing, urea resin fraction and related N 2 O formation. The results show, depending on the waste wood grade, the conversion option, scale and the related reference case, that emission reductions of up to 91% are possible for non-treated wood waste. Compared to this, energy from treated wood waste with low contamination can achieve up to 83% emission savings, similar to untreated waste wood pellets, but in some cases emissions from waste wood based energy can exceed the ones of the fossil fuel reference - in the worst case by 126%. Emission reductions from highly contaminated feedstocks are largest when replacing electricity from large-scale coal and landfill. The highest emission uncertainties are related to the wood's resin fraction and N 2 O formation during combustion and, pelletizing. Comparing wood processing with diesel and electricity powered equipment also generated high variations in the results, while emission variations related to transport are relatively small. Using treated waste wood as a bioenergy feedstock can be a valid option to reduce emissions from energy production but this is only realisable if coal and landfill gas are replaced. To achieve meaningful emission reduction in line with national and international climate change targets, pre-treatment of waste wood would be required to reduce components that form N 2 O during the energy conversion. Copyright © 2017

  19. Nursing home resident smoking policies.

    PubMed

    Stefanacci, Richard G; Lester, Paula E; Kohen, Izchak

    2008-01-01

    To identify nursing home standards related to resident smoking through a nation wide survey of directors of nursing. A national survey was distributed online and was completed by 248 directors of nursing. The directors of nurses answered questions concerning resident smoking including the criteria utilized to determine an unsafe resident smoker. For those residents identified as unsafe, the questions asked were specifically related to monitoring, staff involvement, safety precautions and policy. The results of the survey demonstrated a consistent policy practiced among facilities across the United States. The monitoring of nursing home residents is based on a resident's mental acuity, physical restrictions and equipment requirements. Once a resident was identified as a smoker at risk of harm to self or others, staff involvement ranged from distributing cigarettes to direct supervision. In addition, the majority of facilities required residents to wear fire resistant aprons and provided a fire extinguisher in smoking areas. Monitoring policies of nursing home residents who smoke starts with identifying those residents at risk based on an assessment of mental acuity, physical restrictions and equipment requirements. Those that are identified as being at risk smokers have their cigarettes controlled and distributed by nursing staff and are supervised by facility staff when smoking. This policy is implemented through written policy as well as staff education. Despite some discrepancies in the actual implementation of policies to supervise residents who smoke, the policies for assessment for at-risk smokers requiring monitoring is consistent on a national basis.

  20. European Lifelong Guidance Policy Network Representatives' Conceptions of the Role of Information and Communication Technologies Related to National Guidance Policies

    ERIC Educational Resources Information Center

    Kettunen, Jaana; Vuorinen, Raimo; Ruusuvirta, Outi

    2016-01-01

    This article reports findings from a phenomenographic investigation into European Lifelong Guidance Policy Network representatives' conceptions of the role of information and communication technologies (ICT) related to national lifelong guidance policies. The role of ICT in relation to national lifelong guidance policies was conceived as (1)…

  1. Clean Energy-Related Economic Development Policy across the States: Establishing a 2016 Baseline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Jeffrey J.

    States implement clean energy-related economic development policy to spur innovation, manufacturing, and to address other priorities. This report focuses on those policies most directly related to expanding new and existing manufacturing. The extent to which states invest in this policymaking depends on political drivers and jurisdictional economic development priorities. To date, no one source has collected all of the clean energy-related economic development policies available across the 50 states. Thus, it is unclear how many policies exist within each state and how these policies, when implemented, can drive economic development. Establishing the baseline of existing policy is a critical firstmore » step in determining the potential holistic impact of these policies on driving economic growth in a state. The goal of this report is to document the clean energy-related economic development policy landscape across the 50 states with a focus on policy that seeks to expand new or existing manufacturing within a state. States interested in promoting clean energy manufacturing in their jurisdictions may be interested in reviewing this landscape to determine how they compare to peers and to adjust their policies as necessary. This report documents over 900 existing clean energy-related economic development laws, financial incentives (technology-agnostic and clean energy focused), and other policies such as agency-directed programs and initiatives across the states.« less

  2. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential

    PubMed Central

    Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M. Cata

    2014-01-01

    Simple Summary Among the measures proposed to reduce environmental pollution from the livestock sector, animal nutrition has a strong potential to reduce enteric and manure storages methane emissions. Changes in diet composition also affect the bioenergy potential of dairy manures. Corn dried distillers grains with solubles (DDGS), which are rich in fat, can be included in animal diets to reduce enteric methane (CH4) emissions, while increasing the bioenergy potential of the animal manure during anaerobic digestion. The inclusion of 30% DDGS in the cow diet caused a significant increase of 14% in daily bioenergy production (NL methane day−1·cow−1). abstract The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet. PMID:26479885

  3. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    PubMed

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  4. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    USDA-ARS?s Scientific Manuscript database

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  5. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    USDA-ARS?s Scientific Manuscript database

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demands on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustaina...

  6. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production.

    PubMed

    Pujol Pereira, Engil Isadora; Suddick, Emma C; Six, Johan

    2016-01-01

    By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration.

  7. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production

    PubMed Central

    Pujol Pereira, Engil Isadora; Suddick, Emma C.; Six, Johan

    2016-01-01

    By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration. PMID:26963623

  8. Assessing School Wellness Policies and Identifying Priorities for Action: Results of a Bi-State Evaluation.

    PubMed

    Harvey, Susan P; Markenson, Deborah; Gibson, Cheryl A

    2018-05-01

    Obesity is a complex health problem affecting more than one-third of school-aged youth. The increasing obesity rates in Kansas and Missouri has been particularly concerning, with efforts being made to improve student health through the implementation of school wellness policies (SWPs). The primary purpose of this study was to conduct a rigorous assessment of SWPs in the bi-state region. SWPs were collected from 46 school districts. The Wellness School Assessment Tool (WellSAT) was used to assess comprehensiveness and strength. Additionally, focus group discussions and an online survey were conducted with school personnel to identify barriers and supports needed. Assessment of the SWPs indicated that most school districts failed to provide strong and specific language. Due to these deficiencies, districts reported lack of enforcement of policies. Several barriers to implementing the policies were reported by school personnel; supports needed for effective implementation were identified. To promote a healthful school environment, significant improvements are warranted in the strength and comprehensiveness of the SWPs. The focus group discussions provided insight as to where we need to bridge the gap between the current state of policies and the desired beneficial practices to support a healthy school environment. © 2018, American School Health Association.

  9. Towards a more holistic sustainability assessment framework for agro-bioenergy systems — A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arodudu, Oludunsin, E-mail: Oludunsin.Arodudu@zalf.de; Potsdam University, Institute of Earth and Environmental Sciences, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Golm; Helming, Katharina

    The use of life cycle assessment (LCA) as a sustainability assessment tool for agro-bioenergy system usually has an industrial agriculture bias. Furthermore, LCA generally has often been criticized for being a decision maker tool which may not consider decision takers perceptions. They are lacking in spatial and temporal depth, and unable to assess sufficiently some environmental impact categories such as biodiversity, land use etc. and most economic and social impact categories, e.g. food security, water security, energy security. This study explored tools, methodologies and frameworks that can be deployed individually, as well as in combination with each other for bridgingmore » these methodological gaps in application to agro-bioenergy systems. Integrating agronomic options, e.g. alternative farm power, tillage, seed sowing options, fertilizer, pesticide, irrigation into the boundaries of LCAs for agro-bioenergy systems will not only provide an alternative agro-ecological perspective to previous LCAs, but will also lead to the derivation of indicators for assessment of some social and economic impact categories. Deploying life cycle thinking approaches such as energy return on energy invested-EROEI, human appropriation of net primary production-HANPP, net greenhouse gas or carbon balance-NCB, water footprint individually and in combination with each other will also lead to further derivation of indicators suitable for assessing relevant environmental, social and economic impact categories. Also, applying spatio-temporal simulation models has a potential for improving the spatial and temporal depths of LCA analysis.« less

  10. Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed.

    PubMed

    Calicioglu, O; Brennan, R A

    2018-06-01

    The potential for improving bioenergy yields from duckweed, a fast-growing, simple, floating aquatic plant, was evaluated by subjecting the dried biomass directly to anaerobic digestion, or sequentially to ethanol fermentation and then anaerobic digestion, after evaporating ethanol from the fermentation broth. Bioethanol yields of 0.41 ± 0.03 g/g and 0.50 ± 0.01 g/g (glucose) were achieved for duckweed harvested from the Penn State Living-Filter (Lemna obscura) and Eco-Machine™ (Lemna minor/japonica and Wolffia columbiana), respectively. The highest biomethane yield, 390 ± 0.1 ml CH 4 /g volatile solids added, was achieved in a reactor containing fermented duckweed from the Living-Filter at a substrate-to-inoculum (S/I) ratio (i.e., duckweed to microorganism ratio) of 1.0. This value was 51.2% higher than the biomethane yield of a replicate reactor with raw (non-fermented) duckweed. The combined bioethanol-biomethane process yielded 70.4% more bioenergy from duckweed, than if anaerobic digestion had been run alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Forest bioenergy system to reduce the hazard of wildfires: White Mountains, Arizona

    Treesearch

    Daniel G. Neary; Elaine J. Zieroth

    2007-01-01

    In an innovative effort, the USDA Forest Service is planning to reduce the long-term threat of catastrophic wildfires by inaugurating a series of forest thinnings for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache-Sitgreaves National Forest. ''The Nutrioso Wildland/Urban Interface Fuels Reduction Project'...

  12. Identifying Hotspots in Land and Water Resource Uses on the Way towards Achieving the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Palazzo, A.; Havlik, P.; Van Dijk, M.; Leclere, D.

    2017-12-01

    Agriculture plays a key role in achieving adequate food, water, and energy security (as summarized in the Sustainable Development Goals SDGs) as populations grow and incomes rise. Yet, agriculture is confronted with an enormous challenge to produce more using less. Land and water resources are projected to be strongly affected by climate change demand and agriculture faces growing competition in the demand for these resources. To formulate policies that contribute to achieving the SDGs, policy makers need assessments that can anticipate and navigate the trade-offs within the water/land/energy domain. Assessments that identify locations or hotspots where trade-offs between the multiple, competing users of resources may exist must consider both the local scale impacts of resource use as well as regional scale socioeconomic trends, policies, and international markets that further contribute to or mitigate the impacts of resource trade-offs. In this study, we quantify impacts of increased pressure on the land system to provide agricultural and bioenergy products under increasingly scarce water resources using a global economic and land use model, GLOBIOM. We model the supply and demand of agricultural products at a high spatial resolution in an integrated approach that considers the impacts of global change (socioeconomic and climatic) on the biophysical availability and the growing competition of land and water. We also developed a biodiversity module that relates changes in land uses to changes in local species richness and global species extinction risk. We find that water available for agriculture and freshwater ecosystems decreases due to climate change and growing demand from other sectors (domestic, energy and industry) (Fig 1). Climate change impacts will limit areas suitable for irrigation and may lead to an expansion of rainfed areas in biodiverse areas. Impacts on food security from climate change are significant in some regions (SSA and SA) and policies

  13. Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops.

    PubMed

    Chen, Zhaojin; Zheng, Yuan; Ding, Chuanyu; Ren, Xuemin; Yuan, Jian; Sun, Feng; Li, Yuying

    2017-11-01

    Two energy crops (maize and soybean) were used in the remediation of cadmium-contaminated soils. These crops were used because they are fast growing, have a large biomass and are good sources for bioenergy production. The total accumulation of cadmium in maize and soybean plants was 393.01 and 263.24μg pot -1 , respectively. The rhizosphere bacterial community composition was studied by MiSeq sequencing. Phylogenetic analysis was performed using 16S rRNA gene sequences. The rhizosphere bacteria were divided into 33 major phylogenetic groups according to phyla. The dominant phylogenetic groups included Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes. Based on principal component analysis (PCA) and unweighted pair group with arithmetic mean (UPGMA) analysis, we found that the bacterial community was influenced by cadmium addition and bioenergy cropping. Three molecular ecological networks were constructed for the unplanted, soybean- and maize-planted bacterial communities grown in 50mgkg -1 cadmium-contaminated soils. The results indicated that bioenergy cropping increased the complexity of the bacterial community network as evidenced by a higher total number of nodes, the average geodesic distance (GD), the modularity and a shorter geodesic distance. Proteobacteria and Acidobacteria were the keystone bacteria connecting different co-expressed operational taxonomic units (OTUs). The results showed that bioenergy cropping altered the topological roles of individual OTUs and keystone populations. This is the first study to reveal the effects of bioenergy cropping on microbial interactions in the phytoremediation of cadmium-contaminated soils by network reconstruction. This method can greatly enhance our understanding of the mechanisms of plant-microbe-metal interactions in metal-polluted ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effect of fertilization on N2O emissions from a marginal soil used for perennial grass bioenergy production

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Karim, Imtiaz; Mason, Cedric; Tadipatri, Dhanya; Cary, Ian; Crawford, Ryan; Hansen, Julie; Crawford, Jamie; Mayton, Hilary; Steenhuis, Tammo; Richards, Brian

    2014-05-01

    Marginal lands constitute the primary land base available for development of bioenergy feedstocks in New York and the northeastern USA. Many of these soils are marginal because seasonal wetness prevents profitable row crop cultivation, but they are potentially suitable for perennial bioenergy feedstocks like switchgrass. Using these frequently wet soils for bioenergy production has multiple environmental and socio-economic benefits, yet little is known about how sustainable this practice is regarding greenhouse gas emissions - particularly in relation to the application of fertilizers. In a 2.2-ha field study near Ithaca, NY, USA, we are therefore monitoring greenhouse gas production from marginal silty clay loam soils cultivated with switchgrass. Here, we present results of our 2013 monitoring campaign, in which we assessed the effect of surface-applied granular ammonium sulfate-fertilizer (0, 56 and 112 kg N/ha) on N2O emissions along a natural catena from organic matter-rich wet lowland soil to drier midslope and upslope soils with higher rock fragment content. Sampling was done at 1 /2-week intervals around fertilization in June extending to 3-week intervals around harvest in September, giving a total of 15 sampling events. Emissions were sampled in a factorial design using four replicate static chambers per plot, and soil moisture, soil temperature and perched water table depth was assessed likewise. As expected, N2O emissions increased with N-fertilizer application. This effect of fertilization was much stronger than the effect of soil type or slope position. The greatest N2O fluxes were observed a few days after fertilization; we will explore and present the effects of rainfall, air temperature, soil moisture and soil temperature as potential drivers of smaller peaks occurring post-fertilization. Since the non-fertilized plots had negligible N2O emissions while still producing switchgrass at 6 Mg/ha, unfertilized switchgrass production is naturally most

  15. Developing a Multicomponent Model of Nutritious Food Access and Related Implications for Community and Policy Practice.

    PubMed

    Freedman, Darcy A; Blake, Christine E; Liese, Angela D

    2013-01-01

    Access to nutritious foods is limited in disenfranchised communities in the United States. Policies are beginning to focus on improving nutritious food access in these contexts; yet, few theories are available to guide this work. We developed a conceptual model of nutritious food access based on the qualitative responses of food consumers in 2 different regions of the American South. Five domains (economic, service delivery, spatial-temporal, social, and personal) and related dimensions of nutritious food access were identified. The conceptual model provides practical guidance to researchers, policy makers, and practitioners working to improve nutritious food access in communities.

  16. Developing a Multicomponent Model of Nutritious Food Access and Related Implications for Community and Policy Practice

    PubMed Central

    FREEDMAN, DARCY A.; BLAKE, CHRISTINE E.; LIESE, ANGELA D.

    2014-01-01

    Access to nutritious foods is limited in disenfranchised communities in the United States. Policies are beginning to focus on improving nutritious food access in these contexts; yet, few theories are available to guide this work. We developed a conceptual model of nutritious food access based on the qualitative responses of food consumers in 2 different regions of the American South. Five domains (economic, service delivery, spatial–temporal, social, and personal) and related dimensions of nutritious food access were identified. The conceptual model provides practical guidance to researchers, policy makers, and practitioners working to improve nutritious food access in communities. PMID:24563605

  17. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.

    PubMed

    Robertson, G Philip; Hamilton, Stephen K; Del Grosso, Stephen J; Parton, William J

    2011-06-01

    The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well known, increasingly well documented, and recalcitrant: freshwater and coastal marine eutrophication, groundwater pollution, soil organic matter loss, and a warming atmosphere. The conversion of marginal lands not now farmed to annual grain production, including the repatriation of Conservation Reserve Program (CRP) and other conservation set-aside lands, will further exacerbate the biogeochemical imbalance of these landscapes, as could pressure to further simplify crop rotations. The expected emergence of biorefinery and combustion facilities that accept cellulosic materials offers an alternative outcome: agricultural landscapes that accumulate soil carbon, that conserve nitrogen and phosphorus, and that emit relatively small amounts of nitrous oxide to the atmosphere. Fields in these landscapes are planted to perennial crops that require less fertilizer, that retain sediments and nutrients that could otherwise be transported to groundwater and streams, and that accumulate carbon in both soil organic matter and roots. If mixed-species assemblages, they additionally provide biodiversity services. Biogeochemical responses of these systems fall chiefly into two areas: carbon neutrality and water and nutrient conservation. Fluxes must be measured and understood in proposed cropping systems sufficient to inform models that will predict biogeochemical behavior at field, landscape, and regional scales. Because tradeoffs are inherent to these systems, a systems approach is imperative, and because potential biofuel cropping systems and their environmental contexts are complex and cannot be exhaustively tested, modeling will be instructive. Modeling alternative biofuel cropping systems converted

  18. Scenarios of bioenergy development impacts on regional groundwater withdrawals

    USGS Publications Warehouse

    Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    Irrigation increases agricultural productivity, but it also stresses water resources (Huffaker and Hamilton 2007). Drought and the potential for drier conditions resulting from climate change could strain water supplies in landscapes where human populations rely on finite groundwater resources for drinking, agriculture, energy, and industry (IPCC 2007). For instance, in the North American Great Plains, rowcrops are utilized for livestock feed, food, and bioenergy production (Cassman and Liska 2007), and a large portion is irrigated with groundwater from the High Plains aquifer system (McGuire 2011). Under projected future climatic conditions, greater crop water use requirements and diminished groundwater recharge rates could make rowcrop irrigation less feasible in some areas (Rosenberg et al. 1999; Sophocleous 2005). The Rainwater Basin region of south central Nebraska, United States, is an intensively farmed and irrigated Great Plains landscape dominated by corn (Zea mays L.) and soybean (Glycine max L.) production (Bishop and Vrtiska 2008). Ten starch-based ethanol plants currently service the region, producing ethanol from corn grain (figure 1). In this study, we explore the potential of switchgrass (Panicum virgatum L.), a drought-tolerant alternative bioenergy feedstock, to impact regional annual groundwater withdrawals for irrigation under warmer and drier future conditions. Although our research context is specific to the Rainwater Basin and surrounding North American Great Plains, we believe the broader research question is internationally pertinent and hope that this study simulates similar research in other areas.

  19. Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Corbera, Esteve; Bolwig, Simon; Hunsberger, Carol

    2013-09-01

    Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these models do not consider. Maintaining and enhancing robust livelihoods upon bioenergy deployment is an equally important sustainability goal that warrants greater attention. The social implications of biofuel production are complex, varied and place-specific, difficult to model, operationalize and quantify. However, a rapidly developing body of social science literature is advancing the understanding of these interactions. In this letter we link human geography research on the interaction between biofuel crops and livelihoods in developing countries to integrated assessments on biofuels. We review case-study research focused on first-generation biofuel crops to demonstrate that food, income, land and other assets such as health are key livelihood dimensions that can be impacted by such crops and we highlight how place-specific and global dynamics influence both aggregate and distributional outcomes across these livelihood dimensions. We argue that place-specific production models and land tenure regimes mediate livelihood outcomes, which are also in turn affected by global and regional markets and their resulting equilibrium dynamics. The place-specific perspective suggests that distributional consequences are a crucial complement to aggregate outcomes; this has not been given enough weight in comprehensive assessments to date. By narrowing the gap between place-specific case studies and global models, our discussion offers a route towards integrating livelihood and equity considerations into scenarios of future bioenergy deployment, thus contributing to a key challenge in sustainability sciences.

  20. Identifying Barriers to Appropriate Use of Metabolic/Bariatric Surgery for Type 2 Diabetes Treatment: Policy Lab Results

    PubMed Central

    Rubin, Jennifer K.; Hesketh, Rachel; Martin, Adam; Herman, William H.; Rubino, Francesco

    2016-01-01

    Despite increasing recognition of the efficacy, safety, and cost-effectiveness of bariatric/metabolic surgery in the treatment of type 2 diabetes, few patients who may be appropriate candidates and may benefit from this type of surgery avail themselves of this treatment option. To identify conceptual and practical barriers to appropriate use of surgical procedures, a Policy Lab was hosted at the 3rd World Congress on Interventional Therapies for Type 2 Diabetes on 29 September 2015. Twenty-six stakeholders participated in the Policy Lab, including academics, clinicians, policy-makers, industry leaders, and patient representatives. Participants were provided with a summary of available evidence about the cost-effectiveness of bariatric/metabolic surgery and the costs of increasing the use of bariatric/metabolic surgery, using U.K. and U.S. scenarios as examples of distinct health care systems. There was widespread agreement among this group of stakeholders that bariatric/metabolic surgery is a legitimate and cost-effective approach to the treatment of type 2 diabetes in obese patients. The following four building blocks were identified to facilitate policy changes: 1) communicating the scale of the costs and harms associated with rising prevalence of type 2 diabetes; 2) properly articulating the role of bariatric/metabolic surgery for certain population groups; 3) identifying new funding sources for bariatric/metabolic surgery; and 4) incorporating bariatric/metabolic surgery into the appropriate clinical pathways. Although more research is needed to identify specific clinical scenarios for the prioritization of bariatric/metabolic surgery, the case appears to be strong enough to engage relevant policy-makers and practitioners in a concerted discussion of how to better use metabolic surgical resources in conjunction with other interventions in good diabetes practice. PMID:27222554

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Katherine V.; Wise, Marshall A.; Kyle, G. Page

    Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, carbon cycle, and carbon prices of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrument—the carbon tax, but with five alternative bioenergy and land-use policy architectures. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reducemore » land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy taxes and constraints, on the other hand, have little effect on food prices, but can result in increased carbon and energy prices.« less

  2. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.

    PubMed

    Mullet, John; Morishige, Daryl; McCormick, Ryan; Truong, Sandra; Hilley, Josie; McKinley, Brian; Anderson, Robert; Olson, Sara N; Rooney, William

    2014-07-01

    Sorghum is emerging as an excellent genetic model for the design of C4 grass bioenergy crops. Annual energy Sorghum hybrids also serve as a source of biomass for bioenergy production. Elucidation of Sorghum's flowering time gene regulatory network, and identification of complementary alleles for photoperiod sensitivity, enabled large-scale generation of energy Sorghum hybrids for testing and commercial use. Energy Sorghum hybrids with long vegetative growth phases were found to accumulate more than twice as much biomass as grain Sorghum, owing to extended growing seasons, greater light interception, and higher radiation use efficiency. High biomass yield, efficient nitrogen recycling, and preferential accumulation of stem biomass with low nitrogen content contributed to energy Sorghum's elevated nitrogen use efficiency. Sorghum's integrated genetics-genomics-breeding platform, diverse germplasm, and the opportunity for annual testing of new genetic designs in controlled environments and in multiple field locations is aiding fundamental discovery, and accelerating the improvement of biomass yield and optimization of composition for biofuels production. Recent advances in wide hybridization between Sorghum and other C4 grasses could allow the deployment of improved genetic designs of annual energy Sorghums in the form of wide-hybrid perennial crops. The current trajectory of energy Sorghum genetic improvement indicates that it will be possible to sustainably produce biofuels from C4 grass bioenergy crops that are cost competitive with petroleum-based transportation fuels. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Awareness, Facilitators, and Barriers to Policy Implementation Related to Obesity Prevention for Primary School Children in Malaysia.

    PubMed

    Chan, Camelina; Moy, Foong Ming; Lim, Jennifer N W; Dahlui, Maznah

    2018-03-01

    To assess the awareness, facilitators, and barriers to policy implementation related to obesity prevention for primary school children. A cross-sectional study administered using an online questionnaire. Conducted in 447 primary schools in a state in Malaysia. One school administrator from each school served as a participant. The questionnaires consisted of 32 items on awareness, policy implementation, and facilitators and barriers to policy implementation. Descriptive analysis was used to describe the awareness, facilitators, and barriers of policies implementation. Association between schools' characteristics and policy implementation was assessed using logistic regression. The majority (90%) of school administrators were aware of the policies. However, only 50% to 70% of schools had implemented the policies fully. Reported barriers were lack of equipment, insufficient training, and limited time to complete implementation. Facilitators of policy implementation were commitment from the schools, staff members, students, and canteen operators. Policy implementation was comparable in all school types and locality; except the policy on "Food and Drinks sold at the school canteens" was implemented by more rural schools compared to urban schools (odds ratio: 1.74, 95% confidence interval: 1.13-2.69). Majority of the school administrators were aware of the existing policies; however, the implementation was only satisfactory. The identified barriers to policy implementation were modifiable and thus, the stakeholders should consider restrategizing plans in overcoming them.

  4. Barriers to Gender Transition-Related Healthcare: Identifying Underserved Transgender Adults in Massachusetts

    PubMed Central

    White Hughto, Jaclyn M.; Rose, Adam J.; Pachankis, John E.; Reisner, Sari L.

    2017-01-01

    Abstract Purpose: The present study sought to examine whether individual (e.g., age, gender), interpersonal (e.g., healthcare provider discrimination), and structural (e.g., lack of insurance coverage) factors are associated with access to transition-related care in a statewide sample of transgender adults. Method: In 2013, 364 transgender residents of Massachusetts completed an electronic web-based survey online (87.1%) or in person (12.9%). A multivariable logistic regression model tested whether individual, interpersonal, and structural factors were associated with access to transition-related care. Results: Overall, 23.6% reported being unable to access transition-related care in the past 12 months. In a multivariable model, younger age, low income, low educational attainment, private insurance coverage, and healthcare discrimination were significantly associated with being unable to access transition-related care (all p<0.05). Discussion: Despite state nondiscrimination policies and universal access to healthcare, many of the Massachusetts transgender residents sampled were unable to access transition-related care. Multilevel interventions are needed, including supportive policies and policy enforcement, to ensure that underserved transgender adults can access medically necessary transition-related care. PMID:29082331

  5. Effect of Bioenergy Demands and Supply Response on Markets, Carbon, and Land Use

    Treesearch

    Karen L. Abt; Robert C. Abt; Christopher Galik

    2012-01-01

    An increase in the demand for wood for energy, including liquid fuels, bioelectricity, and pellets, has the potential to affect traditional wood users, forestland uses, management intensities, and, ultimately, carbon sequestration. Recent studies have shown that increases in bioenergy harvests could lead to displacement of traditional wood-using industries in the short...

  6. The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource.

    PubMed

    Wi, Seung Gon; Kim, Hyun Joo; Mahadevan, Shobana Arumugam; Yang, Duck-Joo; Bae, Hyeun-Jong

    2009-12-01

    Sea weed (Ceylon moss) possesses comparable bioenergy production potential to that of land plants. Ceylon moss has high content of carbohydrates, typically galactose (23%) and glucose (20%). We have explored the possibility of sodium chlorite in Ceylon moss pretreatment that can ultimately increase the efficiency of enzymatic saccharification. In an acidic medium, chlorite generates ClO(2) molecules that transform lignin into soluble compounds without any significant loss of carbohydrate content and this procedure is widely used as an analytical method for holocellulose determination. Sodium chlorite-pretreated samples resulted in glucose yield up to 70% with contrast of only 5% was obtained from non-pretreated samples. The efficiency of enzymatic hydrolysis is significantly improved by sodium chlorite pretreatment, and thus sodium chlorite pretreatment is potentially a very useful tool in the utilisation of Ceylon moss biomass for ethanol production or bioenergy purposes.

  7. Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production

    PubMed Central

    Reza, M. Toufiq; Werner, Maja; Pohl, Marcel; Mumme, Jan

    2014-01-01

    Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only. PMID:24962786

  8. Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops

    USDA-ARS?s Scientific Manuscript database

    Genetic modification of dedicated bioenergy crops, such as switchgrass, will play a major role in crop improvement for a wide range of beneficial traits specific to biofuels. One obstacle that arises regarding transgenic improvement of perennials used for biofuels is the propensity of these plants t...

  9. Alcohol and alcohol-related harm in China: policy changes needed

    PubMed Central

    Tang, Yi-lang; Xiang, Xiao-jun; Wang, Xu-yi; Cubells, Joseph F; Babor, Thomas F

    2013-01-01

    Abstract In China, alcohol consumption is increasing faster than anywhere else in the world. A steady increase in alcohol production has also been observed in the country, together with a rise in alcohol-related harm. Despite these trends, China’s policies on the sale and consumption of alcoholic beverages are weak compared with those of other countries in Asia. Weakest of all are its policies on taxation, drink driving laws, alcohol sale to minors and marketing licenses. The authors of this descriptive paper draw attention to the urgent need for public health professionals and government officials in China to prioritize population surveillance, research and interventions designed to reduce alcohol use disorders. They describe China’s current alcohol policies and recent trends in alcohol-related harm and highlight the need for health officials to conduct a thorough policy review from a public health perspective, using as a model the World Health Organization’s global strategy to reduce the harmful use of alcohol. PMID:23599550

  10. On the long-term hydroclimatic sustainability of perennial bioenergy crop expansion over the United States

    USDA-ARS?s Scientific Manuscript database

    Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switchgrass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy)...

  11. A synthesis of biomass utilization for bioenergy production in the Western United States.

    Treesearch

    David L. Nicholls; Robert A. Monserud; Dennis P. Dykstra

    2008-01-01

    We examine the use of woody residues, primarily from forest harvesting or wood products manufacturing operations (and to a limited degree from urban wood wastes), as a feedstock for direct-combustion bioenergy systems for electrical or thermal power applications. We examine opportunities for utilizing biomass for energy at several scales, with an emphasis on larger...

  12. Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks.

    PubMed

    Zhu, Xiaoyan; Yao, Qingzhu

    2011-12-01

    It is technologically possible for a biorefinery to use a variety of biomass as feedstock including native perennial grasses (e.g., switchgrass) and agricultural residues (e.g., corn stalk and wheat straw). Incorporating the distinct characteristics of various types of biomass feedstocks and taking into account their interaction in supplying the bioenergy production, this paper proposed a multi-commodity network flow model to design the logistics system for a multiple-feedstock biomass-to-bioenergy industry. The model was formulated as a mixed integer linear programming, determining the locations of warehouses, the size of harvesting team, the types and amounts of biomass harvested/purchased, stored, and processed in each month, the transportation of biomass in the system, and so on. This paper demonstrated the advantages of using multiple types of biomass feedstocks by comparing with the case of using a single feedstock (switchgrass) and analyzed the relationship of the supply capacity of biomass feedstocks to the output and cost of biofuel. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. SRWC bioenergy productivity and economic feasibility on marginal lands.

    PubMed

    Ghezehei, Solomon B; Shifflett, Shawn D; Hazel, Dennis W; Nichols, Elizabeth Guthrie

    2015-09-01

    Evolving bioenergy markets necessitate consideration of marginal lands for woody biomass production worldwide particularly the southeastern U.S., a prominent wood pellet exporter to Europe. Growing short rotation woody crops (SRWCs) on marginal lands minimizes concerns about using croplands for bioenergy production and reinforces sustainability of wood supply to existing and growing global biomass markets. We estimated mean annual aboveground green biomass increments (MAIs) and assessed economic feasibility of various operationally established (0.5 ha-109 ha) SRWC stands on lands used to mitigate environmental liabilities of municipal wastewater, livestock wastewater and sludge, and subsurface contamination by petroleum and pesticides. MAIs (Mg ha(-1) yr(-1)) had no consistent relationship with stand density or age. Non-irrigated Populus, Plantanus occidentalis L. and Pinus taeda L. stands produced 2.4-12.4 Mg ha(-1) yr(-1). Older, irrigated Taxodium distchum L., Fraxinus pennsylvanica L., and coppiced P. occidentalis stands had higher MAIs (10.6-21.3 Mg ha(-1) yr(-1)) than irrigated Liquidambar styraciflua L. and non-coppiced, irrigated P. occidentalis (8-18 Mg ha(-1) yr(-1)). Natural hardwood MAIs at 20-60 years were less than hardwood and P. taeda productivities at 5-20 years. Unlike weed control, irrigation and coppicing improved managed hardwood productivity. Rotation length affected economic outcomes although the returns were poor due to high establishment and maintenance costs, low productivities and low current stumpage values, which are expected to quickly change with development of robust global markets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Environmental and economic evaluation of bioenergy in Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yimin Zhang; Shiva Habibi; Heather L. MacLean

    2007-08-15

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO{sub 2} equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial light-duty vehicle fleet emissions between 1.3 and 2.5 million t of CO{sub 2} equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices (more » $70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($$22/t of CO{sub 2} equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($$92/t of CO{sub 2} equivalent). 67 refs., 5 figs., 7 tabs.« less

  15. Bangladesh policy on prevention and control of non-communicable diseases: a policy analysis.

    PubMed

    Biswas, Tuhin; Pervin, Sonia; Tanim, Md Imtiaz Alam; Niessen, Louis; Islam, Anwar

    2017-06-19

    This paper is aimed at critically assessing the extent to which Non-Communicable Disease NCD-related policies introduced in Bangladesh align with the World Health Organization's (WHO) 2013-2020 Action Plan for the Global Strategy for the Prevention and Control of NCDs. The authors reviewed all relevant policy documents introduced by the Government of Bangladesh since its independence in 1971. The literature review targeted scientific and grey literature documents involving internet-based search, and expert consultation and snowballing to identify relevant policy documents. Information was extracted from the documents using a specific matrix, mapping each document against the six objectives of the WHO 2013-2020 Action Plan for the Global Strategy for the Prevention and Control of NCDs. A total of 51 documents were identified. Seven (14%) were research and/or surveys, nine were on established policies (17%), while seventeen (33%) were on action programmes. Five (10%) were related to guidelines and thirteen (25%) were strategic planning documents from government and non-government agencies/institutes. The study covered documents produced by the Government of Bangladesh as well as those by quasi-government and non-government organizations irrespective of the extent to which the intended policies were implemented. The policy analysis findings suggest that although the government has initiated many NCD-related policies or programs, they lacked proper planning, implementation and monitoring. Consequently, Bangladesh over the years had little success in effectively addressing the growing burden of non-communicable diseases. It is imperative that future research critically assess the effectiveness of national NCD policies by monitoring their implementation and level of population coverage.

  16. Obesity Policy Action framework and analysis grids for a comprehensive policy approach to reducing obesity.

    PubMed

    Sacks, G; Swinburn, B; Lawrence, M

    2009-01-01

    A comprehensive policy approach is needed to control the growing obesity epidemic. This paper proposes the Obesity Policy Action (OPA) framework, modified from the World Health Organization framework for the implementation of the Global Strategy on Diet, Physical Activity and Health, to provide specific guidance for governments to systematically identify areas for obesity policy action. The proposed framework incorporates three different public health approaches to addressing obesity: (i) 'upstream' policies influence either the broad social and economic conditions of society (e.g. taxation, education, social security) or the food and physical activity environments to make healthy eating and physical activity choices easier; (ii) 'midstream' policies are aimed at directly influencing population behaviours; and (iii) 'downstream' policies support health services and clinical interventions. A set of grids for analysing potential policies to support obesity prevention and management is presented. The general pattern that emerges from populating the analysis grids as they relate to the Australian context is that all sectors and levels of government, non-governmental organizations and private businesses have multiple opportunities to contribute to reducing obesity. The proposed framework and analysis grids provide a comprehensive approach to mapping the policy environment related to obesity, and a tool for identifying policy gaps, barriers and opportunities.

  17. Cover crop and nitrogen fertilization influence soil carbon and nitrogen under bioenergy sweet sorghum

    USDA-ARS?s Scientific Manuscript database

    Cover crop and N fertilization may maintain soil C and N levels under sweet sorghum (Sorghum bicolor [L.] Moench) biomass harvested for bioenergy production. The effect of cover crops (hairy vetch [Vicia villosa Roth], rye [Secaele cereale L.], hairy vetch/rye mixture, and the control [no cover crop...

  18. Land conversion to bioenergy production: water budget and sediment output in a semiarid grassland

    USDA-ARS?s Scientific Manuscript database

    Switchgrass based bioenergy production has been considered a feasible alternative of land use for the mixed-grass prairie and marginal croplands in the High Plains. However, little is known of the effect of this land use change on the water cycle and associated sediment output in this water controll...

  19. Precipitation partitioning in short rotation bioenergy crops: implications for downstream water availability.

    Treesearch

    Peter Caldwell; Chelcy F. Miniat; Doug Aubrey; Rhett Jackson; Jeff McDonnell; Ken W. Krauss; James S. Latimer

    2016-01-01

    The southern United States is a potential leader in producing biofuels from intensively managed, short rotation (8–12 years) woody crops such as southern pines, and native and non-native hardwoods. However, their accelerated development under intensive management has raised concerns that fast-growing bioenergy crops could reduce recharge to stream flows and groundwater...

  20. Bioenergy Technologies Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Bioenergy Technologies Office (BETO) is accelerating the commercialization of first-of-a-kind technologies that use our nation’s abundant renewable biomass resources for the production of advanced biofuels and biobased products. Non-food sources of biomass, such as algae, agricultural residues and forestry trimmings, and energy crops like switchgrass, are being used in BETO-supported, cutting-edge technologies to produce drop-in biofuels, including renewable gasoline, diesel, and jet fuels. BETO is also investigating how to improve the economics of biofuel production by converting biomass into higher-value chemicals and products that historically have always been derived from petroleum.

  1. Woody biomass for bioenergy and biofuels in the United States -- a briefing paper

    Treesearch

    Eric M. White

    2010-01-01

    Woody biomass can be used for the generation of heat, electricity, and biofuels. In many cases, the technology for converting woody biomass into energy has been established for decades, but because the price of woody biomass energy has not been competitive with traditional fossil fuels, bioenergy production from woody biomass has not been widely adopted. However,...

  2. Establishment and yield of perennial grass monocultures and binary mixtures for bioenergy in North Dakota

    USDA-ARS?s Scientific Manuscript database

    To develop appropriate bioenergy production systems to match site-specific situations, establishment and yield were evaluated for switchgrass, intermediate wheatgrass, tall wheatgrass, and three binary mixtures at four sites in North Dakota from 2006 to 2011. Canopy cover at harvest for intermediat...

  3. A Legal Analysis of Federal Disability Law as Related to Emerging Technology: Guidelines for Postsecondary Leadership, Policy, and Practice

    ERIC Educational Resources Information Center

    Ford, Roderick Dwayne

    2014-01-01

    This dissertation identified and described the legal requirements imposed by federal disability mandates and case law related to emerging technology. Additionally, the researcher created a legal framework (guidelines) for higher education institutions to consider during policy development and implementation of emerging technology by providing an…

  4. Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

    NASA Astrophysics Data System (ADS)

    Henner, Dagmar N.; Smith, Pete; Davies, Christian; McNamara, Niall P.

    2015-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy with higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by the unpredictable climate change currently going on. The goal of this project is to develop a comprehensive model that covers as many ecosystem services as possible at a Continental level including biodiversity, water, GHG emissions, soil, and cultural services. The distribution and production of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC) and Short Rotation Forestry (SRF), is currently being modelled, and ecosystem models will be used to examine the impacts of these crops on ecosystem services. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be utilised. Research will focus on optimisation of land use change feedbacks on ecosystem services and biodiversity, and weighting of the importance of the individual ecosystem services. Energy crops will be modelled using low, medium and high climate change scenarios for the years between 2015 and 2050. We will present first results for GHG emissions and soil organic carbon change after different land use change scenarios (e.g. arable to Miscanthus, forest to SRF), and with different climate warming scenarios. All this will be complemented by the presentation of a matrix

  5. Impacts of licensed premises trading hour policies on alcohol-related harms.

    PubMed

    Atkinson, Jo-An; Prodan, Ante; Livingston, Michael; Knowles, Dylan; O'Donnell, Eloise; Room, Robin; Indig, Devon; Page, Andrew; McDonnell, Geoff; Wiggers, John

    2018-07-01

    Evaluations of alcohol policy changes demonstrate that restriction of trading hours of both 'on'- and 'off'-licence venues can be an effective means of reducing rates of alcohol-related harm. Despite this, the effects of different trading hour policy options over time, accounting for different contexts and demographic characteristics, and the common co-occurrence of other harm reduction strategies in trading hour policy initiatives, are difficult to estimate. The aim of this study was to use dynamic simulation modelling to compare estimated impacts over time of a range of trading hour policy options on various indicators of acute alcohol-related harm. An agent-based model of alcohol consumption in New South Wales, Australia was developed using existing research evidence, analysis of available data and a structured approach to incorporating expert opinion. Five policy scenarios were simulated, including restrictions to trading hours of on-licence venues and extensions to trading hours of bottle shops. The impact of the scenarios on four measures of alcohol-related harm were considered: total acute harms, alcohol-related violence, emergency department (ED) presentations and hospitalizations. Simulation of a 3 a.m. (rather than 5 a.m.) closing time resulted in an estimated 12.3 ± 2.4% reduction in total acute alcohol-related harms, a 7.9 ± 0.8% reduction in violence, an 11.9 ± 2.1% reduction in ED presentations and a 9.5 ± 1.8% reduction in hospitalizations. Further reductions were achieved simulating a 1 a.m. closing time, including a 17.5 ± 1.1% reduction in alcohol-related violence. Simulated extensions to bottle shop trading hours resulted in increases in rates of all four measures of harm, although most of the effects came from increasing operating hours from 10 p.m. to 11 p.m. An agent-based simulation model suggests that restricting trading hours of licensed venues reduces rates of alcohol-related harm and extending trading hours of bottle

  6. Assessing the Impacts of Land Use Change from Cotton to Perennial Bioenergy Grasses on Hydrological Fluxes and Water Quality in a Semi-Arid Agricultural Watershed Using the APEX Model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ale, S.; Rajan, N.

    2015-12-01

    The semi-arid Texas High Plains (THP) region, where cotton (Gossypium hirsutum L.) is grown in vast acreage, has the potential to grow perennial bioenergy grasses. A change in land use from cotton cropping systems to perennial grasses such as Alamo switchgrass (Panicum virgatum L.) and Miscanthus giganteus (Miscanthus sinensis Anderss. [Poaceae]) can significantly affect regional hydrologic cycle and water quality. Assessing the impacts of this potential land use change on hydrology and water quality enables the environmental assessment of feasibility to grow perennial grasses in this region to meet the U.S. national bioenergy target of 2022. The Agricultural Policy/Environmental eXtender (APEX) model was used in this study to assess the impacts of replacing cotton with switchgrass and Miscanthus on water and nitrogen balances in the upstream subwatershed of the Double Mountain Fork Brazos watershed in the THP, which contains 52% cotton land use. The APEX model was initially calibrated against observed streamflow and crop yield data. Since observed data on nitrogen loads in streamflow was not available for this subwatershed, we calibrated the APEX model against the SWAT-simulated nitrogen loads at the outlet of this subwatershed, which were obtained in a parallel study. The calibrated APEX model was used to simulate the impacts of land use change from cotton to Miscanthus and switchgrass on surface and subsurface water and nitrogen balances. Preliminary results revealed that the average (1994-2009) annual surface runoff decreased by 84% and 66% under the irrigated and dryland switchgrass scenarios compared to the baseline scenarios. Average annual percolation increased by 106% and 57% under the irrigated and dryland switchgrass scenarios relative to the baseline scenarios. Preliminary results also indicated Miscanthus and switchgrass appeared to be superior to cotton in terms of better water conservation and water quality, and minimum crop management requirements.

  7. Report: Inconsistencies With EPA Policy Identified in Region 10's Biweekly Pay Cap Waiver Process

    EPA Pesticide Factsheets

    Report #18-P-0068, January 12, 2018. We identified issues with documentation and review of biweekly pay cap waivers at Region 10, resulting from a lack of an internal policy or process. Region 10 recently issued a new procedure that addresses our concerns.

  8. Policy interventions related to medicines: Survey of measures taken in European countries during 2010-2015.

    PubMed

    Vogler, Sabine; Zimmermann, Nina; de Joncheere, Kees

    2016-12-01

    Policy-makers can use a menu of pharmaceutical policy options. This study aimed to survey these measures that were implemented in European countries between 2010 and 2015. We did bi-annual surveys with competent authorities of the Pharmaceutical Pricing and Reimbursement Information network. Additionally, we consulted posters produced by members of this network as well as further published literature. Information on 32 European countries (all European Union Member States excluding Luxembourg; Iceland, Norway, Serbia, Switzerland, Turkey) was included. 557 measures were reported between January 2010 and December 2015. The most frequently mentioned measure was price reductions and price freezes, followed by changes in patient co-payments, modifications related to the reimbursement lists and changes in distribution remuneration. Most policy measures were identified in Portugal, Greece, Belgium, France, the Czech Republic, Iceland, Spain and Germany. 22% of the measures surveyed could be classified as austerity. Countries that were strongly hit by the financial crisis implemented most policy changes, usually aiming to generate savings and briefly after the emergence of the crisis. Improvements in the economic situation tended to lead to an easing of austerity measures. Countries also implemented policies that aimed to enhance enforcement of existing measures and increase efficiency. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment

    DOE PAGES

    Qin, Zhangcai; Zhuang, Qianlai; Cai, Ximing; ...

    2017-08-31

    We present that bioenergy can be a promising solution to the energy, food and environment trilemma in China. Currently this coal-dependent nation is in urgent need of alternative fuels to secure its future energy and improve the environment. Biofuels derived from crop residues and bioenergy crops emerge as a great addition to renewable energy in China without compromising food production. This paper reviews bioenergy resources from existing conventional crop (e.g., corn, wheat and rice) residues and energy crops (e.g., Miscanthus) produced on marginal lands. The impacts of biofuel production on ecosystem services are also discussed in the context of biofuel'smore » life cycle. It is estimated that about 280 million metric tons (Mt) of crop residue-based biomass (or 65 Mt of ethanol) and over 150 Mt of energy crop-based ethanol can become available each year, which far exceeds current national fuel ethanol production (<2 Mt year -1) and the 2020 national target of 10 Mt year -1. Review on environmental impacts suggested that substituting fossil fuels with biofuels could significantly reduce greenhouse gas emissions and air pollution (e.g., particulate matter). However, the impacts of biofuel production on biodiversity, water quantity and quality vary greatly among biomass types, land sources and management practices. Improved agricultural management and landscape planning can be beneficial to ecosystem services. Lastly, a national investigation is desirable in China to inventory technical and economic potential of biomass feedstocks and evaluate the impacts of biofuel production on ecosystem services and the environment.« less

  10. Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhangcai; Zhuang, Qianlai; Cai, Ximing

    We present that bioenergy can be a promising solution to the energy, food and environment trilemma in China. Currently this coal-dependent nation is in urgent need of alternative fuels to secure its future energy and improve the environment. Biofuels derived from crop residues and bioenergy crops emerge as a great addition to renewable energy in China without compromising food production. This paper reviews bioenergy resources from existing conventional crop (e.g., corn, wheat and rice) residues and energy crops (e.g., Miscanthus) produced on marginal lands. The impacts of biofuel production on ecosystem services are also discussed in the context of biofuel'smore » life cycle. It is estimated that about 280 million metric tons (Mt) of crop residue-based biomass (or 65 Mt of ethanol) and over 150 Mt of energy crop-based ethanol can become available each year, which far exceeds current national fuel ethanol production (<2 Mt year -1) and the 2020 national target of 10 Mt year -1. Review on environmental impacts suggested that substituting fossil fuels with biofuels could significantly reduce greenhouse gas emissions and air pollution (e.g., particulate matter). However, the impacts of biofuel production on biodiversity, water quantity and quality vary greatly among biomass types, land sources and management practices. Improved agricultural management and landscape planning can be beneficial to ecosystem services. Lastly, a national investigation is desirable in China to inventory technical and economic potential of biomass feedstocks and evaluate the impacts of biofuel production on ecosystem services and the environment.« less

  11. Drivers of potential GHG fluxes under bioenergy land use change in the UK

    NASA Astrophysics Data System (ADS)

    Parmar, Kim; Keith, Aidan M.; Perks, Mike; Rowe, Rebecca; Sohi, Saran; McNamara, Niall

    2013-04-01

    The greatest contributors to global greenhouse gases (GHG's) are CO2 emissions from fossil fuel use and following land use change (LUC). Globally, soils contain three times more carbon than the atmosphere and have the potential to act as GHG sources or sinks. A significant amount of land may be converted to bioenergy production to help meet UK 2050 renewable energy and GHG emissions reduction targets. This raises considerable sustainability concerns with respect to the effects of LUC on soil carbon (C) conservation and GHG emissions. Forests are a key component in the global C cycle and when managed effectively can reduce atmospheric GHG concentrations. Together with other dedicated bioenergy crops, Short Rotation Forestry (SRF) could be used to meet biomass requirements. SRF is defined as high density plantations of fastgrowing tree species grown on short rotational lengths (8-20 years) for biomass (McKay 2011). As SRF is likely to be an important domestic source of biomass for energy it is imperative that we gain an understanding of the implications for large-scale commercial application on soil C and the GHG balance. We utilized a paired-site approach to investigate how LUC to SRF could potentially alter the underlying processes of soil GHG production and consumption. This work was linked to a wider soil C stock inventory for bioenergy LUC, so our major focus was on changes to soil respiration. Specifically, we examined the relative importance of litter, soil, and microbial properties in determining potential soil respiration, and whether these relationships were consistent at different soil temperatures (10 ° C and 20 ° C). Soils were sampled to a depth of 30 cm from 30 LUC transitions across the UK and incubated under controlled laboratory conditions, with gas samples taken over a seven day enclosure period. CO2, N2O and CH4 gas fluxes were measured by gas chromatography and were examined together with other soil properties measured in the field and

  12. Comparing soil functions for a wide range of agriculture soils focusing on production for bioenergy using a combined isotope-based observation and modelling approach

    NASA Astrophysics Data System (ADS)

    Leistert, Hannes; Herbstritt, Barbara; Weiler, Markus

    2017-04-01

    Increase crop production for bioenergy will result in changes in land use and the resulting soil functions and may generate new chances and risks. However, detailed data and information are still missing how soil function may be altered under changing crop productions for bioenergy, in particular for a wide range of agricultural soils since most data are currently derived from individual experimental sites studying different bioenergy crops at one location. We developed a new, rapid measurement approach to investigate the influence of bioenergy plants on the water cycle and different soil functions (filter and buffer of water and N-cycling). For this approach, we drilled 89 soil cores (1-3 m deep) in spring and fall at 11 sites with different soil properties and climatic conditions comparing different crops (grass, corn, willow, poplar, and other less common bioenergy crops) and analyzing 1150 soil samples for water content, nitrate concentration and stable water isotopes. We benchmarked a soil hydrological model (1-D numerical Richards equation, ADE, water isotope fractionation including liquid and vapor composition of isotopes) using longer-term climate variables and water isotopes in precipitation to derive crop specific parameterization and to specifically validate the differences in water transport and water partitioning into evaporation, transpiration and groundwater recharge among the sites and crops using the water isotopes in particular. The model simulation were in good agreement with the observed isotope profiles and allowed us to differentiate among the different crops. We defined different indicators for the soil functions considered in this study. These indicators included the proportion of groundwater recharge, transit time of water (different percentiles) though the upper 2m and nutrient leaching potential (e.g. nitrate) during the dormant season from the rooting zone. The parameterized model was first used to calculate the indicators for the

  13. Relations between Policy for Medical Teaching and Basic Need Satisfaction in Teaching

    ERIC Educational Resources Information Center

    Engbers, Rik; Fluit, Cornelia R. M. G.; Bolhuis, Sanneke; Sluiter, Roderick; Stuyt, Paul M. J.; Laan, Roland F. J. M.

    2015-01-01

    Policy initiatives that aim to elevate the position of medical teaching to that of medical research could influence the satisfaction of three basic psychological needs related to motivation for medical teaching. To explore relations between the satisfaction of three basic psychological needs towards medical teaching and two policy initiatives for…

  14. Central-provincial relations for anti-schistosomiasis policy in china.

    PubMed

    Fan, Ka-Wai

    2012-01-01

    This paper discusses central-local relations for healthcare policy in China from a principal-agent perspective, based on schistosomiasis control. In order to control the disease, the central government produced the Outline of the Mid-Long-Term National Plan for Schistosomiasis Prevention and Control (2004-2015) in 2004. By discussing the implementation of the National Outline at the provincial level, the author uses principal-agent theory to examine conflict and coordination between the central and provincial governments. The documents were collected from the Internet. Although the central and provincial governments all want to eliminate schistosomiasis, allocating funding among them creates conflict and forms an obstacle to achieving the goal. This paper extensively discusses the topics related to central-provincial relation and schistosomiasis control program. Further case study on a single province may be needed to intensify the discussion from a micro perspective. The conflict between central and provincial relations needs to be resolved in order to implement the national policy.

  15. Central-Provincial Relations for Anti-Schistosomiasis Policy in China

    PubMed Central

    FAN, Ka-wai

    2012-01-01

    This paper discusses central-local relations for healthcare policy in China from a principal-agent perspective, based on schistosomiasis control. In order to control the disease, the central government produced the Outline of the Mid-Long-Term National Plan for Schistosomiasis Prevention and Control (2004–2015) in 2004. By discussing the implementation of the National Outline at the provincial level, the author uses principal-agent theory to examine conflict and coordination between the central and provincial governments. The documents were collected from the Internet. Although the central and provincial governments all want to eliminate schistosomiasis, allocating funding among them creates conflict and forms an obstacle to achieving the goal. This paper extensively discusses the topics related to central-provincial relation and schistosomiasis control program. Further case study on a single province may be needed to intensify the discussion from a micro perspective. The conflict between central and provincial relations needs to be resolved in order to implement the national policy. PMID:23113188

  16. France: Factors Shaping Foreign Policy, and Issues in U.S.-French Relations

    DTIC Science & Technology

    2005-01-10

    Policy, and Issues in U.S.- French Relations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations Summary The factors that...shape French foreign policy have changed since the end of the Cold War. The perspectives of France and the United States have diverged in some cases

  17. France: Factors Shaping Foreign Policy, and Issues in U.S.-French Relations

    DTIC Science & Technology

    2006-05-19

    Policy, and Issues in U.S.- French Relations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations Summary The factors that...shape French foreign policy have changed since the end of the Cold War. The perspectives of France and the United States have diverged in some cases

  18. School District Policies for Response to Death-Related Crises: Fact or Fiction?

    ERIC Educational Resources Information Center

    Christenberry, Nola J.; Burns, John L.

    Findings of a literature review of school policies and procedures for school-based responses to death-related crises are presented in this paper. A rationale and guidelines for policy development and examples of practices for dealing with death-related incidents--such as suicide, homicide, drug overdose, and accidents--are described. Following an…

  19. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-07-01

    program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and

  20. Effect of policy-based bioenergy demand on southern timber markets: A case study of North Carolina

    Treesearch

    Robert C. Abt; Karen L. Abt; Frederick W. Cubbage; Jesse D. Henderson

    2010-01-01

    Key factors driving renewable energy demand are state and federal policies requiring the use of renewable feedstocks to produce energy (renewable portfolio standards) and liquid fuels (renewable fuel standards). However, over the next decade, the infrastructure for renewable energy supplies is unlikely to develop as fast as both policy- and market-motivated renewable...

  1. Utilization of Health Research Recommendation in Policy and Planning in Nepal.

    PubMed

    Dhimal, M; Pandey, A R; Aryal, K K; Budhathoki, C B; Vaidya, D L; Karki, K K; Onta, S

    2016-09-01

    Over the past decade in Nepal, a large number of studies have been carried in a variety of health areas; however whether evidence derived from these studies has been used to inform health policy has not been explored. This study aims to assess the utilization of recommendations from health research in health policy and plans, and to identify the factors that influence utilization of research findings by policy makers' in Nepal. Qualitative study incorporating literature review and semi-structured interviews was used. Research reports and health related policies were collected from governmental and non-governmental bodies. Documents were reviewed to identify the utilization of research-based recommendations in health policy and plan formulation. In-depth interviews were conducted with key policy makers and researchers to identify factors that hinder the utilization of research recommendations. A total of 83 health related research reports were identified, of which 48 had recommendations. Four policies and three plans, from total 21 identified plans and policies, were found to have incorporated recommendations from research. Of the 48 studies that had recommendations, 35 were found to be used in the policy making process. Lack of appropriate communication mechanisms, and concerns related to the quality of research conducted, were the main factors hindering the translation of evidence into policy. Communication gaps exist between researchers and policy makers, which seem to have impeded the utilization of research-based information and recommendations in decision-making process. Establishing a unit responsible for synthesizing evidences and producing actionable messages for policy makers can improve utilization of research findings.

  2. Bioenergy Feedstock Development Program Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energymore » crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.« less

  3. Medical marijuana policies and hospitalizations related to marijuana and opioid pain reliever.

    PubMed

    Shi, Yuyan

    2017-04-01

    Twenty-eight states in the U.S have legalized medical marijuana, yet its impacts on severe health consequences such as hospitalizations remain unknown. Meanwhile, the prevalence of opioid pain reliever (OPR) use and outcomes has increased dramatically. Recent studies suggested unintended impacts of legalizing medical marijuana on OPR, but the evidence is still limited. This study examined the associations between state medical marijuana policies and hospitalizations related to marijuana and OPR. State-level annual administrative records of hospital discharges during 1997-2014 were obtained from the State Inpatient Databases (SID). The outcome variables were rates of hospitalizations involving marijuana dependence or abuse, opioid dependence or abuse, and OPR overdose in 1000 discharges. Linear time-series regressions were used to assess the associations of implementing medical marijuana policies to hospitalizations, controlling for other marijuana- and OPR-related policies, socioeconomic factors, and state and year fixed effects. Hospitalizations related to marijuana and OPR increased sharply by 300% on average in all states. Medical marijuana legalization was associated with 23% (p=0.008) and 13% (p=0.025) reductions in hospitalizations related to opioid dependence or abuse and OPR overdose, respectively; lagged effects were observed after policy implementation. The operation of medical marijuana dispensaries had no independent impacts on OPR-related hospitalizations. Medical marijuana polices had no associations with marijuana-related hospitalizations. Medical marijuana policies were significantly associated with reduced OPR-related hospitalizations but had no associations with marijuana-related hospitalizations. Given the epidemic of problematic use of OPR, future investigation is needed to explore the causal pathways of these findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Medical marijuana policies and hospitalizations related to marijuana and opioid pain reliever*

    PubMed Central

    Shi, Yuyan

    2017-01-01

    Objectives Twenty-eight states in the U.S. have legalized medical marijuana, yet its impacts on severe health consequences such as hospitalizations remain unknown. Meanwhile, the prevalence of opioid pain reliever (OPR) use and outcomes has increased dramatically. Recent studies suggested unintended impacts of legalizing medical marijuana on OPR, but the evidence is still limited. This study examined the associations between state medical marijuana policies and hospitalizations related to marijuana and OPR. Methods State-level annual administrative records of hospital discharges during 1997–2014 were obtained from the State Inpatient Databases (SID). The outcome variables were rates of hospitalizations involving marijuana dependence or abuse, opioid dependence or abuse, and OPR overdose in 1,000 discharges. Linear time-series regressions were used to assess the associations of implementing medical marijuana policies to hospitalizations, controlling for other marijuana- and OPR-related policies, socioeconomic factors, and state and year fixed effects. Results Hospitalizations related to marijuana and OPR increased sharply by 300% on average in all states. Medical marijuana legalization was associated with 23% (p=.008) and 13% (p=.025) reductions in hospitalizations related to opioid dependence or abuse and OPR overdose, respectively; lagged effects were observed after policy implementation. The operation of medical marijuana dispensaries had no independent impacts on OPR- related hospitalizations. Medical marijuana polices had no associations with marijuana-related hospitalizations. Conclusion Medical marijuana policies were significantly associated with reduced OPR-related hospitalizations but had no associations with marijuana-related hospitalizations. Given the epidemic of problematic use of OPR, future investigation is needed to explore the causal pathways of these findings. PMID:28259087

  5. Community Knowledge about Water: Who Has Better Knowledge and Is This Associated with Water-Related Behaviors and Support for Water-Related Policies?

    PubMed Central

    Fielding, Kelly S.; Newton, Fiona J.

    2016-01-01

    Sustainable approaches to water management require broad community acceptance of changes in policy, practice and technology, which in turn, requires an engaged community. A critical first step in building an engaged community is to identify community knowledge about water management, an issue rarely examined in research. To address this, we surveyed a representative sample of Australian adults (n = 5172). Knowledge was assessed using 15 questions about impact of household activities on waterways, the urban water cycle, and water management. This survey also examined demographics, psychosocial characteristics, exposure to water-related information, and water-related behaviors and policy support. Participants correctly answered a mean of 8.0 questions (Range 0–15). Most respondents knew that household actions can reduce water use and influence waterway health, whereas less than one third correctly identified that domestic wastewater is treated prior to entering waterways, urban stormwater is not treated, and that these are carried via different pipes. Higher water knowledge was associated with older age, higher education and living in non-urban areas. Poorer water knowledge was associated with speaking a language other than English in the home. Garden size, experience of water restrictions, satisfaction, waterway use for swimming, and certain information sources were also associated with knowledge. Greater water knowledge was associated with adoption of water-saving and pollution-reduction behaviors, and support for both alternative water sources and raingardens. These findings confirm the importance of community knowledge, and identify potential subgroups who may require additional targeting to build knowledge and support for water management initiatives. PMID:27428372

  6. Community Knowledge about Water: Who Has Better Knowledge and Is This Associated with Water-Related Behaviors and Support for Water-Related Policies?

    PubMed

    Dean, Angela J; Fielding, Kelly S; Newton, Fiona J

    2016-01-01

    Sustainable approaches to water management require broad community acceptance of changes in policy, practice and technology, which in turn, requires an engaged community. A critical first step in building an engaged community is to identify community knowledge about water management, an issue rarely examined in research. To address this, we surveyed a representative sample of Australian adults (n = 5172). Knowledge was assessed using 15 questions about impact of household activities on waterways, the urban water cycle, and water management. This survey also examined demographics, psychosocial characteristics, exposure to water-related information, and water-related behaviors and policy support. Participants correctly answered a mean of 8.0 questions (Range 0-15). Most respondents knew that household actions can reduce water use and influence waterway health, whereas less than one third correctly identified that domestic wastewater is treated prior to entering waterways, urban stormwater is not treated, and that these are carried via different pipes. Higher water knowledge was associated with older age, higher education and living in non-urban areas. Poorer water knowledge was associated with speaking a language other than English in the home. Garden size, experience of water restrictions, satisfaction, waterway use for swimming, and certain information sources were also associated with knowledge. Greater water knowledge was associated with adoption of water-saving and pollution-reduction behaviors, and support for both alternative water sources and raingardens. These findings confirm the importance of community knowledge, and identify potential subgroups who may require additional targeting to build knowledge and support for water management initiatives.

  7. Identifying mismatches between institutional perceptions of water-related risk drivers and water management strategies in three river basin areas

    NASA Astrophysics Data System (ADS)

    Räsänen, Aleksi; Juhola, Sirkku; Monge Monge, Adrián; Käkönen, Mira; Kanninen, Markku; Nygren, Anja

    2017-07-01

    Water-related risks and vulnerabilities are driven by variety of stressors, including climate and land use change, as well as changes in socio-economic positions and political landscapes. Hence, water governance, which addresses risks and vulnerabilities, should target multiple stressors. We analyze the institutional perceptions of the drivers and strategies for managing water-related risks and vulnerabilities in three regionally important river basin areas located in Finland, Mexico, and Laos. Our analysis is based on data gathered through participatory workshops and complemented by qualitative content analysis of relevant policy documents. The identified drivers and proposed risk reduction strategies showed the multidimensionality and context-specificity of water-related risks and vulnerabilities across study areas. Most of the identified drivers were seen to increase risks, but some of the drivers were positive trends, and drivers also included also policy instruments that can both increase or decrease risks. Nevertheless, all perceived drivers were not addressed with suggested risk reduction strategies. In particular, most of the risk reduction strategies were incremental adjustments, although many of the drivers classified as most important were large-scale trends, such as climate change, land use changes and increase in foreign investments. We argue that there is a scale mismatch between the identified drivers and suggested strategies, which questions the opportunity to manage the drivers by single-scale incremental adjustments. Our study suggests that for more sustainable risk and vulnerability reduction, the root causes of water-related risks and vulnerabilities should be addressed through adaptive multi-scale governance that carefully considers the context-specificity and the multidimensionality of the associated drivers and stressors.

  8. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1 ×, DE3 ×, ME3 ×, NEL3 ×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P = 0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P = 0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P = 0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P = 0.09), RD of PB2 (29 vs. 62 g/kg CP, P = 0.02), RD of CB2 (251 vs. 198 g/kg DM, P = 0.06), RD of CB3 (236 vs. 261 g/kg CHO, P = 0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P = 0.06), and metabolic bioenergy (P = 0.095). As to protein molecular structure, there were differences in protein structure 1st

  9. Croatian Teacher Competencies Related to the Creation and Implementation of Education Policy

    ERIC Educational Resources Information Center

    Kovac, Vesna; Rafajac, Branko; Buchberger, Iva

    2014-01-01

    This research was conducted in order to gain a preliminary insight into the general orientation and range of opinions of 396 primary and secondary school teachers in Croatia toward the a) importance of their competencies related to the education policies; b) cognition and mastering of the competencies related to the education policies; c) the…

  10. The Elum Project: A Network of UK Sites to Understand Land-Use Transitions to Bioenergy and Their Implications for Greenhouse Gas Balance and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Harris, Z. M.; Alberti, G.; Bottoms, E.; Rowe, R.; Parmar, K.; Marshall, R.; Elias, D.; Smith, P.; Dondini, M.; Pogson, M.; Richards, M.; Finch, J.; Ineson, P.; Keane, B.; Perks, M.; Wilkinson, M.; Yamulki, S.; Donnison, I.; Farrar, K.; Massey, A.; McCalmont, J.; Drewer, J.; Sohi, S.; McNamara, N.; Taylor, G.

    2014-12-01

    Rising anthropogenic greenhouse gas (GHG) emissions coupled with an increasing need to address energy security are resulting in the development of cleaner, more sustainable alternatives to traditional fossil fuel sources. Bioenergy crops have been proposed to be able to mitigate the effects of climate change as well as provide increased energy security. The aim of this project is to assess the impact of land conversion to second generation non-food bioenergy crops on GHG balance for several land use transitions, including from arable, grassland and forest. A network of 6 sites was established across the UK to assess the processes underpinning GHG balance and to provide input data to a model being used to assess the sustainability of different land use transitions. Monthly analysis of soil GHGs shows that carbon dioxide contributes most to the global warming potential of these bioenergy crops, irrespective of transition. Nitrous oxide emissions were low for all crops except arable cropping and methane emissions were very low for all sites. Nearly all sites have shown a significant decrease in CO2 flux from the control land use. Eddy flux approaches, coupled with soil assessments show that for the transition from grassland to SRC willow there is a significant reduction in GHG emissions from soil and a negative net ecosystem exchange due to increased GPP and ecosystem respiration. These results suggest for this land use transition to bioenergy in a UK specific context, there may be a net benefit for ecosystem GHG exchange of transition to bioenergy Finally we are developing a meta-modelling tool to allow land use managers to make location-specific, informed decisions about land use change to bioenergy. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). This project is co-ordinated by the Centre for Ecology & Hydrology (www.elum.ac.uk).

  11. Selecting elephant grass families and progenies to produce bioenergy through mixed models (REML/BLUP).

    PubMed

    Rodrigues, E V; Daher, R F; Dos Santos, A; Vivas, M; Machado, J C; Gravina, G do A; de Souza, Y P; Vidal, A K; Rocha, A Dos S; Freitas, R S

    2017-05-18

    Brazil has great potential to produce bioenergy since it is located in a tropical region that receives high incidence of solar energy and presents favorable climatic conditions for such purpose. However, the use of bioenergy in the country is below its productivity potential. The aim of the current study was to select full-sib progenies and families of elephant grass (Pennisetum purpureum S.) to optimize phenotypes relevant to bioenergy production through mixed models (REML/BLUP). The circulating diallel-based crossing of ten elephant grass genotypes was performed. An experimental design using the randomized block methodology, with three repetitions, was set to assess both the hybrids and the parents. Each plot comprised 14-m rows, 1.40 m spacing between rows, and 1.40 m spacing between plants. The number of tillers, plant height, culm diameter, fresh biomass production, dry biomass rate, and the dry biomass production were assessed. Genetic-statistical analyses were performed through mixed models (REML/BLUP). The genetic variance in the assessed families was explained through additive genetic effects and dominance genetic effects; the dominance variance was prevalent. Families such as Capim Cana D'África x Guaçu/I.Z.2, Cameroon x Cuba-115, CPAC x Cuba-115, Cameroon x Guaçu/I.Z.2, and IAC-Campinas x CPAC showed the highest dry biomass production. The family derived from the crossing between Cana D'África and Guaçu/I.Z.2 showed the largest number of potential individuals for traits such as plant height, culm diameter, fresh biomass production, dry biomass production, and dry biomass rate. The individual 5 in the family Cana D'África x Guaçu/I.Z.2, planted in blocks 1 and 2, showed the highest dry biomass production.

  12. Increasing in-stream nitrogen concentrations under different bioenergy crop management practices in central Germany

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Thraen, Daniela; Rode, Michael

    2015-04-01

    Understanding how nitrogen fluxes respond to changes in land use and agriculture practices is crucial for improving instream water quality prediction. In central Germany, expansion of bioenergy crops such as maize and rape for ethanol production during the last decade led to increasing of fertilizer application rates. To examine the effect of these changes, surface water quality of a drinking water reservoir catchment was investigated for more than 30 years. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% agricultural land use with significant changes in agricultural practices within the investigation period. For the period 2004-2012, the share of maize and rape has been increased by 52% and 20%, respectively, for enhancing bioenergy production. To achieve our gaols, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was calibrated for discharge and inorganic nitrogen concentrations (IN) during the period 1997-2000.The model was validated successfully (with lowest performance of NSE = 0.78 and PBIAS = 3.74% for discharge) for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates. Results showed that the HYPE model reproduced reasonably well discharge and IN daily loads (with lowest NSE = 0.64 for IN-load). In addition, the HYPE model was evaluated successfully to predict the discharge and IN concentrations for the period 2004-2012, where detailed input data in terms of crops management (field-specific survey) have been considered. Land use and crop rotations scenarios, with high hypothetical percentage of acceptance by the farmers, revealed that continuous conversion of agricultural land into bioenergy crops, will most likely, lead to an enrichment of in-stream nitrogen, especially after spring storms.

  13. Comparing Bioenergy Production Sites in the Southeastern US Regarding Ecosystem Service Supply and Demand

    PubMed Central

    Meyer, Markus A.; Chand, Tanzila; Priess, Joerg A.

    2015-01-01

    Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS). This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification schemes are governance

  14. Policies Related to Active Transport to and from School: A Multisite Case Study

    ERIC Educational Resources Information Center

    Eyler, Amy A.; Brownson, Ross C.; Doescher, Mark P.; Evenson, Kelly R.; Fesperman, Carrie E.; Litt, Jill S.; Pluto, Delores; Steinman, Lesley E.; Terpstra, Jennifer L.; Troped, Philip J.; Schmid, Thomas L.

    2008-01-01

    Active transportation to and from school (ATS) is a viable strategy to help increase physical activity among youth. ATS can be challenging because initiatives require transdisciplinary collaboration, are influenced by the built environment and are affected by numerous policies. The purpose of this study is to identify policies and factors that…

  15. Effect of land use change for bioenergy on greenhouse gas emissions from a wet marginal soil in New York State, USA.

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Mason, Cedric; Steenhuis, Tammo; Richards, Brian

    2013-04-01

    Millions of hectares of marginal lands in the Northeast USA no longer used for agriculture are suitable for production of second-generation cellulosic bioenergy crops, offering the potential for regional bioenergy production without inducing food vs. fuel competition for prime farmland. Abundant water resources, close proximity between production and markets, and compatibility with existing agricultural systems all favor development in the region. Yet, little is known about how sustainable bioenergy crop production on marginal lands is regarding greenhouse gas emissions. In a 10-ha field trial on wet marginal soils in upstate New York, we are assessing the effect of land use change (from fallow land to perennial grass stands) on N2O and CH4 emissions. The deep clay loam is unsuited for row-crop agriculture because it is too dry in summer and too wet in winter. Monthly chamber campaigns were performed from April to November 2012 to monitor large scale (10-20 m resolution) differences caused by land cover type (n=4 for both switchgrass, reed-canary grass and a 50-yr unplowed control) across soil moisture gradients (n=5 soil moisture levels per replicate). Additional weekly campaigns assessed the smaller scale spatial and temporal variability in emissions at meter-scale. Here we present results of both the large and small-scale patterns in greenhouse gas emissions from this marginal soil, and discuss effects of soil properties and hydrologic conditions as potential drivers. Insight gained about the environmental impact of bioenergy crops can be used to assess the sustainability of using this region's underutilized land base for energy production.

  16. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    NASA Astrophysics Data System (ADS)

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  17. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding?

    PubMed

    Wang, Zeng-Yu; Brummer, E Charles

    2012-11-01

    Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated. Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is 'Roundup Ready' (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed.

  18. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding?

    PubMed Central

    Wang, Zeng-Yu; Brummer, E. Charles

    2012-01-01

    Background Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated. Scope Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is ‘Roundup Ready’ (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed. PMID:22378838

  19. Policy Help Needed, Experience Required: Preparing Practitioners to Effectively Engage in Policy.

    PubMed

    Moreland-Russell, Sarah; Zwald, Marissa; Golden, Shelley D

    2016-09-01

    There is a shift toward a "health in all policies" approach in public health; however, most practitioners are not equipped with the necessary knowledge or skills to engage in and practice policy. This study explores how public health professionals can become policy practitioners and better engage in the policy process. This article also provides recommendations for training programs on how to increase students' policy-related knowledge and skills. We conducted in-depth interviews with 10 public health policy experts in the United States spanning academic, governmental, advocacy, and practice settings. Key informants provided perspectives regarding strengths and skill sets that practitioners need to better position themselves to do policy-relevant work and opportunities for public health programs to improve training. The research team conducted thematic analyses to determine commonality among expert responses. Informants identified a number of strengths and skills that either support or impede practitioners' ability to conduct policy work and proposed recommendations for public health curricula to integrate policy-related coursework or practical experiences to prepare practitioners for policy careers. Public health professionals need to become more politically astute to practice and advance public health policy. To facilitate the development of such skills, public health training and pedagogy must integrate policy practice into traditional public health coursework, include new policy-focused courses, and provide opportunities for real-world policy experience. © 2016 Society for Public Health Education.

  20. Measuring policy and related effects of a health impact assessment related to connectivity.

    PubMed

    Bias, Thomas K; Abildso, Christiaan G

    2017-02-01

    Health Impact Assessments are an important tool to help policymakers perceive the potential positive and negative contributions of decisions to public health. While they have been increasingly used in the United States, studies have not examined intermediate effects. Using key stakeholder interviews, this manuscript examines policy outcomes and other related effects of the HIA 21months after completing a Health Impact Assessment Report around connectivity policy. Further, it reflects on the measurement of these effects as part of the monitoring and evaluation stage of the Health Impact Assessment process. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Strip thinning young hardwood forests: multi-functional management for wood, wildlife, and bioenergy

    Treesearch

    Jamie Schuler; Ashlee Martin

    2016-01-01

    Upland hardwood forests dominate the Appalachian landscape. However, early successional forests are limited. In WV and PA, for example, only 8 percent of the timberland is classified as seedling and sapling-sized. Typically no management occurs in these forests due to the high cost of treatment and the lack of marketable products. If bioenergy markets come to fruition...

  2. Environmental and economic suitability of forest biomass-based bioenergy production in the Southern United States

    NASA Astrophysics Data System (ADS)

    Dwivedi, Puneet

    This study attempts to ascertain the environmental and economic suitability of utilizing forest biomass for cellulosic ethanol production in the Southern United States. The study is divided into six chapters. The first chapter details the background and defines the relevance of the study along with objectives. The second chapter reviews the existing literature to ascertain the present status of various existing conversion technologies. The third chapter assesses the net energy ratio and global warming impact of ethanol produced from slash pine (Pinus elliottii Engelm.) biomass. A life-cycle assessment was applied to achieve the task. The fourth chapter assesses the role of emerging bioenergy and voluntary carbon markets on the profitability of non-industrial private forest (NIPF) landowners by combining the Faustmann and Hartmann models. The fifth chapter assesses perceptions of four stakeholder groups (Non-Government Organization, Academics, Industries, and Government) on the use of forest biomass for bioenergy production in the Southern United States using the SWOT-AHP (Strength, Weakness, Opportunity, and Threat-Analytical Hierarchy Process) technique. Finally, overall conclusions are made in the sixth chapter. Results indicate that currently the production of cellulosic ethanol is limited as the production cost of cellulosic ethanol is higher than the production cost of ethanol derived from corn. However, it is expected that the production cost of cellulosic ethanol will come down in the future from its current level due to ongoing research efforts. The total global warming impact of E85 fuel (production and consumption) was found as 10.44 tons where as global warming impact of an equivalent amount of gasoline (production and consumption) was 21.45 tons. This suggests that the production and use of ethanol derived from slash pine biomass in the form of E85 fuel in an automobile saves about 51% of carbon emissions when compared to gasoline. The net energy ratio

  3. Comparing net ecosystem carbon dioxide exchange at adjacent commercial bioenergy and conventional cropping systems in Lincolnshire, United Kingdom

    NASA Astrophysics Data System (ADS)

    Morrison, Ross; Brooks, Milo; Evans, Jonathan; Finch, Jon; Rowe, Rebecca; Rylett, Daniel; McNamara, Niall

    2016-04-01

    The conversion of agricultural land to bioenergy plantations represents one option in the national and global effort to reduce greenhouse gas emissions whilst meeting future energy demand. Despite an increase in the area of (e.g. perennial) bioenergy crops in the United Kingdom and elsewhere, the biophysical and biogeochemical impacts of large scale conversion of arable and other land cover types to bioenergy cropping systems remain poorly characterised and uncertain. Here, the results of four years of eddy covariance (EC) flux measurements of net ecosystem CO2 exchange (NEE) obtained at a commercial farm in Lincolnshire, United Kingdom (UK) are reported. CO2 flux measurements are presented and compared for arable crops (winter wheat, oilseed rape, spring barely) and plantations of the perennial biofuel crops Miscanthus x. giganteus (C4) and short rotation coppice (SRC) willow (Salix sp.,C3). Ecosystem light and temperature response functions were used to analyse and compare temporal trends and spatial variations in NEE across the three land covers. All three crops were net in situ sinks for atmospheric CO2 but were characterised by large temporal and between site variability in NEE. Environmental and biological controls driving the spatial and temporal variations in CO2 exchange processes, as well as the influences of land management, will be analysed and discussed.

  4. 75 FR 49506 - Recovery Policy, RP9525.16, Research-Related Equipment and Furnishings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ...] Recovery Policy, RP9525.16, Research-Related Equipment and Furnishings AGENCY: Federal Emergency Management... Management Agency (FEMA) is accepting comments on Recovery Policy RP9525.16 Research-related Equipment and... function such as an educational or medical function in order for the facilities, equipment and/or...

  5. A model for lesbian, bisexual and queer-related influences on alcohol consumption and implications for policy and practice.

    PubMed

    McNair, Ruth; Pennay, Amy; Hughes, Tonda; Brown, Rhonda; Leonard, William; Lubman, Dan I

    2016-01-01

    Research consistently reports higher rates of problematic drinking among lesbian, bisexual and queer women than among heterosexual women, but relatively little research has identified underlying factors. Within this context, the aim of the present study was to qualitatively explore the sociocultural influences on alcohol consumption among lesbian, bisexual and queer women in Australia. An ethnographic study including in-depth interviews and 10 sessions of participant observation was conducted with 25 Australian lesbian, bisexual and queer women. Analysis of transcripts and fieldnotes focused on lesbian, bisexual and queer-related influences on alcohol consumption. Three lesbian, bisexual and queer-related factors were identified that influenced alcohol use: (1) coping, (2) connection and (3) intersections with lesbian, bisexual and queer identity. Most participants reported consuming alcohol to cope with discrimination or to connect with like-minded others. Alcohol use had positive influences for some women through facilitating social connection and wellbeing. Women with a high lesbian, bisexual and queer identity salience were more likely to seek lesbian, bisexual and queer community connection involving alcohol, to publicly identify as lesbian, bisexual and queer and to experience discrimination. National policies need to address underlying causes of discrimination against lesbian, bisexual and queer women. Alcohol policies and clinical interventions should acknowledge the impact of discrimination on higher alcohol consumption amongst lesbian, bisexual and queer women compared with heterosexual women, and should utilise health promotion messages regarding safe drinking that facilitate lesbian, bisexual and queer social connection.

  6. Review and Analysis of the EU Teacher-Related Policies and Activities

    ERIC Educational Resources Information Center

    Stéger, Csilla

    2014-01-01

    This article aims at raising awareness of the key role the EU already plays in matters of teacher policy. It takes stock of European teacher policy related documents and activities, such as relevant strategies, presidency priorities, Council Conclusions, Commission working documents, the activities of thematic working groups, of networks, of data…

  7. Exploring Alcohol Policy Approaches to Prevent Sexual Violence Perpetration

    PubMed Central

    Lippy, Caroline; DeGue, Sarah

    2018-01-01

    Sexual violence continues to be a significant public health problem worldwide with serious consequences for individuals and communities. The implementation of prevention strategies that address risk and protective factors for sexual violence at the community level are important components of a comprehensive approach, but few such strategies have been identified or evaluated. The current review explores one potential opportunity for preventing sexual violence perpetration at the community level: alcohol policy. Alcohol policy has the potential to impact sexual violence perpetration through the direct effects of excessive alcohol consumption on behavior or through the impact of alcohol and alcohol outlets on social organization within communities. Policies affecting alcohol pricing, sale time, outlet density, drinking environment, marketing, and college environment are reviewed to identify existing evidence of impact on rates of sexual violence or related outcomes, including risk factors and related health behaviors. Several policy areas with initial evidence of an association with sexual violence outcomes were identified, including policies affecting alcohol pricing, alcohol outlet density, barroom management, sexist content in alcohol marketing, and policies banning alcohol on campus and in substance-free dorms. We identify other policy areas with evidence of an impact on related outcomes and risk factors that may also hold potential as a preventative approach for sexual violence perpetration. Evidence from the current review suggests that alcohol policy may represent one promising avenue for the prevention of sexual violence perpetration at the community level, but additional research is needed to directly examine effects on sexual violence outcomes. PMID:25403447

  8. Exploring Alcohol Policy Approaches to Prevent Sexual Violence Perpetration.

    PubMed

    Lippy, Caroline; DeGue, Sarah

    2016-01-01

    Sexual violence continues to be a significant public health problem worldwide with serious consequences for individuals and communities. The implementation of prevention strategies that address risk and protective factors for sexual violence at the community level are important components of a comprehensive approach, but few such strategies have been identified or evaluated. The current review explores one potential opportunity for preventing sexual violence perpetration at the community level: alcohol policy. Alcohol policy has the potential to impact sexual violence perpetration through the direct effects of excessive alcohol consumption on behavior or through the impact of alcohol and alcohol outlets on social organization within communities. Policies affecting alcohol pricing, sale time, outlet density, drinking environment, marketing, and college environment are reviewed to identify existing evidence of impact on rates of sexual violence or related outcomes, including risk factors and related health behaviors. Several policy areas with initial evidence of an association with sexual violence outcomes were identified, including policies affecting alcohol pricing, alcohol outlet density, barroom management, sexist content in alcohol marketing, and policies banning alcohol on campus and in substance-free dorms. We identify other policy areas with evidence of an impact on related outcomes and risk factors that may also hold potential as a preventative approach for sexual violence perpetration. Evidence from the current review suggests that alcohol policy may represent one promising avenue for the prevention of sexual violence perpetration at the community level, but additional research is needed to directly examine effects on sexual violence outcomes. © The Author(s) 2014.

  9. Influence of edaphic and management factors on the diversity and abundance of ammonia-oxidizing thaumarchaeota and bacteria in soils of bioenergy crop cultivars.

    PubMed

    Bertagnolli, Anthony D; Meinhardt, Kelley A; Pannu, Manmeet; Brown, Sally; Strand, Stuart; Fransen, Steven C; Stahl, David A

    2015-04-01

    Ammonia-oxidizing thaumarcheota (AOA) and ammonia-oxidizing bacteria (AOB) differentially influence soil and atmospheric chemistry, but soil properties that control their distributions are poorly understood. In this study, the ammonia monooxygenase gene (amoA) was used to identify and quantify presumptive AOA and AOB and relate their distributions to soil properties in two experimental fields planted with different varieties of switchgrass (Panicum virgatum), a potential bioenergy feedstock. Differences in ammonia oxidizer diversity were associated primarily with soil properties of the two field sites, with pH displaying significant correlations with both AOA and AOB population structure. Percent nitrogen (%N), carbon to nitrogen ratios (C : N), and pH were also correlated with shifts nitrifier population structure. Nitrosotalea-like and Nitrosospira cluster II populations were more highly represented in acidic soils, whereas populations affiliated with Nitrososphaera and Nitrosospira cluster 3A.1 were relatively more abundant in alkaline soils. AOA were the dominant functional group in all plots based on quantitative polymerase chain reaction and high-throughput sequencing analyses. These data suggest that AOA contribute significantly to nitrification rates in carbon and nitrogen rich soils influenced by perennial grasses. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate

    Treesearch

    Ronald S. Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Donald E. Riemenschneider

    2009-01-01

    Merging traditional intensive forestry with waste management offers dual goals of fiber and bioenergy production, along with environmental benefits such as soil/water remediation and carbon sequestration. As part of an ongoing effort to acquire data about initial genotypic performance, we evaluated: (1) the early aboveground growth of trees belonging to currently...

  11. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    USDA-ARS?s Scientific Manuscript database

    Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study was to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed perennial grasses from Conservation Reserve Program de...

  12. Identifying structural barriers to an effective HIV response: using the National Composite Policy Index data to evaluate the human rights, legal and policy environment.

    PubMed

    Gruskin, Sofia; Ferguson, Laura; Alfven, Tobias; Rugg, Deborah; Peersman, Greet

    2013-04-26

    Attention to the negative effects of structural barriers on HIV efforts is increasing. Reviewing national legal and policy environments with attention to the international human rights commitments of states is a means of assessing and providing focus for addressing these barriers to effective HIV responses. Law and policy data from the 171 countries reporting under the Declaration of Commitment from the 2001 United Nations General Assembly Special Session on HIV/AIDS were analyzed to assess attention to human rights in national legal and policy environments as relevant to the health and rights of key populations such as people who inject drugs, men who have sex with men and sex workers. Seventy-eight governments and civil society in 106 countries report the existence of laws and policies which present obstacles to accessing HIV services for key populations. Laws and policies which positively affect access to HIV-related services, in and of themselves constituting structural interventions, were also reported. The dissonance between laws and how this impacts the availability and use of HIV-related services deserve greater attention. Recognition of the harms inherent in laws that constitute structural barriers to effective HIV responses and the potential positive role that a supportive legal environment can play suggests the need for legal reform to ensure an enabling regulatory framework within which HIV services can be effectively delivered and used by the populations who need them. Moving beyond laws and policies, further efforts are required to determine how to capture information on the range of structural barriers. Teasing apart the impact of different barriers, as well as the structural interventions put in place to address them, remains complicated. Capturing the impact of policy and legal interventions can ultimately support governments and civil society to ensure the human rights of key populations are protected in national HIV responses.

  13. Identifying structural barriers to an effective HIV response: using the National Composite Policy Index data to evaluate the human rights, legal and policy environment

    PubMed Central

    Gruskin, Sofia; Ferguson, Laura; Alfven, Tobias; Rugg, Deborah; Peersman, Greet

    2013-01-01

    Introduction Attention to the negative effects of structural barriers on HIV efforts is increasing. Reviewing national legal and policy environments with attention to the international human rights commitments of states is a means of assessing and providing focus for addressing these barriers to effective HIV responses. Methods Law and policy data from the 171 countries reporting under the Declaration of Commitment from the 2001 United Nations General Assembly Special Session on HIV/AIDS were analyzed to assess attention to human rights in national legal and policy environments as relevant to the health and rights of key populations such as people who inject drugs, men who have sex with men and sex workers. Results Seventy-eight governments and civil society in 106 countries report the existence of laws and policies which present obstacles to accessing HIV services for key populations. Laws and policies which positively affect access to HIV-related services, in and of themselves constituting structural interventions, were also reported. The dissonance between laws and how this impacts the availability and use of HIV-related services deserve greater attention. Conclusions Recognition of the harms inherent in laws that constitute structural barriers to effective HIV responses and the potential positive role that a supportive legal environment can play suggests the need for legal reform to ensure an enabling regulatory framework within which HIV services can be effectively delivered and used by the populations who need them. Moving beyond laws and policies, further efforts are required to determine how to capture information on the range of structural barriers. Teasing apart the impact of different barriers, as well as the structural interventions put in place to address them, remains complicated. Capturing the impact of policy and legal interventions can ultimately support governments and civil society to ensure the human rights of key populations are protected in

  14. A pilot plant two-phase anaerobic digestion system for bioenergy recovery from swine wastes and garbage.

    PubMed

    Feng, Chuanping; Shimada, Sadoru; Zhang, Zhenya; Maekawa, Takaaki

    2008-01-01

    A pilot plant bioenergy recovery system from swine waste and garbage was constructed. A series of experiments was performed using swine feces (SF); a mixture of swine feces and urine (MSFU); a mixture of swine feces, urine and garbage (MSFUG); garbage and a mixture of urine and garbage (AUG). The system performed well for treating the source materials at a high organic loading rate (OLR) and short hydraulic retention time (HRT). In particular, the biogas production for the MSFUG was the highest, accounting for approximately 865-930 L kg(-1)-VS added at the OLR of 5.0-5.3 kg-VS m(-3) day(-1) and the HRT of 9 days. The removal of VS was 67-75%, and that of COD was 73-74%. Therefore, co-digestion is a promising method for the recovery of bioenergy from swine waste and garbage. Furthermore, the results obtained from this study provide fundamental information for scaling up a high-performance anaerobic system in the future.

  15. Discursive Institutionalism: Towards a Framework for Analysing the Relation between Policy and Curriculum

    ERIC Educational Resources Information Center

    Wahlström, Ninni; Sundberg, Daniel

    2018-01-01

    Discourse approaches in education policy analysis have gained prominence in the last decade. However, though the literature on policy discourses is growing, different conceptions of the "discursive" dimension and its potential for empirical analysis related to the field of curriculum policy have not yet been fully researched. To address…

  16. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses.

    PubMed

    Muthamilarasan, Mehanathan; Prasad, Manoj

    2015-01-01

    Recent advances in Setaria genomics appear promising for genetic improvement of cereals and biofuel crops towards providing multiple securities to the steadily increasing global population. The prominent attributes of foxtail millet (Setaria italica, cultivated) and green foxtail (S. viridis, wild) including small genome size, short life-cycle, in-breeding nature, genetic close-relatedness to several cereals, millets and bioenergy grasses, and potential abiotic stress tolerance have accentuated these two Setaria species as novel model system for studying C4 photosynthesis, stress biology and biofuel traits. Considering this, studies have been performed on structural and functional genomics of these plants to develop genetic and genomic resources, and to delineate the physiology and molecular biology of stress tolerance, for the improvement of millets, cereals and bioenergy grasses. The release of foxtail millet genome sequence has provided a new dimension to Setaria genomics, resulting in large-scale development of genetic and genomic tools, construction of informative databases, and genome-wide association and functional genomic studies. In this context, this review discusses the advancements made in Setaria genomics, which have generated a considerable knowledge that could be used for the improvement of millets, cereals and biofuel crops. Further, this review also shows the nutritional potential of foxtail millet in providing health benefits to global population and provides a preliminary information on introgressing the nutritional properties in graminaceous species through molecular breeding and transgene-based approaches.

  17. Agronomic Suitability of Bioenergy Crops in Mississippi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus, Rocky; Baldwin, Brian; Lang, David

    In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: • Which areas in the state are best for bioenergy crop production? • How much could these areas produce sustainably? • How can bioenergy crops impact carbon sequestration and carbon credits?

  18. Reductions in abortion-related mortality following policy reform: evidence from Romania, South Africa and Bangladesh

    PubMed Central

    2011-01-01

    Unsafe abortion is a significant contributor to worldwide maternal mortality; however, abortion law and policy liberalization could lead to drops in unsafe abortion and related deaths. This review provides an analysis of changes in abortion mortality in three countries where significant policy reform and related service delivery occurred. Drawing on peer-reviewed literature, population data and grey literature on programs and policies, this paper demonstrates the policy and program changes that led to declines in abortion-related mortality in Romania, South Africa and Bangladesh. In all three countries, abortion policy liberalization was followed by implementation of safe abortion services and other reproductive health interventions. South Africa and Bangladesh trained mid-level providers to offer safe abortion and menstrual regulation services, respectively, Romania improved contraceptive policies and services, and Bangladesh made advances in emergency obstetric care and family planning. The findings point to the importance of multi-faceted and complementary reproductive health reforms in successful implementation of abortion policy reform. PMID:22192901

  19. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  20. Identifying work-related motor vehicle crashes in multiple databases.

    PubMed

    Thomas, Andrea M; Thygerson, Steven M; Merrill, Ray M; Cook, Lawrence J

    2012-01-01

    To compare and estimate the magnitude of work-related motor vehicle crashes in Utah using 2 probabilistically linked statewide databases. Data from 2006 and 2007 motor vehicle crash and hospital databases were joined through probabilistic linkage. Summary statistics and capture-recapture were used to describe occupants injured in work-related motor vehicle crashes and estimate the size of this population. There were 1597 occupants in the motor vehicle crash database and 1673 patients in the hospital database identified as being in a work-related motor vehicle crash. We identified 1443 occupants with at least one record from either the motor vehicle crash or hospital database indicating work-relatedness that linked to any record in the opposing database. We found that 38.7 percent of occupants injured in work-related motor vehicle crashes identified in the motor vehicle crash database did not have a primary payer code of workers' compensation in the hospital database and 40.0 percent of patients injured in work-related motor vehicle crashes identified in the hospital database did not meet our definition of a work-related motor vehicle crash in the motor vehicle crash database. Depending on how occupants injured in work-related motor crashes are identified, we estimate the population to be between 1852 and 8492 in Utah for the years 2006 and 2007. Research on single databases may lead to biased interpretations of work-related motor vehicle crashes. Combining 2 population based databases may still result in an underestimate of the magnitude of work-related motor vehicle crashes. Improved coding of work-related incidents is needed in current databases.