Science.gov

Sample records for identifying gamma spectrometer

  1. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  2. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  3. Gamma Ray/neutron Spectrometers for Planetary Elemental Mapping

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Auchampaugh, G. F.; Barraclough, B. L.; Burt, W. W.; Byrd, R. C.; Drake, D. M.; Edwards, B. C.; Feldman, W. C.; Martin, R. A.; Moss, C. E.

    1993-01-01

    Los Alamos has designed gamma ray and neutron spectrometers for Lunar Scout, two robotic missions to map the Moon from 100 km polar orbits. Knowledge of the elemental composition is desirable in identifying resources and for geochemical studies and can be obtained using gamma ray and neutron spectrometers. Measurements with gamma ray and neutron spectrometers complement each other in determining elemental abundances in a planet's surface. Various aspects of the instruments are discussed.

  4. Gamma ray spectrometer for Lunar Scout 2

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  5. Spectrometer of high energy gamma quantums

    NASA Technical Reports Server (NTRS)

    Blokhintsev, I. D.; Melioranskiy, A. S.; Kalinkin, L. F.; Nagornykh, Y. I.; Pryakhin, Y. A.

    1979-01-01

    A detailed description of the apparatus GG-2M is given. The spectrometer contains a Cerenkov and scintillation (including anticoincidence) counter. The energies of the gamma quantums are measured by a shower calorimeter, in which scintillation counters are used in the capacity of detectors. Results are given for tuning the device on mu-mesons of cosmic rays. The data of physical tuning allow more reliable interpretation of the results of measurements which are received on the satellites.

  6. Digital logarithmic airborne gamma ray spectrometer

    NASA Astrophysics Data System (ADS)

    Zeng, Guo-Qiang; Zhang, Qing-Xian; Li, Chen; Tan, Cheng-Jun; Ge, Liang-Quan; Gu, Yi; Cheng, Feng

    2014-07-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.

  7. Design Considerations for Passive Gamma-Ray Spectrometers

    SciTech Connect

    Smith, Leon E.; Swickard, Andrea R.; Heredia-Langner, Alejandro; Warren, Glen A.; Siciliano, Edward R.; Miller, Steven D.

    2005-10-01

    Passive gamma-ray spectrometers composed of attenuation filters and integrating detection materials provide important advantages for measurements in high-radiation environments and for long-term monitoring. Each of these applications has requirements that constrain the design of the instrument, such as incident energy range of interest, sensor size and weight, readout method and cost. In addition, the multitude of variable parameters in passive spectrometer design (e.g. attenuation filter material and thickness, integrating sensor type, numbers of pixels, reconstructed energy bin structure) results in a large design space to analyze. The development of generalized design optimization tools to interrogate this space and identify promising spectrometer designs are discussed, particularly the methods used to rapidly calculate system transfer functions and the search for suitable design evaluation metrics. Finally, specific examples of candidate spectrometer designs are provided, and preliminary measurements to validate the design tools are described.

  8. Design Considerations for Passive Gamma-Ray Spectrometers

    SciTech Connect

    Smith, Leon E.; Swickard, Andrea R.; Heredia-Langner, Alejandro; Warren, Glen A.; Siciliano, Edward R.; Miller, Steven D.

    2005-10-01

    Passive gamma-ray spectrometers composed of attenuation filters and integrating detection materials provide important advantages for measurements in high-radiation environments and for long-term monitoring. Each of these applications has requirements that constrain the design of the instrument, such as incident energy range of interest, sensor size and weight, readout method, and cost. In addition, the multitude of variable parameters in passive spectrometer design (e.g. attenuation filter material and thickness, integrating sensor type, numbers of pixels, reconstructed energy bin structure) results in a large design space to analyze. The development of generalized design optimization tools to interrogate this space and identify promising spectrometer designs are discussed, particularly the methods used to rapidly calculate system transfer functions and the use of genetic algorithms for design optimization. Finally, preliminary measurements to validate the design tools are described, and specific examples of preliminary design optimization efforts are provided.

  9. Radon concentration monitoring using xenon gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Novikov, A.; Ulin, S.; Dmitrenko, V.; Chernysheva, I.; Grachev, V.; Vlasik, K.; Uteshev, Z.; Shustov, A.; Petrenko, D.; Bychkova, O.

    2017-01-01

    A method for 222Rn concentration monitoring by means of intensity measurement of its daughter nuclei (214Pb and 214Bi) gamma-ray emission using xenon gamma-ray spectrometer is presented. Testing and calibration results for a gamma-spectrometric complex based on xenon gamma-ray detector are described.

  10. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  11. Development and Characterization of a High Resolution Portable Gamma Spectrometer

    NASA Astrophysics Data System (ADS)

    Ali, Muhammad

    The recent disaster of Fukushima in Japan combined with the high demand to enhance nuclear safety and to minimize personal exposure to radioactive materials has a significant impact on research and development of radiation detection instrumentation. Currently, there is ample effort worldwide in the pursuit of radiation detection to maximize the accuracy and meet international standards in terms of size and specifications to enable radiation protection decision making. Among the requirements is the development of a portable, light-weight gamma-ray isotope identifier to be used by first responders in nuclear accidents as well as for radiation security and identification of illicit material isotopes. From nuclear security perspective, research into advanced screening technologies has become a high priority in all aspects, while for occupational safety, and environmental radiation protection, the regulatory authorities are requiring specific performance of radiation detection and measuring devices. At the applied radiation laboratory of the University of Ontario Institute of Technology, UOIT, the development of a high resolution spectrometer for medium and high energy gamma ray has been conducted. The spectrometer used a newly developed scintillator based on a LaBr3(Ce) crystal. The detector has been modeled using advanced Monte Carlo code (MCNP/X code) for the response function simulation and parameter characterization. The simulation results have been validated by experimental investigations using a wide range of gamma radiation energies. The developed spectrometer has been characterized in terms of resolution and response in different fields. It has also been compared with other crystals such as NaI(TI) and LiI(Eu).

  12. The AGATA Spectrometer: next generation gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Simpson, J.; AGATA Collaboration

    2015-05-01

    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. The spectrometer will have an unparalleled level of detection power for electromagnetic nuclear radiation. The tracking technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances and the spectrometer is now operational. AGATA has been operated in a series of scientific campaigns at Legnaro National Laboratory in Italy and GSI in Germany and is presently being assembled at GANIL in France. The status of the instrument will be reviewed.

  13. The gamma ray spectrometer for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Chupp, E. L.; Ryan, J. M.; Cherry, M. L.; Gleske, I. U.; Reppin, C.; Pinkau, K.; Rieger, E.; Kanbach, G.; Kinzer, R. L.

    1980-01-01

    The paper describes an actively shielded, multicrystal scintillation spectrometer for measurement of the solar gamma ray flux used by the Solar Maximum Mission Gamma Ray Experiment. The instrument provides a 476-channel pulse height spectrum every 16.38 s over the 0.3-9 MeV energy range; the gamma ray spectral analysis can be extended to at least 15 MeV on command. The instrument is designed to measure the intensity, energy, and Doppler shift of narrow gamma ray lines, the intensity of extremely broadened lines, and the photon continuum.

  14. Induced Background in the Mars Observer Gamma-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Boynton, W. V.; Evans, L. G.; Starr, R.; Brückner, J.; Bailey, S. H.; Trombka, J. I.

    Gamma-Ray Spectrometers in space must necessarily work in an environment of a background of lines due to natural and cosmic-ray induced radioactivity and lines due to prompt emission following nuclear reactions caused by primary and secondary cosmic rays. The Gamma-Ray Spectrometer (GRS) on the Mar Observer mission has provided important data allowing one to estimate for future missions the extent of the background due to cosmic rays. These data will help in the design of instruments and in calculation of realistic background intensities that may effect the sensitivity of determining the intensity of lines of interest.

  15. Induced Background in the Mars Observer Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Boynton, William V.; Evans, Larry G.; Starr, Richard; Bruekner, Johnnes; Bailey, S. H.; Trombka, Jacob I.

    1997-01-01

    Gamma-Ray Spectrometers in space must necessarily work in an environment of a background of lines due to natural and cosmic-ray induced radioactivity and lines due to prompt emission following nuclear reactions caused by primary and secondary cosmic rays. The Gamma-Ray Spectrometer (GRS) on the Mar Observer mission has provided important data allowing one to estimate for future missions the extent of the background due to cosmic rays. These data will help in the design of instruments and in calculation of realistic background intensities that may effect the sensitivity of determining the intensity of lines of interest.

  16. Electronic characterization of mercuric iodide gamma ray spectrometers

    SciTech Connect

    Gerrish, V.M.

    1993-01-01

    During the past four years the yield of high resolution mercuric iodide (HgI[sub 2]) gamma ray spectrometers produced at EG G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI[sub 2] synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI[sub 2] spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI[sub 2] surface, probably due to surface states formed prior to contact deposition.

  17. Electronic characterization of mercuric iodide gamma ray spectrometers

    SciTech Connect

    Gerrish, V.M.

    1993-06-01

    During the past four years the yield of high resolution mercuric iodide (HgI{sub 2}) gamma ray spectrometers produced at EG&G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI{sub 2} synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI{sub 2} spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI{sub 2} surface, probably due to surface states formed prior to contact deposition.

  18. Observations of Galactic gamma-radiation with the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.

    1986-01-01

    Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.

  19. SWEPP Gamma-Ray Spectrometer System software design description

    SciTech Connect

    Femec, D.A.; Killian, E.W.

    1994-08-01

    To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system.

  20. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  1. Gamma ray and neutron spectrometer for the lunar resource mapper

    NASA Astrophysics Data System (ADS)

    Moss, C. E.; Byrd, R. C.; Drake, D. M.; Feldman, W. C.; Martin, R. A.; Merrigan, M. A.; Reedy, R. C.

    1992-12-01

    One of the early Space Exploration Initiatives will be a lunar orbiter to map the elemental composition of the Moon. This mission will support further lunar exploration and habitation and will provide a valuable dataset for understanding lunar geological processes. The proposed payload will consist of the gamma ray and neutron spectrometers which are discussed, an x ray fluorescence imager, and possibly one or two other instruments.

  2. Low intensity X-ray and gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Yin, L. I. (Inventor)

    1982-01-01

    A low intensity X-ray and gamma ray spectrometer for imaging, counting, and energy resolving of single invisible radiation particles is described. The spectrometer includes a converting device for converting single invisible radiation particles to visible light photons. Another converting device converts the visible light photons to photoelectrons. A fiber optics coupling device couples together the two converting devices. An intensifying device intensifies the photoelectrons by an average gain factor of between 10 to the 4th power and 10 to the 7th power. The tensifying device is an anti-ion feedback microchannel plate amplifier which is operated substantially below saturation. A displaying device displays the intensified photoelectrons. The displaying device 32 indicates the spatial position, number, and energy of the incoming single invisible radiation particles.

  3. Superconducting High Energy Resolution Gamma-ray Spectrometers

    SciTech Connect

    Chow, D T

    2002-02-22

    We have demonstrated that a bulk absorber coupled to a TES can serve as a good gamma-ray spectrometer. Our measured energy resolution of 70 eV at 60 keV is among the best measurements in this field. We have also shown excellent agreement between the noise predictions and measured noise. Despite this good result, we noted that our detector design has shortcomings with a low count rate and vulnerabilities with the linearity of energy response. We addressed these issues by implementation of an active negative feedback bias. We demonstrated the effects of active bias such as additional pulse shortening, reduction of TES change in temperature during a pulse, and linearization of energy response at low energy. Linearization at higher energy is possible with optimized heat capacities and thermal conductivities of the microcalorimeter. However, the current fabrication process has low control and repeatability over the thermal properties. Thus, optimization of the detector performance is difficult until the fabrication process is improved. Currently, several efforts are underway to better control the fabrication of our gamma-ray spectrometers. We are developing a full-wafer process to produce TES films. We are investigating the thermal conductivity and surface roughness of thicker SiN membranes. We are exploring alternative methods to couple the absorber to the TES film for reproducibility. We are also optimizing the thermal conductivities within the detector to minimize two-element phonon noise. We are experimenting with different absorber materials to optimize absorption efficiency and heat capacity. We are also working on minimizing Johnson noise from the E S shunt and SQUID amplifier noise. We have shown that our performance, noise, and active bias models agree very well with measured data from several microcalorimeters. Once the fabrication improvements have been implemented, we have no doubt that our gamma-ray spectrometer will achieve even more spectacular results.

  4. Prompt {gamma}-ray spectroscopy of isotopically identified fission fragments

    SciTech Connect

    Shrivastava, A.; Caamano, M.; Rejmund, M.; Navin, A.; Rejmund, F.; Lemasson, A.; Schmitt, C.; Derkx, X.; Fernandez-Dominguez, B.; Golabek, C.; Roger, T.; Sieja, K.; Audouin, L.; Bacri, C. O.; Barreau, G.; Jurado, B.

    2009-11-15

    Measurements of prompt Doppler-corrected deexcitation {gamma} rays from uniquely identified fragments formed in fusion-fission reactions of the type {sup 12}C({sup 238}U,{sup 134}Xe)Ru are reported. The fragments were identified in both A and Z using the variable-mode, high-acceptance magnetic spectrometer VAMOS. States built on the characteristic neutron configurations forming high-spin isomers (7{sup -} and 10{sup +}) in {sup 134}Xe are presented and compared with the predictions of shell-model calculations using a new effective interaction in the region of Z{>=}50 and N{<=}82.

  5. Isotopic response with small scintillator based gamma-ray spectrometers

    DOEpatents

    Madden, Norman W [Sparks, NV; Goulding, Frederick S [Lafayette, CA; Asztalos, Stephen J [Oakland, CA

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  6. Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Strickman, M. S.; Letaw, J. R.; Chupp, E. L.

    1989-01-01

    Preliminary identifications of instrumental and atmospheric background lines detected by the gamma-ray spectrometer on NASA's Solar Maximum Mission satellite (SMM) are presented. The long-term and stable operation of this experiment has provided data of high quality for use in this analysis. Methods are described for identifying radioactive isotopes which use their different decay times. Temporal evolution of the features are revealed by spectral comparisons, subtractions, and fits. An understanding of these temporal variations has enabled the data to be used for detecting celestial gamma-ray sources.

  7. Search for gamma-ray transients using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Harris, M. J.; Leising, M. D.; Messina, D. C.

    1993-01-01

    Observations for transient radiation made by the Gamma Ray Spectrometer on the SMM satellite are summarized. Spectra were obtained from 215 solar flares and 177 gamma-ray bursts. No narrow or moderately broadened lines were observed in any of the bursts. The rate of bursts is consistent with a constant over the mission but is weakly correlated with solar activity. No evidence was found for bursts of 511 keV line emission, unaccompanied by a strong continuum, at levels not less than 0.05 gamma/sq cm s for bursts lasting not more than 16 s. No evidence was found for broad features near 1 MeV from Cyg X-1, the Galactic center, or the Crab in 12-d integrations at levels not less than 0.006 gamma/sq cm s. No evidence was found for transient celestial narrow-line emission from 300 keV to 7 MeV on min-to-hrs-long time scales from 1984 to 1989.

  8. The alpha-gamma coincidence spectrometer and its application

    SciTech Connect

    Shengzhong Qiao )

    1991-01-01

    In this paper the author describes the structure and properties of the high-resolution {alpha}-{gamma} coincidence spectrometer and its applications in determining heavy nuclides qualitatively and quantitatively. The energy resolution of the spectrometer is 0.25% (full-width at half-maximum is 13.8 keV for 5.486-MeV alpha particles); the energy shift of the peak is 0.05% in 8 h; non-linearity is < 0.2% for the 4- to 8-MeV energy region. the uncertainty in the quantitative measurement is better than {plus minus}1%. The spectrometer is being applied to some important measurements of specific cases. It can resolve some complex and difficult measurements problems because of its high accuracy, sensitivity, selectivity, and ability to remove interferences. The paper describes results with determination of {sup 242}Pu in plutonium samples; determination of the {sup 241}Am content in the presence of {sup 242}Cm and fission products; determination of the {sup 241}Am in plutonium samples; determination of the {sup 241}Am and {sup 243}Cm in irradiated plutonium solutions; and other applications.

  9. Surface chemistry of selected lunar regions. [using gamma ray spectrometers

    NASA Technical Reports Server (NTRS)

    Bielefeld, M. J.; Reedy, R. C.; Metzger, A. E.; Trombka, A. I.; Arnold, J. R.

    1976-01-01

    A completely new analysis has been carried out on the data from the Apollo 15 and 16 gamma ray spectrometer experiments. The components of the continuum background have been estimated. The elements Th, K, Fe and Mg give useful results; results for Ti are significant only for a few high Ti regions. Errors are given, and the results are checked by other methods. Concentrations are reported for about sixty lunar regions; the ground track has been subdivided in various ways. The borders of the maria seem well-defined chemically, while the distribution of KREEP is broad. This wide distribution requires emplacement of KREEP before the era of mare formation. Its high concentration in western mare soils seems to require major vertical mixing.

  10. Development of the NPL gamma-ray spectrometer NANA for traceable nuclear decay and structure studies.

    PubMed

    Lorusso, G; Shearman, R; Regan, P H; Judge, S M; Bell, S; Collins, S M; Larijani, C; Ivanov, P; Jerome, S M; Keightley, J D; Lalkovski, S; Pearce, A K; Podolyak, Zs

    2016-03-01

    We present a brief report on the progress towards the construction of the National Nuclear Array (NANA), a gamma-ray coincidence spectrometer for discrete-line nuclear structure and decay measurements. The proposed spectrometer will combine a gamma-ray energy resolution of approximately 3% at 1MeV with sub-nanosecond timing discrimination between successive gamma rays in mutually coincident decay cascades. We also review a number of recent measurements using coincidence fast-timing gamma-ray spectroscopy for nuclear structure studies, which have helped to inform the design criteria for the NANA spectrometer.

  11. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  12. A new all-digital time differential {gamma}-{gamma} angular correlation spectrometer

    SciTech Connect

    Nagl, Matthias; Vetter, Ulrich; Uhrmacher, Michael; Hofsaess, Hans

    2010-07-15

    A new digital time differential perturbed angular correlation spectrometer, designed to measure the energy of and coincidence time between correlated detector signals, here correlated {gamma} photons, is presented. The system overcomes limitations of earlier digital approaches and features improved performance and handling. By consequently separating the data recording and evaluation, it permits the simultaneous measurement of decays with several {gamma}-ray cascades at once and avoids the necessity of premeasurement configuration. Tests showed that the spectrometer reaches a time resolution of 460 ps [using a {sup 60}Co sample and Lu{sub 1.8}Y{sub 0.2}SiO{sub 5}:Ce (LYSO) scintillators, otherwise better than 100 ps], an energy resolution that is equivalent to the limit of the used scintillation material, and a processing capability of more than 200 000 {gamma} quanta per detector and second. Other possible applications of the presented methods include nuclear spectroscopy, positron emission tomography, time of flight studies, lidar, and radar.

  13. Observation of gamma-ray bursts with the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Strickman, M. S.; Kinzer, R. L.; Chupp, E. L.; Forrest, D. J.; Ryan, J. M.; Rieger, E.; Reppin, C.; Kanbach, G.

    1982-01-01

    The gamma-ray spectrometer on SMM is sensitive to bursts within its field of view with intensities greater than 0.000005 erg/sq cm above 100 keV. It has detected 17 events between February 1980 and March 1981 with the characteristics of cosmic gamma-ray bursts. The most intense burst, on 19 April 1980, had a photon spectrum consistent with a power law with spectral index - 2.5 from 300 keV to approximately 7 MeV. It is not possible at present to exclude the sun as the source of this burst. Spectra of 11 of the bursts have been studied for line features with no clear evidence for line emission greater than 300 keV. The continuum radiation from about half of these events have hard emission extending to approximately equal to or greater than 2 MeV.

  14. The Gamma-Ray Imaging Spectrometer (GRIS): A new balloon-borne experiment for gamma-ray line astronomy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.; Cline, T. L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A. F.; MacCallum, C. J.; Stang, P. D.

    1985-08-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments.

  15. Measurement of Radon concentration by Xenon gamma-ray spectrometer for seismic monitoring of the Earth

    NASA Astrophysics Data System (ADS)

    Novikov, A.; Ulin, S.; Dmitrenko, V.; Vlasik, K.; Bychkova, O.; Petrenko, D.; Uteshev, Z.; Shustov, A.

    2016-02-01

    A method for earthquake precursors search based on variations of 222Rn concentration determined via intensity measurement of 222Rn daughter nuclei gamma ray emission lines by means of xenon gamma-ray spectrometer is discussed. The equipment description as well as the first experimental data are presented.

  16. Enhanced Analysis Techniques for an Imaging Neutron and Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Madden, Amanda C.

    The presence of gamma rays and neutrons is a strong indicator of the presence of Special Nuclear Material (SNM). The imaging Neutron and gamma ray SPECTrometer (NSPECT) developed by the University of New Hampshire and Michigan Aerospace corporation detects the fast neutrons and prompt gamma rays from fissile material, and the gamma rays from radioactive material. The instrument operates as a double scatter device, requiring a neutron or a gamma ray to interact twice in the instrument. While this detection requirement decreases the efficiency of the instrument, it offers superior background rejection and the ability to measure the energy and momentum of the incident particle. These measurements create energy spectra and images of the emitting source for source identification and localization. The dual species instrument provides superior detection than a single species alone. In realistic detection scenarios, few particles are detected from a potential threat due to source shielding, detection at a distance, high background, and weak sources. This contributes to a small signal to noise ratio, and threat detection becomes difficult. To address these difficulties, several enhanced data analysis tools were developed. A Receiver Operating Characteristic Curve (ROC) helps set instrumental alarm thresholds as well as to identify the presence of a source. Analysis of a dual-species ROC curve provides superior detection capabilities. Bayesian analysis helps to detect and identify the presence of a source through model comparisons, and helps create a background corrected count spectra for enhanced spectroscopy. Development of an instrument response using simulations and numerical analyses will help perform spectra and image deconvolution. This thesis will outline the principles of operation of the NSPECT instrument using the double scatter technology, traditional analysis techniques, and enhanced analysis techniques as applied to data from the NSPECT instrument, and an

  17. Xenon gamma-ray spectrometer for the monitoring of radon concentration for possible earthquake precursors search

    NASA Astrophysics Data System (ADS)

    Novikov, Alexander S.; Ulin, Sergey E.; Dmitrenko, Valery V.; Vlasik, Konstantin F.; Uteshev, Ziyaetdin M.; Shustov, Alexander E.; Petrenko, Denis V.; Bychkova, Oksana V.

    2016-09-01

    Xenon gamma-ray spectrometer for monitoring of 222Rn concentration by means of measurement of its daughter nuclei gamma-ray emission intensity and the main characteristics of this device are presented. Time variations of radon concentration can be interpreted as possible precursors of the Earth's seismic activity, such as an earthquake, several days prior to these events. The results of the first experiments that were carried out in the Caucasus region of Russia show the possibility of using the described xenon gamma-ray spectrometer for this task.

  18. Source Localization using a Directional Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Shoaib

    Orphan radioactive sources pose a threat to safety and security and are a concern for various government institutions and the security agencies. It is becoming important to develop robust techniques to find and localise such sources. In the present work, two complementary methods to localize a source have been developed using a directional gamma survey spectrometer. The instrument used consists of four NaI(Tl) detectors oriented vertically in such a way that the crystals on one side shield the crystals on the other side of this arrangement. In the gross count method, the total counts from all four detectors were recorded and a fit was performed to reconstruct the source positions based on total counts versus position. For near sources (less than 15 m), the accuracy of this method is up to 1 m in the position along the road and in the distance from the road. For farther sources (from 22 m to 32 m), it provides accuracy up to 10 m on both. In the directional method, the relative counts in each crystal as a function of position can be used to measure the angle to the source by forming directional vectors. The survey then returns a field of these vectors, which may be fit to reconstruct the coordinates of the source position. For near sources (less than 15 m), this method gives an accuracy of up to 6 m in position along the road and 4 m in the distance from the road. For farther sources (from 22 m to 32 m), the accuracy in the position along the road is up to 5 m and in the distance from the road reduces up to 25 m. The gross count method provides more accurate and reliable source localization, but it does not provide directional information in real time. For this reason, the directional method is used to provide a direction to the source. Multiple truck-borne surveys were conducted using this instrument driving past Na-22 and Cs-137 sources at speeds of 20 km/h and 40 km/h. The surveys were repeated with the sources placed at different distances from the road. Here

  19. Instrumental background in balloon-borne gamma-ray spectrometers and techniques for its reduction

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1985-01-01

    Instrumental background in balloon-borne gamma-ray spectrometers is presented. The calculations are based on newly available interaction cross sections and new analytic techniques, and are the most detailed and accurate published to date. Results compare well with measurements made in the 20 keV to 10 MeV energy range by the Goddard Low Energy Gamma-ray Spectrometer (LEGS). The principal components of the continuum background in spectrometers with GE detectors and thick active shields are: (1) elastic neutron scattering of atmospheric neutrons on the Ge nuclei; (2) aperture flux of atmospheric and cosmic gamma rays; (3) beta decays of unstable nuclides produced by nuclear interactions of atmospheric protons and neutrons with Ge nuclei; and (4) shield leakage of atmospheric gamma rays. The improved understanding of these components leads to several recommended techniques for reducing the background.

  20. An in situ gamma ray spectrometer with CsI/p-i-n detector

    NASA Astrophysics Data System (ADS)

    Xu, Clarke X.; Williams, Ron R.

    1995-03-01

    The development of a portable gamma ray spectrometer based on a CsI(Tl) scintillator (1.8 cm×1.8 cm×4 cm) with integral p-i-n diode (1.8 cm×4 cm) is described. A single board computer containing the MC68HC11 microcontroller, a single-chip self-contained computer system, is used for system control. The total size of the instrument is only 12 in×7 in. including the spectrometer and power supply. The system provides a low cost, low power gamma ray spectrometer as compared to the more common PMT-based devices. Spectra can be collected in daily intervals for up to 1 week. Special software which monitors the proper working of the spectrometer insures long term stability. This spectrometer can be used for routine monitoring and detection of gamma ray emitting radio nuclides. Performance of the spectrometer as well as gamma ray spectra are presented. The qualitative and quantitative reliability have shown its potential as a stand alone field monitoring instrument due to its low power consumption and intelligence.

  1. Frequency spectrum analysis for spectrum stabilization in airborne gamma-ray spectrometer.

    PubMed

    Zeng, Guoqiang; Tan, Chengjun; Ge, Liangquan; Zhang, Qingxian; Gu, Yi

    2014-02-01

    Abnormal multi-crystal spectral drifts often can be observed when power on the airborne gamma-ray spectrometer. Currently, these spectral drifts of each crystal are generally eliminated through manual adjustment, which is time-consuming and labor-ineffective. To realize this quick automatic spectrum stabilization of multi-crystal, a frequency spectrum analysis method for natural gamma-ray background spectrum is put forward in this paper to replace traditional spectrum stabilization method used characteristic peak. Based on the polynomial fitting of high harmonics in frequency spectrum and gamma-ray spectral drift, it calculates overall spectral drift of natural gamma-ray spectrum and adjusts the gain of spectrometer by this spectral drift value, thus completing quick spectrum stabilization in the power on stage of spectrometer. This method requires no manual intervention and can obtain the overall spectral drift value automatically under no time-domain pre-processing to the natural gamma-ray spectra. The spectral drift value calculated by this method has an absolute error less than five channels (1024 resolution) and a relative error smaller than 0.80%, which can satisfy the quick automatic spectrum stabilization requirement when power on the airborne gamma-ray spectrometer instead of manual operation.

  2. The gamma-ray spectrometer experiment on the solar maximum mission satellite

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1987-01-01

    The major activities summarized include: Gamma-Ray Spectrometer (GRS) instrument response and flight operation; solar flare studies; cosmic gamma-ray studies; summary of computer operations; search for flare-precursor protons; diffuse galactic annihilation radiation; cosmic ray bursts; atmospheric gamma ray spectrum; gamma ray line emission from supernovae and novae; improved angular resolutions using Earth occultation; and production processing of NASA IPD data. In addition, an updated list of published papers and invited papers or contributed papers presented at scientific meetings is provided.

  3. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  4. Scientific considerations in the design of the Mars observer gamma-ray spectrometer

    SciTech Connect

    Arnold, J.R.; Boynton, W.V.; Englert, P.; Feldman, W.C.; Metzger, A.E.; Reedy, R.C.; Squyres, S.W.; Trombka, J.I.; Wanke, H.

    1987-01-01

    Cosmic-ray primary and secondary particles induce characteristic gamma-ray and neutron emissions from condensed bodies in our solar system. These characteristic emissions can be used to obtain qualitative and quantitative elemental analyses of planetary surfaces from orbital altitudes. Remote sensing gamma-ray spectroscopy has been successfully used to obtain elemental composition of the Moon and Mars during United States Apollo 15 and 16 missions and the Soviet Luna and Mars missions. A remote sensing gamma-ray and neutron spectrometer will be included aboard the United States Mars Observer Mission. If proper care is not taken in the design of the spectrometer and choice of materials in the construction of the detector system and spacecraft, the sensitivity of these remote sensing spectrometers can be greatly degraded. A discussion of these design and material selection problems is presented. 16 refs., 5 figs., 3 tabs.

  5. Gamma ray spectrometer for future Mars mission: design concept and simulation study

    NASA Astrophysics Data System (ADS)

    Goyal, S. K.; Banerjee, D.; Vadawale, S.; Panda, Dipak K.; Patel, A. R.; Patinge, A.; Ladiya, T.; Sarbadhikari, A. B.

    2016-07-01

    One of the basic keys to understand the evolution and formation of any planet is the knowledge of the elemental composition of its surface. Gamma spectroscopy on Mars orbiter provides a unique opportunity to measure the elemental composition of its surface, with an atmosphere thin enough to allow detection of gamma rays produced from the near surface rock and soil materials. We are developing gamma ray spectrometer using High Purity Germanium (HPGe) detector for future Mars orbiter mission. The scientific objective of the instrument is to map the naturally occurring radioactive elements (Th, U, and K) and other major elements (Fe, Mg, Cl, Al, Si, S, Mg, Cl) over the entire Martian surface with a spatial resolution of better than 250 km. Gamma ray spectrometer will also have Anti - Coincidence Shield (ACS) detector for background subtraction from the surrounding material. This paper gives the details of the GEANT4 simulation, carried out to study the design requirements for a gamma ray spectrometer for a future Mars orbiter mission. This includes the selection of the size of HPGe detector, selection of the detector material and thickness for the ACS detector, and attenuation of gamma rays in the Martian atmosphere. Generation of gamma rays from the Martian surface due to Galactic Cosmic Rays (GCR) particles' interaction has also been simulated. Preliminary results from the standard off the shelf detector are also presented here.

  6. Some correlations between measurements by the Apollo gamma-ray spectrometer and other lunar observations

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Reedy, R. C.; Peterson, L. E.; Metzger, A. E.

    1973-01-01

    Observations by the Apollo 15 and 16 gamma-ray spectrometers are compared with those of a number of other experiments, both compositional and noncompositional. A general correspondence with topography is seen. The Van de Graaff area is a unique farside region with respect to observations by the laser altimeter, the subsatellite magnetometer, and the gamma-ray spectrometer. X-ray and alpha particle orbital measurements show a broad general agreement with gamma-ray data, although results from additional elements in the gamma-ray spectrum are needed to extend the comparison with X-ray data. A comparison of Th concentrations with those found at various landing sites shows generally good agreement, with the orbital values tending to be somewhat higher.

  7. Venus Measurements by the MESSENGER Gamma-Ray and X-Ray Spectrometers

    NASA Astrophysics Data System (ADS)

    Rhodes, E. A.; Starr, R. D.; Goldsten, J. O.; Schlemm, C. E.; Boynton, W. V.

    2007-12-01

    The Gamma-Ray Spectrometer (GRS), which is a part of the Gamma-Ray and Neutron Spectrometer Instrument, and the X-Ray Spectrometer (XRS) on the MESSENGER spacecraft made calibration measurements during the Venus flyby on June 5, 2007. The purpose of these instruments is to determine elemental abundances on the surface of Mercury. The GRS measures gamma-rays emitted from element interactions with cosmic rays impinging on the surface, while the XRS measures X-ray emissions induced on the surface by the incident solar flux. The GRS sensor is a high-resolution high-purity Ge detector cooled by a Stirling cryocooler, surrounded by a borated-plastic anticoincidence shield. The GRS is sensitive to gamma-rays up to ~10 MeV and can identify most major elements, sampling down to depths of about ten centimeters. Only the shield was powered on for this flyby in order to conserve cooler lifetime. Gamma-rays were observed coming from Venus as well as from the spacecraft. Although the Venus gamma-rays originate from its thick atmosphere rather than its surface, the GRS data from this encounter will provide useful calibration data from a source of known composition. In particular, the data will be useful for determining GRS sensitivity and pointing options for the Mercury flybys, the first of which will be in January 2008. The X-ray spectrum of a planetary surface is dominated by a combination of the fluorescence and scattered solar X-rays. The most prominent fluorescent lines are the Kα lines from the major elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The sampling depth is less than 100 u m. The XRS is similar in design to experiments flown on Apollo 15 and 16 and the NEAR-Shoemaker mission. Three large-area gas-proportional counters view the planet, and a small Si-PIN detector mounted on the spacecraft sunshade monitors the Sun. The energy resolution of the gas proportional counters (~850 eV at 5.9 keV) is sufficient to resolve the X-ray lines above 2 keV, but Al and Mg

  8. Research on CdZnTe and Other Novel Room Temperature Gamma Ray Spectrometer Materials

    SciTech Connect

    Arnold Burger; Michael gGoza; Yunlong Cui; Utpal N. Roy; M. Guo

    2007-05-05

    Room temperature gamma-ray spectrometers are being developed for a number of years for national security applications where high sensitivity, low operating power and compactness are indispensable. The technology has matured now to the point where large volume (several cubic centimeters) and high energy resolution (approximately 1% at 660 eV) of gamma photons, are becoming available for their incorporation into portable systems for remote sensing of signatures from nuclear materials.

  9. Design of a Multi-Channel Ultra-High Resolution Superconducting Gamma-Ray Spectrometer

    SciTech Connect

    Friedrich, S; Terracol, S F; Miyazaki, T; Drury, O B; Ali, Z A; Cunningham, M F; Niedermayr, T R; Barbee Jr., T W; Batteux, J D; Labov, S E

    2004-11-29

    Superconducting Gamma-ray microcalorimeters operated at temperatures around {approx}0.1 K offer an order of magnitude improvement in energy resolution over conventional high-purity Germanium spectrometers. The calorimeters consist of a {approx}1 mm{sup 3} superconducting or insulating absorber and a sensitive thermistor, which are weakly coupled to a cold bath. Gamma-ray capture increases the absorber temperature in proportion to the Gamma-ray energy, this is measured by the thermistor, and both subsequently cool back down to the base temperature through the weak link. We are developing ultra-high-resolution Gamma-ray spectrometers based on Sn absorbers and superconducting Mo/Cu multilayer thermistors for nuclear non-proliferation applications. They have achieved an energy resolution between 60 and 90 eV for Gamma-rays up to 100 keV. We also build two-stage adiabatic demagnetization refrigerators for user-friendly detector operation at 0.1 K. We present recent results on the performance of single pixel Gamma-ray spectrometers, and discuss the design of a large detector array for increased sensitivity.

  10. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  11. Improved yield of high resolution mercuric iodide gamma-ray spectrometers

    SciTech Connect

    Gerrish, V.; van den Berg, L.

    1990-01-01

    Mercuric iodide (HgI{sub 2}) exhibits properties which make it attractive for use as a solid state nuclear radiation detector. The wide bandgap (E{sub g} = 2.1 eV) and low dark current allow room temperature operation, while the high atomic number provides a large gamma-ray cross section. However, poor hole transport has been a major limitation in the routine fabrication of high-resolution spectrometers using this material. This paper presents the results of gamma-ray response and charge transport parameter measurements conducted during the past year at EG G/EM on 96 HgI{sub 2} spectrometers. The gamma-ray response measurements reveal that detector quality is correlated with the starting material used in the crystal growth. In particular, an increased yield of high-resolution spectrometers was obtained from HgI{sub 2} which was synthesized by precipitation from an aqueous solution, as opposed to using material from commercial vendors. Data are also presented which suggest that better spectrometer performance is tied to improved hole transport. Finally, some initial results on a study of detector uniformity reveal spatial variations which may explain why the correlation between hole transport parameters and spectrometer performance is sometimes violated. 6 refs., 3 figs.

  12. GeMini Plus: A Versatile Gamma-Ray Spectrometer for Planetary Composition Measurements

    NASA Astrophysics Data System (ADS)

    Burks, M. T.; Heffern, L. E.; Lawrence, D. J.; Goldsten, J. O.; Peplowski, P. N.

    2016-10-01

    GeMini Plus is a high-resolution, low-resource, gamma-ray spectrometer for planetary composition measurements. The core of the instrument has a mass of 3 kg and requires 10 watts power, making it well suited for both landed and orbital missions.

  13. New xenon gamma-ray spectrometer for sorting of radioactive waste

    NASA Astrophysics Data System (ADS)

    Ulin, Sergey E.; Novikov, Alexander S.; Dmitrenko, Valery V.; Vlasik, Konstantin F.; Uteshev, Ziyaetdin M.; Shustov, Alexander E.; Petrenko, Denis V.

    2016-09-01

    A gamma-ray spectrometer for radioactive waste sorting is presented. The equipment is based on a new "thin-walled" xenon gamma-ray detector with sensitive volume of 4 liters and a digital electronics unit. Use of the thin wall (0.5 mm of stainless steel covered with fiberglass) provides lower absorption of gamma-rays by the detector's walls and expansion of the energy range of radiation being registered. The digital electronics unit makes it possible to use the equipment in unfavorable field conditions such as high levels of acoustic influence.

  14. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    SciTech Connect

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-08-10

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm{sup 3} Sn absorber is 50 -90eV for {gamma}-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity.

  15. A high precision gamma-ray spectrometer for the Mars-94 mission

    SciTech Connect

    Mitrofanov, I.G.; Anfimov, D.S.; Chernenko, A.M.

    1994-06-01

    The high precision gamma-ray spectrometer (PGS) is scheduled to be launched on the Mars-94 mission in October 1994, and to go into an elliptical polar orbit around Mars. The PGS consists of two high-purity germanium (Ge) detectors, associated electronics, and a passive cooler and will be mounted on one of the solar panels. The PGS will measure nuclear gamma-ray emissions from the martian surface, cosmic gamma-ray bursts, and the high-energy component of solar flares in the broad energy range from 50 KeV to 8 MeV using 4096 energy channels.

  16. Innovative Gamma Ray Spectrometer Detection Systems for Conducting Scanning Surveys on Challenging Terrain - 13583

    SciTech Connect

    Palladino, Carl; Mason, Bryan; Engle, Matt; LeVangie, James; Dempsey, Gregg; Klemovich, Ron

    2013-07-01

    The Santa Susana Field Laboratory located near Simi Valley, California was investigated to determine the nature and extent of gamma radiation anomalies. The primary objective was to conduct gamma scanning surveys over 100 percent of the approximately 1,906,000 square meters (471 acre) project site with the most sensitive detection system possible. The site had challenging topography that was not conducive to traditional gamma scanning detection systems. Terrain slope varied from horizontal to 48 degrees and the ground surface ranged from flat, grassy meadows to steep, rocky hillsides. In addition, the site was home to many protected endangered plant and animal species, and archaeologically significant sites that required minimal to no disturbance of the ground surface. Therefore, four innovative and unique gamma ray spectrometer detection systems were designed and constructed to successfully conduct gamma scanning surveys of approximately 1,076,000 square meters (266 acres) of the site. (authors)

  17. An alpha–gamma coincidence spectrometer based on the Photon–Electron Rejecting Alpha Liquid Scintillation (PERALS®) system

    DOE PAGES

    Cadieux, J. R.; Fugate, G. A.; King, III, G. S.

    2015-02-07

    Here, an alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics.

  18. Astrogam - A magnetic rigidity spectrometer for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Ahlen, S. P.; Beatty, J. J.; Barbier, L. M.; Ormes, J. F.; Streitmatter, R. E.; Carlson, P.

    1990-01-01

    A novel concept is presented for a high-energy gamma-ray telescope with an extended energy range and excellent energy and angular resolution. The characteristics of Astrogam, a wide-field camera which makes an all-sky survey, are enumerated. Consideration is given to the instrument's unique features: wide energy range (four orders of magnitude and energy, which will bridge the gap between satellite and ground-based observations); excellent source location precision (multiple scattering error dominating nuclear recoil and measurement error below 20 GeV); and excellent energy resolution (1-percent energy resolution). Astrogam will make observations in the GTE energy range possible and could resolve complex source regions like the Crab pulsar/Nebular system, the Galactic center, and the Geminga region as well as discover the true nature of the sources.

  19. Direction-Sensitive Hand-Held Gamma-Ray Spectrometer

    SciTech Connect

    Mukhopadhyay, S.

    2012-10-04

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response is highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.

  20. Strontium iodide gamma ray spectrometers for planetary science (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Rowe, Emmanuel; Butler, Jarrhett; Groza, Michael; Burger, Arnold; Yamashita, Naoyuki; Lambert, James L.; Stassun, Keivan G.; Beck, Patrick R.; Cherepy, Nerine J.; Payne, Stephen A.; Castillo-Rogez, Julie C.; Feldman, Sabrina M.; Raymond, Carol A.

    2016-09-01

    Gamma rays produced passively by cosmic ray interactions and by the decay of radioelements convey information about the elemental makeup of planetary surfaces and atmospheres. Orbital missions mapped the composition of the Moon, Mars, Mercury, Vesta, and now Ceres. Active neutron interrogation will enable and/or enhance in situ measurements (rovers, landers, and sondes). Elemental measurements support planetary science objectives as well as resource utilization and planetary defense initiatives. Strontium iodide, an ultra-bright scintillator with low nonproportionality, offers significantly better energy resolution than most previously flown scintillators, enabling improved accuracy for identification and quantification of key elements. Lanthanum bromide achieves similar resolution; however, radiolanthanum emissions obscure planetary gamma rays from radioelements K, Th, and U. The response of silicon-based optical sensors optimally overlaps the emission spectrum of strontium iodide, enabling the development of compact, low-power sensors required for space applications, including burgeoning microsatellite programs. While crystals of the size needed for planetary measurements (>100 cm3) are on the way, pulse-shape corrections to account for variations in absorption/re-emission of light are needed to achieve maximum resolution. Additional challenges for implementation of large-volume detectors include optimization of light collection using silicon-based sensors and assessment of radiation damage effects and energetic-particle induced backgrounds. Using laboratory experiments, archived planetary data, and modeling, we evaluate the performance of strontium iodide for future missions to small bodies (asteroids and comets) and surfaces of the Moon and Venus. We report progress on instrument design and preliminary assessment of radiation damage effects in comparison to technology with flight heritage.

  1. Gamma-Ray Spectrometers Using Superconducting Transition Edge Sensors with External Active Feedback Bias

    SciTech Connect

    Chow, D.T.; van den Berg, M.L.; Loshak, A.; Frank, M.; Barbee, T.W.; Labov, S.E.

    2000-09-22

    The authors are developing x-ray and gamma-ray spectrometers with high absorption efficiency and high energy-resolution for x-ray and gamma-ray spectroscopy. They are microcalorimeters consisting of a bulk Sn absorber coupled to a Mo/Cu multilayer superconducting transition edge sensor (TES). The authors have measured an energy resolution of 70 eV FWHM for 60 keV incident gamma-rays using electrothermal feedback. They have also operated these microcalorimeters with an external active feedback bias to linearize the detector response, improve the count rate performance, and extend the detection energy range. They present x-ray and gamma-ray results operation of this detector design in both bias modes.

  2. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  3. Estimation method of planetary fast neutron flux by a Ge gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hareyama, M.; Fujibayashi, Y.; Yamashita, Y.; Karouji, Y.; Nagaoka, H.; Kobayashi, S.; Reedy, R. C.; Gasnault, O.; Forni, O.; d'Uston, C.; Kim, K. J.; Hasebe, N.

    2016-08-01

    An intensity map of lunar fast neutrons (LFNs) and their temporal variation has been estimated by fitting "sawtooth" peaks in the energy spectra of lunar gamma rays observed by the Kaguya (SELENE) Gamma Ray Spectrometer (GRS) consisting of a high-purity germanium (HPGe) detector with a BGO scintillator. While an ordinary peak in the spectrum is produced by only gamma ray lines, the sawtooth peak is produced by gamma ray lines and recoil nuclei in the detector by Ge(n ,n‧ γ) reaction. We develop a model for the shape of the sawtooth peak and apply it to fit sawtooth peaks together with ordinary peaks in actual observed spectra on the Moon. The temporal variation of LFNs is synchronous with that of galactic cosmic rays (GCRs), and the global distribution of fast neutrons on the lunar surface agrees well with the past observation reported by the Neutron Spectrometer aboard Lunar Prospector. Based on these results, a new method is established to estimate the flux of fast neutrons by fitting sawtooth peaks on the gamma ray spectrum observed by the HPGe detector.

  4. SWEPP gamma-ray spectrometer system software user`s guide

    SciTech Connect

    Femec, D.A.

    1994-08-01

    The SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurement and Development Unit of the Idaho National Engineering Laboratory to assist in the characterization of the radiological contents of contact-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP). In addition to determining the concentrations of gamma-ray-emitting radionuclides, the software also calculates attenuation-corrected isotopic mass ratios of specific interest, and provides controls for SGRS hardware as required. This document serves as a user`s guide for the data acquisition and analysis software associated with the SGRS system.

  5. Code CUGEL: A code to unfold Ge(Li) spectrometer polyenergetic gamma photon experimental distributions

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Born, U.

    1970-01-01

    A FORTRAN code was developed for the Univac 1108 digital computer to unfold lithium-drifted germanium semiconductor spectrometers, polyenergetic gamma photon experimental distributions. It was designed to analyze the combination continuous and monoenergetic gamma radiation field of radioisotope volumetric sources. The code generates the detector system response matrix function and applies it to monoenergetic spectral components discretely and to the continuum iteratively. It corrects for system drift, source decay, background, and detection efficiency. Results are presented in digital form for differential and integrated photon number and energy distributions, and for exposure dose.

  6. The global elemental composition of 433 Eros: First results from the NEAR gamma-ray spectrometer orbital dataset

    NASA Astrophysics Data System (ADS)

    Peplowski, Patrick N.

    2016-12-01

    A primary goal of the Near-Earth Asteroid Rendezvous (NEAR) mission was to compare the elemental composition of the S-type asteroid 433 Eros to the chemical compositions of meteorites, with the specific objective of testing the hypothesis that the S-type asteroids are the source of the ordinary chondrite (OC) meteorites. To that end, NEAR carried an X-ray and Gamma-ray Spectrometer (XGRS) to measure the elemental composition of Eros from orbit. To date, no Eros-originating signal had been reported in GRS orbital measurements, a consequence of NEAR's high orbital altitudes about Eros. A reanalysis of the NEAR GRS orbital dataset, particularly data collected during a series of low-altitude flyovers, has finally revealed the first positively identified gamma-ray signals from Eros. This dataset, which amounts to just 10 h of data collection, was used to produce the first GRS-derived global elemental composition values. Results include the first absolute concentrations of Fe and Th, and the first global K concentration. The data confirm prior conclusions that the elemental composition of Eros' surface is inconsistent with achondritic and volatile-rich carbonaceous chondritic compositions. In contrast, ordinary chondrites, volatile-poor carbonaceous chondrites, and enstatite chondrites have compositions that are consistent with Eros' gamma-ray emissions. When placed in the context of other gamma-ray spectrometer investigations, this analysis indicates that successful gamma-ray spectroscopy investigations require extended periods of time (≥10 days) at orbital altitudes less than or equal to the radius of the target body.

  7. Design, calibration, and application of an airborne gamma spectrometer system in Switzerland

    SciTech Connect

    Schwarz, G.F.; Rybach, L.; Klingele, E.E.

    1997-09-01

    Airborne radiometric surveys are finding increasingly wider application in environmental mapping and monitoring. They are the most efficient tool to delimit surface contamination and to locate lost radioactive sources. To secure radiometric capability in survey and emergency situations, a new sensitive airborne system has been built that includes an airborne spectrometer with 256 channels and a sodium iodide detector with a total volume of 16.8 liters. A rack-mounted PC with memory cards is used for data acquisition, with a GPS satellite navigation system for positioning. The system was calibrated with point sources using a mathematical correction to take into account the effects of gamma-ray scattering in the ground and in the atmosphere. The calibration was complemented by high precision ground gamma spectrometry and laboratory measurements on rock samples. In Switzerland, two major research programs make use of the capabilities of airborne radiometric measurements. The first one concerns nuclear power-plant monitoring. The five Swiss nuclear installations (four power plants and one research facility) and the surrounding regions of each site are surveyed annually. The project goal is to monitor the dose-rate distribution and to provide a documented baseline database. The measurements show that all sites (with the exception of the Goesgen power plant) can be identified clearly on the maps. No artificial radioactivity that could not be explained by the Chernobyl release or earlier nuclear weapons tests was detected outside of the fenced sites of the nuclear installations. The second program aims at a better evaluation of the natural radiation level in Switzerland. The survey focused on the crystalline rocks of the Central Massifs of the Swiss Alps because of their relatively high natural radioactivity and lithological variability.

  8. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    SciTech Connect

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C.; Hilsabeck, T. J.; Wu, W.; Moy, K.; Stoeffl, W.

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  9. A second-generation low-background gamma-ray spectrometer.

    PubMed

    Lindstrom, Richard M

    2016-12-21

    For the ultimate sensitivity in trace radiochemical analysis, the radiation detector must have high efficiency and low background. A low-background gamma-ray spectrometer in regular use at NIST for over twenty years is being supplemented by a new system, improved in several ways. The new detector is much larger, a shield of iron reduces cosmic neutron background compared with lead, large plastic scintillators reduce the muon continuum background, and a digital data acquisition system gives new opportunities for optimization.

  10. Airborne gamma-ray spectrometer and magnetometer survey: north/south tieline. Final report

    SciTech Connect

    Not Available

    1981-05-01

    Data from an airborne high sensitivity gamma-ray spectrometer and magnetometer survey along the 99/sup 0/ longitude meridian from the Canadian border southward to the Mexican border are presented. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the US. (DMC)

  11. The gamma-ray spectrometer experiment on the solar maximum mission satellite

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1988-01-01

    The major activities (through 15 November l987) of the Solar Maximum Mission Gamma-Ray Spectrometer (SMM GRS) team members at the University of New Hampshire and the Naval Research Laboratory and the work of the Guest Investigators since the last Semi-Annual Report are summarized. In addition, an updated list of published papers and invited papers or papers presented at scientific meetings is provided.

  12. Characterization of a new modular decay total absorption gamma-ray spectrometer (DTAS) for FAIR

    SciTech Connect

    Montaner Piza, A.; Tain, J. L.; Agramunt, J.; Algora, A.; Guadilla, V.; Marin, E.; Rice, S.; Rubio, B.

    2013-06-10

    Beta-decay studies are one of the main goals of the DEcay SPECtroscopy experiment (DESPEC) to be installed at the future Facility for Antiproton and Ion Research (FAIR). DESPEC aims at the study of nuclear structure of exotic nuclei. A new modular Decay Total Absorption gamma-ray Spectrometer (DTAS) is being built at IFIC and is specially adapted to studies at fragmentation facilities such as the Super Fragment Separator (Super-FRS) at FAIR. The designed spectrometer is composed of 16 identical NaI(Tl) scintillation crystals. This work focuses on the characterization of these independent modules, as an initial step for the characterization of the full spectrometer. Monte Carlo simulations have been performed in order to understand the detector response.

  13. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    NASA Astrophysics Data System (ADS)

    Shevelev, A. E.; Khilkevitch, E. M.; Lashkul, S. I.; Rozhdestvensky, V. V.; Altukhov, A. B.; Chugunov, I. N.; Doinikov, D. N.; Esipov, L. A.; Gin, D. B.; Iliasova, M. V.; Naidenov, V. O.; Nersesyan, N. S.; Polunovsky, I. A.; Sidorov, A. V.; Kiptily, V. G.

    2016-09-01

    A gamma-ray spectrometer based on LaBr3(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr3(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 107 s-1. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr3(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1-5 ms.

  14. Combined, solid-state molecular property and gamma spectrometers for CBRNE detection

    NASA Astrophysics Data System (ADS)

    Rogers, Ben; Grate, Jay; Pearson, Brett; Gallagher, Neal; Wise, Barry; Whitten, Ralph; Adams, Jesse

    2013-05-01

    Nevada Nanotech Systems, Inc. (Nevada Nano) has developed a multi-sensor solution to Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) detection that combines the Molecular Property Spectrometer™ (MPS™)—a micro-electro-mechanical chip-based technology capable of measuring a variety of thermodynamic and electrostatic molecular properties of sampled vapors and particles—and a compact, high-resolution, solid-state gamma spectrometer module for identifying radioactive materials, including isotopes used in dirty bombs and nuclear weapons. By conducting multiple measurements, the system can provide a more complete characterization of an unknown sample, leading to a more accurate identification. Positive identifications of threats are communicated using an integrated wireless module. Currently, system development is focused on detection of commercial, military and improvised explosives, radioactive materials, and chemical threats. The system can be configured for a variety of CBRNE applications, including handheld wands and swab-type threat detectors requiring short sample times, and ultra-high sensitivity detectors in which longer sampling times are used. Here we provide an overview of the system design and operation and present results from preliminary testing.

  15. Properties of a large NaI(Tl) spectrometer for the energy measurement of high-energy gamma rays on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Hughes, E. B.; Finman, L. C.; Hofstadter, R.; Lepetich, J. E.; Lin, Y. C.

    1986-01-01

    A large NaI(Tl) spectrometer is expected to play a crucial role in the measurement of the energy spectra from an all-sky survey of high-energy celestial gamma rays on the Gamma Ray Observatory. The crystal size and requirements of space flight have resulted in a novel crystal-packaging and optics combination. The structure of this spectrometer and the operating characteristics determined in a test program using high energy positrons are described.

  16. CdZnTe gamma ray spectrometer for orbital planetary missions

    SciTech Connect

    Feldman, W. C.; Storms, S. A.; Fuller, K. R.; Moss, C. E.; Browne, M. C.; Lawrence, David J. ,; Ianakiev, K. D.; Prettyman, T. H.

    2001-01-01

    Knowledge of surface elemental composition is needed to understand the formation and evolution of planetary bodies. Gamma rays and neutrons produced by the interaction of galactic cosmic rays with surface materials can be detected from orbit and analyzed to determine composition. Using gamma ray spectroscopy, major rock forming elements such as Fe, Ti, Al, Si, Mg, and Ca can be detected. The accuracy of elemental abundance is limited by the resolution of the spectrometer. For space missions, scintillators such as BGO and NaI(Tl) have been used for gamma ray spectroscopy. New planetary science missions are being planned to explore Mars, Mercury, the asteroid belt, and the outer planets. Significant improvements in the pulse height resolution relative to scintillation detectors can be made using CdZnTe, a new room temperature detector technology. For an orbiting instrument, a CdZnTe detector at least 16 cm{sup 3} in size is needed. A 4 x 4 array of 1-cm{sup 3} coplanar grid detectors can be manufactured that meets requirements for resolution and counting efficiency. The array will shielded from gamma rays produced in the spacecraft by a BGO detector. By improving pulse height resolution by a factor of three at low energy, the CdZnTe detector will be able to make accurate measurements of elements that are currently difficult to measure using scintillation technology. The BGO shield will provide adequate suppression of gamma rays originating in the spacecraft, enabling the gamma ray spectrometer to be mounted on the deck of a spacecraft. To test this concept, we are constructing a flight qualified, prototype CdZnTe detector array. The prototype consists of a 2 x 2 array of coplanar grid detectors. We will present the results of mechanical and electronic testing and radiation damage tests, and the performance of the array for gamma ray spectroscopy.

  17. Isotope Identification in the GammaTracker Handheld Radioisotope Identifier

    SciTech Connect

    Batdorf, Michael T.; Hensley, Walter K.; Seifert, Carolyn E.; Kirihara, Leslie J.; Erikson, Luke E.; Jordan, David V.

    2009-11-13

    GammaTracker is a portable handheld radioisotope identifier using position sensitive CdZnTe crystals. The device uses a peak-based method for isotope identification implemented on an embedded computing platform within the device. This paper presents the run-time optimized algorithms used in this peak-based approach. Performance of the algorithms is presented using measured data from gamma-ray sources.

  18. Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices

    NASA Astrophysics Data System (ADS)

    Semkow, T. M.; Bradt, C. J.; Beach, S. E.; Haines, D. K.; Khan, A. J.; Bari, A.; Torres, M. A.; Marrantino, J. C.; Syed, U.-F.; Kitto, M. E.; Hoffman, T. J.; Curtis, P.

    2015-11-01

    A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm-3. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid.

  19. Detection of galactic Al-26 gamma radiation by the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Kurfess, J. D.; Forrest, D. J.; Chupp, E. L.; Rieger, E.

    1985-01-01

    The Solar Maximum Mission satellite's gamma-ray spectrometer has detected a line near 1.81 MeV in each of the three years (1980-1982) over which the Galactic center traversed the broad aperture of that instrument. No significant intensity variation is noted over this period. The Galactic center/anticenter intensity ratio is greater than 2.5, and the center of the emission is noted to be consistent with the location of the Galactic center. For an assumed source distribution which follows the more than 100 MeV Galactic gamma radiation, the total flux in the direction of the Galactic center and the measured energy of the line are consistent with the detection of a narrow gamma-ray line from interstellar Al-26 by HEAO 3 in 1979-1980.

  20. Observations with the SMM gamma-ray spectrometer - The impulsive solar flares of 1980 March 29

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Forrest, D. J.; Chupp, E. L.; Cherry, M. L.; Reppin, C.; Rieger, E.; Pinkau, K.; Kanbach, G.; Share, G. H.; Kinzer, R. L.

    1981-01-01

    Gamma-ray continuum emission from 0.3 to 1 MeV was observed with the gamma-ray spectrometer on the Solar Maximum Mission satellite during two impulsive solar flares on 1980 March 29, from active region 2363 at 0918 UT and from active region 2357 at 0955 UT. Evidence is presented for a hardening of the spectrum during the impulsive phase of the flares. The photon intensity greater than 100 keV appears to decay at a slower rate than that at lower energies. Time-integrated photon spectra for both flares are incompatible with a single-temperature thermal-bremsstrahlung model. Upper limits for prompt and delayed gamma-ray lines are presented.

  1. Horizontal Ampoule Growth and Characterization of Mercuric Iodide at Controlled Gas Pressures for X-Ray and Gamma Ray Spectrometers

    SciTech Connect

    McGregor, Douglas S.; Ariesanti, Elsa; Corcoran, Bridget

    2004-04-30

    The project developed a new method for producing high quality mercuric iodide crystals of x-ray and gamma spectrometers. Included are characterization of mercuric iodide crystal properties as a function of growth environment and fabrication and demonstration of room-temperature-operated high-resolution mercuric iodide spectrometers.

  2. Lunar and Planetary Science XXXV: Mars: Radar, Gamma Ray Spectrometer, and Cratering Mineralogy

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Radar, Gamma Ray Spectrometer, and Cratering Mineralogy" contained the following reports:The Dielectric Properties of Martian Soil Simulant JSC Mars-1 in the Range from 20Hz to 10kHz; Eastern Sahara Geology from Orbital Radar: Potential Analog to Mars On the Dielectric Properties of the Martian-like Surface Sediments; Radar Observations of Recent Mars Landing Sites; Sounding of Subsurface Water Through Conductive Media in Mars Analog Environments Using Transient Electromagnetics and Low Frequency Ground-penetrating Radar; Burial Depth of the Reservoirs of Hydrogen at the Equatorial Latitudes on Mars; Elemental Composition Variations for Large Dusty and Rocky Regions on Mars Using Gamma-Ray Data from the Mars Odyssey Gamma-Ray Spectrometer; The Distribution of Non-Volatile Elements on Mars: Mars Odyssey GRS Results; Using Mars Odyssey GRS Data to Assess Models for the Bulk Composition of Mars; Mars: The Terra Arabia Low Epithermal Neutron Flux Anomaly; The Isidis Basin of Mars: New Results from MOLA, MOC, and THEMIS; Remote Sensing of the Haughton Impact Structure (HIS): A Terrestrial Proof of Concept for Using the Remote Sensing of Martian Craters as a Probe of Subsurface Composition;and Thermal Emission Spectra of Impact Glass and Shocked Deccan Basalt from Lonar Crater, India and Implications for Remote Sensing of Mars.

  3. Development of Three-Dimensional Position-Sensitive Room Temperature Semiconductor Gamma-Ray Spectrometers

    SciTech Connect

    Zhong He; Wen Li; Glenn F. Knoll; D. K. Wehe

    2000-06-04

    Semiconductor detectors can provide better spectroscopic performance than scintillation or gas-filled detectors because of the small ionization energy required to generate each electron-hole pair. Indeed, cryogenically cooled high-purity germanium detectors have played the dominant role whenever the best gamma-ray spectroscopy is required. A decades-long search for other semiconductor detectors that could provide higher stopping power and could operate at room temperature has been ongoing. Wide-bandgap semiconductors, such as CdTe, CdZnTe, and HgI{sub 2}, have captured the most attention. However, the use of these semiconductors in detectors has been hindered primarily by problems of charge trapping and material nonuniformity. Introduced in 1994, single-polarity charge sensing on semiconductor detectors has shown great promise in avoiding the hole-trapping problem, and the newly demonstrated three-dimensional position-sensing technique can significantly mitigate the degradation of energy resolution due to nonuniformity of detector material. In addition, three-dimensional position sensitivity will provide unique imaging capabilities of these gamma-ray spectrometers. These devices are of interest for nuclear nonproliferation, medical imaging, gamma-ray astronomy, and high-energy physics applications. This paper describes the three-dimensional position-sensing method and reports our latest results using second-generation three-dimensional position-sensitive semiconductor spectrometers.

  4. Development of a low-level background gamma-ray spectrometer by KRISS.

    PubMed

    Lee, K B; Park, Tae Soon; Lee, Jong Man; Oh, Phil-Je; Lee, Sang-Han

    2008-01-01

    A new low-level background and high-efficiency gamma-ray spectrometric system, to be used mainly for the activity certification of natural-matrix certified reference materials (CRMs) and environmental reference materials (RMs) that has been developed on the grounds of the Korea Research Institute of Standards and Science (KRISS). The spectrometer consists of a low-background high-purity germanium detector with a relative efficiency of 120% and various shielding devices to reduce radiation background. The cabinet-shaped device made of 10ton of shielding materials encloses the germanium detector for protection against background from natural radioactivity and neutrons. Three plates of 50-mm-thick plastic scintillation detectors on top of the passive shielding cabinet suppress cosmogenic background by detecting high-energetic cosmic muons bombarding the germanium detector. The measured background rate of the spectrometer for the energy range 50-3000keV was 1.72s(-1).

  5. Investigation of cosmic-ray induced background of Germanium gamma spectrometer using GEANT4 simulation.

    PubMed

    Hung, Nguyen Quoc; Hai, Vo Hong; Nomachi, Masaharu

    2017-03-01

    In this article, a GEANT4 Monte Carlo simulation toolkit was used to study the response of the cosmic-ray induced background on a High-Purity Germanium (HPGe) gamma spectrometer in the wide energy range, up to 100MeV. The natural radiation background measurements of the spectrometer were carried out in the energy region from 0.04 to 50MeV. The simulated cosmic-ray induced background of the Ge detector was evaluated in comparison with the measured data. The contribution of various cosmic-ray components including muons, neutrons, protons, electrons, positrons and photons was investigated. We also analyzed secondary particle showers induced by the muonic component.

  6. Superconducting Gamma/Neutron Spectrometer Task 1 Completion Report Evaluation of Candidate Neutron-Sensitive Materials

    SciTech Connect

    Bell, Z.W.; Lamberti, V.E.

    2002-06-20

    A review of the scientific literature regarding boron- and lithium-containing compounds was completed. Information such as Debye temperature, heat capacity, superconductivity properties, physical and chemical characteristics, commercial availability, and recipes for synthesis was accumulated and evaluated to develop a list of neutron-sensitive materials likely to perform properly in the spectrometer. The best candidate borides appear to be MgB{sub 2} (a superconductor with T{sub c} = 39 K), B{sub 6}Si, B{sub 4}C, and elemental boron; all are commercially available. Among the lithium compounds are LiH, LiAl, Li{sub 12}Si{sub 7}, and Li{sub 7}Sn{sub 2}. These materials have or are expected to have high Debye temperatures and sufficiently low heat capacities at 100 mK to produce a useful signal. The responses of {sup 10}B and {sup 6}Li to a fission neutron spectrum were also estimated. These demonstrated that the contribution of scattering events is no more than 3% in a boron-based system and 1.5% in a lithium-based system. This project is concerned with the development of materials for use in a cryogenic neutron spectrometer and is complementary to work in progress by Labov at LLNL to develop a cryogenic gamma ray spectrometer. Refrigeration to 100 mK lowers the heat capacity of these materials to the point that the energy of absorbed gamma and x rays, nuclei scattered by fast neutrons, and ions from (n, {alpha}) reactions produce a measurable heat pulse, from which the energy of the incident radiation may be deduced. The objective of this project is the discovery, fabrication, and testing of candidate materials with which a cryogenic neutron spectrometer may be realized.

  7. Radioactivity observed in the sodium iodide gamma-ray spectrometer returned on the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Dyer, C. S.; Trombka, J. I.; Schmadebeck, R. L.; Eller, E.; Bielefeld, M. J.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Reedy, R. C.

    1975-01-01

    In order to obtain information on radioactive background induced in the Apollo 15 and 16 gamma-ray spectrometers (7 cm x 7 cm NaI) by particle irradiation during spaceflight, and identical detector was flown and returned to earth on the Apollo 17 mission. The induced radioactivity was monitored both internally and externally from one and a half hours after splashdown. When used in conjunction with a computation scheme for estimating induced activation from calculated trapped proton and cosmic-ray fluences, these results show an important contribution resulting from both thermal and energetic neutrons produced in the heavy spacecraft by cosmic-ray interactions.

  8. Airborne gamma-ray spectrometer and magnetometer survey: north/south tieline. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted along the 99/sup 0/ longitude meridian from the Canadian border southward to the Mexican border. A total of 1555 line miles of geophysical data were acquired and, subsequently, compiled. The north-south tieline was flown as part of the National Uranium Resources Evaluation. NURE is a program of the US Department of Energy's Grand Junction, Colorado, office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  9. Wireless, low-cost, FPGA-based miniature gamma ray spectrometer

    NASA Astrophysics Data System (ADS)

    Becker, E. M.; Farsoni, A. T.

    2014-10-01

    A compact, low-cost, wireless gamma-ray spectrometer is a tool sought by a number of different organizations in the field of radiation detection. Such a device has applications in emergency response, battlefield assessment, and personal dosimetry. A prototype device fitting this description has been constructed in the Advanced Radiation Instrumentation Laboratory at Oregon State University. The prototype uses a CsI(Tl) scintillator coupled to a solid-state photomultiplier and a 40 MHz, 12-bit, FPGA-based digital pulse processor to measure gamma radiation, and is able to be accessed wirelessly by mobile phone. The prototype device consumes roughly 420 mW, weighs about 28 g (not including battery), and measures 2.54×3.81 cm2. The prototype device is able to achieve 5.9% FWHM energy resolution at 662 keV.

  10. Characteristics of bursts observed by the SMM Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Messina, D. C.; Iadicicco, A.; Matz, S. M.; Rieger, E.; Forrest, D. J.

    1992-01-01

    The Gamma Ray Spectrometer (GRS) on the SMM completed close to 10 years of highly successful operation when the spacecraft reentered the atmosphere on December 2, 1989. During this period the GRS detected 177 events above 300 keV which have been classified as cosmic gamma-ray bursts. A catalog of these events is in preparation which will include time profiles and spectra for all events. Visual inspection of the spectra indicates that emission typically extends into the MeV range, without any evidence for a high-energy cutoff; 17 of these events are also observed above 10 MeV. We find no convincing evidence for line-like emission features in any of the time-integrated spectra.

  11. Development of a Gamma-Ray Spectrometer for Korean Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong Ja; Park, Junghun; Choi, Yire; Lee, Sungsoon; Yeon, Youngkwang; Yi, Eung Seok; Jeong, Meeyoung; Sun, Changwan; van Gasselt, Stephan; Lee, K. B.; Kim, Yongkwon; Min, Kyungwook; Kang, Kyungin; Cho, Jinyeon; Park, Kookjin; Hasebe, Nobuyuki; Elphic, Richard; Englert, Peter; Gasnault, Olivier; Lim, Lucy; Shibamura, Eido; GRS Team

    2016-10-01

    Korea is preparing for a lunar orbiter mission (KPLO) to be developed in no later than 2018. Onboard the spacecraft is a gamma ray spectrometer (KLGRS) allowing to collect low energy gamma-ray signals in order to detect elements by either X-ray fluorescence or by natural radioactive decay in the low as well as higher energy regions of up to 10 MeV. Scientific objectives include lunar resources (water and volatile measurements, rare earth elements and precious metals, energy resources, major elemental distributions for prospective in-situ utilizations), investigation of the lunar geology and studies of the lunar environment (mapping of the global radiation environment from keV to 10 MeV, high energy cosmic ray flux using the plastic scintillator).The Gamma-Ray Spectrometer (GRS) system is a compact low-weight instrument for the chemical analysis of lunar surface materials within a gamma-ray energy range from 10s keV to 10 MeV. The main LaBr3 detector is surrounded by an anti-coincidence counting module of BGO/PS scintillators to reduce both low gamma-ray background from the spacecraft and housing materials and high energy gamma-ray background from cosmic rays. The GRS system will determine the elemental compositions of the near surface of the Moon.The GRS system is a recently developed gamma-ray scintillation based detector which can be used as a replacement for the HPGe GRS sensor with the advantage of being able to operate at a wide range of temperatures with remarkable energy resolution. LaBr3 also has a high photoelectron yield, fast scintillation response, good linearity and thermal stability. With these major advantages, the LaBr3 GRS system will allow us to investigate scientific objectives and assess important research questions on lunar geology and resource exploration.The GRS investigation will help to assess open questions related to the spatial distribution and origin of the elements on the lunar surface and will contribute to unravel geological surface

  12. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  13. A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

    SciTech Connect

    Bennett, D. A.; Horansky, R. D.; Schmidt, D. R.; Doriese, W. B.; Fowler, J. W.; Kotsubo, V.; Mates, J. A. B.; Hoover, A. S.; Winkler, R.; Rabin, M. W.; Alpert, B. K.; Beall, J. A.; Fitzgerald, C. P.; Hilton, G. C.; Irwin, K. D.; O'Neil, G. C.; Reintsema, C. D.; Schima, F. J.; Swetz, D. S.; Vale, L. R.; and others

    2012-09-15

    Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gamma-ray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the nondestructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm{sup 2}. We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array.

  14. Large-volume ultralow background germanium-germanium coincidence/anticoincidence gamma-ray spectrometer

    SciTech Connect

    Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.; Avignone, F.T. III; Miley, H.S.; Moore, R.S.

    1984-03-01

    A large volume (approx. 1440 cm/sup 3/), multicrystal, high resolution intrinsic germanium gamma-ray spectrometer has been designed based on 3 generations of experiments. The background from construction materials used in standard commercial configurations has been reduced by at least two orders of magnitude. Data taken with a 132 cm/sup 3/ prototype detector, installed in the Homestake Gold Mine, are presented. The first application of the full scale detector will be an ultrasensitive search for neutrinoless and two-neutrino double beta decay of /sup 76/Ge. The size and geometrical configuration of the crystals is chosen to optimize detection of double decay to the first excited state of /sup 76/Se with subsequent emission of a 559 keV gamma ray. The detector will be sufficiently sensitive for measuring the neutrinoless double beta decay to the ground state to establish a minimum half life of 1.4.10/sup 24/ y. Application of the large spectrometer system to the analysis of low level environmental and biological samples is discussed.

  15. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications

    PubMed Central

    Park, Hye Min; Joo, Koan Sik

    2016-01-01

    In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm3 Ce-doped Gd–Al–Ga–garnet (Ce:GAGG) crystal that was coupled to a Si photomultiplier (SiPM) to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for 133Ba at 0.356 MeV, 22Na at 0.511 MeV, 137Cs at 0.662 MeV, and 60Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery), and measured only 5.0 × 7.0 cm2. PMID:27338392

  16. HEGRS: Mechanical design of a high-energy, gamma-ray spectrometer

    SciTech Connect

    Pedersen, K.B.

    1993-06-04

    A large, 3200-kg (7000-lb) gamma-ray spectrometer was designed to move in a 1500 arc with an arc accuracy of 0.50, and to move radially over a distance of 650 mm (25 in.). The entire structure is aluminum rather than steel because of the high neutron background. The two-layer support accommodates rapid, accurate positioning of the spectrometer in both the rotational and radial directions within 0.1 mm (0.004 in.). All movements and positioning are computer-controlled. The centerline deviation over the entire surface is 0.25 mm (0.0100 in.). The bottom layer, called the table, permits arc motion. The table is a baseplate consisting of two 3.6-m {times} 1.2-m (12-ft {times} 4-ft) cast-aluminum jig plates. The top layer, called the sled, is an aluminum plate 2.12-m {times} 1.22-m (83.38-in. {times} 48-in.) wide, which provides for radial motion. Due to the large mass of the spectrometer and the accurate positioning required, air pads are used to facilitate movement. Hydraulic brakes are applied when the detector is in its rest position to comply with the seismic requirements of the installation.

  17. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications.

    PubMed

    Park, Hye Min; Joo, Koan Sik

    2016-06-21

    In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm³ Ce-doped Gd-Al-Ga-garnet (Ce:GAGG) crystal that was coupled to a Si photomultiplier (SiPM) to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for (133)Ba at 0.356 MeV, (22)Na at 0.511 MeV, (137)Cs at 0.662 MeV, and (60)Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery), and measured only 5.0 × 7.0 cm².

  18. Gamma-ray spectrometer experiment on the solar maximum mission satellite. Semiannual progress report, 16 April-15 November 1986

    SciTech Connect

    Chupp, E.L.

    1987-02-01

    The major activities summarized include: Gamma-Ray Spectrometer (GRS) instrument response and flight operation; solar flare studies; cosmic gamma-ray studies; summary of computer operations; search for flare-precursor protons; diffuse galactic annihilation radiation; cosmic ray bursts; atmospheric gamma ray spectrum; gamma ray line emission from supernovae and novae; improved angular resolutions using Earth occultation; and production processing of NASA IPD data. In addition, an updated list of published papers and invited papers or contributed papers presented at scientific meetings is provided.

  19. HAND-HELD GAMMA-RAY SPECTROMETER BASED ON HIGH-EFFICIENCY FRISCH-RING CdZnTe DETECTORS.

    SciTech Connect

    CUI,Y.

    2007-05-01

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution, el% FWHM at 662 keV, and good efficiency for detecting gamma rays. This technique facilitates the application of CdZnTe materials for high efficiency gamma-ray detection. A hand-held gamma-ray spectrometer based on Frisch-ring detectors is being designed at Brookhaven National Laboratory. It employs an 8x8 CdZnTe detector array to achieve a high volume of 19.2 cm3, so that detection efficiency is significantly improved. By using the front-end ASICs developed at BNL, this spectrometer has a small profile and high energy resolution. The spectrometer includes signal processing circuit, digitization and storage circuit, high-voltage module, and USB interface. In this paper, we introduce the details of the system structure and report our test results with it.

  20. Development of three-dimensional position-sensitive room temperature semiconductor gamma-ray spectrometers

    SciTech Connect

    He, Z.; Li, W.; Knoll, G.F.; Wehe, D.K.

    2000-07-01

    Semiconductor detectors can provide better spectroscopic performance than scintillation or gas-filled detectors because of the small ionization energy required to generate each electron-hole pair. Indeed, cryogenically cooled high-purity germanium detectors have played the dominant role whenever the best gamma-ray spectroscopy is required. A decades-long search for other semiconductor detectors that could provide higher stopping power and could operate at room temperature has been ongoing. Wide-band-gap semiconductors, such as CdTe, CdZnTe, and HgI{sub 2}, have captured the most attention. However, the use of these semiconductors in detectors has been hindered primarily by problems of charge trapping and material nonuniformity. Introduced in 1994, single-polarity charge sensing on semiconductor detectors has shown great promise in avoiding the hole-trapping problem, and the newly demonstrated three-dimensional position-sensing technique can significantly mitigate the degradation of energy resolution due to the nonuniformity of detector material. In addition, three-dimensional position sensitivity will provide unique imaging capabilities of these gamma-ray spectrometers. These devices are of interest for nuclear nonproliferation, medical imaging, gamma-ray astronomy, and high-energy physics applications. This paper reports the latest results using second-generation three-dimensional position-sensitive semiconductor spectrometers. The improvements over the first generation devices include: (1) Larger volume; (2) Improved anode design; (3) More reliable connections; (4) Enhanced electronic capability; and (5) Measurement of electron drift times. The new detectors and readout electronics (from IDE AS) are being assembled and tested.

  1. International comparison of interpolation procedures for the efficiency of germanium gamma-ray spectrometers (GAM83 exercise)

    NASA Astrophysics Data System (ADS)

    Zijp, W.; Polle, A. N.; Nolthenius, H. J.

    1986-01-01

    Forty-one laboratories determined full energy peak efficiencies and activities of a gamma of ray spectrometer by their own procedures, starting from supplied peak-efficiency data. Four data sets for four different conditions of germanium detectors were distributed. The great variety of fitting functions combined with the calculated large standard deviation of the parameters (709) and the strong correlations which are observed, indicates that no single physical acceptable function can be recommended as a general purpose model for describing the efficiency curve of a semiconductor gamma ray spectrometer.

  2. Apollo 17 mission Report. Supplement 6: Calibration results for gamma ray spectrometer sodium iodide crystal

    NASA Technical Reports Server (NTRS)

    Dyer, C.; Trombka, J. I.

    1975-01-01

    A major difficulty in medium energy gamma-ray remote sensing spectroscopy and astronomy measurements was the high rate of unwanted background resulting from the following major sources: (1) prompt secondary gamma-rays produced by cosmic-ray interactions in satellite materials; (2) direct charged-particle counts; (3) radioactivity induced in the detector materials by cosmic-ray and trapped protons; (4) radioactivity induced in detector materials by the planetary (e.g., earth or moon) albedo neutron flux; (5) radioactivity induced in the detector materials by the interaction of secondary neutrons produced throughout the spacecraft by cosmic-ray and trapped proton interactions; (6) radioactivity induced in spacecraft materials by the mechanisms outlined in 3, 4, and 5; and (7) natural radioactivity in spacecraft and detector materials. The purpose of this experiment was to obtain information on effects 3, 4, and 5, and from this information start developing calculational methods for predicting the background induced in the crystal detector in order to correct the Apollo gamma-ray spectrometer data for this interference.

  3. A Liquid-Cryogen-Free Cryostat for Ultrahigh Resolution Gamma-Ray Spectrometers

    SciTech Connect

    Dreyer, J G; Hertrich, T; Drury, O B; Hohne, J; Friedrich, S

    2008-06-30

    We are developing ultra-high energy resolution gamma-ray detectors based on superconducting transition edge sensors (TESs) for nuclear non-proliferation and fundamental science applications. They use bulk tin absorbers attached to molybdenum-copper multilayer TESs, and have achieved an energy resolution between 50 and 90 eV FWHM for gamma-ray energies below 122 keV. For increased user-friendliness, we have built a cryostat that attains the required detector operating temperature of 0.1 K at the push of a button without the use of cryogenic liquids. It uses a two-stage mechanical pulse tube refrigerator for precooling to {approx}3 K, and a two-stage adiabatic demagnetization refrigerator for cooling to the base temperature. The cryostat is fully automated, attains a base temperature below 30 mK without the use of cryogenic liquids, and has a hold time of {approx}2 days at 0.1 K between 1-hour demagnetization cycles. Here we discuss the performance of the cryostat for operation in a Gamma-spectrometer with 112-pixel arrays of superconducting TES detectors.

  4. Germanium gamma-ray spectrometer PGS for the MARS-96 mission

    SciTech Connect

    Mitrofanov, I.G.; Anfimov, D.S.; Chernenko, A.M.

    1996-09-01

    The Precision Gamma-ray Spectrometer (PGS) on the Russian MARS-96 spacecraft is designed to measure 0.1--8 MeV gamma rays in order to determine the elemental composition of the Martian surface, to study solar flares, and to determine energy spectra and times of arrival of gamma-ray bursts. The PGS instrument contains two high-purity, n-type germanium crystals, each similar to the one used on the Mars Observer mission. Each crystal is contained in a titanium can with Helicoflex cryogenic metal seals. An annealing capability allows repair of radiation damage. The detectors are cooled via nitrogen heat pipes attached to a passive radiator mounted on the back side of a solar panel. The radiators are designed to keep the Ge detectors below 100 K during the interplanetary flight. The electronics include first-stage electronics mounted on each crystal can and 4096-channel pulse height analyzers. Two parallel channels of electronics are provided and can be cross-switched by telecommands. In November 1995 integration of the flight detectors with flight electronics and testing of the complete system cooled by the passive radiator were successfully completed. The energy resolution degrades to about 3 keV in the flight configuration. Warming the radiators indicated that for the worst case when the radiator views Mars at the equator the maximum temperature of the detectors will be limited by the diode action of the heat pipes to 118 K. Extensive calibrations with radioactive sources are in progress. The authors conclude that they have an improved design for planetary and gamma-ray burst studies and the PGS instrument is ready for launch in November 1996.

  5. Mapping the elemental composition of the moon: Current results of the Lunar Prospector gamma ray spectrometer

    SciTech Connect

    Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Elphic, R.C.; Binder, A.B.; Maurice, S.

    1998-12-01

    One of the instruments on board the recently launched Lunar Prospector spacecraft is a Gamma-Ray Spectrometer (GRS) designed to map the surface elemental composition of the Moon. Specifically, the objectives of the GRS are to map abundances of Fe, Ti, U, Th, K, Si, O and if possible Mg, Al, and Ca. The GRS consists of a bismuth germanate (BGO) crystal placed within a well shaped borated plastic scintillator anti-coincidence (ACS) shield. Events triggering only the BGO are labeled as accepted events; events triggering both the BGO and ACS are labeled as rejected events. BGO spectra for both accepted and rejected events are telemetered to the ground for later analysis. Results of the study are given.

  6. Airborne gamma-ray spectrometer and magnetometer survey: Jamestown quadrangle, North Dakota. Final report

    SciTech Connect

    Not Available

    1981-03-01

    During the months of June through October, 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. This report discusses the results obtained over the Jamestown map area of North Dakota. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps.

  7. Highly Sensitive Gamma-Spectrometers of Gerda for Material Screening: Part 2

    SciTech Connect

    Budjas, Dusan; Hampel, W.; Heisel, M.; Heusser, G.; Keillor, Marty; Laubenstein, M.; Maneschg, W.; Rugel, G.; Schonert, S.; Simgen, H.; Strecker, H.

    2007-04-21

    The previous article about material screening for Gerda points out the importance of strict material screening and selection for radioimpurities as a key to meet the aspired background levels of the Gerda experiment. This is directly done using low-level gammaspectroscopy. In order to provide sufficient selective power in the mBq/kg range and below, the employed gamma-spectrometers themselves have to meet strict material requirements, and make use of an elaborate shielding system. This article gives an account of the setup of two such spectrometers. Corrado is located in a depth of 15 m w.e. at the MPI-K in Heidelberg (Germany), Gempi III is situated at the Gran-Sasso underground laboratory at 3500 m w.e. (Italy). The latter one aims at detecting sample activities of the order ~10 μBq/kg, which is the current state-of-the-art level. The applied techniques to meet the respective needs are discussed and demonstrated by experimental results.

  8. A technical review of the SWEPP gamma-ray spectrometer system

    SciTech Connect

    Hartwell, J.K.

    1996-03-01

    The SWEPP Gamma-ray Spectrometer (SGRS) was developed by INEL researchers as a nonintrusive method of determining the isotopic ratios of TRU and U materials in a 208-liter waste drums. The SGRS has been in use at SWEPP since mid-1994. Enough questions have been raised regarding the system reliability and technical capabilities, that, coupled with a desire to procure an additional gamma-ray spectroscopy system in order to increase the drum throughput of SWEPP, have prompted an independent technical review of the SGRS. The author was chosen as the reviewer, and this report documents the results of the review. While the SGRS is accurate in its isotopic ratio results, the system is not calculationally robust. The primary reason for this lack of calculational reliability is the implementation of the attenuation corrections. Suggested changes may improve the system reliability dramatically. The SGRS is a multiple detector spectrometry system. Tests were conducted on various methods for combining the four detector results into a single drum representative value. No clear solution was reached for the cases in which the isotopic ratios are vertically segregated; however, some methods showed promise. These should be investigated further. 14 refs. , 15 figs., 23 tabs.

  9. Thermal Design and Performance of the Gamma-Ray Spectrometer for the MESSENGER Spacecraft

    SciTech Connect

    Burks, M; Cork, C P; Eckels, D; Hull, E; Madden, N W; Miller, W; Goldsten, J; Rhodes, E; Williams, B

    2004-10-13

    A gamma-ray spectrometer (GRS) has been built and delivered to the Mercury MESSENGER spacecraft which launched on August 3, 2004, from Cape Canaveral, Florida. The GRS, a part of seven scientific instruments on board MESSENGER, is based on a coaxial high-purity germanium detector. Gamma-ray detectors based on germanium have the advantage of providing excellent energy resolution, which is critical to achieving the science goals of the mission. However, germanium has the disadvantage that it must operate at cryogenic temperatures (typically {approx}80 K). This requirement is easy to satisfy in the laboratory but difficult near Mercury, which has an extremely hot thermal radiation environment. To cool the detector, a Stirling cycle mechanical cooler is employed. In addition, radiation and conduction techniques a are used to reduce the GRS heat load. Before delivering the flight sensor, a complete thermal prototype was built and tested. The results of these test, including thermal design, radiative and conductive heat loads, and cooler performance are described.

  10. High efficiency CsI(Tl)/HgI{sub 2} gamma ray spectrometers

    SciTech Connect

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.; Cherry, S.R.; Shao, Y.

    1995-08-01

    CsI(Tl)/HgI{sub 2} gamma-ray spectrometers have been constructed using 0.5 inch diameter detectors which show excellent energy resolution: 4.58% FWHM for 662 keV {sup 137}Cs gamma-ray photons. Further efforts have been focused on optimization of larger size ({ge} 1 inch diameter) detector structures and improvement of low noise electronics. In order to take full advantage of scintillation detectors for high energy gamma-rays, larger scintillators are always preferred for their higher detection efficiencies. However, the larger capacitance and higher dark current caused by the larger size of the detector could result in a higher FWHM resolution. Also, the increased probability of including nonuniformities in larger pieces of crystals makes it more difficult to obtain the high resolutions one obtains from small detectors. Thus for very large volume scintillators, it may be necessary to employ a photodiode (PD) with a sensitive area smaller than the cross-section of the scintillator. Monte Carlo simulations of the light collection for various tapered scintillator/PD configuration were performed in order to find those geometries which resulted in the best light collection. According to the simulation results, scintillators with the most favorable geometry, the conical frustum, have been fabricated and evaluated. The response of a large conical frustum (top-2 inch, bottom-1 inch, 2 inch high) CsI(Tl) scintillator coupled with a 1 inch HgI{sub 2} PD was measured. The energy resolution of the 662 keV peak was 5.57%. The spectrum shows much higher detection efficiency than those from smaller scintillators, i.e., much higher peak-to-Compton ratio in the spectrum.

  11. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  12. Monte Carlo simulation of in situ LaBr gamma-ray spectrometer for marine environmental monitoring.

    PubMed

    Su, Genghua; Zeng, Zhi; Cheng, Jianping

    2011-07-01

    Monte Carlo simulation of energy-response functions of gamma rays from natural/artificial radionuclides in seawater and simulation of energy spectrum due to self-activity in LaBr crystal were carried out using MCNPX codes and MATLAB programs for the in situ LaBr gamma-ray spectrometer immersed in homogeneous seawater. The effective detection distance, the detection efficiency and the minimum detectable activity concentration (MDAC) for artificial radionuclides (137)Cs were worked out as an instance. Similar researches for NaI detector was also implemented for comparison. The results indicate that the self-activity in LaBr deteriorates the MDAC to merely several times of that of NaI detector. The LaBr detector is possible to be used as in situ gamma-ray spectrometer for monitoring of artificial radionuclides in seawater.

  13. Continuous measurement of radionuclide distribution off Fukushima using a towed sea-bed gamma ray spectrometer

    NASA Astrophysics Data System (ADS)

    Thornton, Blair; Ohnishi, Seiki; Ura, Tamaki; Odano, Naoteru; Fujita, Tsuneo

    2013-09-01

    Instrumentation and data processing methods to continuously map the distribution of radionuclides on the seafloor have been developed and applied to survey radioactive discharge from the Fukushima Dai-ichi Nuclear Power Plant following the M9.0 earthquake and tsunami that struck the east coast of Japan on March 11 2011. The instrument consists of a flexible rubber hose with an integrated gamma ray spectrometer that measures the full gamma spectrum between 0.1 and 1.8 MeV while being towed along the seafloor by a ship. The data processing methods described allow for quantification of 137Cs and 134Cs concentration in marine sediments, and a technique has been developed to optimize the spatial resolution of the measurements for each radioactive species for a given level of statistical uncertainty. The system was deployed during August and November 2012 to measure the distribution of radionuclides along three transects within an 80 km radius of the plant. Increased levels of 137Cs and 134Cs were recorded and their distributions mapped continuously over distances of 1.6, 12.5 and 22 km respectively. The levels of 137Cs and 134Cs were found to vary significantly with location. The in situ measurements show good agreement with laboratory analyzed samples obtained during the surveys. The results demonstrate that the instrument and data processing techniques described enable high resolution, quantitative measurements of 137Cs and 134Cs in marine sediments, and provide an effective solution for rapid, low cost monitoring of radioactive material on the seafloor.

  14. An Investigation of Elemental Composition of Martian Satellites by Gamma-ray and Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Ohta, Toru; Amano, Yoshiharu; Naito, Masayuki; Kusano, Hiroki; Nagaoka, Hiroshi; Yoshida, Kohei; Adachi, Takuto; Fagan, Timothy J.; Kuno, Haruyoshi; Shibamura, Eido; Hitachi, Akira; Matias Lopes, José A.; Martínez-Frías, Jesus; Nakamura, Tomoki; Kameda, Shingo; Cho, Yuichiro; Shirai, Naoki; Miyamoto, Hideaki; Niihara, Takafumi; Mikouchi, Takashi; Okada, Tatsuaki; Karouji, Yuzuru

    Japanese mission "Mars Moon eXploration (MMX)" which is currently at the planning stage will make close-up remote and in-situ observations of Phobos and Deimos, and return Phobos samples to Earth. The major scientific objectives of MMX are to characterize geochemical regions in their surface and to determine whether the origin of these Moons is of the captured asteroid or giant impact type. The MMX payload will include a Gamma-ray and Neutron Spectrometer (GNS), which will globally measure and map the surface elemental composition. The GNS consists of a Gamma-ray Sensor (GS) and a Neutron Sensor (NS). The GS consists of a High Purity Germanium (HPGe) detector with an excellent energy resolution as a main detector and a thin plastic scintillator surrounding the HPGe crystal as an anticoincidence detector. The HPGe crystal is cooled below 90 K by a compact mechanical cooler. The NS consists of a Li-glass scintillator to measure thermal neutrons, and a borated plastic scintillator to measure epithermal and fast neutrons. The GNS combines the distinct features of light weight, low power and excellent energy resolution. The GNS will allow to assess the global maps of such elements as H, O, Mg, Al, Si, S, K, Ca, Ti, Fe, Th, and U, depending on their concentrations in the Martian Moons. The high concentration of such volatile elements as H and S in their Moons, and low values of Ca/Fe and Si/Fe-ratios shows that they are solar system primordial bodies, while high values of Ca/F and Si/Fe-ratios and very low water concentration suggest the giant-impact origin. The GNS will allow disentangling weather the origin is captured asteroid or giant impact.

  15. NaI(Tl) scintillator read out with SiPM array for gamma spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, Tuchen; Fu, Qibin; Lin, Shaopeng; Wang, Biao

    2017-04-01

    The NaI(Tl) scintillator is widely used in gamma spectrometer with photomultiplier tube (PMT) readout. Recently developed silicon photomultiplier (SiPM) offers gain and efficiency similar to those of PMT, but with merits such as low bias voltage, compact volume, low cost, high ruggedness and magnetic resonance compatibility. In this study, 2-in. and 1-in. NaI(Tl) scintillators were readout with SiPM arrays, which were made by tiling multiple SiPMs each with an active area of 6×6 mm2 on a printed circuit board. The energy resolutions for 661.6 keV gamma rays, obtained with Φ2×2 in. scintillator coupled to 6×6 ch SiPM array and Φ1×1 in. scintillator coupled to 4×4 ch SiPM array were 7.6% and 7.8%, respectively, and were very close to the results obtained with traditional bialkali PMT (7.3% and 7.6%, respectively). Scintillator coupled to photodetector with smaller area was also studied by adding a light guide or using scintillator with tapered head. The latter showed better performance than using light guide. The 1-in. NaI(Tl) scintillator with tapered head coupled to 2×2 ch SiPM array achieved 7.7% energy resolution at 661.6 keV, the same as that obtained with standard Φ1×1 in. scintillator coupled to 4×4 ch SiPM array. While the 2-in. scintillator with similar geometry showed degraded energy resolution, 10.2% at 661.6 keV, but could still be used when high efficiency is preferred over energy resolution.

  16. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  17. Airborne gamma-ray spectrometer and magnetometer survey: Ukiah quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Ukiah, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1517 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  18. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  19. Airborne gamma-ray spectrometer and magnetometer survey, Roseburg Quadrangle, Oregon. Final report

    SciTech Connect

    Not Available

    1981-03-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Roseburg, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1596 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  20. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility

    SciTech Connect

    Kim, Y. Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Lopez, F. E.; Oertel, J. A.; Batha, S. H.; Stoeffl, W.; Casey, D.; Clancy, T.; Hilsabeck, T.; Moy, K.

    2014-11-15

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%–5% can be achieved in the range of 2–25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ρR (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup −5} γ/n); and 1 × 10{sup 16} DT-n for fuel ρR (at 1 g/cm{sup 2})

  1. Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  2. Airborne gamma-ray spectrometer and magnetometer survey Coos Bay, Oregon. Final report

    SciTech Connect

    Not Available

    1981-05-01

    During the months of August, September, and October of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Coos Bay, Oregon, map area. Line spacing was generally six miles for east/west traverses and eighteen miles for north/south tie lines over the northern one-half of the area. Traverses and tie lines were flown at three miles and twelve miles respectively over the southern one-half of the area. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 863.8 line miles are in this quadrangle.

  3. Airborne gamma-ray spectrometer and magnetometer survey: Huron quadrangle, South Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Huron map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1459 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  4. Airborne gamma-ray spectrometer and magnetometer survey, Mitchell Quadrangle, South Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Mitchell map area. The purpose of this program is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1479 line miles are in this quadrangle.

  5. Airborne gamma-ray spectrometer and magnetometer survey: Alturas quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Alturas, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1631.6 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  6. Airborne gamma-ray spectrometer and magnetometer survey: Eureka quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Eureka/Crescent City, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were aquired, compiled, and interpreted during the survey, of which 349.5 line miles are in this area. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  7. Airborne gamma-ray spectrometer and magnetometer survey, New Rockford Quadrangle, North Dakota. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the New Rockford map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1397 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  8. Thorium distribution on the lunar surface observed by Chang'E-2 gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Zhang, Xubing; Wu, Ke

    2016-07-01

    The thorium distribution on the lunar surface is critical for understanding the lunar evolution. This work reports a global map of the thorium distribution on the lunar surface observed by Chang'E-2 gamma-ray spectrometer (GRS). Our work exhibits an interesting symmetrical structure of thorium distribution along the two sides of the belt of Th hot spots. Some potential positions of KREEP volcanism are suggested, which are the Fra Mauro region, Montes Carpatus, Aristarchus Plateau and the adjacent regions of Copernicus Crater. Based on the lunar map of thorium distribution, we draw some conclusions on two critical links of lunar evolution: (1) the thorium abundance within the lunar crust and mantle, in the last stage of Lunar Magma Ocean (LMO) crystallization, may have a positive correlation with the depth in the crust, reaches a peak when coming through the transitional zone between the crust and mantle, and decreases sharply toward the inside of the mantle; thus, the Th-enhanced materials originated from the lower crust and the layer between the crust and mantle, (2) in PKT, KREEP volcanism might be the primary mechanism of Th-elevated components to the lunar surface, whereas the Imbrium impact acted as a relatively minor role.

  9. An anticoincidence-shielded gamma-ray spectrometer for analysis of low level environmental radionuclides.

    PubMed

    Byun, Jong In; Choi, Yun Ho; Kwak, Seung Im; Hwang, Han-Yull; Chung, Kun-Ho; Choi, Geun Sik; Park, Doo-Won; Lee, Chang Woo

    2003-05-01

    We developed an ultralow-level background gamma-ray spectrometer, using active and passive shield devices at the same time. Cosmic-ray-induced background is suppressed by means of active shield devices consisting of plastic scintillating plates of 50mm thick and anti-coincidence electronic system. The observed background rate was 0.34 s(-1) (=0.12s(-1) per 100 cm(3) Ge volume) for energy regions between 50 and 3000 ke V. The detection efficiency curve for 10(3)ml Marinelli beaker samples is obtained over all the energy regions. The advantages of the method are demonstrated by measuring the activity of 137Cs in powdered milk sample prepared without taking any chemical procedure. The MDA for 137Cs is estimated to be (17+/-1.7)mBq at a confidence level of 95% and it is about a factor of 10 lower than the MDA obtained from the previous cryostat assembly with 10-cm thick lead shielding.

  10. Can we identify lensed gamma-ray bursts?

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Grossman, Scott A.

    1994-01-01

    A gravitationally lensed gamma-ray burst (GRB) would appear as multiple bursts with identical light curves, separated in time and differing only by the scaling of their amplitudes. In reality, the detected bursts will be noisy, and therefore they may be difficult to identify as lensed images. Furthermore, faint, intrinsically similar, yet distinct light curves may be falsely identified as lensing events. In this paper we develop two statistical tests to distinguish noisy burst light curves. We use Fourier analysis techniques to analyze the signals for both intrinsic variability and variability due to noise. We are able to determine the noise level, and we compare the bursts only at frequency channels that are signal dominated. Utilizing these methods, we are able to make quantitative statements about whether two bursts are distinct. We apply these statistics to scaled versions of two subbursts of GRB 910503 -- subbursts previously investigated by Wambsganss using a different statistical test. We find that our methods are able to distinguish these bursts at slightly smaller amplitudes than those at which Wambsganss's method succeeds. We then apply our techniques to 'candidate' lensing events taken from the Burst and Transient Source Experiment (BATSE) catalog, and we find that nearly all of them, except for the very shortest ones (durations approx. less than 3 sec), are distinguishable. We therefore expect that a majority of bursts will be distinguishable from one another.

  11. Spectrometer for neutron and gamma-ray detection at the distances less than 100 solar radii from the Sun

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S.; Panasyuk, M.; Ryumin, S.; Sobolevsky, N.; Ufimtsev, M.

    2001-08-01

    Solar neutrons with energies <5 MeV can't be detected in the near-Earth space due to the both its decay and decreasing of its fluxes with distance from the Sun. So solar neutron observations near the Sun compared with near-Earth ones allow studying acceleration of ions up to significantly smaller energies, what occurs considerably more often. Besides that near-Sun low energy neutron observations are important for search for non-flare ion acceleration on the Sun. For project InterHelioProbe we have proposed spectrometer of neutrons with energies 0.055 MeV. LiI(Eu) crystal 4*3 cm enriched in 6 Li , surrounded by a plastic scintillator 1-3 cm thick loaded with 10 B is used as a detector. Neutrons will undergo elastic scattering with the hydrogen in the plastic. A delayed coincidence within a window of 0.1 - 10 µs in either scintillator is a signature of a neutron, with the initial fast plastic signal pulse height being a direct measure of the incident neutron's energy. A fast charged particle will be vetoed as simultaneous signals in both scintillators. Gamma's with energies 0.03-10 MeV will be identified too as signals in LiI alone. Calculated effective area for normal neutron incidence is 0.3-5.6 cm2 . Estimated effective area for gamma detection is 3-12 cm2 . Mass of the instrument is <1.5 kg. Power of the detector is about 1.5 watt, needing telemetry - 40 b/s.

  12. Hand-Held Gamma-Ray Spectrometer Based on High-Efficiency Frisch-Ring Cdznte Detectors

    SciTech Connect

    Cui, Y.; Bolotnikov, A; Camarda, G; Hossain, A; James, R; DeGeronimo, G; Fried, J; O'Connor, P; Kargar, A; et. al.

    2008-01-01

    Frisch-ring CdZnTe detectors have demonstrated both good energy resolution, <1% FWHM at 662 keV, and good efficiency in detecting gamma rays, highlighting the strong potential of CdZnTe materials for such applications. We are designing a hand-held gamma-ray spectrometer based on Frisch-ring detectors at Brookhaven National Laboratory. It employs an 8 times 8 CdZnTe detector array to achieve a high volume of 19.2 cm3, so greatly improving detection efficiency. By using the front-end application-specific integrated circuits (ASICs) developed at BNL, this spectrometer has a small profile and high energy-resolution. It includes a signal processing circuit, digitization and storage circuits, a high-voltage module, and a universal serial bus (USB) interface. In this paper, we detail the system's structure and report the results of our tests with it.

  13. Lunar surface radioactivity - Preliminary results of the Apollo 15 and Apollo 16 gamma-ray spectrometer experiments.

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Trombka, J. I.; Peterson, L. E.; Reedy, R. C.; Arnold, J. R.

    1973-01-01

    Gamma-ray spectrometers on the Apollo 15 and Apollo 16 missions have been used to map the moon's radioactivity over 20 percent of its surface. The highest levels of natural radioactivity are found in Mare Imbrium and Oceanus Procellarum with contrastingly lower enhancements in the eastern maria. The ratio of potassium to uranium is higher on the far side than on the near side, although it is everywhere lower than commonly found on the earth.

  14. Development of a method for activity measurements of 232Th daughters with a multidetector gamma-ray coincidence spectrometer.

    PubMed

    Antovic, N; Svrkota, N

    2009-06-01

    The method for activity measurements of the (232)Th daughters, developed at the six-crystal gamma-ray coincidence spectrometer PRIPYAT-2M and based on coincidence counting of the 583 and 2615 keV photons from cascade transitions which follow beta(-)-decay of (208)Tl, as well as on counting the 911 keV photons which follow beta(-)-decay of (228)Ac in the integral and non-coincidence mode of counting, is presented.

  15. Iron Abundances on the Moon as Seen by the Lunar Prospector Gamma-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Lawrence, D. J.; Feldman, W. C.; Barraclough, B. L.; Elphic, R. C.; Maurice, S.; Binder, A. B.; Lucey, P. G.

    1999-01-01

    Measurements of global-Fe abundances on the Moon are important because Fe is a key element that is used in models of lunar formation and evolution. Previous measurements of lunar Fe abundances have been made by the Apollo Gamma-Ray (AGR) experiment and Clementine spectral reflectance (CSR) experiment. The AGR experiment made direct elemental measurements for about 20% of the Moon. However, these measurements had large uncertainties due mostly to low statistics and an absence of thermal neutron data (see below). The CSR-derived Fe data has much better coverage (100% coverage equatorward of +/-70 deg. latitude) and spatial resolution (about 100-m surface resolution vs. about 150-km surface resolution for the AGR data), but there have been questions regarding the accuracy of these data far from the Apollo landing sites. Here we present preliminary estimates of the relative Fe abundances using the Lunar Prospector (LP) gamma-ray spectrometer (GRS). While these data are important and useful by themselves, the ultimate goal of this study is to combine the LP Fe data with the CSR data to obtain a better calibrated and more accurate picture of the Fe abundances on the Moon. To derive Fe abundances, we are using two gamma ray lines near 7.6 MeV. These gamma-rays are produced by thermal neutron capture. Here, Fe nuclei absorb thermal neutrons, become energetically excited, and then de-excite with the production of gamma-rays. Because this process depends upon thermal neutrons, the measured flux of 7.6 MeV gamma-rays is proportional not only to the Fe abundances, but also to the thermal neutron number density. Here, we use measurements from the LP neutron spectrometer (NS) to correct for this thermal neutron effect. As seen elsewhere, this correction is quite large as the thermal neutron count rate varies over the Moon by a factor of 3. Many considerations need to be taken into account to make sure an appropriate correction is applied. These include (1) converting the

  16. Research and development of a gamma-ray imaging spectrometer in the MeV range in Barcelona

    NASA Astrophysics Data System (ADS)

    Alvarez, José-Manuel; Galvez, José-Luis; Hernanz, Margarita; Isern, Jordi; Lozano, Manuel; Pellegrini, Giulio; Chmeissani, Mokhtar; Cabruja, Enric; Ullán, Miguel

    2010-07-01

    Gamma-ray astrophysics in the MeV energy range plays an important role for the understanding of cosmic explosions and acceleration mechanisms in a variety of galactic and extragalactic sources, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN). Through the development of focusing telescopes in the MeV energy range, it will be possible to reach unprecedented sensitivities, compared with those of the currently operating gamma ray telescopes. In order to achieve the needed performance, a detector with mm spatial resolution and very high peak efficiency is required. It will be also desirable that the detector could detect polarization of the source. Our research and development activities in Barcelona aim to study a gamma-ray imaging spectrometer in the MeV range suited for the focal plane of a gamma-ray telescope mission, based on CdTe pixel detectors arranged in multiple layers with increasing thicknesses, to enhance gamma-ray absorption in the Compton regime. We have developed an initial prototype based on several CdTe module detectors, with 11x11 pixels, a pixel pitch of 1mm and a thickness of 2mm. Each pixel is stud-bump bonded to a fanout board and routed to a readout ASIC to measure pixel position, pulse height and rise time information for each incident gamma-ray photon. We will report on the results of an optimization study based on simulations, to select the optimal thickness of each CdTe detector within the module to get the best energy resolution of the spectrometer.

  17. Identifying high-redshift gamma-ray bursts with RATIR

    SciTech Connect

    Littlejohns, O. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H.; Klein, C. R.; Fox, O. D.; Bloom, J. S.; Prochaska, J. X.; Ramirez-Ruiz, E.

    2014-07-01

    We present a template-fitting algorithm for determining photometric redshifts, z {sub phot}, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z {sub phot} < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z {sub phot} in the ranges of 4 < z {sub phot} ≲ 8 and 9 < z {sub phot} < 10 and can robustly determine when z {sub phot} > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z {sub phot} < 4 when z {sub sim} > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  18. Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade

    NASA Astrophysics Data System (ADS)

    Rigamonti, D.; Muraro, A.; Nocente, M.; Perseo, V.; Boltruczyk, G.; Fernandes, A.; Figueiredo, J.; Giacomelli, L.; Gorini, G.; Gosk, M.; Kiptily, V.; Korolczuk, S.; Mianowski, S.; Murari, A.; Pereira, R. C.; Cippo, E. P.; Zychor, I.; Tardocchi, M.

    2016-11-01

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr3 crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at Eγ = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.

  19. Educational Testing of an Auditory Display of Mars Gamma Ray Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Keller, J. M.; Pompea, S. M.; Prather, E. E.; Slater, T. F.; Boynton, W. V.; Enos, H. L.; Quinn, M.

    2003-12-01

    A unique, alternative educational and public outreach product was created to investigate the use and effectiveness of auditory displays in science education. The product, which allows students to both visualize and hear seasonal variations in data detected by the Gamma Ray Spectrometer (GRS) aboard the Mars Odyssey spacecraft, consists of an animation of false-color maps of hydrogen concentrations on Mars along with a musical presentation, or sonification, of the same data. Learners can access this data using the visual false-color animation, the auditory false-pitch sonification, or both. Central to the development of this product is the question of its educational effectiveness and implementation. During the spring 2003 semester, three sections of an introductory astronomy course, each with ˜100 non-science undergraduates, were presented with one of three different exposures to GRS hydrogen data: one auditory, one visual, and one both auditory and visual. Student achievement data was collected through use of multiple-choice and open-ended surveys administered before, immediately following, and three and six weeks following the experiment. It was found that the three student groups performed equally well in their ability to perceive and interpret the data presented. Additionally, student groups exposed to the auditory display reported a higher interest and engagement level than the student group exposed to the visual data alone. Based upon this preliminary testing,we have made improvements to both the educational product and our evaluation protocol. This fall, we will conduct further testing with ˜100 additional students, half receiving auditory data and half receiving visual data, and we will conduct interviews with individual students as they interface with the auditory display. Through this process, we hope to further assess both learning and engagement gains associated with alternative and multi-modal representations of scientific data that extend beyond

  20. Fe-Bearing Phases Identified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.; Rodionov, D.; Yen, A.; Gellert, R.

    2006-01-01

    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of 200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Febearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum.

  1. Measuring GAMMA 10 end-loss ions with an ELIS (end-loss-ion spectrometers) from TMX-U

    SciTech Connect

    Foote, J.H.

    1987-09-03

    The author spent the period from March 22 to July 10, 1987, at the GAMMA 10 tandem-mirror experiment at the University of Tsukuba in Tsukuba, Japan. The purpose of this extended trip was to install on GAMMA 10 one of the end-loss-ion spectrometers (ELIS) used on TMX-U (Tandem Mirror Experiment-Upgrade) at LLNL and to make plasma measurements there with this diagnostic instrument. This report discusses the considerable planning and preparations that preceded the trip, the actual experience with the ELIS equipment at GAMMA 10, data and results obtained while the author was there, GAMMA 10 experimental procedures, the scientific and technical support during the stay, and some final comments and suggestions concerning an international exchange such as this one. The data acquired on GAMMA 10 while there, along with earlier data, present an encouraging picture of a plasma in a thermal-barrier mode in a tandem-mirror, magnetic-fusion machine. 6 refs.

  2. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    SciTech Connect

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.; Cherry, S.R.; Shao, Y.

    1996-06-01

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., larger scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.

  3. Influence of the thorium decay series on the background of high-resolution gamma-ray spectrometers.

    PubMed

    Bučar, K; Korun, M; Vodenik, B

    2012-06-01

    The background induced by the members of the thorium decay sequence in six high-resolution, gamma-ray spectrometers was analyzed. For the analysis, the count rates in the peaks of the background spectra, normalized to the unit of emission probability and detection probability, were used. The energy dependence of these normalized count rates carries information about the location of the sources of contamination. The contributions of the detector contamination, the contamination of the shielding material and the radiation penetrating the shield were calculated. The comparison of these contributions among the spectrometers pointed to the weaknesses of some shields, making such a comparison a useful tool for assessing the effectiveness of the shields.

  4. Implementation of a new gamma spectrometer on the MERARG loop: Application to the volatile fission products release measurement

    SciTech Connect

    Bernard, S.; Gleizes, B.; Pontillon, Y.; Hanus, E.; Ducros, G.; Roure, C.

    2015-07-01

    The MERARG facility initially aims at the annealing of irradiated fuel samples to study the gaseous fission products release kinetics. In order to complete the evaluation of the source term potentially released during accidental situation, the MERARG experimental circuit has been enhanced with a new gamma spectrometer. This one is directly sighting the fuel and is devoted to the fission products release kinetics. Because of the specificities of the fuel measurements, it has been dimensioned and designed to match the specific requirements. The acquisition chain and the collimation system have been optimized for this purpose and a first set of two experiments have shown the good functioning of this new spectrometry facility. (authors)

  5. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV.

  6. A high resolution gamma-ray and hard X-ray spectrometer (HIREGS) for long duration balloon flights

    NASA Astrophysics Data System (ADS)

    Pelling, M.; Feffer, P. T.; Hurley, K.; Kane, S. R.; Lin, R. P.; McBride, S.; Primbsch, J. H.; Smith, D. M.; Youseffi, K.; Zimmer, G.

    1992-10-01

    The elements of a high resolution gamma-ray spectrometer, developed for observations of solar flares, are described. Emphasis is given to those aspects of the system that relate to its operation on a long duration balloon platform. The performance of the system observed in its first flight, launched from McMurdo Station, Antarctica on 10 January, 1992, is discussed. Background characteristics of the antarctic balloon environment are compared with those observed in conventional mid-latitude balloon flights and the general advantages of long duration ballooning are discussed.

  7. Ground tests with prototype of CeBr3 active gamma ray spectrometer proposed for future venus surface missions

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Sanin, A. B.; Golovin, D. V.; Jun, I.; Mitrofanov, I. G.; Shvetsov, V. N.; Timoshenko, G. N.; Vostrukhin, A. A.

    2017-03-01

    The results of a series of ground tests with a prototype of an active gamma-ray spectrometer based on a new generation of scintillation crystal (CeBr3) are presented together with a consideration to its applicability to future Venus landing missions. We evaluated the instrument's capability to distinguish the subsurface elemental composition of primary rock forming elements such as O, Na, Mg, Al, Si, K and Fe. Our study uses heritage from previous ground and field tests and applies to the analysis of gamma lines from activation reaction products generated by a pulsed neutron generator. We have estimated that the expected accuracies achieved in this approach could be as high as 1-10% for the particular chemical element being studied.

  8. A Comprehensive Search for Gamma-Ray Lines in the First Year of Data from the INTEGRAL Spectrometer

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.

    2006-01-01

    Gamma-ray lines are produced in nature by a variety of different physical processes. They can be valuable astrophysical diagnostics providing information the may be unobtainable by other means. We have carried out an extensive search for gamma-ray lines in the first year of public data from the Spectrometer (SPI) on the INTEGRAL mission. INTEGRAL has spent a large fraction of its observing time in the Galactic Plane with particular concentration in the Galactic Center (GC) region (approximately 3 Msec in the first year). Hence the most sensitive search regions are in the Galactic Plane and Center. The phase space of the search spans the energy range 20-8000 keV, and line widths from 0-1000 keV (FWHM) and includes both diffuse and point-like emission. We have searched for variable emission on time scales down to approximately 1000 sec. Diffuse emission has been searched for on a range of different spatial scales from approximately 20 degrees (the approximate field-of-view of the spectrometer) up to the entire Galactic Plane. Our search procedures were verified by the recovery of the known gamma-ray lines at 511 keV and 1809 keV at the appropriate intensities and significances. We find no evidence for any previously unknown gamma-ray lines. The upper limits range from a few x10(exp -5) per square centimeter per second to a few x10(exp -3) per square centimeter per second depending on line width, energy and exposure. Comparison is made between our results and various prior predictions of astrophysical lines

  9. Hematite at Meridiani Planum and Gusev Crater as identified by the Moessbauer Spectrometer MIMOS II

    NASA Technical Reports Server (NTRS)

    Klingelhoefer, G.; Morris, R. V.; Rodionov, D.; Schroeder, C.; de Souza, P. A.; Yen, A.; Renz, F.; Wdowiak, T.

    2006-01-01

    The Moessbauer (MB) spectrometers on the MER rovers Opportunity and Spirit, which landed on Mars in January 2004, have identified the iron-containing mineral hematite (a-Fe2O3) at both landing sites. On Earth, hematite can occur either by itself or with other iron oxides as massive deposits, in veins , and as particles dispersed through a silicate or other matrix material. Hematite particle size can range from nanophase (superparamagnetic) to multidomain and particle shape ranges from equant to acicular to platy. Fine-grained hematite is red in color and is a pigmenting agent. Coarse-grained hematite can be spectrally neutral (gray) at visible wavelengths. Substitutional impurities, particularly Al, are common in hematite. Chemically pure, coarse-grained, and well-crystalline hematite has a magnetic transition (the Morin transition) at 260 K. Moessbauer spectra, recorded as a function of temperature, provide a way to characterize Martian hematite with respect to some of the physical and chemical characteristics. At Meridiani Planum besides the iron-sulfate mineral jarosite also the Fe-oxide hematite has been identified by the Moessbauer spectrometer, mainly in three distinct types of reservoir: - outcrop matrix material dominated by the mineral jarosite in the MB spectrum, certain basaltic soils, and mm-sized spherules dubbed blueberries. Moessbauer spectra of each reservoir yield a distinct set of hyperfine parameters for hematite, suggesting different degrees of crystallinity and particle size. The hematite found by MB instrument MIMOS II in the outcrop material shows the Morin transition at relatively high temperatures (ca. 250 K) which is an indication of pure and well-crystallized hematite. The source of the hematite in the Blueberries as identified by Moessbauer spectroscopy, and also by MiniTES, is not known. These spherules, covering nearly the whole landing site area (Eagle crater, plains, Endurance crater), may be concretions formed in the outcrop

  10. Construction of. gamma pi. /sup 0/ spectrometer and photon tagging facility at Bates Linear Accelerator. Final report, July 31, 1979-July 31, 1980

    SciTech Connect

    Booth, E.C.

    1981-08-01

    The funds provided under Contract No. DE-AC02-79ER10486 were totally expended for hardware and supplies required by two related devices at the Bates Linear Accelerator. These were a photon tagging facility and a ..gamma pi../sup 0/ spectrometer in Beam Line C of the new South Experimental Hall. Construction was begun in November of 1979 and both systems became fully operational in the summer of 1981. Preliminary data was taken in 1980 with a prototype ..gamma pi../sup 0/ spectrometer will be carried out in the fall of 1981 and spring of 1982. The photon tagging system has been used successfully to calibrate the ..gamma pi../sup 0/ spectrometer for the BU - MIT collaboration and to test a lead glass detector system for Brandeis University.

  11. Light collection optimization in scintillator-based gamma-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Hull, G.; Du, S.; Niedermayr, T.; Payne, S.; Cherepy, N.; Drobshoff, A.; Fabris, L.

    2008-04-01

    Scintillator-based gamma-ray detectors are being actively pursued for homeland security applications. A key property of such detectors is their energy resolution which enables faster detection and more precise identification of gamma-ray sources. In order to obtain the best energy resolution with a given scintillator material, it is crucial to collect the largest fraction possible of the light emitted after gamma-ray absorption. Different techniques to maximize the light collection efficiency were investigated and tested experimentally. In particular, the effect of the scintillator geometry has been simulated with Detect2000. Also, a number of wrapping materials have been tested for their reflectivity and their performance in terms of improving the energy resolution in a BGO-based gamma-ray detector. The best results were obtained with a tapered cylinder geometry and the GORE DRP tape.

  12. Gamma-ray spectrometer experiment, Apollo 17: NaI(T1) detector crystal activation

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Schmadebeck, R. L.; Bielefeld, M.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Schonfeld, E.; Peterson, L. E.; Arnold, J. R.

    1973-01-01

    An attempt was made to obtain experimental data on proton induced activity and its effect on gamma ray spectral measurements. A NaI(T1) crystal flown in Apollo 17 command module was used for the experiment.

  13. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2007-10-23

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  14. Evaluation of a digital data acquisition system and optimization of n-{gamma} discrimination for a compact neutron spectrometer

    SciTech Connect

    Giacomelli, L.; Zimbal, A.; Reginatto, M.; Tittelmeier, K.

    2011-01-15

    A compact NE213 liquid scintillation neutron spectrometer with a new digital data acquisition (DAQ) system is now in operation at the Physikalisch-Technische Bundesanstalt (PTB). With the DAQ system, developed by ENEA Frascati, neutron spectrometry with high count rates in the order of 5x10{sup 5} s{sup -1} is possible, roughly an order of magnitude higher than with an analog acquisition system. To validate the DAQ system, a new data analysis code was developed and tests were done using measurements with 14-MeV neutrons made at the PTB accelerator. Additional analysis was carried out to optimize the two-gate method used for neutron and gamma (n-{gamma}) discrimination. The best results were obtained with gates of 35 ns and 80 ns. This indicates that the fast and medium decay time components of the NE213 light emission are the ones that are relevant for n-{gamma} discrimination with the digital acquisition system. This differs from what is normally implemented in the analog pulse shape discrimination modules, namely, the fast and long decay emissions of the scintillating light.

  15. Hematite at Meridiani Planum and Gusev Crater as identified by the Moessbauer Spectrometer MIMOS II

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, G.; Morris, R. V.; Rodionov, D.; Schroeder, C.; de Souza, P. A.; Yen, A.; Renz, F.; Wdowiak, T.

    2004-12-01

    The Moessbauer (MB) spectrometers on the MER rovers Opportunity and Spirit, which landed on Mars in January 2004, have identified the iron-containing mineral hematite (a-Fe2O3) at both landing sites. On Earth, hematite can occur either by itself or with other iron oxides as massive deposits, in veins , and as particles dispersed through a silicate or other matrix material. Hematite particle size can range from nanophase (superparamagnetic) to multidomain and particle shape ranges from equant to acicular to platy. Fine-grained hematite is red in color and is a pigmenting agent. Coarse-grained hematite can be spectrally neutral (gray) at visible wavelengths. Substitutional impurities, particularly Al, are common in hematite. Chemically pure, coarse-grained, and well-crystalline hematite has a magnetic transition (the Morin transition) at ~260 K. Moessbauer spectra, recorded as a function of temperature, provide a way to characterize Martian hematite with respect to some of the physical and chemical characteristics. At Meridiani Planum besides the iron-sulfate mineral jarosite also the Fe-oxide hematite has been identified by the Moessbauer spectrometer, mainly in three distinct types of reservoir: - outcrop matrix material dominated by the mineral jarosite in the MB spectrum, certain basaltic soils, and mm-sized spherules dubbed blueberries. Moessbauer spectra of each reservoir yield a distinct set of hyperfine parameters for hematite, suggesting different degrees of crystallinity and particle size. The hematite found by MB instrument MIMOS II in the outcrop material shows the Morin transition at relatively high temperatures (ca. 250 K) which is an indication of pure and well-crystallized hematite. The source of the hematite in the `Blueberries' as identified by Moessbauer spectroscopy, and also by MiniTES, is not known. These spherules, covering nearly the whole landing site area (Eagle crater, plains, Endurance crater), may be concretions formed in the outcrop

  16. Data Processing for the Near Earth Asteroid Rendezvous (NEAR), X-Ray and Gamma-Ray Spectrometer (XRS) Ground System

    NASA Technical Reports Server (NTRS)

    McClanahan, Timothy P.; Mikheeva, I.; Trombka, J. I.; Floyd, S. R.; Boynton, W. V.; Bailey, H.; Bhangoo, J.; Starr, R.; Clark, P. E.; Evans, L. G.

    1999-01-01

    An X-ray and Gamma-ray spectrometer (XGRS) is onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft to determine the elemental composition of the surface of the asteroid 433Eros. The Eros asteroid is highly non-spherical in physical shape and the development of data management and analysis methodologies are in several areas a divergence from traditional remotely sensed geographical information systems techniques. Field of view and asteroid surface geometry must be derived virtually and then combined with real measurements of solar, spectral and instrument calibration information to derive meaningful scientific results. Spatial resolution of planned geochemical maps will be improved from the initial conditions of low statistical significance per integration by repeated surface flyovers and regional spectral accumulation. This paper describes the results of a collaborative effort of design and development of the NEAR XGRS instrument ground system undertaken by participants at the Goddard Space Flight Center, University of Arizona, Cornell University, Applied Physics Laboratory, and Max Plank institute.

  17. Data Processing for the Near Earth Asteroid Rendezvous (NEAR), X-ray and Gamma-ray Spectrometer (XGRS) Ground System

    NASA Technical Reports Server (NTRS)

    McClanahan, Timothy P.; Mikheeva, I.; Trombka, J. I.; Floyd, S. R.; Boynton, W. V.; Bailey, H.; Bhangoo, J.; Starr, R.; Clark, P. E.; Evans, L. G.

    1999-01-01

    An X-ray and Gamma-ray spectrometer (XGRS) is onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft to determine the elemental composition of the surface of the asteroid 433Eros. The Eros asteroid is highly non-spherical in physical shape and the development of data management and analysis methodologies are in several areas a divergence from traditional remotely sensed geographical information systems techniques. Field of view and asteroid surface geometry must be derived virtually and then combined with real measurements of solar, spectral and instrument calibration information to derive meaningful scientific results. Spatial resolution of planned geochemical maps will be improved from the initial conditions of low statistical significance per integration by repeated surface flyovers and regional spectral accumulation. This paper describes the results of a collaborative effort of design and development of the NEAR XGRS instrument ground system undertaken by participants at the Goddard Space Flight Center, University of Arizona, Cornell University, Applied Physics Laboratory, and Max Plank institute.

  18. Abundance and distribution of radioelements in lunar terranes: Results of Chang'E-1 gamma ray spectrometer data

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Ling, Zongcheng; Li, Bo; Zhang, Jiang; Sun, Lingzhi; Liu, Jianzhong

    2016-02-01

    The gamma ray spectrometer (GRS) onboard Chang'E-1 has acquired valuable datasets recording the gamma ray intensities from radioelements (Potassium (K), Thorium (Th) and Uranium (U), etc.) on lunar surface. We extracted the elemental concentrations from the GRS data with spectral fitting techniques and mapped the global absolute abundance of radioelements in terms of the ground truths from lunar samples and meteorites. The obtained global concentration maps of these radioelements indicate heterogeneous distribution among three major lunar crustal terranes (i.e., Procellarum KREEP Terrane (PKT), Feldspathic Highlands Terrane (FHT), and South Pole Aitken Terrane (SPAT)) in relation with their origin and distinct geologic history. The majority of radioelements are restricted in PKT, approving the scenario of KREEP (Potassium (K), rare earth elements (REE), Phosphorus (P)) residua concentrating under the Procellarum region. Moreover, we found the consistency of distribution for radioelements and basalts, concluding that the subsequent volcanism might be associated with local concentrations of radioelements in western Oceanus Procellarum and northwestern South Pole Aitken Basin. The prominent and asymmetric radioactive signatures were confirmed in SPAT comparing to FHT dominated by low level radioactivity, while the magnitudes are much lower than that of PKT, indicating a primary geochemical heterogeneity for the Moon.

  19. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved γ-ray diagnostic for the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; Hilsabeck, T. J.; Moy, K.; Stoeffl, W.; Mack, J. M.; Young, C. S.; Wu, W.; Barlow, D. B.; Schillig, J. B.; Sims, J. R.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C.

    2012-10-01

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve γ-rays in the range of Eo ± 20% in single shot, where Eo is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable Eo over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 × 1014 minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV 12C γ-rays assuming 200 mg/cm2 plastic ablator areal density and 3 × 1015 minimum DT neutrons to measure the 16.75 MeV DT γ-ray line.

  20. Gamma-to-electron magnetic spectrometer (GEMS): an energy-resolved γ-ray diagnostic for the National Ignition Facility.

    PubMed

    Kim, Y; Herrmann, H W; Hilsabeck, T J; Moy, K; Stoeffl, W; Mack, J M; Young, C S; Wu, W; Barlow, D B; Schillig, J B; Sims, J R; Lopez, F E; Mares, D; Oertel, J A; Hayes-Sterbenz, A C

    2012-10-01

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve γ-rays in the range of E(o) ± 20% in single shot, where E(o) is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E(o) over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 × 10(14) minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV (12)C γ-rays assuming 200 mg/cm(2) plastic ablator areal density and 3 × 10(15) minimum DT neutrons to measure the 16.75 MeV DT γ-ray line.

  1. Ultrahigh Energy Resolution Gamma-ray Spectrometers for Precision Measurements of Uranium Enrichment

    SciTech Connect

    Ali, S; Hau, I D; Niedermayr, T R; Friedrich, S

    2006-06-09

    Superconducting Gamma-ray detectors offer an order of magnitude higher energy resolution than conventional high-purity germanium detectors. This can significantly increase the precision of non-destructive isotope analysis for nuclear samples where line overlap affects the errors of the measurement. We have developed Gamma-detectors based on superconducting molybdenum-copper sensors and bulk tin absorbers for nuclear science and national security applications. They have, depending on design, an energy resolution between {approx}50 and {approx}150 eV FWHM at {approx}100 keV. Here we apply this detector technology to the measurement of uranium isotope ratios, and discuss the trade-offs between energy resolution and quantum efficiency involved in detector design.

  2. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  3. Measurement of lifetimes in {sup 46}V with the EUROBALL {gamma}-ray spectrometer

    SciTech Connect

    Jessen, K.; Moeller, O.; Dewald, A.; Brentano, P. von; Fitzler, A.; Jolie, J.; Saha, B.; Petkov, P.; Brandolini, F.; Gadea, A.; Lenzi, S. M.; De Angelis, G.; Farnea, E.; Napoli, D. R.; Gall, B. J. P.

    2006-08-15

    In {sup 46}V picosecond lifetimes were determined using the recoil distance Doppler-shift technique with the Cologne plunger device coupled to the EUROBALL IV spectrometer. The experiment was carried out using the {sup 24}Mg({sup 28}Si, {alpha}pn) reaction at 110 MeV at the Strasbourg VIVITRON accelerator. Subsequently the differential decay curve method in coincidence mode was employed to derive lifetimes for four excited states in the K{sup {pi}}=0{sup -} band. The resulting transition probabilities give a comparison of isospin allowed and forbidden E1 transitions, which clarifies the decay properties of the 2{sup -},T=0 state. Furthermore the B(E2) values within the K{sup {pi}}=0{sup -} band are discussed.

  4. Contribution of 210Pb bremsstrahlung to the background of lead shielded gamma spectrometers

    NASA Astrophysics Data System (ADS)

    Mrđa, D.; Bikit, I.; Vesković, M.; Forkapić, S.

    2007-03-01

    Lead, which is often used as a shielding material, contains 210Pb ( T1/2=22.3 y). The 46.54 keV γ-intensity of 210Pb can be easily reduced by an inner lining, but the bremsstrahlung caused by the β-decay of its daughter, 210Bi, with a maximal electron energy of 1.16 MeV, will contribute to the gamma detector background. The spectrum of this bremsstrahlung is calculated by numerically fitting the β-spectrum and integrating the Koch-Motz formula. The absorption of the bremsstrahlung in the lead and detection efficiencies for the HPGe detector are calculated by the effective solid angle algorithm, using corrections for the photopeak/Compton ratio of cross-sections in Ge. By comparison with the measured background spectrum, it is shown that, for the lead with 25 Bq/kg of 210Pb up to 500 keV of gamma spectrum, the bremsstrahlung contribution to the background is about 20% for our surface-based detector system. Also, we compared our calculations with a Monte Carlo simulation of another detector system with a shield containing 1 Bq/kg of 210Pb and found that our analytical method gives a value of roughly two times higher than the Monte Carlo one for the total bremsstrahlung contribution. The quality of the analytical semi-empirical method is proved by the reasonable agreement with the experimental results published.

  5. A portable medium-resolution gamma-ray spectrometer and analysis software

    SciTech Connect

    Lavietes, A.D.; McQuaid, J.H.; Ruhter, W.D.; Buckley, W.M.; Clark, D-L.; Paulus, T.J.

    1996-07-01

    There is a strong need for portable radiometric instrumentation that can both accurately confirm the presence of nuclear materials and allow isotopic analysis of radionuclides in the field. To fulfill this need the Safeguards Technology Program at LLNL has developed a hand-held, non-cryogenic, low-power gamma-ray and x-ray measurements and analysis instrument that can both search for and then accurately verify the presence of nuclear materials. We will report on the use of cadmium zinc telluride (CZT) detectors, detector electronics, and the new field-portable instrument being developed. We will also describe the isotopic analysis that allows enrichment measurements to be made accurately in the field. These systems provide capability for safeguards inspection and verification applications and could find application in counter-smuggling operations.

  6. Improved spectrometer performance of cadmium selenide room temperature gamma-ray detector

    SciTech Connect

    Roth, M.; Burger, A.

    1986-02-01

    The surface preparation technology of CdSe crystals used for room temperature gamma-ray detection has been studied. X-ray fluorescense analysis of the surface of the crystal exposed to the Br-methanol etchant revealed the production of CdBr/sub 2/ compound as a result of the crystal-etchant reaction. The CdBr/sub 2/ ''poisoning'' causes high surface leakage currents increasing significantly the electronic noise of the device. A modified etching process has been developed in present work allowing to reduce greatly the surface leakage. Prominent reduction in the noise threshold with a simultaneous improvement of the energy resolution of CdSe detectors is reported.

  7. Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report

    SciTech Connect

    Not Available

    1981-05-01

    Twelve anamolous areas attributable to gamma radiation in the uranium spectral window, and twenty-three in the thorium channel, have been recognized and delineated on the Weed quadrangle. The majority of the uranium anomalies are located in the southwestern part of the map sheet. Most of these are correlated with the pre-Cretaceous metamorphic rock system and the Mesozoic granitic rocks intrusive into it. Of the twenty-three anomalous areas of increased gamma radiation in the thorium spectral window, most are located in the northeast and the east center in a north-south trending belt. However, this apparent alignment is probably fortuitous as the individual anomalies are correlated with several different rock formations. Three are correlated with upper Cretaceous marine sediments, six with Ordovician marine sediments, two with Mesozoic granitic intrusives, and two with Silurian marine sediments. In the northwestern part of the quadrangle, four thorium radiation anomalies are delineated over exposures of upper Jurassic marine rocks. Anomaly 6, in the southwest, warrants attention as it suggests strong radiation in the uranium channel with little or no thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are also strong, supporting the likelihood of uranium enrichment. The feature is located on line 540, fiducials 7700 to 7720. Anomaly 7, on line 540, fiducials 8390 to 8420, shows similar characteristics although a minor thorium excursion is present. Anomaly 10, on line 3010 fiducials 9820 to 9840, is also characterized by a strong uranium radiation spike, with minor thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are well defined and relatively intense.

  8. Deletion mutagenesis identifies a haploinsufficient role for gamma-zein in opaque-2 endosperm modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quality Protein Maize (QPM) is a hard kernel variant of the high-lysine mutant, opaque-2. Using gamma irradiation, we created opaque QPM variants to identify opaque-2 modifier genes and to investigate deletion mutagenesis combined with Illumina sequencing as a maize functional genomics tool. A K0326...

  9. Design and environmental applications of an ultra-low-background, high-efficiency intrinsic Ge gamma-ray spectrometer

    SciTech Connect

    Wogman, N.A.

    1981-04-01

    A coincidence shielded intrinsic Ge gamma-ray spectrometer incorporating a 25% efficient, high resolution coaxial diode inside a 30 cm diameter NaI(Tl) shield is described. System design eliminates the major cause of background and minimizes cosmic-ray created background events through the use of electronic means. The system provides a peak-to-Compton ratio of greater than 1000 to 1 for /sup 137/Cs and high sensitivity for both low and high level radionuclide measurements. At 3 MeV the background is 0.000058 counts per minute per keV. At 1 MeV it is 0.00048 counts per minute per keV, and at 0.5 MeV it is 0.0045 counts per minute per keV. Traces of primordial radionuclides create background events such as at 2.614 MeV (0.016 counts per minute total peak area), at 2.448 MeV (0.0058 counts per minute per total peak area), and at 2.204 MeV (0.023 counts per minute per total peak area). The system is discussed with respect to its background design, methods to improve its design, and its application to measurements of neutron activated and environmental materials problems.

  10. Data management and analysis techniques used in the near X-ray and gamma-ray spectrometer systems

    NASA Astrophysics Data System (ADS)

    McClanahan, T. P.; Trombka, J. I.; Floyd, S. R.; Boynton, W. V.; Mikheeva, I.; Bailey, H.; Liewicki, C.; Bhangoo, J.; Starr, R.; Clark, P. E.; Evans, L. G.; Squyres, S.; McNutt, R.; Brückner, J.

    1999-02-01

    The NEAR Earth Asteroid Rendezvous (NEAR) spacecraft will encounter the 433Eros asteroid for a one year orbital mission in December 1998. Its on-board remote sensing instrumentation includes X-ray and gamma-ray (XGRS) spectrometers. NEAR is an orbital mission and long integrations over spatially specific asteroid regions are generally not possible. A methodology for simulating longer integrations has been developed for XGRS and uses unique management, correlative and analytical ground systems to render mapping data products. Evaluation of the spatial environment is accomplished through virtual renderings of the asteroid surface giving incidence, emission and surface roughness factors. Extended computer plate modeling information is employed to optimize ground computer systems processing time. Interactive visualization systems have been developed to manage close to a million spectra that will be collected during the encounter. Feedback systems are employed to inspect, tag and calibrate spectral data products. Mission planning, systems development and managerial responsibilities have been distributed to cooperating science organizations at The Goddard Space Flight Center, The University of Arizona, Cornell University, The Applied Physics Laboratory and The Max Plank Institute.

  11. Lunar Silicon Abundance determined by Kaguya Gamma-ray Spectrometer and Chandrayaan-1 Moon Mineralogy Mapper

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong; Berezhnoy, Alexey; Wöhler, Christian; Grumpe, Arne; Rodriguez, Alexis; Hasebe, Nobuyuki; Van Gasselt, Stephan

    2016-07-01

    Using Kaguya GRS data, we investigated Si distribution on the Moon, based on study of the 4934 keV Si gamma ray peak caused by interaction between thermal neutrons and lunar Si-28 atoms. A Si peak analysis for a grid of 10 degrees in longitude and latitude was accomplished by the IRAP Aquarius program followed by a correction for altitude and thermal neutron density. A spectral parameter based regression model of the Si distribution was built for latitudes between 60°S and 60°N based on the continuum slopes, band depths, widths and minimum wavelengths of the absorption bands near 1 μμm and 2 μμm. Based on these regression models a nearly global cpm (counts per minute) map of Si with a resolution of 20 pixels per degree was constructed. The construction of a nearly global map of lunar Si abundances has been achieved by a combination of regression-based analysis of KGRS cpm data and M ^{3} spectral reflectance data, it has been calibrated with respect to returned sample-based wt% values. The Si abundances estimated with our method systematically exceed those of the LP GRS Si data set but are consistent with typical Si abundances of lunar basalt samples (in the maria) and feldspathic mineral samples (in the highlands). Our Si map shows that the Si abundance values on the Moon are typically between 17 and 28 wt%. The obtained Si map will provide an important aspect in both understanding the distribution of minerals and the evolution of the lunar surface since its formation.

  12. A comparative study of LaBr3(Ce3+) and CeBr3 based gamma-ray spectrometers for planetary remote sensing applications

    NASA Astrophysics Data System (ADS)

    Kozyrev, A.; Mitrofanov, I.; Owens, A.; Quarati, F.; Benkhoff, J.; Bakhtin, B.; Fedosov, F.; Golovin, D.; Litvak, M.; Malakhov, A.; Mokrousov, M.; Nuzhdin, I.; Sanin, A.; Tretyakov, V.; Vostrukhin, A.; Timoshenko, G.; Shvetsov, V.; Granja, C.; Slavicek, T.; Pospisil, S.

    2016-08-01

    The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA's BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce3+) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce3+) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce3+) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.

  13. A comparative study of LaBr3(Ce(3+)) and CeBr3 based gamma-ray spectrometers for planetary remote sensing applications.

    PubMed

    Kozyrev, A; Mitrofanov, I; Owens, A; Quarati, F; Benkhoff, J; Bakhtin, B; Fedosov, F; Golovin, D; Litvak, M; Malakhov, A; Mokrousov, M; Nuzhdin, I; Sanin, A; Tretyakov, V; Vostrukhin, A; Timoshenko, G; Shvetsov, V; Granja, C; Slavicek, T; Pospisil, S

    2016-08-01

    The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA's BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce(3+)) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce(3+)) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce(3+)) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.

  14. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.

    PubMed

    Oren, Iris; Mann, Edward O; Paulsen, Ole; Hájos, Norbert

    2006-09-27

    Gamma-frequency oscillations are prominent during active network states in the hippocampus. An intrahippocampal gamma generator has been identified in the CA3 region. To better understand the synaptic mechanisms involved in gamma oscillogenesis, we recorded action potentials and synaptic currents in distinct types of anatomically identified CA3 neurons during carbachol-induced (20-25 microM) gamma oscillations in rat hippocampal slices. We wanted to compare and contrast the relationship between excitatory and inhibitory postsynaptic currents in pyramidal cells and perisomatic-targeting interneurons, cell types implicated in gamma oscillogenesis, as well as in other interneuron subtypes, and to relate synaptic currents to the firing properties of the cells. We found that phasic synaptic input differed between cell classes. Most strikingly, the dominant phasic input to pyramidal neurons was inhibitory, whereas phase-coupled perisomatic-targeting interneurons often received a strong phasic excitatory input. Differences in synaptic input could account for some of the differences in firing rate, action potential phase precision, and mean action potential phase angle, both between individual cells and between cell types. There was a strong positive correlation between the ratio of phasic synaptic excitation to inhibition and firing rate over all neurons and between the phase precision of excitation and action potentials in interneurons. Moreover, mean action potential phase angle correlated with the phase of the peak of the net-estimated synaptic reversal potential in all phase-coupled neurons. The data support a recurrent mechanism of gamma oscillations, whereby spike timing is controlled primarily by inhibition in pyramidal cells and by excitation in interneurons.

  15. A high-resolution gamma-ray and hard X-ray spectrometer for solar flare observations in Max 1991

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Curtis, D. W.; Harvey, P.; Hurley, K.; Primbsch, J. H.; Smith, D. M.; Pelling, R. M.; Duttweiler, F.

    1988-01-01

    A long duration balloon flight instrument for Max 1991 designed to study the acceleration of greater than 10 MeV ions and greater than 15 keV electrons in solar flares through high resolution spectroscopy of the gamma ray lines and hard X-ray and gamma ray continuum is described. The instrument, HIREGS, consists of an array of high-purity, n-type coaxial germanium detectors (HPGe) cooled to less than 90 K and surrounded by a bismuth germanate (BGO) anticoincidence shield. It will cover the energy range 15 keV to 20 MeV with keV spectral resolution, sufficient for accurate measurement of all parameters of the expected gamma ray lines with the exception of the neutron capture deuterium line. Electrical segmentation of the HPGe detector into a thin front segment and a thick rear segment, together with pulse-shape discrimination, provides optimal dynamic range and signal-to-background characteristics for flare measurements. Neutrons and gamma rays up to approximately 0.1 to 1 GeV can be detected and identified with the combination of the HPGe detectors and rear BGO shield. The HIREGS is planned for long duration balloon flights (LDBF) for solar flare studies during Max 1991. The two exploratory LDBFs carried out at mid-latitudes in 1987 to 1988 are described, and the LDBFs in Antarctica, which could in principle provide 24 hour/day solar coverage and very long flight durations (20 to 30 days) because of minimal ballast requirements are discussed.

  16. NS HEND instrument is the gamma-ray and neutrom spectrome-ter for studing of Phobos surface composition from Russian "Pfobos-Grunt" massion

    NASA Astrophysics Data System (ADS)

    Kozyrev, Alexander

    The Neutron Spectrometer HEND (NS HEND) has been proposed for studying elemental composition of Phobos (the Mars's moon) regolith by "Phobos-Grunt" mission. NS HEND have been se-lected by the Federal Space Agency of Russia for the Lander of the "Phobos-Grunt" mission scheduled for launch in 2009. The shallow subsurface of Phobos might be studied by obser-vations of induced nuclear gamma-ray lines and neutron emis-sion. Secondary gammarays and neutrons are produced by en-ergetic Galactic Cosmic Rays within 1-2 meter layer of subsur-face. The knowledge of the spectral density of neutrons in addi-tion to measurements of nuclear gamma lines allows to decon-volve concentrations of soil-forming elements. That is why nu-clear instruments include both the segment for detection of gamma ray lines and segment of neutron spectrometer for the measurement of the neutron leakage spectra. Moreover, meas-urements of neutrons and 2.2 MeV line will also allow to study the content of hydrogen within subsurface layer about 1 meter deep. The concept of NS HEND instrument is based on HEND instru-ment onboard NASA's Mars Odyssey mission launched in 2001 year, which is successfully operating on Mars orbit. Additional element of NS HEND instrument in comparison with HEND is gamma-ray spectrometer, which allows to measure gamma-ray lines together with neutrons from the surface of Phobos. NS HEND will be proto-flight instrument for the Mercury Gamma and Neutron Spectrometer MGNS, which is under development now for ESA's BepiColombo mission to Mercury scheduled in 2013. The total mass for this instrument is less then 3.8 kg and the power consumption is less than 8.0 W. Instrument NS HEND includes the set of three 3 He propor-tional counters inside polyethylene and cadmium enclosures for measurements of thermal and epithermal neutrons, scintillation stilben crystal for measurements of fast and high energy neu-trons with energies from 0.5 MeV up 10 MeV and scintillation crystal of LaBr3 for

  17. Proteomic profiling of human plasma exosomes identifies PPAR{gamma} as an exosome-associated protein

    SciTech Connect

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W.; Shen Rongfong; Daniels, Mathew P.; Levine, Stewart J.

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPAR{gamma} as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  18. In-house development of an FPGA-based MCA8K for gamma-ray spectrometer.

    PubMed

    Lanh, Dang; Son, Pham Ngoc; Son, Nguyen An

    2014-01-01

    The objective of this work is domestic development of electronics instruments. It used for measuring ionization radiation and practical training at Nuclear Research Institute (NRI), Dalat, Vietnam. The aim of this work is to study and develop a novel MCA8k for Gamma-ray spectrometer concerning experimental nuclear physics. An approach for design and construction of the aforementioned instrument is to apply logic integrating techniques via Field Programmable Gate Arrays (FPGA) under Max + PlusII, Altera. The instrument allows interfacing to PC with self-developed application software. Scientific significance of this work is partly to contribute to opening a research direction in the field of nuclear electronics science for design and construction of radiation measurement instruments with the advanced IC technology in Vietnam. Practical significance of this work is partly to contribute to enhancement of capabilities in developing radiation measurement instruments for experimental research as well as practical training in nuclear physics. The advantages of FPGA: overcoming ballistic deficit, decrement of serial and parallel noise, flexible in programming, control of the system by software without an interfere of hardware. The disadvantages of FPGA: requirement of good knowledge of VHDL and professional tools for development of a expected project. A new electronics module of MCA8k has been achieved. Some main results obtained from the experimental testing are as follows: differential nonlinearity (DNL) of FPGA-MCA8k approximately 1.27%, integral nonlinearity (INL) = 0.607%, time conversion ≈ 2.2 μs, deadtime (DT) is 0.75%. Data Acquisition Program MCANRI written in VC (+ +)6.0, self-executed under Windows XP environment.

  19. IDENTIFYING COMPOUNDS USING SOURCE CID ON AN ORTHOGONAL ACCELERATION TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    Exact mass libraries of ESI and APCI mass spectra are not commercially available In-house libraries are dependent on CID parameters and are instrument specific. The ability to identify compounds without reliance on mass spectral libraries is therefore more crucial for liquid sam...

  20. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  1. Development of an ultracompact neutron spectrometer for identifying near-surface water on mars.

    SciTech Connect

    Lawrence, David J.; Wiens, R. C.; Moore, K. R.; Prettyman, T. H.

    2001-01-01

    One of the major goals of the Mars science program is to identify exact locations of near-surface water or hydrated minerals on Mars. Evidence is mounting that Mars may have contemporary near-surface groundwater activity. Though very water-poor by terrestrial igneous standards, the SNC meteorivtes were found to contain evaporite minerals suggestive of groundwater activity within the past 1.3 Ga. More recently, the Mars Surveyor camera recorded images of geologically young seepage and outflow channels attributed to liquid water. The sources of these channels were suggested to be only a few hundred meters or less below the surface. If these channels are truly geologically young, thinly buried ice may still exist at the termination of these channels.

  2. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    SciTech Connect

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Gruebel, R.D.

    1996-08-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  3. Final report of the environmental measurement-while-drilling-gamma ray spectrometer system technology demonstration at the Savannah River Site F-Area Retention Basin

    SciTech Connect

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1997-08-01

    The environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes passed near previously sampled vertical borehole locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRs system during drilling are compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  4. Low-level gamma-ray spectrometry

    SciTech Connect

    Brodzinski, R.L.

    1990-10-01

    Low-level gamma-ray spectrometry generally equates to high-sensitivity gamma-ray spectrometry that can be attained by background reduction, selective signal identification, or some combination of both. Various methods for selectively identifying gamma-ray events and for reducing the background in gamma-ray spectrometers are given. The relative magnitude of each effect on overall sensitivity and the relative cost'' for implementing them are given so that a cost/benefit comparison can be made and a sufficiently sensitive spectrometer system can be designed for any application without going to excessive or unnecessary expense. 10 refs., 8 figs.

  5. Assessment of background gamma radiation levels using airborne gamma ray spectrometer data over uranium deposits, Cuddapah Basin, India - A comparative study of dose rates estimated by AGRS and PGRS.

    PubMed

    Srinivas, D; Ramesh Babu, V; Patra, I; Tripathi, Shailesh; Ramayya, M S; Chaturvedi, A K

    2017-02-01

    The Atomic Minerals Directorate for Exploration and Research (AMD) has conducted high-resolution airborne gamma ray spectrometer (AGRS), magnetometer and time domain electromagnetic (TDEM) surveys for uranium exploration, along the northern margins of Cuddapah Basin. The survey area includes well known uranium deposits such as Lambapur-Peddagattu, Chitrial and Koppunuru. The AGRS data collected for uranium exploration is utilised for estimating the average absorbed rates in air due to radio-elemental (potassium in %, uranium and thorium in ppm) distribution over these known deposit areas. Further, portable gamma ray spectrometer (PGRS) was used to acquire data over two nearby locations one from Lambapur deposit, and the other from known anomalous zone and subsequently average gamma dose rates were estimated. Representative in-situ rock samples were also collected from these two areas and subjected to radio-elemental concentration analysis by gamma ray spectrometer (GRS) in the laboratory and then dose rates were estimated. Analyses of these three sets of results complement one another, thereby providing a comprehensive picture of the radiation environment over these deposits. The average absorbed area wise dose rate level is estimated to be 130 ± 47 nGy h(-1) in Lambapur-Peddagattu, 186 ± 77 nGy h(-1) in Chitrial and 63 ± 22 nGy h(-1) in Koppunuru. The obtained average dose levels are found to be higher than the world average value of 54 nGy h(-1). The gamma absorbed dose rates in nGy h(-1) were converted to annual effective dose rates in mSv y(-1) as proposed by the United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR). The annual average effective dose rates for the entire surveyed area is 0.12 mSv y(-1), which is much lower than the recommended limit of 1 mSv y(-1) by International Commission on Radiation protection (ICRP). It may be ascertained here that the present study establishes a reference data set (baseline) in these

  6. Gamma-ray spectrometers using a bulk Sn absorber coupled to a Mo/Cu multilayer superconducting transition edge sensor

    SciTech Connect

    Chow, D T; Lindeman, M A; Cunningham, M F; Frank, M; Barbee, T W Jr; Labov, S E

    1999-09-21

    We are developing gamma-ray detectors with a bulk absorber and a superconducting transition-edge sensor. The absorber is high purity Sn and the transition-edge sensor is a Mo/Cu multilayer thin film. We have characterized the detector, and will discuss x-ray and gamma-ray results.

  7. Identified Cellular Correlates of Neocortical Ripple and High-Gamma Oscillations during Spindles of Natural Sleep.

    PubMed

    Averkin, Robert G; Szemenyei, Viktor; Bordé, Sándor; Tamás, Gábor

    2016-11-23

    Ultra-high-frequency network events in the hippocampus are instrumental in a dialogue with the neocortex during memory formation, but the existence of transient ∼200 Hz network events in the neocortex is not clear. Our recordings from neocortical layer II/III of freely behaving rats revealed field potential events at ripple and high-gamma frequencies repeatedly occurring at troughs of spindle oscillations during sleep. Juxtacellular recordings identified subpopulations of fast-spiking, parvalbumin-containing basket cells with epochs of firing at ripple (∼200 Hz) and high-gamma (∼120 Hz) frequencies detected during spindles and centered with millisecond precision at the trough of spindle waves in phase with field potential events but phase shifted relative to pyramidal cell firing. The results suggest that basket cell subpopulations are involved in spindle-nested, high-frequency network events that hypothetically provide repeatedly occurring neocortical temporal reference states potentially involved in mnemonic processes.

  8. Use of a shielded low resolution gamma spectrometer for segregation of free release and low level waste

    SciTech Connect

    Wilkins, C.G.; Alvarez, E.; Cocks, J.; Davison, L.; Mattinson, A.

    2007-07-01

    In the UK, low level radioactive waste (LLW) is sent to the national Low Level Waste Repository (LLWR) at Drigg in Cumbria. Strict rules limit the specific activity of waste that is sent to the LLW Repository and waste producers and consignors have to demonstrate that the waste they send to the repository meets its conditions for acceptance. However, the limited capacity of the Low Level Waste Repository means that it is just as important for waste consignees to ensure that inactive 'free release' or 'exempt' waste is not inadvertently sent to the repository. Incorrect segregation of waste in a decommissioning activity can mean that large amounts of the waste produced is below the exemption limit and could therefore be disposed of in conventional landfill. Sellafield Ltd. is using a pair of Canberra WM2750 Clearance Monitors to assay 100 litre packages of soft waste produced in some of their decommissioning activities at Sellafield. The WM2750 uses low resolution gamma spectrometry (LRGS) to determine the radionuclide content of packages or drums of LLW up to a maximum of 140 litre capacity. It uses a lead shielded measurement chamber to reduce the local radiation background along with high efficiency sodium iodide (NaI) detectors in order to obtain the measurement sensitivity required to be able to distinguish between LLW and exempt waste in a measurement time of less than 1 minute per package. This paper describes the waste monitoring process and the design of the clearance monitor - in particular how it was calibrated and the performance testing that was carried out to ensure that waste items identified by the monitors as being exempt waste are suitable for disposal to a conventional landfill site. (authors)

  9. Applications of LaBr3(Ce) Gamma-ray Spectrometer Arrays for Nuclear Spectroscopy and Radionuclide Assay

    NASA Astrophysics Data System (ADS)

    Regan, PH; Shearman, R.; Daniel, T.; Lorusso, G.; Collins, SM; Judge, SM; Bell; Pearce, AK; Gurgi, LA; Rudigier, M.; Podolyák, Zs; Mărginean, N.; Mărginean, R.; Kisyov, S.

    2016-10-01

    An overview of the use of discrete energy gamma-ray detectors based on cerium- doped LaBr3 scintillators for use in nuclear spectroscopy is presented. This review includes recent applications of such detectors in mixed, 'hybrid' gamma-ray coincidence detection arrays such ROSPHERE at IFIN-HH, Bucharest; EXILL+FATIMA at ILL Grenoble, France; GAMMASPHERE+FATIMA at Argonne National Laboratory, USA; FATIMA + EURICA, at RIKEN, Japan; and the National Nuclear Array (NANA) at the UK's National Physical Laboratory. This conference paper highlights the capabilities and limitations of using these sub-nanosecond 'fast-timing', medium-resolution gamma-ray detectors for both nuclear structure research and radionuclide standardisation. Potential future application of such coincidence scintillator arrays in measurements of civilian nuclear fuel waste evaluation and assay is demonstrated using coincidence spectroscopy of a mixed 134,7Cs source.

  10. Preliminary design and performance of an advanced gamma ray spectrometer for future orbiter missions. [composition and evolution of planets

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Arnold, J. R.; Reedy, R. C.; Trombka, J. I.

    1975-01-01

    A knowledge of the composition of planets, satellites, and asteroids is of primary importance in understanding the formation and evolution of the solar system. Gamma-ray spectroscopy is capable of measuring the composition of meter-depth surface material from orbit around any body possessing little or no atmosphere. Measurement sensitivity is determined by detector efficiency and resolution, counting time, and the background flux while the effective spatial resolution depends upon the field-of-view and counting time together with the regional contrast in composition. The advantages of using germanium as a detector of gamma rays in space are illustrated experimentally and a compact instrument cooled by passive thermal radiation is described. Calculations of the expected sensitivity of this instrument at the Moon and Mars show that at least a dozen elements will be detected, twice the number which have been isolated in the Apollo gamma-ray data.

  11. Improvement of the MCNP simulated n-gamma spectrometer response function using the new ENDF/B-VI evaluations for thermal neutron capture

    NASA Astrophysics Data System (ADS)

    Cywicka-Jakiel, T.; Zorski, T.

    2007-09-01

    An impact of the improved nuclear data library for thermal neutron capture (ENDF/B-VI.8) on the numerically simulated response of the spectrometric n-gamma well logging (sNGL) probe, SO-5-90-SN type, has been investigated. For this aim the MCNP simulations have been done using two kinds of data libraries for radiative capture: the commonly used ENDF/B-VI.2 (ENDF60) and the new ENDF/B-VI. 8 (ACTIA). MCNP simulations concerned the n-gamma benchmark experiment which was performed at the Polish calibration station in Zielona Góra to investigate the influence of chlorine in borehole on the tool readings and thus on the accuracy of quantitative elemental analysis for the main rock elements: Si, Ca and Fe. High quality of the nuclear data for radiative capture in Cl and Al have been of special interest as the ENDF60 library contains an imperfect data for Cl and there is no delay gamma-ray line of energy 1.7791 MeV from thermal neutron capture in Al. The last element is the main construction material for the SO-5-90-SN spectrometer. The advantage of the new ACTIA library over the ENDF60 was shown through the better matching of the experimental and simulated gamma-ray spectra from thermal neutron capture. As a consequence the Si, Ca and Fe rock contents obtained from the MCNP modeling with the use of ACTIA data, fit well their reference values regarded as "true". The accuracies for the Si, Ca and Fe determination have been improved by about 63%, 35% and 51%, respectively.

  12. Feasibility study of a long duration balloon flight with NASA/GSFC and Soviet Space Agency Gamma Ray Spectrometers

    NASA Technical Reports Server (NTRS)

    Sharp, William E.; Knoll, Glenn

    1989-01-01

    A feasibility study of conducting a joint NASA/GSFC and Soviet Space Agency long duration balloon flight at the Antarctic in Jan. 1993 is reported. The objective of the mission is the verification and calibration of gamma ray and neutron remote sensing instruments which can be used to obtain geochemical maps of the surface of planetary bodies. The gamma ray instruments in question are the GRAD and the Soviet Phobos prototype. The neutron detectors are supplied by Los Alamos National Laboratory and the Soviet Phobos prototype. These are to be carried aboard a gondola that supplies the data and supplies the power for the period of up to two weeks.

  13. Integration and evaluation of a position sensor with continuous read-out for use with the Environmental Measurement-While-Drilling Gamma Ray Spectrometer system

    SciTech Connect

    Normann, R.A.; Lockwood, G.J.; Williams, C.V.; Selph, M.M.

    1998-02-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site (SRS) F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled waste retention basin. These boreholes passed near previously sampled locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRS system during drilling were compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples. The results show general agreement between the soil sampling and EMWD-GRS techniques for Cs-137. The EMWD-GRS system has been improved by the integration of an orientation sensor package for position sensing (PS) (EMWD-GRS/PS). This added feature gives the capability of calculating position, which is tied directly to EMWD-GRS sensor data obtained while drilling. The EMWD-GRS/PS system is described and the results of the field tests are presented.

  14. A comparative study of gamma-ray spectrometers with LaBr3(Ce3+) and CeBr3 scintillation crystals for planetary remote sensing applications.

    NASA Astrophysics Data System (ADS)

    Kozyrev, Alexander; Mitrofanov, Igor; Owens, Alan; Quarati, Francesco; Benkhoff, Johannes; Litvak, Maxim; Malakhov, Alexey; Mokrousov, Maxim; Vostrukhin, Andrey; Golovin, Dmitry; Tretyakov, Vladislav; Sanin, Anton; Bakhtin, Boris; Timoshenko, Gennady; Shvetsov, Valery; Granja, Carlos; Slavicek, Tomáš; Pospisil, Stanislav

    2016-04-01

    The Russian Space Research Institute has developed and manufactured the gamma-ray spectrometer MGNS for remote sensing observations of the Mercury from the Mercury Polar Orbiter (MPO), which is the part of ESA's BepiColombo mission. The Flight Model (FM) of MGNS is based on a 3-inch single crystal of LaBr3(Ce3+), which was produced in the crystal development programme specifically for this mission. During the instrument development and verification, the crystals of CeBr3(Ce3+) became available with the similar sizes in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) of MGNS was produced with the 3-inch CeBr3 crystal and qualified for space flight. Except for the crystals, the two units FM and FSM are essentially identical. We report the results on a comparative assessment of the two units in terms of their respective spectroscopic capabilities, well as for their suitability for interplanetary spacecraft with respect to radiation tolerance and redundancy for activation. We also compare their performance with that of the Ge detector, as one used on the Messenger mission. Based on the tests results, the decision was taken to use FSM onboard the MPO on the BepiColombo mission. Thus, the MGNS with CeBr3 is the central gamma-ray detection element on the MPO spacecraft.

  15. A transportable high-resolution gamma-ray spectrometer and analysis system applicable to mobile, autonomous or unattended applications

    SciTech Connect

    Buckley, W.M.; Neufeld, K.W.

    1995-07-01

    The Safeguards Technology Program at the Lawrence Livermore National Laboratory is developing systems based on a compact electro-mechanically cooled high-purity germanium (HPGe) detector. This detector system broadens the practicality of performing high- resolution gamma-ray spectrometry in the field. Utilizing portable computers, multi-channel analyzers and software these systems greatly improve the ease of performing mobile high-resolution gamma-ray spectrometry. Using industrial computers, we can construct systems that will run autonomously for extended periods of time without operator input or maintenance. These systems can start or make decisions based on sensor inputs rather than operator interactions. Such systems can provide greater capability for wider domain of safeguards, treaty verification application, and other unattended, autonomous or in-situ applications.

  16. Development of an ultra-compact CsI/HgI{sub 2} gamma-ray scintillation spectrometer

    SciTech Connect

    Patt, B.E.; Wang, Y.J.; Iwanczyk, J.S.; Russo, P.A.; Cherry, S.R.; Shao, Y.

    1995-12-31

    A novel new semiconductor photodetector has been developed which utilizes large mercuric iodide photodetectors coupled to highly optimized CsI(T1) scintillators for gamma ray spectroscopy. With this new detector technology the authors have achieved energy resolution superior to that of any other scintillation detector. Furthermore, gamma probes based on the new HgI{sub 2}/CsI(Tl) detector can be highly miniaturized offering improved portability. A {1/2}-inch diameter HgI{sub 2} photodetector coupled with a {1/2}-inch diameter by {1/2}-inch high right-rectangular scintillator produced energy resolution of 4.58% FWHM for {sup 137}Cs (662 keV). This is perhaps the best result ever reported for room temperature scintillation spectroscopy. Evaluation of a prototype device with similar performance has been conducted at Los Alamos using Pu and U standard samples. Recently, Monte-Carlo simulations have been performed for co-optimization of the gamma-collection efficiency and light collection efficiency of the scintillator/photodetector pairs resulting in a new tapered scintillator geometry. Energy resolution of 5.69% FWHM at 662 keV was obtained for a 1-inch diameter photodetector coupled to a two-inch long conical CsI(Tl) scintillator; with dimensions: 1-inch diameter at the top tapered to 2-inch diameter at the bottom. The long term stability of the technology has been verified. Current efforts to optimize the detectors for specific applications in safeguards and in materials control and accountability are discussed.

  17. An error budget for digital soil mapping using proximally sensed EM induction and remotely sensed gamma-ray spectrometer data

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi; Bishop, Thomas; Triantafilis, John

    2016-04-01

    The cation exchange capacity (CEC) of soil is widely used for agricultural assessment because it is a measure of fertility and an indicator of structural stability. However, measurement of CEC is time consuming. Whilst geostatistical methods have been used, a large number of samples must be collected. Using pedometric methods and specifically coupling easy-to-measure ancillary data with CEC have improved efficiency in spatial prediction. The evaluation of mapping uncertainty has not been considered, however. In this study, we use an error budget procedure to quantify the relative contributions that model, input and covariate error make to prediction error of a digital map of CEC using gamma-ray spectrometry and apparent electrical conductivity (ECa) data. The error budget uses empirical best linear unbiased prediction (E-BLUP) and conditional simulation to produce numerous realizations of the data and their underlying errors. Linear mixed models (LMM) estimated by residual maximum likelihood (REML) is used to create the prediction models. Results show that the combined error of model (5.07 cmol(+)/kg) and input error (12.88 cmol(+)/kg) is approximately 12.93 cmol(+)/kg, which is twice as large as the standard deviation of CEC (6.8 cmol(+)/kg). The individual covariate errors caused by the gamma-ray (9.64 cmol(+)/kg) and EM error (8.55 cmol(+)/kg) are also large. To overcome the former, pre-processing techniques to improve the quality of the gamma-ray data could be considered. In terms of the EM error, this could be reduced by the use of a smaller sampling interval and in particular near the edges of the study area and also at Pedoderm boundaries.

  18. A comparative study of terrestrial gamma dose rate in air measured by thermoluminescent dosimeter, portable survey meter and HPGe gamma spectrometer.

    PubMed

    Huang, Yan-Jun; Guo, Gui-Yin; He, Yi; Yang, Li-Tao; Shan, Zhen; Chen, Chao-Feng; Shang-Guan, Zhi-Hong

    2016-11-01

    In this paper, three different widely-used measurement techniques for environmental gamma dose rate were studied and compared, i.e., the thermoluminescent dosimeter, the portable survey meter and the spectrometric analysis. Thirteen investigation sites were selected, and the TLDs were arranged to accumulate the radiation signals during an interval of about one quarter, the instant dose rates by using a portable survey meter were collected around the site, and top surface soils were sampled in the surroundings for radionuclides analyzing in laboratory. The results from these methods were compared, which revealed high correlations. The differences and possible uncertainties for the three methods were analyzed, inspired a further study should be conducted to have more successful estimation of dose rate in surface air.

  19. Integration and Evaluation of a Position Sensor with Continuous Read-Out for use with the Environmental Measurement-While-Drilling Gamma Ray Spectrometer System

    SciTech Connect

    Lockwood, G.J.; Normann, R.A.; Selph, M.M.; Williams, C.V.

    1999-02-22

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site (SRS) F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled waste retention basin. These boreholes passed near previously sampled locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRS system during drilling were compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples. The demonstration of the EMWD-GRS was a complete success. The results show general agreement between the soil sampling and EMWD-GRS techniques for CS-137. It was recognized that the EMWD-GRS tool would better satisfy our customers' needs if the instrument location could be continuously monitored. During the demonstration at SRS, an electromagnetic beacon with a walkover monitor (Subsite{reg_sign}) was used to measure bit location at depth. To use a beacon locator drilling must be stopped, thus it is normally only used when a new section of pipe was added. The location of contamination could only be estimated based on the position of the EMED-GRS package and the distance between locator beacon readings. A continuous location system that would allow us to know the location of each spectrum as it is obtained is needed.

  20. Fluorescence of the gamma, epsilon, and delta systems of nitric oxide - Polarization and use of calculated intensities for spectrometer calibration.

    NASA Technical Reports Server (NTRS)

    Poland, H. M.; Broida, H. P.

    1971-01-01

    Results of a study in which fluorescence of the gamma system of nitric oxide was obtained by excitation from both the 2144 A line of ionized cadmium and a continuum source. Individual rotational lines of the 2144 A excited fluorescence spectrum were found to be partially polarized and to have polarizations of differ ing sign. Measured relative vibrational band intensities from line and continuum excitation were compared to calculated Franck-Condon factors. Those Franck-Condon factors based on a single potential for the two spin states of the X super pi state agreed better with measured values than those based on separate potentials for the two spin states. Calculated intensities of the v prime = 3 progression were used to calibrate the instrument response in the wavelength region from 2000 to 2500 A and were checked with measured intensities of the v prime = 0.1, and 2 progressions. Fluorescence of the epsilon and delta bands obtained with continuum lamp excitation also were compared to calculated intensities.

  1. The target asymmetry P_z in {gamma}p-->p{pi}^+{pi}^- with the CLAS spectrometer at Jefferson Laboratory

    SciTech Connect

    Sungkyun Park, CLAS Collaboration

    2012-04-01

    The study of baryon resonances provides a deeper understanding of the strong interaction because the dynamics and relevant degrees of freedom hidden within them are reflected by the properties of the excited states of baryons. Higher-lying excited states at and above 1.9 GeV/c{sup 2} are generally predicted to have strong couplings to the {pi}{pi}N final states via {pi}{Delta} or {rho}N intermediate states. Double-pion photoproduction is therefore important to find and investigate properties of highmass resonances. The CLAS g9a (FROST) experiment, as part of the N* spectroscopy program at Jefferson Laboratory (JLab), has accumulated photoproduction data using linearly- and circularly-polarized photons incident on a longitudinally-polarized butanol target in the photon energy range 0.3 to 2.4 GeV. In this contribution, the extraction of the target asymmetry for the reaction {gamma}p {yields} p{pi}{sup +}{pi}{sup -} will be described and preliminary results will be presented.

  2. Airborne gamma-ray spectrometer and magnetometer survey: Sioux Falls quadrangle, South Dakota. Volume I. Final report

    SciTech Connect

    Not Available

    1981-05-01

    Computer printer maps of the magnetic total intensity and the six radiometric parameters have been prepared in addition to the radiometric anomaly maps for this area. The magnetic total intensity map displays a rather subdued response pattern of broad low amplitude anomalies over much of the area with an average magnetic intensity of approximately 58,900 gammas. The radiometric response over much of the area is relatively low. Equivalent concentrations of uranium, thorium and potassium only rarely exceed 3.2 ppM, 7.5 ppM and 1.4% respectively. A number of these zones of increased concentrations show corresponding anomalous responses on the uranium/potassium and/or uranium/thorium pseudo-contour maps. Based on this set of computer printer maps alone however, it is, at times, difficult to discern the contribution of coinciding local decreases in the potassium and thorium parameters to these ratio anomalies. Based on the criteria stated in the general section on interpretation, a total of seven uranium and seven thorium anomalies have been outlined on the interpretation map. All of these features, described in Appendix B, exhibit only weakly to moderately anomalous responses. Due to the generally low radiometric levels encountered throughout the quadrangle along with the lack of any favorable indications for enriched accumulation of either uranium or thorium as seen in their radioelement distributions when correlated with the mapped geology and the weak, at best, evidence of preferential accumulations of either parameter, no follow-up work is recommended.

  3. Transparent ceramic garnet scintillator optimization via composition and co-doping for high-energy resolution gamma spectrometers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Beck, Patrick R.; Swanberg, Erik L.; Hunter, Steven L.

    2016-09-01

    Breakthrough energy resolution, R(662keV) <4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce), by optimizing fabrication conditions. Here we describe the dependence of scintillation light yield and energy resolution on several variables: (1) Stoichiometry, in particular Gd/Y and Ga/Al ratios which modify the bandgap energy, (2) Processing methods, including vacuum vs. oxygen sintering, and (3) Trace co-dopants that influence the formation of Ce4+ and modify the intra-bandgap trap distribution. To learn about how chemical composition influences the scintillation properties of transparent ceramic garnet scintillators, we have measured: scintillation decay component amplitudes; intensity and duration of afterglow; thermoluminescence glow curve peak positions and amplitudes; integrated light yield; light yield non-proportionality, as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI); and energy resolution for gamma spectroscopy. Optimized GYGAG(Ce) provides R(662 keV) =3.0%, for 0.05 cm3 size ceramics with Silicon photodiode readout, and R(662 keV) =4.6%, at 2 in3 size with PMT readout.

  4. Time differential 57Fe Mössbauer spectrometer with unique 4π YAP:Ce 122.06 keV gamma-photon detector

    NASA Astrophysics Data System (ADS)

    Novak, Petr; Pechousek, Jiri; Prochazka, Vit; Navarik, Jakub; Kouril, Lukas; Kohout, Pavel; Vrba, Vlastimil; Machala, Libor

    2016-10-01

    This paper presents a conceptually new design of the 57Fe Time Differential Mössbauer Spectrometer (TDMS) with the gamma-photon detector optimized for registration of a radiation emitted in a maximum solid angle. A high detection efficiency of 80% in 4π region was achieved for 122.06 keV photons emitted from 57Co source. Detector parameters have been optimized for the use in the Time Differential Mössbauer Spectroscopy where the high time resolution in range of 176-200 ns is highly required. Technical concept of the TDMS is based on the virtual instrumentation technique and uses fast digital oscilloscope. Performance and detector utilization have been clarified by decreasing the Mössbauer spectral line-width of K2MgFe(CN)6 reference sample from 0.33 mm/s (integral mode) to 0.23 mm/s (time differential mode). This report also describes characterization and utilization of the detector together with additional electronic blocks and two-channel fast data-acquisition system construction.

  5. The uniform K distribution of the mare deposits in the Orientale Basin: Insights from Chang'E-2 gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Hua; Chang, Jin; Xie, Minggang; Fritz, Jörg; Fernandes, Vera A.; Ip, Wing-Huen; Ma, Tao; Xu, Aoao

    2015-05-01

    The composition of mare basalt units in the Orientale Basin are investigated by using the potassium (K) map derived from Chang'E-2 gamma-ray spectrometer (CE-2 GRS) and FeO map derived from Clementine UV-Vis data set. Together with crater retention ages of the mare basalts from literature data, we aim to investigate possible magma sources underneath the Orientale Basin and their chemical evolution over time. Analyses of the chemical composition of the resurfaced mare basalts together with the reported eruption ages suggest a unique magma generating process for the resurfaced mare deposits. The early mare basalts in the central Mare Orientale and the later resurfaced mare deposits probably derived from magma generated by heat release due to high radioactive element concentrations. Based on forward modeling, the similar K abundances observed in the small mare deposits of the SW polygon area, Lacus Veris, and Lacus Autumni and those in the central Mare Orientale imply the same heat source for these lava eruptions. The chemical similarities (e.g., K, FeO, and TiO2) of these regions suggest that mare basalts within the Orientale Basin are a result of multiple eruptions from a relatively homogeneous source underneath the Basin.

  6. Use of the gamma probe to identify multigland disease in primary hyperparathyroidism

    PubMed Central

    Tobin, Kirby; Ayers, Rachel R; Rajaei, Mohammad; Sippel, Rebecca S; Balentine, Courtney J; Elfenbein, Dawn; Chen, Herb; Schneider, David F

    2016-01-01

    Aim The purpose of this study was to determine threshold gamma probe counts to distinguish single adenoma (SA) from multigland disease (MGD) during radioguided parathyroidectomy. Methods A retrospective analysis of 1656 patients was performed. Ex vivo counts of the first excised gland were taken and recorded as a percentage of background counts. Results 69.4% of MGD patients had counts below the 50% threshold. The 50% threshold correctly grouped 72.8% of our cohort. Counts of more than 100% were accurate for grouping SA, with only 6.8% of patients with counts more than 100% having MGD. Conclusions The gamma probe can aid surgeons in deciding to continue neck exploration if MGD is suspected or wait for labs to confirm cure if SA is suspected. PMID:27127604

  7. The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: identifying regional elemental enrichment on asteroids

    NASA Astrophysics Data System (ADS)

    Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas

    2013-09-01

    The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT and Harvard and was subsequently accepted as a student led instrument for the determination of the elemental composition of the asteroid's surface as well as the surface distribution of select elements through solar induced X-ray fluorescence. REXIS consists of a detector plane that contains 4 X-ray CCDs integrated into a wide field coded aperture telescope with a focal length of 20 em for the detection of regions with enhanced abundance in key elements at 50 m scales. Elemental surface distributions of approximately 50-200 m scales can be detected using the instrument as a simple collimator. An overview of the observation strategy of the REXIS instrument and expected performance are presented here.

  8. Fast-neutron spectrometer developments

    NASA Technical Reports Server (NTRS)

    Moler, R. B.; Zagotta, W. E.; Baker, S. I.

    1973-01-01

    Li6 sandwich-type neutron spectrometer is equipped with proportional counter for particle identification. System uses current-sensitive preamplifiers to minimize pile-up of gamma-ray and particle pulses.

  9. Profiling Cesium Iodide Detectors and Using Pulse Shape Discrimination to Identify Alpha Particles, Neutrons, and Gamma Rays

    NASA Astrophysics Data System (ADS)

    Hudson, Emily; Rogachev, Grigory; Hooker, Joshua; Salyer, Kaitlin

    2016-09-01

    The purpose of this research was to investigate the properties of detectors that are to be used in future experiments. First, we investigated the properties of a cesium iodide detector. We placed a mask over the detector's face and used an alpha source to measure the detector's resolution on different areas of the detector. In the second part, we investigated the pulse shape discrimination capabilities of a plastic scintillator. We used the scintillator to detect alpha particles, neutrons, and gamma rays and applied various analysis techniques to identify the waveforms of each type. Texas A&M, NSF.

  10. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation.

    PubMed

    Hawley, Simon A; Ross, Fiona A; Chevtzoff, Cyrille; Green, Kevin A; Evans, Ashleigh; Fogarty, Sarah; Towler, Mhairi C; Brown, Laura J; Ogunbayo, Oluseye A; Evans, A Mark; Hardie, D Grahame

    2010-06-09

    A wide variety of agents activate AMPK, but in many cases the mechanisms remain unclear. We generated isogenic cell lines stably expressing AMPK complexes containing AMP-sensitive (wild-type, WT) or AMP-insensitive (R531G) gamma2 variants. Mitochondrial poisons such as oligomycin and dinitrophenol only activated AMPK in WT cells, as did AICAR, 2-deoxyglucose, hydrogen peroxide, metformin, phenformin, galegine, troglitazone, phenobarbital, resveratrol, and berberine. Excluding AICAR, all of these also inhibited cellular energy metabolism, shown by increases in ADP:ATP ratio and/or by decreases in cellular oxygen uptake measured using an extracellular flux analyzer. By contrast, A769662, the Ca(2+) ionophore, A23187, osmotic stress, and quercetin activated both variants to varying extents. A23187 and osmotic stress also increased cytoplasmic Ca(2+), and their effects were inhibited by STO609, a CaMKK inhibitor. Our approaches distinguish at least six different mechanisms for AMPK activation and confirm that the widely used antidiabetic drug metformin activates AMPK by inhibiting mitochondrial respiration.

  11. Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    SciTech Connect

    Kaneko, Yuki; Ramirez-Ruiz, E.; Granot, J.; Kouveliotou, C.; Woosley, S.E.; Patel, S.K.; Rol, E.; Zand, J.J.M.in't; a; Wijers, R.A.M.J.; Strom, R.; /USRA, Huntsville /Princeton, Inst. Advanced Study /UC, Santa Cruz /KIPAC, Menlo Park /NASA, Marshall /Leicester U. /SRON, Utrecht /Utrecht, Astron. Inst. /Amsterdam U., Astron. Inst. /NFRA, Dwingeloo

    2006-07-12

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with type Ic supernovae, and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution, and estimate the total energy budget based upon broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and sub-relativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.

  12. Novel PPAR-gamma agonists identified from a natural product library: a virtual screening, induced-fit docking and biological assay study.

    PubMed

    Salam, Noeris K; Huang, Tom H-W; Kota, Bhavani P; Kim, Moon S; Li, Yuhao; Hibbs, David E

    2008-01-01

    Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays an essential role in lipid and glucose homeostasis. It is recognized as the receptor of the thiazolidinediones-a synthetic class of anti-diabetic drugs-and is the target of many drug discovery efforts because of its role in disease states, such as type II diabetes mellitus. In this study, structure-based virtual screening of the PPAR-gamma ligand binding domain against a natural product library has revealed 29 potential agonists. In vitro testing of this list identified six flavonoids to have stimulated PPAR-gamma transcriptional activity in a transcriptional factor assay. Of these, flavonoid-psi-baptigenin-was classed as the most potent PPAR-gamma agonist, possessing low micromolar affinity (EC(50) = 2.9 microM). Further in vitro testing using quantitative RT-PCR and immunoblotting experiments demonstrated that psi-baptigenin activated PPAR-gamma mRNA (4.1 +/- 0.2-fold) and protein levels (2.9 +/- 0.4-fold) in THP-1 macrophages. Moreover, psi-baptigenin's-induced PPAR-gamma enhancement was abolished in the presence of a selective PPAR-gamma antagonist, GW9662. Induced-fit docking investigations provide a detailed understanding on the ligands' mechanism of action, suggesting five of the active flavonoids induce significant conformational change in the receptor upon binding. Overall, these results offer insight into various naturally derived flavonoids as leads/templates for development of novel PPAR-gamma ligands.

  13. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  14. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  15. The GRIFFIN spectrometer

    NASA Astrophysics Data System (ADS)

    Svensson, C. E.; Garnsworthy, A. B.

    2014-01-01

    Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is an advanced new high-efficiency γ-ray spectrometer being developed for use in decay spectroscopy experiments with low-energy radioactive ion beams provided by TRIUMF's Isotope Separator and Accelerator (ISAC-I) radioactive ion beam facility. GRIFFIN will be comprised of sixteen large-volume clover-type high-purity germanium (HPGe) γ-ray detectors coupled to custom digital signal processing electronics and used in conjunction with a suite of auxiliary detection systems. This article provides an overview of the GRIFFIN spectrometer and its expected performance characteristics.

  16. Genome wide analysis of inbred mouse lines identifies a locus containing Ppar-gamma as contributing to enhanced malaria survival.

    PubMed

    Bopp, Selina E R; Ramachandran, Vandana; Henson, Kerstin; Luzader, Angelina; Lindstrom, Merle; Spooner, Muriel; Steffy, Brian M; Suzuki, Oscar; Janse, Chris; Waters, Andrew P; Zhou, Yingyao; Wiltshire, Tim; Winzeler, Elizabeth A

    2010-05-28

    The genetic background of a patient determines in part if a person develops a mild form of malaria and recovers, or develops a severe form and dies. We have used a mouse model to detect genes involved in the resistance or susceptibility to Plasmodium berghei malaria infection. To this end we first characterized 32 different mouse strains infected with P. berghei and identified survival as the best trait to discriminate between the strains. We found a locus on chromosome 6 by linking the survival phenotypes of the mouse strains to their genetic variations using genome wide analyses such as haplotype associated mapping and the efficient mixed-model for association. This new locus involved in malaria resistance contains only two genes and confirms the importance of Ppar-gamma in malaria infection.

  17. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  18. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    SciTech Connect

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-07

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of {epsilon} = A{Epsilon}{sup a}+B{Epsilon}{sup b}, where {epsilon} is efficiency, {Epsilon} is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a ''knee'' at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  19. Novel and Distinct Metabolites Identified Following a Single Oral Dose of Alpha- or Gamma-Hexabromocyclododecane in Mice

    EPA Science Inventory

    The metabolism of alpha- and gamma-hexabromocyclododecane (HBCD) was investigated in adult C57BL/6 female mice. Alpha- or gamma-[14C]HBCD (3 mg/kg bw) was orally administered with subsequent urine and feces collection for 4 consecutive days; a separate group of mice were dosed a...

  20. Novel and distinct metabolites identified following a single oral dose of alpha- or gamma-hexabromocyclododecane in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The metabolism of alpha- and gamma-hexabromocyclododecane (HBCD) was investigated in adult C57BL/6 female mice. Alpha- or gamma-[14C]HBCD (3 mg/kg bw) was orally administered with subsequent urine and feces collection for 4 consecutive days; a separate group of mice were dosed and sacrificed 3 hour...

  1. Multidimensional spectrometer

    DOEpatents

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  2. Part I. Development of a concept inventory addressing students' beliefs and reasoning difficulties regarding the greenhouse effect, Part II. Distribution of chlorine measured by the Mars Odyssey Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Keller, John Michael

    chlorine on Mars measured by the Mars Odyssey Gamma Ray Spectrometer (GRS). The distribution of chlorine is heterogeneous across the surface, with a concentration of high chlorine centered over the Medusa Fossae Formation. The distribution of chlorine correlates positively with hydrogen and negatively with silicon and thermal inertia. Four mechanisms (aeolian, volcanic, aqueous, and hydrothermal) are discussed as possible factors influencing the distribution of chlorine measured within the upper few tens of centimeters of the surface.

  3. Gamma-rays attenuation of zircons from Cambodia and South Africa at different energies: A new technique for identifying the origin of gemstone

    NASA Astrophysics Data System (ADS)

    Limkitjaroenporn, P.; Kaewkhao, J.

    2014-10-01

    In this work, the gamma-rays interaction properties of zircons from Cambodia and South Africa have been studied. The densities of Cambodian and South African's zircons are 4.6716±0.0040 g/cm3 and 4.5505±0.0018 g/cm3, respectively. The mass attenuation coefficient and the effective atomic number of gemstones were measured with the gamma-ray in energies range 223-662 keV using the Compton scattering technique. The mass attenuation coefficients of both zircons decreased with the increasing of gamma-rays energies. The different mass attenuation coefficients between the two zircons observed at gamma-ray energies below 400 keV are attributed to the differences in the photoelectric interaction. The effective atomic number of zircons was decreased with the increasing of gamma-ray energies and showed totally different values between the Cambodia and South Africa sources. The origins of the two zircons could be successfully identified by the method based on gamma-rays interaction with matter with advantage of being a non-destructive testing.

  4. High-Resolution Gamma-Ray Spectrometers using Bulk Absorbers Coupled to Mo/Cu Multilayer Superconducting Transition-Edge Sensors

    SciTech Connect

    Chow, D.T.; Loshak, A.; Van Den Berg, M.L.; Frank, M.; Barbee Jr., T.W.; Labov, S.E.

    2000-07-04

    In x-ray and gamma-ray spectroscopy, it is desirable to have detectors with high energy resolution and high absorption efficiency. At LLNL, we have developed superconducting tunnel junction-based single photon x-ray detectors with thin film absorbers that have achieved these goals for photon energies up to 1 keV. However, for energies above 1 keV, the absorption efficiency of these thin-film detectors decreases drastically. We are developing the use of high-purity superconducting bulk materials as microcalorimeter absorbers for high-energy x-rays and gamma rays. The increase in absorber temperature due to incident photons is sensed by a superconducting transition-edge sensor (TES) composed of a Mo/Cu multilayer thin film. Films of Mo and Cu are mutually insoluble and therefore very stable and can be annealed. The multilayer structure allows scaling in thickness to optimize heat capacity and normal state resistance. We measured an energy resolution of 70 eV for 60 keV incident gamma-rays with a 1 x 1 x 0.25 mm{sup 3} Sn absorber. We present x-ray and gamma-ray results from this detector design with a Sn absorber. We also propose the use of an active negative feedback voltage bias to improve the performance of our detector and show preliminary results.

  5. A new mass-spectrometric C-terminal sequencing technique finds a similarity between gamma-interferon and alpha 2-interferon and identifies a proteolytically clipped gamma-interferon that retains full antiviral activity.

    PubMed Central

    Rose, K; Simona, M G; Offord, R E; Prior, C P; Otto, B; Thatcher, D R

    1983-01-01

    A novel mass-spectrometric technique is described that permits the identification of the C-terminal peptide of a protein. The technique involves the incorporation of 18O into all alpha-carboxy groups liberated during enzyme-catalysed partial hydrolysis of the protein, followed by mass spectrometry to identify as the C-terminal peptide the only peptide that did not incorporate any 18O. The technique has been used to identify the true C-terminal tryptic peptide of a bacterially produced gamma-interferon and to distinguish it from a peptide produced by anomalous tryptic cleavage. It was found that a closely similar sequence segment of bacterially produced alpha 2-interferon undergoes an analogous cleavage. The technique was also used to identify the C-terminus of a clipped gamma-interferon that retains full antiviral activity. PMID:6418141

  6. Measurement of the Helicity Difference in {gamma}{sup {yields}p{yields}{yields}p{pi}+{pi}-} with the CLAS Spectrometer at Jefferson Laboratory

    SciTech Connect

    Park, Sungkyun

    2010-08-05

    The study of the properties of baryon resonances can provide us with hints to help us understand the structure of non-perturbative QCD and the effect of a particular resonance on polarization observables. The investigation of double-pion photoproduction data is needed to discover higher-lying states and their properties at and above W {approx_equal} 1.8 GeV. Therefore, the analysis of the helicity difference in gp {gamma}p{yields}p{pi}{sup +{pi}-} will help us in our understanding of QCD.The CLAS g9a (FROST) experiment, as part of the N* spectroscopy program at Jefferson Laboratory, has accumulated photoproduction data using linearly and circularly polarized photons incident on a longitudinally-polarized butanol target in the photon energy range 0.3 to 2.4 GeV. The FROST experiment provides an important step toward a ''complete'' experiment for the reaction {gamma}N{yields}KY.In this contribution, the method to calculate the helicity difference for the reaction {gamma}p{yields}p{pi}{sup +{pi}-} will be described and preliminary results will be discussed.

  7. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  8. A presenilin-1 mutation identified in familial Alzheimer disease with cotton wool plaques causes a nearly complete loss of gamma-secretase activity.

    PubMed

    Heilig, Elizabeth A; Xia, Weiming; Shen, Jie; Kelleher, Raymond J

    2010-07-16

    Mutations in presenilin-1 and presenilin-2 (PS1 and PS2) are the most common cause of familial Alzheimer disease. PS1 and PS2 are the presumptive catalytic components of the multisubunit gamma-secretase complex, which proteolyzes a number of type I transmembrane proteins, including the amyloid precursor protein (APP) and Notch. APP processing by gamma-secretase produces beta-amyloid peptides (Abeta40 and Abeta42) that accumulate in the Alzheimer disease brain. Here we identify a pathogenic L435F mutation in PS1 in two affected siblings with early-onset familial Alzheimer disease characterized by deposition of cerebral cotton wool plaques. The L435F mutation resides in a conserved C-terminal PAL sequence implicated in active site conformation and catalytic activity. The impact of PS1 mutations in and around the PAL motif on gamma-secretase activity was assessed by expression of mutant PS1 in mouse embryo fibroblasts lacking endogenous PS1 and PS2. Surprisingly, the L435F mutation caused a nearly complete loss of gamma-secretase activity, including >90% reductions in the generation of Abeta40, Abeta42, and the APP and Notch intracellular domains. Two nonpathogenic PS1 mutations, P433L and L435R, caused essentially complete loss of gamma-secretase activity, whereas two previously identified pathogenic PS1 mutations, P436Q and P436S, caused partial loss of function with substantial reductions in production of Abeta40, Abeta42, and the APP and Notch intracellular domains. These results argue against overproduction of Abeta42 as an essential property of presenilin proteins bearing pathogenic mutations. Rather, our findings provide support for the hypothesis that pathogenic mutations cause a general loss of presenilin function.

  9. Development of a pixelated CdTe detector module for a hard-x and gamma-ray imaging spectrometer application

    NASA Astrophysics Data System (ADS)

    Galvèz, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-07-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of novae and supernovae in X and gamma-rays, with the use of space missions. We have also been involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae and Classical Novae. In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm with a pixel pitch of 1mm x 1mm. Two kinds of CdTe pixel detectors with different contacts have been tested: ohmic and Schottky. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout VATAGP7.1 ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. The study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the detector design. We will report on the spectroscopy characterisation of the CdTe detector module as well as the study of charge sharing.

  10. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  11. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  12. HISS spectrometer

    SciTech Connect

    Greiner, D.E.

    1984-11-01

    This talk describes the Heavy Ion Spectrometer System (HISS) facility at the Lawrence Berkeley Laboratory's Bevalac. Three completed experiments and their results are illustrated. The second half of the talk is a detailed discussion of the response of drift chambers to heavy ions. The limitations of trajectory measurement over a large range in incident particle charge are presented.

  13. (60)Co in cast steel matrix: A European interlaboratory comparison for the characterisation of new activity standards for calibration of gamma-ray spectrometers in metallurgy.

    PubMed

    Tzika, Faidra; Burda, Oleksiy; Hult, Mikael; Arnold, Dirk; Marroyo, Belén Caro; Dryák, Pavel; Fazio, Aldo; Ferreux, Laurent; García-Toraño, Eduardo; Javornik, Andrej; Klemola, Seppo; Luca, Aurelian; Moser, Hannah; Nečemer, Marijan; Peyrés, Virginia; Reis, Mario; Silva, Lidia; Šolc, Jaroslav; Svec, Anton; Tyminski, Zbigniew; Vodenik, Branko; Wätjen, Uwe

    2016-08-01

    Two series of activity standards of (60)Co in cast steel matrix, developed for the calibration of gamma-ray spectrometry systems in the metallurgical sector, were characterised using a European interlaboratory comparison among twelve National Metrology Institutes and one international organisation. The first standard, consisting of 14 disc shaped samples, was cast from steel contaminated during production ("originally"), and the second, consisting of 15 similar discs, from artificially-contaminated ("spiked") steel. The reference activity concentrations of (60)Co in the cast steel standards were (1.077±0.019) Bqg(-1) on 1 January 2013 12h00 UT and (1.483±0.022) Bqg(-1) on 1 June 2013 12h00 UT, respectively.

  14. High-Resolution Hard X-Ray and Gamma-Ray Spectrometers Based on Superconducting Absorbers Coupled to Superconducting Transition Edge Sensors

    SciTech Connect

    van den Berg, M.; Chow, D.; Loshak, A.; Cunningham, M.F.; Barbee, T.W.; Matthias, F.; Labov, S.E.

    2000-09-21

    We are developing detectors based on bulk superconducting absorbers coupled to superconducting transition edge sensors (TES) for high-resolution spectroscopy of hard X-rays and soft gamma-rays. We have achieved an energy resolution of 70 eV FWHM at 60 keV using a 1 x 1 x 0.25 mm{sup 3} Sn absorber coupled to a Mo/Cu multilayer TES with a transition temperature of 100 mK. The response of the detector is compared with a simple model using only material properties data and characteristics derived from IV-measurements. We have also manufactured detectors using superconducting absorbers with a higher stopping power, such as Pb and Ta. We present our first measurements of these detectors, including the thermalization characteristics of the bulk superconducting absorbers. The differences in performance between the detectors are discussed and an outline of the future direction of our detector development efforts is given.

  15. The Spectrometer

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2012-03-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating ), and I began to realize that inside was some familiar old technology. In this paper I would like to discuss its ancestors.

  16. The Spectrometer

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  17. Purification of binding protein for Tityus gamma toxin identified with the gating component of the voltage-sensitive Na+ channel.

    PubMed Central

    Norman, R I; Schmid, A; Lombet, A; Barhanin, J; Lazdunski, M

    1983-01-01

    The gating component associated with the voltage-sensitive Na+ channel from electroplax membranes of Electrophorus electricus has been purified by using toxin gamma from the venom of the scorpion Tityus serrulatus serrulatus. The toxin-binding site was efficiently solubilized with Lubrol PX, resulting in an extract of high initial specific activity. Purification was achieved by adsorption of the toxin-binding component to DEAE-Sephadex A-25 followed by desorption at high ionic strength and chromatography on either wheat germ agglutinin-Ultrogel or Sepharose 6B. Maximal final specific activities were at least 42% of the specific activity expected for a pure toxin-binding component. The purified material exhibited a Stokes radius of 85 A, and sodium dodecyl sulfate/polyacrylamide gel electrophoresis demonstrated a single polypeptide component of Mr 270,000. Furthermore, tetrodotoxin binding activity and Tityus gamma toxin binding activity copurified, suggesting that the selectivity filter and the gating component of the Na+ channel are carried by the same polypeptide chain. Images PMID:6306665

  18. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography - photodiode array - electrospray ionisation mass spectrometer.

    PubMed

    Han, Jing; Wanrooij, Jantien; van Bommel, Maarten; Quye, Anita

    2017-01-06

    This research makes the first attempt to apply Ultra High Performance Liquid Chromatography (UHPLC) coupled to both Photodiode Array detection (PDA) and Electrospray Ionisation Mass Spectrometer (ESI-MS) to the chemical characterisation of common textile dyes in ancient China. Three different extraction methods, respectively involving dimethyl sulfoxide (DMSO)-oxalic acid, DMSO and hydrochloric acid, are unprecedentedly applied together to achieve an in-depth understanding of the chemical composition of these dyes. The first LC-PDA-MS database of the chemical composition of common dyes in ancient China has been established. The phenomena of esterification and isomerisation of the dye constituents of gallnut, gardenia and saffron, and the dye composition of acorn cup dyed silk are clarified for the first time. 6-Hydroxyrubiadin and its glycosides are first reported on a dyed sample with Rubia cordifolia from China. UHPLC-PDA-ESI-MS with a C18 BEH shield column shows significant advantages in the separation and identification of similar dye constituents, particularly in the cases of analysing pagoda bud and turmeric dyed sample extracts.

  19. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  20. Mathematical methods of spectrometer resolution improvements

    SciTech Connect

    Chepurnov, A.S.; Efimkin, N.G.; Rodionov, D.A.

    1993-12-31

    The highly desired property of the nuclear spectrometer is the monochromativity. This property is very often restricted by the line width achievable for the detector and by the competing effects such as radiation rescattering. These restrictions make the data interpretation difficult. The idea of spectrum reconstruction from instrumentally obtained data by means of mathematical procedures is not new. In this report, we demonstrate the application of the method for the energy resolution improvement of a germanium-lithium gamma spectrometer.

  1. ProbIDtree: an automated software program capable of identifying multiple peptides from a single collision-induced dissociation spectrum collected by a tandem mass spectrometer.

    PubMed

    Zhang, Ning; Li, Xiao-jun; Ye, Mingliang; Pan, Sheng; Schwikowski, Benno; Aebersold, Ruedi

    2005-11-01

    In MS/MS experiments with automated precursor ion, selection only a fraction of sequencing attempts lead to the successful identification of a peptide. A number of reasons may contribute to this situation. They include poor fragmentation of the selected precursor ion, the presence of modified residues in the peptide, mismatches with sequence databases, and frequently, the concurrent fragmentation of multiple precursors in the same CID attempt. Current database search engines are incapable of correctly assigning the sequences of multiple precursors to such spectra. We have developed a search engine, ProbIDtree, which can identify multiple peptides from a CID spectrum generated by the concurrent fragmentation of multiple precursor ions. This is achieved by iterative database searching in which the submitted spectra are generated by subtracting the fragment ions assigned to a tentatively matched peptide from the acquired spectrum and in which each match is assigned a tentative probability score. Tentatively matched peptides are organized in a tree structure from which their adjusted probability scores are calculated and used to determine the correct identifications. The results using MALDI-TOF-TOF MS/MS data demonstrate that multiple peptides can be effectively identified simultaneously with high confidence using ProbIDtree.

  2. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    SciTech Connect

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  3. A cadmium-zinc-telluride crystal array spectrometer

    SciTech Connect

    H. R. McHugh; W. Quam; T. DeVore; R. Vogle; J. Weslowski

    2003-09-01

    This paper describes a gamma detector employing an array of eight cadmium-zinc-telluride (CZT) crystals configured as a high resolution gamma ray spectrometer. This detector is part of a more complex instrument that identifies the isotope,displays this information, and records the gamma spectrum. Various alarms and other operator features are incorporated in this battery operated rugged instrument. The CZT detector is the key component of this instrument and will be described in detail in this paper. We have made extensive spectral measurements of the usual laboratory gamma sources, common medical isotopes, and various Special Nuclear Materials (SNM) with this detector. Some of these data will be presented as spectra. We will also present energy resolution and detection efficiency for the basic 8-crystal array. Additional data will also be presented for a 32-crystal array. The basic 8-crystal array development was completed two years ago, and the system electronic design has been imp roved recently. This has resulted in significantly improved noise performance. We expect to have a much smaller detector package, using 8 crystals, in a few months. This package will use flip-chip packaging to reduce the electronics physical size by a factor of 5.

  4. First Results from GRETINA at the S800 Spectrometer

    NASA Astrophysics Data System (ADS)

    Crawford, Heather

    2013-04-01

    The next-generation gamma-ray tracking array GRETINA has begun its first physics campaign at the National Superconducting Cyclotron Laboratory (NSCL). GRETINA, a first implementation of the future 4π GRETA device, consists of 28 highly segmented Ge detectors, covering 1π of the solid angle. The array makes use of the concepts of signal decomposition to localize the interaction of gamma-rays within the detector volumes, and gamma-ray tracking to identify the first hit position within the array. Combined, these techniques provide both an accurate position (within 2mm) for Doppler reconstruction, and rejection of Compton scattering events to reduce background and improve spectral quality. Completed in March 2011, GRETINA was successfully built and commissioned at LBNL, before moving to NSCL in the Spring of 2012. A physics campaign encompassing a wide range of topics in nuclear structure, nuclear reactions and astrophysics is currently underway at NSCL, using GRETINA coupled to the S800 spectrograph. The combination of these powerful devices, a cutting-edge gamma-ray spectrometer and a high-resolution, large acceptance spectrograph, allows spectroscopic studies of the most exotic nuclear systems, moving toward both the proton and neutron driplines. We will report on first results from the campaign of GRETINA at the S800, and present preliminary data from experiments studying nuclei across the chart of the nuclides.

  5. Gas Chromatic Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Wey, Chowen

    1995-01-01

    Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.

  6. Particle Spectrometers for FRIB

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.

    2014-09-01

    FRIB promises to dramatically expand the variety of nuclear systems available for direct experimental study by providing rates of many rare isotopes orders of magnitude higher than those currently available. A new generation of experimental systems, including new particle spectrometers will be critical to our ability to take full advantage of the scientific opportunities offered by FRIB. The High-Rigidity Spectrometer (HRS) will allow for experiments with the most neutron-rich and short-lived isotopes produced by in-flight fragmentation at FRIB. The bending capability of the HRS (8 Tm) matches to the rigidity for which rare isotopes are produced at the highest intensity in the FRIB fragment separator. The experimental program will be focused on nuclear structure and astrophysics, and allow for the use of other cutting-edge detection systems for gamma, neutron, and charged-particle detection. Stopped and reaccelerated beam studies will be an important compliment to in-flight techniques at FRIB, providing world-unique, high quality, intense rare isotope beams at low energies up to and beyond the Coulomb barrier--with the completion of ReA12--and serving many of the science goals of the broader facility, from nuclear structure and astrophysics to applications. Two specialized recoil spectrometers are being developed for studies with reaccelerated beams. SECAR, the Separator for Capture Reactions, will be built following ReA3, coupled to a windowless gas jet target, JENSA, and will focus on radiative capture reactions for astrophysics, particularly those needed to improve our understanding of novae and X-ray bursts. A recoil separator following ReA12 is proposed to address a variety of physics cases based on fusion-evaporation, Coulomb excitation, transfer, and deep-inelastic reactions by providing a large angular, momentum and charge state acceptance; a high mass resolving power; and the flexibility to couple to a variety of auxiliary detector systems. Two designs

  7. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  8. Immune reactivity against a novel HLA-A3-restricted influenza virus peptide identified by predictive algorithms and interferon-gamma quantitative PCR.

    PubMed

    Trojan, Andreas; Urosevic, Mirjana; Hummerjohann, Jörg; Giger, Robin; Schanz, Urs; Stahel, Rolf A

    2003-01-01

    The use of appropriate antigenic peptides for the most common human major histocompatibility complex (MHC) alleles is required for the amplification of the autologous cytotoxic compartment and the development of cytotoxic T cell-mediated immunity. The human A2 allele of the MHC plays an important role for the identification of peptide-specific cytotoxic T cells (CTL) against tumor and viral epitopes. Computer-based prediction algorithms, which are available on the Internet, have already proved to be applicable for the identification of novel CTL epitopes. Using the bioinformatics approach, the authors have identified the novel influenza matrix protein-derived and HLA-A3-restricted 9-mer peptide RLEDVFAGK capable of inducing peptide specific CTL reactivity. Peripheral blood mononuclear cells (PBMC) from healthy individuals and patients with lung cancer were pulsed with this peptide and with the well-characterized HLA-A2-restricted influenza A virus matrix peptide GILGFVFTL. Using quantitative PCR (TaqMan; Applied Biosystems, Foster City, CA, U.S.A), reactivity for both peptides was determined by measuring the change in type 1 cytokine (IFN-gamma) expression upon in vitro stimulation. Peptide-specific reactivity matched well with the subsequently determined MHC-class I alleles of the tested individuals. Results from this study indicate that the use of bioinformatics and the PCR-based screening system for the monitoring of T cell reactivity may allow for the identification of novel CTL epitopes.

  9. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  10. Nuclear structure analysis using the Orange Spectrometer

    SciTech Connect

    Regis, J.-M.; Pascovici, Gh.; Christen, S.; Meersschout, T.; Bernards, C.; Fransen, Ch.; Dewald, A.; Braun, N.; Heinze, S.; Thiel, S.; Jolie, J.; Materna, Th.

    2009-01-28

    Recently, an Orange spectrometer, a focusing iron-free magnetic spectrometer, has been installed at a beam line of the 10 MV Tandem accelerator of the IKP of the University of Cologne. The high efficiency of 15% of 4{pi} for the detection of conversion electrons and the energy resolution of 1% makes the Orange spectrometer a powerful instrument. From the conversion electron spectrum, transition multipolarities can be determined using the so called K to L ratio. In combination with an array of germanium and lanthanum bromide detectors, e{sup -}-{gamma}-coincidences can be performed to investigate the level scheme. Moreover, the very fast lanthanum bromide scintillator with an energy resolution of 3% allows e{sup -}-{gamma} lifetime measurements down to 0.3 ns. A second Orange spectrometer can be added to build the Double Orange Spectrometer for e{sup -}-e{sup -}-coincidences. It is indispensable for lifetime measurements of low intensity or nearby lying transitions as often occur in odd-A and odd-odd nuclei. The capabilities are illustrated with several examples.

  11. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  12. Functional genomics analysis of big data identifies novel peroxisome proliferator–activated receptor gamma target single nucleotide polymorphisms showing association with cardiometabolic outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Cardiovascular disease and type 2 diabetes mellitus represent overlapping diseases where a large portion of the variation attributable to genetics remains unexplained. An important player in their pathogenesis is peroxisome proliferator–activated receptor gamma (PPARgamma) that is involve...

  13. A new measurement of the rare decay eta -> pi^0 gamma gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron

    SciTech Connect

    Nefkens, B M; Prakhov, S; Aguar-Bartolom��, P; Annand, J R; Arends, H J; Bantawa, K; Beck, R; Bekrenev, V; Bergh��user, H; Braghieri, A; Briscoe, W J; Brudvik, J; Cherepnya, S; Codling, R F; Collicott, C; Costanza, S; Danilkin, I V; Denig, A; Demissie, B; Dieterle, M; Downie, E J; Drexler, P; Fil'kov, L V; Fix, A; Garni, S; Glazier, D I; Gregor, R; Hamilton, D; Heid, E; Hornidge, D; Howdle, D; Jahn, O; Jude, T C; Kashevarov, V L; K��ser, A; Keshelashvili, I; Kondratiev, R; Korolija, M; Kotulla, M; Koulbardis, A; Kruglov, S; Krusche, B; Lisin, V; Livingston, K; MacGregor, I J; Maghrbi, Y; Mancel, J; Manley, D M; McNicoll, E F; Mekterovic, D; Metag, V; Mushkarenkov, A; Nikolaev, A; Novotny, R; Oberle, M; Ortega, H; Ostrick, M; Ott, P; Otte, P B; Oussena, B; Pedroni, P; Polonski, A; Robinson, J; Rosner, G; Rostomyan, T; Schumann, S; Sikora, M H; Starostin, A; Strakovsky, I I; Strub, T; Suarez, I M; Supek, I; Tarbert, C M; Thiel, M; Thomas, A; Unverzagt, M; Watts, D P; Werthmueller, D; Witthauer, L

    2014-08-01

    A new measurement of the rare, doubly radiative decay eta->pi^0 gamma gamma was conducted with the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. New data on the dependence of the partial decay width, Gamma(eta->pi^0 gamma gamma), on the two-photon invariant mass squared, m^2(gamma gamma), as well as a new, more precise value for the decay width, Gamma(eta->pi^0 gamma gamma) = (0.33+/-0.03_tot) eV, are based on analysis of 1.2 x 10^3 eta->pi^0 gamma gamma decays from a total of 6 x 10^7 eta mesons produced in the gamma p -> eta p reaction. The present results for dGamma(eta->pi^0 gamma gamma)/dm^2(gamma gamma) are in good agreement with previous measurements and recent theoretical calculations for this dependence.

  14. On-chip random spectrometer

    NASA Astrophysics Data System (ADS)

    Redding, B.; Liew, S. F.; Sarma, R.; Cao, H.

    2014-05-01

    Spectrometers are widely used tools in chemical and biological sensing, material analysis, and light source characterization. The development of a high-resolution on-chip spectrometer could enable compact, low-cost spectroscopy for portable sensing as well as increasing lab-on-a-chip functionality. However, the spectral resolution of traditional grating-based spectrometers scales with the optical pathlength, which translates to the linear dimension or footprint of the system, which is limited on-chip. In this work, we utilize multiple scattering in a random photonic structure fabricated on a silicon chip to fold the optical path, making the effective pathlength much longer than the linear dimension of the system and enabling high spectral resolution with a small footprint. Of course, the random spectrometer also requires a different operating paradigm, since different wavelengths are not spatially separated by the random structure, as they would be by a grating. Instead, light transmitted through the random structure produces a wavelengthdependent speckle pattern which can be used as a fingerprint to identify the input spectra after calibration. In practice, these wavelength-dependent speckle patterns are experimentally measured and stored in a transmission matrix, which describes the spectral-to-spatial mapping of the spectrometer. After calibrating the transmission matrix, an arbitrary input spectrum can be reconstructed from its speckle pattern. We achieved sub-nm resolution with 25 nm bandwidth at a wavelength of 1500 nm using a scattering medium with largest dimension of merely 50 μm.

  15. Gamma II

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, M.; Cline, J.; Owen, L.; Boehme, J.; Rottler, L.; Whitworth, C.; Clavier, D.

    2011-05-01

    GAMMA II is the Guide Star Automatic Measuring MAchine relocated from STScI to the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). GAMMA II is a multi-channel laser-scanning microdensitometer that was used to measure POSS and SERC plates to create the Guide Star Catalog and the Digital Sky Survey. The microdensitometer is designed with submicron accuracy in x and y measurements using a HP 5507 laser interferometer, 15 micron sampling, and the capability to measure plates as large as 0.5-m across. GAMMA II is a vital instrument for the success of digitizing the direct, objective prism, and spectra photographic plate collections in APDA for research. We plan several targeted projects. One is a collaboration with Drs. P.D. Hemenway and R. L. Duncombe who plan to scan 1000 plates of 34 minor planets to identify systematic errors in the Fundamental System of celestial coordinates. Another is a collaboration with Dr. R. Hudec (Astronomical Institute, Academy of Sciences of the Czech Republic) who is working within the Gaia Variability Unit CU7 to digitize objective prism spectra on the Henize plates and Burrell-Schmidt plates located in APDA. These low dispersion spectral plates provide optical counterparts of celestial high-energy sources and cataclysmic variables enabling the simulation of Gaia BP/RP outputs. The astronomical community is invited to explore the more than 140,000 plates from 20 observatories now archived in APDA, and use GAMMA II. The process of relocating GAMMA to APDA, re-commissioning, and starting up the production scan programs will be described. Also, we will present planned research and future upgrades to GAMMA II.

  16. Detailed Spectroscopy of 46Ca with the GRIFFIN Spectrometer

    NASA Astrophysics Data System (ADS)

    Pore, Jennifer; Griffin Collaboration Collaboration

    2016-09-01

    The neutron-rich calcium isotopes are currently a new frontier for modern ab-initio calculations based on NN and 3N forces. Detailed experimental data from these nuclei is necessary for a comprehensive understanding of the region. Many excited states in 46Ca have been previously identified by various reaction mechanisms, most notably from (p ,p') and (p , t) reactions, but many spins are only tentatively assigned or not measured and very few gamma-ray transitions have been placed in the level scheme. A high-statistics data set of the 46K decay into low-lying levels of 46Ca was taken with the new GRIFFIN spectrometer located at TRIUMF-ISAC. The level scheme of 46Ca has been greatly expanded to include 160 new gamma-ray transitions and 12 new excited states. Angular correlations between cascading gamma rays have been investigated to obtain information about the spins of the excited states. An overview of the experiment and a discussion of the results will be presented.

  17. Gamma watermarking

    SciTech Connect

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  18. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  19. Mass Spectrometer for Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  20. Performance of an INTEGRAL spectrometer model

    NASA Technical Reports Server (NTRS)

    Jean, P.; Naya, J. E.; vonBallmoos, P.; Vedrenne, G.; Teegarden, B.

    1997-01-01

    Model calculations for the INTEGRAL spectrometer (SPI) onboard the future INTErnational Gamma Ray Astrophysics Laboratory (INTEGAL) are presented, where the sensitivity for narrow lines is based on estimates of the background level and the detection efficiency. The instrumental background rates are explained as the sum of various components that depend on the cosmic ray intensity and the spectrometer characteristics, such as the mass distribution around the Ge detectors, the passive material, the characteristics of the detector system and the background reduction techniques. Extended background calculations were performed with Monte Carlo simulations and using semi-empirical and calculated neutron and proton cross sections. In order to improve the INTEGRAL spectrometer sensitivity, several designs and background reduction techniques were compared for an instrument with a fixed detector volume.

  1. Digital Signal Processing in the GRETINA Spectrometer

    NASA Astrophysics Data System (ADS)

    Cromaz, Mario

    2015-10-01

    Developments in the segmentation of large-volume HPGe crystals has enabled the development of high-efficiency gamma-ray spectrometers which have the ability to track the path of gamma-rays scattering through the detector volume. This technology has been successfully implemented in the GRETINA spectrometer whose high efficiency and ability to perform precise event-by-event Doppler correction has made it an important tool in nuclear spectroscopy. Tracking has required the spectrometer to employ a fully digital signal processing chain. Each of the systems 1120 channels are digitized by 100 Mhz, 14-bit flash ADCs. Filters that provide timing and high-resolution energies are implemented on local FPGAs acting on the ADC data streams while interaction point locations and tracks, derived from the trace on each detector segment, are calculated in real time on a computing cluster. In this presentation we will give a description of GRETINA's digital signal processing system, the impact of design decisions on system performance, and a discussion of possible future directions as we look towards soon developing larger spectrometers such as GRETA with full 4 π solid angle coverage. This work was supported by the Office of Science in the Department of Energy under grant DE-AC02-05CH11231.

  2. The compact neutron spectrometer at ASDEX Upgrade

    SciTech Connect

    Giacomelli, L.; Zimbal, A.; Tittelmeier, K.; Schuhmacher, H.; Tardini, G.; Neu, R.; Collaboration: ASDEX Upgrade Team

    2011-12-15

    The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and {gamma} radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) system capable of count rates up to 10{sup 6} s{sup -1}. The DPSD system can operate in acquisition and processing mode. With the latter n-{gamma} discrimination is performed off-line based on the two-gate method. The paper describes the tests of the CNS and its installation at AUG. The neutron emission from the D plasma measured during a discharge with high auxiliary heating power was used to validate the CNS performance. The study of the optimal settings for the DPSD data processing to maximize the n-{gamma} discrimination capability of the CNS is reported. The CNS measured both 2.45-MeV and 14-MeV neutrons emitted in AUG D plasmas with a maximum count rate of 5.4 x10{sup 5} s{sup -1} (>10 times higher than similar spectrometers previously achieved) with an efficiency of 9.3 x 10{sup -10} events per AUG neutron.

  3. Search on extraterrestrial gamma-ray lines from Southern Hemisphere sources with high energy resolution gamma-ray telescopes

    NASA Astrophysics Data System (ADS)

    Dacosta, J. M.; Jardim, J. O. D.; Gonzalez-Blanco, F.; Nordemann, D. J. R.; Martin, I. M.; Dutra, S. L. G.; Albernhe, F.; Vedrenne, G.; Boclet, D.; Durouchoux, P.

    1981-07-01

    The scope of the GEL 1 and 2 balloon-borne gamma ray telescope experiments is described. The gamma ray spectrometer to be used on GEL 1 is described. It is designed to study the nature of the Galactic center positron annihilation 511 KeV line. The telescope effect is achieved through the aperture angle formed by the gamma ray spectrometer anticoincidence crystals. The balloon gondola and onboard instrumentation of the balloon are described.

  4. Implementation of gamma-ray instrumentation for solid solar system bodies using neutron activation method

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Golovin, D. V.; Jun, I.; Kozyrev, A. S.; Mitrofanov, I. G.; Sanin, A. B.; Shvetsov, V. N.; Timoshenko, G. N.; Zontikov, A.

    2016-06-01

    In this paper we present the results of ground tests performed with a flight model and with industry prototypes of passive and active gamma ray spectrometers with the objective of understanding their capability to distinguish the elemental composition of planetary bodies in the solar system. The gamma instrumentation, which was developed for future space missions was used in the measurements at a special ground test facility where a simulant of planetary material was fabricated with a martian-like composition. In this study, a special attention was paid to the gamma lines from activation reaction products generated by a pulsed neutron generator. The instrumentation was able to detect and identify gamma lines attributed to O, Na, Mg, Al, Si, K, Ca and Fe.

  5. Gamma Ray Spectrum Catalogs from Idaho National Laboratory (INL)

    DOE Data Explorer

    Heath, R. L.

    Gamma-ray spectrometry is widely applied as a tool for the assay of radioactive source material to identify the isotopes present and characterize radiation fields. Beginning with the startup of the world's first high-flux beam reactor, Materials Test Reactor (MTR), INL has pioneered the development of x-ray spectrometry for use in basic nuclear research and a variety of disciplines using radioisotopes and other radiation sources. Beginning in the early 1950s, a program was instituted to make the technique a precise laboratory tool. Standards were established for detectors and nuclear electronics to promote the production of commercial laboratory spectrometers. It was also necessary to produce a comprehensive collection of standard detector response functions for individual radio nuclides to permit the use of gamma-ray spectrometers for identification of radioisotopes present in radiation sources. This led to the publication of standard measurement methodology and a set of Gamma-Ray Spectrum Catalogues. These publications, which established standards for detector systems, experimental methods and reference spectra for both NaI (Tl) scintillation detectors and Ge(Li) - Si( Li) semiconductor devices, became standard reference works, distributed worldwide. Over 40,000 copies have been distributed by the Office of Science and Technical Information (OSTI). Unfortunately, although they are still very much in demand, they are all out of print at this time. The INL is converting this large volume of data to a format which is consistent with current information technology and meets the needs of the scientific community. Three are available online with the longest being more than 800 pages in length. Plotted spectra and decay data have been converted to digital formats and updated, including decay scheme graphics. These online catalogs are: • Ge(Li)-Si(Li) Gamma Spectrum Catalog (Published 3-29-1999) • NaI(Tl) Gamma Spectrum Catalog (Published 4-1-1997) • Gamma

  6. The Oriented Scintillation Spectrometer Experiment - Instrument description

    NASA Technical Reports Server (NTRS)

    Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Purcell, W. R.; Grabelsky, D. A.; Ulmer, M. P.; Hillis, D. A.; Jung, G. V.; Cameron, R. A.

    1993-01-01

    The Oriented Scintillation Spectrometer Experiment on the Arthur Holly Compton Gamma Ray Observatory satellite uses four actively shielded NaI (Tl)-CsI(Na) phoswich detectors to provide gamma-ray line and continuum detection capability in the 0.05-10 MeV energy range. The instrument includes secondary capabilities for gamma-ray and neutron detection between 10 and 250 MeV. The detectors have 3.8 deg x 11.04 deg (FWHM) fields of view defined by tungsten collimators. Each detector has an independent, single-axis orientation system which permits offset pointing from the spacecraft Z-axis for background measurements and multitarget observations. The instrument, and its calibration and performance, are described.

  7. The Oriented Scintillation Spectrometer Experiment - Instrument description

    NASA Astrophysics Data System (ADS)

    Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Purcell, W. R.; Grabelsky, D. A.; Ulmer, M. P.; Hillis, D. A.; Jung, G. V.; Cameron, R. A.

    1993-06-01

    The Oriented Scintillation Spectrometer Experiment on the Arthur Holly Compton Gamma Ray Observatory satellite uses four actively shielded NaI (Tl)-CsI(Na) phoswich detectors to provide gamma-ray line and continuum detection capability in the 0.05-10 MeV energy range. The instrument includes secondary capabilities for gamma-ray and neutron detection between 10 and 250 MeV. The detectors have 3.8 deg x 11.04 deg (FWHM) fields of view defined by tungsten collimators. Each detector has an independent, single-axis orientation system which permits offset pointing from the spacecraft Z-axis for background measurements and multitarget observations. The instrument, and its calibration and performance, are described.

  8. Development of a gamma ray spectroscopy capability at LANSCE

    SciTech Connect

    Nelson, R.O.; Strottman, D.D.; Sterbenz, S.M.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to explore an upgrade to the GEANIE high-resolution gamma-ray spectrometer at the Los Alamos Neutron Science Center (LANSCE) to help build additional experimental capabilities. The improvements identified have significantly added to the capabilities of GEANIE and made the facility more attractive for studies supporting the core national security mission as well as for use by outside collaborators. These benefits apply to both basic and applied studies.

  9. TOWARD IDENTIFYING THE UNASSOCIATED GAMMA-RAY SOURCE 1FGL J1311.7-3429 WITH X-RAY AND OPTICAL OBSERVATIONS

    SciTech Connect

    Kataoka, J.; Takahashi, Y.; Maeda, K.; Yatsu, Y.; Kawai, N.; Urata, Y.; Tsai, A.; Cheung, C. C.; Totani, T.; Makiya, R.; Hanayama, H.; Miyaji, T.

    2012-10-01

    We present deep optical and X-ray follow-up observations of the bright unassociated Fermi-LAT gamma-ray source 1FGL J1311.7-3429. The source was already known as an unidentified EGRET source (3EG J1314-3431, EGR J1314-3417), hence its nature has remained uncertain for the past two decades. For the putative counterpart, we detected a quasi-sinusoidal optical modulation of {Delta}m {approx} 2 mag with a period of {approx_equal}1.5 hr in the Rc, r', and g' bands. Moreover, we found that the amplitude of the modulation and peak intensity changed by {approx}>1 mag and {approx}0.5 mag, respectively, over our total six nights of observations from 2012 March to May. Combined with Swift UVOT data, the optical-UV spectrum is consistent with a blackbody temperature, kT {approx_equal} 1 eV and the emission volume radius R{sub bb} {approx_equal} 1.5 Multiplication-Sign 10{sup 4} d{sub kpc} km (d{sub kpc} is the distance to the source in units of 1 kpc). In contrast, deep Suzaku observations conducted in 2009 and 2011 revealed strong X-ray flares with a light curve characterized with a power spectrum density of P(f) {proportional_to} f {sup -2.0{+-}0.4}, but the folded X-ray light curves suggest an orbital modulation also in X-rays. Together with the non-detection of a radio counterpart, and significant curved spectrum and non-detection of variability in gamma-rays, the source may be the second 'radio-quiet' gamma-ray emitting millisecond pulsar candidate after 1FGL J2339.7-0531, although the origin of flaring X-ray and optical variability remains an open question.

  10. Gamma rays emitted in the decay of 31-year 178m2Hf

    SciTech Connect

    MB, S; PW, W; GC, B; JJ, C; PE, G; G, H; R, P; F, S; HC, S

    2003-10-15

    The spontaneous decay of the K{sup {pi}} = 16{sup +}, 31-year {sup 178m2}Hf isomer has been investigated with a 15 kBq source placed at the center of a 20-element {gamma}-ray spectrometer. High-multipolarity M4 and E5 transitions, which represent the first definitive observation of direct {gamma}-ray emission from the isomer, have been identified, together with other low-intensity transitions. Branching ratios for these other transitions have elucidated the spin dependence of the mixing between the two known K{sup {pi}} = 8{sup -} bands. The M4 and E5 {gamma}-ray decays are the first strongly K-forbidden transitions to be identified with such high multipolarities, and demonstrate a consistent extension of K-hindrance systematics, with an inhibition factor of approximately 100 per degree of K forbiddenness. Some unplaced transitions are also reported.

  11. Lunar Elemental Abundances from Gamma-Ray and Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Vaniman, D. T.

    1999-01-01

    The determination of elemental abundances is one of the highest science objectives of most lunar missions. Such multi-element abundances, ratios, or maps should include results for elements that are diagnostic or important in lunar processes, including heat-producing elements (such as K and Th), important incompatible elements (Th and rare earth elements), H (for polar deposits and regolith maturity), and key variable elements in major lunar provinces (such as Fe and Ti in the maria). Both neutron and gamma-ray spectroscopy can be used to infer elemental abundances; the two complement each other. These elemental abundances need to be determined with high accuracy and precision from measurements such as those made by the gamma-ray spectrometer (GRS) and neutron spectrometers (NS) on Lunar Prospector. As presented here, a series of steps, computer codes, and nuclear databases are needed to properly convert the raw gamma-ray and neutron measurements into good elemental abundances, ratios, and/or maps. Lunar Prospector (LP) is the first planetary mission that has measured neutrons escaping from a planet other than the Earth. The neutron spectrometers on Lunar Prospector measured a wide range of neutron energies. The ability to measure neutrons with thermal (E < 0.1 eV), epithermal (E about equal 0.1 - 1000 eV), and fast (E about 0.1-10 MeV) energies maximizes the scientific return, being especially sensitive to both H (using epithermal neutrons) and thermal-neutron-absorbing elements. Neutrons are made in the lunar surface by the interaction of galactic-cosmic-ray (GCR) particles with the atomic nuclei in the surface. Most neutrons are produced with energies above about 0.1 MeV. The flux of fast neutrons in and escaping from the Moon depends on es the intensity of the cosmic rays (which vary with solar activity) and the elemental composition of the surface. Variations in the elemental composition of the lunar surface can affect the flux of fast neutrons by about 25

  12. A Simple Raman Spectrometer.

    ERIC Educational Resources Information Center

    Blond, J. P.; Boggett, D. M.

    1980-01-01

    Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)

  13. Composite Spectrometer Prisms

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Rodgers, J. M.

    1985-01-01

    Efficient linear dispersive element for spectrometer instruments achieved using several different glasses in multiple-element prism. Good results obtained in both two-and three-element prisms using variety of different glass materials.

  14. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  15. Lunar Prospector neutron spectrometer constraints on TiO2

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Lawrence, D. J.; Feldman, W. C.; Barraclough, B. L.; Gasnault, O. M.; Maurice, S.; Lucey, P. G.; Blewett, D. T.; Binder, A. B.

    2002-04-01

    Lunar Prospector neutron spectrometer measurements of the epithermal and thermal neutron leakage fluxes are used to provide constraints on TiO2 abundances in lunar surface materials. We use FeO abundance estimates based on both Clementine spectral reflectance techniques and preliminary Lunar Prospector gamma ray spectrometer determinations to first establish a model thermal neutron absorption due to all major elements except titanium. Then we remove the additional absorbing effects due to the rare earth elements gadolinium and samarium by using Lunar Prospector gamma ray spectrometer thorium abundances as a rare earth element proxy. The result can be compared to the ratio of epithermal to thermal neutron fluxes, which point to the presence of the additional thermal neutron absorber, titanium. We can derive abundance estimates of TiO2 and compare to other estimates derived spectroscopically. Our results show a significantly lower abundance of TiO2 than has been derived using Clementine data.

  16. High-energy emission in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Share, G. H.; Rieger, E.

    1985-01-01

    Between February 1980 and August 1983 the Gamma-Ray Spectrometer on the Solar Maximum Mission Satellite (SMM) detected 72 events identified as being of cosmic origin. These events are an essentially unbiased subset of all gamma-ray bursts. The measured spectra of these events show that high energy (greater than 1 MeV) emission is a common and energetically important feature. There is no evidence for a general high-energy cut-off or a distribution of cut-offs below about 6 MeV. These observations imply a limit on the preferential beaming of high energy emission. This constraint, combined with the assumption of isotropic low energy emission, implies that the typical magnetic field strength at burst radiation sites is less than 1 x 10 to the 12th gauss.

  17. Spectrometer technology recommendations

    NASA Technical Reports Server (NTRS)

    Wilson, William J.

    1988-01-01

    A typical heterodyne remote sensing system contains three major elements: the antenna, the radiometer, and the spectrometer. The radiometer consists of the local oscillator, the mixer, and the intermediate frequency amplifiers. This subsystem performs the function of down converting the high frequency incident thermal emission signal to a lower intermediate frequency. The spectrometer measures the power spectrum of the down-converted signal simultaneously in many contiguous frequency channels. Typical spectrum analysis requirements involve measurement of signal bandwidths of 100 to 1000 MHz with a channel resolution of 0.5 to 10 MHz. Three general approaches are used for spectrometers: (1) filter banks, (2) Acousto-Optic Spectrometers (AOS's), and (3) digital autocorrelators. In contrast to the two frequency domain techniques, an autocorrelator works in the time domain. The autocorrelation function (ACF) of the incoming signal is computed and averaged over the integration time. The averaged ACF is then Fourier transformed to obtain the signal power spectrum. Significant progress was made in the development of sub mm antennas and radiometers. It is now time to begin research in the development of low power spaceborne spectrometers and to reduce their size and weight. The near-term research goal will be to develop a prototype digital autocorrelation spectrometer, using VLSI gate array technology, which will have a small size, low power requirements, and can be used in spacecraft mm and sub mm radiometer systems. The long-range objective of this technology development is to make extremely low power, less than 10 mW/channel, small and stable wideband spectrometers which can be used in future mm and sub mm wavelength space missions such as the Large Deployable Reflector.

  18. Spectrometer technology recommendations

    NASA Astrophysics Data System (ADS)

    Wilson, William J.

    1988-08-01

    A typical heterodyne remote sensing system contains three major elements: the antenna, the radiometer, and the spectrometer. The radiometer consists of the local oscillator, the mixer, and the intermediate frequency amplifiers. This subsystem performs the function of down converting the high frequency incident thermal emission signal to a lower intermediate frequency. The spectrometer measures the power spectrum of the down-converted signal simultaneously in many contiguous frequency channels. Typical spectrum analysis requirements involve measurement of signal bandwidths of 100 to 1000 MHz with a channel resolution of 0.5 to 10 MHz. Three general approaches are used for spectrometers: (1) filter banks, (2) Acousto-Optic Spectrometers (AOS's), and (3) digital autocorrelators. In contrast to the two frequency domain techniques, an autocorrelator works in the time domain. The autocorrelation function (ACF) of the incoming signal is computed and averaged over the integration time. The averaged ACF is then Fourier transformed to obtain the signal power spectrum. Significant progress was made in the development of sub mm antennas and radiometers. It is now time to begin research in the development of low power spaceborne spectrometers and to reduce their size and weight. The near-term research goal will be to develop a prototype digital autocorrelation spectrometer, using VLSI gate array technology, which will have a small size, low power requirements, and can be used in spacecraft mm and sub mm radiometer systems. The long-range objective of this technology development is to make extremely low power, less than 10 mW/channel, small and stable wideband spectrometers which can be used in future mm and sub mm wavelength space missions such as the Large Deployable Reflector.

  19. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  20. Correlating Petrophysical Well Logs Using Fractal-based Analysis to Identify Changes in the Signal Complexity Across Neutron, Density, Dipole Sonic, and Gamma Ray Tool Types

    NASA Astrophysics Data System (ADS)

    Matthews, L.; Gurrola, H.

    2015-12-01

    Typical petrophysical well log correlation is accomplished by manual pattern recognition leading to subjective correlations. The change in character in a well log is dependent upon the change in the response of the tool to lithology. The petrophysical interpreter looks for a change in one log type that would correspond to the way a different tool responds to the same lithology. To develop an objective way to pick changes in well log characteristics, we adapt a method of first arrival picking used in seismic data to analyze changes in the character of well logs. We chose to use the fractal method developed by Boschetti et al[1] (1996). This method worked better than we expected and we found similar changes in the fractal dimension across very different tool types (sonic vs density vs gamma ray). We reason the fractal response of the log is not dependent on the physics of the tool response but rather the change in the complexity of the log data. When a formation changes physical character in time or space the recorded magnitude in tool data changes complexity at the same time even if the original tool response is very different. The relative complexity of the data regardless of the tool used is dependent upon the complexity of the medium relative to tool measurement. The relative complexity of the recorded magnitude data changes as a tool transitions from one character type to another. The character we are measuring is the roughness or complexity of the petrophysical curve. Our method provides a way to directly compare different log types based on a quantitative change in signal complexity. For example, using changes in data complexity allow us to correlate gamma ray suites with sonic logs within a well and then across to an adjacent well with similar signatures. Our method creates reliable and automatic correlations to be made in data sets beyond the reasonable cognitive limits of geoscientists in both speed and consistent pattern recognition. [1] Fabio Boschetti

  1. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    SciTech Connect

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  2. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    SciTech Connect

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time

  3. The High Rigidity Spectrometer for FRIB

    NASA Astrophysics Data System (ADS)

    Baumann, T.

    2016-06-01

    The High Rigidity Spectrometer (HRS) is being developed to make optimum use of the fast rare-isotope beams that will be available at the Facility for Rare-Isotope Beams (FRIB) and will be the key experimental tool to study the most exotic, neutron-rich nuclei. The HRS will accommodate detector systems for charged particles, neutrons, and gamma rays. This will enable coincidence measurements of reaction products that stem from a variety of reactions such as knockout, breakup, charge exchange or Coulomb excitation. First-order ion optical studies are under way and this paper will offer some details on the current design ideas.

  4. Gamma Knife

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? The Gamma Knife® and its associated ... in size. top of page How does the equipment work? The Gamma Knife® utilizes a technique called ...

  5. Gamma-ray burst and spectroscopy instrumentation development at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.

    1986-01-01

    This paper summarizes the activities that are specifically related to the development of instrumentation for gamma-ray astronomy. Three programs are described: (1) the Gamma-Ray Imaging Spectrometer (GRIS), a balloon-borne array of seven germanium detectors for high-resolution spectrographic studies of persistent gamma-ray sources; (2) the Transient Gamma-Ray Spectrometer (TGRS), a single radiatively-cooled germanium detector for the spectrographic study of gamma-ray bursts, and (3) the Rapidly Moving Telescope (RMT), a ground-based optical telescope for the detection and study of short-lived optical transients, particularly those that occur in coincidence with gamma-ray bursts.

  6. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  7. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  8. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  9. Comparison of imaging spectrometers

    SciTech Connect

    Bennett, C

    2000-01-09

    Realistic signal to noise performance estimates for the various types of instruments being considered for NGST are compared, based on the point source detection values quoted in the available ISIM final reports. The corresponding sensitivity of the various types of spectrometers operating in a full field imaging mode, for both emission line objects and broad spectral distribution objects, is computed and displayed. For the purpose of seeing the earliest galaxies, or the faintest possible emission line sources, the imaging Fourier transform spectrometer emerges superior to all others, by orders of magnitude in speed.

  10. Portable reflectance spectrometer

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Graham, R. A.; Ozawa, T. (Inventor)

    1977-01-01

    A portable reflectance spectrometer is disclosed. The spectrometer essentially includes an optical unit and an electronic recording unit. The optical unit includes a pair of thermoelectrically-cooled detectors, for detecting total radiance and selected radiance projected through a circular variable filter wheel, and is capable of operating to provide spectral data in the range 0.4 to 2.5 micrometers without requiring coventional substitution of filter elements. The electronic recording unit includes power supplies, amplifiers, and digital recording electronics designed to permit recordation of data on tape casettes. Both the optical unit and electronic recording unit are packaged to be manually portable.

  11. Miniaturised TOF mass spectrometer

    NASA Astrophysics Data System (ADS)

    Rohner, U.; Wurz, P.; Whitby, J.

    2003-04-01

    For the BepiColombo misson of ESA to Mercury, we built a prototype of a miniaturised Time of Flight mass spectrometer with a low mass and low power consumption. Particles will be set free form the surface and ionized by short laser pluses. The mass spectrometer is dedicated to measure the elemental and isotopic composition of almost all elements of Mercurys planetary surface with an adequate dynamique range, mass range and mass resolution. We will present first results of our prototype and future designs.

  12. The Polaris-H imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Wahl, Christopher G.; Kaye, Willy R.; Wang, Weiyi; Zhang, Feng; Jaworski, Jason M.; King, Alexis; Boucher, Y. Andy; He, Zhong

    2015-06-01

    Recently, H3D has designed and introduced a gamma-ray imaging spectrometer system named Polaris-H. Polaris-H was designed to perform gamma spectroscopy and imaging throughout nuclear power plants. It integrates a 3D-position-sensitive pixelated CZT detector (20 mm×20 mm×15 mm), associated readout electronics, an embedded computer, a 5-h battery, and an optical camera in a portable water-proof enclosure. The total mass is about 4 kg, and the system startup time is 2 min. Additionally, it has a connection for a tablet, which displays a gamma-ray spectrum and isotope-specific images of the gamma-ray distribution in all directions in real time. List-mode data is saved to an external USB memory stick. Based on pixelated depth-sensing technology, spectroscopy is routinely better than 1.1% FWHM at 662 keV, and imaging efficiency at 662 keV varies less than a factor of two for all directions, except through the battery. Measurements have been performed in contaminated environments, in high radiation fields, and in cramped quarters.

  13. Mass Spectrometers in Space!

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, William B.

    2012-01-01

    Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.

  14. Gamma-ray spectroscopy - Requirements and prospects

    NASA Technical Reports Server (NTRS)

    Matteson, James L.

    1991-01-01

    The only previous space instrument which had sufficient spectral resolution and directionality for the resolution of astrophysical sources was the Gamma-Ray Spectrometer carried by HEAO-3. A broad variety of astrophysical investigations entail gamma-ray spectroscopy of E/Delta-E resolving power of the order of 500 at 1 MeV; it is presently argued that a sensitivity to narrow gamma-ray lines of a few millionths ph/sq cm, from about 10 keV to about 10 MeV, should typify the gamma-ray spectrometers of prospective missions. This performance is achievable with technology currently under development, and could be applied to the NASA's planned Nuclear Astrophysics Explorer.

  15. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  16. Smartphone spectrometer for colorimetric biosensing.

    PubMed

    Wang, Yi; Liu, Xiaohu; Chen, Peng; Tran, Nhung Thi; Zhang, Jinling; Chia, Wei Sheng; Boujday, Souhir; Liedberg, Bo

    2016-05-23

    We report on a smartphone spectrometer for colorimetric biosensing applications. The spectrometer relies on a sample cell with an integrated grating substrate, and the smartphone's built-in light-emitting diode flash and camera. The feasibility of the smartphone spectrometer is demonstrated for detection of glucose and human cardiac troponin I, the latter in conjunction with peptide-functionalized gold nanoparticles.

  17. Portable instant display and analysis reflectance spectrometer

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H. (Inventor)

    1985-01-01

    A portable analysis spectrometer (10) for field mineral identification is coupled to a microprocessor (11) and memory (12) through a bus (13) and A/D converter (14) to display (16) a spectrum of reflected radiation in a band selected by an adjustable band spectrometer (20) and filter (23). A detector array (21) provides output signals at spaced frequencies within the selected spectrometer band which are simultaneously converted to digital form for display. The spectrum displayed is compared with a collection of spectra for known minerals. That collection is stored in memory and selectively displayed with the measured spectrum, or stored in a separate portfolio. In either case, visual comparison is made. Alternatively, the microprocessor may use an algorithm to make the comparisons in search for the best match of the measured spectrum with one of the stored spectra to identify the mineral in the target area.

  18. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  19. The ALPHA Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Viertel, G. M.; Capell, M.

    1998-12-01

    The ALPHA Magnetic Spectrometer (AMS) will be the first large magnetic spectrometer in space. It is scheduled to be installed on the future International Space Station ALPHA (ISSA) in the year 2002 to perform measurements of the charged particle composition to answer fundamental questions in particle physics and astrophysics. Before installation on ISSA, AMS will fly on the shuttle DISCOVERY for a period of 10 days starting in May 1998. This will enable AMS to perform a test of the apparatus and first measurements. The AMS detector has five major components: A permanent NdFeB magnet, six planes of Silicon double-sided microstrip detectors, a plastic scintillator time of flight hodoscope, a plastic scintillator anticoincidence counter and an Aerogel Cherenkov threshold counter. In addition, there are electronics, support infrastructure and interfaces.

  20. Surface Plasmon Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  1. Galileo Ultraviolet Spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  2. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  3. Demonstration AOTF Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey; Cheng, Li-Jen

    1993-01-01

    Spectral images of high quality obtained. Acousto-optical-tunable-filter (AOTF) imaging spectrometer is optical system in which AOTF serves as spectrally dispersive element causing image on final focal plane to be shifted on plane by distance depending on wavelength of light emanating from scene. Useful in several applications involving identification, via characteristic spectras, of substances in observed scenes: examples include prospecting for minerals and detecting chemical pollutants.

  4. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  5. Satellite observation of atmospheric nuclear gamma radiation.

    PubMed

    Letaw, J R; Share, G H; Kinzer, R L; Silberberg, R; Chupp, E L; Forrest, D J; Rieger, E

    1989-02-01

    We present a satellite observation of the spectrum of gamma radiation from the Earth's atmosphere in the energy interval from 300 keV to 8.5 MeV. The data were accumulated by the gamma ray spectrometer on the Solar Maximum Mission over 3 1/2 years, from 1980 to 1983. The excellent statistical accuracy of the data allows 20 atmospheric line features to be identified. The features are superimposed on a continuum background which is modeled using a power law with index -1.16. Many of these features contain a blend of more than one nuclear line. All of these lines (with the exception of the 511-keV annihilation line) are Doppler broadened. Line energies and intensities are consistent with production by secondary neutrons interacting with atmospheric 14N and 16O. Although we find no evidence for other production mechanisms, we cannot rule out significant contributions from direct excitation or spallation by primary cosmic ray protons. The relative intensities of the observed line features are in fair agreement with theoretical models; however, existing models are limited by the availability of neutron cross sections, especially at high energies. The intensity and spectrum of photons at energies below the 511-keV line, in excess of a power law continuum, can be explained by Compton scattering of the annihilation line photons in traversing an average of approximately 21 g cm-2 of atmosphere.

  6. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  7. Laser-Electron-Gamma-Source. Progress report, July 1986

    SciTech Connect

    Dowell, D.H.; Fineman, B.; Giordano, G.; Kistner, OC.; Matone, G.; Sandorfi, A.M.; Schaerf, C.; Thorn, C.E.; Ziegler, W.

    1986-07-01

    When completed, the Laser Electron Gamma Source (LEGS) is expected to provide intense beams of monochromatic and polarized (circular or linear) gamma rays with energies up to 500 MeV. The gamma-ray beams will be produced by Compton backscattering uv laser light from the electrons circulating in a storage ring. Progress with installation of the facility is described, particularly the Ar-ion laser and tagging spectrometer. Tests of the tagging spectrometer coponents is reported, and a second laser is described for higher energy operation. Estimates are given of expected beam parameters. Experimental equipment for the planned research projects to be carried out at the LEGS facility is discussed. (LEW)

  8. Report on First Activations with the Lead Slowing Down Spectrometer

    SciTech Connect

    Warren, Glen A.; Mace, Emily K.; Pratt, Sharon L.; Stave, Sean; Woodring, Mitchell L.

    2011-03-03

    On Feb. 17 and 18 2011, six items were irradiated with neutrons using the Lead Slowing Down Spectrometer. After irradiation, dose measurements and gamma-spectrometry measurements were completed on all of the samples. No contamination was found on the samples, and all but one provided no dose. Gamma-spectroscopy measurements qualitatively agreed with expectations based on the materials, with the exception of silver. We observed activation in the room in general, mostly due to 56Mn and 24Na. Most of the activation was short lived, with half-lives on the scale of hours, except for 198Au which has a half-life of 2.7 d.

  9. Hadron distributions at higher rapidity using the BRAHMS forward spectrometer

    SciTech Connect

    Moskowitz, B.

    1995-07-15

    Different conditions, and therefore different physics, are expected to exist over the range of rapidities at RHIC. The BRAHMS Forward Spectrometer will measure identified hadron distributions up to y=4, giving it a unique place in the RHIC experimental program.

  10. The GRANIT spectrometer

    SciTech Connect

    Baessler, Stefan; Beau, M; Kreuz, Michael; Nesvizhevsky, V.; Kurlov, V; Pignol, G; Protasov, K.; Vezzu, Francis; Voronin, Vladimir

    2011-01-01

    The existence of quantum states of matter in a gravitational field was demonstrated recently in the Institut Laue-Langevin (ILL), Grenoble, in a series of experiments with ultra cold neutrons (UCN). UCN in low quantum states is an excellent probe for fundamental physics, in particular for constraining extra short-range forces; as well as a tool in quantum optics and surface physics. The GRANIT is a follow-up project based on a second-generation spectrometer with ultra-high energy resolution, permanently installed in ILL. It has been constructed in framework of an ANR grant; and will become operational in 2011.

  11. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  12. Cassini Plasma Spectrometer Investigation

    NASA Astrophysics Data System (ADS)

    Young, D. T.; Berthelier, J. J.; Blanc, M.; Burch, J. L.; Coates, A. J.; Goldstein, R.; Grande, M.; Hill, T. W.; Johnson, R. E.; Kelha, V.; McComas, D. J.; Sittler, E. C.; Svenes, K. R.; Szegö, K.; Tanskanen, P.; Ahola, K.; Anderson, D.; Bakshi, S.; Baragiola, R. A.; Barraclough, B. L.; Black, R. K.; Bolton, S.; Booker, T.; Bowman, R.; Casey, P.; Crary, F. J.; Delapp, D.; Dirks, G.; Eaker, N.; Funsten, H.; Furman, J. D.; Gosling, J. T.; Hannula, H.; Holmlund, C.; Huomo, H.; Illiano, J. M.; Jensen, P.; Johnson, M. A.; Linder, D. R.; Luntama, T.; Maurice, S.; McCabe, K. P.; Mursula, K.; Narheim, B. T.; Nordholt, J. E.; Preece, A.; Rudzki, J.; Ruitberg, A.; Smith, K.; Szalai, S.; Thomsen, M. F.; Viherkanto, K.; Vilppola, J.; Vollmer, T.; Wahl, T. E.; Wüest, M.; Ylikorpi, T.; Zinsmeyer, C.

    2004-09-01

    The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn’s magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn’s magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn’s ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan’s ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ˜70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ˜2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.

  13. Gamma -radiations connected to atmospheric precipitations

    NASA Astrophysics Data System (ADS)

    Vashenyuk, Eduard; Balabin, Yury; Gvozdevsky, Boris; Germanenko, Alexey

    Since 2008 we are monitoring the gamma -radiation in surface layer of atmosphere with scin-tillation gamma -spectrometers. Instruments consist of a crystal NaI (Tl), a photomultiplier and a pulse amplifier. The data are transmitted to a computer with a special card with the 4096 channel pulse-amplitude analyzer. The gamma-ray monitoring is presently carried out at two high-latitude points: Apatity (N 65.57, E 33.39) and Barentsburg, Spitsbergen(N 78.06, E 14.22). The detectors in Apatity and Barentsburg are covered from sides and bottom by metallic screen for shielding them from environmental radiations from a building and ground. Together with gamma-spectrometer in Apatity a precipitation measuring device (PMD) was installed, which allows us to estimate presence and intensity of precipitations. Information about precipitations in Barentsburg was taken from the local meteorological observatory. The observations have shown that sporadic increases of gamma -radiation registered by spectrome-ters are almost always accompanied by intensive precipitations (rain, snowfall). The measured spectrum of gamma -radiation was rather smooth and did not show peaks in a range from 1 up to 200 KeV. Two basic hypotheses of an origin of high-energy photons during precipitations are discussed. The first is probable connection with atmospheric radionuclides, which are at-tached to aerosols and are taken out from the atmosphere by precipitations (rain and snow). Against this hypothesis speaks lack of peaks on gamma-ray spectrum. The gamma-spectrum from radionuclides usually has characteristic and expressed spectral lines. The second probable cause is x-ray radiation arising at deceleration in air of free electrons, accelerated in an electric field between clouds and ground. All cases of precipitations are accompanied by dense cloudi-ness and strengthening of an atmospheric electric field. The arguments for this mechanism are resulted.

  14. Gamma synthetic hydrographs

    NASA Astrophysics Data System (ADS)

    Croley, Thomas E.

    1980-05-01

    The two-parameter Gamma distribution is presented as a basis for synthetic hydrographs with a review of existing applications and non-feasible applications are identified. Several approaches for fitting this function to practical boundary condition parameters are identified and presented in a unified treatment. They are especially designed for use on small programmable calculators since the synthetic hydrograph is extremely sensitive to the Gamma distribution parameters. Nomographs would give large errors in the fit for small errors in the boundary condition parameters. Although non-dimensionalization of the synthetic hydrograph is possible with the Gamma distribution, it is shown to be unnecessary. Current uses of "standard" non-dimensional hydrographs are shown to be in error.

  15. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  16. The Athena Raman Spectrometer

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Jolliff, Bradley; Wdowiak, Tom; Agresti, David; Lane, Arthur L.

    2000-01-01

    Raman spectroscopy provides a powerful tool for in situ mineralogy, petrology, and detection of water and carbon. The Athena Raman spectrometer is a microbeam instrument intended for close-up analyses of targets (rock or soils) selected by the Athena Pancam and Mini-TES. It will take 100 Raman spectra along a linear traverse of approximately one centimeter (point-counting procedure) in one to four hours during the Mars' night. From these spectra, the following information about the target will extracted: (1) the identities of major, minor, and trace mineral phases, organic species (e.g., PAH or kerogen-like polymers), reduced inorganic carbon, and water-bearing phases; (2) chemical features (e.g. Mg/Fe ratio) of major minerals; and (3) rock textural features (e.g., mineral clusters, amygdular filling and veins). Part of the Athena payload, the miniaturized Raman spectrometer has been under development in a highly interactive collaboration of a science team at Washington University and the University of Alabama at Birmingham, and an engineering team at the Jet Propulsion Laboratory. The development has completed the brassboard stage and has produced the design for the engineering model.

  17. Spatial heterodyne spectrometer for FLEX

    NASA Astrophysics Data System (ADS)

    Scott, Alan; Zheng, Sheng-Hai; Brown, Stephen; Bell, Andrew

    2007-10-01

    A spatial heterodyne spectrometer (SHS) has significant advantages for high spectral resolution imaging over narrow pre-selected bands compared to traditional solutions. Given comparable optical étendue at R~6500, a field-widened SHS will have a throughput-resolution product ~170 x larger than an air-spaced etalon spectrometer, and ~1000 x larger than a standard grating spectrometer. The monolithic glass Michelson design and lack of moving parts allows maximum stability of spectral calibration over the mission life. For these reasons, SHS offers considerable advantages for the core spectrometer instrument in the European Space Agency's (ESA) Fluorescence Explorer (FLEX) mission.

  18. A Neutron Activation Gamma Ray spectrometer for Planetary Surface Analysis

    NASA Technical Reports Server (NTRS)

    Bradley, J. G.; Schweitzer, J. S.; Truax, J. A.; Rice, A.; Tombrello, T. A.

    1994-01-01

    A pulsed DT neutron generator system, similar to that used in commercial well logging, offers the possibility of performing accurate elemental analyses to depths of tens of centimeters in a few seconds with the probe on the body's surface.

  19. Study of Comet Nucleus Gamma-Ray Spectrometer Penetration System

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Amundsen, R. J.; Beardsley, R. W.; Cash, R. H.; Clark, B. C.; Knight, T. C. D.; Martin, J. P.; Monti, P.; Outteridge, D. A.; Plaster, W. D.

    1986-01-01

    A penetrator system has been suggested as an approach for making in situ measurements of the composition and physical properties of the nucleus of a comet. This study has examined in detail the feasibility of implementing the penetrator concept. The penetrator system and mission designs have been developed and iterated in sufficient detail to provide a high level of confidence that the concept can be implemented within the constraints of the Mariner Mark 2 spacecraft.

  20. Single-Crystal Bismuth Iodide Gamma-Ray Spectrometers

    DTIC Science & Technology

    2012-02-01

    the length of the ampoule, so that the polycrystalline source material sublimes at the higher temperature and deposits at the end of the ampoule where...the temperature is lower. This temperature difference causes the different vapor pressure at two ends of the ampoule and forces the material...transport from the source to the cooler end . The PVT system can adopt horizontal or vertical set up. A typical horizontal PVT system is illustrated in

  1. Thermoluminescence emission spectrometer.

    PubMed

    Prescott, J R; Fox, P J; Akber, R A; Jensen, H E

    1988-08-15

    A sensitive thermoluminescence (TL) emission spectrometer based on Fourier transform spectroscopy is described. It employs a modified scanning Twyman-Green interferometer with photomultiplier detection in a photon-counting mode. The etendue is 180pi mm(2), and it covers the 350-600-nm wavelength range. The output can be displayed either as a 3-D isometric plot of intensity vs temperature and wavelength, as a contour diagram, or as a conventional TL glow curve of intensity vs temperature. It is sufficiently sensitive to record thermoluminescence spectra of dosimeter phosphors and minerals for thermoluminescence dating at levels corresponding to those found during actual use as radiation monitors or in dating. Examples of actual spectra are given.

  2. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  3. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  4. Bolometers as particle spectrometers

    NASA Astrophysics Data System (ADS)

    Stroke, H. H.; Artzner, G.; Coron, N.; Dambier, G.; Hansen, P. G.

    1986-02-01

    A spectrometer based on low-temperature calorimetry has been under development since 1983. The present detector, capable of recording individual alpha and beta particles and X-ray photons, is based on a composite diamond-germanium bolometer. The advantage of a composite bolometer is that it separates the absorption and detection functions. Diamond, as an absorber, is of particular advantage because of its low heat capacity and high thermal diffusivity. The goal is a theoretical energy resolution of a few eV at 0.1 K. Initial experiments at 1.3 K and 0.9 K, which give resolutions in the keV range, are still noise-limited. High-resolution applications, such as in X-ray astronomy and nuclear physics (in particular, neutron mass measurements) are foreseen.

  5. Elemental mapping of the moon using gamma rays : past, present, and future /

    SciTech Connect

    Reedy, R. C.

    2001-01-01

    The energies and intensities of gamma rays From a planetary surface can be used to infer the elemental composition of an object with no or a thin atmosphere. The Apollo gamma-ray spectrometers in 1972 and 1973 produced many of the results for the distribution of elements in the Moon that are now generally well accepted. Lunar Prospector in 1998 and 1999 globally mapped the Moon with gamma rays and neutrons. Both missions used spectrometers with poor energy resolution ({approx}8-10%). The Japanese plan to send a high-resolution germanium gamma-ray spectrometer to the Moon in about 2004 on their SELENE mission. However, little has been done since the 1970s on the models used to unfold planetary gamma-ray spectra. More work needs to be done on understanding what to expect in future gamma-ray spectra and how to unfold such data.

  6. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOEpatents

    Cole, Jerald D.; Drigert, Mark W.; Reber, Edward L.; Aryaeinejad, Rahmat

    2001-01-01

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  7. Spin spectrometer at the holified heavy-ion research facility and some planned experiments

    SciTech Connect

    Sarantites, D. G.; Jaaskelainen, M.; Hood, J. T.; Woodward, R.; Barker, J. H.; Hensley, D. C.; Halbert, M. L.; Chan, Y. D.

    1980-01-01

    The 4..pi.. multidetector ..gamma..-ray spectrometer at the Holified Heavy-ion Research Facility (HHIRF) is described in some detail. The following important features of this spectrometer are discussed: (a) the geometric arrangement, (b) the actual performance of the individual detector elements, (c) the associated electronics and data acquisition system, and (d) the response of the system to input ..gamma..-cascades including the effect of crystal-to-crystal scattering and the response to neutrons. The first few experiments to be performed are briefly described.

  8. Comparison of backgrounds in OSO-7 and SMM spectrometers and short-term activation in SMM

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.; Chupp, E. L.; Share, G. H.

    1989-01-01

    The backgrounds in the OSO-7 Gamma-Ray Monitor and the Solar Maximum Mission Gamma-Ray Spectrometer are compared. After scaling to the same volume, the background spectra agree to within 30 percent. This shows that analyses which successfully describe the background in one detector can be applied to similar detectors of different sizes and on different platforms. The background produced in the SMM spectrometer by a single trapped-radiation belt passage is also studied. This background is found to be dominated by a positron-annihilation line and a continuum spectrum with a high energy cutoff at 5 MeV.

  9. Inficon Transpector MPH Mass Spectrometer Random Vibration Test Report

    NASA Technical Reports Server (NTRS)

    Santiago-Bond, Jo; Captain, Janine

    2015-01-01

    The purpose of this test report is to summarize results from the vibration testing of the INFICON Transpector MPH100M model Mass Spectrometer. It also identifies requirements satisfied, and procedures used in the test. As a payload of Resource Prospector, it is necessary to determine the survivability of the mass spectrometer to proto-qualification level random vibration. Changes in sensitivity of the mass spectrometer can be interpreted as a change in alignment of the instrument. The results of this test will be used to determine any necessary design changes as the team moves forward with flight design.

  10. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.

  11. {gamma}-ray spectroscopy of {sub 17}{sup 38}Cl using grazing reactions

    SciTech Connect

    O'Donnell, D.; Chapman, R.; Liang, X.; Burns, M.; Hodsdon, A.; Keyes, K.; Ollier, J.; Papenberg, A.; Smith, J. F.; Spohr, K. M.; Wang, Z. M.; Azaiez, F.; Ibrahim, F.; Stanoiu, M.; Verney, D.; Haas, F.; Caurier, E.; Curien, D.; Nowacki, F.; Salsac, M.-D.

    2010-02-15

    Excited states of {sub 17}{sup 38}Cl{sub 21} were populated in binary grazing reactions during the interaction of a beam of {sub 16}{sup 36}S{sub 20} ions of energy 215 MeV with a {sub 82}{sup 208}Pb{sub 126} target. The combination of the PRISMA magnetic spectrometer and the CLARA {gamma}-ray detector array was used to identify the reaction fragments and to detect their decay via {gamma}-ray emission. A level scheme for {sup 38}Cl is presented and discussed within the context of the systematics of neighboring nuclei and is compared with the results of state-of-the-art shell-model calculations.

  12. V/V(max) test applied to SMM gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Higdon, J. C.; Share, G. H.; Messina, D. C.; Iadicicco, A.

    1992-01-01

    We have applied the V/V(max) test to candidate gamma-ray bursts detected by the Gamma-Ray Spectrometer (GRS) aboard the SMM satellite to examine quantitatively the uniformity of the burst source population. For a sample of 132 candidate bursts identified in the GRS data by an automated search using a single uniform trigger criterion we find average V/V(max) = 0.40 +/- 0.025. This value is significantly different from 0.5, the average for a uniform distribution in space of the parent population of burst sources; however, the shape of the observed distribution of V/V(max) is unusual and our result conflicts with previous measurements. For these reasons we can currently draw no firm conclusion about the distribution of burst sources.

  13. New Technology CZT Detectors for High-Energy Flare Spectroscopy: The Room Temperature Semiconductor Spectrometer for JAWSAT

    NASA Technical Reports Server (NTRS)

    Vestrand, W. Thomas

    1999-01-01

    The goal of our Room Temperature Semiconductor Spectrometer (RTeSS) project is to develop a small high-energy solar flare spectrometer employing semiconductor detectors that do not require significant cooling when used as high-energy solar flare spectrometers. Specifically, the goal is to test Cadmium Zinc Telluride (CZT) detectors with coplanar grid electrodes as x-ray and gamma-ray spectrometers and to design an experiment that can be flown as a "piggy-back" payload on a satellite mission during the next solar maximum.

  14. VEGAS: VErsatile GBT Astronomical Spectrometer

    NASA Astrophysics Data System (ADS)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  15. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  16. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  17. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  18. A Mass Spectrometer Simulator in Your Computer

    NASA Astrophysics Data System (ADS)

    Gagnon, Michel

    2012-12-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result, it is not possible for instructors to take full advantage of this equipment. Therefore, to facilitate accessibility to this tool, we have developed a realistic computer-based simulator. Using this software, students are able to practice their ability to identify the components of the original gas, thereby gaining a better understanding of the underlying physical laws. The software is available as a free download.

  19. Neutron Detection with a Cryogenic Spectrometer

    SciTech Connect

    Bell, Z.W.; Lamberti, V.E.; Carpenter, D.A.; Cristy, S.S.

    2003-06-23

    Cryogenic calorimeters are used for x-ray detection because of their exquisite energy resolution and have found application in x-ray astronomy, and the search for dark matter. These devices operate by detecting the heat pulse produced by ionization in an absorber cooled to temperatures below 1 K. Such temperatures are needed to lower the absorber's heat capacity to the point that the deposition of even a few eV results in a measurable temperature excursion. Typical absorbers for dark matter measurements are massive Si or Ge crystals, and, with Ge, have achieved a resolution of 650 eV at 10 keV. Chow, et al., report the measurement of the 60 keV emission from {sup 241}Am with 230 eV resolution using a superconducting tin absorber. Cunningham, et al., also using a superconducting tin absorber, have recently reported a four-fold improvement over Chow. With such results being reported from the x- and gamma-ray world it is natural to examine the possibilities for cryogenic neutron spectroscopy. Such a detector would operate by detecting the heat pulses caused by neutron capture and scattering. To date, {sup 6}LiF has been the absorber of choice because relatively large crystals can be grown, and it is an insulating material with low heat capacity. Silver reports the fabrication of a {sup 6}LiF spectrometer operating at 328 mK and achieving a resolution of 39 keV. De Marcillac reports the fabrication of a spectrometer operating at 80 mK and achieving 16 keV resolution when bombarded with 5 MeV alpha particles. In this paper, we report preliminary results with a TiB{sub 2} absorber exposed to thermal neutrons. In contrast to lithium, whose chemistry selects for LiF as the absorber, boron offers a rich chemistry from which to select materials with high boron content. We will discuss the considerations governing the choice of absorber material as well as the basic considerations needed to understand a cryogenic spectrometer. The capture and scattering reactions in boron and

  20. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  1. Method for calibrating mass spectrometers

    DOEpatents

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  2. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  3. PSR J2030+364I: Radio Discovery and Gamma-ray Study of a Middle-aged Pulsar in the Now Identified Fermi-LAT Source 1FGL J2030.0+3641

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Kerr, M.; Ray, P. S.; Ransom, S. M.; Johnston, S.; Romani, R. W.; Parent, D.; Decesar, M. E.; Harding, A. K.; Donato, D.; SazParkinson, P. M.; Ferrara, E. C.; Freire, P. C. C.; Guillemot, L; Keith, M.; Kramer, M.; Wood, K. S.

    2011-01-01

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with IFGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.28, spin-down luminosity of 3 x 10(exp 34) erg/s, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1 % that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc/cu cm. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive - PSR J2030+364 I would have been found blindly in gamma rays if only > or approx. 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.

  4. PSR J2030+3641: RADIO DISCOVERY AND GAMMA-RAY STUDY OF A MIDDLE-AGED PULSAR IN THE NOW IDENTIFIED FERMI-LAT SOURCE 1FGL J2030.0+3641

    SciTech Connect

    Camilo, F.; Kerr, M.; Romani, R. W.; Ray, P. S.; Wood, K. S.; Ransom, S. M.; Johnston, S.; Keith, M.; Parent, D.; DeCesar, M. E.; Harding, A. K.; Ferrara, E. C.; Donato, D.; Saz Parkinson, P. M.; Freire, P. C. C.; Guillemot, L.; Kramer, M. E-mail: kerrm@stanford.edu

    2012-02-10

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi Large Area Telescope (LAT) sources, we have discovered the middle-aged pulsar J2030+3641 associated with 1FGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times which spans the entire Fermi mission. With a rotation period of 0.2 s, a spin-down luminosity of 3 Multiplication-Sign 10{sup 34} erg s{sup -1}, and a characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1% that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc cm{sup -3}. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive-PSR J2030+3641 would have been found blindly in gamma rays if only {approx}> 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.

  5. Long-term variations in the gamma-ray background on SMM

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Share, G. H.; Kinzer, R. L.; Johnson, W. N.; Adams, J. H., Jr.

    1989-01-01

    Long-term temporal variations in the various components of the background radiation detected by the gamma-ray spectrometer on the Solar Maximum Mission are presented. The SMM gamma-ray spectrometer was launched in February, 1980 and continues to operate normally. The extended period of mission operations has provided a large data base in which it is possible to investigate a variety of environmental and instrumental background effects. In particular, several effects associated with orbital precession are introduced and discussed.

  6. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.anomaly. Both the visible and infrared subsystems scan in "pushbroom" mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in acrosstrack linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15. Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft-position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas shown.

  7. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  8. Alpha Magnetic Spectrometer (AMS) Overview

    NASA Video Gallery

    The Alpha Magnetic Spectrometer (AMS) is flying to the station on STS-134. The AMS experiment is a state-of-the-art particle physics detector being operated by an international team composed of 60 ...

  9. The GRAVITY spectrometers: optical qualification

    NASA Astrophysics Data System (ADS)

    Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present

  10. Thermal neutrons registration by xenon gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Shustov, A. E.; Chernysheva, I. V.; Dmitrenko, V. V.; Dukhvalov, A. G.; Krivova, K. V.; Novikov, A. S.; Petrenko, D. V.; Vlasik, K. F.; Ulin, S. E.; Uteshev, Z. M.

    2016-02-01

    Experimental results of thermal neutrons detection by high pressure xenon gamma- ray spectrometers are presented. The study was performed with two devices with sensitive volumes of 0.2 and 2 litters filled with compressed mixture of xenon and hydrogen without neutron-capture additives. Spectra from Pu-Be neutron source were acquired using both detectors. Count rates of the most intensive prompt neutron-capture gamma-ray lines of xenon isotopes were calculated in order to estimate thermal neutrons efficiency registration for each spectrometer.

  11. Gamma ray line observations with OSSE

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Grove, J. E.; Johnson, W. N.; Murphy, R. J.; Share, G. H.; Purcell, W. R.; Leising, M. D.; Harris, M. J.

    1997-01-01

    Observations from the oriented scintillation spectrometer experiment of the gamma ray lines originating from a variety of Galactic center sources are reviewed. Extensive observations were acquired of the Galactic center region, including the 0.511 MeV positron annihilation line and associated positronium continuum and Al-26 emission. The results reviewed include: Co-57 from SN 1987A; limits on Co-56 from SN 1991T; gamma ray lines from solar flares; searches for Ti-44 emission from Cas A, and searches for C-12 and O-16 lines from the Orion region.

  12. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  13. Nucleosynthesis and astrophysical gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1987-01-01

    The HEAO-3 gamma ray spectrometer has provided evidence in the quest for the understanding of complex element formation in the universe with the discovery of Al-26 in the interstellar medium. It has demonstrated that the synthesis of intermediate mass nuclei is currently going on in the galaxy. This discovery was confirmed by the Solar Maximum Mission. The flux is peaked near the galactic center and indicates about 3 solar masses of Al-26 in the interstellar medium, with an implied ratio of Al-26/Al-27 = .00001. Several possible distributions were studied but the data gathered thus far do not allow discrimination between them. It is felt that only the spaceflight of a high resolution gamma ray spectrometer with adequate sensitivity will ultimately resolve the issue of the source of this material.

  14. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2004-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly. Both the visible and infrared subsystems scan in pushbroom mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in across-track linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15 . Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft- position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas (see figure). The visible subsystem is based on a grating spectrograph and a rapid-readout charge-coupled-device camera. Images of the swatch are acquired in 256 spectral bands at wavelengths from 400 to 800 nm. The infrared subsystem, which is sensitive in a single

  15. Next Generation Gamma Ray Diagnostics for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans; Kim, Y. H.; McEvoy, A. M.; Zylstra, A. B.; Young, C. S.; Lopez, F. E.; Griego, J. R.; Fatherley, V. E.; Oertel, J. A.; Jorgenson, H. J.; Barlow, D. B.; Stoeffl, W.; Church, J. A.; Hernandez, J. E.; Carpenter, A.; Rubery, M. S.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Malone, R. M.; Moy, K.; Hares, J. D.; Milnes, J.

    Fusion reaction history and ablator areal density measurements based on gamma ray detection are an essential part of Inertial Confinement Fusion (ICF) experiments on the National Ignition Facility (NIF). Capability improvements are being implemented in sensitivity, temporal and spectral response relative to the existing Gamma Reaction History diagnostic (GRH-6m). The ``Super'' Gas Cherenkov Detector (GCD) will provide 200x more sensitivity, reduce the effective temporal resolution from 100 to 10 ps, and lower the energy threshold from 2.9 to 1.8 MeV, relative to GRH-6m. The Gamma-to-Electron Magnetic Spectrometer (GEMS) - a Compton spectrometer intended to provide true gamma energy resolution (<=5%) for isolation of specific lines such as t(d, γ) , D(n, γ) , 12C(n,n' γ) and energetic charged particle nuclear reactions indicative of ablator/fuel mix

  16. ZeroDegree spectrometer at RIKEN RI Beam Factory

    NASA Astrophysics Data System (ADS)

    Kubo, Toshiyuki; Ohnishi, Tetsuya; Takeda, Hiroyuki; Fukuda, Naoki; Kameda, Daisuke; Kusaka, Kensuke; Yoshida, Atsushi; Yoshida, Koichi; Ohtake, Masao; Inabe, Naohito; Yanagisawa, Yoshiyuki; Tanaka, Kanenobu

    2009-10-01

    At RI Beam Factory (RIBF) [1] at RIKEN Nishina Center, a variety of fast rare isotope (RI) beams are produced using the BigRIPS in-flight separator [2] for studies of exotic nuclei. The beam line following BigRIPS is designed to work as a forward spectrometer named ZeroDegree, so that it can be used for reaction studies with RI beams. The ZeroDegree spectrometer consists of two dipoles and six superconducting quadrupole triplets, of which designs are essentially the same as those of BigRIPS. It analyzes and indentifies projectile reaction residues, often in coincidence with gamma rays, and can be operated in different optics modes, depending on experimental requirements. The ZeroDegree spectrometer has recently been commissioned and used for a series of full-dress RI-beam experiments. Overview and status of the ZeroDegree spectrometer will be reported.[4pt] [1] Y. Yano: Nucl. Instr. and Meth. B 261 (2007) 1009. [0pt] [2] T. Kubo: Nucl. Instr. and Meth. B 204 (2003) 97 and T. Ohnishi et al.: J. Phys. Soc. Japan, 77 (2008) 083201.

  17. Gamma Processes

    DTIC Science & Technology

    1986-01-01

    E[exp{-Bn Xn 1 U-Y nU-X vi ] - EeUY )Ee (v+Bu)X1 (2.4) where, in the last step, we have dropped the indices n and n-1 because of stationarity and...1967). "Some Problems of Statistical Inference Relating to Double-Gamma Distribution," Trabajos de Estadistica , 18, 67-87. Hugus, D. K. (1982

  18. A versatile Mossbauer spectrometer and its applications in vibration measurement

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Howser, L. M.

    1972-01-01

    A Fe-57 Mossbauer spectrometer, equally efficient in transmission and reflection geometries, is described. The radiation detector consists of a 1.524- by 5.08 by 5.08-cm rectangular NaI(Tl) crystal with a hole 1.524 cm in diameter. The front and back faces of the crystal are covered with beryllium windows 0.0127 cm thick and 3.81 cm in diameter. The energy of the radiation accepted for counting ranges from 6.3 keV conversion X-rays to the 14.4 keV reemitted gamma rays. The spectrometer was used to measure various types of low frequency (10 Hz) and low amplitude (0.254 mm) periodic motion of steel specimens.

  19. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  20. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus

    SciTech Connect

    Giacomelli, L.; Conroy, S.; Gorini, G.; Horton, L.; Murari, A.; Popovichev, S.; Syme, D. B.

    2014-02-15

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.

  1. Resolution-enhanced Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.

    1993-01-01

    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.

  2. Ultra Compact Imaging Spectrometer (UCIS)

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  3. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  4. A Neutron Spectrometer for Small Satellite Opportunities

    NASA Astrophysics Data System (ADS)

    de Nolfo, Georgia; Bloser, Peter; Dumonthier, J.; Garcia-Burgos, A.; Ryan, James Michael; Suarez, G.; Winkert, G. E.

    2015-04-01

    The detection of fast neutrons has important implications in such diverse fields as geospace physics, solar physics, and applications within Defense and Security programs. In particular, neutrons provide key observations that complement gamma-ray observations in understanding the magnetic topology and particle acceleration processes at the Sun. Solar neutrons have been observed by space-based missions such as CGRO/COMPTEL and ground-based neutron monitors with energies > 20 MeV. Below 20 MeV, given the neutron half-life of ~15min, the detection of neutrons must take place close to the Sun. The challenge is to build instrumentation that conforms to small satellite platforms making inner heliospheric observations possible as well as Earth-orbiting CubeSats. Scintillator-based technologies have a proven track record for the detection of fast neutrons with high stopping power, good energy resolution, and fast timing. Modern organic scintillators such as stilbene and p-terphenyl, offer improved light output and pulse shape discrimination — the ability to distinguish gamma from neutron-induced signals. Modern readout devices such as silicon photomultipliers (SiPMs) offer an ideal alternative to photomultiplier tubes given their inherently compact size and the very low operating voltages required. The combination of modern scintillators and silicon photomultipliers enables new designs for instruments that conform to small satellite platforms such as CubeSats. We discuss the performance of a double scatter neutron spectrometer based on p-terphenyl coupled to arrays of silicon photomultipliers for readout. In addition, we present preliminary results for pulse shape discrimination using advanced waveform digitization techniques.

  5. Cross Sections for (gamma)-ray Production in the 191Ir (n,xn(gamma)) Reactions

    SciTech Connect

    Fotiades, N; Nelson, R O; Devlin, M; Chadwick, M B; Talou, P; Becker, J A; Garrett, P E; Younes, W

    2005-01-11

    Discrete {gamma}-ray spectra have been measured for nuclei populated in {sup 191}Ir(n{sub 4}xn{gamma}) with x{<=}11, as a function of incident neutron energy using neutrons from the 'white' neutron source at the Los Alamos Neutron Science Center's WNR facility. The energy of the neutrons was determined using the time-of-flight technique. The data were taken using the GEANIE spectrometer. The cross sections for emission of 202 {gamma} rays of {sup 181-191}Ir were determined for neutron energies 0.2 MeV < E{sub n} < 300 MeV. Comparison with model calculations, using the GNASH reaction model, and with GEANIE results from the similar {sup 193}Ir(n{sub 4}xn{gamma}) reactions is made.

  6. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  7. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  8. Mobile spectrometer measures radar backscatter

    NASA Technical Reports Server (NTRS)

    Gogineni, S.; Moore, R. K.; Onstott, R. G.; Kim, Y. S.; Bushnell, D.

    1984-01-01

    The present article is concerned with a helicopter-borne spectrometer (Heloscat), which has been developed to permit high-quality scattering measurements from a mobile platform at remote sites. The term 'spectrometer' referes to a class of scatterometers. The term 'scatterometer' is employed to denote a specialized radar for measuring scattering coefficients as a function of angle. A spectrometer, on the other hand, is a scatterometer which can measure backscatter at several frequencies. The Heloscat system is discussed, taking into account two antennas, RF hardware, and an externally mounted pendulum for angle encoding. A dual-antenna configuration is used for cross-polarized measurements, while a single-antenna system is used for like-polarized measurements. Attention is also given to oscillator characteristics, efficient data handling, and aspects of calibration.

  9. Report on Second Activations with the Lead Slowing Down Spectrometer

    SciTech Connect

    Stave, Sean C.; Mace, Emily K.; Pratt, Sharon L.; Warren, Glen A.

    2012-04-27

    Summary On August 18 and 19 2011, five items were irradiated with neutrons using the Lead Slowing Down Spectrometer (LSDS). After irradiation, dose measurements and gamma-spectrometry measurements were completed on all of the samples. No contamination was found on the samples, and all but one provided no dose. Gamma-spectroscopy measurements qualitatively agreed with expectations based on the materials. As during the first activation run, we observed activation in the room in general, mostly due to 56Mn and 24Na. Most of the activation of the samples was short lived, with half-lives on the scale of hours to days, except for 60Co which has a half-life of 5.3 y.

  10. Verification of Electromagnetic Calorimeter Concept for the HADES spectrometer

    NASA Astrophysics Data System (ADS)

    Svoboda, O.; Blume, C.; Czyžycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Kugler, A.; Lapidus, K.; Linev, S.; Lisowski, E.; Ott, P.; Otte, P.; Petukhov; Pietraszko, J.; Reshetin, A.; Rodríguez-Ramos, P.; Rost, A.; Salabura, P.; Skott, P.; Sobolev, Y. G.; Steffen, O.; Thomas, A.; Tlustý, P.; Traxler, M.

    2015-04-01

    The HADES spectrometer currently operating on the beam of SIS18 accelerator in GSI will be moved to a new position in the CBM cave of the future FAIR complex. Electromagnetic calorimeter (ECAL) will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeVon the beam of the new accelerator SIS100. Calorimeter will be based on 978 massive lead glass modules read out by photomultipliers and a novel front-end electronics. Secondary gamma beam with energies ranging from 81 MeV up to 1399 MeV from MAMI-C Mainz facility was used to verify selected technical solutions. Relative energy resolution was measured using modules with three different types of photomultipliers. Two types of developed front-end electronics as well as energy leakage between neighbouring modules under parallel and declined gamma beams were studied in detail.

  11. The GRAVITY spectrometers: mechanical design

    NASA Astrophysics Data System (ADS)

    Fischer, Sebastian; Wiest, Michael; Straubmeier, Christian; Yazici, Senol; Araujo-Hauck, Constanza; Eisenhauer, Frank; Perrin, Guy; Brandner, Wolfgang; Perraut, Karine; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2010-07-01

    Operating on 6 interferometric baselines, i.e. using all 4 UTs, the 2nd generation VLTI instrument GRAVITY will deliver narrow angle astrometry with 10μas accuracy at the infrared K-band. Within the international GRAVITY consortium, the Cologne institute is responsible for the development and construction of the two spectrometers: one for the science object, and one for the fringe tracking object. Optically two individual components, both spectrometers are two separate units with their own housing and interfaces inside the vacuum vessel of GRAVITY. The general design of the spectrometers, however, is similar. The optical layout is separated into beam collimator (with integrated optics and metrology laser injection) and camera system (with detector, dispersive element, & Wollaston filter wheel). Mechanically, this transfers to two regions which are separated by a solid baffle wall incorporating the blocking filter for the metrology Laser wavelength. The optical subunits are mounted in individual rigid tubes which pay respect to the individual shape, size and thermal expansion of the lenses. For a minimized thermal background, the spectrometers are actively cooled down to an operating temperature of 80K in the ambient temperature environment of the GRAVITY vacuum dewar. The integrated optics beam combiner and the metrology laser injection, which are operated at 200/240K, are mounted thermally isolated to the cold housing of the spectrometers. The optical design has shown that the alignment of the detector is crucial to the performance of the spectrometers. Therefore, in addition to four wheel mechanisms, six cryogenic positioning mechanisms are included in the mechanical design of the detector mount.

  12. The GRAVITY spectrometers: thermal behaviour

    NASA Astrophysics Data System (ADS)

    Wank, Imke; Straubmeier, Christian; Wiest, Michael; Yazici, Senol; Fischer, Sebastian; Eisenhauer, Frank; Perrin, Guy S.; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY is a 2nd generation VLTI Instrument o which operates on 6 interferometric baselines by using all 4 Unit Telescopes. It will deliver narrow angle astrometry with 10μas accuracy at the infrared K-band. At the 1. Physikalische Institut of the University of Cologne, which is part of the international GRAVITY consortium, two spectrometers, one for the sciene object, and one for the fringe tracking object, have been designed, manufactured and tested. These spectrometers are two individual devices, each with own housing and interfaces. For a minimized thermal background, the spectrometers are actively cooled down to an operating temperature of 80K in the ambient temperature environment of the Beam Combiner Instrument (BCI) cryostat. The outer casings are mounted thermal isolated to the base plate by glass fiber reinforced plastic (GRP) stands, copper cooling structures conduct the cold inside the spectrometers where it is routed to components via Cu cooling stripes. The spectrometers are covered with shells made of multi insulation foil. There will be shown and compared 3 cooling installations: setups in the Cologne test dewar, in the BCI dewar and in a mock-up cad model. There are some striking differences between the setup in the 2 different dewars. In the Cologne Test dewar the spectrometers are connected to the coldplate (80K); a Cu cooling structure and the thermal isolating GRP stands are bolted to the coldplate. In the BCI dewer Cu cooling structure is connected to the bottom of the nitrogen tank (80K), the GRP stands are bolted to the base plate (240K). The period of time during the cooldown process will be analyzed.

  13. Portable smartphone optical fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  14. Sensitivity of LDEF foil analyses using ultra-low background germanium vs. large NaI(Tl) multidimensional spectrometers

    SciTech Connect

    Reeves, J.H.; Arthur, R.J.; Brodzinski, R.L.

    1992-06-01

    Cobalt foils and stainless steel samples were analyzed for induced {sup 6O}Co activity with both an ultra-low background germanium gamma-ray spectrometer and with a large NaI(Tl) multidimensional spectrometer, both of which use electronic anticoincidence shielding to reduce background counts resulting from cosmic rays. Aluminum samples were analyzed for {sup 22}Na. The results, in addition to the relative sensitivities and precisions afforded by the two methods, are presented.

  15. Sensitivity of LDEF foil analyses using ultra-low background germanium vs. large NaI(Tl) multidimensional spectrometers

    NASA Technical Reports Server (NTRS)

    Reeves, James H.; Arthur, Richard J.; Brodzinski, Ronald L.

    1993-01-01

    Cobalt foils and stainless steel samples were analyzed for induced Co-60 activity with both an ultra-low background germanium gamma-ray spectrometer and with a large NaI(Tl) multidimensional spectrometer, both of which use electronic anticoincidence shielding to reduce background counts resulting from cosmic rays. Aluminum samples were analyzed for Na-22. The results, in addition to the relative sensitivities and precisions afforded by the two methods, are presented.

  16. A high-throughput neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Stampfl, Anton; Noakes, Terry; Bartsch, Friedl; Bertinshaw, Joel; Veliscek-Carolan, Jessica; Nateghi, Ebrahim; Raeside, Tyler; Yethiraj, Mohana; Danilkin, Sergey; Kearley, Gordon

    2010-03-01

    A cross-disciplinary high-throughput neutron spectrometer is currently under construction at OPAL, ANSTO's open pool light-water research reactor. The spectrometer is based on the design of a Be-filter spectrometer (FANS) that is operating at the National Institute of Standards research reactor in the USA. The ANSTO filter-spectrometer will be switched in and out with another neutron spectrometer, the triple-axis spectrometer, Taipan. Thus two distinct types of neutron spectrometers will be accessible: one specialised to perform phonon dispersion analysis and the other, the filter-spectrometer, designed specifically to measure vibrational density of states. A summary of the design will be given along with a detailed ray-tracing analysis. Some preliminary results will be presented from the spectrometer.

  17. Laser Electron Gamma Source. Biennial progress report

    SciTech Connect

    Sandorfi, A.M.; Caracappa, A.; Kuczewski, A.; Kistner, O.C.; Lincoln, F.; Miceli, L.; Thorn, C.E.; Hoblit, S.; Khandaker, M. |

    1994-06-01

    The LEGS facility provides intense, polarized, monochromatic {gamma}-ray beams by Compton backscattering laser light from relativistic electrons circulating in the X-Ray storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. With the start of ring operations at 2.8 GeV, LEGS {gamma}-ray energies now extend to 370 MeV. Considerable progress has been made in the development of a new laser system that will increase the beam energies to 470 MeV, and this system is expected to come into operation before the next biennial report. The total flux is administratively held at 6 {times} 10{sup 6} s{sup {minus}1}. The {gamma}-ray energy is determined, with a resolution of 5.5 MeV, by detecting the scattering electrons in a magnetic spectrometer. This spectrometer can `tag` all {gamma}-rays with energies from 185 MeV up to the Compton edge. The beam spot size at the target position is 8 mm (V) {times} 18 mm (H), FWHM. For a single laser wavelength, the linear polarization of the beam is 98% at the Compton edge and decreases to 50% at about 1/2 the energy of the edge. By choosing the laser wavelengths appropriately the polarization can be maintained above 85% throughout the tagging range. During the last two years, experimental running at LEGS occupied an average of 3000 hours annually. Highlights of some of the programs are discussed below.

  18. Monitoring of the interconversion of gamma-butyrolactone (GBL) to gamma hydroxybutyric acid (GHB) by Raman spectroscopy.

    PubMed

    Munshi, Tasnim; Brewster, Victoria L; Edwards, Howell G M; Hargreaves, Michael D; Jilani, Shelina K; Scowen, Ian J

    2013-08-01

    Gamma-hydroxybutyric acid (GHB) is a drug-of-abuse that has recently become associated with drug-facilitated sexual assault, known as date rape. For this reason the drug is commonly found 'spiked' in alcoholic beverages. When GHB is in solution it may undergo conversion into the corresponding lactone, Gamma-butyrolactone (GBL). Studies have been carried out to determine the detection limits of GHB and GBL in various solutions by Raman spectroscopy and to monitor the interconversion of GHB and GBL in solution with different pH conditions and temperature. In this study, a portable Raman spectrometer was used to study the interconversion of GHB and GBL in water and ethanol solutions as a function of pH, time, and temperature. The aim of this was to determine the optimum pH range for conversion in order to relate this to the pH ranges that the drug is likely to be subjected to, first in spiked beverages and secondly after ingestion in the digestive system. The aim was also to identify a timescale for this conversion in relation to possible scenarios, for example if GHB takes a number of hours to convert to GBL, it is likely for the beverage to be ingested before esterification can take place. GHB and GBL were then spiked into a selection of beverages of known pH in order to study the stability of GHB and GBL in real systems.

  19. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE PAGES

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...

    2017-02-01

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  20. Use of CLYC spectrometer in counter-terrorism applications

    NASA Astrophysics Data System (ADS)

    Ing, H.; Smith, M. B.; Koslowsky, M. R.; Andrews, H. R.

    2015-05-01

    A new scintillator crystal, now known as CLYC (Cs2LiYCl6:Ce), has been under development for over 15 years (1). It was primarily of interest for radiation detection applications because of its good energy resolution for gamma rays (< 4% for 662 keV gamma rays) and its capability for detection of thermal neutrons. The pulse shapes of the signals from the two radiations are different, which allow them to be separated electronically, permitting simultaneous detection of gamma rays and neutrons. The crystal is now commercially available. Early investigations of the neutron response by the current authors (2) revealed that CLYC also responds to fast neutrons. In fact, the good energy resolution of the response under monoenergetic neutron irradiations showed that CLYC was an excellent high-energy neutron spectrometer. This discovery has great impact on the field of neutron spectroscopy, which has numerous, although often specialized, applications. This presentation focuses on applications in counter-terrorism scenarios where neutrons may be involved. The relative importance of the fast neutron response of CLYC, compared to the thermal and gamma-ray response, will be discussed for these scenarios.

  1. New detector array - the HRIBF Modular Total Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolinska-Cichocka, Marzena; Rykaczewski, Krzysztof; Karny, Marek; Kuzniak, Aleksandra; Grzywacz, Robert; Rasco, Charlie; Miller, David; Gross, Carl J.; Johnson, Jim

    2011-10-01

    The construction of a new Modular Total Absorption Spectrometer (MTAS) at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory will be presented. The total absorption gamma spectra measured with MTAS will be used to derive a true beta-feeding pattern and resulting beta strength function for fission products. In particular, the measurements of decay heat released by radioactive nuclei produced in nuclear fuels at power reactors will be performed. MTAS is made up of 19 large NaI(Tl) crystals each encapsulated with a 0.8-mm-thick carbon fiber. There are also two 1-mm- thick Silicon Strip Detectors surrounding a moving tape collector that count beta-energy loss signals. The structure is shielded by more than 1-inch of lead around MTAS which reduces background radiation significantly. MTAS efficiency for full energy deposition of gamma ray approaches nearly 90% for 300 keV gammas and over 75% for a 5 MeV gamma transition. Research supported by the DOE Office of Nuclear Physics.

  2. Method for increasing the dynamic range of mass spectrometers

    DOEpatents

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  3. Goddard Contributions to the La Jolla Workshop on Gamma Ray Transients

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Six articles addressing cosmic and solar gamma ray transients are presented. The topics covered include: gamma ray lines from solar flares and cosmic transients including burst spectra; a review of the 1979 March 5 transient; time variation in the 511 KeV flux observed by the ISEE spectrometer; time variations of an absorption feature in the spectrum of the burst on 1980 April 19; and the theory of gamma ray amplification through stimulated annihilation radiation.

  4. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  5. Convex Diffraction Grating Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P. (Inventor)

    1999-01-01

    A 1:1 Offner mirror system for imaging off-axis objects is modified by replacing a concave spherical primary mirror that is concentric with a convex secondary mirror with two concave spherical mirrors M1 and M2 of the same or different radii positioned with their respective distances d1 and d2 from a concentric convex spherical diffraction grating having its grooves parallel to the entrance slit of the spectrometer which replaces the convex secondary mirror. By adjusting their distances d1 and d2 and their respective angles of reflection alpha and beta, defined as the respective angles between their incident and reflected rays, all aberrations are corrected without the need to increase the spectrometer size for a given entrance slit size to reduce astigmatism, thus allowing the imaging spectrometer volume to be less for a given application than would be possible with conventional imaging spectrometers and still give excellent spatial and spectral imaging of the slit image spectra over the focal plane.

  6. IPNS-I chopper spectrometers

    SciTech Connect

    Price, D.L.; Carpenter, J.M.; Pelizzari, C.A.; Sinha, S.K.; Bresof, I.; Ostrowski, G.E.

    1982-01-01

    We briefly describe the layout and operation of the two chopper experiments at IPNS-I. The recent measurement on solid /sup 4/He by Hilleke et al. provides examples of time-of-flight data from the Low Resolution Chopper Spectrometer.

  7. Time of flight mass spectrometer

    DOEpatents

    Ulbricht, Jr., William H.

    1984-01-01

    A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

  8. Imaging IR spectrometer, phase 2

    NASA Technical Reports Server (NTRS)

    Gradie, Jonathan; Lewis, Ralph; Lundeen, Thomas; Wang, Shu-I

    1990-01-01

    The development is examined of a prototype multi-channel infrared imaging spectrometer. The design, construction and preliminary performance is described. This instrument is intended for use with JPL Table Mountain telescope as well as the 88 inch UH telescope on Mauna Kea. The instrument is capable of sampling simultaneously the spectral region of 0.9 to 2.6 um at an average spectral resolution of 1 percent using a cooled (77 K) optical bench, a concave holographic grating and a special order sorting filter to allow the acquisition of the full spectral range on a 128 x 128 HgCdTe infrared detector array. The field of view of the spectrometer is 0.5 arcsec/pixel in mapping mode and designed to be 5 arcsec/pixel in spot mode. The innovative optical design has resulted in a small, transportable spectrometer, capable of remote operation. Commercial applications of this spectrometer design include remote sensing from both space and aircraft platforms as well as groundbased astronomical observations.

  9. MICE Spectrometer Magnet System Progress

    SciTech Connect

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  10. Mid infrared MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  11. Airborne spectrometer senses several gases

    NASA Technical Reports Server (NTRS)

    Mc Dowall, J.; Moffat, A. J.

    1970-01-01

    Spectrometer's variable shutter permits observation of a wide range of plume widths. Adjustable grating, counter, and access window enable operator to reset grating's position during flight by resetting the counter to a predetermined number. Quartz correlation mask and spectral-aperture instrument-function filter are mounted in a replaceable precision frame.

  12. Elemental mapping of planetary surfaces using gamma-ray spectroscopy

    SciTech Connect

    Reedy, R.C.

    1990-01-01

    The gamma rays escaping from a planet can be used to map the concentrations of various elements in its surface. In a planet, the high-energy particles in the galactic cosmic rays induce a cascade of particles that includes many neutrons. The {gamma} rays are made by the nuclear excitations induced by these cosmic-ray particles and their secondaries (especially capture or inelastic-scattering reactions induced by neutrons) and decay of the naturally-occurring radioelements. After a short history of planetary {gamma}-ray spectroscopy and its applications, the {gamma}-ray spectrometer planned for the Mars Observer mission is presented. The results of laboratory experiments that simulate the cosmic-ray bombardments of planetary surfaces or measure cross sections for the production of {gamma} rays and the status of the theoretical calculations for the processes that make and transport neutrons and {gamma} rays will be reviewed. The emphasis here is on studies of Mars and on new ideas, concepts, and problems that have arisen over the last decade, such as Doppler broadening and peaks from neutron scattering with germanium nuclei in a high-resolution {gamma}-ray spectrometer. 31 refs., 1 fig., 1 tab.

  13. Shocked Plagioclase Signatures in Thermal Emission Spectrometer Data of Mars

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Staid, M. I.; Titus, T. N.

    2002-01-01

    Deconvolution of TES (Thermal Emission Spectrometer) data using a spectral library that includes spectra of experimentally shocked anorthosite (bytownite) suggests that shocked materials can be identified on Mars at low to intermediate abundances (10 - 20%) over a range of pressures. Additional information is contained in the original extended abstract.

  14. Laser Magneto-Optic Rotation Spectrometer (LMORS)

    DTIC Science & Technology

    1998-01-01

    traditional method of measuring atomic concentrations uses atomic absorption spectroscopy (AAS), herein referred to as an AAS 15 spectrometer...MOR spectrometer of the present invention. Fig. 2 illustrates a calibration curve for a conventional 10 atomic absorption spectroscopy (AAS

  15. The nuclear resonance scattering calibration technique for the EuroGammaS gamma characterisation system at ELI-NP-GBS

    NASA Astrophysics Data System (ADS)

    Pellegriti, M. G.; Albergo, S.; Adriani, O.; Andreotti, M.; Berto, D.; Borgheresi, R.; Cappello, G.; Cardarelli, P.; Consoli, E.; Di Domenico, G.; Evangelisti, F.; Gambaccini, M.; Graziani, G.; Lenzi, M.; Marziani, M.; Palumbo, L.; Passaleva, G.; Paternò, G.; Serban, A.; Squerzanti, S.; Starodubtsev, O.; Tricomi, A.; Variola, A.; Veltri, M.; Zerbo, B.

    2017-03-01

    A Gamma Beam System (GBS), designed by the EuroGammaS collaboration, will be implemented for the ELI-NP facility in Magurele, Romania. The facility will deliver an intense gamma beam, obtained by collimatio of the emerging radiation from inverse Compton interaction. Gamma beam energy range will span from 0.2 up to 19.5 MeV with unprecedented performances in terms of brilliance, photon flux and energy bandwidth. For the characterisation of the gamma beam during the commissioning and normal operation, a full detection system has been designed to measure energy spectrum, beam intensity, space and time profiles. The gamma-beam characterisation system consists of four elements: a Compton spectrometer, to measure and monitor the photon energy spectrum, in particular the energy bandwidth; a sampling calorimeter, for a fast combined measurement of the beam average energy and its intensity; a nuclear resonant scattering spectrometer, for absolute beam energy calibration and inter-calibration of the other detector elements; and finally a beam profile imager to be used for alignment and diagnostics purposes. In this paper, a general overview of the ELI-NP gamma characterisation system will be given and the NRSS system will be in particular discussed.

  16. The Results of Recent MICE Superconducting Spectrometer Solenoid Test

    SciTech Connect

    Green, Michael A; Virostek, Steve P.; Zisman, Michael S.

    2010-10-15

    The MICE spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The MICE spectrometer solenoids may be the largest magnets that have been cooled using small two stage coolers. During the previous test of this magnet, the cooler first stage temperatures were too high. The causes of some of the extra first stage heat load has been identified and corrected. The rebuilt magnet had a single stage GM cooler in addition to the three pulse tube coolers. The added cooler reduces the temperature of the top of the HTS leads, the shield and of the first stage of the pulse tube coolers.

  17. Acoustic-optic spectrometer. 1: Noise contributions and system consideration

    NASA Technical Reports Server (NTRS)

    Chin, G.

    1984-01-01

    An acousto-optic spectrometer (AOS) used as an IF spectrometer to a heterodyne receiver is modeled as a total power multi-channel integrating receiver. Systematic noise contributions common to all total power, time integrating receivers, as well as noise terms unique to the use of optical elements and photo-detectors in an AOS are identified and discussed. In addition, degradation of signal-to-noise ratio of an unbalanced Dicke receiver compared to a balanced Dicke receiver is found to be due to gain calibration processing and is not an instrumental effect.

  18. Sample rotating turntable kit for infrared spectrometers

    DOEpatents

    Eckels, Joel Del; Klunder, Gregory L.

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  19. Electron/proton spectrometer certification documentation analyses

    NASA Technical Reports Server (NTRS)

    Gleeson, P.

    1972-01-01

    A compilation of analyses generated during the development of the electron-proton spectrometer for the Skylab program is presented. The data documents the analyses required by the electron-proton spectrometer verification plan. The verification plan was generated to satisfy the ancillary hardware requirements of the Apollo Applications program. The certification of the spectrometer requires that various tests, inspections, and analyses be documented, approved, and accepted by reliability and quality control personnel of the spectrometer development program.

  20. Development of the instruments for the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Madden, J. J.; Kniffen, D. A.

    1986-01-01

    The Gamma Ray Observatory (GRO) is to be launched in 1988 by the STS. The GRO will feature four very large instruments: the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), the Energetic Gamma Ray Experiment Telescope (EGRET) and the Burst and Transient Source Experiment (BATSE). The instruments weigh from 900-1200 kg each, and required the development of specialized lifting and dolly devices to permit their assembly, manipulation and testing. The GRO is intended a{s a tool for studying discrete celestial objects such as black holes, neutron stars and other gamma-ray emitting objects, scanning for nucleosynthesis processes, mapping the Galaxy and other, high energy galaxies in terms of gamma rays, searching for cosmological effects and observing gamma ray bursts. The instruments will be sensitive from the upper end mof X-rya wavelengths to the highest energies possible. Details of the hardware and performance specifications of each of the instruments are discussed.

  1. Accelerated and Ambient Abundances in RHESSI Gamma-Ray Flares

    NASA Astrophysics Data System (ADS)

    Smith, D. M.; Shih, A. Y.; Lin, R. P.; Share, G. H.; Murphy, R. J.; Schwartz, R. A.; Tolbert, A. K.

    2005-05-01

    The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) has detected nuclear gamma-ray line emission from at least eleven solar flares over the past three years. These gamma-ray lines are produced when flare-accelerated ions collide with the ambient solar medium. In this paper, we use gamma-ray line ratios and Doppler profiles to constrain the relative fluxes of accelerated protons, alphas, and heavier nuclei in the brighter RHESSI gamma-ray flares. We also study the relative fluxes of narrow lines to compare our conclusions about ambient solar abundances in the interaction region to earlier work from the Solar Maximum Mission Gamma-Ray Spectrometer. The work at the University of California was supported by NASA contract NAS 5-98033.

  2. Gamma ray astronomy and black hole astrophysics

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1990-01-01

    The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.

  3. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  4. Electron spectrometer for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Schlachter, A.S.

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  5. Evaluations of the commercial spectrometer systems for safeguards applications using the germanium detectors

    SciTech Connect

    Vo, D.T.

    1998-12-31

    Safeguards applications require the best spectrometer systems with excellent resolution, stability, and throughput. Instruments must perform well in all the situations and environments. Data communication to the computer should be convenient, fast, and reliable. The software should have all the necessary tools and be ease to use. Portable systems should be small in size, lightweight, and have a long battery life. Nine commercially available spectrometer systems are tested with both the planar and coaxial germanium detectors. Considering the performance of the Digital Signal Processors (DSP), digital-based spectroscopy may be the future of gamma-ray spectroscopy.

  6. Imaging Spectrometer for NEO Mission: Seta Instrument

    NASA Astrophysics Data System (ADS)

    de Sanctis, Maria Cristina; Filacchione, Gianrico; Capaccioni, Fabrizio; Ammannito, Eleonora; Capria, Maria Teresa; Coradini, Angioletta; Migliorini, Alessandra

    NASA, ESA and JAXA have proposed NEO Sample Return Missions to a Near Earth Object. With these missions we will have the opportunity to return for study in Earth-based laboratories a direct sample of the earliest record of how our solar system formed. The landing site and sample selection will be the most important scientific decision to make during the course of the mission. For this reason, powerful on-board remote sensing science instruments are needed to support the selection. Among these instruments, the imaging spectrometer is a key instrument, being capable to: • Characterize the mineralogical composition of the entire object; • Analyze the of the landing site and the returned sample in its own native environment; • Establish the broadest possible scientific context for the target objects within our current understanding of the solar system. Scientific Objectives: Aim of SETA experiment is to perform imaging spectroscopy in the spectral range 400-3300 nm for a complete mapping of the target with a spectral sampling of at least 20 nm and a spatial resolution of the order of meters. SETA shall be able to return a detailed determination of the mineralogical composition for the different geologic units as well as the overall surface mineralogy with a spatial resolution of the order of few meters. These compositional characterizations involve the analysis of spectral parameters that are diagnostic of the presence and composition of various mineral species and materials that may be present on the target body. Most of the interesting minerals have electronic and vibrational absorption features in their VIS-NIR reflectance spectra. Identification of these related mineral phases requires a moderate spectral resolution. The presence of organic materials may be more difficult to identify. The SETA design is based on a pushbroom imaging spectrometer operating in the 400-3300 nm range, using a 2D array HgCdTe detector. This kind of instrument allows a simultaneous

  7. Characterization of a THz CW spectrometer pumped at 1550 nm

    NASA Astrophysics Data System (ADS)

    Yeo, Woon-Gi; Nahar, Niru K.

    2015-07-01

    We present an evaluation of a cost-effective THz CW spectrometer pumped at 1550 nm wavelengths with a fixed delay line. To study the spectral competence of the spectrometer, transmission data is obtained for various organic and inorganic samples. Spectral comparisons of the samples are presented by using THz time domain spectroscopy and vector network analyzer (VNA). Despite the capability of highly resolved transmission spectroscopy, our current system reveals the uncertainty in interferometric output data for phase analysis. Here, we identify the effect of fringing space of raw output data toward frequency resolution, phase analysis, and data acquisition time. We also propose the proper delay line setup for phase analysis for this type of spectrometers.

  8. Calculations for Calibration of a Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    A computer program performs calculations to calibrate a quadrupole mass spectrometer in an instrumentation system for identifying trace amounts of organic chemicals in air. In the operation of the mass spectrometer, the mass-to-charge ratio (m/z) of ions being counted at a given instant of time is a function of the instantaneous value of a repeating ramp voltage waveform applied to electrodes. The count rate as a function of time can be converted to an m/z spectrum (equivalent to a mass spectrum for singly charged ions), provided that a calibration of m/z is available. The present computer program can perform the calibration in either or both of two ways: (1) Following a data-based approach, it can utilize the count-rate peaks and the times thereof measured when fed with air containing known organic compounds. (2) It can utilize a theoretical proportionality between the instantaneous m/z and the instantaneous value of an oscillating applied voltage. The program can also estimate the error of the calibration performed by the data-based approach. If calibrations are performed in both ways, then the results can be compared to obtain further estimates of errors.

  9. Exploiting a Transmission Grating Spectrometer

    SciTech Connect

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  10. Measurement of U-235 Fission Neutron Spectra Using a Multiple Gamma Coincidence Technique

    SciTech Connect

    Ji Chuncheng; Kegel, G.H.R.; Egan, J.J.; DeSimone, D.J.; Alimeti, A.; Roldan, C.F.; McKittrick, T.M.; Kim, D.-S.; Chen, X.; Tremblay, S.E.

    2005-05-24

    The Los Alamos Model of Madland and Nix predicts the shape of the fission neutron energy spectrum for incident primary neutrons of different energies. Verifications of the model normally are limited to measurements of the fission neutron spectra for energies higher than that of the primary neutrons because the low-energy spectrum is distorted by the admixture of elastically and inelastically scattered neutrons. This situation can be remedied by using a measuring technique that separates fission from scattering events. One solution consists of using a fissile sample so thin that fission fragments can be observed indicating the occurrence of a fission event. A different approach is considered in this paper. It has been established that a fission event is accompanied by the emission of between seven and eight gamma rays, while in a scattering interaction, between zero and two gammas are emitted, so that a gamma multiplicity detector should supply a datum to distinguish a fission event from a scattering event. We proceed as follows: A subnanosecond pulsed and bunched proton beam from the UML Van de Graaff generates nearly mono-energetic neutrons by irradiating a thin metallic lithium target. The neutrons irradiate a 235U sample. Emerging neutron energies are measured with a time-of-flight spectrometer. A set of four BaF2 detectors is located close to the 235U sample. These detectors together with their electronic components identify five different events for each neutron detected, i.e., whether four, three, two, one, or none of the BaF2 detectors received one (or more) gamma rays. We present work, preliminary to the final measurements, involving feasibility considerations based on gamma-ray coincidence measurements with four BaF2 detectors, and the design of a Fission-Scattering Discriminator under construction.

  11. Portable Tandem Mass Spectrometer Analyzer

    DTIC Science & Technology

    1991-07-01

    The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional

  12. Evidence for Enhanced 3He in Flare-accelerated Particles Based on New Calculations of the Gamma-Ray Line Spectrum

    NASA Astrophysics Data System (ADS)

    Murphy, R. J.; Kozlovsky, B.; Share, G. H.

    2016-12-01

    The 3He abundance in impulsive solar energetic particle (SEP) events is enhanced up to several orders of magnitude compared to its photospheric value of [3He]/[4He] = 1-3 × 10-4. Interplanetary magnetic field and timing observations suggest that these events are related to solar flares. Observations of 3He in flare-accelerated ions would clarify the relationship between these two phenomena. Energetic 3He interactions in the solar atmosphere produce gamma-ray nuclear-deexcitation lines, both lines that are also produced by protons and α particles and lines that are essentially unique to 3He. Gamma-ray spectroscopy can, therefore, reveal enhanced levels of accelerated 3He. In this paper, we identify all significant deexcitation lines produced by 3He interactions in the solar atmosphere. We evaluate their production cross sections and incorporate them into our nuclear deexcitation-line code. We find that enhanced 3He can affect the entire gamma-ray spectrum. We identify gamma-ray line features for which the yield ratios depend dramatically on the 3He abundance. We determine the accelerated 3He/α ratio by comparing these ratios with flux ratios measured previously from the gamma-ray spectrum obtained by summing the 19 strongest flares observed with the Solar Maximum Mission Gamma-Ray Spectrometer. All six flux ratios investigated show enhanced 3He, confirming earlier suggestions. The 3He/α weighted mean of these new measurements ranges from 0.05 to 0.3 (depending on the assumed accelerated α/proton ratio) and has a <1 × 10-3 probability of being consistent with the photospheric value. With the improved code, we can now exploit the full potential of gamma-ray spectroscopy to establish the relationship between flare-accelerated ions and 3He-rich SEPs.

  13. Initial recommendations for restricting gamma-ray spectrometry measurements of radionuclides for on-site inspections

    SciTech Connect

    Buckley, W F; Kreek, S A; Wild, J F

    1998-11-06

    The US paper "Radionuclide Sampling, Sample Handling and Analytical Laboratory Equipment for Comprehensive Test Ban Treaty On-Site Inspections," CTBT/PC/V/OSI/WSII/PR/29 identified the radionuclides of interest to an OS1 as 144Ce, 147Nd, 141Ce, 149Ba140La), 95 Zr(95Nb), 131mXe, 133mXe, 133gXe, 135gXe, and 37Ar. All of these nuclides (except 37Ar) can be measured via some form of conventional or coincidence-based gamma-ray spectrometry. The non-gaseous radionuclides [144Ce, 147Nd, 141Ce, 140Ba(140La), and 95Zr(95Nb)] can be measured via conventional high-resolution gamma-ray spectrometry using a shielded, high-purity germanium (HPGe) detector. The gaseous radionuclides 131mXe, 133mXe, 133gXe, and 135gXe are best measured (after separation from their homologous elements) via a gamma & beta/electron coincidence technique such as that described in CTBT/WGB/TL-11/5 which could utilize either a HPGe or low-resolution (NaI(TI)) gamma-ray spectrometer to detect the gamma-ray/x-ray and a plastic scintillator to detect the beta particle/electron from the decay of the various Xe isotopes. The US paper CTBT/PC/V/IOSI/WSII/PR/29 (and other papers) identified a need to limit the information that can be extracted from high-resolution gamma-ray spectra to ensure that only information relevant to an OSI is accessible. The term "blinding" has been used to describe the need to limit the information available to the Inspection Team from the high-resolution gamma-ray measurement. A better term is "measurement restriction"; the need for restricting the information is particularly relevant to conventional high-resolution gamma-ray spectrometry measurements, but not to the gamma & beta/electron coincidence-type measurements

  14. Monte Carlo Simulations of Ultra-High Energy Resolution Gamma Detectors for Nuclear Safeguards

    SciTech Connect

    Robles, A; Drury, O B; Friedrich, S

    2009-08-19

    Ultra-high energy resolution superconducting gamma-ray detectors can improve the accuracy of non-destructive analysis for unknown radioactive materials. These detectors offer an order of magnitude improvement in resolution over conventional high purity germanium detectors. The increase in resolution reduces errors from line overlap and allows for the identification of weaker gamma-rays by increasing the magnitude of the peaks above the background. In order to optimize the detector geometry and to understand the spectral response function Geant4, a Monte Carlo simulation package coded in C++, was used to model the detectors. Using a 1 mm{sup 3} Sn absorber and a monochromatic gamma source, different absorber geometries were tested. The simulation was expanded to include the Cu block behind the absorber and four layers of shielding required for detector operation at 0.1 K. The energy spectrum was modeled for an Am-241 and a Cs-137 source, including scattering events in the shielding, and the results were compared to experimental data. For both sources the main spectral features such as the photopeak, the Compton continuum, the escape x-rays and the backscatter peak were identified. Finally, the low energy response of a Pu-239 source was modeled to assess the feasibility of Pu-239 detection in spent fuel. This modeling of superconducting detectors can serve as a guide to optimize the configuration in future spectrometer designs.

  15. Design of a transportable high efficiency fast neutron spectrometer

    DOE PAGES

    Roecker, C.; Bernstein, A.; Bowden, N. S.; ...

    2016-04-12

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV andmore » a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.« less

  16. Design of a transportable high efficiency fast neutron spectrometer

    SciTech Connect

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-04-12

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  17. Design of a transportable high efficiency fast neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  18. Gamma ray generator

    SciTech Connect

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  19. Spent Fuel Assay with an Ultra-High Rate HPGe Spectrometer

    SciTech Connect

    Fast, James; Fulsom, Bryan; Pitts, Karl; VanDevender, Brent; Wood, Lynn

    2015-07-01

    Traditional verification of spent nuclear fuel (SNF) includes determination of initial enrichment, burnup and cool down time (IE, BU, CT). Along with neutron measurements, passive gamma assay provides important information for determining BU and CT. Other gamma-ray-based assay methods such as passive tomography and active delayed gamma offer the potential to measure the spatial distribution of fission products and the fissile isotopic concentration of the fuel, respectively. All fuel verification methods involving gamma-ray spectroscopy require that the spectrometers manage very high count rates while extracting the signatures of interest. PNNL has developed new digital filtering and analysis techniques to produce an ultra-high rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This 37% relative efficiency detector has been operated for SNF measurements at input count rates of 500-1300 kcps and throughput in excess of 150 kcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This paper will present the results of both passive and active SNF measurement performed with this system at PNNL. (authors)

  20. Calibration of the electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Cash, B. L.

    1972-01-01

    The principal function of the sensor used in the electron-proton spectrometer is to provide a signal which can be used to determine the energy and indicate the type of an incident particle. Two techniques are employed to resolve the particle intensity in different energy regions. The first employs a moderator surrounding each detector to provide a nominal lower limit to the energy of a particle which can be detected. The second technique utilizes a pulse height discriminator to identify those particles entering a detector whose energy is (1) sufficiently high that it exceeds the discriminator level if the particle is stopped in the detector, or (2) sufficiently low that the ionization rate causes the discrimination level to be exceeded for paths through the detector shorter than the particle range.

  1. A compact digital time differential perturbed angular correlation-spectrometer using field programmable gate arrays and various timestamp algorithms

    SciTech Connect

    Jaeger, Markus; Butz, Tilman; Iwig, Kornelius

    2011-06-15

    A user-friendly fully digital time differential perturbed angular correlation (TDPAC)-spectrometer with six detectors and fast digitizers using field programmable gate arrays (FPGA) is described and performance data are given. The new spectrometer has an online data analysis feature, a compact size, and a time resolution such as conventional analog spectrometers. Its calculation intensive part was implemented inside the digitizer. This gives the possibility to change parameters (energy windows, constant fraction trigger delay) and see their influence immediately in the {gamma}-{gamma} correlation diagrams. Tests were performed which showed that the time resolution using a {sup 60}Co source with energy window set at 1.17 MeV and 1.33 MeV is 265 ps with LaBr{sub 3}(Ce) scintillators and 254 ps with BaF{sub 2} scintillators. A true constant fraction algorithm turned out to be slightly better than the constant fraction of amplitude method. The spectrometer performance was tested with a TDPAC measurement using a {sup 44}Ti in rutile source and a positron lifetime measurement using {sup 22}Na. The maximum possible data rate of the spectrometer is 1.1 x 10{sup 6} {gamma} quanta per detector and second.

  2. Gamma-ray observatory INTEGRAL reloaded

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Edward P. J.

    2017-04-01

    The scientific aims of the European Space Agency's International Gamma-Ray Astrophysics Laboratory are considerably extended because of its unique capability to identify electromagnetic counterparts to sources of gravitational waves and ultra-high-energy neutrinos.

  3. Application of low-background gamma-ray spectrometry to monitor radioactivity in the environment and food.

    PubMed

    Khan, A J; Semkow, T M; Beach, S E; Haines, D K; Bradt, C J; Bari, A; Syed, U-F; Torres, M; Marrantino, J; Kitto, M E; Menia, T; Fielman, E

    2014-08-01

    The results are described of an upgrade of the low-background gamma-ray spectrometry laboratory at New York State Department of Health by acquiring sensitivity to low-energy gamma rays. Tuning of the spectrometer and its low-energy response characteristics are described. The spectrometer has been applied to monitor the environment by measuring aerosols and water in New York State contaminated by the 2011 Fukushima accident plume. In addition, the spectrometer has been used to monitor radioactivity in food by performing a study of cesium in Florida milk.

  4. Design of an innovative gamma ray spectroscopy image-based telescope by assigning reciprocal vision color to each gamma photon depending on the energy of gamma photons

    NASA Astrophysics Data System (ADS)

    Rahmani Nejad, Akbar; Olia, M. A.

    2009-08-01

    In this paper an innovative method to devise a new astronomical observation instrument by simultaneous implementation of a gamma telescope and a gamma spectroscope is presented. Electromagnetic beams emitted from a star e.g. the sun is spread all electromagnetic spectrum from gamma rays to radio waves, but there is a fingerprint in such a wide spectrum that shows the exact fusion reaction which can be traced by associated gamma photons. This means if gamma photons, emitted from each part of sun, to be detected by this instrument, then spatial information is provided by telescope and information about the energy is recorded by spectrometer, by convolving two above mentioned data, there will be an illustration of a star like the sun that can show which area emits associated gamma photons that in turn illustrates the spatial distribution of elements that produce these gamma photons e.g. hydrogen, deuterium, tritium, helium, etc. we choose a reference color for each principle gamma photon, according to method similar to gamut color space of CIE [1], by specific linear transformation, or transformation matrix having photon-energy dependence coefficients, then there will be a colorful illustration of sun or any star (or even a GRB) that depicts distribution of elements, released energy, density of elements, etc. This information in turn will reveal the rate and topological variation of matter, energy, magnetic fields, etc. This information will also help to provide enough data to find spatial distribution function of energy, matter, variation and displacement of matters on stars and in turn, it will provide unique information about behaviors of stars. Finally, the method of vibrating holes to increase the spatial resolution of gamma detectors to hundreds times is presented. This method increases the spatial resolution of semiconductor-gamma telescopes to hundreds of times without decreasing the size of gamma sensor pixels and without any major effort to improve the

  5. The Pickup Ion Composition Spectrometer

    NASA Astrophysics Data System (ADS)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  6. Automated mass spectrometer grows up

    SciTech Connect

    McInteer, B.B.; Montoya, J.G.; Stark, E.E.

    1984-01-01

    In 1980 we reported the development of an automated mass spectrometer for large scale batches of samples enriched in nitrogen-15 as ammonium salts. Since that time significant technical progress has been made in the instrument. Perhaps more significantly, administrative and institutional changes have permitted the entire effort to be transferred to the private sector from its original base at the Los Alamos National Laboratory. This has ensured the continuance of a needed service to the international scientific community as revealed by a development project at a national laboratory, and is an excellent example of beneficial technology transfer to private industry.

  7. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  8. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  9. Wide-range CCD spectrometer

    NASA Astrophysics Data System (ADS)

    Sokolova, Elena A.; Reyes Cortes, Santiago D.

    1996-08-01

    The utilization of wide range spectrometers is a very important feature for the design of optical diagnostics. This paper describes an innovative approach, based on charged coupled device, which allows to analyze different spectral intervals with the same diffraction grating. The spectral interval is varied by changing the position of the entrance slit when the grating is stationary. The optical system can also include a spherical mirror. In this case the geometric position of the mirror is calculated aiming at compensating the first order astigmatism and the meridional coma of the grating. This device is planned to be used in Thomson scattering diagnostic of the TOKAMAK of Instituto Superior Tecnico, Lisbon (ISTTOK).

  10. Modular multichannel surface plasmon spectrometer

    NASA Astrophysics Data System (ADS)

    Neuert, G.; Kufer, S.; Benoit, M.; Gaub, H. E.

    2005-05-01

    We have developed a modular multichannel surface plasmon resonance (SPR) spectrometer on the basis of a commercially available hybrid sensor chip. Due to its modularity this inexpensive and easy to use setup can readily be adapted to different experimental environments. High temperature stability is achieved through efficient thermal coupling of individual SPR units. With standard systems the performance of the multichannel instrument was evaluated. The absorption kinetics of a cysteamine monolayer, as well as the concentration dependence of the specific receptor-ligand interaction between biotin and streptavidin was measured.

  11. Triple axis and spins spectrometers

    SciTech Connect

    Trevino, S.F.

    1993-01-01

    In the paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, the work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments.

  12. Cosmic ray studies with a gas Cherenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Yodh, G. B.; Simon, M.; Spiegelhauer, H.

    1980-01-01

    The results from a balloon-borne gas Cherenkov counter (threshold 16.5 GeV/nucleon) and an ionization spectrometer are presented. The gas Cherenkov counter provides an absolute energy distribution for the response of the calorimeter for 5 or = Z 26 nuclei of cosmic rays. The contribution of scintillation to the gas Cherenkov pulse height was obtained by independently selecting particles below the gas Cherenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi squared between Monte Carlo simulted data and flight data. Best fit power laws, dN/dE = AE-gamma, were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E (-2.7) are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer. The data from the ionization calorimeter and the gas Cherenkov are thus completely self-consistent.

  13. Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Evans, Larry G.; Squyres, Steven W.

    1987-01-01

    The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.

  14. A new compact neutron/gamma ray scintillation detector

    NASA Astrophysics Data System (ADS)

    Buffler, A.; Comrie, A. C.; Smit, F. D.; Wörtche, H. J.

    2016-09-01

    Progress towards the realization of a new compact neutron spectrometer is described. The detector is based on EJ299-33 plastic scintillator coupled to silicon photomultipliers, and a digital implementation of pulse shape discrimination is used to separate events associated with neutrons from those associated with gamma rays. The spectrometer will be suitable over the neutron energy range 1-100 MeV, illustrated in this work with measurements made using an AmBe radioisotopic source and quasi-monoenergetic neutron beams produced using a cyclotron.

  15. GeMini: The Next-Generation Mechanically-Cooled Germanium Spectrometer

    SciTech Connect

    Burks, M

    2008-11-12

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (MINIature GErmanium spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice inspections, border patrol, port monitoring and emergency response, where positive nuclide identification of radioactive materials is required but power and liquid cryogen are not easily available. GeMini weighs 2.75 kg for the basic instrument and 4.5 kg for the full instrument including user interface and ruggedized hermetic packaging. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Three working prototypes have been built and tested in the lab. The measured energy resolution is 3 keV fwhm at 662 keV gamma-rays. This paper will focus on the design and performance of the instrument.

  16. GeMini: The Next Generation Mechanically-Cooled Germanium Spectrometer

    SciTech Connect

    Burks, M

    2008-06-13

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (GErmanium MINIature spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice and surprise inspections where positive nuclide identification of radioactive materials is required. GeMini weighs 2.75 kg (6 lbs) total including the detector, cryostat, cryocooler, batteries, electronics and readout. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Two working prototypes have been built and tested in the lab. The target energy resolution is 3 keV fwhm or better for 1332 keV gamma-rays. The detectors currently achieve around 4.5 keV resolution, which is slightly higher than our goal due to microphonic noise. Our present work focuses on improving the resolution through mechanical and electronic means of reducing the microphonic noise. This paper will focus on the performance of the instrument and its applicability for inspectors in the field.

  17. Engine spectrometer probe and method of use

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, Sarkis (Inventor); Kittinger, Scott A. (Inventor)

    2006-01-01

    The engine spectrometer probe and method of using the same of the present invention provides a simple engine spectrometer probe which is both lightweight and rugged, allowing an exhaust plume monitoring system to be attached to a vehicle, such as the space shuttle. The engine spectrometer probe can be mounted to limit exposure to the heat and debris of the exhaust plume. The spectrometer probe 50 comprises a housing 52 having an aperture 55 and a fiber optic cable 60 having a fiber optic tip 65. The fiber optic tip 65 has an acceptance angle 87 and is coupled to the aperture 55 so that the acceptance angle 87 intersects the exhaust plume 30. The spectrometer probe can generate a spectrum signal from light in the acceptance angle 506 and the spectrum signal can be provided to a spectrometer 508.

  18. New results from Compton spectrometer experiments

    NASA Astrophysics Data System (ADS)

    Gehring, Amanda; Espy, Michelle; Haines, Todd; Webb, Timothy

    2016-09-01

    Over the past three years, a Compton spectrometer has successfully measured the x-ray spectra of intense radiographic sources. In this method, a collimated beam of x-rays incident on a convertor foil ejects Compton electrons. A collimator in the entrance to the spectrometer selects the forward-scattered electrons, which enter the magnetic field region of the spectrometer. The position of the electrons at the magnet's focal plane is proportional to the square root of their momentum, allowing the x-ray spectrum to be reconstructed. The spectrometer is a neodymium-iron magnet which measures spectra in the less than 1 MeV to 20 MeV energy range. In addition, a new spectrometer has been constructed that is a samarium-cobalt magnet with a calculated energy range of 50 keV to 4 MeV. The spectrometers have been fielded at both continuous and pulsed power facilities. Recent experimental results will be presented.

  19. Miniature Ion-Array Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A figure is shown that depicts a proposed miniature ion-mobility spectrometer that would share many features of design and operation of the instrument described in another article. The main differences between that instrument and this one would lie in the configuration and mode of operation of the filter and detector electrodes. A filter electrode and detector electrodes would be located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a combination of (1) a transverse AC electric field that would effect differential transverse dispersal of ions and (2) a transverse DC electric field that would drive the dispersed ions toward the detector electrodes at different distances along the drift tube. The electric current collected by each detector electrode would be a measure of the current, and thus of the abundance of the species of ions impinging on that electrode. The currents collected by all the detector electrodes could be measured simultaneously to obtain continuous readings of abundances of species. The downstream momentum of accelerated ions would be maintained through neutralization on the electrodes; the momentum of the resulting neutral atoms would serve to expel gases from spectrometer, without need for a pump.

  20. Digital Spectrometers for Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  1. New decay branches of the radiative capture reaction {sup 12}C({sup 16}O,{gamma}){sup 28}Si

    SciTech Connect

    Lebhertz, D.; Courtin, S.; Haas, F.; Salsac, M.-D.; Beck, C.; Michalon, A.; Rousseau, M.; Marley, P. L.; Glover, R. G.; Kent, P. E.; Hutcheon, D. A.; Davis, C.; Pearson, J. E.

    2009-01-28

    Resonances in the {sup 12}C({sup 16}O,{gamma}){sup 28}Si radiative capture process at energies around the Coulomb barrier have been probed using the very selective 0 deg. Dragon spectrometer at Triumf and its associated BGO {gamma}-array. For the first time the full level scheme involved in this process has been measured and shows previously unobserved {gamma}-decay to doorway states around 11 MeV in {sup 28}Si.

  2. Gamma-ray imaging with germanium detectors

    NASA Astrophysics Data System (ADS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  3. gamma-Hexachlorocyclohexane (gamma-HCH)

    Integrated Risk Information System (IRIS)

    gamma - Hexachlorocyclohexane ( gamma - HCH ) ; CASRN 58 - 89 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asse

  4. Miniature Time-of-Flight Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Potember, Richard S.

    1999-01-01

    Major advances must occur to protect astronauts from prolonged periods in near-zero gravity and high radiation associated with extended space travel. The dangers of living in space must be thoroughly understood and methods developed to reverse those effects that cannot be avoided. Six of the seven research teams established by the National Space Biomedical Research Institute (NSBRI) are studying biomedical factors for prolonged space travel to deliver effective countermeasures. To develop effective countermeasures, each of these teams require identification of and quantitation of complex pharmacological, hormonal, and growth factor compounds (biomarkers) in humans and in experimental animals to develop an in-depth knowledge of the physiological changes associated with space travel. At present, identification of each biomarker requires a separate protocol. Many of these procedures are complicated and the identification of each biomarker requires a separate protocol and associated laboratory equipment. To carry all of this equipment and chemicals on a spacecraft would require a complex clinical laboratory; and it would occupy much of the astronauts time. What is needed is a small, efficient, broadband medical diagnostic instrument to rapidly identify important biomarkers for human space exploration. The Miniature Time-Of- Flight Mass Spectrometer Project in the Technology Development Team is developing a small, high resolution, time-of-flight mass spectrometer (TOFMS) to quantitatively measure biomarkers for human space exploration. Virtues of the JHU/APL TOFMS technologies reside in the promise for a small (less than one cubic ft), lightweight (less than 5 kg), low-power (less than 50 watts), rugged device that can be used continuously with advanced signal processing diagnostics. To date, the JHU/APL program has demonstrated mass capability from under 100 to beyond 10,000 atomic mass units (amu) in a very small, low power prototype for biological analysis. Further

  5. Recent results on celestial gamma radiation from SMM

    NASA Technical Reports Server (NTRS)

    Share, Gerald H.

    1991-01-01

    Observations made by the Gamma Ray Spectrometer on board the SMM are described. Recent results reported include observations and analyses of gamma-ray lines from Co-56 produced in supernovae, observations of the temporal variation of the 511 keV line observed during Galactic center transits, and measurements of the diffuse Galactic spectrum from 0.3 to 8.5 MeV. The work in progress includes measurements of the distribution of Galactic Al-26, observations to place limits on Galactic Ti-44 and Fe-60 and on Be-7 produced in novae, and searches for a characteristic gamma-ray emission from pair plasmas, a 2.223 MeV line emission, limits on deexcitation lines from interstellar C and O, and gamma-ray bursts.

  6. ({gamma},2{ital N}) reaction in {sup 12}C

    SciTech Connect

    McGeorge, J.C.; MacGregor, I.J.D.; Dancer, S.N.; Annand, J.R.M.; Anthony, I.; Crawford, G.I.; Hall, S.J.; Harty, P.D.; Kellie, J.D.; Miller, G.J.; Owens, R.O.; Wallace, P.A.; Branford, D.; Shotter, A.C.; Schoch, B.; Beck, R.; Schmieden, H.; Vogt, J.M.

    1995-04-01

    The {sup 12}{ital C}({gamma},{ital pn}) and {sup 12}{ital C}({gamma},{ital pp}) reactions have been measured for photon energies between 80 and 157 MeV using a photon tagging spectrometer and plastic scintillator detectors. The overall energy resolution was {similar_to}7 MeV, sufficient to determine the initial shells of the emitted nucleons. Corrections were made for solid angle and threshold effects by means of Monte Carlo simulations. For the ({gamma},{ital pn}) reaction both the missing energy and recoil momentum distributions are largely consistent with a two-nucleon absorption process on {ital p}-shell an {ital sp} nucleon pairs. For the much smaller {sup 12}{ital C}({gamma},{ital pp}) cross section the reaction mechanism is not yet understood but the recoil momentum distributions suggest that final state interactions are not dominant.

  7. TEM, HRTEM, electron holography and electron tomography studies of gamma' and gamma'' nanoparticles in Inconel 718 superalloy.

    PubMed

    Dubiel, B; Kruk, A; Stepniowska, E; Cempura, G; Geiger, D; Formanek, P; Hernandez, J; Midgley, P; Czyrska-Filemonowicz, A

    2009-11-01

    The aim of the study was the identification of gamma' and gamma'' strengthening precipitates in a commercial nickel-base superalloy Inconel 718 (Ni-19Fe-18Cr-5Nb-3Mo-1Ti-0.5Al-0.04C, wt %) using TEM dark-field, HRTEM, electron holography and electron tomography imaging. To identify gamma' and gamma'' nanoparticles unambiguously, a systematic analysis of experimental and theoretical diffraction patterns were performed. Using HRTEM method it was possible to analyse small areas of precipitates appearance. Electron holography and electron tomography techniques show new possibilities of visualization of gamma' and gamma'' nanoparticles. The analysis by means of different complementary TEM methods showed that gamma'' particles exhibit a shape of thin plates, while gamma' phase precipitates are almost spherical.

  8. Scintillating Fiber Technology for a High Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Evgeny; Adams, James, Jr.; Christl, Mark; Norwood, Joseph; Watts, John

    2014-01-01

    Develop a compact low-power neutron spectrometer that uniquely identifies neutrons in the mixed radiation field expected on crewed deep-space missions. Secondary neutrons are generated by cosmic rays striking heavy crewed spacecraft as well as lunar and planetary surfaces1,2. It has been shown that secondary neutrons can account for up to 50% if the total dose-equivalent received by the crew.

  9. INTEGRAL: International Gamma Ray Astrophysics Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Christoph

    1992-07-01

    INTEGRAL is dedicated to the fine spectroscopy and imaging of celestial gamma ray sources in the energy range 15 keV to 10 MeV. The instruments on INTEGRAL will achieve a gamma ray line sensitivity of 3 times 10 to the minus 6th power ph/sq cm/s, a continuum sensitivity of 3 times 10 to the minus 8th power ph/sq cm/s/keV at 1 MeV (approximately 10 mCrab at 1 MeV) and imaging with an angular resolution of better than 20 minutes. This represents an order of magnitude improvement over the Gamma Ray Observatory (GRO) in line sensitivity, energy resolution and angular resolution. Comparison with the low energy gamma ray telescope Sigma also shows a major advance: the continuum sensitivity improvement is considerably more than one order of magnitude between 100 keV and 1 MeV; and the narrow line sensitivity is increased by nearly two orders of magnitude. INTEGRAL consists of two main instruments: a germanium spectrometer and a caesium iodide coded aperture mask imager. These instruments are supplemented by two monitors: an X-ray monitor and an optical transient camera.

  10. Diffuse Galactic Soft Gamma-Ray Emission

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Lin, R. P.; Slassi-Sennou, S.; Coburn, W.; Pelling, R. M.

    2000-11-01

    The Galactic diffuse soft gamma-ray (30-800 keV) emission has been measured from the Galactic center by the High Resolution Gamma-Ray and Hard X-Ray Spectrometer balloon-borne germanium instrument to determine the spectral characteristics and origin of the emission. The resulting Galactic diffuse continuum is found to agree well with a single power law (plus positronium) over the entire energy range, consistent with RXTE and COMPTEL/Compton Gamma Ray Observatory observations at lower and higher energies, respectively. We find no evidence of spectral steepening below 200 keV, as has been reported in previous observations. The spatial distribution along the Galactic ridge is found to be nearly flat, with upper limits set on the longitudinal gradient and with no evidence of an edge in the observed region. The soft gamma-ray diffuse spectrum is well modeled by inverse Compton scattering of interstellar radiation off of cosmic-ray electrons, minimizing the need to invoke inefficient nonthermal bremsstrahlung emission. The resulting power requirement is well within that provided by Galactic supernovae. We speculate that the measured spectrum provides the first direct constraints on the cosmic-ray electron spectrum below 300 MeV.

  11. The Giotto ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Balsiger, H.; Altwegg, K.; Buehler, F.; Fischer, J.; Geiss, J.; Meier, A.; Rettenmund, U.; Rosenbauer, H.; Schwenn, R.; Neugebauer, M.

    1986-01-01

    The Giotto Ion Mass Spectrometer (IMS) consists of two sensors: one optimized for the outer and the other for the inner coma, with each obtaining complementary information in the region for which it is not optimized. The outer coma is characterized by the interaction between solar wind and comentary plasmas, the inner coma by the outflow of cometary neutrals and their ionization products. Both sensors feature mass imaging characteristics, permitting simultaneous measurements of several ion species by multidetector arrays. Resultant mass-per-charge resolution is greater than or = 20. Energy per charge, and the elevation and aximuth of incident ions are measured. Calibration and in-flight solar-wind data show that the IMS will meet its scientific goals for the Halley encounter.

  12. Modeling the Production of Beta-Delayed Gamma Rays for the Detection of Special Nuclear Materials

    SciTech Connect

    Hall, J M; Pruet, J A; Brown, D A; Descalle, M; Hedstrom, G W; Prussin, S G

    2005-02-14

    The objective of this LDRD project was to develop one or more models for the production of {beta}-delayed {gamma} rays following neutron-induced fission of a special nuclear material (SNM) and to define a standardized formatting scheme which will allow them to be incorporated into some of the modern, general-purpose Monte Carlo transport codes currently being used to simulate inspection techniques proposed for detecting fissionable material hidden in sea-going cargo containers. In this report, we will describe a Monte Carlo model for {beta}-delayed {gamma}-ray emission following the fission of SNM that can accommodate arbitrary time-dependent fission rates and photon collection histories. The model involves direct sampling of the independent fission yield distributions of the system, the branching ratios for decay of individual fission products and spectral distributions representing photon emission from each fission product and for each decay mode. While computationally intensive, it will be shown that this model can provide reasonably detailed estimates of the spectra that would be recorded by an arbitrary spectrometer and may prove quite useful in assessing the quality of evaluated data libraries and identifying gaps in the libraries. The accuracy of the model will be illustrated by comparing calculated and experimental spectra from the decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general-purpose transport calculations, where a detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may not be necessary, it will be shown that a simple parameterization of the {gamma}-ray source function can be defined which provides high-quality average spectral distributions that should suffice for calculations describing photons being transported through thick attenuating media. Finally, a proposal for ENDF-compatible formats that describe each of the models and

  13. The Geostationary Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Kenneth; Rider, David; Wu, Yen-Hung (James)

    2012-09-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (~2.7km×2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  14. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  15. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the Geo

  16. A colloidal quantum dot spectrometer

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  17. Fluorescence imaging spectrometer optical design

    NASA Astrophysics Data System (ADS)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  18. Search for monenergetic gamma rays from psi /3684/ decay

    NASA Technical Reports Server (NTRS)

    Simpson, J. W.; Beron, B. L.; Ford, R. L.; Hofstadter, R.; Howell, R. L.; Hughes, E. B.; Liberman, A. D.; Martin, T. W.; Oneill, L. H.; Hilger, E.

    1975-01-01

    Results are reported of a search for monoenergetic gamma rays with energies above 50 MeV arising from psi (3684) decay. The measurements were made by operating an electron-positron storage ring at a center-of-mass energy of 3684 MeV and detecting the secondary gamma rays with large-crystal NaI(T1) spectrometers. No significant evidence is found for the emission of such radiation, and upper limits are placed on such emissions for energies above 50 MeV.

  19. The Sneg-3 gamma-ray astronomy experiment

    NASA Astrophysics Data System (ADS)

    Vedrenne, G.; Niel, M.; Chambon, G.

    The scientific objectives of the Sneg-3 experiment are examined. The gamma-ray spectrometer installed on the French Sneg-3 satellite has 14 differential channels in the 20 keV to 10 MeV range and 256 channels for amplitude analysis in the 200 keV to 2.5 MeV range. The processing of Helios, Prognoz-6 (Sneg-2MP), and Sneg-3 data has made it possible to localize transient gamma-ray sources by the triangulation method.

  20. Polarized gamma-ray emission from the crab.

    PubMed

    Dean, A J; Clark, D J; Stephen, J B; McBride, V A; Bassani, L; Bazzano, A; Bird, A J; Hill, A B; Shaw, S E; Ubertini, P

    2008-08-29

    Pulsar systems accelerate particles to immense energies. The detailed functioning of these engines is still poorly understood, but polarization measurements of high-energy radiation may allow us to locate where the particles are accelerated. We have detected polarized gamma rays from the vicinity of the Crab pulsar using data from the spectrometer on the International Gamma-Ray Astrophysics Laboratory satellite. Our results show polarization with an electric vector aligned with the spin axis of the neutron star, demonstrating that a substantial fraction of the high-energy electrons responsible for the polarized photons are produced in a highly ordered structure close to the pulsar.

  1. Cosmic Forensics Confirms Gamma-Ray Burst And Supernova Connection

    NASA Astrophysics Data System (ADS)

    2003-03-01

    Scientists announced today that they have used NASA's Chandra X-ray Observatory to confirm that a gamma-ray burst was connected to the death of a massive star. This result is an important step in understanding the origin of gamma-ray bursts, the most violent events in the present-day universe. "If a gamma-ray burst were a crime, then we now have strong circumstantial evidence that a supernova explosion was at the scene," said Nathaniel Butler of Massachusetts Institute of Technology in Cambridge, lead author of a paper presented today at the meeting of the High Energy Division of the American Astronomical Society. Chandra was able to obtain an unusually long observation (approximately 21 hours) of the afterglow of GRB 020813 (so named because the High-Energy Transient Explorer, HETE, discovered it on August 13, 2002.) A grating spectrometer aboard Chandra revealed an overabundance of elements characteristically dispersed in a supernova explosion. Narrow lines, or bumps, due to silicon and sulfur ions (atoms stripped of most of their electrons) were clearly identified in the X-ray spectrum of GRB 020813. "Our observation of GRB 020813 supports two of the most important features of the popular supra-nova model for gamma-ray bursts," said Butler. "An extremely massive star likely exploded less than two months prior to the gamma-ray burst, and the radiation from the gamma-ray burst was beamed into a narrow cone." An analysis of the data showed that the ions were moving away from the site of the gamma-ray burst at a tenth the speed of light, probably as part of a shell of matter ejected in the supernova explosion. The line features were observed to be sharply peaked, indicating that they were coming from a narrow region of the expanding shell. This implies that only a small fraction of the shell was illuminated by the gamma-ray burst, as would be expected if the burst was beamed into a narrow cone. The observed duration of the afterglow suggests a delay of about 60 days

  2. Rehabilitation of gamma

    NASA Astrophysics Data System (ADS)

    Poynton, Charles A.

    1998-07-01

    Gamma characterizes the reproduction of tone scale in an imaging system. Gamma summarizes, in a single numerical parameter, the nonlinear relationship between code value--in an 8-bit system, from 0 through 255--and physical intensity. Nearly all image coding systems are nonlinear, and so involve values of gamma different from unity. Owing to poor understanding of tone scale reproduction, and to misconceptions about nonlinear coding, gamma has acquired a terrible reputation in computer graphics and image processing. In addition, the world-wide web suffers from poor reproduction of grayscale and color images, due to poor handling of nonlinear image coding. This paper aims to make gamma respectable again.

  3. Use of airborne gamma-ray spectrometry for kaolin exploration

    NASA Astrophysics Data System (ADS)

    Tourlière, B.; Perrin, J.; Le Berre, P.; Pasquet, J. F.

    2003-08-01

    Airborne gamma-ray spectrometry was used to define targets with kaolin potential in the Armorican Massif of Brittany, France. This exploration method is based on the principle that kaolinite, an aluminosilicate clay mineral constituting kaolin, is formed by the hydrolysis of potash feldspar with the elimination of potassium. Therefore, potassium contrast between favourable host-rock such as a leucogranite and kaolin occurrence is likely a significant pathfinder. As the relationship between the potassium-40 recorded by an airborne gamma-ray spectrometer and total potassium is constant, such data provide us a direct measurement of the potassium content of the ground flown over. Our study tested this by calculating, for each geological unit, the difference between the measured and average potassium content calculated for a given geological formation. The study was based on (i) a recent (1998) high-definition airborne geophysical survey over the Armorican Massif undertaken on behalf of the French Government, and (ii) new geological compilation maps covering the same region. Depleted zones, where the measured potassium is less than the average potassium content calculated target areas with high potential of containing kaolin, provided that the unit was originally rich in potash feldspar. By applying this method to the entire Armorican Massif, it was possible to identify 150 potassium-depleted zones, including 115 that were subjected to rapid field checks and 36 that contained kaolin (21 new discoveries). This method, which is both safe for the environment and easy to use, is therefore a good tool for rapidly defining targets with kaolin potential at a regional scale. The method may also have possibilities in exploring for other types of deposit characterised by an enrichment or depletion in U, K and/or Th.

  4. A Mass Spectrometer Simulator in Your Computer

    ERIC Educational Resources Information Center

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  5. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  6. The high momentum spectrometer drift chambers

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Baker, O. K.; Beaufait, J.; Bennett, C.; Bryant, E.; Carlini, R.; Kross, B.; McCauley, A.; Naing, W.; Shin, T.; Vulcan, W.

    1992-12-01

    The High Momentum Spectrometer in Hall C will use planar drift chambers for charged particle track reconstruction. The chambers are constructed using well understood technology and a conventional gas mixture. Two (plus one spare) drift chambers will be constructed for this spectrometers. Each chamber will contain 6 planes of readout channels. This paper describes the chamber design and gas handling system used.

  7. Spin Spectrometer at the ALS and APS

    SciTech Connect

    Lawrence Livermore National Laboratory; University of Missouri-Rolla; Boyd Technologies; Morton, Simon A; Morton, Simon A; Tobin, James G; Yu, Sung Woo; Komesu, Takashi; Waddill, George D; Boyd, Peter

    2007-04-20

    A spin-resolving photoelectron spectrometer, the"Spin Spectrometer," has been designed and built. It has been utilized at both the Advanced Light Source in Berkeley, CA, and the Advanced Photon Source in Argonne, IL. Technical details and an example of experimental results are presented here.

  8. Isotopic Analysis of Spent Nuclear Fuel with an Ultra-High Rate HPGe Spectrometer

    SciTech Connect

    Fast, James E.; Glasgow, Brian D.; Rodriguez, Douglas C.; VanDevender, Brent A.; Wood, Lynn S.

    2014-06-06

    A longstanding challenge is the assay of spent nuclear fuel (SNF). Determining the isotopic content of SNF requires gamma-ray spectroscopy. PNNL has developed new digital filtering and analysis techniques to produce an ultra high-rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This ~40% efficient detector has been operated for SNF measurements at a throughput of about 400k gamma-ray counts per second (kcps) at an input rate of 1.3 Mcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This talk will present the results of a SNF measurement with aged SNF pellets at PNNL’s Radiochemical Processing Laboratory, first results with a FPGA front end processor capable of processing the data in real time, and the development path toward a multi-element system to assay fuel assemblies.

  9. Optical fiber sensor for low dose gamma irradiation monitoring

    NASA Astrophysics Data System (ADS)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  10. Isothermal deformation of gamma titanium aluminide

    SciTech Connect

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-04-15

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material.

  11. Dense gamma-ray and pair creation using ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Lo, Willie; Hasson, Hannah; Dyer, Gilliss; Clarke, Taylor; Fasanelli, Fabio; Yao, Kelly; Marchenka, Ilija; Henderson, Alexander; Dashko, Andriy; Zhang, Yuling; Ditmire, Todd

    2016-10-01

    We report recent results of gamma-ray and e +e- pair creation experiments using the Texas Petawatt laser (TPW) in Austin and the Trident laser at LANL irradiating solid high-Z targets. In addition to achieving record high densities of emerging gamma-rays and pairs at TPW, we measured in detail the spectra of hot electrons, positrons, and gamma-rays, and studied their spectral variation with laser and target parameters. A new type of gamma-ray spectrometer, called the scintillator attenuation spectrometer (SAS), was successfully demonstrated in Trident experiments in 2015. We will discuss the design and results of the SAS. Preliminary results of new experiments at TPW carried out in the summer of 2016 will also be presented.

  12. Modeled Martian subsurface elemental composition measurements with the probing in situ with neutrons and gamma-ray (PING) instrument

    SciTech Connect

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.

    2016-11-24

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and a Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.

  13. Modeled Martian subsurface elemental composition measurements with the probing in situ with neutrons and gamma-ray (PING) instrument

    DOE PAGES

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...

    2016-11-24

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  14. Resonance production in. gamma gamma. collisions

    SciTech Connect

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (q anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)

  15. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  16. Spectral feature of 31 December 1981 gamma-ray burst not confirmed

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Share, G. H.; Chupp, E. L.; Forrest, D. J.; Matz, S. M.

    1984-01-01

    Measurements of a gamma ray burst at 01:37 UT on December 31, 1981 using the SMM gamma ray spectrometer (GRS) are compared with those made by the Konus instruments on Veneras 11-14. Burst time profiles, photon spectra, and detector energy loss spectra for three time intervals are compared for the GRS and the Konus instruments. It is concluded that the SMM spectra exhibit no evidence for the presence of emission features reported by the Konus group.

  17. Outcrop Gamma-ray Analysis of the Cretaceous mesaverde Group: Jicarilla Apache Indian Reservation, New Mexico

    SciTech Connect

    Ridgley, Jennie; Dunbar, Robyn Wright

    2001-04-25

    This report presents the results of an outcrop gamma-ray survey of six selected measured sections included in the original report. The primary objective of this second study is to provide a baseline to correlate from the outcrop and reservoir model into Mesaverde strata in the San Juan Basin subsurface. Outcrop logs were generated using a GAD-6 gamma-ray spectrometer that simultaneously recorded total counts, potassium, uranium, and thorium data.

  18. Monte Carlo Models for the Production of beta-delayed Gamma Rays Following Fission of Special Nuclear Materials

    SciTech Connect

    Pruet, J; Prussin, S; Descalle, M; Hall, J

    2004-02-03

    A Monte Carlo method for the estimation of {beta}-delayed {gamma}-ray spectra following fission is described that can accommodate an arbitrary time-dependent fission rate and photon collection history. The method invokes direct sampling of the independent fission yield distributions of the fissioning system, the branching ratios for decay of individual fission products and the spectral distributions for photon emission for each decay mode. Though computationally intensive, the method can provide a detailed estimate of the spectrum that would be recorded by an arbitrary spectrometer, and can prove useful in assessing the quality of evaluated data libraries, for identifying gaps in these libraries, etc. The method is illustrated by a first comparison of calculated and experimental spectra from decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general purpose transport calculations, where detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may be unnecessary, it is shown that an accurate and simple parameterization of a {gamma}-ray source function can be obtained. These parametrizations should provide high-quality average spectral distributions that should prove useful in calculations describing photons escaping from thick attenuating media.

  19. Identifying Hazards

    EPA Pesticide Factsheets

    The federal government has established a system of labeling hazardous materials to help identify the type of material and threat posed. Summaries of information on over 300 chemicals are maintained in the Envirofacts Master Chemical Integrator.

  20. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials

    NASA Astrophysics Data System (ADS)

    Chuang, Yi-De; Shao, Yu-Cheng; Cruz, Alejandro; Hanzel, Kelly; Brown, Adam; Frano, Alex; Qiao, Ruimin; Smith, Brian; Domning, Edward; Huang, Shih-Wen; Wray, L. Andrew; Lee, Wei-Sheng; Shen, Zhi-Xun; Devereaux, Thomas P.; Chiou, Jaw-Wern; Pong, Way-Faung; Yashchuk, Valeriy V.; Gullikson, Eric; Reininger, Ruben; Yang, Wanli; Guo, Jinghua; Duarte, Robert; Hussain, Zahid

    2017-01-01

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer's optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small source (˜1 μ m) and detector pixels (˜5 μ m) with high line density gratings (˜3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi1/3Co1/3Mn1/3O2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. We propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.

  1. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials.

    PubMed

    Chuang, Yi-De; Shao, Yu-Cheng; Cruz, Alejandro; Hanzel, Kelly; Brown, Adam; Frano, Alex; Qiao, Ruimin; Smith, Brian; Domning, Edward; Huang, Shih-Wen; Wray, L Andrew; Lee, Wei-Sheng; Shen, Zhi-Xun; Devereaux, Thomas P; Chiou, Jaw-Wern; Pong, Way-Faung; Yashchuk, Valeriy V; Gullikson, Eric; Reininger, Ruben; Yang, Wanli; Guo, Jinghua; Duarte, Robert; Hussain, Zahid

    2017-01-01

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer's optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small source (∼1μm) and detector pixels (∼5μm) with high line density gratings (∼3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi1/3Co1/3Mn1/3O2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. We propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.

  2. Neutron-capture gamma-ray data for obtaining elemental abundances from planetary spectra.

    SciTech Connect

    Reedy, Robert; Frankle, S. C.

    2001-01-01

    Determination of elemental abundances is a top scientific priority of most planetary missions. Gamma-ray spectroscopy is an excellent method to determine elemental abundances using gamma rays made by nuclear reactions induced by cosmic-ray particles and by the decay of radioactive nuclides [Re73,Re78]. Many important planetary gamma rays are made by neutron-capture reactions. However, much of the data for the energies and intensities of neutron-capture gamma rays in the existing literature [e.g. Lo81] are poor [RF99,RF00]. With gamma-ray spectrometers having recently returned data from Lunar Prospector and NEAR and soon to be launch to Mars, there is a need for good data for neutron-capture gamma rays.

  3. The hot plasma spectrometers on Freja

    NASA Astrophysics Data System (ADS)

    Norberg, O.; Eliasson, L.

    1991-11-01

    The hot plasma instrumentation F3H on the Swedish-German Freja satellite due for launch in 1992 will consist of electron and ion spectrometers. The spectrometer Magnetic imaging Two dimensional Electron (MATE) will measure the two dimensional electron distribution in the spin plane in the energy range 0.1 to 120 keV. The ion mass spectrometer Three dimensional Ion Composition Spectrometer (TICS) measures a full three dimensional distribution in the energy range 0.5 to 15000 eV/q with high mass resolution. The instruments use a particle 'imaging' detector technique based on a large diameter microchannel plate with position sensitive anode. The topics to be studied with the Freja hot plasma spectrometers include auroral particle acceleration, heating and acceleration of ionospheric ions, and the dynamics of auroral arc systems. Of special importance to the scientific objectives is the high data rate from the Freja instrumentation, the MATE and TICS spectrometers will be sampled every 10 ms, corresponding to a spatial resolution better than 70 m at ionospheric heights. The design, simulation, and calibration of the spectrometers are discussed.

  4. Handheld spectrometers: the state of the art

    NASA Astrophysics Data System (ADS)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  5. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  6. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  7. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  8. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  9. Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Lawrence, David J. ,; Elphic, R. C.; Gasnault, O. M.; Maurice, S.; Moore, K. R.; Binder, A. B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 g/cm{sup 2} for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods [e.g. Clementine Spectral Reflectance (CSR)], which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  10. The Orbiting Astrophysical Spectrometer In Space (OASIS)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    2009-01-01

    The Orbiting Astrophysical Spectrometer In Space (OASIS) is an Advanced Concept currently understudy at NASA as a mission for the next decade. The goal of the OASIS mission is to identify a local site or sites where galactic cosmic rays (GCR) originate and are accelerated. The mission will allow GCR data to be used to investigate how elements are made and distributed in the galaxy and to improve our understanding of supernovae and the nucleosynthesis of the heavy elements needed for life. OASIS consists of two instruments that provide complementary data on the location and nature of the source(s) through investigating the composition of ultraheavy nuclei and the energy spectrum of electrons. OASIS will measure the relative abundances in the actinide group to determine the age of the r-process material in GCRs. The presence of young r-process material would indicate that GCRs are a sample of the interstellar medium in OB associations. OASIS will follow the electron spectrum to its high-energy end. The energy where this spectrum ends will tell us the distance to the nearest GCR source(s). OASIS will look for spectral features and anisotropy in the high energy electron spectrum that are expected to appear when only a few of the nearest sources can contribute the electron flux. Possibly these measurements will lead to the identification of the nearest cosmic ray electron source.

  11. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  12. Gas sampling system for a mass spectrometer

    DOEpatents

    Taylor, Charles E; Ladner, Edward P

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  13. Acousto-optic tunable filter imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey; Reyes, George; Rider, David; Cheng, Li-Jen

    1991-01-01

    A remote sensing multispectral imaging instrument is being developed that uses a high resolution, fast programmable acoustooptic tunable filter (AOTF) as the spectral bandpass filter. A compact and fully computer controllable AOTF-based imaging spectrometer that operates in the visible wavelength range (0.5-0.8 microns) has been built and tested with success. A second imaging spectrometer operating in the near-infrared wavelength range (1.2-2.4 microns) is also under experimental investigation. The design criteria meeting various system issues, such as imaging quality, spectral response, and field of view (FOV), are discussed. An experiment using this AOTF imaging spectrometer breadboard is described.

  14. Gamma titanium aluminide alloys

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Kishida, K.; Matsumuro, M.; Shirai, Y.

    1995-08-01

    Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, the understanding of their microstructural characteristics and property/microstructure relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

  15. Results from the Lunar Prospector Alpha Particle Spectrometer: Detection of Radon-222 Over Craters Aristarchus and Kepler

    NASA Astrophysics Data System (ADS)

    Lawson, S. L.; Feldman, W. C.; Lawrence, D. J.; Moore, K. R.; Belian, R. D.; Maurice, S.; Binder, A. B.

    2001-11-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-218 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238. Radon reaches the lunar surface either at areas of high soil porosity or where fissures release the trapped gases in which radon is entrained. We have examined APS data within +/- 45 degrees of the equator acquired during periods of low interplanetary alpha particle flux. The spectra were summed over all LP mapping cycles when the instrument was turned on (approximately 229 days over 16 months). To yield lunar alpha particle maps, we summed over a 0.2 MeV energy range centered on each of the three alpha particle energies noted above. The LP APS found only a faint indication of alpha particles resulting from the decay of polonium-218 and only a marginal detection of alpha particles from polonium-210. However, our radon-222 alpha particle map indicates that radon gas is presently emanating from the vicinity of craters Aristarchus and Kepler. The LP gamma-ray spectrometer, which effectively has significantly higher spatial resolution than the APS, identified thorium enrichments at these two craters. Thorium and uranium are both incompatible elements whose lunar surface abundances are highly correlated; thus, it is likely that the radon-222 alpha particles measured using the LP APS originate from Kepler and Aristarchus. Our detection of radon over Aristarchus is consistent with the results of the Apollo 15 APS.

  16. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  17. Gamma-Gamma Angular Correlation Measurements With GRIFFIN

    NASA Astrophysics Data System (ADS)

    Maclean, Andrew; Griffin Collaboration

    2016-09-01

    The goal of this work was to explore the sensitivity of the Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) 16 clover-detector γ-ray spectrometer at TRIUMF-ISAC to such γ - γ angular correlations. The methodology was established using both experimental measurements and Geant4 simulations that were used to create angular correlation templates for the GRIFFIN geometry. Direct comparisons were made between experimental data sets and the simulated angular correlation templates. A first in-beam test of the γ - γ angular correlation measurements with GRIFFIN was performed with a radioactive beam of 66Ga. Mixing ratios of δ = - 2 . 1(2) and δ = - 0 . 08(3) were measured for the 2+ ->2+ ->0+ 833-1039 keV and 1+ ->2+ ->0+ 2752-1039 keV cascades in the daughter nucleus 66Zn. These results are in good agreement with pervious literature values and the mixing ratio for the 833-1039 keV cascade has a higher precision. Also, the sensitivity to the 1333-1039 keV cascade, with its pronounced 0+ ->2+ ->0+ angular correlation, was measured.A test measurement of the superallowed Fermi β emitter 62Ga will also be discussed. Canada Foundation of Innovation, Natural Sciences and Engineering Research Council of Canada, National Research Council of Canada and Canadian Research Chairs Program.

  18. Identifying Minerals from Their Infra-red Spectra.

    ERIC Educational Resources Information Center

    Paterson, W. G.

    1986-01-01

    Describes a British secondary school's use of a spectrometer to identify minerals. Discusses the origins of mineral spectra, the preparation of the specimen, the actual spectroscopic scanning, and the interpretation of the spectra. (TW)

  19. Spectrometer Observations Near Mawrth Vallis

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This targeted image from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows a region of heavily altered rock in Mars' ancient cratered highlands. The featured region is just south of Mawrth Vallis, a channel cut by floodwaters deep into the highlands.

    CRISM acquired the image at 1216 UTC (8:16 a.m. EDT) on Oct. 2, 2006, near 25.4 degrees north latitude, 340.7 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image, the spatial resolution is as good as 35 meters (115 feet) per pixel. The image was taken in 544 colors covering 0.36-3.92 micrometers.

    This image includes four renderings of the data, all map-projected. At top left is an approximately true-color representation. At top right is false color showing brightness of the surface at selected infrared wavelengths. In the two bottom views, brightness of the surface at different infrared wavelengths has been compared to laboratory measurements of minerals, and regions that match different minerals have been colored. The bottom left image shows areas high in iron-rich clay, and the bottom right image shows areas high in aluminum-rich clay.

    Clay minerals are important to understanding the history of water on Mars because their formation requires that rocks were exposed to liquid water for a long time. Environments where they form include soils, cold springs, and hot springs. There are many clay minerals, and which ones form depends on the composition of the rock, and the temperature, acidity, and salt content of the water. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, has spectrally mapped Mars at lower spatial resolution and found several regions rich in clay minerals. The Mawrth Vallis region, in particular, was found to contain iron-rich clay. CRISM is observing these regions at several tens of times higher spatial resolution, to correlate the

  20. Imaging Spectrometer on a Chip

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Zheng, Xinyu

    2007-01-01

    A proposed visible-light imaging spectrometer on a chip would be based on the concept of a heterostructure comprising multiple layers of silicon-based photodetectors interspersed with long-wavelength-pass optical filters. In a typical application, this heterostructure would be replicated in each pixel of an image-detecting integrated circuit of the active-pixel-sensor type (see figure). The design of the heterostructure would exploit the fact that within the visible portion of the spectrum, the characteristic depth of penetration of photons increases with wavelength. Proceeding from the front toward the back, each successive long-wavelength-pass filter would have a longer cutoff wavelength, and each successive photodetector would be made thicker to enable it to absorb a greater proportion of incident longer-wavelength photons. Incident light would pass through the first photodetector and encounter the first filter, which would reflect light having wavelengths shorter than its cutoff wavelength and pass light of longer wavelengths. A large portion of the incident and reflected shorter-wavelength light would be absorbed in the first photodetector. The light that had passed through the first photodetector/filter pair of layers would pass through the second photodetector and encounter the second filter, which would reflect light having wavelengths shorter than its cutoff wavelength while passing light of longer wavelengths. Thus, most of the light reflected by the second filter would lie in the wavelength band between the cutoff wavelengths of the first and second filters. Thus, further, most of the light absorbed in the second photodetector would lie in this wavelength band. In a similar manner, each successive photodetector would detect, predominantly, light in a successively longer wavelength band bounded by the shorter cutoff wavelength of the preceding filter and the longer cutoff wavelength of the following filter.