Sample records for identifying protein stabilizing

  1. The role of stabilization centers in protein thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magyar, Csaba; Gromiha, M. Michael; Sávoly, Zoltán

    2016-02-26

    The definition of stabilization centers was introduced almost two decades ago. They are centers of noncovalent long range interaction clusters, believed to have a role in maintaining the three-dimensional structure of proteins by preventing their decay due to their cooperative long range interactions. Here, this hypothesis is investigated from the viewpoint of thermal stability for the first time, using a large protein thermodynamics database. The positions of amino acids belonging to stabilization centers are correlated with available experimental thermodynamic data on protein thermal stability. Our analysis suggests that stabilization centers, especially solvent exposed ones, do contribute to the thermal stabilizationmore » of proteins. - Highlights: • Stabilization centers contribute to thermal stabilization of protein structures. • Stabilization center content correlates with melting temperature of proteins. • Exposed stabilization center content correlates with stability even in hyperthermophiles. • Stability changing mutations are frequently found at stabilization centers.« less

  2. Protein stability: a crystallographer’s perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deller, Marc C., E-mail: mdeller@stanford.edu; Kong, Leopold; Rupp, Bernhard

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhatmore » practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.« less

  3. Protein stability: a crystallographer’s perspective

    PubMed Central

    Deller, Marc C.; Kong, Leopold; Rupp, Bernhard

    2016-01-01

    Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed. PMID:26841758

  4. Lentil and chickpea protein-stabilized emulsions: optimization of emulsion formulation.

    PubMed

    Can Karaca, Asli; Nickerson, Michael T; Low, Nicholas H

    2011-12-28

    Chickpea and lentil protein-stabilized emulsions were optimized with regard to pH (3.0-8.0), protein concentration (1.1-4.1% w/w), and oil content (20-40%) for their ability to form and stabilize oil-in-water emulsions using response surface methodology. Specifically, creaming stability, droplet size, and droplet charge were assessed. Optimum conditions for minimal creaming (no serum separation after 24 h), small droplet size (<2 μm), and high net droplet charge (absolute value of ZP > 40 mV) were identified as 4.1% protein, 40% oil, and pH 3.0 or 8.0, regardless of the plant protein used for emulsion preparation.

  5. Analysis of protein stability and ligand interactions by thermal shift assay.

    PubMed

    Huynh, Kathy; Partch, Carrie L

    2015-02-02

    Purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in a 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as an initial low-cost screen to discover new protein-ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for small-scale, high-throughput thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. Copyright © 2015 John Wiley & Sons, Inc.

  6. Protein substitution affects glass transition temperature and thermal stability.

    PubMed

    Budhavaram, Naresh K; Miller, Jonathan A; Shen, Ying; Barone, Justin R

    2010-09-08

    When proteins are removed from their native state they suffer from two deficiencies: (1) glassy behavior with glass transition temperatures (Tg) well above room temperature and (2) thermal instability. The glassy behavior originates in multiple hydrogen bonds between amino acids on adjacent protein molecules. Proteins, like most biopolymers, are thermally unstable. Substituting ovalbumin with linear and cyclic substituents using a facile nucleophilic addition reaction can affect Tg and thermal stability. More hydrophobic linear substituents lowered Tg by interrupting intermolecular interactions and increasing free volume. More hydrophilic and cyclic substituents increased thermal stability by increasing intermolecular interactions. In some cases, substituents instituted cross-linking between protein chains that enhanced thermal stability. Internal plasticization using covalent substitution and external plasticization using low molecular weight polar liquids show the same protein structural changes and a signature of plasticization is identified.

  7. Automated selection of stabilizing mutations in designed and natural proteins.

    PubMed

    Borgo, Benjamin; Havranek, James J

    2012-01-31

    The ability to engineer novel protein folds, conformations, and enzymatic activities offers enormous potential for the development of new protein therapeutics and biocatalysts. However, many de novo and redesigned proteins exhibit poor hydrophobic packing in their predicted structures, leading to instability or insolubility. The general utility of rational, structure-based design would greatly benefit from an improved ability to generate well-packed conformations. Here we present an automated protocol within the RosettaDesign framework that can identify and improve poorly packed protein cores by selecting a series of stabilizing point mutations. We apply our method to previously characterized designed proteins that exhibited a decrease in stability after a full computational redesign. We further demonstrate the ability of our method to improve the thermostability of a well-behaved native protein. In each instance, biophysical characterization reveals that we were able to stabilize the original proteins against chemical and thermal denaturation. We believe our method will be a valuable tool for both improving upon designed proteins and conferring increased stability upon native proteins.

  8. Automated selection of stabilizing mutations in designed and natural proteins

    PubMed Central

    Borgo, Benjamin; Havranek, James J.

    2012-01-01

    The ability to engineer novel protein folds, conformations, and enzymatic activities offers enormous potential for the development of new protein therapeutics and biocatalysts. However, many de novo and redesigned proteins exhibit poor hydrophobic packing in their predicted structures, leading to instability or insolubility. The general utility of rational, structure-based design would greatly benefit from an improved ability to generate well-packed conformations. Here we present an automated protocol within the RosettaDesign framework that can identify and improve poorly packed protein cores by selecting a series of stabilizing point mutations. We apply our method to previously characterized designed proteins that exhibited a decrease in stability after a full computational redesign. We further demonstrate the ability of our method to improve the thermostability of a well-behaved native protein. In each instance, biophysical characterization reveals that we were able to stabilize the original proteins against chemical and thermal denaturation. We believe our method will be a valuable tool for both improving upon designed proteins and conferring increased stability upon native proteins. PMID:22307603

  9. Enhancing protein stability with extended disulfide bonds

    DOE PAGES

    Liu, Tao; Wang, Yan; Luo, Xiaozhou; ...

    2016-05-09

    Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. In this paper, we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a librarymore » of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ~9 °C was identified. Finally, this result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes.« less

  10. A high-throughput assay of membrane protein stability.

    PubMed

    Postis, Vincent L G; Deacon, Sarah E; Roach, Peter C J; Wright, Gareth S A; Xia, Xiaobing; Ingram, Jean C; Hadden, Jonathan M; Henderson, Peter J F; Phillips, Simon E V; McPherson, Michael J; Baldwin, Stephen A

    2008-12-01

    The preparation of purified, detergent-solubilized membrane proteins in a monodisperse and stable form is usually a prerequisite for investigation not only of their function but also for structural studies by X-ray crystallography and other approaches. Typically, it is necessary to explore a wide range of conditions, including detergent type, buffer pH, and the presence of additives such as glycerol, in order to identify those optimal for stability. Given the difficulty of expressing and purifying membrane proteins in large amounts, such explorations must ideally be performed on as small a scale as practicable. To achieve this objective in the UK Membrane Protein Structure Initiative, we have developed a rapid, economical, light-scattering assay of membrane protein aggregation that allows the testing of 48 buffer conditions in parallel on 6 protein targets, requiring less than 2 mg protein for each target. Testing of the assay on a number of unrelated membrane transporters has shown that it is of generic applicability. Proteins of sufficient purity for this plate-based assay are first rapidly prepared using simple affinity purification procedures performed in batch mode. Samples are then transferred by microdialysis into each of the conditions to be tested. Finally, attenuance at 340 nm is monitored in a 384-well plate using a plate reader. Optimal conditions for protein stability identified in the assay can then be exploited for the tailored purification of individual targets in as stable a form as possible.

  11. Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts

    PubMed Central

    Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun

    2012-01-01

    Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272

  12. Flavor and stability of milk proteins.

    PubMed

    Smith, T J; Campbell, R E; Jo, Y; Drake, M A

    2016-06-01

    A greater understanding of the nature and source of dried milk protein ingredient flavor(s) is required to characterize flavor stability and identify the sources of flavors. The objective of this study was to characterize the flavor and flavor chemistry of milk protein concentrates (MPC 70, 80, 85), isolates (MPI), acid and rennet caseins, and micellar casein concentrate (MCC) and to determine the effect of storage on flavor and functionality of milk protein concentrates using instrumental and sensory techniques. Spray-dried milk protein ingredients (MPC, MPI, caseins, MCC) were collected in duplicate from 5 commercial suppliers or manufactured at North Carolina State University. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid phase microextraction followed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry. Compounds were identified by comparison of retention indices, odor properties, and mass spectra against reference standards. A subset of samples was selected for further analysis using direct solvent extraction with solvent-assisted flavor extraction, and aroma extract dilution analysis. External standard curves were created to quantify select volatile compounds. Pilot plant manufactured MPC were stored at 3, 25, and 40°C (44% relative humidity). Solubility, furosine, sensory properties, and volatile compound analyses were performed at 0, 1, 3, 6, and 12 mo. Milk proteins and caseins were diverse in flavor and exhibited sweet aromatic and cooked/milky flavors as well as cardboard, brothy, tortilla, soapy, and fatty flavors. Key aroma active compounds in milk proteins and caseins were 2-aminoacetophenone, nonanal, 1-octen-3-one, dimethyl trisulfide, 2-acetyl-1-pyrroline, heptanal, methional, 1-hexen-3-one, hexanal, dimethyl disulfide, butanoic acid, and acetic acid. Stored milk proteins developed animal and burnt sugar flavors over time. Solubility of

  13. Contribution of Hydrophobic Interactions to Protein Stability

    PubMed Central

    Pace, C. Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R.; Shirley, Bret A.; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J. Martin; Grimsley, Gerald R.

    2011-01-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin head piece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compare our results with previous studies and reach the following conclusions. 1. Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mole per –CH2– group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per –CH2– group). 2. Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kcal/mol): Phe 18 (3.9), Met 13 (3.1), Phe 7 (2.9), Phe 11 (2.7), and Leu 21 (2.7). 3. Based on Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a –CH2– group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. 4. The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. 5. For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds 40 ± 4% to protein stability. 6. Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominately by hydrophobic interactions. PMID:21377472

  14. Increasing protein stability by improving beta-turns.

    PubMed

    Fu, Hailong; Grimsley, Gerald R; Razvi, Abbas; Scholtz, J Martin; Pace, C Nick

    2009-11-15

    Our goal was to gain a better understanding of how protein stability can be increased by improving beta-turns. We studied 22 beta-turns in nine proteins with 66-370 residues by replacing other residues with proline and glycine and measuring the stability. These two residues are statistically preferred in some beta-turn positions. We studied: Cold shock protein B (CspB), Histidine-containing phosphocarrier protein, Ubiquitin, Ribonucleases Sa2, Sa3, T1, and HI, Tryptophan synthetase alpha-subunit, and Maltose binding protein. Of the 15 single proline mutations, 11 increased stability (Average = 0.8 +/- 0.3; Range = 0.3-1.5 kcal/mol), and the stabilizing effect of double proline mutants was additive. On the basis of this and our previous work, we conclude that proteins can generally be stabilized by replacing nonproline residues with proline residues at the i + 1 position of Type I and II beta-turns and at the i position in Type II beta-turns. Other turn positions can sometimes be used if the phi angle is near -60 degrees for the residue replaced. It is important that the side chain of the residue replaced is less than 50% buried. Identical substitutions in beta-turns in related proteins give similar results. Proline substitutions increase stability mainly by decreasing the entropy of the denatured state. In contrast, the large, diverse group of proteins considered here had almost no residues in beta-turns that could be replaced by Gly to increase protein stability. Improving beta-turns by substituting Pro residues is a generally useful way of increasing protein stability. 2009 Wiley-Liss, Inc.

  15. INCREASING PROTEIN STABILITY BY IMPROVING BETA-TURNS

    PubMed Central

    Fu, Hailong; Grimsley, Gerald R.; Razvi, Abbas; Scholtz, J. Martin; Pace, C. Nick

    2009-01-01

    Our goal was to gain a better understanding of how protein stability can be increased by improving β-turns. We studied 22 β-turns in nine proteins with 66 to 370 residues by replacing other residues with proline and glycine and measuring the stability. These two residues are statistically preferred in some β-turn positions. We studied: Cold shock protein B (CspB), Histidine-containing phosphocarrier protein (HPr), Ubiquitin, Ribonucleases Sa2, Sa3, T1, and HI, Tryptophan synthetase α-subunit (TSα), and Maltose binding protein (MBP). Of the fifteen single proline mutations, 11increased stability (Average = 0.8 ± 0.3; Range = 0.3 – 1.5 kcal/mol), and the stabilizing effect of double proline mutants was additive. Based on this and our previous work, we conclude that proteins can generally be stabilized by replacing non-proline residues with proline residues at the i + 1 position of Type I and II β-turns and at the i position in Type II β-turns. Other turn positions can sometimes be used if the φ angle is near −60° for the residue replaced. It is important that the side chain of the residue replaced is less than 50% buried. Identical substitutions in β-turns in related proteins give similar results. Proline substitutions increase stability mainly by decreasing the entropy of the denatured state. In contrast, the large, diverse group of proteins considered here had almost no residues in β-turns that could be replaced by Gly to increase protein stability. Improving β-turns by substituting Pro residues is a generally useful way of increasing protein stability. PMID:19626709

  16. Identifying Floppy and Rigid Regions in Proteins

    NASA Astrophysics Data System (ADS)

    Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.

    1998-03-01

    In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.

  17. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry.

    PubMed

    Schön, Arne; Clarkson, Benjamin R; Jaime, Maria; Freire, Ernesto

    2017-11-01

    The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (∼100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day -1 . Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs. © 2017 Wiley Periodicals, Inc.

  18. Temperature stability of proteins: Analysis of irreversible denaturation using isothermal calorimetry

    PubMed Central

    Schön, Arne; Clarkson, Benjamin R; Jaime, Maria; Freire, Ernesto

    2017-01-01

    The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (~100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day−1. Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs. PMID:28722205

  19. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    PubMed

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  20. Investigating the effect of mutation on the thermo stability of GB1 protein

    NASA Astrophysics Data System (ADS)

    Sawitri, K. N.; Sumaryada, T.; Ambarsari, L.; Wahyudi, S. T.

    2018-04-01

    The thermo stability of wild-type and mutants of the B1 domain of Protein G (GB1 protein) have been studied using molecular dynamics simulation and free energy perturbation simulation. This research is aimed to examine what residue or what interaction that has a major role in the thermo stability of GB1 protein thermo stability by using the point mutation method. Based on the analysis, the unfolding of wild-type protein occurred in 500 K simulation at 704 ps. The mutations were chosen based on the changes in some analysis parameters and the calculated net solvation free energy change. It was found that a simple replacement of a positively charged residue in the β-sheet (K4S) decreases the stability of GB1 protein (unfolding at 452 ps), while the replacement of a negatively charged residue in the α-helix (E27G) increases the stability (unfolding at 846 ps). It was also found that the K4A mutation will break the α-helix and all β-sheet into the coil and turn. All those results suggest that the non-bonded interaction has the major role in the thermo stability of GB1 protein with the β-sheets were identified as the most important structure in the thermo stability of GB1 protein..

  1. Mechanism of protein precipitation and stabilization by co-solvents

    NASA Astrophysics Data System (ADS)

    Timasheff, Serge N.; Arakawa, Tsutomu

    1988-07-01

    The interactions between proteins and a number of substances which, when present at high concentration, stabilize or precipitate proteins, have been analyzed in terms of the preferential interactions of these co-solvents with proteins. In all cases, stabilization or precipitation was accompanied by preferential exclusion of the co-solvent from the immediate domain of the protein, i.e., preferential hydration of the protein. This means that addition of the co-solvent to the aqueous protein solution increased the chemical potentials of both components. The thermodynamic interaction parameters derived from such data make it possible to calculate the salting out constant, Ks, as well as to construct a phase isotherm for any given solvent mixture which indicates the limiting protein solubility. The salting-out effect can be decomposed into contributions from non-specific preferential exclusion and specific binding of the ligand to the protein, the balance leading to solubilization or precipitation. In reactions, such as denaturation, the effect of co-solvent on the reaction depends on the difference in the preferential interactions of the two end states of the protein. Principal sources of preferential exclusion have been identified as steric exclusion, increase of the surface tension of water by the co-solvent, repulsion by charged loci on the protein and solvophobicity.

  2. SPLINTS: small-molecule protein ligand interface stabilizers.

    PubMed

    Fischer, Eric S; Park, Eunyoung; Eck, Michael J; Thomä, Nicolas H

    2016-04-01

    Regulatory protein-protein interactions are ubiquitous in biology, and small molecule protein-protein interaction inhibitors are an important focus in drug discovery. Remarkably little attention has been given to the opposite strategy-stabilization of protein-protein interactions, despite the fact that several well-known therapeutics act through this mechanism. From a structural perspective, we consider representative examples of small molecules that induce or stabilize the association of protein domains to inhibit, or alter, signaling for nuclear hormone, GTPase, kinase, phosphatase, and ubiquitin ligase pathways. These SPLINTS (small-molecule protein ligand interface stabilizers) drive interactions that are in some cases physiologically relevant, and in others entirely adventitious. The diverse structural mechanisms employed suggest approaches for a broader and systematic search for such compounds in drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A General Framework for Interrogation of mRNA Stability Programs Identifies RNA-Binding Proteins that Govern Cancer Transcriptomes.

    PubMed

    Perron, Gabrielle; Jandaghi, Pouria; Solanki, Shraddha; Safisamghabadi, Maryam; Storoz, Cristina; Karimzadeh, Mehran; Papadakis, Andreas I; Arseneault, Madeleine; Scelo, Ghislaine; Banks, Rosamonde E; Tost, Jorg; Lathrop, Mark; Tanguay, Simon; Brazma, Alvis; Huang, Sidong; Brimo, Fadi; Najafabadi, Hamed S; Riazalhosseini, Yasser

    2018-05-08

    Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Conformational stability as a design target to control protein aggregation.

    PubMed

    Costanzo, Joseph A; O'Brien, Christopher J; Tiller, Kathryn; Tamargo, Erin; Robinson, Anne Skaja; Roberts, Christopher J; Fernandez, Erik J

    2014-05-01

    Non-native protein aggregation is a prevalent problem occurring in many biotechnological manufacturing processes and can compromise the biological activity of the target molecule or induce an undesired immune response. Additionally, some non-native aggregation mechanisms lead to amyloid fibril formation, which can be associated with debilitating diseases. For natively folded proteins, partial or complete unfolding is often required to populate aggregation-prone conformational states, and therefore one proposed strategy to mitigate aggregation is to increase the free energy for unfolding (ΔGunf) prior to aggregation. A computational design approach was tested using human γD crystallin (γD-crys) as a model multi-domain protein. Two mutational strategies were tested for their ability to reduce/increase aggregation rates by increasing/decreasing ΔGunf: stabilizing the less stable domain and stabilizing the domain-domain interface. The computational protein design algorithm, RosettaDesign, was implemented to identify point variants. The results showed that although the predicted free energies were only weakly correlated with the experimental ΔGunf values, increased/decreased aggregation rates for γD-crys correlated reasonably well with decreases/increases in experimental ΔGunf, illustrating improved conformational stability as a possible design target to mitigate aggregation. However, the results also illustrate that conformational stability is not the sole design factor controlling aggregation rates of natively folded proteins.

  5. Stabilization of Proteins by Polymer Conjugation via ATRP

    DTIC Science & Technology

    2008-08-31

    to increase their solubility and utility in organic solvents and to increase their stability in body. Protein-initiated ATRP would enable us to... Solvent solubilization, therapeutic proteins, hydrophilic polymers, protein stabilization Lance Mabus, Jason Berberich, Bhalchandra Lele, Virginia Depp... solvents and to increase their stability in body. Protein-initiated ATRP would enable us to overcome many problems in conventional technology that

  6. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol.

    PubMed

    Vagenende, Vincent; Yap, Miranda G S; Trout, Bernhardt L

    2009-11-24

    The stability of proteins in aqueous solution is routinely enhanced by cosolvents such as glycerol. Glycerol is known to shift the native protein ensemble to more compact states. Glycerol also inhibits protein aggregation during the refolding of many proteins. However, mechanistic insight into protein stabilization and prevention of protein aggregation by glycerol is still lacking. In this study, we derive mechanisms of glycerol-induced protein stabilization by combining the thermodynamic framework of preferential interactions with molecular-level insight into solvent-protein interactions gained from molecular simulations. Contrary to the common conception that preferential hydration of proteins in polyol/water mixtures is determined by the molecular size of the polyol and the surface area of the protein, we present evidence that preferential hydration of proteins in glycerol/water mixtures mainly originates from electrostatic interactions that induce orientations of glycerol molecules at the protein surface such that glycerol is further excluded. These interactions shift the native protein toward more compact conformations. Moreover, glycerol preferentially interacts with large patches of contiguous hydrophobicity where glycerol acts as an amphiphilic interface between the hydrophobic surface and the polar solvent. Accordingly, we propose that glycerol prevents protein aggregation by inhibiting protein unfolding and by stabilizing aggregation-prone intermediates through preferential interactions with hydrophobic surface regions that favor amphiphilic interface orientations of glycerol. These mechanisms agree well with experimental data available in the literature, and we discuss the extent to which these mechanisms apply to other cosolvents, including polyols, arginine, and urea.

  7. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.

    PubMed

    Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung

    2016-01-01

    Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

  8. Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.

    PubMed

    Zeeb, Benjamin; Herz, Eva; McClements, David Julian; Weiss, Jochen

    2014-11-01

    Nanoemulsions are increasingly being used for encapsulation, protection, and delivery of bioactive lipids, however, their formation from natural emulsifiers is still challenging. We investigated the impact of alcohol on the formation and stability of protein-stabilized oil-in-water nanoemulsions prepared by high-pressure homogenization. The influence of different alcohols (ethanol, 1-propanol, and 1-butanol) at various concentrations (0-25% w/w) on the formation and stability of emulsions stabilized by sodium caseinate, whey protein isolate, and fish gelatin was investigated. The mean particle diameter decreased with increasing alcohol concentrations from 0 to 10%w/w, but extensive droplet aggregation occurred at higher levels. This phenomenon was attributed to enhanced protein-protein interactions between the adsorbed emulsifier molecules in the presence of alcohol leading to droplet flocculation. The smallest droplets (d<100nm) were obtained when 10%w/w 1-butanol was added to sodium caseinate-stabilized nanoemulsions, but relatively small droplets (d<150nm) could also be obtained in the presence of a food-grade alcohol (ethanol). This study demonstrated that alcohol addition might be a useful tool for producing protein-stabilized nanoemulsions suitable for use as delivery systems of lipophilic bioactive agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Electrodynamic pressure modulation of protein stability in cosolvents.

    PubMed

    Damodaran, Srinivasan

    2013-11-19

    Cosolvents affect structural stability of proteins in aqueous solutions. A clear understanding of the mechanism by which cosolvents impact protein stability is critical to understanding protein folding in a biological milieu. In this study, we investigated the Lifshitz-van der Waals dispersion interaction of seven different solutes with nine globular proteins and report that in an aqueous medium the structure-stabilizing solutes exert a positive electrodynamic pressure, whereas the structure-destabilizing solutes exert a negative electrodynamic pressure on the proteins. The net increase in the thermal denaturation temperature (ΔTd) of a protein in 1 M solution of various solutes was linearly related to the electrodynamic pressure (PvdW) between the solutes and the protein. The slope of the PvdW versus ΔTd plots was protein-dependent. However, we find a positive linear relationship (r(2) = 0.79) between the slope (i.e., d(ΔTd)/dPvdW) and the adiabatic compressibility (βs) of the proteins. Together, these results clearly indicate that the Lifshitz's dispersion forces are inextricably involved in solute-induced stabilization/destabilization of globular proteins. The positive and/or negative electrodynamic pressure generated by the solute-protein interaction across the water medium seems to be the fundamental mechanism by which solutes affect protein stability. This is at variance with the existing preferential hydration concept. The implication of these results is significant in the sense that, in addition to the hydrophobic effect that drives protein folding, the electrodynamic forces between the proteins and solutes in the biological milieu also might play a role in the folding process as well as in the stability of the folded state.

  10. Exploring Protein Stability by Comparative Molecular Dynamics Simulations of Homologous Hyperthermophilic, Mesophilic, and Psychrophilic Proteins.

    PubMed

    Khan, Sara; Farooq, Umar; Kurnikova, Maria

    2016-11-28

    In the present studies, we analyzed the influence of temperature on the stability and dynamics of the α subunit of tryptophan synthase (TRPS) from hyperthermophilic, mesophilic, and psychrophilic homologues at different temperatures by molecular dynamics simulations. Employing different indicators such as root-mean-square deviations, root-mean-square fluctuations, principal component analysis, and free energy landscapes, this study manifests the diverse behavior of these homologues with changes in temperature. Especially, an enhancement in the collective motions, classified as representative motions, is observed at high temperature. Similarly, the criterion for the selection of electrostatic interactions in terms of their life span (duty cycle) has indeed helped in identifying the short- and long-lived electrostatic interactions and how they affect the protein's overall stability at different temperatures. Rigidity and flexibility patterns of the homologous proteins are examined using FIRST software along with the calculation of duty cycles with various threshold limits at different temperatures. Rigid cluster decomposition in TRPS of psychrophilic, mesophilic, and hyperthermophilic origin identifies the flexible and rigid regions in the protein. Early loss of rigidity is observed in mesophilic TRPS via loss of contact between the major fragments of the protein compared with the other homologues. In spite of the high similarity of their three-dimensional structures, the overall responses of the three proteins to varying temperatures are significantly different.

  11. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1996-01-01

    This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.

  12. Protein thermal stabilization in aqueous solutions of osmolytes.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes.

  13. Stability and the Evolvability of Function in a Model Protein

    PubMed Central

    Bloom, Jesse D.; Wilke, Claus O.; Arnold, Frances H.; Adami, Christoph

    2004-01-01

    Functional proteins must fold with some minimal stability to a structure that can perform a biochemical task. Here we use a simple model to investigate the relationship between the stability requirement and the capacity of a protein to evolve the function of binding to a ligand. Although our model contains no built-in tradeoff between stability and function, proteins evolved function more efficiently when the stability requirement was relaxed. Proteins with both high stability and high function evolved more efficiently when the stability requirement was gradually increased than when there was constant selection for high stability. These results show that in our model, the evolution of function is enhanced by allowing proteins to explore sequences corresponding to marginally stable structures, and that it is easier to improve stability while maintaining high function than to improve function while maintaining high stability. Our model also demonstrates that even in the absence of a fundamental biophysical tradeoff between stability and function, the speed with which function can evolve is limited by the stability requirement imposed on the protein. PMID:15111394

  14. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases.

    PubMed

    Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning

    2007-10-18

    Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and code examples are available at

  15. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases

    PubMed Central

    Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning

    2007-01-01

    Background Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. Results We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. Conclusion We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and

  16. Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins

    PubMed Central

    Colacino, Stefano; Tiana, Guido; Colombo, Giorgio

    2006-01-01

    Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPSc through a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. PMID:16857062

  17. Nogo-B Receptor stabilizes Niemann-Pick Type C2 protein and regulates intracellular cholesterol trafficking

    PubMed Central

    Harrison, Kenneth D.; Miao, Robert Qing; Fernandez-Hernándo, Carlos; Suárez, Yajaira; Dávalos, Alberto; Sessa, William C.

    2009-01-01

    Summary The Nogo-B Receptor (NgBR) is a recently identified receptor for the N-terminus of Reticulon 4B/Nogo-B. Other than its role in binding Nogo-B, little is known about the biology of NgBR. To elucidate a basic cellular role for NgBR, we performed a yeast-2-hybrid screen for interacting proteins using the C-terminal domain as bait and identified Niemann-Pick Type C2 protein (NPC2) as an NgBR-interacting protein. NPC2 protein levels are increased in the presence of NgBR and NgBR enhances NPC2 protein stability. NgBR localizes primarily to the endoplasmic reticulum (ER), and regulates the stability of nascent NPC2. RNAi-mediated disruption of NgBR or genetic deficiency in NgBR leads to a decrease in NPC2 levels, increased intracellular cholesterol accumulation and a loss of sterol sensing, all hallmarks of an NPC2 mutation. These data identify NgBR as an NPC2-interacting protein and provide evidence of a role for NgBR in intracellular cholesterol trafficking. PMID:19723497

  18. Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery.

    PubMed

    Yu, Xiaohua; Biedrzycki, Adam H; Khalil, Andrew S; Hess, Dalton; Umhoefer, Jennifer M; Markel, Mark D; Murphy, William L

    2017-09-01

    Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stabilization of Proteins and Noncovalent Protein Complexes during Electrospray Ionization by Amino Acid Additives.

    PubMed

    Zhang, Hua; Lu, Haiyan; Chingin, Konstantin; Chen, Huanwen

    2015-07-21

    Ionization of proteins and noncovalent protein complexes with minimal disturbance to their native structure presents a great challenge for biological mass spectrometry (MS). In living organisms, the native structure of intracellular proteins is commonly stabilized by solute amino acids (AAs) accumulated in cells at very high concentrations. Inspired by nature, we hypothesized that AAs could also pose a stabilizing effect on the native structure of proteins and noncovalent protein complexes during ionization. To test this hypothesis, here we explored MS response for various protein complexes upon the addition of free AAs at mM concentrations into the electrospray ionization (ESI) solution. Thermal activation of ESI droplets in the MS inlet capillary was employed as a model destabilizing factor during ionization. Our results indicate that certain AAs, in particular proline (Pro), pose considerable positive effect on the stability of noncovalent protein complexes in ESI-MS without affecting the signal intensity of protein ions and original protein-ligand equilibrium, even when added at the 20 mM concentration. The data suggest that the degree of protein stabilization is primarily determined by the osmolytic and ampholytic characteristics of AA solutes. The highest stability and visibility of noncovalent protein complexes in ESI-MS are achieved using AA additives with neutral isoelectric point, moderate proton affinity, and unfavorable interaction with the native protein state. Overall, our results indicate that the simple addition of free amino acids into the working solution can notably improve the stability and accuracy of protein analysis by native ESI-MS.

  20. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein

    PubMed Central

    Bromley, Dennis; Bauer, Matthias R.; Fersht, Alan R.; Daggett, Valerie

    2016-01-01

    The p53 tumor suppressor protein performs a critical role in stimulating apoptosis and cell cycle arrest in response to oncogenic stress. The function of p53 can be compromised by mutation, leading to increased risk of cancer; approximately 50% of cancers are associated with mutations in the p53 gene, the majority of which are in the core DNA-binding domain. The Y220C mutation of p53, for example, destabilizes the core domain by 4 kcal/mol, leading to rapid denaturation and aggregation. The associated loss of tumor suppressor functionality is associated with approximately 75 000 new cancer cases every year. Destabilized p53 mutants can be ‘rescued’ and their function restored; binding of a small molecule into a pocket on the surface of mutant p53 can stabilize its wild-type structure and restore its function. Here, we describe an in silico algorithm for identifying potential rescue pockets, including the algorithm's integration with the Dynameomics molecular dynamics data warehouse and the DIVE visual analytics engine. We discuss the results of the application of the method to the Y220C p53 mutant, entailing finding a putative rescue pocket through MD simulations followed by an in silico search for stabilizing ligands that dock into the putative rescue pocket. The top three compounds from this search were tested experimentally and one of them bound in the pocket, as shown by nuclear magnetic resonance, and weakly stabilized the mutant. PMID:27503952

  1. Engineering proteins with tunable thermodynamic and kinetic stabilities.

    PubMed

    Pey, Angel L; Rodriguez-Larrea, David; Bomke, Susanne; Dammers, Susanne; Godoy-Ruiz, Raquel; Garcia-Mira, Maria M; Sanchez-Ruiz, Jose M

    2008-04-01

    It is widely recognized that enhancement of protein stability is an important biotechnological goal. However, some applications at least, could actually benefit from stability being strongly dependent on a suitable environment variable, in such a way that enhanced stability or decreased stability could be realized as required. In therapeutic applications, for instance, a long shelf-life under storage conditions may be convenient, but a sufficiently fast degradation of the protein after it has performed the planned molecular task in vivo may avoid side effects and toxicity. Undesirable effects associated to high stability are also likely to occur in food-industry applications. Clearly, one fundamental factor involved here is the kinetic stability of the protein, which relates to the time-scale of the irreversible denaturation processes and which is determined to some significant extent by the free-energy barrier for unfolding (the barrier that "separates" the native state from the highly-susceptible-to-irreversible-alterations nonnative states). With an appropriate experimental model, we show that strong environment-dependencies of the thermodynamic and kinetic stabilities can be achieved using robust protein engineering. We use sequence-alignment analysis and simple computational electrostatics to design stabilizing and destabilizing mutations, the latter introducing interactions between like charges which are screened out at high salt. Our design procedures lead naturally to mutating regions which are mostly unstructured in the transition state for unfolding. As a result, the large salt effect on the thermodynamic stability of our consensus plus charge-reversal variant translates into dramatic changes in the time-scale associated to the unfolding barrier: from the order of years at high salt to the order of days at low salt. Certainly, large changes in salt concentration are not expected to occur in biological systems in vivo. Hence, proteins with strong salt

  2. Amphiphiles for protein solubilization and stabilization

    DOEpatents

    Gellman, Samuel Helmer; Chae, Pil Seok; Laible, Philip D.; Wander, Marc J.

    2012-09-11

    The invention provides amphiphiles for manipulating membrane proteins. The amphiphiles can feature carbohydrate-derived hydrophilic groups and branchpoints in the hydrophilic moiety and/or in a lipophilic moiety. Such amphiphiles are useful as detergents for solubilization and stabilization of membrane proteins, including photosynthetic protein superassemblies obtained from bacterial membranes.

  3. Amphiphiles for protein solubilization and stabilization

    DOEpatents

    Gellman, Samuel Helmer; Chae, Pil Seok; Laible, Phillip D; Wander, Marc J

    2014-11-04

    The invention provides amphiphiles for manipulating membrane proteins. The amphiphiles can feature carbohydrate-derived hydrophilic groups and branchpoints in the hydrophilic moiety and/or in a lipophilic moiety. Such amphiphiles are useful as detergents for solubilization and stabilization of membrane proteins, including photosynthetic protein superassemblies obtained from bacterial membranes.

  4. LigSearch: a knowledge-based web server to identify likely ligands for a protein target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Tjaart A. P. de; Laskowski, Roman A.; Duban, Mark-Eugene

    LigSearch is a web server for identifying ligands likely to bind to a given protein. Identifying which ligands might bind to a protein before crystallization trials could provide a significant saving in time and resources. LigSearch, a web server aimed at predicting ligands that might bind to and stabilize a given protein, has been developed. Using a protein sequence and/or structure, the system searches against a variety of databases, combining available knowledge, and provides a clustered and ranked output of possible ligands. LigSearch can be accessed at http://www.ebi.ac.uk/thornton-srv/databases/LigSearch.

  5. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ballottin, Daniela; Fulaz, Stephanie; Souza, Michele L.; Corio, Paola; Rodrigues, Alexandre G.; Souza, Ana O.; Gaspari, Priscyla M.; Gomes, Alexandre F.; Gozzo, Fábio; Tasic, Ljubica

    2016-06-01

    Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis—isolated as an endophytic fungus from Rizophora mangle—were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon

  6. Effects of Glycosylation on the Stability of Protein Pharmaceuticals

    PubMed Central

    SOLÁ, RICARDO J.; GRIEBENOW, KAI

    2008-01-01

    In recent decades, protein-based therapeutics have substantially expanded the field of molecular pharmacology due to their outstanding potential for the treatment of disease. Unfortunately, protein pharmaceuticals display a series of intrinsic physical and chemical instability problems during their production, purification, storage, and delivery that can adversely impact their final therapeutic efficacies. This has prompted an intense search for generalized strategies to engineer the long-term stability of proteins during their pharmaceutical employment. Due to the well known effect that glycans have in increasing the overall stability of glycoproteins, rational manipulation of the glycosylation parameters through glycoengineering could become a promising approach to improve both the in vitro and in vivo stability of protein pharmaceuticals. The intent of this review is therefore to further the field of protein glycoengineering by increasing the general understanding of the mechanisms by which glycosylation improves the molecular stability of protein pharmaceuticals. This is achieved by presenting a survey of the different instabilities displayed by protein pharmaceuticals, by addressing which of these instabilities can be improved by glycosylation, and by discussing the possible mechanisms by which glycans induce these stabilization effects. PMID:18661536

  7. Stability analysis of an autocatalytic protein model

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2016-05-01

    A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.

  8. Thermal precipitation fluorescence assay for protein stability screening.

    PubMed

    Fan, Junping; Huang, Bo; Wang, Xianping; Zhang, Xuejun C

    2011-09-01

    A simple and reliable method of protein stability assessment is desirable for high throughput expression screening of recombinant proteins. Here we described an assay termed thermal precipitation fluorescence (TPF) which can be used to compare thermal stabilities of recombinant protein samples directly from cell lysate supernatants. In this assay, target membrane proteins are expressed as recombinant fusions with a green fluorescence protein tag and solubilized with detergent, and the fluorescence signals are used to report the quantity of the fusion proteins in the soluble fraction of the cell lysate. After applying a heat shock, insoluble protein aggregates are removed by centrifugation. Subsequently, the amount of remaining protein in the supernatant is quantified by in-gel fluorescence analysis and compared to samples without a heat shock treatment. Over 60 recombinant membrane proteins from Escherichia coli were subject to this screening in the presence and absence of a few commonly used detergents, and the results were analyzed. Because no sophisticated protein purification is required, this TPF technique is suitable to high throughput expression screening of recombinant membrane proteins as well as soluble ones and can be used to prioritize target proteins based on their thermal stabilities for subsequent large scale expression and structural studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Cold denaturation as a tool to measure protein stability

    PubMed Central

    Sanfelice, Domenico; Temussi, Piero Andrea

    2016-01-01

    Protein stability is an important issue for the interpretation of a wide variety of biological problems but its assessment is at times difficult. The most common parameter employed to describe protein stability is the temperature of melting, at which the populations of folded and unfolded species are identical. This parameter may yield ambiguous results. It would always be preferable to measure the whole stability curve. The calculation of this curve is greatly facilitated whenever it is possible to observe cold denaturation. Using Yfh1, one of the few proteins whose cold denaturation occurs at neutral pH and low ionic strength, we could measure the variation of its full stability curve under several environmental conditions. Here we show the advantages of gauging stability as a function of external variables using stability curves. PMID:26026885

  10. BCAS2 interacts with HSF4 and negatively regulates its protein stability via ubiquitination.

    PubMed

    Liao, Shengjie; Du, Rong; Wang, Lei; Qu, Zhen; Cui, Xiukun; Li, Chang; Liu, Fei; Huang, Mi; Wang, Jiuxiang; Chen, Jiaxiang; Gao, Meng; Yu, Shanshan; Tang, Zhaohui; Li, David Wan-Cheng; Jiang, Tao; Liu, Mugen

    2015-11-01

    Heat shock factor 4 (HSF4) is an important transcriptional factor that plays a vital role in lens development and differentiation, but the mechanism underlying the regulation of HSF4 is ambiguous. BCAS2 was reported to be an essential subunit of pre-mRNA splicing complex. Here, we identified BCAS2 as a novel HSF4 interacting partner. High expression of BCAS2 in the lens epithelium cells and the bow region of mouse lens was detected by immunohistochemistry. In human lens epithelial cells, BCAS2 negatively regulates HSF4 protein level and transcriptional activity, whereas in BCAS2 knockdown cells, HSF4 protein stability was increased significantly. We further demonstrated that the prolonged protein half-time of HSF4 in BCAS2 knockdown cells was due to reduced ubiquitination. Moreover, we have identified the lysine 206 of HSF4 as the key residue for ubiquitination. The HSF4-K206R mutant blocked the impact of BCAS2 on HSF4 protein stability. Taken together, we identified a pathway for HSF4 degradation through the ubiquitin-proteasome system, and a novel function for BCAS2 that may act as a negative regulatory factor for modulating HSF4 protein homeostasis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability

    PubMed Central

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca

    2017-01-01

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726–35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. PMID:28213515

  12. Electrostatic contribution to the binding stability of protein-protein complexes.

    PubMed

    Dong, Feng; Zhou, Huan-Xiang

    2006-10-01

    To investigate roles of electrostatic interactions in protein binding stability, electrostatic calculations were carried out on a set of 64 mutations over six protein-protein complexes. These mutations alter polar interactions across the interface and were selected for putative dominance of electrostatic contributions to the binding stability. Three protocols of implementing the Poisson-Boltzmann model were tested. In vdW4 the dielectric boundary between the protein low dielectric and the solvent high dielectric is defined as the protein van der Waals surface and the protein dielectric constant is set to 4. In SE4 and SE20, the dielectric boundary is defined as the surface of the protein interior inaccessible to a 1.4-A solvent probe, and the protein dielectric constant is set to 4 and 20, respectively. In line with earlier studies on the barnase-barstar complex, the vdW4 results on the large set of mutations showed the closest agreement with experimental data. The agreement between vdW4 and experiment supports the contention of dominant electrostatic contributions for the mutations, but their differences also suggest van der Waals and hydrophobic contributions. The results presented here will serve as a guide for future refinement in electrostatic calculation and inclusion of nonelectrostatic effects. Proteins 2006. (c) 2006 Wiley-Liss, Inc.

  13. Protein stability and dynamics influenced by ligands in extremophilic complexes - a molecular dynamics investigation.

    PubMed

    Khan, Sara; Farooq, Umar; Kurnikova, Maria

    2017-08-22

    In this study, we explore the structural and dynamic adaptations of the Tryptophan synthase α-subunit in a ligand bound state in psychrophilic, mesophilic and hyperthermophilic organisms at different temperatures by MD simulations. We quantify the global and local fluctuations in the 40 ns time scale by analyzing the root mean square deviation/fluctuations. The distinct behavior of the active site and loop 6 is observed with the elevation of temperature. Protein stability relies more on electrostatic interactions, and these interactions might be responsible for the stability of varying temperature evolved proteins. The paper also focuses on the effect of temperature on protein dynamics and stability governed by the distinct behavior of the ligand associated with its retention, binding and dissociation over the course of time. The integration of principle component analysis and a free energy landscape was useful in identifying the conformational space accessible to ligand bound homologues and how the presence of the ligand alters the conformational and dynamic properties of the protein.

  14. Stability of the Influenza Virus Hemagglutinin Protein Correlates with Evolutionary Dynamics.

    PubMed

    Klein, Eili Y; Blumenkrantz, Deena; Serohijos, Adrian; Shakhnovich, Eugene; Choi, Jeong-Mo; Rodrigues, João V; Smith, Brendan D; Lane, Andrew P; Feldman, Andrew; Pekosz, Andrew

    2018-01-01

    Protein thermodynamics are an integral determinant of viral fitness and one of the major drivers of protein evolution. Mutations in the influenza A virus (IAV) hemagglutinin (HA) protein can eliminate neutralizing antibody binding to mediate escape from preexisting antiviral immunity. Prior research on the IAV nucleoprotein suggests that protein stability may constrain seasonal IAV evolution; however, the role of stability in shaping the evolutionary dynamics of the HA protein has not been explored. We used the full coding sequence of 9,797 H1N1pdm09 HA sequences and 16,716 human seasonal H3N2 HA sequences to computationally estimate relative changes in the thermal stability of the HA protein between 2009 and 2016. Phylogenetic methods were used to characterize how stability differences impacted the evolutionary dynamics of the virus. We found that pandemic H1N1 IAV strains split into two lineages that had different relative HA protein stabilities and that later variants were descended from the higher-stability lineage. Analysis of the mutations associated with the selective sweep of the higher-stability lineage found that they were characterized by the early appearance of highly stabilizing mutations, the earliest of which was not located in a known antigenic site. Experimental evidence further suggested that H1N1 HA stability may be correlated with in vitro virus production and infection. A similar analysis of H3N2 strains found that surviving lineages were also largely descended from viruses predicted to encode more-stable HA proteins. Our results suggest that HA protein stability likely plays a significant role in the persistence of different IAV lineages. IMPORTANCE One of the constraints on fast-evolving viruses, such as influenza virus, is protein stability, or how strongly the folded protein holds together. Despite the importance of this protein property, there has been limited investigation of the impact of the stability of the influenza virus

  15. Chaperonin-based biolayer interferometry to assess the kinetic stability of metastable, aggregation-prone proteins

    PubMed Central

    Lea, Wendy A.; Naik, Subhashchandra; Chaudhri, Tapan; Machen, Alexandra J.; O’Neil, Pierce T.; McGinn-Straub, Wesley; Tischer, Alexander; Auton, Matthew T.; Burns, Joshua R.; Baldwin, Michael R.; Khar, Karen R.; Karanicolas, John; Fisher, Mark T.

    2017-01-01

    used to identify small molecules/solution conditions that can stabilize or destabilize thermally stable proteins, multi-domain proteins, oligomeric proteins, and most importantly, aggregation prone metastable proteins. PMID:27505032

  16. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    PubMed

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca

    2017-04-07

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation.

    PubMed

    Geller, Ron; Pechmann, Sebastian; Acevedo, Ashley; Andino, Raul; Frydman, Judith

    2018-05-03

    Acquisition of mutations is central to evolution; however, the detrimental effects of most mutations on protein folding and stability limit protein evolvability. Molecular chaperones, which suppress aggregation and facilitate polypeptide folding, may alleviate the effects of destabilizing mutations thus promoting sequence diversification. To illuminate how chaperones can influence protein evolution, we examined the effect of reduced activity of the chaperone Hsp90 on poliovirus evolution. We find that Hsp90 offsets evolutionary trade-offs between protein stability and aggregation. Lower chaperone levels favor variants of reduced hydrophobicity and protein aggregation propensity but at a cost to protein stability. Notably, reducing Hsp90 activity also promotes clusters of codon-deoptimized synonymous mutations at inter-domain boundaries, likely to facilitate cotranslational domain folding. Our results reveal how a chaperone can shape the sequence landscape at both the protein and RNA levels to harmonize competing constraints posed by protein stability, aggregation propensity, and translation rate on successful protein biogenesis.

  18. Principles of Protein Stability and Their Application in Computational Design.

    PubMed

    Goldenzweig, Adi; Fleishman, Sarel

    2018-01-26

    Proteins are increasingly used in basic and applied biomedical research.Many proteins, however, are only marginally stable and can be expressed in limited amounts, thus hampering research and applications. Research has revealed the thermodynamic, cellular, and evolutionary principles and mechanisms that underlie marginal stability. With this growing understanding, computational stability design methods have advanced over the past two decades starting from methods that selectively addressed only some aspects of marginal stability. Current methods are more general and, by combining phylogenetic analysis with atomistic design, have shown drastic improvements in solubility, thermal stability, and aggregation resistance while maintaining the protein's primary molecular activity. Stability design is opening the way to rational engineering of improved enzymes, therapeutics, and vaccines and to the application of protein design methodology to large proteins and molecular activities that have proven challenging in the past. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  19. Enzyme stabilization via computationally guided protein stapling.

    PubMed

    Moore, Eric J; Zorine, Dmitri; Hansen, William A; Khare, Sagar D; Fasan, Rudi

    2017-11-21

    Thermostabilization represents a critical and often obligatory step toward enhancing the robustness of enzymes for organic synthesis and other applications. While directed evolution methods have provided valuable tools for this purpose, these protocols are laborious and time-consuming and typically require the accumulation of several mutations, potentially at the expense of catalytic function. Here, we report a minimally invasive strategy for enzyme stabilization that relies on the installation of genetically encoded, nonreducible covalent staples in a target protein scaffold using computational design. This methodology enables the rapid development of myoglobin-based cyclopropanation biocatalysts featuring dramatically enhanced thermostability (Δ T m = +18.0 °C and Δ T 50 = +16.0 °C) as well as increased stability against chemical denaturation [Δ C m (GndHCl) = 0.53 M], without altering their catalytic efficiency and stereoselectivity properties. In addition, the stabilized variants offer superior performance and selectivity compared with the parent enzyme in the presence of a high concentration of organic cosolvents, enabling the more efficient cyclopropanation of a water-insoluble substrate. This work introduces and validates an approach for protein stabilization which should be applicable to a variety of other proteins and enzymes.

  20. Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions.

    PubMed

    Ludwig, D Brett; Carpenter, John F; Hamel, Jean-Bernard; Randolph, Theodore W

    2010-04-01

    The effect of silicone oil on the stability of therapeutic protein formulations is of concern in the biopharmaceutical industry as more proteins are stored and delivered in prefilled syringes. Prefilled syringes provide convenience for medical professionals and patients, but prolonged exposure of proteins to silicone oil within prefilled syringes may be problematic. In this study, we characterize systems of silicone oil-in-aqueous buffer emulsions and model proteins in formulations containing surfactant, sodium chloride, or sucrose. For each of the formulations studied, silicone oil-induced loss of soluble protein, likely through protein adsorption onto the silicone oil droplet surface. Excipient addition affected both protein adsorption and emulsion stability. Addition of surfactant stabilized emulsions but decreased protein adsorption to silicone oil microdroplets. In contrast, addition of sodium chloride increased protein adsorption and decreased emulsion stability. Silicone oil droplets with adsorbed lysozyme rapidly agglomerated and creamed out of suspension. This decrease in the kinetic stability of the emulsion is ascribed to surface charge neutralization and a bridging flocculation phenomenon and illustrates the need to investigate not only the effects of silicone oil on protein stability, but also the effects of protein formulation variables on emulsion stability. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Deletion of internal structured repeats increases the stability of a leucine-rich repeat protein, YopM

    PubMed Central

    Barrick, Doug

    2011-01-01

    Mapping the stability distributions of proteins in their native folded states provides a critical link between structure, thermodynamics, and function. Linear repeat proteins have proven more amenable to this kind of mapping than globular proteins. C-terminal deletion studies of YopM, a large, linear leucine-rich repeat (LRR) protein, show that stability is distributed quite heterogeneously, yet a high level of cooperativity is maintained [1]. Key components of this distribution are three interfaces that strongly stabilize adjacent sequences, thereby maintaining structural integrity and promoting cooperativity. To better understand the distribution of interaction energy around these critical interfaces, we studied internal (rather than terminal) deletions of three LRRs in this region, including one of these stabilizing interfaces. Contrary to our expectation that deletion of structured repeats should be destabilizing, we find that internal deletion of folded repeats can actually stabilize the native state, suggesting that these repeats are destabilizing, although paradoxically, they are folded in the native state. We identified two residues within this destabilizing segment that deviate from the consensus sequence at a position that normally forms a stacked leucine ladder in the hydrophobic core. Replacement of these nonconsensus residues with leucine is stabilizing. This stability enhancement can be reproduced in the context of nonnative interfaces, but it requires an extended hydrophobic core. Our results demonstrate that different LRRs vary widely in their contribution to stability, and that this variation is context-dependent. These two factors are likely to determine the types of rearrangements that lead to folded, functional proteins, and in turn, are likely to restrict the pathways available for the evolution of linear repeat proteins. PMID:21764506

  2. Effects of protein phosphorylation on color stability of ground meat.

    PubMed

    Li, Meng; Li, Xin; Xin, Jianzeng; Li, Zheng; Li, Guixia; Zhang, Yan; Du, Manting; Shen, Qingwu W; Zhang, Dequan

    2017-03-15

    The influence of protein phosphorylation on meat color stability was investigated in this study. Phosphatase and protein kinase inhibitors were added to minced ovine Longissimus thoracis et lumborum (LTL) muscle to manipulate the global phosphorylation of sarcoplasmic proteins. The data obtained show that the rate and extent of pH decline, along with lactate accumulation in postmortem muscle, were related to protein phosphorylation. Analysis of meat color and the relative content of myoglobin redox forms revealed that meat color stability was inversely related to the phosphorylation of sarcoplasmic proteins. Thus, this study suggests that protein phosphorylation may be involved in meat color development by regulating glycolysis and the redox stability of myoglobin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Temperature compensation via cooperative stability in protein degradation

    NASA Astrophysics Data System (ADS)

    Peng, Yuanyuan; Hasegawa, Yoshihiko; Noman, Nasimul; Iba, Hitoshi

    2015-08-01

    Temperature compensation is a notable property of circadian oscillators that indicates the insensitivity of the oscillator system's period to temperature changes; the underlying mechanism, however, is still unclear. We investigated the influence of protein dimerization and cooperative stability in protein degradation on the temperature compensation ability of two oscillators. Here, cooperative stability means that high-order oligomers are more stable than their monomeric counterparts. The period of an oscillator is affected by the parameters of the dynamic system, which in turn are influenced by temperature. We adopted the Repressilator and the Atkinson oscillator to analyze the temperature sensitivity of their periods. Phase sensitivity analysis was employed to evaluate the period variations of different models induced by perturbations to the parameters. Furthermore, we used experimental data provided by other studies to determine the reasonable range of parameter temperature sensitivity. We then applied the linear programming method to the oscillatory systems to analyze the effects of protein dimerization and cooperative stability on the temperature sensitivity of their periods, which reflects the ability of temperature compensation in circadian rhythms. Our study explains the temperature compensation mechanism for circadian clocks. Compared with the no-dimer mathematical model and linear model for protein degradation, our theoretical results show that the nonlinear protein degradation caused by cooperative stability is more beneficial for realizing temperature compensation of the circadian clock.

  4. CoMoDo: identifying dynamic protein domains based on covariances of motion.

    PubMed

    Wieninger, Silke A; Ullmann, G Matthias

    2015-06-09

    Most large proteins are built of several domains, compact units which enable functional protein motions. Different domain assignment approaches exist, which mostly rely on concepts of stability, folding, and evolution. We describe the automatic assignment method CoMoDo, which identifies domains based on protein dynamics. Covariances of atomic fluctuations, here calculated by an Elastic Network Model, are used to group residues into domains of different hierarchical levels. The so-called dynamic domains facilitate the study of functional protein motions involved in biological processes like ligand binding and signal transduction. By applying CoMoDo to a large number of proteins, we demonstrate that dynamic domains exhibit features absent in the commonly assigned structural domains, which can deliver insight into the interactions between domains and between subunits of multimeric proteins. CoMoDo is distributed as free open source software at www.bisb.uni-bayreuth.de/CoMoDo.html .

  5. Modulation of protein stability and aggregation properties by surface charge engineering.

    PubMed

    Raghunathan, Govindan; Sokalingam, Sriram; Soundrarajan, Nagasundarapandian; Madan, Bharat; Munussami, Ganapathiraman; Lee, Sun-Gu

    2013-09-01

    An attempt to alter protein surface charges through traditional protein engineering approaches often affects the native protein structure significantly and induces misfolding. This limitation is a major hindrance in modulating protein properties through surface charge variations. In this study, as a strategy to overcome such a limitation, we attempted to co-introduce stabilizing mutations that can neutralize the destabilizing effect of protein surface charge variation. Two sets of rational mutations were designed; one to increase the number of surface charged amino acids and the other to decrease the number of surface charged amino acids by mutating surface polar uncharged amino acids and charged amino acids, respectively. These two sets of mutations were introduced into Green Fluorescent Protein (GFP) together with or without stabilizing mutations. The co-introduction of stabilizing mutations along with mutations for surface charge modification allowed us to obtain functionally active protein variants (s-GFP(+15-17) and s-GFP(+5-6)). When the protein properties such as fluorescent activity, folding rate and kinetic stability were assessed, we found the possibility that the protein stability can be modulated independently of activity and folding by engineering protein surface charges. The aggregation properties of GFP could also be altered through the surface charge engineering.

  6. Stability Mechanisms of Laccase Isoforms using a Modified FoldX Protocol Applicable to Widely Different Proteins.

    PubMed

    Christensen, Niels J; Kepp, Kasper P

    2013-07-09

    A recent computational protocol that accurately predicts and rationalizes protein multisite mutant stabilities has been extended to handle widely different isoforms of laccases. We apply the protocol to four isoenzymes of Trametes versicolor laccase (TvL) with variable lengths (498-503 residues) and thermostability (Topt ∼ 45-80 °C) and with 67-77% sequence identity. The extended protocol uses (i) statistical averaging, (ii) a molecular-dynamics-validated "compromise" homology model to minimize bias that causes proteins close in sequence to a structural template to be too stable due to having the benefits of the better sampled template (typically from a crystal structure), (iii) correction for hysteresis that favors the input template to overdestabilize, and (iv) a preparative protocol to provide robust input sequences of equal length. The computed ΔΔG values are in good agreement with the major trends in experimental stabilities; that is, the approach may be applicable for fast estimates of the relative stabilities of proteins with as little as 70% identity, something that is currently extremely challenging. The computed stability changes associated with variations are Gaussian-distributed, in good agreement with experimental distributions of stability effects from mutation. The residues causing the differential stability of the four isoforms are consistent with a range of compiled laccase wild type data, suggesting that we may have identified general drivers of laccase stability. Several sites near Cu, notably 79, 241, and 245, or near substrate, mainly 265, are identified that contribute to stability-function trade-offs, of relevance to the search for new proficient and stable variants of these important industrial enzymes.

  7. Structure and stability insights into tumour suppressor p53 evolutionary related proteins.

    PubMed

    Pagano, Bruno; Jama, Abdullah; Martinez, Pierre; Akanho, Ester; Bui, Tam T T; Drake, Alex F; Fraternali, Franca; Nikolova, Penka V

    2013-01-01

    The p53 family of genes and their protein products, namely, p53, p63 and p73, have over one billion years of evolutionary history. Advances in computational biology and genomics are enabling studies of the complexities of the molecular evolution of p53 protein family to decipher the underpinnings of key biological conditions spanning from cancer through to various metabolic and developmental disorders and facilitate the design of personalised medicines. However, a complete understanding of the inherent nature of the thermodynamic and structural stability of the p53 protein family is still lacking. This is due, to a degree, to the lack of comprehensive structural information for a large number of homologous proteins and to an incomplete knowledge of the intrinsic factors responsible for their stability and how these might influence function. Here we investigate the thermal stability, secondary structure and folding properties of the DNA-binding domains (DBDs) of a range of proteins from the p53 family using biophysical methods. While the N- and the C-terminal domains of the p53 family show sequence diversity and are normally targets for post-translational modifications and alternative splicing, the central DBD is highly conserved. Together with data obtained from Molecular Dynamics simulations in solution and with structure based homology modelling, our results provide further insights into the molecular properties of evolutionary related p53 proteins. We identify some marked structural differences within the p53 family, which could account for the divergence in biological functions as well as the subtleties manifested in the oligomerization properties of this family.

  8. Remarkable stabilization of a psychrotrophic RNase HI by a combination of thermostabilizing mutations identified by the suppressor mutation method.

    PubMed

    Tadokoro, Takashi; Matsushita, Kyoko; Abe, Yumi; Rohman, Muhammad Saifur; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2008-08-05

    Ribonuclease HI from the psychrotrophic bacterium Shewanella oneidensis MR-1 (So-RNase HI) is much less stable than Escherichia coli RNase HI (Ec-RNase HI) by 22.4 degrees C in T m and 12.5 kJ mol (-1) in Delta G(H 2O), despite their high degrees of structural and functional similarity. To examine whether the stability of So-RNase HI increases to a level similar to that of Ec-RNase HI via introduction of several mutations, the mutations that stabilize So-RNase HI were identified by the suppressor mutation method and combined. So-RNase HI and its variant with a C-terminal four-residue truncation (154-RNase HI) complemented the RNase H-dependent temperature-sensitive (ts) growth phenotype of E. coli strain MIC3001, while 153-RNase HI with a five-residue truncation could not. Analyses of the activity and stability of these truncated proteins suggest that 153-RNase HI is nonfunctional in vivo because of a great decrease in stability. Random mutagenesis of 153-RNase HI using error-prone PCR, followed by screening for the revertants, allowed us to identify six single suppressor mutations that make 153-RNase HI functional in vivo. Four of them markedly increased the stability of the wild-type protein by 3.6-6.7 degrees C in T m and 1.7-5.2 kJ mol (-1) in Delta G(H 2O). The effects of these mutations were nearly additive, and combination of these mutations increased protein stability by 18.7 degrees C in T m and 12.2 kJ mol (-1) in Delta G(H 2O). These results suggest that several residues are not optimal for the stability of So-RNase HI, and their replacement with other residues strikingly increases it to a level similar to that of the mesophilic counterpart.

  9. Dissecting protein function: an efficient protocol for identifying separation-of-function mutations that encode structurally stable proteins.

    PubMed

    Lubin, Johnathan W; Rao, Timsi; Mandell, Edward K; Wuttke, Deborah S; Lundblad, Victoria

    2013-03-01

    Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3(-) mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations.

  10. Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein

    PubMed Central

    Picone, Delia

    2016-01-01

    MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques. PMID:27340829

  11. Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein.

    PubMed

    Leone, Serena; Picone, Delia

    2016-01-01

    MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques.

  12. Storage Stability of Food Protein Hydrolysates-A Review.

    PubMed

    Rao, Qinchun; Klaassen Kamdar, Andre; Labuza, Theodore P

    2016-05-18

    In recent years, mainly due to the specific health benefits associated with (1) the discovery of bioactive peptides in protein hydrolysates, (2) the reduction of protein allergenicity by protein hydrolysis, and (3) the improved protein digestibility and absorption of protein hydrolysates, the utilization of protein hydrolysates in functional foods and beverages has significantly increased. Although the specific health benefits from different hydrolysates are somewhat proven, the delivery and/or stability of these benefits is debatable during distribution, storage, and consumption. In this review, we discuss (1) the quality changes in different food protein hydrolysates during storage; (2) the resulting changes in the structure and texture of three food matrices, i.e., low moisture foods (LMF, aw < 0.6), intermediate moisture foods (IMF, 0.6 ≤ aw < 0.85), and high moisture foods (HMF, aw ≥ 0.85); and (3) the potential solutions to improve storage stability of food protein hydrolysates. In addition, we note there is a great need for evaluation of biofunction availability of bioactive peptides in food protein hydrolysates during storage.

  13. Prediction of protein mutant stability using classification and regression tool.

    PubMed

    Huang, Liang-Tsung; Saraboji, K; Ho, Shinn-Ying; Hwang, Shiow-Fen; Ponnuswamy, M N; Gromiha, M Michael

    2007-02-01

    Prediction of protein stability upon amino acid substitutions is an important problem in molecular biology and the solving of which would help for designing stable mutants. In this work, we have analyzed the stability of protein mutants using two different datasets of 1396 and 2204 mutants obtained from ProTherm database, respectively for free energy change due to thermal (DeltaDeltaG) and denaturant denaturations (DeltaDeltaG(H(2)O)). We have used a set of 48 physical, chemical energetic and conformational properties of amino acid residues and computed the difference of amino acid properties for each mutant in both sets of data. These differences in amino acid properties have been related to protein stability (DeltaDeltaG and DeltaDeltaG(H(2)O)) and are used to train with classification and regression tool for predicting the stability of protein mutants. Further, we have tested the method with 4 fold, 5 fold and 10 fold cross validation procedures. We found that the physical properties, shape and flexibility are important determinants of protein stability. The classification of mutants based on secondary structure (helix, strand, turn and coil) and solvent accessibility (buried, partially buried, partially exposed and exposed) distinguished the stabilizing/destabilizing mutants at an average accuracy of 81% and 80%, respectively for DeltaDeltaG and DeltaDeltaG(H(2)O). The correlation between the experimental and predicted stability change is 0.61 for DeltaDeltaG and 0.44 for DeltaDeltaG(H(2)O). Further, the free energy change due to the replacement of amino acid residue has been predicted within an average error of 1.08 kcal/mol and 1.37 kcal/mol for thermal and chemical denaturation, respectively. The relative importance of secondary structure and solvent accessibility, and the influence of the dataset on prediction of protein mutant stability have been discussed.

  14. Stability of ALS-related Superoxide Dismutase Protein variants

    NASA Astrophysics Data System (ADS)

    Lusebrink, Daniel; Plotkin, Steven

    Superoxide dismutase (SOD1) is a metal binding, homodimeric protein, whose misfolding is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Monomerization is believed to be a key step in the propagation of the disease. The dimer stability is often difficult to measure experimentally however, because it is entangled with protein unfolding and metal loss. We thus computationally investigate the dimer stability of mutants of SOD1 known to be associated with ALS. We report on systematic trends in dimer stability, as well as intriguing allosteric communication between mutations and the dimer interface. We study the dimer stabilities in molecular dynamics simulations and obtain the binding free energies of the dimers from pulling essays. Mutations are applied in silicoand we compare the differences of binding free energies compared to the wild type.

  15. The Linear Interaction Energy Method for the Prediction of Protein Stability Changes Upon Mutation

    PubMed Central

    Wickstrom, Lauren; Gallicchio, Emilio; Levy, Ronald M.

    2011-01-01

    The coupling of protein energetics and sequence changes is a critical aspect of computational protein design, as well as for the understanding of protein evolution, human disease, and drug resistance. In order to study the molecular basis for this coupling, computational tools must be sufficiently accurate and computationally inexpensive enough to handle large amounts of sequence data. We have developed a computational approach based on the linear interaction energy (LIE) approximation to predict the changes in the free energy of the native state induced by a single mutation. This approach was applied to a set of 822 mutations in 10 proteins which resulted in an average unsigned error of 0.82 kcal/mol and a correlation coefficient of 0.72 between the calculated and experimental ΔΔG values. The method is able to accurately identify destabilizing hot spot mutations however it has difficulty in distinguishing between stabilizing and destabilizing mutations due to the distribution of stability changes for the set of mutations used to parameterize the model. In addition, the model also performs quite well in initial tests on a small set of double mutations. Based on these promising results, we can begin to examine the relationship between protein stability and fitness, correlated mutations, and drug resistance. PMID:22038697

  16. High-throughput analysis of the protein sequence-stability landscape using a quantitative "yeast surface two-hybrid" system and fragment reconstitution

    PubMed Central

    Dutta, Sanjib; Koide, Akiko; Koide, Shohei

    2008-01-01

    Stability evaluation of many mutants can lead to a better understanding of the sequence determinants of a structural motif and of factors governing protein stability and protein evolution. The traditional biophysical analysis of protein stability is low throughput, limiting our ability to widely explore the sequence space in a quantitative manner. In this study, we have developed a high-throughput library screening method for quantifying stability changes, which is based on protein fragment reconstitution and yeast surface display. Our method exploits the thermodynamic linkage between protein stability and fragment reconstitution and the ability of the yeast surface display technique to quantitatively evaluate protein-protein interactions. The method was applied to a fibronectin type III (FN3) domain. Characterization of fragment reconstitution was facilitated by the co-expression of two FN3 fragments, thus establishing a "yeast surface two-hybrid" method. Importantly, our method does not rely on competition between clones and thus eliminates a common limitation of high-throughput selection methods in which the most stable variants are predominantly recovered. Thus, it allows for the isolation of sequences that exhibits a desired level of stability. We identified over one hundred unique sequences for a β-bulge motif, which was significantly more informative than natural sequences of the FN3 family in revealing the sequence determinants for the β-bulge. Our method provides a powerful means to rapidly assess stability of many variants, to systematically assess contribution of different factors to protein stability and to enhance protein stability. PMID:18674545

  17. Protein stabilization by introduction of cross-strand disulfides.

    PubMed

    Chakraborty, Kausik; Thakurela, Sudhir; Prajapati, Ravindra Singh; Indu, S; Ali, P Shaik Syed; Ramakrishnan, C; Varadarajan, Raghavan

    2005-11-08

    Disulfides cross-link residues in a protein that are separated in primary sequence and stabilize the protein through entropic destabilization of the unfolded state. While the removal of naturally occurring disulfides leads to protein destabilization, introduction of engineered disulfides does not always lead to significant stabilization of a protein. We have analyzed naturally occurring disulfides that span adjacent antiparallel strands of beta sheets (cross-strand disulfides). Cross-strand disulfides have recently been implicated as redox-based conformational switches in proteins such as gp120 and CD4. The propensity of these disulfides to act as conformational switches was postulated on the basis of the hypothesis that this class of disulfide is conformationally strained. In the present analysis, there was no evidence to suggest that cross-strand disulfides are more strained compared to other disulfides as assessed by their torsional energy. It was also observed that these disulfides occur solely at non-hydrogen-bonded (NHB) registered pairs of adjacent antiparallel strands and not at hydrogen-bonded (HB) positions as suggested previously. One of the half-cystines involved in cross-strand disulfide formation often occurs at an edge strand. Experimental confirmation of the stabilizing effects of such disulfides was carried out in Escherichia coli thioredoxin. Four pairs of cross-strand cysteines were introduced, two at HB and two at NHB pairs. Disulfides were formed in all four cases. However, as predicted from our analysis, disulfides at NHB positions resulted in an increase in melting temperature of 7-10 degrees C, while at HB positions there was a corresponding decrease of -7 degrees C. The reduced state of all proteins had similar stability.

  18. Monodispersed silk fibroin microdroplets for protein stabilization

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Jiang, Nan; Liu, Dewen; Ying, Guoliang; Shi, Qiusheng; Yetisen, Ali K.; Liu, Haifeng; Fan, Yubo

    2018-04-01

    Low stability of globular protein droplets in emulsion significantly limits their applications in drug encapsulation, long-term storage, and controlled drug release. Here, a microfluidic flow-focusing device was utilized to synthesize horseradish peroxidase (HRP)-loaded silk fibroin microdroplets. The two immiscible streams of microfluidic flow-focusing were regenerated by silk fibroin solution and a mixture of 95 wt. % sunflower oil and 5 wt. % span 80 as the dispersed and continuous phases, respectively. In this study, the water-in-oil silk fibroin microdroplets were homogeneously produced by leveraging the discrete and periodic breakup of microdroplets and regulating the flow rates. Moreover, the result showed that the stability of encapsulated HRP in microdroplets was 25% higher than that of HRP after 6 weeks incubation. Thus, the microfluidic flow-focusing is a promising technique to form monodisperse microdroplets and maximize the stability of protein droplets.

  19. Stability of halophilic proteins: from dipeptide attributes to discrimination classifier.

    PubMed

    Zhang, Guangya; Huihua, Ge; Yi, Lin

    2013-02-01

    To investigate the molecular features responsible for protein halophilicity is of great significance for understanding the structure basis of protein halo-stability and would help to develop a practical strategy for designing halophilic proteins. In this work, we have systematically analyzed the dipeptide composition of the halophilic and non-halophilic protein sequences. We observed the halophilic proteins contained more DA, RA, AD, RR, AP, DD, PD, EA, VG and DV at the expense of LK, IL, II, IA, KK, IS, KA, GK, RK and AI. We identified some macromolecular signatures of halo-adaptation, and thought the dipeptide composition might contain more information than amino acid composition. Based on the dipeptide composition, we have developed a machine learning method for classifying halophilic and non-halophilic proteins for the first time. The accuracy of our method for the training dataset was 100.0%, and for the 10-fold cross-validation was 93.1%. We also discussed the influence of some specific dipeptides on prediction accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Predicting stability of alpha-helical, orthogonal-bundle proteins on surfaces

    NASA Astrophysics Data System (ADS)

    Wei, Shuai; Knotts, Thomas A.

    2010-09-01

    The interaction of proteins with surfaces is a key phenomenon in many applications, but current understanding of the biophysics involved is lacking. At present, rational design of such emerging technologies is difficult as no methods or theories exist that correctly predict how surfaces influence protein behavior. Using molecular simulation and a coarse-grain model, this study illustrates for the first time that stability of proteins on surfaces can be correlated with tertiary structural elements for alpha-helical, orthogonal-bundle proteins. Results show that several factors contribute to stability on surfaces including the nature of the loop region where the tether is placed and the ability of the protein to freely rotate on the surface. A thermodynamic analysis demonstrates that surfaces stabilize proteins entropically and that any destabilization is an enthalpic effect. Moreover, the entropic effects are concentrated on the unfolded state of the protein while the ethalpic effects are focused on the folded state.

  1. Nucleic acid aptamers as stabilizers of proteins: the stability of tetanus toxoid.

    PubMed

    Jain, Nishant Kumar; Jetani, Hardik C; Roy, Ipsita

    2013-07-01

    Exposure of tetanus toxoid to moisture leads to its aggregation and reduction of potency. The aim of this work was to use SELEX (systematic evolution of ligands by exponential enrichment) protocol and select aptamers which recognize tetanus toxoid (Mr ~150 kDa) with high affinity. Colyophilized preparations of tetanus toxoid and specific aptamers were encapsulated in PLGA microspheres and sustained release of the antigen was observed up to 55 days using different techniques. The total protein released was between 40-55% (24-45% residual antigenicity) in the presence of the aptamers as compared to 25% (11% residual antigenicity) for the antigen alone. We show that instead of inhibiting absorption of moisture, the aptamers blocked the protein unfolding upon absorption of moisture, inhibiting the initiation of aggregation. When exposed to accelerated storage conditions, some of the RNA sequences were able to inhibit moisture-induced aggregation in vitro and retain antigenicity of tetanus toxoid. Nucleic acid aptamers represent a novel class of protein stabilizers which stabilize the protein by interacting directly with it. This mechanism is unlike that of small molecules which alter the medium properties and hence depend on the stress condition a protein is exposed to.

  2. StaRProtein, A Web Server for Prediction of the Stability of Repeat Proteins

    PubMed Central

    Xu, Yongtao; Zhou, Xu; Huang, Meilan

    2015-01-01

    Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins. PMID:25807112

  3. Thermodynamic effects of proline introduction on protein stability.

    PubMed

    Prajapati, Ravindra Singh; Das, Mili; Sreeramulu, Sridhar; Sirajuddin, Minhajuddin; Srinivasan, Sankaranarayanan; Krishnamurthy, Vaishnavi; Ranjani, Ranganathan; Ramakrishnan, C; Varadarajan, Raghavan

    2007-02-01

    The amino acid Pro is more rigid than other naturally occurring amino acids and, in proteins, lacks an amide hydrogen. To understand the structural and thermodynamic effects of Pro substitutions, it was introduced at 13 different positions in four different proteins, leucine-isoleucine-valine binding protein, maltose binding protein, ribose binding protein, and thioredoxin. Three of the maltose binding protein mutants were characterized by X-ray crystallography to confirm that no structural changes had occurred upon mutation. In the remaining cases, fluorescence and CD spectroscopy were used to show the absence of structural change. Stabilities of wild type and mutant proteins were characterized by chemical denaturation at neutral pH and by differential scanning calorimetry as a function of pH. The mutants did not show enhanced stability with respect to chemical denaturation at room temperature. However, 6 of the 13 single mutants showed a small but significant increase in the free energy of thermal unfolding in the range of 0.3-2.4 kcal/mol, 2 mutants showed no change, and 5 were destabilized. In five of the six cases, the stabilization was because of reduced entropy of unfolding. However, the magnitude of the reduction in entropy of unfolding was typically several fold larger than the theoretical estimate of -4 cal K(-1) mol(-1) derived from the relative areas in the Ramachandran map accessible to Pro and Ala residues, respectively. Two double mutants were constructed. In both cases, the effects of the single mutations on the free energy of thermal unfolding were nonadditive. Copyright 2006 Wiley-Liss, Inc.

  4. Molecular insights into the stabilization of protein-protein interactions with small molecule: The FKBP12-rapamycin-FRB case study

    NASA Astrophysics Data System (ADS)

    Chaurasia, Shilpi; Pieraccini, Stefano; De Gonda, Riccardo; Conti, Simone; Sironi, Maurizio

    2013-11-01

    Targetting protein-protein interactions is a challenging task in drug discovery process. Despite the challenges, several studies provided evidences for the development of small molecules modulating protein-protein interactions. Here we consider a typical case of protein-protein interaction stabilization: the complex between FKBP12 and FRB with rapamycin. We have analyzed the stability of the complex and characterized its interactions at the atomic level by performing free energy calculations and computational alanine scanning. It is shown that rapamycin stabilizes the complex by acting as a bridge between the two proteins; and the complex is stable only in the presence of rapamycin.

  5. Role of naturally occurring osmolytes in protein folding and stability.

    PubMed

    Kumar, Raj

    2009-11-01

    Osmolytes are typically accumulated in the intracellular environment at relatively high concentrations when cells/tissues are subjected to stress conditions. Osmolytes are common in a variety of organisms, including microorganisms, plants, and animals. They enhance thermodynamic stability of proteins by providing natively folded conformations without perturbing other cellular processes. By burying the backbone into the core of folded proteins, osmolytes can provide significant stability to proteins. Two properties of osmolytes are particularly important: (i) their ability to impart increased thermodynamic stability to folded proteins; and (ii) their compatibility in the intracellular environment at high concentrations. Under physiological conditions, the cellular compositions of osmolytes may vary significantly. This may lead to different protein folding pathways utilized in cells depending upon the intracellular environment. Proper understanding of the role of osmolytes in cell regulation should allow predicting the action of osmolytes on macromolecular interactions in stressed and crowded environments typical of cellular conditions.

  6. Robust enzyme design: bioinformatic tools for improved protein stability.

    PubMed

    Suplatov, Dmitry; Voevodin, Vladimir; Švedas, Vytas

    2015-03-01

    The ability of proteins and enzymes to maintain a functionally active conformation under adverse environmental conditions is an important feature of biocatalysts, vaccines, and biopharmaceutical proteins. From an evolutionary perspective, robust stability of proteins improves their biological fitness and allows for further optimization. Viewed from an industrial perspective, enzyme stability is crucial for the practical application of enzymes under the required reaction conditions. In this review, we analyze bioinformatic-driven strategies that are used to predict structural changes that can be applied to wild type proteins in order to produce more stable variants. The most commonly employed techniques can be classified into stochastic approaches, empirical or systematic rational design strategies, and design of chimeric proteins. We conclude that bioinformatic analysis can be efficiently used to study large protein superfamilies systematically as well as to predict particular structural changes which increase enzyme stability. Evolution has created a diversity of protein properties that are encoded in genomic sequences and structural data. Bioinformatics has the power to uncover this evolutionary code and provide a reproducible selection of hotspots - key residues to be mutated in order to produce more stable and functionally diverse proteins and enzymes. Further development of systematic bioinformatic procedures is needed to organize and analyze sequences and structures of proteins within large superfamilies and to link them to function, as well as to provide knowledge-based predictions for experimental evaluation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Identifying Protein-Calorie Malnutrition Workshop.

    ERIC Educational Resources Information Center

    Walker, Susan S.; Barker, Ellen M.

    Instructional materials are provided for a workshop to enable participants to assist in identifying patients at risk with protein-calorie malnutrition and in corrrecting this nutritional deficiency. Representative topics are nutrients; protein, mineral, and vitamin sources, functions, and deficiency symptoms; malnutrition; nutritional deficiency…

  8. Rational Design of Protein Stability: Effect of (2S,4R)-4-Fluoroproline on the Stability and Folding Pathway of Ubiquitin

    PubMed Central

    Crespo, Maria D.; Rubini, Marina

    2011-01-01

    Background Many strategies have been employed to increase the conformational stability of proteins. The use of 4-substituted proline analogs capable to induce pre-organization in target proteins is an attractive tool to deliver an additional conformational stability without perturbing the overall protein structure. Both, peptides and proteins containing 4-fluorinated proline derivatives can be stabilized by forcing the pyrrolidine ring in its favored puckering conformation. The fluorinated pyrrolidine rings of proline can preferably stabilize either a Cγ-exo or a Cγ-endo ring pucker in dependence of proline chirality (4R/4S) in a complex protein structure. To examine whether this rational strategy can be generally used for protein stabilization, we have chosen human ubiquitin as a model protein which contains three proline residues displaying Cγ-exo puckering. Methodology/Principal Findings While (2S,4R)-4-fluoroproline ((4R)-FPro) containing ubiquitinin can be expressed in related auxotrophic Escherichia coli strain, all attempts to incorporate (2S,4S)-4-fluoroproline ((4S)-FPro) failed. Our results indicate that (4R)-FPro is favoring the Cγ-exo conformation present in the wild type structure and stabilizes the protein structure due to a pre-organization effect. This was confirmed by thermal and guanidinium chloride-induced denaturation profile analyses, where we observed an increase in stability of −4.71 kJ·mol−1 in the case of (4R)-FPro containing ubiquitin ((4R)-FPro-ub) compared to wild type ubiquitin (wt-ub). Expectedly, activity assays revealed that (4R)-FPro-ub retained the full biological activity compared to wt-ub. Conclusions/Significance The results fully confirm the general applicability of incorporating fluoroproline derivatives for improving protein stability. In general, a rational design strategy that enforces the natural occurring proline puckering conformation can be used to stabilize the desired target protein. PMID:21625626

  9. Activation of Akt, not connexin 43 protein ubiquitination, regulates gap junction stability.

    PubMed

    Dunn, Clarence A; Su, Vivian; Lau, Alan F; Lampe, Paul D

    2012-01-20

    The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.

  10. Kinetic Stability of Proteins in Beans and Peas: Implications for Protein Digestibility, Seed Germination, and Plant Adaptation.

    PubMed

    Xia, Ke; Pittelli, Sandy; Church, Jennifer; Colón, Wilfredo

    2016-10-12

    Kinetically stable proteins (KSPs) are resistant to the denaturing detergent sodium dodecyl sulfate (SDS). Such resilience makes KSPs resistant to proteolytic degradation and may have arisen in nature as a mechanism for organismal adaptation and survival against harsh conditions. Legumes are well-known for possessing degradation-resistant proteins that often diminish their nutritional value. Here we applied diagonal two-dimensional (D2D) SDS-polyacrylamide gel electrophoresis (PAGE), a method that allows for the proteomics-level identification of KSPs, to a group of 12 legumes (mostly beans and peas) of agricultural and nutritional importance. Our proteomics results show beans that are more difficult to digest, such as soybean, lima beans, and various common beans, have high contents of KSPs. In contrast, mung bean, red lentil, and various peas that are highly digestible contain low amounts of KSPs. Identified proteins with high kinetic stability are associated with warm-season beans, which germinate at higher temperatures. In contrast, peas and red lentil, which are cool-season legumes, contain low levels of KSPs. Thus, our results show protein kinetic stability is an important factor in the digestibility of legume proteins and may relate to nutrition efficiency, timing of seed germination, and legume resistance to biotic stressors. Furthermore, we show D2D SDS-PAGE is a powerful method that could be applied for determining the abundance and identity of KSPs in engineered and wild legumes and for advancing basic research and associated applications.

  11. Probabilistic analysis for identifying the driving force of protein folding

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki

    2018-03-01

    Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.

  12. Honey-Induced Protein Stabilization as Studied by Fluorescein Isothiocyanate Fluorescence

    PubMed Central

    Abdul Kadir, Habsah; Tayyab, Saad

    2013-01-01

    Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluorescence at 522 nm upon excitation at 495 nm. There was an increase in the FITC fluorescence intensity upon increasing urea concentration or temperature, suggesting protein denaturation. The results from urea and thermal denaturation studies showed increased stability of protein in the presence of honey as reflected from the shift in the transition curve along with the start point and the midpoint of the transition towards higher urea concentration/temperature. Furthermore, the increase in ΔG D H2O and ΔG D 25°C in presence of honey also suggested protein stabilization. PMID:24222758

  13. Assessing the utility of gene co-expression stability in combination with correlation in the analysis of protein-protein interaction networks

    PubMed Central

    2011-01-01

    Background Gene co-expression, in the form of a correlation coefficient, has been valuable in the analysis, classification and prediction of protein-protein interactions. However, it is susceptible to bias from a few samples having a large effect on the correlation coefficient. Gene co-expression stability is a means of quantifying this bias, with high stability indicating robust, unbiased co-expression correlation coefficients. We assess the utility of gene co-expression stability as an additional measure to support the co-expression correlation in the analysis of protein-protein interaction networks. Results We studied the patterns of co-expression correlation and stability in interacting proteins with respect to their interaction promiscuity, levels of intrinsic disorder, and essentiality or disease-relatedness. Co-expression stability, along with co-expression correlation, acts as a better classifier of hub proteins in interaction networks, than co-expression correlation alone, enabling the identification of a class of hubs that are functionally distinct from the widely accepted transient (date) and obligate (party) hubs. Proteins with high levels of intrinsic disorder have low co-expression correlation and high stability with their interaction partners suggesting their involvement in transient interactions, except for a small group that have high co-expression correlation and are typically subunits of stable complexes. Similar behavior was seen for disease-related and essential genes. Interacting proteins that are both disordered have higher co-expression stability than ordered protein pairs. Using co-expression correlation and stability, we found that transient interactions are more likely to occur between an ordered and a disordered protein while obligate interactions primarily occur between proteins that are either both ordered, or disordered. Conclusions We observe that co-expression stability shows distinct patterns in structurally and functionally

  14. Mechanism of Stabilization of Labile Compounds by Silk Fibroin Proteins

    DTIC Science & Technology

    2017-04-05

    AFRL-AFOSR-VA-TR-2017-0076 Mechanism of Stabilization of Labile Compounds by Silk Fibroin Proteins David Kaplan TRUSTEES OF TUFTS COLEGE INC 169... Proteins 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0015 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) David Kaplan 5d.  PROJECT NUMBER 5e...objective of this research was to elucidate the fundamental mechanisms by which labile compounds are entrapped and stabilized by silk fibroin protein . The

  15. Influence of osmolytes on protein and water structure: a step to understanding the mechanism of protein stabilization.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Stangret, Janusz

    2013-10-03

    Results concerning the thermostability of hen egg white lysozyme in aqueous solutions with stabilizing osmolytes, trimethylamine-N-oxide (TMAO), glycine (Gly), and its N-methyl derivatives, N-methylglycine (NMG), N,N-dimethylglycine (DMG), and N,N,N-trimethylglycine (betaine, TMG), have been presented. The combination of spectroscopic (IR) and calorimetric (DSC) data allowed us to establish a link between osmolytes' influence on water structure and their ability to thermally stabilize protein molecule. Structural and energetic characteristics of stabilizing osmolytes' and lysozyme's hydration water appear to be very similar. The osmolytes increase lysozyme stabilization in the order bulk water < TMAO < TMG < Gly < DMG < NMG, which is consistent with the order corresponding to the value of the most probable oxygen-oxygen distance of water molecules affected by osmolytes in their surrounding. Obtained results verified the hypothesis concerning the role of water molecules in protein stabilization, explained the osmophobic effect, and finally helped to bring us nearer to the exact mechanism of protein stabilization by osmolytes.

  16. Identifying paths of allosteric communication in the protein BirA through simulations

    NASA Astrophysics Data System (ADS)

    Custer, Gregory; Beckett, Dorothy; Matysiak, Silvina

    Biotin ligase/repressor (BirA) is a bifunctional enzyme which adenylates biotin and transfers the product, biotinyl-5'-AMP (bio-5'-AMP) to biotin carboxyl carrier protein (BCCP). In the absence of BCCP, bio-5'-AMP promotes the dimerization of BirA. In dimer form, the BirA.bio-5'-AMP complex is able to bind to the biotin operator and prevents further synthesis of biotin. The bio-5'-AMP binds away from the dimer interface, so it is acting as an allosteric activator. We perform all-atom molecular dynamics simulations with BirA to look at fluctuations within the protein at equilibrium. We simulate apoBirA, liganded BirA, as well as two mutants, M211A and V219A. In agreement with experimental observations, several loops of the protein become stabilized for the liganded BirA when compared to the apo protein. In addition, changes in the dimer interface are observed for the M211A and V219A mutations, which are located in the ligand binding region. Using inter-residue correlation coefficients and pair energies a communication network through the protein is constructed. With this network we have identified paths which have the potential to be important in allosteric activation of BirA. These paths and the methods we use to identify them will be presented.

  17. Size-Dependent Protein-Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona.

    PubMed

    Piella, Jordi; Bastús, Neus G; Puntes, Víctor

    2017-01-18

    Surface modifications of highly monodisperse citrate-stabilized gold nanoparticles (AuNPs) with sizes ranging from 3.5 to 150 nm after their exposure to cell culture media supplemented with fetal bovine serum were studied and characterized by the combined use of UV-vis spectroscopy, dynamic light scattering, and zeta potential measurements. In all the tested AuNPs, a dynamic process of protein adsorption was observed, evolving toward the formation of an irreversible hard protein coating known as Protein Corona. Interestingly, the thickness and density of this protein coating were strongly dependent on the particle size, making it possible to identify different transition regimes as the size of the particles increased: (i) NP-protein complexes (or incomplete corona), (ii) the formation of a near-single dense protein corona layer, and (iii) the formation of a multilayer corona. In addition, the different temporal patterns in the evolution of the protein coating came about more quickly for small particles than for the larger ones, further revealing the significant role that size plays in the kinetics of this process. Since the biological identity of the NPs is ultimately determined by the protein corona and different NP-biological interactions take place at different time scales, these results are relevant to biological and toxicological studies.

  18. FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice.

    PubMed

    Hirano, Arisa; Braas, Daniel; Fu, Ying-Hui; Ptáček, Louis J

    2017-04-11

    The circadian clock generates biological rhythms of metabolic and physiological processes, including the sleep-wake cycle. We previously identified a missense mutation in the flavin adenine dinucleotide (FAD) binding pocket of CRYPTOCHROME2 (CRY2), a clock protein that causes human advanced sleep phase. This prompted us to examine the role of FAD as a mediator of the clock and metabolism. FAD stabilized CRY proteins, leading to increased protein levels. In contrast, knockdown of Riboflavin kinase (Rfk), an FAD biosynthetic enzyme, enhanced CRY degradation. RFK protein levels and FAD concentrations oscillate in the nucleus, suggesting that they are subject to circadian control. Knockdown of Rfk combined with a riboflavin-deficient diet altered the CRY levels in mouse liver and the expression profiles of clock and clock-controlled genes (especially those related to metabolism including glucose homeostasis). We conclude that light-independent mechanisms of FAD regulate CRY and contribute to proper circadian oscillation of metabolic genes in mammals. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Identifying Key Attributes for Protein Beverages.

    PubMed

    Oltman, A E; Lopetcharat, K; Bastian, E; Drake, M A

    2015-06-01

    This study identified key attributes of protein beverages and evaluated effects of priming on liking of protein beverages. An adaptive choice-based conjoint study was conducted along with Kano analysis to gain insight on protein beverage consumers (n = 432). Attributes evaluated included label claim, protein type, amount of protein, carbohydrates, sweeteners, and metabolic benefits. Utility scores for levels and importance scores for attributes were determined. Subsequently, two pairs of clear acidic whey protein beverages were manufactured that differed by age of protein source or the amount of whey protein per serving. Beverages were evaluated by 151 consumers on two occasions with or without priming statements. One priming statement declared "great flavor," the other priming statement declared 20 g protein per serving. A two way analysis of variance was applied to discern the role of each priming statement. The most important attribute for protein beverages was sweetener type, followed by amount of protein, followed by type of protein followed by label claim. Beverages with whey protein, naturally sweetened, reduced sugar and ≥15 g protein per serving were most desired. Three consumer clusters were identified, differentiated by their preferences for protein type, sweetener and amount of protein. Priming statements positively impacted concept liking (P < 0.05) but had no effect on overall liking (P > 0.05). Consistent with trained panel profiles of increased cardboard flavor with higher protein content, consumers liked beverages with 10 g protein more than beverages with 20 g protein (6.8 compared with 5.7, P < 0.05). Protein beverages must have desirable flavor for wide consumer appeal. © 2015 Institute of Food Technologists®

  20. Water-in-Oil Microemulsions for Protein Delivery: Loading Optimization and Stability.

    PubMed

    Perinelli, Diego R; Cespi, Marco; Pucciarelli, Stefania; Vincenzetti, Silvia; Casettari, Luca; Lam, Jenny K W; Logrippo, Serena; Canala, Elisa; Soliman, Mahmoud E; Bonacucina, Giulia; Palmieri, Giovanni F

    2017-01-01

    Microemulsions are attractive delivery systems for therapeutic proteins and peptides due to their ability to enhance bioavailability. Although different proteins and peptides have been successfully delivered through such ternary systems, no information can be found about protein loading and the formulation stability when such microemulsions are prepared with pharmaceuticallyapproved oils and surfactants. The aim of this work was to optimise a ternary system consisting of water/ ethyl oleate/Span® 80-Tween® 80 and to determine its protein loading capacity and stability, using bovine serum albumin (BSA) as a model of biomolecule. The optimization was carried out using a Central Composite Design and all the prepared formulations were characterised through dynamic light scattering, rheology, optical and polarized microscopy. Subsequently, the maximum loading capacity was determined and the stability of the final microemulsion with the highest content of protein was followed over six months. To investigate the structural features of the protein, BSA was recovered from the microemulsion and analysed through fluorescence spectroscopy. After incorporation of the protein in the microemulsion, a decrease of its aqueous solubility was observed. However, the formulation remained stable over six months and the native-like state of the recovered protein was demonstrated by fluorescence spectroscopy Conclusion: This study demonstrated the feasibility of preparing microemulsions with the highest content of protein and their long-term stability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Tailoring in vitro evolution for protein affinity or stability

    PubMed Central

    Jermutus, Lutz; Honegger, Annemarie; Schwesinger, Falk; Hanes, Jozef; Plückthun, Andreas

    2001-01-01

    We describe a rapid and general technology working entirely in vitro to evolve either the affinity or the stability of ligand-binding proteins, depending on the chosen selection pressure. Tailored in vitro selection strategies based on ribosome display were combined with in vitro diversification by DNA shuffling to evolve either the off-rate or thermodynamic stability of single-chain Fv antibody fragments (scFvs). To demonstrate the potential of this method, we chose to optimize two proteins already possessing favorable properties. A scFv with an initial affinity of 1.1 nM (koff at 4°C of 10−4 s−1) was improved 30-fold by the use of off-rate selections over a period of several days. As a second example, a generic selection strategy for improved stability exploited the property of ribosome display that the conditions can be altered under which the folding of the displayed protein occurs. We used decreasing redox potentials in the selection step to select for molecules stable in the absence of disulfide bonds. They could be functionally expressed in the reducing cytoplasm, and, when allowed to form disulfides again, their stability had increased to 54 kJ/mol from an initial value of 24 kJ/mol. Sequencing revealed that the evolved mutant proteins had used different strategies of residue changes to adapt to the selection pressure. Therefore, by a combination of randomization and appropriate selection strategies, an in vitro evolution of protein properties in a predictable direction is possible. PMID:11134506

  2. The role of interfacial lipids in stabilizing membrane protein oligomers.

    PubMed

    Gupta, Kallol; Donlan, Joseph A C; Hopper, Jonathan T S; Uzdavinys, Povilas; Landreh, Michael; Struwe, Weston B; Drew, David; Baldwin, Andrew J; Stansfeld, Phillip J; Robinson, Carol V

    2017-01-19

    Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways but is often difficult to define or predict. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na + /H + antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors.

  3. DevS Oxy Complex Stability Identifies this Heme Protein as a Gas Sensor in Mycobacterium tuberculosis Dormancy†

    PubMed Central

    Ioanoviciu, Alexandra; Meharenna, Yergalem T.; Poulos, Thomas L.; Ortiz de Montellano, Paul R.

    2009-01-01

    DevS is one of the two sensing kinases responsible for DevR activation and the subsequent entry of Mycobacterium tuberculosis into dormancy. Full length wild-type DevS forms a stable oxy-ferrous complex. The DevS autooxidation rates are extremely low (half-lives > 24 h) in the presence of cations such as K+, Na+, Mg2+, and Ca2+. At relatively high concentrations (100 µM), Fe3+ mildly increases the autooxidation rate (six-fold increase) while Cu2+ accelerates autooxidation more than 1500-fold. Contrary to expectations, removal of the key hydrogen bond between the iron-coordinated oxygen and Tyr171 in the Y171F mutant provides a protein of comparable stability to autooxidation and similar oxygen dissociation rate. This correlates with our earlier finding that the Y171F mutant and wild-type kinase activities are similarly regulated by the binding of oxygen: namely, the ferrous 5c complex is active whereas the oxy ferrous 6c species is inactive. Our results indicate that DevS is a gas sensor in vivo rather than a redox sensor and that the stability of its ferrous-oxy complex is enhanced by inter-domain interactions. PMID:19463006

  4. Influence of protein fold stability on immunogenicity and its implications for vaccine design

    PubMed Central

    Scheiblhofer, Sandra; Laimer, Josef; Machado, Yoan; Weiss, Richard; Thalhamer, Josef

    2017-01-01

    ABSTRACT Introduction: In modern vaccinology and immunotherapy, recombinant proteins more and more replace whole organisms to induce protective or curative immune responses. Structural stability of proteins is of crucial importance for efficient presentation of antigenic peptides on MHC, which plays a decisive role for triggering strong immune reactions. Areas covered: In this review, we discuss structural stability as a key factor for modulating the potency of recombinant vaccines and its importance for antigen proteolysis, presentation, and stimulation of B and T cells. Moreover, the impact of fold stability on downstream events determining the differentiation of T cells into effector cells is reviewed. We summarize studies investigating the impact of protein fold stability on the outcome of the immune response and provide an overview on computational methods to estimate the effects of point mutations on protein stability. Expert commentary: Based on this information, the rational design of up-to-date vaccines is discussed. A model for predicting immunogenicity of proteins based on their conformational stability at different pH values is proposed. PMID:28290225

  5. Ultra-High Pressure Homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions.

    PubMed

    Fernandez-Avila, C; Trujillo, A J

    2016-10-15

    Ultra-High Pressure Homogenization (100-300MPa) has great potential for technological, microbiological and nutritional aspects of fluid processing. Its effect on the oxidative stability and interfacial properties of oil-in-water emulsions prepared with 4% (w/v) of soy protein isolate and soybean oil (10 and 20%, v/v) were studied and compared to emulsions treated by conventional homogenization (15MPa). Emulsions were characterized by particle size, emulsifying activity index, surface protein concentration at the interface and by transmission electron microscopy. Primary and secondary lipid oxidation products were evaluated in emulsions upon storage. Emulsions with 20% oil treated at 100 and 200MPa exhibited the most oxidative stability due to higher amount of oil and protein surface load at the interface. This manuscript addresses the improvement in oxidative stability in emulsions treated by UHPH when compared to conventional emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Rational modification of protein stability by targeting surface sites leads to complicated results

    PubMed Central

    Xiao, Shifeng; Patsalo, Vadim; Shan, Bing; Bi, Yuan; Green, David F.; Raleigh, Daniel P.

    2013-01-01

    The rational modification of protein stability is an important goal of protein design. Protein surface electrostatic interactions are not evolutionarily optimized for stability and are an attractive target for the rational redesign of proteins. We show that surface charge mutants can exert stabilizing effects in distinct and unanticipated ways, including ones that are not predicted by existing methods, even when only solvent-exposed sites are targeted. Individual mutation of three solvent-exposed lysines in the villin headpiece subdomain significantly stabilizes the protein, but the mechanism of stabilization is very different in each case. One mutation destabilizes native-state electrostatic interactions but has a larger destabilizing effect on the denatured state, a second removes the desolvation penalty paid by the charged residue, whereas the third introduces unanticipated native-state interactions but does not alter electrostatics. Our results show that even seemingly intuitive mutations can exert their effects through unforeseen and complex interactions. PMID:23798426

  7. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  8. Designed protein reveals structural determinants of extreme kinetic stability

    PubMed Central

    Broom, Aron; Ma, S. Martha; Xia, Ke; Rafalia, Hitesh; Trainor, Kyle; Colón, Wilfredo; Gosavi, Shachi; Meiering, Elizabeth M.

    2015-01-01

    The design of stable, functional proteins is difficult. Improved design requires a deeper knowledge of the molecular basis for design outcomes and properties. We previously used a bioinformatics and energy function method to design a symmetric superfold protein composed of repeating structural elements with multivalent carbohydrate-binding function, called ThreeFoil. This and similar methods have produced a notably high yield of stable proteins. Using a battery of experimental and computational analyses we show that despite its small size and lack of disulfide bonds, ThreeFoil has remarkably high kinetic stability and its folding is specifically chaperoned by carbohydrate binding. It is also extremely stable against thermal and chemical denaturation and proteolytic degradation. We demonstrate that the kinetic stability can be predicted and modeled using absolute contact order (ACO) and long-range order (LRO), as well as coarse-grained simulations; the stability arises from a topology that includes many long-range contacts which create a large and highly cooperative energy barrier for unfolding and folding. Extensive data from proteomic screens and other experiments reveal that a high ACO/LRO is a general feature of proteins with strong resistances to denaturation and degradation. These results provide tractable approaches for predicting resistance and designing proteins with sufficient topological complexity and long-range interactions to accommodate destabilizing functional features as well as withstand chemical and proteolytic challenge. PMID:26554002

  9. Stabilization of protein-protein interactions in drug discovery.

    PubMed

    Andrei, Sebastian A; Sijbesma, Eline; Hann, Michael; Davis, Jeremy; O'Mahony, Gavin; Perry, Matthew W D; Karawajczyk, Anna; Eickhoff, Jan; Brunsveld, Luc; Doveston, Richard G; Milroy, Lech-Gustav; Ottmann, Christian

    2017-09-01

    PPIs are involved in every disease and specific modulation of these PPIs with small molecules would significantly improve our prospects of developing therapeutic agents. Both industry and academia have engaged in the identification and use of PPI inhibitors. However in comparison, the opposite strategy of employing small-molecule stabilizers of PPIs is underrepresented in drug discovery. Areas covered: PPI stabilization has not been exploited in a systematic manner. Rather, this concept validated by a number of therapeutically used natural products like rapamycin and paclitaxel has been shown retrospectively to be the basis of the activity of synthetic molecules originating from drug discovery projects among them lenalidomide and tafamidis. Here, the authors cover the growing number of synthetic small-molecule PPI stabilizers to advocate for a stronger consideration of this as a drug discovery approach. Expert opinion: Both the natural products and the growing number of synthetic molecules show that PPI stabilization is a viable strategy for drug discovery. There is certainly a significant challenge to adapt compound libraries, screening techniques and downstream methodologies to identify, characterize and optimize PPI stabilizers, but the examples of molecules reviewed here in our opinion justify these efforts.

  10. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability.

    PubMed

    Perez-Gregorio, Maria Rosa; Mateus, Nuno; De Freitas, Victor

    2014-10-15

    Several factors could influence the tannin-protein interaction such as the human salivary protein profile, the tannin tested, and the tannin/protein ratio. The goal of this study aims to study the effect of different salivas (A, B, and C) and different tannin concentrations (0.5 and 1 mg/mL) on the interaction process as well as the complex's stability over time. This study is focused on the identification of new procyanidin B3-human salivary protein complexes. Thus, 48 major B3-human salivary protein aggregates were identified regardless of the saliva and tannin concentration tested. A higher number of aggregates was found at lower tannin concentration. Moreover, the number of protein moieties involved in the aggregation process was higher when the tannin concentration was also higher. The selectivity of the different groups of proteins to bind tannin was also confirmed. It was also verified that the B3-human salivary protein complexes formed evolved over time.

  11. Light Regulation of Brassinosteroid Signaling Components: Checking Regulation of Protein Stability in Darkness.

    PubMed

    Corvalán, Claudia; Choe, Sunghwa

    2017-01-01

    Environmental conditions can affect stability of proteins at transcriptional or posttranscriptional levels to modulate their functions. Here we describe a method to observe changes in protein stability under different light conditions. In brief, Arabidopsis thaliana seedlings were maintained under various light regimes from continuous light to total darkness or transitions from light to dark, whereafter total protein was extracted from plants. Proteins were measured and resolved on sodium dodecyl sulfate-polyacrylamide gels and transferred to polyvinylidene difluoride membranes. Blots were incubated with the corresponding antibodies for the visualization of protein bands. The protocol described has been successfully applied in wild-type, different transgenic, and mutant background plants to study how light alone or in combination with other factors influences protein stability.

  12. Estimating conformation content of a protein using citrate-stabilized Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Deka, Jashmini; Paul, Anumita; Chattopadhyay, Arun

    2010-08-01

    Herein we report the use of the optical properties of citrate-stabilized gold nanoparticles (Au NPs) for estimation of native or denatured conformation content in a mixture of a protein in solution. The UV-vis extinction spectrum of citrate-stabilized Au NPs is known to broaden differently in the presence of native and denatured states of α-amylase, bovine serum albumin (BSA) or amyloglucosidase (AMG). On the other hand, herein we show that when a mixture of native and denatured protein was present in the medium, the broadening of the spectrum differed for different fractional content of the conformations. Also, the total area under the extinction spectrum varied linearly with the change in the mole fraction content of a state and for a constant total protein concentration. Transmission electron microscopy (TEM) measurements revealed different levels of agglomeration for different fractional contents of the native or denatured state of a protein. In addition, time-dependent denaturation of a protein could be followed using the present method. The rate constants calculated for denaturation indicated a possible fast change in conformation of a protein before complete thermal denaturation. The observations have been explained based on the changes in extinction coefficient (thereby oscillator strength) upon interaction of citrate-stabilized NPs with proteins being in different states and levels of agglomeration.Herein we report the use of the optical properties of citrate-stabilized gold nanoparticles (Au NPs) for estimation of native or denatured conformation content in a mixture of a protein in solution. The UV-vis extinction spectrum of citrate-stabilized Au NPs is known to broaden differently in the presence of native and denatured states of α-amylase, bovine serum albumin (BSA) or amyloglucosidase (AMG). On the other hand, herein we show that when a mixture of native and denatured protein was present in the medium, the broadening of the spectrum differed for

  13. Novel isoprenylated proteins identified by an expression library screen.

    PubMed

    Biermann, B J; Morehead, T A; Tate, S E; Price, J R; Randall, S K; Crowell, D N

    1994-10-14

    Isoprenylated proteins are involved in eukaryotic cell growth and signal transduction. The protein determinant for prenylation is a short carboxyl-terminal motif containing a cysteine, to which the isoprenoid is covalently attached via thioether linkage. To date, isoprenylated proteins have almost all been identified by demonstrating the attachment of an isoprenoid to previously known proteins. Thus, many isoprenylated proteins probably remain undiscovered. To identify novel isoprenylated proteins for subsequent biochemical study, colony blots of a Glycine max cDNA expression library were [3H]farnesyl-labeled in vitro. Proteins identified by this screen contained several different carboxyl termini that conform to consensus farnesylation motifs. These proteins included known farnesylated proteins (DnaJ homologs) and several novel proteins, two of which contained six or more tandem repeats of a hexapeptide having the consensus sequence (E/G)(G/P)EK(P/K)K. Thus, plants contain a diverse array of genes encoding farnesylated proteins, and our results indicate that fundamental differences in the identities of farnesylated proteins may exist between plants and other eukaryotes. Expression library screening by direct labeling can be adapted to identify isoprenylated proteins from other organisms, as well as proteins with other post-translational modifications.

  14. New insights into structural determinants of prion protein folding and stability.

    PubMed

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  15. Stabilization of a protein conferred by an increase in folded state entropy.

    PubMed

    Dagan, Shlomi; Hagai, Tzachi; Gavrilov, Yulian; Kapon, Ruti; Levy, Yaakov; Reich, Ziv

    2013-06-25

    Entropic stabilization of native protein structures typically relies on strategies that serve to decrease the entropy of the unfolded state. Here we report, using a combination of experimental and computational approaches, on enhanced thermodynamic stability conferred by an increase in the configurational entropy of the folded state. The enhanced stability is observed upon modifications of a loop region in the enzyme acylphosphatase and is achieved despite significant enthalpy losses. The modifications that lead to increased stability, as well as those that result in destabilization, however, strongly compromise enzymatic activity, rationalizing the preservation of the native loop structure even though it does not provide the protein with maximal stability or kinetic foldability.

  16. Small heat shock protein AgsA: an effective stabilizer of enzyme activities.

    PubMed

    Tomoyasu, Toshifumi; Tabata, Atsushi; Ishikawa, Yoko; Whiley, Robert A; Nagamune, Hideaki

    2013-01-01

    A small heat shock protein, AgsA, possesses chaperone activity that can reduce the amount of heat-aggregated protein in vivo, and suppress the aggregation of chemical- and heat-denatured proteins in vitro. Therefore, we examined the ability of AgsA to stabilize the activity of several enzymes by using this chaperone activity. We observed that AgsA can stabilize the enzymatic activities of Renilla (Renilla reniformis) luciferase, firefly (Photinus pyralis) luciferase, and β-galactosidase, and showed comparable or greater stabilization of these enzymes than bovine serum albumin (BSA), a well-known stabilizer of enzyme activities. In particular, AgsA revealed better stabilization of Renilla luciferase and β-galactosidase than BSA under disulfide bond-reducing conditions with dithiothreitol. In addition, AgsA also increased the enzymatic performance of β-galactosidase and various restriction enzymes to a comparable or greater extent than BSA. These data indicate that AgsA may be useful as a general stabilizer of enzyme activities. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Endothelial cell palmitoylproteomics identifies novel lipid modified targets and potential substrates for protein acyl transferases

    PubMed Central

    Marin, Ethan P.; Derakhshan, Behrad; Lam, TuKiet T.; Davalos, Alberto; Sessa, William C.

    2012-01-01

    Rationale Protein S-palmitoylation is the post-translational attachment of a saturated 16-carbon palmitic acid to a cysteine side chain via a thioester bond. Palmitoylation can affect protein localization, trafficking, stability, and function. The extent and roles of palmitoylation in endothelial cell (EC) biology is not well understood, in part due to technological limits on palmitoylprotein detection. Objective To develop a method using acyl-biotinyl exchange (ABE) technology coupled with mass spectrometry to globally isolate and identify palmitoylproteins in EC. Methods and Results More than 150 putative palmitoyl proteins were identified in EC using ABE and mass spectrometry. Among the novel palmitoylproteins identified is superoxide dismutase 1 (SOD1), an intensively studied enzyme that protects all cells from oxidative damage. Mutation of cysteine 6 prevents palmitoylation, leads to reduction in SOD1 activity in vivo and in vitro, and inhibits nuclear localization, thereby supporting a functional role for SOD1 palmitoylation. Moreover, we used ABE to search for substrates of particular protein acyl transferases in EC. We found that palmitoylation of the cell adhesion protein PECAM1 is dependent on the protein acyl transferase ZDHHC21. We show that knockdown of ZDHHC21 leads to reduced levels of PECAM1 at the cell surface. Conclusions Our data demonstrate the utility of EC palmitoylproteomics to reveal new insights into the role of this important post-translational lipid modification in EC biology. PMID:22496122

  18. Novel Regulation of Ski Protein Stability and Endosomal Sorting by Actin Cytoskeleton Dynamics in Hepatocytes*

    PubMed Central

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R.; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A.; Macías-Silva, Marina

    2015-01-01

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration. PMID:25561741

  19. Boosting protein stability with the computational design of β-sheet surfaces.

    PubMed

    Kim, Doo Nam; Jacobs, Timothy M; Kuhlman, Brian

    2016-03-01

    β-sheets often have one face packed against the core of the protein and the other facing solvent. Mutational studies have indicated that the solvent-facing residues can contribute significantly to protein stability, and that the preferred amino acid at each sequence position is dependent on the precise structure of the protein backbone and the identity of the neighboring amino acids. This suggests that the most advantageous methods for designing β-sheet surfaces will be approaches that take into account the multiple energetic factors at play including side chain rotamer preferences, van der Waals forces, electrostatics, and desolvation effects. Here, we show that the protein design software Rosetta, which models these energetic factors, can be used to dramatically increase protein stability by optimizing interactions on the surfaces of small β-sheet proteins. Two design variants of the β-sandwich protein from tenascin were made with 7 and 14 mutations respectively on its β-sheet surfaces. These changes raised the thermal midpoint for unfolding from 45°C to 64°C and 74°C. Additionally, we tested an empirical approach based on increasing the number of potential salt bridges on the surfaces of the β-sheets. This was not a robust strategy for increasing stability, as three of the four variants tested were unfolded. © 2016 The Protein Society.

  20. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-01

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 Å), and polyol molecules cluster around the protein at a distance of about 4 Å. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions.

  1. Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins

    PubMed Central

    Song, Albert S.; Poor, Taylor A.; Abriata, Luciano A.; Jardetzky, Theodore S.; Dal Peraro, Matteo; Lamb, Robert A.

    2016-01-01

    Parainfluenza virus 5 (PIV5) is an enveloped, single-stranded, negative-sense RNA virus of the Paramyxoviridae family. PIV5 fusion and entry are mediated by the coordinated action of the receptor-binding protein, hemagglutinin–neuraminidase (HN), and the fusion protein (F). Upon triggering by HN, F undergoes an irreversible ATP- and pH-independent conformational change, going down an energy gradient from a metastable prefusion state to a highly stable postfusion state. Previous studies have highlighted key conformational changes in the F-protein refolding pathway, but a detailed understanding of prefusion F-protein metastability remains elusive. Here, using two previously described F-protein mutations (S443D or P22L), we examine the capacity to modulate PIV5 F stability and the mechanisms by which these point mutants act. The S443D mutation destabilizes prefusion F proteins by disrupting a hydrogen bond network at the base of the F-protein globular head. The introduction of a P22L mutation robustly rescues destabilized F proteins through a local hydrophobic interaction between the N-terminal helix and a hydrophobic pocket. Prefusion stabilization conferred by a P22L-homologous mutation is demonstrated in the F protein of Newcastle disease virus, a paramyxovirus of a different genus, suggesting a conserved stabilizing structural element within the paramyxovirus family. Taken together, the available data suggest that movement of the N-terminal helix is a necessary early step for paramyxovirus F-protein refolding and presents a novel target for structure-based drug design. PMID:27335462

  2. Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins.

    PubMed

    Song, Albert S; Poor, Taylor A; Abriata, Luciano A; Jardetzky, Theodore S; Dal Peraro, Matteo; Lamb, Robert A

    2016-07-05

    Parainfluenza virus 5 (PIV5) is an enveloped, single-stranded, negative-sense RNA virus of the Paramyxoviridae family. PIV5 fusion and entry are mediated by the coordinated action of the receptor-binding protein, hemagglutinin-neuraminidase (HN), and the fusion protein (F). Upon triggering by HN, F undergoes an irreversible ATP- and pH-independent conformational change, going down an energy gradient from a metastable prefusion state to a highly stable postfusion state. Previous studies have highlighted key conformational changes in the F-protein refolding pathway, but a detailed understanding of prefusion F-protein metastability remains elusive. Here, using two previously described F-protein mutations (S443D or P22L), we examine the capacity to modulate PIV5 F stability and the mechanisms by which these point mutants act. The S443D mutation destabilizes prefusion F proteins by disrupting a hydrogen bond network at the base of the F-protein globular head. The introduction of a P22L mutation robustly rescues destabilized F proteins through a local hydrophobic interaction between the N-terminal helix and a hydrophobic pocket. Prefusion stabilization conferred by a P22L-homologous mutation is demonstrated in the F protein of Newcastle disease virus, a paramyxovirus of a different genus, suggesting a conserved stabilizing structural element within the paramyxovirus family. Taken together, the available data suggest that movement of the N-terminal helix is a necessary early step for paramyxovirus F-protein refolding and presents a novel target for structure-based drug design.

  3. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-05-26

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.

  4. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  5. In vivo protein stabilization based on fragment complementation and a split GFP system.

    PubMed

    Lindman, Stina; Hernandez-Garcia, Armando; Szczepankiewicz, Olga; Frohm, Birgitta; Linse, Sara

    2010-11-16

    Protein stabilization was achieved through in vivo screening based on the thermodynamic linkage between protein folding and fragment complementation. The split GFP system was found suitable to derive protein variants with enhanced stability due to the correlation between effects of mutations on the stability of the intact chain and the effects of the same mutations on the affinity between fragments of the chain. PGB1 mutants with higher affinity between fragments 1 to 40 and 41 to 56 were obtained by in vivo screening of a library of the 1 to 40 fragments against wild-type 41 to 56 fragments. Colonies were ranked based on the intensity of green fluorescence emerging from assembly and folding of the fused GFP fragments. The DNA from the brightest fluorescent colonies was sequenced, and intact mutant PGB1s corresponding to the top three sequences were expressed, purified, and analyzed for stability toward thermal denaturation. The protein sequence derived from the top fluorescent colony was found to yield a 12 °C increase in the thermal denaturation midpoint and a free energy of stabilization of -8.7 kJ/mol at 25 °C. The stability rank order of the three mutant proteins follows the fluorescence rank order in the split GFP system. The variants are stabilized through increased hydrophobic effect, which raises the free energy of the unfolded more than the folded state; as well as substitutions, which lower the free energy of the folded more than the unfolded state; optimized van der Waals interactions; helix stabilization; improved hydrogen bonding network; and reduced electrostatic repulsion in the folded state.

  6. Truncation of the C-terminal region of Toscana Virus NSs protein is critical for interferon-β antagonism and protein stability.

    PubMed

    Gori Savellini, Gianni; Gandolfo, Claudia; Cusi, Maria Grazia

    2015-12-01

    Toscana Virus (TOSV) is a Phlebovirus responsible for central nervous system (CNS) injury in humans. The TOSV non-structural protein (NSs), which interacting with RIG-I leads to its degradation, was analysed in the C terminus fragment in order to identify its functional domains. To this aim, two C-terminal truncated NSs proteins, Δ1C-NSs (aa 1-284) and Δ2C-NSs (aa 1-287) were tested. Only Δ1C-NSs did not present any inhibitory effect on RIG-I and it showed a greater stability than the whole NSs protein. Moreover, the deletion of the TLQ aa sequence interposed between the two ΔC constructs caused a greater accumulation of the protein with a weak inhibitory effect on RIG-I, indicating some involvement of these amino acids in the NSs activity. Nevertheless, all the truncated proteins were still able to interact with RIG-I, suggesting that the domains responsible for RIG-I signaling and RIG-I interaction are mapped on different regions of the protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE PAGES

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan; ...

    2016-04-20

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  8. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatsky, Maxim; Dong, Ming; Liu, Haichuan

    Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification ofmore » endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.« less

  9. Stability of lutein encapsulated whey protein nano-emulsion during storage

    PubMed Central

    Guo, Mingruo

    2018-01-01

    Lutein is a hydrophobic carotenoid that has multiple health functions. However, the application of lutein is limited due to its poor solubility in water and instability under certain conditions during storage. Hereby we generated lutein loaded nano-emulsions using whey protein isolate (WPI) or polymerized whey protein isolate (PWP) with assistance of high intensity ultrasound and evaluate their stability during storage at different conditions. We measured the particle size, zeta-potential, physical stability and lutein content change. Results showed that the PWP based nano-emulsion system was not stable in the tested Oil/Water/Ethanol system indicated by the appearance of stratification within only one week. The WPI based nano-emulsion system showed stable physiochemical stability during the storage at 4°C. The lutein content of the system was reduced by only 4% after four weeks storage at 4°C. In conclusion, our whey protein based nano-emulsion system provides a promising strategy for encapsulation of lutein or other hydrophobic bioactive molecules to expand their applications. PMID:29415071

  10. Contribution of Charged Groups to the Enthalpic Stabilization of the Folded States of Globular Proteins

    PubMed Central

    Dadarlat, Voichita M.; Post, Carol Beth

    2016-01-01

    In this paper we use the results from all atom MD simulations of proteins and peptides to assess individual contribution of charged atomic groups to the enthalpic stability of the native state of globular proteins and investigate how the distribution of charged atomic groups in terms of solvent accessibility relates to protein enthalpic stability. The contributions of charged groups is calculated using a comparison of nonbonded interaction energy terms from equilibrium simulations of charged amino acid dipeptides in water (the “unfolded state”) and charged amino acids in globular proteins (the “folded state”). Contrary to expectation, the analysis shows that many buried, charged atomic groups contribute favorably to protein enthalpic stability. The strongest enthalpic contributions favoring the folded state come from the carboxylate (COO−) groups of either Glu or Asp. The contributions from Arg guanidinium groups are generally somewhat stabilizing, while NH3+ groups from Lys contribute little toward stabilizing the folded state. The average enthalpic gain due to the transfer of a methyl group in an apolar amino acid from solution to the protein interior is described for comparison. Notably, charged groups that are less exposed to solvent contribute more favorably to protein native-state enthalpic stability than charged groups that are solvent exposed. While solvent reorganization/release has favorable contributions to folding for all charged atomic groups, the variation in folded state stability among proteins comes mainly from the change in the nonbonded interaction energy of charged groups between the unfolded and folded states. A key outcome is that the calculated enthalpic stabilization is found to be inversely proportional to the excess charge density on the surface, in support of an hypothesis proposed previously. PMID:18303881

  11. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity

    NASA Astrophysics Data System (ADS)

    Keefe, Andrew J.; Jiang, Shaoyi

    2012-01-01

    Treatment with therapeutic proteins is an attractive approach to targeting a number of challenging diseases. Unfortunately, the native proteins themselves are often unstable in physiological conditions, reducing bioavailability and therefore increasing the dose that is required. Conjugation with poly(ethylene glycol) (PEG) is often used to increase stability, but this has a detrimental effect on bioactivity. Here, we introduce conjugation with zwitterionic polymers such as poly(carboxybetaine). We show that poly(carboxybetaine) conjugation improves stability in a manner similar to PEGylation, but that the new conjugates retain or even improve the binding affinity as a result of enhanced protein-substrate hydrophobic interactions. This chemistry opens a new avenue for the development of protein therapeutics by avoiding the need to compromise between stability and affinity.

  12. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    NASA Astrophysics Data System (ADS)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  13. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    PubMed

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  14. Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO).

    PubMed

    Ma, Jianqiang; Pazos, Ileana M; Gai, Feng

    2014-06-10

    Although it is widely known that trimethylamine N-oxide (TMAO), an osmolyte used by nature, stabilizes the folded state of proteins, the underlying mechanism of action is not entirely understood. To gain further insight into this important biological phenomenon, we use the C≡N stretching vibration of an unnatural amino acid, p-cyano-phenylalanine, to directly probe how TMAO affects the hydration and conformational dynamics of a model peptide and a small protein. By assessing how the lineshape and spectral diffusion properties of this vibration change with cosolvent conditions, we are able to show that TMAO achieves its protein-stabilizing ability through the combination of (at least) two mechanisms: (i) It decreases the hydrogen bonding ability of water and hence the stability of the unfolded state, and (ii) it acts as a molecular crowder, as suggested by a recent computational study, that can increase the stability of the folded state via the excluded volume effect.

  15. Semiautomated Sample Preparation for Protein Stability and Formulation Screening via Buffer Exchange.

    PubMed

    Ying, William; Levons, Jaquan K; Carney, Andrea; Gandhi, Rajesh; Vydra, Vicky; Rubin, A Erik

    2016-06-01

    A novel semiautomated buffer exchange process workflow was developed to enable efficient early protein formulation screening. An antibody fragment protein, BMSdab, was used to demonstrate the workflow. The process afforded 60% to 80% cycle time and scientist time savings and significant material efficiencies. These efficiencies ultimately facilitated execution of this stability work earlier in the drug development process, allowing this tool to inform the developability of potential candidates for development from a formulation perspective. To overcome the key technical challenges, the protein solution was buffer-exchanged by centrifuge filtration into formulations for stability screening in a 96-well plate with an ultrafiltration membrane, leveraging automated liquid handling and acoustic volume measurements to allow several cycles of exchanges. The formulations were transferred into a vacuum manifold and sterile filtered into a rack holding 96 glass vials. The vials were sealed with a capmat of individual caps and placed in stability stations. Stability of the samples prepared by this process and by the standard process was demonstrated to be comparable. This process enabled screening a number of formulations of a protein at an early pharmaceutical development stage with a short sample preparation time. © 2015 Society for Laboratory Automation and Screening.

  16. A Study on the Effect of Surface Lysine to Arginine Mutagenesis on Protein Stability and Structure Using Green Fluorescent Protein

    PubMed Central

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering. PMID:22792305

  17. Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer

    PubMed Central

    Guinn, Emily J.; Pegram, Laurel M.; Capp, Michael W.; Pollock, Michelle N.; Record, M. Thomas

    2011-01-01

    To explain the large, opposite effects of urea and glycine betaine (GB) on stability of folded proteins and protein complexes, we quantify and interpret preferential interactions of urea with 45 model compounds displaying protein functional groups and compare with a previous analysis of GB. This information is needed to use urea as a probe of coupled folding in protein processes and to tune molecular dynamics force fields. Preferential interactions between urea and model compounds relative to their interactions with water are determined by osmometry or solubility and dissected using a unique coarse-grained analysis to obtain interaction potentials quantifying the interaction of urea with each significant type of protein surface (aliphatic, aromatic hydrocarbon (C); polar and charged N and O). Microscopic local-bulk partition coefficients Kp for the accumulation or exclusion of urea in the water of hydration of these surfaces relative to bulk water are obtained. Kp values reveal that urea accumulates moderately at amide O and weakly at aliphatic C, whereas GB is excluded from both. These results provide both thermodynamic and molecular explanations for the opposite effects of urea and glycine betaine on protein stability, as well as deductions about strengths of amide NH—amide O and amide NH—amide N hydrogen bonds relative to hydrogen bonds to water. Interestingly, urea, like GB, is moderately accumulated at aromatic C surface. Urea m-values for protein folding and other protein processes are quantitatively interpreted and predicted using these urea interaction potentials or Kp values. PMID:21930943

  18. Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer.

    PubMed

    Guinn, Emily J; Pegram, Laurel M; Capp, Michael W; Pollock, Michelle N; Record, M Thomas

    2011-10-11

    To explain the large, opposite effects of urea and glycine betaine (GB) on stability of folded proteins and protein complexes, we quantify and interpret preferential interactions of urea with 45 model compounds displaying protein functional groups and compare with a previous analysis of GB. This information is needed to use urea as a probe of coupled folding in protein processes and to tune molecular dynamics force fields. Preferential interactions between urea and model compounds relative to their interactions with water are determined by osmometry or solubility and dissected using a unique coarse-grained analysis to obtain interaction potentials quantifying the interaction of urea with each significant type of protein surface (aliphatic, aromatic hydrocarbon (C); polar and charged N and O). Microscopic local-bulk partition coefficients K(p) for the accumulation or exclusion of urea in the water of hydration of these surfaces relative to bulk water are obtained. K(p) values reveal that urea accumulates moderately at amide O and weakly at aliphatic C, whereas GB is excluded from both. These results provide both thermodynamic and molecular explanations for the opposite effects of urea and glycine betaine on protein stability, as well as deductions about strengths of amide NH--amide O and amide NH--amide N hydrogen bonds relative to hydrogen bonds to water. Interestingly, urea, like GB, is moderately accumulated at aromatic C surface. Urea m-values for protein folding and other protein processes are quantitatively interpreted and predicted using these urea interaction potentials or K(p) values.

  19. Interaction of Proteins Identified in Human Thyroid Cells

    PubMed Central

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  20. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function.

    PubMed

    Smith, Everett Clinton; Smith, Stacy E; Carter, James R; Webb, Stacy R; Gibson, Kathleen M; Hellman, Lance M; Fried, Michael G; Dutch, Rebecca Ellis

    2013-12-13

    Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.

  1. Structural stability of proteins in aqueous and nonpolar environments

    NASA Astrophysics Data System (ADS)

    Yasuda, Satoshi; Oshima, Hiraku; Kinoshita, Masahiro

    2012-10-01

    A protein folds into its native structure with the α-helix and/or β-sheet in aqueous solution under the physiological condition. The relative content of these secondary structures largely varies from protein to protein. However, such structural variability is not exhibited in nonaqueous environment. For example, there is a strong trend that alcohol induces a protein to form α-helices, and many of the membrane proteins within the lipid bilayer consists of α-helices. Here we investigate the structural stability of proteins in aqueous and nonpolar environments using our recently developed free-energy function F = (Λ - TS)/(kBT0) = Λ/(kBT0) - S/kB (T0 = 298 K and the absolute temperature T is set at T0) which is based on statistical thermodynamics. Λ/(kBT0) and S/kB are the energetic and entropic components, respectively, and kB is Boltzmann's constant. A smaller value of the positive quantity, -S, represents higher efficiency of the backbone and side-chain packing promoted by the entropic effect arising from the translational displacement of solvent molecules or the CH2, CH3, and CH groups which constitute nonpolar chains of lipid molecules. As for Λ, in aqueous solution, a transition to a more compact structure of a protein accompanies the break of protein-solvent hydrogen bonds: As the number of donors and acceptors buried without protein intramolecular hydrogen bonding increases, Λ becomes higher. In nonpolar solvent, lower Λ simply implies more intramolecular hydrogen bonds formed. We find the following. The α-helix and β-sheet are advantageous with respect to -S as well as Λ and to be formed as much as possible. In aqueous solution, the solvent-entropy effect on the structural stability is so strong that the close packing of side chains is dominantly important, and the α-helix and β-sheet contents are judiciously adjusted to accomplish it. In nonpolar solvent, the solvent-entropy effect is substantially weaker than in aqueous solution. Λ is

  2. Principles and equations for measuring and interpreting protein stability: From monomer to tetramer.

    PubMed

    Bedouelle, Hugues

    2016-02-01

    The ability to measure the thermodynamic stability of proteins with precision is important for both academic and applied research. Such measurements rely on mathematical models of the protein denaturation profile, i.e. the relation between a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either heat or a chemical molecule, e.g. urea or guanidinium hydrochloride. In turn, such models rely on a handful of physical laws: the laws of mass action and conservation, the law that relates the protein signal and concentration, and the one that relates stability and denaturant value. So far, equations have been derived mainly for the denaturation profiles of homomeric proteins. Here, we review the underlying basic physical laws and show in detail how to derive model equations for the unfolding equilibria of homomeric or heteromeric proteins up to trimers and potentially tetramers, with or without folding intermediates, and give full demonstrations. We show that such equations cannot be derived for pentamers or higher oligomers except in special degenerate cases. We expand the method to signals that do not correspond to extensive protein properties. We review and expand methods for uncovering hidden intermediates of unfolding. Finally, we review methods for comparing and interpreting the thermodynamic parameters that derive from stability measurements for cognate wild-type and mutant proteins. This work should provide a robust theoretical basis for measuring the stability of complex proteins. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system.

    PubMed

    Grasmeijer, N; Stankovic, M; de Waard, H; Frijlink, H W; Hinrichs, W L J

    2013-04-01

    The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either vitrification or water replacement, both mechanisms could play a role and they should be considered simultaneously. A model protein, alkaline phosphatase, was incorporated in either inulin or trehalose by spray drying. To study the storage stability at different glass transition temperatures, a buffer which acts as a plasticizer, ammediol, was incorporated in the sugar glasses. At low glass transition temperatures (<50°C), the enzymatic activity of the protein strongly decreased during storage at 60°C. Protein stability increased when the glass transition temperature was raised considerably above the storage temperature. This increased stability could be attributed to vitrification. A further increase of the glass transition temperature did not further improve stability. In conclusion, vitrification plays a dominant role in stabilization at glass transition temperatures up to 10 to 20°C above storage temperature, depending on whether trehalose or inulin is used. On the other hand, the water replacement mechanism predominantly determines stability at higher glass transition temperatures. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A.

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the humanmore » protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.« less

  5. The influence of disulfide bonds on the mechanical stability of proteins is context dependent.

    PubMed

    Manteca, Aitor; Alonso-Caballero, Álvaro; Fertin, Marie; Poly, Simon; De Sancho, David; Perez-Jimenez, Raul

    2017-08-11

    Disulfide bonds play a crucial role in proteins, modulating their stability and constraining their conformational dynamics. A particularly important case is that of proteins that need to withstand forces arising from their normal biological function and that are often disulfide bonded. However, the influence of disulfides on the overall mechanical stability of proteins is poorly understood. Here, we used single-molecule force spectroscopy (smFS) to study the role of disulfide bonds in different mechanical proteins in terms of their unfolding forces. For this purpose, we chose the pilus protein FimG from Gram-negative bacteria and a disulfide-bonded variant of the I91 human cardiac titin polyprotein. Our results show that disulfide bonds can alter the mechanical stability of proteins in different ways depending on the properties of the system. Specifically, disulfide-bonded FimG undergoes a 30% increase in its mechanical stability compared with its reduced counterpart, whereas the unfolding force of I91 domains experiences a decrease of 15% relative to the WT form. Using a coarse-grained simulation model, we rationalized that the increase in mechanical stability of FimG is due to a shift in the mechanical unfolding pathway. The simple topology-based explanation suggests a neutral effect in the case of titin. In summary, our results indicate that disulfide bonds in proteins act in a context-dependent manner rather than simply as mechanical lockers, underscoring the importance of considering disulfide bonds both computationally and experimentally when studying the mechanical properties of proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. STRUM: structure-based prediction of protein stability changes upon single-point mutation

    PubMed Central

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-01-01

    Motivation: Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. Results: We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability

  7. NHERF1, a novel GPER associated protein, increases stability and activation of GPER in ER-positive breast cancer

    PubMed Central

    Xiong, Ying; Wang, Yan; Zheng, Junfang; Zhao, Yuan; Tao, Tao; Wang, Qiqi; Liu, Hua; Wang, Songlin; Jiang, Wen G.; He, Junqi

    2016-01-01

    G protein-coupled estrogen receptor (GPER) plays an important role in mediating the effects of estradiol. High levels of GPER have been implicated to associate with the malignant progress of invasive breast cancer (IBC). However, the mechanisms by which GPER protein levels were regulated remain unclear. In this study, PDZ protein Na+/H+ exchanger regulatory factor (NHERF1) was found to interact with GPER in breast cancer cells. This interaction was mediated by the PDZ2 domain of NHERF1 and the carboxyl terminal PDZ binding motif of GPER. NHERF1 was demonstrated to facilitate GPER expression at post-transcriptional level and improve GPER protein stability by inhibiting the receptor degradation via ubiquitin-proteasome pathway in a GPER/NHERF1 interaction-dependent manner. In addition, GPER protein levels are positively associated with NHERF1 protein levels in a panel of estrogen receptor (ER)-positive breast cancer cells. Furthermore, analysis of clinical IBC data from The Cancer Genome Atlas (TCGA) showed no significant difference in GPER mRNA levels between ER-positive IBC and normal breast tissues. However, gene set enrichment analysis (GSEA) showed that GPER signaling is ultra-activated in ER-positive IBC when compared with normal and its activation is positively associated with NHERF1 mRNA levels. Taken together, our findings identify NHERF1 as a new binding partner for GPER and its overexpression promotes protein stability and activation of GPER in ER-positive IBC. Our data indicate that regulation of GPER stability by NHERF1 may contribute to GPER-mediated carcinogenesis in ER-positive IBC. PMID:27448983

  8. NHERF1, a novel GPER associated protein, increases stability and activation of GPER in ER-positive breast cancer.

    PubMed

    Meng, Ran; Qin, Qiong; Xiong, Ying; Wang, Yan; Zheng, Junfang; Zhao, Yuan; Tao, Tao; Wang, Qiqi; Liu, Hua; Wang, Songlin; Jiang, Wen G; He, Junqi

    2016-08-23

    G protein-coupled estrogen receptor (GPER) plays an important role in mediating the effects of estradiol. High levels of GPER have been implicated to associate with the malignant progress of invasive breast cancer (IBC). However, the mechanisms by which GPER protein levels were regulated remain unclear. In this study, PDZ protein Na+/H+ exchanger regulatory factor (NHERF1) was found to interact with GPER in breast cancer cells. This interaction was mediated by the PDZ2 domain of NHERF1 and the carboxyl terminal PDZ binding motif of GPER. NHERF1 was demonstrated to facilitate GPER expression at post-transcriptional level and improve GPER protein stability by inhibiting the receptor degradation via ubiquitin-proteasome pathway in a GPER/NHERF1 interaction-dependent manner. In addition, GPER protein levels are positively associated with NHERF1 protein levels in a panel of estrogen receptor (ER)-positive breast cancer cells. Furthermore, analysis of clinical IBC data from The Cancer Genome Atlas (TCGA) showed no significant difference in GPER mRNA levels between ER-positive IBC and normal breast tissues. However, gene set enrichment analysis (GSEA) showed that GPER signaling is ultra-activated in ER-positive IBC when compared with normal and its activation is positively associated with NHERF1 mRNA levels. Taken together, our findings identify NHERF1 as a new binding partner for GPER and its overexpression promotes protein stability and activation of GPER in ER-positive IBC. Our data indicate that regulation of GPER stability by NHERF1 may contribute to GPER-mediated carcinogenesis in ER-positive IBC.

  9. A lanthipeptide library used to identify a protein-protein interaction inhibitor.

    PubMed

    Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A

    2018-04-01

    In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

  10. Detergent Stabilized Nanopore Formation Kinetics of an Anthrax Protein

    NASA Astrophysics Data System (ADS)

    Peterson, Kelby

    2015-03-01

    This summer research project funded through the Society of Physics Students Internship Program and The National Institute of Standards and Technology focused on optimization of pore formation of Protective Antigen protein secreted by Bacillus Anthraces. This experiment analyzes the use of N-tetradecylphosphocholine (FOS-14 Detergent) to stabilize the water soluble protein, protective antigen protein (PA63) to regulate the kinetics of pore formation in a model bilayer lipid membrane. The FOS-14 Detergent was tested under various conditions to understand its impact on the protein pore formation. The optimization of this channel insertion is critical in preparing samples of oriented for neutron reflectometry that provide new data to increase the understanding of the protein's structure.

  11. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization.

    PubMed

    Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C

    2018-02-01

    This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (<4 or >7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.

  12. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    ERIC Educational Resources Information Center

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…

  13. COPS5 (Jab1) protein increases β site processing of amyloid precursor protein and amyloid β peptide generation by stabilizing RanBP9 protein levels.

    PubMed

    Wang, Hongjie; Dey, Debleena; Carrera, Ivan; Minond, Dmitriy; Bianchi, Elisabetta; Xu, Shaohua; Lakshmana, Madepalli K

    2013-09-13

    Increased processing of amyloid precursor protein (APP) and accumulation of neurotoxic amyloid β peptide (Aβ) in the brain is central to the pathogenesis of Alzheimer's disease (AD). Therefore, the identification of molecules that regulate Aβ generation is crucial for future therapeutic approaches for AD. We demonstrated previously that RanBP9 regulates Aβ generation in a number of cell lines and primary neuronal cultures by forming tripartite protein complexes with APP, low-density lipoprotein-related protein, and BACE1, consequently leading to increased amyloid plaque burden in the brain. RanBP9 is a scaffold protein that exists and functions in multiprotein complexes. To identify other proteins that may bind RanBP9 and regulate Aβ levels, we used a two-hybrid analysis against a human brain cDNA library and identified COPS5 as a novel RanBP9-interacting protein. This interaction was confirmed by coimmunoprecipitation experiments in both neuronal and non-neuronal cells and mouse brain. Colocalization of COPS5 and RanBP9 in the same subcellular compartments further supported the interaction of both proteins. Furthermore, like RanBP9, COPS5 robustly increased Aβ generation, followed by increased soluble APP-β (sAPP-β) and decreased soluble-APP-α (sAPP-α) levels. Most importantly, down-regulation of COPS5 by siRNAs reduced Aβ generation, implying that endogenous COPS5 regulates Aβ generation. Finally, COPS5 levels were increased significantly in AD brains and APΔE9 transgenic mice, and overexpression of COPS5 strongly increased RanBP9 protein levels by increasing its half-life. Taken together, these results suggest that COPS5 increases Aβ generation by increasing RanBP9 levels. Thus, COPS5 is a novel RanBP9-binding protein that increases APP processing and Aβ generation by stabilizing RanBP9 protein levels.

  14. Stability of Magnetically-Suppressed Solutal Convection In Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Ramachandran, N.

    2005-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, a theory is presented on the stability of solutal convection of a magnetized fluid in the presence of a magnetic field. The requirements for stability are developed and compared to experiments performed within the bore of a superconducting magnet. The theoretical predictions are in good agreement with the experiments and show solutal convection can be stabilized if the surrounding fluid has larger magnetic susceptibility and the magnetic field has a specific structure. Discussion on the application of the technique to protein crystallization is also provided.

  15. Tighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein.

    PubMed

    Wallis, Christopher P; Richman, Tara R; Filipovska, Aleksandra; Rackham, Oliver

    2018-06-15

    It has been widely shown that ligand-binding residues, by virtue of their orientation, charge, and solvent exposure, often have a net destabilizing effect on proteins that is offset by stability conferring residues elsewhere in the protein. This structure-function trade-off can constrain possible adaptive evolutionary changes of function and may hamper protein engineering efforts to design proteins with new functions. Here, we present evidence from a large randomized mutant library screen that, in the case of PUF RNA-binding proteins, this structural relationship may be inverted and that active-site mutations that increase protein activity are also able to compensate for impaired stability. We show that certain mutations in RNA-protein binding residues are not necessarily destabilizing and that increased ligand-binding can rescue an insoluble, unstable PUF protein. We hypothesize that these mutations restabilize the protein via thermodynamic coupling of protein folding and RNA binding.

  16. Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson's disease.

    PubMed

    Goswami, Arvind Vittal; Samaddar, Madhuja; Sinha, Devanjan; Purushotham, Jaya; D'Silva, Patrick

    2012-08-01

    Parkinson's disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with 'mitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.

  17. Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings

    PubMed Central

    Alexander, Crispin G.; Wanner, Randy; Johnson, Christopher M.; Breitsprecher, Dennis; Winter, Gerhard; Duhr, Stefan; Baaske, Philipp; Ferguson, Neil

    2014-01-01

    Chemical denaturant titrations can be used to accurately determine protein stability. However, data acquisition is typically labour intensive, has low throughput and is difficult to automate. These factors, combined with high protein consumption, have limited the adoption of chemical denaturant titrations in commercial settings. Thermal denaturation assays can be automated, sometimes with very high throughput. However, thermal denaturation assays are incompatible with proteins that aggregate at high temperatures and large extrapolation of stability parameters to physiological temperatures can introduce significant uncertainties. We used capillary-based instruments to measure chemical denaturant titrations by intrinsic fluorescence and microscale thermophoresis. This allowed higher throughput, consumed several hundred-fold less protein than conventional, cuvette-based methods yet maintained the high quality of the conventional approaches. We also established efficient strategies for automated, direct determination of protein stability at a range of temperatures via chemical denaturation, which has utility for characterising stability for proteins that are difficult to purify in high yield. This approach may also have merit for proteins that irreversibly denature or aggregate in classical thermal denaturation assays. We also developed procedures for affinity ranking of protein–ligand interactions from ligand-induced changes in chemical denaturation data, and proved the principle for this by correctly ranking the affinity of previously unreported peptide–PDZ domain interactions. The increased throughput, automation and low protein consumption of protein stability determinations afforded by using capillary-based methods to measure denaturant titrations, can help to revolutionise protein research. We believe that the strategies reported are likely to find wide applications in academia, biotherapeutic formulation and drug discovery programmes. PMID:25262836

  18. A Systematic Approach Toward Stabilization of CagL, a Protein Antigen from Helicobacter pylori That Is a Candidate Subunit Vaccine

    PubMed Central

    Choudhari, Shyamal P.; Pendleton, Kirk P.; Ramsey, Joshua D.; Blanchard, Thomas G.; Picking, William D.

    2013-01-01

    An important consideration in the development of subunit vaccines is loss of activity caused by physical instability of the protein. Such instability often results from suboptimal solution conditions related to pH and temperature. Excipients can help to stabilize vaccines, but it is important to screen and identify excipients that adequately contribute to stabilization of a given formulation. CagL is a protein present in strains of Helicobacter pylori that possess type IV secretion systems. It contributes to bacterial adherence via α5β1 integrin, thereby making it an attractive subunit vaccine candidate. We characterized the stability of CagL in different pH and temperature conditions using a variety of spectroscopic techniques. Stability was assessed in terms of transition temperature (Tm) with the accumulated data then incorporated into an empirical phase diagram (EPD) that provided an overview of CagL physical stability. These analyses indicated maximum CagL stability at pH 4–6 up to 40 °C in the absence of excipient. Using this EPD analysis, aggregation assays were developed to screen a panel of excipients with some found to inhibit CagL aggregation. Candidate stabilizers were selected to confirm their enhanced stabilizing effect. These analyses will help in the formulation of a stable vaccine against H. pylori. PMID:23794457

  19. Dynamic Stabilization of Expressed Proteins in Engineered Diatom Biosilica Matrices.

    PubMed

    Xiong, Yijia; Ford, Nicole R; Hecht, Karen A; Roesijadi, Guritno; Squier, Thomas C

    2016-05-18

    Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that will enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39-amino-acid targeting sequence (Sil3T8) that directs a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundance of >200 000 proteins per frustule. Using either a fluorescent ligand bound to the scFv or the intrinsic fluorescence of EGFP, we monitored protein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability. Like proteins in solution, proteins within isolated frustules undergo isotropic rotational motion, but with 2-fold increases in rotational correlation times that are indicative of weak macromolecular associations within the biosilica. Solvent accessibilities and high-affinity (pM) binding are comparable to those in solution. In contrast to solution conditions, scFv antibodies within the biosilica matrix retain their binding affinity in the presence of chaotropic agents (i.e., 8 M urea). Together, these results argue that dramatic increases in protein conformational stability within the biosilica matrices arise through molecular crowding, acting to retain native protein folds and associated functionality with the potential to allow the utility of engineered proteins under a range of harsh environmental conditions associated with environmental sensing and industrial catalytic transformations.

  20. Effective stabilization of CLA by microencapsulation in pea protein.

    PubMed

    Costa, A M M; Nunes, J C; Lima, B N B; Pedrosa, C; Calado, V; Torres, A G; Pierucci, A P T R

    2015-02-01

    CLA was microencapsulated by spray drying in ten varied wall systems (WS) consisting of pea protein isolate or pea protein concentrate (PPC) alone at varied core:WS ratios (1:2; 1:3 and 1:4), or blended with maltodextrin (M) and carboxymethylcellulose at a pea protein:carbohydrate ratio of 3:1. The physical-chemical properties of the CLA microparticles were characterised by core retention, microencapsulation efficiency (ME), particle size and moisture. CLA:M:PPC (1:1:3) showed the most promising results, thus we evaluated the effect of M addition in the WS on other physical-chemical characteristics and oxidative stability (CLA isomer profile, quantification of CLA and volatile compounds by SPME coupled with CG-MS) during two months of storage at room temperature, CLA:PPC (1:4) was selected for comparisons. CLA:M:PPC (1:1:3) microparticles demonstrated better morphology, solubility, dispersibility and higher glass-transition temperature values. M addition did not influence the oxidative stability of CLA, however its presence improved physical-chemical characteristics necessary for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  2. Effect of Oxygen-containing Functional Groups on Protein Stability in Ionic Liquid Solutions

    NASA Technical Reports Server (NTRS)

    Turner, Megan B.; Holbrey, John D.; Spear, Scott K.; Pusey, Marc L.; Rogers, Robin D.

    2004-01-01

    The ability of functionalized ionic liquids (ILs) to provide an environment of increased stability for biomolecules has been studied. Serum albumin is an inexpensive, widely available protein that contributes to the overall colloid osmotic blood pressure within the vascular system. Albumin is used in the present study as a marker of biomolecular stability in the presence of various ILs in a range of concentrations. The incorporation of hydroxyl functionality into the methylimidazolium-based cation leads to increased protein stability detected by fluorescence spectroscopy and circular dichroic (CD) spectrometry.

  3. Two dynamin-like proteins stabilize FtsZ rings during Streptomyces sporulation.

    PubMed

    Schlimpert, Susan; Wasserstrom, Sebastian; Chandra, Govind; Bibb, Maureen J; Findlay, Kim C; Flärdh, Klas; Buttner, Mark J

    2017-07-25

    During sporulation, the filamentous bacteria Streptomyces undergo a massive cell division event in which the synthesis of ladders of sporulation septa convert multigenomic hyphae into chains of unigenomic spores. This process requires cytokinetic Z-rings formed by the bacterial tubulin homolog FtsZ, and the stabilization of the newly formed Z-rings is crucial for completion of septum synthesis. Here we show that two dynamin-like proteins, DynA and DynB, play critical roles in this process. Dynamins are a family of large, multidomain GTPases involved in key cellular processes in eukaryotes, including vesicle trafficking and organelle division. Many bacterial genomes encode dynamin-like proteins, but the biological function of these proteins has remained largely enigmatic. Using a cell biological approach, we show that the two Streptomyces dynamins specifically localize to sporulation septa in an FtsZ-dependent manner. Moreover, dynamin mutants have a cell division defect due to the decreased stability of sporulation-specific Z-rings, as demonstrated by kymographs derived from time-lapse images of FtsZ ladder formation. This defect causes the premature disassembly of individual Z-rings, leading to the frequent abortion of septum synthesis, which in turn results in the production of long spore-like compartments with multiple chromosomes. Two-hybrid analysis revealed that the dynamins are part of the cell division machinery and that they mediate their effects on Z-ring stability during developmentally controlled cell division via a network of protein-protein interactions involving DynA, DynB, FtsZ, SepF, SepF2, and the FtsZ-positioning protein SsgB.

  4. A Translational Regulator, PUM2, Promotes Both Protein Stability and Kinase Activity of Aurora-A

    PubMed Central

    Huang, Yei-Hsuan; Wu, Chun-Chi; Chou, Chen-Kung; Huang, Chi-Ying F.

    2011-01-01

    Aurora-A, a centrosomal serine-threonine kinase, orchestrates several key aspects of cell division. However, the regulatory pathways for the protein stability and kinase activity of Aurora-A are still not completely understood. In this study, PUM2, an RNA-binding protein, is identified as a novel substrate and interacting protein of Aurora-A. Overexpression of the PUM2 mutant which fails to interact with Aurora-A, and depletion of PUM2 result in a decrease in the amount of Aurora-A. PUM2 physically binds to the D-box of Aurora-A, which is recognized by APC/CCdh1. Overexpression of PUM2 prevents ubiquitination and enhances the protein stability of Aurora-A, suggesting that PUM2 protects Aurora-A from APC/CCdh1-mediated degradation. Moreover, association of PUM2 with Aurora-A not only makes Aurora-A more stable but also enhances the kinase activity of Aurora-A. Our study suggests that PUM2 plays two different but important roles during cell cycle progression. In interphase, PUM2 localizes in cytoplasm and plays as translational repressor through its RNA binding domain. However, in mitosis, PUM2 physically associates with Aurora-A to ensure enough active Aurora-A at centrosomes for mitotic entry. This is the first time to reveal the moonlight role of PUM2 in mitosis. PMID:21589936

  5. Controlled formation of emulsion gels stabilized by salted myofibrillar protein under malondialdehyde (MDA)-induced oxidative stress.

    PubMed

    Zhou, Feibai; Sun, Weizheng; Zhao, Mouming

    2015-04-15

    This study presented the cold-set gelation of emulsions stabilized by salted myofibrillar protein (MP) under oxidative stress originated from malondialdehyde (MDA). Gel properties were compared over a range of MDA/NaCl concentrations including gel viscoelastic properties, strength, water-holding capacity (WHC), amount of protein entrapped, and microstructure. The oxidative stability of emulsion gels as indicated by lipid hydroperoxide was further determined and compared. Results indicated that emulsion stabilized by MP at swollen state under certain ionic strengths (0.2-0.6 M) was the premise of gel formation under MDA. In the presence of intermediate MDA concentrations (2.5-10 mM), the emulsion gels showed an improved elasticity, strength, WHC, and oxidative stability. This improvement should be mainly attributed to the enhanced protein-protein cross-linkings via MDA, which were homogeneously formed among absorbed and/or unabsorbed proteins, entrapping a greater amount and fractions of protein within network. Therefore, the oil droplets were better adherent to the gel matrix. Nevertheless, addition of high MDA concentrations (25-50 mM) led to the formation of excessive covalent bonds, which might break protein-protein bonds and trigger the desorption of protein from the interface. This ultimately caused "oil leak" phenomena as well as the collapse of gel structure and, thus, overall decreased gel properties and oxidative stability.

  6. Comparison of the colloidal stability, bioaccessibility and antioxidant activity of corn protein hydrolysate and sodium caseinate stabilized curcumin nanoparticles.

    PubMed

    Wang, Yong-Hui; Yuan, Yang; Yang, Xiao-Quan; Wang, Jin-Mei; Guo, Jian; Lin, Yuan

    2016-07-01

    The aims of this work were to construct corn protein hydrolysate (CPH)-based curcumin nanoparticles (Cur NPs) and to compare the colloidal stability, bioaccessibility and antioxidant activity of the Cur NPs stabilized CPH and sodium caseinate (NaCas) respectively. The results indicated that Cur solubility could be considerably improved after the Cur NPs fabrication. The spectroscopy results demonstrated that the solubilization of Cur should be attributed to its complexation with CPH or NaCas. The Cur NPs exhibited good colloidal stability after 1 week's storage but showed smaller (40 nm) size in CPH than in NaCas (100 nm). After lyophilization, the Cur NPs powders showed good rehydration properties and chemical stability, and compared with NaCas, the size of Cur NPs stabilized by CPH was still smaller. Additionally, the Cur NPs exhibited higher chemical stability against the temperature compared with free Cur, and the CPH could protect Cur from degradation more efficiently. Comparing with NaCas, the Cur NPs stabilized by CPH exhibited better bioaccessibility and antioxidant activity. This study demonstrated that CPH may be better than NaCas in Cur NPs fabrication and it opens up the possibility of using hydrophobic protein hydrolysate to construct the NPs delivery system.

  7. Distribution, transition and thermodynamic stability of protein conformations in the denaturant-induced unfolding of proteins.

    PubMed

    Bian, Liujiao; Ji, Xu

    2014-01-01

    Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation of the experimental data. In this work, a theoretical model was presented to show the dependency of the residual activity ratio of the proteins on the molar denaturant concentration. Through the characteristic unfolding parameters ki and Δmi in this model, the distribution, transition and thermodynamic stability of protein conformations during the unfolding process can be quantitatively described. This model was tested with the two-state unfolding of bovine heart cytochrome c and the three-state unfolding of hen egg white lysozyme induced by both guanidine hydrochloride and urea, the four-state unfolding of bovine carbonic anhydrase b induced by guanidine hydrochloride and the unfolding of some other proteins induced by denaturants. The results illustrated that this model could be used accurately to reveal the distribution and transition of protein conformations in the presence of different concentrations of denaturants and to evaluate the unfolding tendency and thermodynamic stability of different conformations. In most denaturant-induced unfolding of proteins, the unfolding became increasingly hard in next transition step and the proteins became more unstable as they attained next successive stable conformation. This work presents a useful method for people to study the unfolding of proteins and may be used to describe the unfolding and refolding of other biopolymers induced by denaturants, inducers, etc.

  8. Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold Nanoclusters

    DTIC Science & Technology

    2016-01-13

    excess Au salt. The purified sample was lyophilized and resuspended at a concentration of 10 mg/mL in ultrapure water . BSA ( PDB :3v03) 100 % α...effect of scaffold protein secondary structure on the pressure response of protein-stabilized gold nanoclusters (P:NCs). These studies were...demonstrate that the pressure response of P:NCs is indeed dependent on the secondary structure of the protein. Proteins with high beta sheet content

  9. Biophysical stability of hyFc fusion protein with regards to buffers and various excipients.

    PubMed

    Lim, Jun Yeul; Kim, Nam Ah; Lim, Dae Gon; Eun, Chang-yong; Choi, Donghoon; Jeong, Seong Hoon

    2016-05-01

    A novel non-cytolytic hybrid Fc (hyFc) with an intact Ig structure without any mutation in the hyFc region, was developed to construct a long-acting agonistic protein. The stability of interleukin-7 (IL-7) fused with the hyFc (GXN-04) was evaluated to develop early formulations. Various biophysical methods were utilized and three different buffer systems with various pH ranges were investigated including histidine-acetate, sodium citrate, and tris buffers. Various excipients were incorporated into the systems to obtain optimum protein stability. Two evident thermal transitions were observed with the unfolding of IL-7 and hyFc. The Tm and ΔH increased with pH, suggesting increased conformational stability. Increased Z-average size with PDI and decreased zeta potential with pH increase, with the exception of tris buffer, showed aggregation issues. Moreover, tris buffer at higher pH showed aggregation peaks from DLS. Non-ionic surfactants were effective against agitation by outcompeting protein molecules for hydrophobic surfaces. Sucrose and sorbitol accelerated protein aggregation during agitation, but exhibited a protective effect against oxidation, with preferential exclusion favoring the compact states of GXN-04. The stability of GXN-04 was varied by basal buffers and excipients, hence the buffers and excipients need to be evaluated carefully to achieve the maximum stability of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Reduced native state stability in crowded cellular environment due to protein-protein interactions.

    PubMed

    Harada, Ryuhei; Tochio, Naoya; Kigawa, Takanori; Sugita, Yuji; Feig, Michael

    2013-03-06

    The effect of cellular crowding environments on protein structure and stability is a key issue in molecular and cellular biology. The classical view of crowding emphasizes the volume exclusion effect that generally favors compact, native states. Here, results from molecular dynamics simulations and NMR experiments show that protein crowders may destabilize native states via protein-protein interactions. In the model system considered here, mixtures of villin head piece and protein G at high concentrations, villin structures become increasingly destabilized upon increasing crowder concentrations. The denatured states observed in the simulation involve partial unfolding as well as more subtle conformational shifts. The unfolded states remain overall compact and only partially overlap with unfolded ensembles at high temperature and in the presence of urea. NMR measurements on the same systems confirm structural changes upon crowding based on changes of chemical shifts relative to dilute conditions. An analysis of protein-protein interactions and energetic aspects suggests the importance of enthalpic and solvation contributions to the crowding free energies that challenge an entropic-centered view of crowding effects.

  11. STRUM: structure-based prediction of protein stability changes upon single-point mutation.

    PubMed

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-10-01

    Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon

  12. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein.

    PubMed

    Tych, Katarzyna M; Batchelor, Matthew; Hoffmann, Toni; Wilson, Michael C; Hughes, Megan L; Paci, Emanuele; Brockwell, David J; Dougan, Lorna

    2016-07-26

    Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.

  13. Neuronal ELAV proteins enhance mRNA stability by a PKCα-dependent pathway

    PubMed Central

    Pascale, Alessia; Amadio, Marialaura; Scapagnini, Giovanni; Lanni, Cristina; Racchi, Marco; Provenzani, Alessandro; Govoni, Stefano; Alkon, Daniel L.; Quattrone, Alessandro

    2005-01-01

    More than 1 in 20 human genes bear in the mRNA 3′ UTR a specific motif called the adenine- and uridine-rich element (ARE), which posttranscriptionally determines its expression in response to cell environmental signals. ELAV (embryonic lethal abnormal vision) proteins are the only known ARE-binding factors that are able to stabilize the bound mRNAs, thereby positively controlling gene expression. Here, we show that in human neuroblastoma SH-SY5Y cells, neuron-specific ELAV (nELAV) proteins (HuB, HuC, and HuD) are up-regulated and redistributed by 15 min of treatment with the activators of PKC phorbol esters and bryostatin-1. PKC stimulation also induces nELAV proteins to colocalize with the translocated PKCα isozyme preferentially on the cytoskeleton, with a concomitant increase of nELAV threonine phosphorylation. The same treatment promotes stabilization of growth-associated protein 43 (GAP-43) mRNA, a well known nELAV target, and induces an early increase in GAP-43 protein concentration, again only in the cytoskeletal cell fraction. Genetic or pharmacological inactivation of PKCα abolishes nELAV protein cytoskeletal up-regulation, GAP-43 mRNA stabilization, and GAP-43 protein increase, demonstrating the primary role of this specific PKC isozyme in the cascade of nELAV recruitment. Finally, in vivo PKC activation is associated with an up-regulation of nELAV proteins in the hippocampal rat brain. These findings suggest a model for gene expression regulation by nELAV proteins through a PKCα-dependent pathway that is relevant for the cellular programs in which ARE-mediated control plays a pivotal role. PMID:16099831

  14. Detergent Isolation Stabilizes and Activates the Shigella Type III Secretion System Translocator Protein IpaC.

    PubMed

    Bernard, Abram R; Duarte, Shari M; Kumar, Prashant; Dickenson, Nicholas E

    2016-07-01

    Shigella rely on a type III secretion system as the primary virulence factor for invasion and colonization of human hosts. Although there are an estimated 90 million Shigella infections, annually responsible for more than 100,000 deaths worldwide, challenges isolating and stabilizing many type III secretion system proteins have prevented a full understanding of the Shigella invasion mechanism and additionally slowed progress toward a much needed Shigella vaccine. Here, we show that the non-denaturing zwitterionic detergent N, N-dimethyldodecylamine N-oxide (LDAO) and non-ionic detergent n-octyl-oligo-oxyethylene efficiently isolated the hydrophobic Shigella translocator protein IpaC from the co-purified IpaC/IpgC chaperone-bound complex. Both detergents resulted in monomeric IpaC that exhibits strong membrane binding and lysis characteristics while the chaperone-bound complex does not, suggesting that the stabilizing detergents provide a means of following IpaC "activation" in vitro. Additionally, biophysical characterization found that LDAO provides significant thermal and temporal stability to IpaC, protecting it for several days at room temperature and brief exposure to temperatures reaching 90°C. In summary, this work identified and characterized conditions that provide stable, membrane active IpaC, providing insight into key interactions with membranes and laying a strong foundation for future vaccine formulation studies taking advantage of the native immunogenicity of IpaC and the stability provided by LDAO. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    PubMed Central

    Ren, Jun; Zhou, Wei; Wang, Jianxin

    2014-01-01

    Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945

  16. Protein Stability in Mixed Solvents: A Balance of Contact Interaction and Excluded Volume

    PubMed Central

    Schellman, John A.

    2003-01-01

    Changes in excluded volume and contact interaction with the surface of a protein have been suggested as mechanisms for the changes in stability induced by cosolvents. The aim of the present paper is to present an analysis that combines both effects in a quantitative manner. The result is that both processes are present in both stabilizing and destabilizing interactions and neither can be ignored. Excluded volume was estimated using accessible surface area calculations of the kind introduced by Lee and Richards. The change in excluded volume on unfolding, ΔX, is quite large. For example, ΔX for ribonuclease is 6.7 L in urea and ∼16 L in sucrose. The latter number is greater than the molar volume of the protein. Direct interaction with the protein is represented as the solvent exchange mechanism, which differs from ordinary association theory because of the weakness of the interaction and the high concentrations of cosolvents. The balance between the two effects and their contribution to overall stability are most simply presented as bar diagrams as in Fig. 3. Our finding for five proteins is that excluded volume contributes to the stabilization of the native structure and that contact interaction contributes to destabilization. This is true for five proteins and four cosolvents including both denaturants and osmolytes. Whether a substance stabilizes a protein or destabilizes it depends on the relative size of these two contributions. The constant for the cosolvent contact with the protein is remarkably uniform for four of the proteins, indicating a similarity of groups exposed during unfolding. One protein, staphylococcus nuclease, is anomalous in almost all respects. In general, the strength of the interaction with guanidinium is about twice that of urea, which is about twice that of trimethylamine-N-oxide and sucrose. Arguments are presented for the use of volume fractions in equilibrium equations and the ignoring of activity coefficients of the cosolvent. It

  17. Recent advances in the applications of ionic liquids in protein stability and activity: a review.

    PubMed

    Patel, Rajan; Kumari, Meena; Khan, Abbul Bashar

    2014-04-01

    Room temperatures ionic liquids are considered as miraculous solvents for biological system. Due to their inimitable properties and large variety of applications, they have been widely used in enzyme catalysis and protein stability and separation. The related information present in the current review is helpful to the researchers working in the field of biotechnology and biochemistry to design or choose an ionic liquid that can serve as a noble and selective solvent for any particular enzymatic reaction, protein preservation and other protein based applications. We have extensively analyzed the methods used for studying the protein-IL interaction which is useful in providing information about structural and conformational dynamics of protein. This can be helpful to develop and understanding about the effect of ionic liquids on stability and activity of proteins. In addition, the affect of physico-chemical properties of ionic liquids, viz. hydrogen bond capacity and hydrophobicity on protein stability are discussed.

  18. Cysteine residue is not essential for CPM protein thermal-stability assay.

    PubMed

    Wang, Zhaoshuai; Ye, Cui; Zhang, Xinyi; Wei, Yinan

    2015-05-01

    A popular thermal-stability assay developed especially for the study of membrane proteins uses a thiol-specific probe, 7-diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM). The fluorescence emission of CPM surges when it forms a covalent bond with the side chain of a free Cys, which becomes more readily accessible upon protein thermal denaturation. Interestingly, the melting temperatures of membrane proteins determined using the CPM assay in literature are closely clustered in the temperature range 45-55 °C. A thorough understanding of the mechanism behind the observed signal change is critical for the accurate interpretation of the protein unfolding. Here we used two α-helical membrane proteins, AqpZ and AcrB, as model systems to investigate the nature of the fluorescence surge in the CPM assay. We found that the transition temperatures measured using circular-dichroism (CD) spectroscopy and the CPM assay were significantly different. To eliminate potential artifact that might arise from the presence of detergent, we monitored the unfolding of two soluble proteins. We found that, contrary to current understanding, the presence of a sulfhydryl group was not a prerequisite for the CPM thermal-stability assay. The observed fluorescence increase is probably caused by binding of the fluorophore to hydrophobic patches exposed upon protein unfolding.

  19. Detecting Selection on Protein Stability through Statistical Mechanical Models of Folding and Evolution

    PubMed Central

    Bastolla, Ugo

    2014-01-01

    The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217

  20. Effect of pasteurization on the protein composition and oxidative stability of beer during storage.

    PubMed

    Lund, Marianne N; Hoff, Signe; Berner, Torben S; Lametsch, René; Andersen, Mogens L

    2012-12-19

    The impacts of pasteurization of a lager beer on protein composition and the oxidative stability were studied during storage at 22 °C for 426 days in the dark. Pasteurization clearly improved the oxidative stability of beer determined by ESR spectroscopy, whereas it had a minor negative effect on the volatile profile by increasing volatile compounds that is generally associated with heat treatment and a loss of fruity ester aroma. A faster rate of radical formation in unpasteurized beer was consistent with a faster consumption of sulfite. Beer proteins in the unpasteurized beer were more degraded, most likely due to proteolytic enzyme activity of yeast remnants and more precipitation of proteins was also observed. The differences in soluble protein content and composition are suggested to result in differences in the contents of prooxidative metals as a consequence of the proteins ability to bind metals. This also contributes to the differences in oxidative stabilities of the beers.

  1. Synthetic Biology of Proteins: Tuning GFPs Folding and Stability with Fluoroproline

    PubMed Central

    Steiner, Thomas; Hess, Petra; Bae, Jae Hyun; Wiltschi, Birgit; Moroder, Luis; Budisa, Nediljko

    2008-01-01

    Background Proline residues affect protein folding and stability via cis/trans isomerization of peptide bonds and by the Cγ-exo or -endo puckering of their pyrrolidine rings. Peptide bond conformation as well as puckering propensity can be manipulated by proper choice of ring substituents, e.g. Cγ-fluorination. Synthetic chemistry has routinely exploited ring-substituted proline analogs in order to change, modulate or control folding and stability of peptides. Methodology/Principal Findings In order to transmit this synthetic strategy to complex proteins, the ten proline residues of enhanced green fluorescent protein (EGFP) were globally replaced by (4R)- and (4S)-fluoroprolines (FPro). By this approach, we expected to affect the cis/trans peptidyl-proline bond isomerization and pyrrolidine ring puckering, which are responsible for the slow folding of this protein. Expression of both protein variants occurred at levels comparable to the parent protein, but the (4R)-FPro-EGFP resulted in irreversibly unfolded inclusion bodies, whereas the (4S)-FPro-EGFP led to a soluble fluorescent protein. Upon thermal denaturation, refolding of this variant occurs at significantly higher rates than the parent EGFP. Comparative inspection of the X-ray structures of EGFP and (4S)-FPro-EGFP allowed to correlate the significantly improved refolding with the Cγ-endo puckering of the pyrrolidine rings, which is favored by 4S-fluorination, and to lesser extents with the cis/trans isomerization of the prolines. Conclusions/Significance We discovered that the folding rates and stability of GFP are affected to a lesser extent by cis/trans isomerization of the proline bonds than by the puckering of pyrrolidine rings. In the Cγ-endo conformation the fluorine atoms are positioned in the structural context of the GFP such that a network of favorable local interactions is established. From these results the combined use of synthetic amino acids along with detailed structural knowledge and

  2. An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states

    NASA Astrophysics Data System (ADS)

    Alfano, Caterina; Sanfelice, Domenico; Martin, Stephen R.; Pastore, Annalisa; Temussi, Piero Andrea

    2017-05-01

    Macromolecular crowding ought to stabilize folded forms of proteins, through an excluded volume effect. This explanation has been questioned and observed effects attributed to weak interactions with other cell components. Here we show conclusively that protein stability is affected by volume exclusion and that the effect is more pronounced when the crowder's size is closer to that of the protein under study. Accurate evaluation of the volume exclusion effect is made possible by the choice of yeast frataxin, a protein that undergoes cold denaturation above zero degrees, because the unfolded form at low temperature is more expanded than the corresponding one at high temperature. To achieve optimum sensitivity to changes in stability we introduce an empirical parameter derived from the stability curve. The large effect of PEG 20 on cold denaturation can be explained by a change in water activity, according to Privalov's interpretation of cold denaturation.

  3. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage.

    PubMed

    Correia, Roberta; Grace, Mary H; Esposito, Debora; Lila, Mary Ann

    2017-11-15

    Particulate colloidal aggregate food ingredients were prepared by complexing wheat flour, chickpea flour, coconut flour and soy protein isolate with aqueous wild blueberry pomace extracts, then spray drying, freeze drying, or vacuum oven drying to prepare dry, flour-like matrices. Physico-chemical attributes, phytochemical content and stability during storage were compared. Eighteen anthocyanins peaks were identified for samples. Spray dried matrices produced with soy protein isolate had the highest concentration of polyphenols (156.2mg GAE/g) and anthocyanins (13.4mg/g) and the most potent DPPH scavenging activity (714.1μmolesTE/g). Spray dried blueberry polyphenols complexed with protein were protected from degradation during 16weeks at 4°C and 20°C. Soy protein isolate more efficiently captured and stabilized wild blueberry pomace phytochemicals than other protein sources. Overall, spray drying the blueberry extracts complexed with protein proved to be an environment-friendly strategy to produce stable functional ingredients with multiple applications for the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Direct measurements of protein-stabilized gold nanoparticle interactions.

    PubMed

    Eichmann, Shannon L; Bevan, Michael A

    2010-09-21

    We report integrated video and total internal reflection microscopy measurements of protein stabilized 110 nm Au nanoparticles confined in 280 nm gaps in physiological media. Measured potential energy profiles display quantitative agreement with Brownian dynamic simulations that include hydrodynamic interactions and camera exposure time and noise effects. Our results demonstrate agreement between measured nonspecific van der Waals and adsorbed protein interactions with theoretical potentials. Confined, lateral nanoparticle diffusivity measurements also display excellent agreement with predictions. These findings provide a basis to interrogate specific biomacromolecular interactions in similar experimental configurations and to design future improved measurement methods.

  5. Total amino acid stabilization during cell-free protein synthesis reactions.

    PubMed

    Calhoun, Kara A; Swartz, James R

    2006-05-17

    Limitations in amino acid supply have been recognized as a substantial problem in cell-free protein synthesis reactions. Although enzymatic inhibitors and fed-batch techniques have been beneficial, the most robust way to stabilize amino acids is to remove the responsible enzymatic activities by genetically modifying the source strain used for cell extract preparation. Previous work showed this was possible for arginine, serine, and tryptophan, but cysteine degradation remained a major limitation in obtaining high protein synthesis yields. Through radiolabel techniques, we confirmed that cysteine degradation was caused by the activity of glutamate-cysteine ligase (gene gshA) in the cell extract. Next, we created Escherichia coli strain KC6 that combines a gshA deletion with previously described deletions for arginine, serine, and tryptophan stabilization. Strain KC6 grows well, and active cell extract can be produced from it for cell-free protein synthesis reactions. The extract from strain KC6 maintains stable amino acid concentrations of all 20 amino acids in a 3-h batch reaction. Yields for three different proteins improved 75-250% relative to cell-free expression using the control extract.

  6. The splicing factor U2AF65 stabilizes TRF1 protein by inhibiting its ubiquitin-dependent proteolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeonghee; Chung, In Kwon, E-mail: topoviro@yonsei.ac.kr

    Highlights: •Identification of U2AF65 as a novel TRF1-interacting protein. •U2AF65 stabilizes TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. •U2AF65 interferes with the interaction between TRF1 and Fbx4. •U2AF65 represents a new route for modulating TRF1 function at telomeres. -- Abstract: The human telomeric protein TRF1 is a component of the six-subunit protein complex shelterin, which provides telomere protection by organizing the telomere into a high-order structure. TRF1 functions as a negative regulator of telomere length by controlling the access of telomerase to telomeres. Thus, the cellular abundance of TRF1 at telomeres should be maintained and tightly regulated to ensure propermore » telomere function. Here, we identify U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 (U2AF65), an essential pre-mRNA splicing factor, as a novel TRF1-interacting protein. U2AF65 interacts with TRF1 in vitro and in vivo and is capable of stabilizing TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. We also found that U2AF65 interferes with the interaction between TRF1 and Fbx4, an E3 ubiquitin ligase for TRF1. Depletion of endogenous U2AF65 expression by short interfering RNA (siRNA) reduced the stability of endogenous TRF1 whereas overexpression of U2AF65 significantly extended the half-life of TRF1. These findings demonstrate that U2AF65 plays a critical role in regulating the level of TRF1 through physical interaction and ubiquitin-mediated proteolysis. Hence, U2AF65 represents a new route for modulating TRF1 function at telomeres.« less

  7. Mathematics, thermodynamics, and modeling to address ten common misconceptions about protein structure, folding, and stability.

    PubMed

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative phenomena in undergraduate classes. In the process of learning about these topics, students often form incorrect ideas. For example, by learning about protein folding in the context of protein synthesis, students may come to an incorrect conclusion that once synthesized on the ribosome, a protein spends its entire cellular life time in its fully folded native confirmation. This is clearly not true; proteins are dynamic structures that undergo both local fluctuations and global unfolding events. To prevent and address such misconceptions, basic concepts of protein science can be introduced in the context of simple mathematical models and hands-on explorations of publicly available data sets. Ten common misconceptions about proteins are presented, along with suggestions for using equations, models, sequence, structure, and thermodynamic data to help students gain a deeper understanding of basic concepts relating to protein structure, folding, and stability.

  8. Probing the determinants of protein stability: comparison of class A beta-lactamases.

    PubMed Central

    Vanhove, M; Houba, S; b1motte-Brasseur, J; Frère, J M

    1995-01-01

    Five class A beta-lactamases produced by various mesophilic bacterial species have been compared. Although closely related in primary and overall structures, these enzymes exhibit very different stabilities. In order to investigate the factors responsible for these differences, several features deduced from the amino acid composition and three-dimensional structures were studied for the five proteins. This analysis revealed that higher stability appeared to correlate with increased numbers of intramolecular hydrogen bonds and of salt bridges. By contrast, the global hydrophobicity of the protein seemed to play a relatively minor role. A strongly unfavourable balance between charged residues and the presence of a cis-peptide bond preceding a non-proline residue might also contribute to the particularly low stability of two of the enzymes. PMID:8948443

  9. Improvements in the Protein Identifier Cross-Reference service.

    PubMed

    Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A

    2012-07-01

    The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.

  10. FSGS3/CD2AP is a barbed-end capping protein that stabilizes actin and strengthens adherens junctions

    PubMed Central

    Brieher, William M.

    2013-01-01

    By combining in vitro reconstitution biochemistry with a cross-linking approach, we have identified focal segmental glomerulosclerosis 3/CD2-associated protein (FSGS3/CD2AP) as a novel actin barbed-end capping protein responsible for actin stability at the adherens junction. FSGS3/CD2AP colocalizes with E-cadherin and α-actinin-4 at the apical junction in polarized Madin-Darby canine kidney (MDCK) cells. Knockdown of FSGS3/CD2AP compromised actin stability and decreased actin accumulation at the adherens junction. Using a novel apparatus to apply mechanical stress to cell–cell junctions, we showed that knockdown of FSGS3/CD2AP compromised adhesive strength, resulting in tearing between cells and disruption of barrier function. Our results reveal a novel function of FSGS3/CD2AP and a previously unrecognized role of barbed-end capping in junctional actin dynamics. Our study underscores the complexity of actin regulation at cell–cell contacts that involves actin activators, inhibitors, and stabilizers to control adhesive strength, epithelial behavior, and permeability barrier integrity. PMID:24322428

  11. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    PubMed

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-03-20

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  12. Protein engineering of subtilisins to improve stability in detergent formulations.

    PubMed

    von der Osten, C; Branner, S; Hastrup, S; Hedegaard, L; Rasmussen, M D; Bisgård-Frantzen, H; Carlsen, S; Mikkelsen, J M

    1993-03-01

    Microbial proteases are used extensively in a large number of industrial processes and most importantly in detergent formulations facilitating the removal of proteinaceous stains. Site-directed mutagenesis has been employed in the construction of subtilisin variants with improved storage and oxidation stabilities. It is shown that in spite of significant structural homology between subtilisins subjected to protein engineering the effects of specific mutations can be quite different. Mutations that stabilize one subtilisin may destabilize another.

  13. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution

    NASA Astrophysics Data System (ADS)

    He, Yi-Ming; Ma, Bin-Guang

    2016-05-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions.

  14. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.

    PubMed

    Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven

    2015-11-01

    We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer

  15. A Novel Acidic Matrix Protein, PfN44, Stabilizes Magnesium Calcite to Inhibit the Crystallization of Aragonite*

    PubMed Central

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-01

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723

  16. Amaranth proteins foaming properties: Film rheology and foam stability - Part 2.

    PubMed

    Bolontrade, Agustín J; Scilingo, Adriana A; Añón, María C

    2016-05-01

    In this work the influence of pH and ionic strength on the stability of foams prepared with amaranth protein isolate was analyzed. The behaviour observed was related to the physico-chemical and structural changes undergone by amaranth protein as a result of those treatments. The results obtained show that foams prepared at acidic pH were more stable than the corresponding to alkaline pH. At pH 2.0 the foams presented higher times and more volumes of drainage. This behaviour is consistent with the characteristics of the interfacial film, which showed a higher viscoelasticity and a greater flexibility at acidic pH than alkaline pH value, which in turn increased by increasing the concentration of proteins in the foaming solution. It is also important to note that the presence of insoluble protein is not necessarily detrimental to the properties of the foam. Detected changes in the characteristics of the interfacial film as in the foam stability have been attributed to the increased unfolding, greater flexibility and net charge of amaranth proteins at acidic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Role of the Acidic Tail of High Mobility Group Protein B1 (HMGB1) in Protein Stability and DNA Bending

    PubMed Central

    Belgrano, Fabricio S.; de Abreu da Silva, Isabel C.; Bastos de Oliveira, Francisco M.; Fantappié, Marcelo R.; Mohana-Borges, Ronaldo

    2013-01-01

    High mobility group box (HMGB) proteins are abundant nonhistone proteins found in all eukaryotic nuclei and are capable of binding/bending DNA. The human HMGB1 is composed of two binding motifs, known as Boxes A and B, are L-shaped alpha-helix structures, followed by a random-coil acidic tail that consists of 30 Asp and Glu residues. This work aimed at evaluating the role of the acidic tail of human HMGB1 in protein stability and DNA interactions. For this purpose, we cloned, expressed and purified HMGB1 and its tailless form, HMGB1ΔC, in E. coli strain. Tryptophan fluorescence spectroscopy and circular dichroism (CD) experiments clearly showed an increase in protein stability promoted by the acidic tail under different conditions, such as the presence of the chemical denaturant guanidine hydrochloride (Gdn.HCl), high temperature and low pH. Folding intermediates found at low pH for both proteins were denatured only in the presence of chemical denaturant, thus showing a relatively high stability. The acidic tail did not alter the DNA-binding properties of the protein, although it enhanced the DNA bending capability from 76° (HMGB1ΔC) to 91° (HMGB1), as measured using the fluorescence resonance energy transfer technique. A model of DNA bending in vivo was proposed, which might help to explain the interaction of HMGB1 with DNA and other proteins, i.e., histones, and the role of that protein in chromatin remodeling. PMID:24255708

  18. MEICPS: substitution mutations to engineer intracellular protein stability.

    PubMed

    Reddy, B V; Ramesh, P; Tiwari, S

    1998-01-01

    In MEICPS, results from earlier analyses are utilized to suggest possible substitution point mutations to engineer intracellular stability using a given sequence or structure of the protein. From bvbreddy@ccmb.ap.nic.in. This program needs data from other software, PSA and SSTRUC, available from sali@tamika.rockefeller.edu and tom@cryst.bioc.cam.ac.uk, respectively. bvbreddy@ccmb.ap.nic.in

  19. CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function.

    PubMed

    Krüger, Dennis M; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger

    2013-07-01

    The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein's (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.

  20. InterPred: A pipeline to identify and model protein-protein interactions.

    PubMed

    Mirabello, Claudio; Wallner, Björn

    2017-06-01

    Protein-protein interactions (PPI) are crucial for protein function. There exist many techniques to identify PPIs experimentally, but to determine the interactions in molecular detail is still difficult and very time-consuming. The fact that the number of PPIs is vastly larger than the number of individual proteins makes it practically impossible to characterize all interactions experimentally. Computational approaches that can bridge this gap and predict PPIs and model the interactions in molecular detail are greatly needed. Here we present InterPred, a fully automated pipeline that predicts and model PPIs from sequence using structural modeling combined with massive structural comparisons and molecular docking. A key component of the method is the use of a novel random forest classifier that integrate several structural features to distinguish correct from incorrect protein-protein interaction models. We show that InterPred represents a major improvement in protein-protein interaction detection with a performance comparable or better than experimental high-throughput techniques. We also show that our full-atom protein-protein complex modeling pipeline performs better than state of the art protein docking methods on a standard benchmark set. In addition, InterPred was also one of the top predictors in the latest CAPRI37 experiment. InterPred source code can be downloaded from http://wallnerlab.org/InterPred Proteins 2017; 85:1159-1170. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Possible linkage of SP6 transcriptional activity with amelogenesis by protein stabilization.

    PubMed

    Utami, Trianna W; Miyoshi, Keiko; Hagita, Hiroko; Yanuaryska, Ryna Dwi; Horiguchi, Taigo; Noma, Takafumi

    2011-01-01

    Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis) are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis.

  2. Possible Linkage of SP6 Transcriptional Activity with Amelogenesis by Protein Stabilization

    PubMed Central

    Utami, Trianna W.; Miyoshi, Keiko; Hagita, Hiroko; Yanuaryska, Ryna Dwi; Horiguchi, Taigo; Noma, Takafumi

    2011-01-01

    Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis) are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis. PMID:22046099

  3. Complex Stability of Single Proteins Explored by Forced Unfolding Experiments

    PubMed Central

    Janovjak, Harald; Sapra, K. Tanuj; Müller, Daniel J.

    2005-01-01

    In the last decade atomic force microscopy has been used to measure the mechanical stability of single proteins. These force spectroscopy experiments have shown that many water-soluble and membrane proteins unfold via one or more intermediates. Recently, Li and co-workers found a linear correlation between the unfolding force of the native state and the intermediate in fibronectin, which they suggested indicated the presence of a molecular memory or multiple unfolding pathways (1). Here, we apply two independent methods in combination with Monte Carlo simulations to analyze the unfolding of α-helices E and D of bacteriorhodopsin (BR). We show that correlation analysis of unfolding forces is very sensitive to errors in force calibration of the instrument. In contrast, a comparison of relative forces provides a robust measure for the stability of unfolding intermediates. The proposed approach detects three energetically different states of α-helices E and D in trimeric BR. These states are not observed for monomeric BR and indicate that substantial information is hidden in forced unfolding experiments of single proteins. PMID:15792967

  4. Complex stability of single proteins explored by forced unfolding experiments.

    PubMed

    Janovjak, Harald; Sapra, K Tanuj; Müller, Daniel J

    2005-05-01

    In the last decade atomic force microscopy has been used to measure the mechanical stability of single proteins. These force spectroscopy experiments have shown that many water-soluble and membrane proteins unfold via one or more intermediates. Recently, Li and co-workers found a linear correlation between the unfolding force of the native state and the intermediate in fibronectin, which they suggested indicated the presence of a molecular memory or multiple unfolding pathways (1). Here, we apply two independent methods in combination with Monte Carlo simulations to analyze the unfolding of alpha-helices E and D of bacteriorhodopsin (BR). We show that correlation analysis of unfolding forces is very sensitive to errors in force calibration of the instrument. In contrast, a comparison of relative forces provides a robust measure for the stability of unfolding intermediates. The proposed approach detects three energetically different states of alpha-helices E and D in trimeric BR. These states are not observed for monomeric BR and indicate that substantial information is hidden in forced unfolding experiments of single proteins.

  5. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection.

    PubMed

    Rodriguez, Maria Cecilia; Conti, Gabriela; Zavallo, Diego; Manacorda, Carlos Augusto; Asurmendi, Sebastian

    2014-08-03

    Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses.

  6. Abundance and Temperature Dependency of Protein-Protein Interaction Revealed by Interface Structure Analysis and Stability Evolution

    PubMed Central

    He, Yi-Ming; Ma, Bin-Guang

    2016-01-01

    Protein complexes are major forms of protein-protein interactions and implement essential biological functions. The subunit interface in a protein complex is related to its thermostability. Though the roles of interface properties in thermal adaptation have been investigated for protein complexes, the relationship between the interface size and the expression level of the subunits remains unknown. In the present work, we studied this relationship and found a positive correlation in thermophiles rather than mesophiles. Moreover, we found that the protein interaction strength in complexes is not only temperature-dependent but also abundance-dependent. The underlying mechanism for the observed correlation was explored by simulating the evolution of protein interface stability, which highlights the avoidance of misinteraction. Our findings make more complete the picture of the mechanisms for protein complex thermal adaptation and provide new insights into the principles of protein-protein interactions. PMID:27220911

  7. The effect of denaturant on protein stability: a Monte Carlo lattice simulation

    NASA Astrophysics Data System (ADS)

    Choi, Ho Sup; Huh, June; Jo, Won Ho

    2003-03-01

    Denaturants are the reagents that decrease protein stability by interacting with both nonpolar and polar surfaces of protein when added to the aqueous solvent. However, the physical nature of these interactions has not been clearly understood. It is not easy to elucidate the nature of denaturant theoretically or experimentally. Even in computer simulation, the denaturant atoms are unable to be dealt explicitly due to computationally enormous costs. We have used a lattice model of protein and denaturant. By varying concentration of denaturant and interaction energy between protein and denaturant, we have measured the change of stability of the protein. This simple model reflects the experimental observation that the free energy of unfolding is a linear function of denaturant concentration in the transition range. We have also performed a simulation under isotropic perturbation. In this case, denaturant molecules are not included and a biasing potential is introduced in order to increase the radius of gyration of protein, which incorporates the effect of denaturant implicitly. The calculated free energy landscape and conformational ensembles sampled under this condition is very close to those of simulation using denaturant molecules interacting with protein. We have applied this simple approach for simulating the effect of denaturant to real proteins.

  8. An ensemble framework for identifying essential proteins.

    PubMed

    Zhang, Xue; Xiao, Wangxin; Acencio, Marcio Luis; Lemke, Ney; Wang, Xujing

    2016-08-25

    Many centrality measures have been proposed to mine and characterize the correlations between network topological properties and protein essentiality. However, most of them show limited prediction accuracy, and the number of common predicted essential proteins by different methods is very small. In this paper, an ensemble framework is proposed which integrates gene expression data and protein-protein interaction networks (PINs). It aims to improve the prediction accuracy of basic centrality measures. The idea behind this ensemble framework is that different protein-protein interactions (PPIs) may show different contributions to protein essentiality. Five standard centrality measures (degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and subgraph centrality) are integrated into the ensemble framework respectively. We evaluated the performance of the proposed ensemble framework using yeast PINs and gene expression data. The results show that it can considerably improve the prediction accuracy of the five centrality measures individually. It can also remarkably increase the number of common predicted essential proteins among those predicted by each centrality measure individually and enable each centrality measure to find more low-degree essential proteins. This paper demonstrates that it is valuable to differentiate the contributions of different PPIs for identifying essential proteins based on network topological characteristics. The proposed ensemble framework is a successful paradigm to this end.

  9. Characteristics of sugar surfactants in stabilizing proteins during freeze-thawing and freeze-drying.

    PubMed

    Imamura, Koreyoshi; Murai, Katsuyuki; Korehisa, Tamayo; Shimizu, Noriyuki; Yamahira, Ryo; Matsuura, Tsutashi; Tada, Hiroko; Imanaka, Hiroyuki; Ishida, Naoyuki; Nakanishi, Kazuhiro

    2014-06-01

    Sugar surfactants with different alkyl chain lengths and sugar head groups were compared for their protein-stabilizing effect during freeze-thawing and freeze-drying. Six enzymes, different in terms of tolerance against inactivation because of freeze-thawing and freeze-drying, were used as model proteins. The enzyme activities that remained after freeze-thawing and freeze-drying in the presence of a sugar surfactant were measured for different types and concentrations of sugar surfactants. Sugar surfactants stabilized all of the tested enzymes both during freeze-thawing and freeze-drying, and a one or two order higher amount of added sugar surfactant was required for achieving protein stabilization during freeze-drying than for the cryoprotection. The comprehensive comparison showed that the C10-C12 esters of sucrose or trehalose were the most effective through the freeze-drying process: the remaining enzyme activities after freeze-thawing and freeze-drying increased at the sugar ester concentrations of 1-10 and 10-100 μM, respectively, and increased to a greater extent than for the other surfactants at higher concentrations. Results also indicate that, when a decent amount of sugar was also added, the protein-stabilizing effect of a small amount of sugar ester through the freeze-drying process could be enhanced. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Beyond Anchoring: the Expanding Role of the Hendra Virus Fusion Protein Transmembrane Domain in Protein Folding, Stability, and Function

    PubMed Central

    Smith, Everett Clinton; Culler, Megan R.; Hellman, Lance M.; Fried, Michael G.; Creamer, Trevor P.

    2012-01-01

    While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion. PMID:22238302

  11. Current Protocols in Protein Science

    PubMed Central

    Huynh, Kathy

    2015-01-01

    The purification of recombinant proteins for biochemical assays and structural studies is time-consuming and presents inherent difficulties that depend on the optimization of protein stability. The use of dyes to monitor thermal denaturation of proteins with sensitive fluorescence detection enables the rapid and inexpensive determination of protein stability using real-time PCR instruments. By screening a wide range of solution conditions and additives in 96-well format, the thermal shift assay easily identifies conditions that significantly enhance the stability of recombinant proteins. The same approach can be used as a low cost, initial screen to discover new protein:ligand interactions by capitalizing on increases in protein stability that typically occur upon ligand binding. This unit presents a methodological workflow for the small-scale, high-throughout thermal denaturation of recombinant proteins in the presence of SYPRO Orange dye. PMID:25640896

  12. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality.

    PubMed

    Dehouck, Yves; Kwasigroch, Jean Marc; Gilis, Dimitri; Rooman, Marianne

    2011-05-13

    identifying very rapidly a list of possibly relevant mutations with the desired stability properties, on which subsequent experimental studies can be focused. It can also be used to detect sequence regions corresponding to structural weaknesses, which could be functionally important or structurally delicate regions, with obvious applications in rational protein design.

  13. Confinement in nanopores can destabilize α-helix folding proteins and stabilize the β structures

    NASA Astrophysics Data System (ADS)

    Javidpour, Leili; Sahimi, Muhammad

    2011-09-01

    Protein folding in confined media has attracted wide attention over the past decade due to its importance in both in vivo and in vitro applications. Currently, it is generally believed that protein stability increases by decreasing the size of the confining medium, if its interaction with the confining walls is repulsive, and that the maximum folding temperature in confinement occurs for a pore size only slightly larger than the smallest dimension of the folded state of a protein. Protein stability in pore sizes, very close to the size of the folded state, has not however received the attention that it deserves. Using detailed, 0.3-ms-long molecular dynamics simulations, we show that proteins with an α-helix native state can have an optimal folding temperature in pore sizes that do not affect the folded-state structure. In contradiction to the current theoretical explanations, we find that the maximum folding temperature occurs in larger pores for smaller α-helices. In highly confined pores the free energy surface becomes rough, and a new barrier for protein folding may appear close to the unfolded state. In addition, in small nanopores the protein states that contain the β structures are entropically stabilized, in contrast to the bulk. As a consequence, folding rates decrease notably and the free energy surface becomes rougher. The results shed light on many recent experimental observations that cannot be explained by the current theories, and demonstrate the importance of entropic effects on proteins' misfolded states in highly confined environments. They also support the concept of passive effect of chaperonin GroEL on protein folding by preventing it from aggregation in crowded environment of biological cells, and provide deeper clues to the α → β conformational transition, believed to contribute to Alzheimer's and Parkinson's diseases. The strategy of protein and enzyme stabilization in confined media may also have to be revisited in the case of tight

  14. Discovery of a Small Molecule Probe That Post-Translationally Stabilizes the Survival Motor Neuron Protein for the Treatment of Spinal Muscular Atrophy.

    PubMed

    Rietz, Anne; Li, Hongxia; Quist, Kevin M; Cherry, Jonathan J; Lorson, Christian L; Burnett, Barrington G; Kern, Nicholas L; Calder, Alyssa N; Fritsche, Melanie; Lusic, Hrvoje; Boaler, Patrick J; Choi, Sungwoon; Xing, Xuechao; Glicksman, Marcie A; Cuny, Gregory D; Androphy, Elliot J; Hodgetts, Kevin J

    2017-06-08

    Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.

  15. Benchmark data for identifying multi-functional types of membrane proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-09-01

    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. In this article, we provide data that are used for training and testing Mem-ADSVM (Wan et al., 2016. "Mem-ADSVM: a two-layer multi-label predictor for identifying multi-functional types of membrane proteins" [1]), a two-layer multi-label predictor for predicting multi-functional types of membrane proteins.

  16. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    PubMed

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  17. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression.

    PubMed

    Lamitina, Todd; Huang, Chunyi George; Strange, Kevin

    2006-08-08

    The detection, stabilization, and repair of stress-induced damage are essential requirements for cellular life. All cells respond to osmotic stress-induced water loss with increased expression of genes that mediate accumulation of organic osmolytes, solutes that function as chemical chaperones and restore osmotic homeostasis. The signals and signaling mechanisms that regulate osmoprotective gene expression in animal cells are poorly understood. Here, we show that gpdh-1 and gpdh-2, genes that mediate the accumulation of the organic osmolyte glycerol, are essential for survival of the nematode Caenorhabditis elegans during osmotic stress. Expression of GFP driven by the gpdh-1 promoter (P(gpdh-1)::GFP) is detected only during hypertonic stress but is not induced by other stressors. Using P(gpdh-1)::GFP expression as a phenotype, we screened approximately 16,000 genes by RNAi feeding and identified 122 that cause constitutive activation of gpdh-1 expression and glycerol accumulation. Many of these genes function to regulate protein translation and cotranslational protein folding and to target and degrade denatured proteins, suggesting that the accumulation of misfolded proteins functions as a signal to activate osmoprotective gene expression and organic osmolyte accumulation in animal cells. Consistent with this hypothesis, 73% of these protein-homeostasis genes have been shown to slow age-dependent protein aggregation in C. elegans. Because diverse environmental stressors and numerous disease states result in protein misfolding, mechanisms must exist that discriminate between osmotically induced and other forms of stress-induced protein damage. Our findings provide a foundation for understanding how these damage-selectivity mechanisms function.

  18. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression

    PubMed Central

    Lamitina, Todd; Huang, Chunyi George; Strange, Kevin

    2006-01-01

    The detection, stabilization, and repair of stress-induced damage are essential requirements for cellular life. All cells respond to osmotic stress-induced water loss with increased expression of genes that mediate accumulation of organic osmolytes, solutes that function as chemical chaperones and restore osmotic homeostasis. The signals and signaling mechanisms that regulate osmoprotective gene expression in animal cells are poorly understood. Here, we show that gpdh-1 and gpdh-2, genes that mediate the accumulation of the organic osmolyte glycerol, are essential for survival of the nematode Caenorhabditis elegans during osmotic stress. Expression of GFP driven by the gpdh-1 promoter (Pgpdh-1::GFP) is detected only during hypertonic stress but is not induced by other stressors. Using Pgpdh-1::GFP expression as a phenotype, we screened ≈16,000 genes by RNAi feeding and identified 122 that cause constitutive activation of gpdh-1 expression and glycerol accumulation. Many of these genes function to regulate protein translation and cotranslational protein folding and to target and degrade denatured proteins, suggesting that the accumulation of misfolded proteins functions as a signal to activate osmoprotective gene expression and organic osmolyte accumulation in animal cells. Consistent with this hypothesis, 73% of these protein-homeostasis genes have been shown to slow age-dependent protein aggregation in C. elegans. Because diverse environmental stressors and numerous disease states result in protein misfolding, mechanisms must exist that discriminate between osmotically induced and other forms of stress-induced protein damage. Our findings provide a foundation for understanding how these damage-selectivity mechanisms function. PMID:16880390

  19. Functional Properties of a High Protein Beverage Stabilized with Oat-β-Glucan.

    PubMed

    Vasquez-Orejarena, Eva; Simons, Christopher T; Litchfield, John H; Alvarez, Valente B

    2018-05-01

    This study evaluated the effect of oat flour and milk protein on the functional properties and sensory acceptability of shelf stable high protein dairy beverages containing at least 0.75 g of oat-β-glucan per serving size. Formulations adjusted to levels of 1.50% to 2.30% oat flour and 2.50% to 4.00% milk protein isolate (MPI) were thermal processed in a rotary retort. The finished product exhibited good suspension stability (>80%). The increase of oat and MPI contents lead to nectar-like beverages (51 to 100 mPas). However, oat flour was the component showing the highest effect on the viscosity coefficient values of the beverages. Sensory evaluation indicated that formulations with less than 1.9% oat flour and 2.5% MPI (thin liquid, <50 mPas) were the most accepted. Mouthfeel (perceived thickness), sweetness and aftertaste had the most influence on overall liking of the beverages. Overall, this study comprises the development of a functional food product. Supplementation of beverages with fiber from oats is an innovative approach to stabilize high protein beverages. Ready to drink protein beverage formulations use gums to stabilize the product and provide a desirable mouthfeel. The levels of oat-β-glucan used in the beverage increased the thickness and meet the requirement of the FDA approved health claim for reduction of the cardiovascular disease risk (21 CFR 101.81). © 2018 Institute of Food Technologists®.

  20. In vivo architectonic stability of fully de novo designed protein-only nanoparticles.

    PubMed

    Céspedes, María Virtudes; Unzueta, Ugutz; Tatkiewicz, Witold; Sánchez-Chardi, Alejandro; Conchillo-Solé, Oscar; Álamo, Patricia; Xu, Zhikun; Casanova, Isolda; Corchero, José Luis; Pesarrodona, Mireia; Cedano, Juan; Daura, Xavier; Ratera, Imma; Veciana, Jaume; Ferrer-Miralles, Neus; Vazquez, Esther; Villaverde, Antonio; Mangues, Ramón

    2014-05-27

    The fully de novo design of protein building blocks for self-assembling as functional nanoparticles is a challenging task in emerging nanomedicines, which urgently demand novel, versatile, and biologically safe vehicles for imaging, drug delivery, and gene therapy. While the use of viruses and virus-like particles is limited by severe constraints, the generation of protein-only nanocarriers is progressively reachable by the engineering of protein-protein interactions, resulting in self-assembling functional building blocks. In particular, end-terminal cationic peptides drive the organization of structurally diverse protein species as regular nanosized oligomers, offering promise in the rational engineering of protein self-assembling. However, the in vivo stability of these constructs, being a critical issue for their medical applicability, needs to be assessed. We have explored here if the cross-molecular contacts between protein monomers, generated by end-terminal cationic peptides and oligohistidine tags, are stable enough for the resulting nanoparticles to overcome biological barriers in assembled form. The analyses of renal clearance and biodistribution of several tagged modular proteins reveal long-term architectonic stability, allowing systemic circulation and tissue targeting in form of nanoparticulate material. This observation fully supports the value of the engineered of protein building blocks addressed to the biofabrication of smart, robust, and multifunctional nanoparticles with medical applicability that mimic structure and functional capabilities of viral capsids.

  1. An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins.

    PubMed

    Han, Seong-Gu; Na, Jung-Hyun; Lee, Won-Kyu; Park, Dongkook; Oh, Jihye; Yoon, Sung-Ho; Lee, Cheng-Kang; Sung, Moon-Hee; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2014-12-01

    Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4-5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA ) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins. © 2014 The Protein Society.

  2. Salt Potentiates Methylamine Counteraction System to Offset the Deleterious Effects of Urea on Protein Stability and Function

    PubMed Central

    Singh, Laishram R.; Warepam, Marina; Ahmad, Faizan; Dar, Tanveer Ali

    2015-01-01

    Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea’s harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea’s effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction. PMID:25793733

  3. Salt potentiates methylamine counteraction system to offset the deleterious effects of urea on protein stability and function.

    PubMed

    Rahman, Safikur; Rehman, Md Tabish; Singh, Laishram R; Warepam, Marina; Ahmad, Faizan; Dar, Tanveer Ali

    2015-01-01

    Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea's harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea's effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction.

  4. Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions.

    PubMed

    Fernández-Ávila, C; Escriu, R; Trujillo, A J

    2015-09-01

    The effect of Ultra-High Pressure Homogenization (UHPH, 100-300MPa) on the physicochemical properties of oil-in-water emulsions prepared with 4.0% (w/v) of soy protein isolate (SPI) and soybean oil (10 and 20%, v/v) was studied and compared to emulsions treated by conventional homogenization (CH, 15MPa). CH emulsions were prepared with non-heated and heated (95°C for 15min) SPI dispersions. Emulsions were characterized by particle size determination with laser diffraction, rheological properties using a rotational rheometer by applying measurements of flow curve and by transmission electron microscopy. The variation on particle size and creaming was assessed by Turbiscan® analysis, and visual observation of the emulsions was also carried out. UHPH emulsions showed much smaller d 3.2 values and greater physical stability than CH emulsions. The thermal treatment of SPI prior CH process did not improve physical stability properties. In addition, emulsions containing 20% of oil exhibited greater physical stability compared to emulsions containing 10% of oil. Particularly, UHPH emulsions treated at 100 and 200MPa with 20% of oil were the most stable due to low particle size values (d 3.2 and Span), greater viscosity and partial protein denaturation. These results address the physical stability improvement of protein isolate-stabilized emulsions by using the emerging UHPH technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Non-parametric Cutout Index for Robust Evaluation of Identified Proteins*

    PubMed Central

    Serang, Oliver; Paulo, Joao; Steen, Hanno; Steen, Judith A.

    2013-01-01

    This paper proposes a novel, automated method for evaluating sets of proteins identified using mass spectrometry. The remaining peptide-spectrum match score distributions of protein sets are compared to an empirical absent peptide-spectrum match score distribution, and a Bayesian non-parametric method reminiscent of the Dirichlet process is presented to accurately perform this comparison. Thus, for a given protein set, the process computes the likelihood that the proteins identified are correctly identified. First, the method is used to evaluate protein sets chosen using different protein-level false discovery rate (FDR) thresholds, assigning each protein set a likelihood. The protein set assigned the highest likelihood is used to choose a non-arbitrary protein-level FDR threshold. Because the method can be used to evaluate any protein identification strategy (and is not limited to mere comparisons of different FDR thresholds), we subsequently use the method to compare and evaluate multiple simple methods for merging peptide evidence over replicate experiments. The general statistical approach can be applied to other types of data (e.g. RNA sequencing) and generalizes to multivariate problems. PMID:23292186

  6. Functional properties of protein isolates extracted from stabilized rice bran by microwave, dry heat, and parboiling.

    PubMed

    Khan, Saima Hafeez; Butt, Masood Sadiq; Sharif, Mian Kamran; Sameen, Ayesha; Mumtaz, Semee; Sultan, Muhammad Tauseef

    2011-03-23

    Protein isolates extracted from differently stabilized rice bran were analyzed to work out the food use potential. Bulk density remained higher for isolates obtained from heat stabilized bran, the treatments were found to have positive impact on the oil absorption properties, while the water absorption was slightly impaired owing to some possible configurational changes. Surface hydrophobicity and emulsion properties were improved with bran stabilization. Isolates exhibited better foaming properties owing to the flexible nature of protein molecules, with less intensive disulfide bonding, that were slightly affected by the stabilization treatment. Nitrogen solubility index followed a curved pattern with the least value near isoelectric point that showed an increasing trend toward basic pH, and parboiled protein isolates exhibited better gelling properties among the isolates.

  7. Unfolding stabilities of two structurally similar proteins as probed by temperature-induced and force-induced molecular dynamics simulations.

    PubMed

    Gorai, Biswajit; Prabhavadhni, Arasu; Sivaraman, Thirunavukkarasu

    2015-09-01

    Unfolding stabilities of two homologous proteins, cardiotoxin III and short-neurotoxin (SNTX) belonging to three-finger toxin (TFT) superfamily, have been probed by means of molecular dynamics (MD) simulations. Combined analysis of data obtained from steered MD and all-atom MD simulations at various temperatures in near physiological conditions on the proteins suggested that overall structural stabilities of the two proteins were different from each other and the MD results are consistent with experimental data of the proteins reported in the literature. Rationalization for the differential structural stabilities of the structurally similar proteins has been chiefly attributed to the differences in the structural contacts between C- and N-termini regions in their three-dimensional structures, and the findings endorse the 'CN network' hypothesis proposed to qualitatively analyse the thermodynamic stabilities of proteins belonging to TFT superfamily of snake venoms. Moreover, the 'CN network' hypothesis has been revisited and the present study suggested that 'CN network' should be accounted in terms of 'structural contacts' and 'structural strengths' in order to precisely describe order of structural stabilities of TFTs.

  8. Identifying protein kinase target preferences using mass spectrometry

    PubMed Central

    Douglass, Jacqueline; Gunaratne, Ruwan; Bradford, Davis; Saeed, Fahad; Hoffert, Jason D.; Steinbach, Peter J.; Pisitkun, Trairak

    2012-01-01

    A general question in molecular physiology is how to identify candidate protein kinases corresponding to a known or hypothetical phosphorylation site in a protein of interest. It is generally recognized that the amino acid sequence surrounding the phosphorylation site provides information that is relevant to identification of the cognate protein kinase. Here, we present a mass spectrometry-based method for profiling the target specificity of a given protein kinase as well as a computational tool for the calculation and visualization of the target preferences. The mass spectrometry-based method identifies sites phosphorylated in response to in vitro incubation of protein mixtures with active recombinant protein kinases followed by standard phosphoproteomic methodologies. The computational tool, called “PhosphoLogo,” uses an information-theoretic algorithm to calculate position-specific amino acid preferences and anti-preferences from the mass-spectrometry data (http://helixweb.nih.gov/PhosphoLogo/). The method was tested using protein kinase A (catalytic subunit α), revealing the well-known preference for basic amino acids in positions −2 and −3 relative to the phosphorylated amino acid. It also provides evidence for a preference for amino acids with a branched aliphatic side chain in position +1, a finding compatible with known crystal structures of protein kinase A. The method was also employed to profile target preferences and anti-preferences for 15 additional protein kinases with potential roles in regulation of epithelial transport: CK2, p38, AKT1, SGK1, PKCδ, CaMK2δ, DAPK1, MAPKAPK2, PKD3, PIM1, OSR1, STK39/SPAK, GSK3β, Wnk1, and Wnk4. PMID:22723110

  9. Regulation of diacylglycerol acyltransferase 2 protein stability by gp78-associated endoplasmic-reticulum-associated degradation.

    PubMed

    Choi, Kwangman; Kim, Hyeongki; Kang, Hyunju; Lee, So-Young; Lee, Sang Jun; Back, Sung Hoon; Lee, Seo Hyun; Kim, M Sun; Lee, Jeong Eun; Park, Ju Young; Kim, Jiye; Kim, Sunhong; Song, Jae-Hyung; Choi, Yura; Lee, Suui; Lee, Hyun-Jun; Kim, Jong Heon; Cho, Sungchan

    2014-07-01

    Triacylglycerol (TG) is the major form of stored energy in eukaryotic organisms and is synthesized by diacylglycerol acyltransferase (DGAT) in the endoplasmic reticulum (ER). DGAT2, one of the two DGAT enzymes, is barely detectable in cells, even though its mRNA transcripts are maintained at considerable levels. However, little is known about how DGAT2 expression is altered by protein stability. DGAT2 was highly unstable in cells and was rapidly degraded by proteasomes in an ubiquitin-dependent manner. Deletion mutation analysis identified transmembrane domain 1 (TMD1) as a protein degradation signal. TMD1 is also important for ER localization of DGAT2. Moreover, DGAT2 interacted with p97/VCP, a crucial component of the ER-associated degradation (ERAD) pathway, and polyubiquitinated DGAT2 accumulated following treatment with an ERAD inhibitor. Furthermore, gp78, an E3 ligase involved in ERAD, regulates the degradation of DGAT2 through direct interactions and ubiquitination. Consequently, the stabilization of DGAT2 increased the number of lipid droplets in hepatic cells. Therefore, DGAT2 is regulated by gp78-associated ERAD at the post-translational level. © 2014 FEBS.

  10. ORF phage display to identify cellular proteins with different functions.

    PubMed

    Li, Wei

    2012-09-01

    Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan

    PubMed Central

    Kaplan, Joshua M.

    2008-01-01

    Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling. PMID:19043554

  12. Identifying protein complexes based on brainstorming strategy.

    PubMed

    Shen, Xianjun; Zhou, Jin; Yi, Li; Hu, Xiaohua; He, Tingting; Yang, Jincai

    2016-11-01

    Protein complexes comprising of interacting proteins in protein-protein interaction network (PPI network) play a central role in driving biological processes within cells. Recently, more and more swarm intelligence based algorithms to detect protein complexes have been emerging, which have become the research hotspot in proteomics field. In this paper, we propose a novel algorithm for identifying protein complexes based on brainstorming strategy (IPC-BSS), which is integrated into the main idea of swarm intelligence optimization and the improved K-means algorithm. Distance between the nodes in PPI network is defined by combining the network topology and gene ontology (GO) information. Inspired by human brainstorming process, IPC-BSS algorithm firstly selects the clustering center nodes, and then they are separately consolidated with the other nodes with short distance to form initial clusters. Finally, we put forward two ways of updating the initial clusters to search optimal results. Experimental results show that our IPC-BSS algorithm outperforms the other classic algorithms on yeast and human PPI networks, and it obtains many predicted protein complexes with biological significance. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases.

    PubMed

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-08-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. Copyright © 2012 The Protein Society.

  14. LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson's disease through stabilizing PINK1 protein.

    PubMed

    Yan, Wang; Chen, Zhao-Ying; Chen, Jia-Qi; Chen, Hui-Min

    2018-02-19

    Long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) was found to be closely related to the pathological changes in brain and nervous system. However, the role of NEAT1 and its potential mechanism in Parkinson's disease (PD) largely remain uncharacterized. In this study, PD mouse model was established by intraperitoneal injection of MPTP. The numbers of TH + neurons, NEAT1 expression and the level of PINK1, LC3-II, LC3-I protein were assessed in PD mice. SH-SY5Y cells were treated with MPP + as PD cell model. RNA pull-down assay was used to identify the interaction between NEAT1 and PINK1 in vitro. The endogenous expression of NEAT1 was modified by lentiviral vector carrying interference sequence for NEAT1 in vivo. The numbers of TH + neurons significantly decreased in PD mice compared with the control. The expressions of NEAT1, PINK1 protein and LC3-II/LC3-I level were increased by MPTP in vitro and in vivo. Moreover, NEAT1 positively regulated the protein level of PINK1 through inhibition of PINK1 protein degradation. And NEAT1 mediated the effects of MPP + on SH-SY5Y cells through stabilization of PINK1 protein. The results of in vivo experiments revealed that NEAT1 knockdown could effectively suppress MPTP-induced autophagy in vivo that alleviated dopaminergic neuronal injury. LncRNA NEAT1 promoted the MPTP-induced autophagy in PD through stabilization of PINK1 protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Analyzing bean extracts using time-dependent SDS trapping to quantify the kinetic stability of phaseolin proteins.

    PubMed

    Thibeault, Jane; Church, Jennifer; Ortiz-Perez, Brian; Addo, Samuel; Hill, Shakeema; Khalil, Areeg; Young, Malaney; Xia, Ke; Colón, Wilfredo

    2017-09-30

    In common beans and lima bean, the storage protein phaseolin is difficult to degrade and SDS-resistant, a sign of kinetic stability. Kinetically stable proteins (KSPs) are characterized by having a high-energy barrier between the native and denatured states that results in very slow unfolding. Such proteins are resistant to proteolytic degradation and detergents, such as SDS. Here the method SDS-Trapping of Proteins (S-TraP) is applied directly on bean extracts to quantify the kinetic stability of phaseolin in lima bean and several common beans, including black bean, navy bean, and small red bean. The bean extracts were incubated in SDS at various temperatures (60-75 °C) for different time periods, followed by SDS-PAGE analysis at room temperature, and subsequent band quantification to determine the kinetics of phaseolin unfolding. Eyring plot analysis showed that the phaseolin from each bean has high kinetic stability, with an SDS-trapping (i.e. unfolding) half-life ranging from about 20-100 years at 24 °C and 2-7 years at 37 °C. The remarkably high kinetic stability of these phaseolin proteins is consistent with the low digestibility of common beans and lima bean, as well as their relatively high germination temperatures. From a practical perspective, this work exemplifies that S-TraP is a useful and cost-effective method for quantifying the kinetic stability of proteins in biological extracts or lysates. Depending on the protein to be studied and its abundance, S-TraP may be performed directly on the extract without need for protein purification. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Substrate uptake and protein stability relationship in mammalian histidine decarboxylase.

    PubMed

    Pino-Angeles, A; Morreale, A; Negri, A; Sánchez-Jiménez, F; Moya-García, A A

    2010-01-01

    There is some evidence linking the substrate entrance in the active site of mammalian histidine decarboxylase and an increased stability against proteolytic degradation. In this work, we study the basis of this relationship by means of protein structure network analysis and molecular dynamics simulations. We find that the substrate binding to the active site influences the conformation of a flexible region sensible to proteolytic degradation and observe how formation of the Michaelis-Menten complex increases stability in the conformation of this region. (c) 2009 Wiley-Liss, Inc.

  17. Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks

    PubMed Central

    Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi

    2014-01-01

    Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481

  18. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats

    PubMed Central

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs. PMID:21468355

  19. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats.

    PubMed

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs.

  20. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    DOE PAGES

    Venkatraman, S.; Doktycz, M. J.; Qi, H.; ...

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less

  1. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    PubMed

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks.

    PubMed

    Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia

    2012-06-21

    Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.

  3. Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions.

    PubMed

    Sutariya, Suresh; Patel, Hasmukh

    2017-05-15

    Whey protein isolate (WPI) solutions (12.8%w/w protein) were treated with varying concentrations of H 2 O 2 in the range of 0-0.144 H 2 O 2 to protein ratios (HTPR) by the addition of the required quantity of H 2 O 2 and deionized water. The samples were analyzed for heat stability, rheological properties, denaturation level of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA). The samples treated with H 2 O 2 concentration >0.072 (HTPR) showed significant improvement in the heat stability, and decreased whey protein denaturation and aggregation. The WPI solution treated with H 2 O 2 (>0.072 HTPR) remained in the liquid state after heat treatment at 120°C, whereas the control samples formed gel upon heat treatment. Detailed analysis of these samples suggested that the improvement in the heat stability of H 2 O 2 treated WPI solution was attributed to the significant reduction in the sulfhydryl-disulfide interchange reaction during denaturation of β-LG and α-LA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.

    2015-01-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  5. p21 stability: linking chaperones to a cell cycle checkpoint.

    PubMed

    Liu, Geng; Lozano, Guillermina

    2005-02-01

    Progression through the cell cycle is regulated by numerous proteins, one of which is the cyclin-dependent kinase inhibitor, p21. A new study identifies a novel protein complex that stabilizes p21. The stability of this complex is critical in effecting the p53-mediated cell cycle checkpoint.

  6. Identifying cooperative transcriptional regulations using protein–protein interactions

    PubMed Central

    Nagamine, Nobuyoshi; Kawada, Yuji; Sakakibara, Yasubumi

    2005-01-01

    Cooperative transcriptional activations among multiple transcription factors (TFs) are important to understand the mechanisms of complex transcriptional regulations in eukaryotes. Previous studies have attempted to find cooperative TFs based on gene expression data with gene expression profiles as a measure of similarity of gene regulations. In this paper, we use protein–protein interaction data to infer synergistic binding of cooperative TFs. Our fundamental idea is based on the assumption that genes contributing to a similar biological process are regulated under the same control mechanism. First, the protein–protein interaction networks are used to calculate the similarity of biological processes among genes. Second, we integrate this similarity and the chromatin immuno-precipitation data to identify cooperative TFs. Our computational experiments in yeast show that predictions made by our method have successfully identified eight pairs of cooperative TFs that have literature evidences but could not be identified by the previous method. Further, 12 new possible pairs have been inferred and we have examined the biological relevances for them. However, since a typical problem using protein–protein interaction data is that many false-positive data are contained, we propose a method combining various biological data to increase the prediction accuracy. PMID:16126847

  7. An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins

    PubMed Central

    Han, Seong-Gu; Na, Jung-Hyun; Lee, Won-Kyu; Park, Dongkook; Oh, Jihye; Yoon, Sung-Ho; Lee, Cheng-Kang; Sung, Moon-Hee; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2014-01-01

    Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4–5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins. PMID:25283538

  8. Exploiting genomic data to identify proteins involved in abalone reproduction.

    PubMed

    Mendoza-Porras, Omar; Botwright, Natasha A; McWilliam, Sean M; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L

    2014-08-28

    Aside from their critical role in reproduction, abalone gonads serve as an indicator of sexual maturity and energy balance, two key considerations for effective abalone culture. Temperate abalone farmers face issues with tank restocking with highly marketable abalone owing to inefficient spawning induction methods. The identification of key proteins in sexually mature abalone will serve as the foundation for a greater understanding of reproductive biology. Addressing this knowledge gap is the first step towards improving abalone aquaculture methods. Proteomic profiling of female and male gonads of greenlip abalone, Haliotis laevigata, was undertaken using liquid chromatography-mass spectrometry. Owing to the incomplete nature of abalone protein databases, in addition to searching against two publicly available databases, a custom database comprising genomic data was used. Overall, 162 and 110 proteins were identified in females and males respectively with 40 proteins common to both sexes. For proteins involved in sexual maturation, sperm and egg structure, motility, acrosomal reaction and fertilization, 23 were identified only in females, 18 only in males and 6 were common. Gene ontology analysis revealed clear differences between the female and male protein profiles reflecting a higher rate of protein synthesis in the ovary and higher metabolic activity in the testis. A comprehensive mass spectrometry-based analysis was performed to profile the abalone gonad proteome providing the foundation for future studies of reproduction in abalone. Key proteins involved in both reproduction and energy balance were identified. Genomic resources were utilised to build a database of molluscan proteins yielding >60% more protein identifications than in a standard workflow employing public protein databases. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. KRAS Protein Stability Is Regulated through SMURF2: UBCH5 Complex-Mediated β-TrCP1 Degradation12

    PubMed Central

    Shukla, Shirish; SankarAllam, Uday; Ahsan, Aarif; Chen, Guoan; Krishnamurthy, Pranathi Meda; Marsh, Katherine; Rumschlag, Matthew; Shankar, Sunita; Whitehead, Christopher; Schipper, Matthew; Basrur, Venkatesha; Southworth, Daniel R; Chinnaiyan, Arul M; Rehemtulla, Alnawaz; Beer, David G; Lawrence, Theodore S; Nyati, Mukesh K; Ray, Dipankar

    2014-01-01

    Attempts to target mutant KRAS have been unsuccessful. Here, we report the identification of Smad ubiquitination regulatory factor 2 (SMURF2) and UBCH5 as a critical E3:E2 complex maintaining KRAS protein stability. Loss of SMURF2 either by small interfering RNA/short hairpin RNA (siRNA/shRNA) or by overexpression of a catalytically inactive mutant causes KRAS degradation, whereas overexpression of wild-type SMURF2 enhances KRAS stability. Importantly, mutant KRAS is more susceptible to SMURF2 loss where protein half-life decreases from >12 hours in control siRNA-treated cells to <3 hours on Smurf2 silencing, whereas only marginal differences were noted for wild-type protein. This loss of mutant KRAS could be rescued by overexpressing a siRNA-resistant wild-type SMURF2. Our data further show that SMURF2 monoubiquitinates UBCH5 at lysine 144 to form an active complex required for efficient degradation of a RAS-family E3, β-transducing repeat containing protein 1 (β-TrCP1). Conversely, β-TrCP1 is accumulated on SMURF2 loss, leading to increased KRAS degradation. Therefore, as expected, β-TrCP1 knockdown following Smurf2 siRNA treatment rescues mutant KRAS loss. Further, we identify two conserved proline (P) residues in UBCH5 critical for SMURF2 interaction; mutant of either of these P to alanine also destabilizes KRAS. As a proof of principle, we demonstrate that Smurf2 silencing reduces the clonogenic survival in vitro and prolongs tumor latency in vivo in cancer cells including mutant KRAS-driven tumors. Taken together, we show that SMURF2:UBCH5 complex is critical in maintaining KRAS protein stability and propose that targeting such complex may be a unique strategy to degrade mutant KRAS to kill cancer cells. PMID:24709419

  10. Universal distribution of mutational effects on protein stability, uncoupling of protein robustness from sequence evolution and distinct evolutionary modes of prokaryotic and eukaryotic proteins

    NASA Astrophysics Data System (ADS)

    Faure, Guilhem; Koonin, Eugene V.

    2015-05-01

    Robustness to destabilizing effects of mutations is thought of as a key factor of protein evolution. The connections between two measures of robustness, the relative core size and the computationally estimated effect of mutations on protein stability (ΔΔG), protein abundance and the selection pressure on protein-coding genes (dN/dS) were analyzed for the organisms with a large number of available protein structures including four eukaryotes, two bacteria and one archaeon. The distribution of the effects of mutations in the core on protein stability is universal and indistinguishable in eukaryotes and bacteria, centered at slightly destabilizing amino acid replacements, and with a heavy tail of more strongly destabilizing replacements. The distribution of mutational effects in the hyperthermophilic archaeon Thermococcus gammatolerans is significantly shifted toward strongly destabilizing replacements which is indicative of stronger constraints that are imposed on proteins in hyperthermophiles. The median effect of mutations is strongly, positively correlated with the relative core size, in evidence of the congruence between the two measures of protein robustness. However, both measures show only limited correlations to the expression level and selection pressure on protein-coding genes. Thus, the degree of robustness reflected in the universal distribution of mutational effects appears to be a fundamental, ancient feature of globular protein folds whereas the observed variations are largely neutral and uncoupled from short term protein evolution. A weak anticorrelation between protein core size and selection pressure is observed only for surface residues in prokaryotes but a stronger anticorrelation is observed for all residues in eukaryotic proteins. This substantial difference between proteins of prokaryotes and eukaryotes is likely to stem from the demonstrable higher compactness of prokaryotic proteins.

  11. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases

    PubMed Central

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-01-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. PMID:22619179

  12. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin

    PubMed Central

    Oulhen, Nathalie; Wessel, Gary M.

    2016-01-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3′UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability. PMID:27424271

  13. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin.

    PubMed

    Oulhen, Nathalie; Wessel, Gary M

    2016-10-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3'UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. β-Filagenin, a Newly Identified Protein Coassembling with Myosin and Paramyosin in Caenorhabditis elegans

    PubMed Central

    Liu, Feizhou; Bauer, Christopher C.; Ortiz, Irving; Cook, Richard G.; Schmid, Michael F.; Epstein, Henry F.

    1998-01-01

    Muscle thick filaments are stable assemblies of myosin and associated proteins whose dimensions are precisely regulated. The mechanisms underlying the stability and regulation of the assembly are not understood. As an approach to these problems, we have studied the core proteins that, together with paramyosin, form the core structure of the thick filament backbone in the nematode Caenorhabditis elegans. We obtained partial peptide sequences from one of the core proteins, β-filagenin, and then identified a gene that encodes a novel protein of 201–amino acid residues from databases using these sequences. β-Filagenin has a calculated isoelectric point at 10.61 and a high percentage of aromatic amino acids. Secondary structure algorithms predict that it consists of four β-strands but no α-helices. Western blotting using an affinity-purified antibody showed that β-filagenin was associated with the cores. β-Filagenin was localized by immunofluorescence microscopy to the A bands of body–wall muscles, but not the pharynx. β-filagenin assembled with the myosin homologue paramyosin into the tubular cores of wild-type nematodes at a periodicity matching the 72-nm repeats of paramyosin, as revealed by immunoelectron microscopy. In CB1214 mutants where paramyosin is absent, β-filagenin assembled with myosin to form abnormal tubular filaments with a periodicity identical to wild type. These results verify that β-filagenin is a core protein that coassembles with either myosin or paramyosin in C. elegans to form tubular filaments. PMID:9442110

  15. Mutations in a CCHC zinc-binding motif of the reovirus sigma 3 protein decrease its intracellular stability.

    PubMed Central

    Mabrouk, T; Lemay, G

    1994-01-01

    It has been demonstrated that the sigma 3 protein of reovirus harbors a zinc-binding domain in its amino-terminal portion. A putative zinc finger in the CCHH form is located in this domain and was considered to be a good candidate for the zinc-binding motif. We performed site-directed mutagenesis to substitute amino acids in this region and demonstrated that many of these mutants, although expressed in COS cells, were unstable compared with the wild-type protein. Further analysis revealed that zinc-binding capability, as measured by retention on a zinc chelate affinity adsorbent, correlates with stability. These studies also allowed us to identify a CCHC box as the most probable zinc-binding motif. Images PMID:8035527

  16. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan; Zheng, Bin; Zhang, Xin-hua

    2014-01-10

    Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4more » protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.« less

  17. Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling.

    PubMed

    Guo, Xing; Ramirez, Alejandro; Waddell, David S; Li, Zhizhong; Liu, Xuedong; Wang, Xiao-Fan

    2008-01-01

    The broad range of biological responses elicited by transforming growth factor-beta (TGF-beta) in various types of tissues and cells is mainly determined by the expression level and activity of the effector proteins Smad2 and Smad3. It is not fully understood how the baseline properties of Smad3 are regulated, although this molecule is in complex with many other proteins at the steady state. Here we show that nonactivated Smad3, but not Smad2, undergoes proteasome-dependent degradation due to the concerted action of the scaffolding protein Axin and its associated kinase, glycogen synthase kinase 3-beta (GSK3-beta). Smad3 physically interacts with Axin and GSK3-beta only in the absence of TGF-beta. Reduction in the expression or activity of Axin/GSK3-beta leads to increased Smad3 stability and transcriptional activity without affecting TGF-beta receptors or Smad2, whereas overexpression of these proteins promotes Smad3 basal degradation and desensitizes cells to TGF-beta. Mechanistically, Axin facilitates GSK3-beta-mediated phosphorylation of Smad3 at Thr66, which triggers Smad3 ubiquitination and degradation. Thr66 mutants of Smad3 show altered protein stability and hence transcriptional activity. These results indicate that the steady-state stability of Smad3 is an important determinant of cellular sensitivity to TGF-beta, and suggest a new function of the Axin/GSK3-beta complex in modulating critical TGF-beta/Smad3-regulated processes during development and tumor progression.

  18. Soy protein polymers: Enhancing the water stability property

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gowrishankar

    Soy protein based plastics have been processed in the past by researchers for various short-term applications; however a common issue is the high water sensitivity of these plastics. This work concentrates on resolving this water sensitivity issue of soy protein polymers by employing chemical and mechanical interaction at the molecular level during extrusion. The primary chemical interactions employed were anhydride chemistries such as maleic anhydride (MA), phthalic anhydride (PTA), and butylated hydroxyanisole (BHA). These were respectively used in conjunction with glycerol as a plasticizer to produce relatively water stable soy protein based plastics. Formulations with varying additive levels of the chemistries were extruded and injection molded to form the samples for characterization. The additive levels of anhydrides were varied between 3-10% tw/tw (total mass). Results indicated that phthalic anhydride formulations resulted in highest water stability. Plastic formulations with concentration up to 10% phthalic anhydride were observed to have water absorption as low as 21.5% after 24 hrs of exposure to water with respect to 250% for the control formulation. Fourier transform infrared spectroscopy (FTIR) was utilized to characterize and confirm the fundamental mechanisms of water stability achieved by phthalic and maleic anhydride chemistries. In addition, the anhydride formulations were modified by inclusion of cotton fibers and pretreated cotton powder in order to improve mechanical properties. The incorporation of cotton fibers improved the dry strength by 18%, but did not significantly improve the wet state strength of the plastics. It was also observed that the butylated-hydroxy anisole (BHA) formulation exhibited high extension values in the dry state and had inferior water absorption properties in comparison with anhydride formulations.

  19. An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins.

    PubMed

    Rawat, Puneet; Kumar, Sandeep; Michael Gromiha, M

    2018-06-24

    Newly synthesized polypeptides must pass stringent quality controls in cells to ensure appropriate folding and function. However, mutations, environmental stresses and aging can reduce efficiencies of these controls, leading to accumulation of protein aggregates, amyloid fibrils and plaques. In-vitro experiments have shown that even single amino acid substitutions can drastically enhance or mitigate protein aggregation kinetics. In this work, we have collected a dataset of 220 unique mutations in 25 proteins and classified them as enhancers or mitigators on the basis of their effect on protein aggregation rate. The data were analyzed via machine learning to identify features capable of distinguishing between aggregation rate enhancers and mitigators. Our initial Support Vector Machine (SVM) model separated such mutations with an overall accuracy of 69%. When local secondary structures at the mutation sites were considered, the accuracies further improved by 13-15%. The machine-learnt features are distinct for each secondary structure class at mutation sites. Protein stability and flexibility changes are important features for mutations in α-helices. β-strand propensity, polarity and charge become important when mutations occur in β-strands and ability to form secondary structure, helical tendency and aggregation propensity are important for mutations lying in coils. These results have been incorporated into a sequence-based algorithm (available at http://www.iitm.ac.in/bioinfo/aggrerate-disc/) capable of predicting whether a mutation will enhance or mitigate a protein's aggregation rate. This algorithm will find several applications towards understanding protein aggregation in human diseases, enable in-silico optimization of biopharmaceuticals and enzymes for improved biophysical attributes and de novo design of bio-nanomaterials. Copyright © 2018. Published by Elsevier B.V.

  20. [Intermolecular hydrogen bond between protein and flavonoid and its contribution to the stability of the flavonoids].

    PubMed

    Fang, Ru; Leng, Xiao-jing; Wu, Xia; Li, Qi; Hao, Rui-fang; Ren, Fa-zheng; Jing, Hao

    2012-01-01

    The interactions between three proteins (BSA, lysozyme and myoglobin) and three flavonoids (quercetin, kaempferol and rutin) were analyzed, using three-dimensional fluorescence spectrometry in combination with UV-Vis spectrometry and Fourier transform infrared (FTIR) spectroscopy. The stabilities of unbound flavonoids and protein-bound flavonoids were compared. The correlation between the interaction and stability was analyzed. The results showed that the hydrophobic interaction was the main binding code in all proteins and flavonoids systems. However, the hydrogen bond has been involved merely in the BSA system. The stability of all three flavonoids (quercetin, kaempferol and rutin) was improved by BSA. There was a great correlation between the hydrogen bonding and the stability of the flavonoids in the presence of BSA. It suggested that the protection of BSA on the flavonoids was due to the intermolecular hydrogen bonding between BSA and flavonoid, and the stronger hydrogen bonding resulted in more protection.

  1. Correlation between mechanical behavior of protein films at the air/water interface and intrinsic stability of protein molecules.

    PubMed

    Martin, Anneke H; Cohen Stuart, Martien A; Bos, Martin A; van Vliet, Ton

    2005-04-26

    The relation between mechanical film properties of various adsorbed protein layers at the air/water interface and intrinsic stability of the corresponding proteins is discussed. Mechanical film properties were determined by surface deformation in shear and dilation. In shear, fracture stress, sigma(f), and fracture strain, gamma(f), were determined, as well as the relaxation behavior after macroscopic fracture. The dilatational measurements were performed in a Langmuir trough equipped with an infra-red reflection absorption spectroscopy (IRRAS) accessory. During compression and relaxation of the surface, the surface pressure, Pi, and adsorbed amount, Gamma (determined from the IRRAS spectra), were determined simultaneously. In addition, IRRAS spectra revealed information on conformational changes in terms of secondary structure. Possible correlations between macroscopic film properties and intrinsic stability of the proteins were determined and discussed in terms of molecular dimensions of single proteins and interfacial protein films. Molecular properties involved the area per protein molecule at Pi approximately 0 mN/m (A(0)), A(0)/M (M = molecular weight) and the maximum slope of the Pi-Gamma curves (dPi/dGamma). The differences observed in mechanical properties and relaxation behavior indicate that the behavior of a protein film subjected to large deformation may vary widely from predominantly viscous (yielding) to more elastic (fracture). This transition is also observed in gradual changes in A(0)/M. It appeared that in general protein layers with high A(0)/M have a high gamma(f) and behave more fluidlike, whereas solidlike behavior is characterized by low A(0)/M and low gamma(f). Additionally, proteins with a low A(0)/M value have a low adaptability in changing their conformation upon adsorption at the air/water interface. Both results support the conclusion that the hardness (internal cohesion) of protein molecules determines predominantly the mechanical

  2. Molecular basis of the osmolyte effect on protein stability: a lesson from the mechanical unfolding of lysozyme.

    PubMed

    Adamczak, Beata; Wieczór, Miłosz; Kogut, Mateusz; Stangret, Janusz; Czub, Jacek

    2016-10-15

    Osmolytes are a class of small organic molecules that shift the protein folding equilibrium. For this reason, they are accumulated by organisms under environmental stress and find applications in biotechnology where proteins need to be stabilized or dissolved. However, despite years of research, debate continues over the exact mechanisms underpinning the stabilizing and denaturing effect of osmolytes. Here, we simulated the mechanical denaturation of lysozyme in different solvent conditions to study the molecular mechanism by which two biologically relevant osmolytes, denaturing (urea) and stabilizing (betaine), affect the folding equilibrium. We found that urea interacts favorably with all types of residues via both hydrogen bonds and dispersion forces, and therefore accumulates in a diffuse solvation shell around the protein. This not only provides an enthalpic stabilization of the unfolded state, but also weakens the hydrophobic effect, as hydrophobic forces promote the association of urea with nonpolar residues, facilitating the unfolding. In contrast, we observed that betaine is excluded from the protein backbone and nonpolar side chains, but is accumulated near the basic residues, yielding a nonuniform distribution of betaine molecules at the protein surface. Spatially resolved solvent-protein interaction energies further suggested that betaine behaves in a ligand- rather than solvent-like manner and its exclusion from the protein surface arises mostly from the scarcity of favorable binding sites. Finally, we found that, in the presence of betaine, the reduced ability of water molecules to solvate the protein results in an additional enthalpic contribution to the betaine-induced stabilization. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  3. Physicochemical Properties of Whey-Protein-Stabilized Astaxanthin Nanodispersion and Its Transport via a Caco-2 Monolayer.

    PubMed

    Shen, Xue; Zhao, Changhui; Lu, Jing; Guo, Mingruo

    2018-02-14

    Astaxanthin nanodispersion was prepared using whey protein isolate (WPI) and polymerized whey protein (PWP) through an emulsification-evaporation technique. The physicochemical properties of the astaxanthin nanodispersion were evaluated, and the transport of astaxanthin was assessed using a Caco-2 cell monolayer model. The astaxanthin nanodispersions stabilized by WPI and PWP (2.5%, w/w) had a small particle size (121 ± 4.9 and 80.4 ± 5.9 nm, respectively), negative ζ potential (-19.3 ± 1.5 and -35.0 ± 2.2 mV, respectively), and high encapsulation efficiency (92.1 ± 2.9 and 93.5 ± 2.4%, respectively). Differential scanning calorimetry curves indicated that amorphous astaxanthin existed in both astaxanthin nanodispersions. Whey-protein-stabilized astaxanthin nanodispersion showed resistance to pepsin digestion but readily released astaxanthin after trypsin digestion. The nanodispersions showed no cytotoxicity to Caco-2 cells at a protein concentration below 10 mg/mL. WPI- and PWP-stabilized nanodispersions improved the apparent permeability coefficient (P app ) of Caco-2 cells to astaxanthin by 10.3- and 16.1-fold, respectively. The results indicated that whey-protein-stabilized nanodispersion is a good vehicle to deliver lipophilic bioactive compounds, such as astaxanthin, and to improve their bioavailability.

  4. Ubiquitin-specific protease 11 (USP11) functions as a tumor suppressor through deubiquitinating and stabilizing VGLL4 protein

    PubMed Central

    Zhang, Encheng; Shen, Bing; Mu, Xingyu; Qin, Yan; Zhang, Fang; Liu, Yong; Xiao, Jiantao; Zhang, Pingzhao; Wang, Chenji; Tan, Mingyue; Fan, Yu

    2016-01-01

    VGLL4 is a transcriptional repressor that interacts with transcription factors TEADs and inhibits YAP-induced overgrowth and tumorigenesis. VGLL4 protein was dramatically reduced in various types of human cancers. But how VGLL4 protein is post-transcriptional regulated is poorly understood. In this study, we identify deubiquitinating enzyme USP11 as a novel VGLL4 interactor. We reveal that the USP domain of USP11 and the N-terminal region of VGLL4 are required for mutual binding. USP11 controls VGLL4 protein stability by promoting its deubiquitination. Furthermore, our results show that knockdown of USP11 promotes cell growth, migration, and invasion in a YAP-dependent manner. Together, our results suggest that USP11 may exert its tumor suppressor role by modulating VGLL4/YAP-TEADs regulatory loop. PMID:28042509

  5. Liquid drop stability for protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Broom, Beth H.; Snyder, Robert S.; Daniel, Ron

    1987-01-01

    It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment of low-gravity protein crystal growth.

  6. Gene Unprediction with Spurio: A tool to identify spurious protein sequences.

    PubMed

    Höps, Wolfram; Jeffryes, Matt; Bateman, Alex

    2018-01-01

    We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation.  Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases.  We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes.  Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.

  7. Interaction of arginine, lysine, and guanidine with surface residues of lysozyme: implication to protein stability.

    PubMed

    Shah, Dhawal; Shaikh, Abdul Rajjak

    2016-01-01

    Additives are widely used to suppress aggregation of therapeutic proteins. However, the molecular mechanisms of effect of additives to stabilize proteins are still unclear. To understand this, we herein perform molecular dynamics simulations of lysozyme in the presence of three commonly used additives: arginine, lysine, and guanidine. These additives have different effects on stability of proteins and have different structures with some similarities; arginine and lysine have aliphatic side chain, while arginine has a guanidinium group. We analyze atomic contact frequencies to study the interactions of the additives with individual residues of lysozyme. Contact coefficient, quantified from contact frequencies, is helpful in analyzing the interactions with the guanidine groups as well as aliphatic side chains of arginine and lysine. Strong preference for contacts to the additives (over water) is seen for the acidic followed by polar and the aromatic residues. Further analysis suggests that the hydration layer around the protein surface is depleted more in the presence of arginine, followed by lysine and guanidine. Molecular dynamics simulations also reveal that the internal dynamics of protein, as indicated by the lifetimes of the hydrogen bonds within the protein, changes depending on the additives. Particularly, we note that the side-chain hydrogen-bonding patterns within the protein differ with the additives, with several side-chain hydrogen bonds missing in the presence of guanidine. These results collectively indicate that the aliphatic chain of arginine and lysine plays a critical role in the stabilization of the protein.

  8. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.

    PubMed

    Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E

    2014-05-01

    Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation=0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. © 2014 The Protein Society.

  9. Novel royal jelly proteins identified by gel-based and gel-free proteomics.

    PubMed

    Han, Bin; Li, Chenxi; Zhang, Lan; Fang, Yu; Feng, Mao; Li, Jianke

    2011-09-28

    Royal jelly (RJ) plays an important role in caste determination of the honeybee; the genetically same female egg develops into either a queen or worker bee depending on the time and amount of RJ fed to the larvae. RJ also has numerous health-promoting properties for humans. Gel-based and gel-free proteomics approaches and high-performance liquid chromatography-chip quadruple time-of-flight tandem mass spectrometry were applied to comprehensively investigate the protein components of RJ. Overall, 37 and 22 nonredundant proteins were identified by one-dimensional gel electrophoresis and gel-free analysis, respectively, and 19 new proteins were found by these two proteomics approaches. Major royal jelly proteins (MRJPs) were identified as the principal protein components of RJ, and proteins related to carbohydrate metabolism such as glucose oxidase, α-glucosidase precursor, and glucose dehydrogenase were also successfully identified. Importantly, the 19 newly identified proteins were mainly classified into three functional categories: oxidation-reduction (ergic53 CG6822-PA isoform A isoform 1, Sec61 CG9539-PA, and ADP/ATP translocase), protein binding (regucalcin and translationally controlled tumor protein CG4800-PA isoform 1), and lipid transport (apolipophorin-III-like protein). These new findings not only significantly increase the RJ proteome coverage but also help to provide new knowledge of RJ for honeybee biology and potential use for human health promotion.

  10. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan W.; Brozik, James A.; Brozik, Susan Marie

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increasemore » in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.« less

  11. Stability and Immunogenicity of Hypoallergenic Peanut Protein-Polyphenol Complexes During In Vitro Pepsin Digestion

    USDA-ARS?s Scientific Manuscript database

    Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated d...

  12. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  13. Increased helix and protein stability through the introduction of a new tertiary hydrogen bond.

    PubMed

    Peterson, R W; Nicholson, E M; Thapar, R; Klevit, R E; Scholtz, J M

    1999-03-12

    In an effort to quantify the importance of hydrogen bonding and alpha-helix formation to protein stability, a capping box motif was introduced into the small phosphocarrier protein HPr. Previous studies had confirmed that Ser46, at the N-cap position of the short helix-B in HPr, serves as an N-cap in solution. Thus, only a single-site mutation was required to produce a canonical S-X-X-E capping box: Lys49 at the N3 position was substituted with a glutamic acid residue. Thermal and chemical denaturation studies on the resulting K49E HPr show that the designed variant is approximately 2 kcal mol-1 more stable than the wild-type protein. However, NMR studies indicate that the side-chain of Glu49 does not participate in the expected capping H-bond interaction, but instead forms a new tertiary H-bond that links helix-B to the four-stranded beta-sheet of HPr. Here, we demonstrate that a strategy in which new non-native H-bonds are introduced can generate proteins with increased stability. We discuss why the original capping box design failed, and compare the energetic consequences of the new tertiary side-chain to main-chain H-bond with a local (helix-capping) side-chain to main-chain H-bond on the protein's global stability. Copyright 1999 Academic Press.

  14. A coevolution analysis for identifying protein-protein interactions by Fourier transform.

    PubMed

    Yin, Changchuan; Yau, Stephen S-T

    2017-01-01

    Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI).

  15. A coevolution analysis for identifying protein-protein interactions by Fourier transform

    PubMed Central

    Yin, Changchuan; Yau, Stephen S. -T.

    2017-01-01

    Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI). PMID:28430779

  16. Protein adsorption at the electrified air-water interface: implications on foam stability.

    PubMed

    Engelhardt, Kathrin; Rumpel, Armin; Walter, Johannes; Dombrowski, Jannika; Kulozik, Ulrich; Braunschweig, Björn; Peukert, Wolfgang

    2012-05-22

    The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.

  17. Weak Links: Stabilizers of Complex Systems from Proteins to Social Networks

    NASA Astrophysics Data System (ADS)

    Csermely, Peter

    Why do women stabilize our societies? Why can we enjoy and understand Shakespeare? Why are fruitflies uniform? Why do omnivorous eating habits aid our survival? Why is Mona Lisa's smile beautiful? -- Is there any answer to these questions? This book shows that the statement: "weak links stabilize complex systems" holds the answers to all of the surprising questions above. The author (recipientof several distinguished science communication prizes) uses weak (low affinity, low probability) interactions as a thread to introduce a vast varietyof networks from proteins to ecosystems.

  18. New proteins identified in epididymal fluid from the platypus (Ornithorhynchus anatinus).

    PubMed

    Dacheux, Jean-Louis; Dacheux, Francoise; Labas, Valerie; Ecroyd, Heath; Nixon, Brett; Jones, Russell C

    2009-01-01

    The platypus epididymal proteome is being studied because epididymal proteins are essential for male fertility in mammals and it is considered that knowledge of the epididymal proteome in an early mammal would be informative in assessing the convergence and divergence of proteins that are important in the function of the mammalian epididymis. Few of the epididymal proteins that have been identified in eutherian mammals were found in platypus caudal epididymal fluid, and the major epididymal proteins in the platypus (PXN-FBPL, SPARC and E-OR20) have never been identified in the epididymis of any other mammal.

  19. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells.

    PubMed

    Clark, Barbara J; Hudson, Elizabeth A

    2015-03-04

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition.

  20. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells

    PubMed Central

    Clark, Barbara J.; Hudson, Elizabeth A.

    2015-01-01

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition. PMID:25749137

  1. Tropomyosin modulates erythrocyte membrane stability

    PubMed Central

    An, Xiuli; Salomao, Marcela; Guo, Xinhua; Gratzer, Walter; Mohandas, Narla

    2007-01-01

    The ternary complex of spectrin, actin, and 4.1R (human erythrocyte protein 4.1) defines the nodes of the erythrocyte membrane skeletal network and is inseparable from membrane stability under mechanical stress. These junctions also contain tropomyosin (TM) and the other actin-binding proteins, adducin, protein 4.9, tropomodulin, and a small proportion of capZ, the functions of which are poorly defined. Here, we have examined the consequences of selective elimination of TM from the membrane. We have shown that the mechanical stability of the membranes of resealed ghosts devoid of TM is grossly, but reversibly, impaired. That the decreased membrane stability of TM-depleted membranes is the result of destabilization of the ternary complex of the network junctions is demonstrated by the strongly facilitated entry into the junctions in situ of a β-spectrin peptide, containing the actin- and 4.1R-binding sites, after extraction of the TM. The stabilizing effect of TM is highly specific, in that it is only the endogenous isotype, and not the slightly longer muscle TM that can bind to the depleted membranes and restore their mechanical stability. These findings have enabled us identify a function for TM in elevating the mechanical stability of erythrocyte membranes by stabilizing the spectrin-actin-4.1R junctional complex. PMID:17008534

  2. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  3. Mechanistic insights into osmolyte action in protein stabilization under harsh conditions: N-methylacetamide in glycine betaine-urea mixture

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Kishore, Nand

    2014-10-01

    Glycine betaine (GB), a small naturally occurring osmolyte, stabilizes proteins and counteracts harsh denaturing conditions such as extremes of temperature, cellular dehydration, and presence of high concentration of urea. In spite of several studies on understanding mechanism of protein stabilization and counteraction of these harsh conditions by osmolytes, studies centred on GB, one of the most important osmolyte, are scarce, hence, there is need for more investigations. To explore mechanism of protein stabilization and counteraction of denaturing property of urea by GB, molecular dynamics studies of N-methylacetamide (NMA), a model peptide representing denatured state of a protein, in the presence of GB, urea, and GB-urea mixture were carried out. The results show that GB and urea work such that the strength of GB as a protecting osmolyte is increased and the denaturing ability of urea is decreased in the GB-urea mixture. It can be inferred that GB counteracts urea by decreasing its hydrophobic interactions with proteins. The mutual interactions between GB and urea also play an important role in protein stabilization. This study provides insights on osmolyte induced counteraction of denaturing property of urea.

  4. The βγ-crystallin domain of Lysinibacillus sphaericus phosphatidylinositol phospholipase C plays a central role in protein stability.

    PubMed

    Cerminati, Sebastián; Paoletti, Luciana; Peirú, Salvador; Menzella, Hugo G; Castelli, María Eugenia

    2018-06-16

    βγ-crystallin has emerged as a superfamily of structurally homologous proteins with representatives across all domains of life. A major portion of this superfamily is constituted by microbial members. This superfamily has also been recognized as a novel group of Ca 2+ -binding proteins with a large diversity and variable properties in Ca 2+ binding and stability. We have recently described a new phosphatidylinositol phospholipase C from Lysinibacillus sphaericus (LS-PIPLC) which was shown to efficiently remove phosphatidylinositol from crude vegetable oil. Here, the role of the C-terminal βγ-crystallin domain of LS-PIPLC was analyzed in the context of the whole protein. A truncated protein in which the C-terminal βγ-crystallin domain was deleted (LS-PIPLC ΔCRY ) is catalytically as efficient as the full-length protein (LS-PIPLC). However, the thermal and chemical stability of LS-PIPLC ΔCRY are highly affected, demonstrating a stabilizing role for this domain. It is also shown that the presence of Ca 2+ increases the thermal and chemical stability of the protein both in aqueous media and in oil, making LS-PIPLC an excellent candidate for use in industrial soybean oil degumming.

  5. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy

    PubMed Central

    Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.

    2016-01-01

    In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737

  6. SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability

    PubMed Central

    Kim, Min Jung; Chia, Ian V.; Costantini, Frank

    2008-01-01

    Axin is a scaffold protein for the β-catenin destruction complex, and a negative regulator of canonical Wnt signaling. Previous studies implicated the six C-terminal amino acids (C6 motif) in the ability of Axin to activate c-Jun N-terminal kinase, and identified them as a SUMOylation target. Deletion of the C6 motif of mouse Axin in vivo reduced the steady-state protein level, which caused embryonic lethality. Here, we report that this deletion (Axin-ΔC6) causes a reduced half-life in mouse embryonic fibroblasts and an increased susceptibility to ubiquitination in HEK 293T cells. We confirmed the C6 motif as a SUMOylation target in vitro, and found that mutating the C-terminal SUMOylation target residues increased the susceptibility of Axin to polyubiquitination and reduced its steady-state level. Heterologous SUMOylation target sites could replace C6 in providing this protective effect. These findings suggest that SUMOylation of the C6 motif may prevent polyubiquitination, thus increasing the stability of Axin. Although C6 deletion also caused increased association of Axin with Dvl-1, this interaction was not altered by mutating the lysine residues in C6, nor could heterologous SUMOylation motifs replace the C6 motif in this assay. Therefore, some other specific property of the C6 motif seems to reduce the interaction of Axin with Dvl-1.—Kim, M. J., Chia, I. V., Costantini, F. SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability. PMID:18632848

  7. CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function

    PubMed Central

    Krüger, Dennis M.; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger

    2013-01-01

    The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein’s (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement. PMID:23609541

  8. Proteomics-based approach identified differentially expressed proteins with potential roles in endometrial carcinoma.

    PubMed

    Li, Zhengyu; Min, Wenjiao; Huang, Canhua; Bai, Shujun; Tang, Minghai; Zhao, Xia

    2010-01-01

    We used proteomic approaches to identify altered expressed proteins in endometrial carcinoma, with the aim of discovering potential biomarkers or therapeutic targets for endometrial carcinoma. The global proteins extracted from endometrial carcinoma and normal endometrial tissues were separated by 2-dimensional electrophoresis and analyzed with PDQuest (Bio-Rad, Hercules, Calif) software. The differentially expressed spots were identified by mass spectrometry and searched against NCBInr protein database. Those proteins with potential roles were confirmed by Western blotting and immunohistochemical assays. Ninety-nine proteins were identified by mass spectrometry, and a cluster diagram analysis indicated that these proteins were involved in metabolism, cell transformation, protein folding, translation and modification, proliferation and apoptosis, signal transduction, cytoskeleton, and so on. In confirmatory immunoblotting and immunohistochemical analyses, overexpressions of epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A were also observed in endometrial carcinoma tissues, which were consistent with the proteomic results. Our results suggested that these identified proteins, including epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A, might be of potential values in the studies of endometrial carcinogenesis or investigations of diagnostic biomarkers or treatment targets for endometrial carcinoma.

  9. Light assisted drying (LAD) for protein stabilization: optimization of laser processing parameters

    NASA Astrophysics Data System (ADS)

    Young, Madison A.; Antczak, Andrew T.; Elliott, Gloria D.; Trammell, Susan R.

    2017-02-01

    In this study, a novel light-based processing method to create an amorphous trehalose matrix for the stabilization of proteins is discussed. Near-IR radiation is used to remove water from samples, leaving behind an amorphous solid with embedded protein. This method has potential applications in the stabilization of protein-based therapeutics and diagnostics that are becoming widely used in the treatment and diagnosis of a variety of diseases. Freeze-drying or freezing are currently the standard for the preservation of proteins, but these methods are expensive and can be challenging in some environments due to a lack of available infrastructure. Light-assisted drying offers a relatively inexpensive method for drying samples. Proteins suspended in a trehalose solution are dehydrated using near-infrared laser light. The laser radiation speeds drying and as water is removed the sugar forms a protective matrix. The goal of this study is to determine processing parameters that result in fast processing times and low end moisture contents (EMC), while maintaining the functionality of embedded proteins. We compare the effect of changing processing wavelength, power and resulting sample temperature, and substrate material on the EMC for two NIR laser sources (1064 nm and 1850 nm). The 1850 nm laser resulted in the lowest EMC (0.1836+/-0.09 gH2O/gDryWeight) after 10 minutes of processing on borosilicate glass microfiber paper. This suggests a storage temperature of 3°C.

  10. Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach.

    PubMed

    Tang, Fen; Xie, Yixi; Cao, Hui; Yang, Hua; Chen, Xiaoqing; Xiao, Jianbo

    2017-03-15

    Fetal bovine serum (FBS) is a universal growth supplement of cell and tissue culture media. Herein, the influences of FBS on the stability and antioxidant activity of 21 resveratrol analogues were investigated using a polyphenol-protein interaction approach. The structure-stability relationships of resveratrol analogues in FBS showed a clear decrease in the stability of hydroxylated resveratrol analogues in the order: resorcinol-type>pyrogallol-type>catechol-type. The glycosylation and methoxylation of resveratrol analogues enhanced their stability. A linear relationship between the stability of resveratrol analogues in FBS and the affinity of resveratrol analogues-FBS interaction was found. The oxidation process is not the only factor governing the stability of resveratrol analogues in FBS. These results facilitated the insightful investigation of the role of polyphenol-protein interactions in serum, thereby providing some fundamental clues for future clinical research and pharmacological studies on natural small molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Stability of spray-dried beetroot extract using oligosaccharides and whey proteins.

    PubMed

    Carmo, Eloá Lourenço do; Teodoro, Rhana Amanda Ribeiro; Félix, Pedro Henrique Campelo; Fernandes, Regiane Victória de Barros; Oliveira, Érica Resende de; Veiga, Taís Regina Lima Abreu; Borges, Soraia Vilela; Botrel, Diego Alvarenga

    2018-05-30

    The properties and stability of spray-dried beetroot extract using maltodextrin (MD), inulin (IN), and whey protein isolate (WPI) as carrier agents were evaluated. The values of moisture, betalains content, and retention were 3.33-4.24%, 348.79-385.47 mg/100 g (dry-basis), and 88.45-95.69%, respectively. Higher values of antioxidant activity were observed for the treatments using WPI. The treatment with inulin alone presented higher hygroscopicity in the moisture adsorption isotherms at 25 °C and lower thermal stability when evaluating the thermogravimetric curves. When stored at 60 °C, the use of WPI alone conferred lower stability to the beetroot extract powder. In general, the simultaneous use of IN and WPI as carrier agents resulted in good stability of the beetroot extract powder, representing an opportunity for innovation in food products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Protein accumulation and rumen stability of wheat γ-gliadin fusion proteins in tobacco and alfalfa.

    PubMed

    Sun, Xiaodong; Chi-Ham, Cecilia L; Cohen-Davidyan, Tamar; DeBen, Christopher; Getachew, Girma; DePeters, Edward; Putnam, Daniel; Bennett, Alan

    2015-09-01

    The nutritional value of various crops can be improved by engineering plants to produce high levels of proteins. For example, because methionine deficiency limits the protein quality of Medicago Sativa (alfalfa) forage, producing alfalfa plants that accumulate high levels of a methionine-rich protein could increase the nutritional value of that crop. We used three strategies in designing methionine-rich recombinant proteins that could accumulate to high levels in plants and thereby serve as candidates for improving the protein quality of alfalfa forage. In tobacco, two fusion proteins, γ-gliadin-δ-zein and γ-δ-zein, as well as δ-zein co-expressed with β-zein, all formed protein bodies. However, the γ-gliadin-δ-zein fusion protein accumulated to the highest level, representing up to 1.5% of total soluble protein (TSP) in one transformant. In alfalfa, γ-gliadin-δ-zein accumulated to 0.2% of TSP, and in an in vitro rumen digestion assay, γ-gliadin-δ-zein was more resistant to microbial degradation than Rubisco. Additionally, although it did not form protein bodies, a γ-gliadin-GFP fusion protein accumulated to much higher levels, 7% of TSP, than a recombinant protein comprised of an ER localization signal fused to GFP in tobacco. Based on our results, we conclude that γ-gliadin-δ-zein is a potential candidate protein to use for enhancing methionine levels in plants and for improving rumen stability of forage protein. γ-gliadin fusion proteins may provide a general platform for increasing the accumulation of recombinant proteins in transgenic plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. ZMYND10 stabilizes intermediate chain proteins in the cytoplasmic pre-assembly of dynein arms.

    PubMed

    Cho, Kyeong Jee; Noh, Shin Hye; Han, Soo Min; Choi, Won-Il; Kim, Hye-Youn; Yu, Seyoung; Lee, Joon Suk; Rim, John Hoon; Lee, Min Goo; Hildebrandt, Friedhelm; Gee, Heon Yung

    2018-03-01

    Zinc finger MYND-type-containing 10 (ZMYND10), a cytoplasmic protein expressed in ciliated cells, causes primary ciliary dyskinesia (PCD) when mutated; however, its function is poorly understood. Therefore, in this study, we examined the roles of ZMYND10 using Zmynd10-/-mice exhibiting typical PCD phenotypes, including hydrocephalus and laterality defects. In these mutants, morphology, the number of motile cilia, and the 9+2 axoneme structure were normal; however, inner and outer dynein arms (IDA and ODA, respectively) were absent. ZMYND10 interacted with ODA components and proteins, including LRRC6, DYX1C1, and C21ORF59, implicated in the cytoplasmic pre-assembly of DAs, whose levels were significantly reduced in Zmynd10-/-mice. LRRC6 and DNAI1 were more stable when co-expressed with ZYMND10 than when expressed alone. DNAI2, which did not interact with ZMYND10, was not stabilized by co-expression with ZMYND10 alone, but was stabilized by co-expression with DNAI1 and ZMYND10, suggesting that ZMYND10 stabilized DNAI1, which subsequently stabilized DNAI2. Together, these results demonstrated that ZMYND10 regulated the early stage of DA cytoplasmic pre-assembly by stabilizing DNAI1.

  14. Identifying protein domains by global analysis of soluble fragment data.

    PubMed

    Bulloch, Esther M M; Kingston, Richard L

    2014-11-15

    The production and analysis of individual structural domains is a common strategy for studying large or complex proteins, which may be experimentally intractable in their full-length form. However, identifying domain boundaries is challenging if there is little structural information concerning the protein target. One experimental procedure for mapping domains is to screen a library of random protein fragments for solubility, since truncation of a domain will typically expose hydrophobic groups, leading to poor fragment solubility. We have coupled fragment solubility screening with global data analysis to develop an effective method for identifying structural domains within a protein. A gene fragment library is generated using mechanical shearing, or by uracil doping of the gene and a uracil-specific enzymatic digest. A split green fluorescent protein (GFP) assay is used to screen the corresponding protein fragments for solubility when expressed in Escherichia coli. The soluble fragment data are then analyzed using two complementary approaches. Fragmentation "hotspots" indicate possible interdomain regions. Clustering algorithms are used to group related fragments, and concomitantly predict domain location. The effectiveness of this Domain Seeking procedure is demonstrated by application to the well-characterized human protein p85α. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Thermodynamics of coupled protein adsorption and stability using hybrid Monte Carlo simulations.

    PubMed

    Zhong, Ellen D; Shirts, Michael R

    2014-05-06

    A better understanding of changes in protein stability upon adsorption can improve the design of protein separation processes. In this study, we examine the coupling of the folding and the adsorption of a model protein, the B1 domain of streptococcal protein G, as a function of surface attraction using a hybrid Monte Carlo (HMC) approach with temperature replica exchange and umbrella sampling. In our HMC implementation, we are able to use a molecular dynamics (MD) time step that is an order of magnitude larger than in a traditional MD simulation protocol and observe a factor of 2 enhancement in the folding and unfolding rate. To demonstrate the convergence of our systems, we measure the travel of our order parameter the fraction of native contacts between folded and unfolded states throughout the length of our simulations. Thermodynamic quantities are extracted with minimum statistical variance using multistate reweighting between simulations at different temperatures and harmonic distance restraints from the surface. The resultant free energies, enthalpies, and entropies of the coupled unfolding and absorption processes are in qualitative agreement with previous experimental and computational observations, including entropic stabilization of the adsorbed, folded state relative to the bulk on surfaces with low attraction.

  16. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    PubMed

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. NeEMO: a method using residue interaction networks to improve prediction of protein stability upon mutation.

    PubMed

    Giollo, Manuel; Martin, Alberto J M; Walsh, Ian; Ferrari, Carlo; Tosatto, Silvio C E

    2014-01-01

    The rapid growth of un-annotated missense variants poses challenges requiring novel strategies for their interpretation. From the thermodynamic point of view, amino acid changes can lead to a change in the internal energy of a protein and induce structural rearrangements. This is of great relevance for the study of diseases and protein design, justifying the development of prediction methods for variant-induced stability changes. Here we propose NeEMO, a tool for the evaluation of stability changes using an effective representation of proteins based on residue interaction networks (RINs). RINs are used to extract useful features describing interactions of the mutant amino acid with its structural environment. Benchmarking shows NeEMO to be very effective, allowing reliable predictions in different parts of the protein such as β-strands and buried residues. Validation on a previously published independent dataset shows that NeEMO has a Pearson correlation coefficient of 0.77 and a standard error of 1 Kcal/mol, outperforming nine recent methods. The NeEMO web server can be freely accessed from URL: http://protein.bio.unipd.it/neemo/. NeEMO offers an innovative and reliable tool for the annotation of amino acid changes. A key contribution are RINs, which can be used for modeling proteins and their interactions effectively. Interestingly, the approach is very general, and can motivate the development of a new family of RIN-based protein structure analyzers. NeEMO may suggest innovative strategies for bioinformatics tools beyond protein stability prediction.

  18. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.

    PubMed

    Ye, Aiqian

    2008-10-15

    The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (<3%), whereas caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC. Copyright © 2008 Elsevier Ltd. All rights reserved.

  19. Cardiotonic Steroids Stabilize Regulator of G Protein Signaling 2 Protein Levels

    PubMed Central

    Sjögren, Benita; Parra, Sergio; Heath, Lauren J.; Atkins, Kevin B.; Xie, Zie-Jian

    2012-01-01

    Regulator of G protein signaling 2 (RGS2), a Gq-specific GTPase-activating protein, is strongly implicated in cardiovascular function. RGS2(−/−) mice are hypertensive and prone to heart failure, and several rare human mutations that accelerate RGS2 degradation have been identified among patients with hypertension. Therefore, pharmacological up-regulation of RGS2 protein levels might be beneficial. We used a β-galactosidase complementation method to screen several thousand compounds with known pharmacological functions for those that increased RGS2 protein levels. Several cardiotonic steroids (CTSs), including ouabain and digoxin, increased RGS2 but not RGS4 protein levels. CTSs increased RGS2 protein levels through a post-transcriptional mechanism, by slowing protein degradation. RGS2 mRNA levels in primary vascular smooth muscle cells were unaffected by CTS treatment, whereas protein levels were increased 2- to 3-fold. Na+/K+-ATPase was required for the increase in RGS2 protein levels, because the effect was lost in Na+/K+-ATPase-knockdown cells. Furthermore, we demonstrated that CTS-induced increases in RGS2 levels were functional and reduced receptor-stimulated, Gq-dependent, extracellular signal-regulated kinase phosphorylation. Finally, we showed that in vivo treatment with digoxin led to increased RGS2 protein levels in heart and kidney. CTS-induced increases in RGS2 protein levels and function might modify several deleterious mechanisms in hypertension and heart failure. This novel CTS mechanism might contribute to the beneficial actions of low-dose digoxin treatment in heart failure. Our results support the concept of small-molecule modulation of RGS2 protein levels as a new strategy for cardiovascular therapy. PMID:22695717

  20. Carboxylator: incorporating solvent-accessible surface area for identifying protein carboxylation sites

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Tsung; Chen, Shu-An; Bretaña, Neil Arvin; Cheng, Tzu-Hsiu; Lee, Tzong-Yi

    2011-10-01

    In proteins, glutamate (Glu) residues are transformed into γ-carboxyglutamate (Gla) residues in a process called carboxylation. The process of protein carboxylation catalyzed by γ-glutamyl carboxylase is deemed to be important due to its involvement in biological processes such as blood clotting cascade and bone growth. There is an increasing interest within the scientific community to identify protein carboxylation sites. However, experimental identification of carboxylation sites via mass spectrometry-based methods is observed to be expensive, time-consuming, and labor-intensive. Thus, we were motivated to design a computational method for identifying protein carboxylation sites. This work aims to investigate the protein carboxylation by considering the composition of amino acids that surround modification sites. With the implication of a modified residue prefers to be accessible on the surface of a protein, the solvent-accessible surface area (ASA) around carboxylation sites is also investigated. Radial basis function network is then employed to build a predictive model using various features for identifying carboxylation sites. Based on a five-fold cross-validation evaluation, a predictive model trained using the combined features of amino acid sequence (AA20D), amino acid composition, and ASA, yields the highest accuracy at 0.874. Furthermore, an independent test done involving data not included in the cross-validation process indicates that in silico identification is a feasible means of preliminary analysis. Additionally, the predictive method presented in this work is implemented as Carboxylator (http://csb.cse.yzu.edu.tw/Carboxylator/), a web-based tool for identifying carboxylated proteins with modification sites in order to help users in investigating γ-glutamyl carboxylation.

  1. Temperature stability of proteins essential for the intracellular survival of Mycobacterium tuberculosis.

    PubMed

    Lack, Nathan A; Kawamura, Akane; Fullam, Elizabeth; Laurieri, Nicola; Beard, Stacey; Russell, Angela J; Evangelopoulos, Dimitrios; Westwood, Isaac; Sim, Edith

    2009-03-01

    In Mycobacterium tuberculosis, the genes hsaD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) and nat (arylamine N-acetyltransferase) are essential for survival inside of host macrophages. These genes act as an operon and have been suggested to be involved in cholesterol metabolism. However, the role of NAT in this catabolic pathway has not been determined. In an effort to better understand the function of these proteins, we have expressed, purified and characterized TBNAT (NAT from M. tuberculosis) and HsaD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) from M. tuberculosis. Both proteins demonstrated remarkable heat stability with TBNAT and HsaD retaining >95% of their activity after incubation at 60 degrees C for 30 min. The first and second domains of TBNAT were demonstrated to be very important to the heat stability of the protein, as the transfer of these domains caused a dramatic reduction in the heat stability. The specific activity of TBNAT was tested against a broad range of acyl-CoA cofactors using hydralazine as a substrate. TBNAT was found to be able to utilize not just acetyl-CoA, but also n-propionyl-CoA and acetoacetyl-CoA, although at a lower rate. As propionyl-CoA is a product of cholesterol catabolism, we propose that NAT could have a role in the utilization of this important cofactor.

  2. Free energy calculations on the stability of the 14-3-3ζ protein.

    PubMed

    Jandova, Zuzana; Trosanova, Zuzana; Weisova, Veronika; Oostenbrink, Chris; Hritz, Jozef

    2018-03-01

    Mutations of cysteine are often introduced to e.g. avoid formation of non-physiological inter-molecular disulfide bridges in in-vitro experiments, or to maintain specificity in labeling experiments. Alanine or serine is typically preferred, which usually do not alter the overall protein stability, when the original cysteine was surface exposed. However, selecting the optimal mutation for cysteines in the hydrophobic core of the protein is more challenging. In this work, the stability of selected Cys mutants of 14-3-3ζ was predicted by free-energy calculations and the obtained data were compared with experimentally determined stabilities. Both the computational predictions as well as the experimental validation point at a significant destabilization of mutants C94A and C94S. This destabilization could be attributed to the formation of hydrophobic cavities and a polar solvation of a hydrophilic side chain. A L12E, M78K double mutant was further studied in terms of its reduced dimerization propensity. In contrast to naïve expectations, this double mutant did not lead to the formation of strong salt bridges, which was rationalized in terms of a preferred solvation of the ionic species. Again, experiments agreed with the calculations by confirming the monomerization of the double mutants. Overall, the simulation data is in good agreement with experiments and offers additional insight into the stability and dimerization of this important family of regulatory proteins. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions.

    PubMed

    Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen

    2016-09-10

    The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design

    PubMed Central

    Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E

    2014-01-01

    Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. PMID:24519901

  5. A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein.

    PubMed

    Pazos, Manuel; Natale, Paolo; Vicente, Miguel

    2013-02-01

    In Escherichia coli, the cell division protein FtsZ is anchored to the cytoplasmic membrane by the action of the bitopic membrane protein ZipA and the cytoplasmic protein FtsA. Although the presence of both ZipA and FtsA is strictly indispensable for cell division, an FtsA gain-of-function mutant FtsA* (R286W) can bypass the ZipA requirement for cell division. This observation casts doubts on the role of ZipA and its need for cell division. Maxicells are nucleoid-free bacterial cells used as a whole cell in vitro system to probe protein-protein interactions without the need of protein purification. We show that ZipA protects FtsZ from the ClpXP-directed degradation observed in E. coli maxicells and that ZipA-stabilized FtsZ forms membrane-attached spiral-like structures in the bacterial cytoplasm. The overproduction of the FtsZ-binding ZipA domain is sufficient to protect FtsZ from degradation, whereas other C-terminal ZipA partial deletions lacking it are not. Individual overproduction of the proto-ring component FtsA or its gain-of-function mutant FtsA* does not result in FtsZ protection. Overproduction of FtsA or FtsA* together with ZipA does not interfere with the FtsZ protection. Moreover, neither FtsA nor FtsA* protects FtsZ when overproduced together with ZipA mutants lacking the FZB domain. We propose that ZipA protects FtsZ from degradation by ClpP by making the FtsZ site of interaction unavailable to the ClpX moiety of the ClpXP protease. This role cannot be replaced by either FtsA or FtsA*, suggesting a unique function for ZipA in proto-ring stability.

  6. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization

    PubMed Central

    Dedecker, Peter

    2017-01-01

    Reversibly switchable fluorescent proteins (RSFPs) enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties. PMID:28930199

  7. Protein secondary structure and stability determined by combining exoproteolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Villanueva, Josep; Villegas, Virtudes; Querol, Enrique; Avilés, Francesc X; Serrano, Luis

    2002-09-01

    In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability. Copyright 2002 John Wiley & Sons, Ltd.

  8. Stabilization and delivery approaches for protein and peptide pharmaceuticals: an extensive review of patents.

    PubMed

    Swain, Suryakanta; Mondal, Debanik; Beg, Sarwar; Patra, Chinam Niranjan; Dinda, Subas Chandra; Sruti, Jammula; Rao, Muddana Eswara Bhanoji

    2013-04-01

    Proteins and peptides are the building blocks of human body and act as the arsenal to combat against the invading pathogenic organisms for treatment and management of diseases. Majority of such biomacromolecules are synthesized by the human body itself. However, entry of disease causing pathogens causes misleading in the synthesis of desired proteins for antibody formation. In such alarming situations, the delivery of requisite protein and peptide from external source helps in augmenting the body's immunity. The major drawbacks underlying poor biopharmaceutical performance of high molecular weight protein and peptide drugs are due to poor oral absorption, formulation stability, degradation in the gastric milieu, susceptible to presystemic metabolism. Numerous literature recounts the application of myriad drug delivery strategies for the effective delivery of protein and peptides viz. parentral, oral, transdermal, nasal, pulmonary, rectal, buccal and ocular drug delivery systems. There are many reviews on various delivery strategies for protein and peptide pharmaceuticals, but the present review article provides a bird's eye view on various novel drug delivery systems used for enhanced delivery of protein and peptide pharmaceuticals in the light of patent literature. Apart from this, the present manuscript endeavor provides idea on possible causes and major degradation pathways responsible for poor stability of protein and peptide drugs along with recent market instances on them utilizing novel drug delivery systems.

  9. Stability and in vitro digestibility of emulsions containing lecithin and whey proteins.

    PubMed

    Mantovani, Raphaela Araujo; Cavallieri, Ângelo Luiz Fazani; Netto, Flavia Maria; Cunha, Rosiane Lopes

    2013-09-01

    The effect of pH and high-pressure homogenization on the properties of oil-in-water (O/W) emulsions stabilized by lecithin and/or whey proteins (WPI) was evaluated. For this purpose, emulsions were characterized by visual analysis, droplet size distribution, zeta potential, electrophoresis, rheological measurements and their response to in vitro digestion. Lecithin emulsions were stable even after 7 days of storage and WPI emulsions were unstable only at pH values close to the isoelectric point (pI) of proteins. Systems containing the mixture of lecithin and WPI showed high kinetic instability at pH 3, which was attributed to the electrostatic interaction between the emulsifiers oppositely charged at this pH value. At pH 5.5 and 7, the mixture led to reduction of the droplet size with enhanced emulsion stability compared to the systems with WPI or lecithin. The stability of WPI emulsions after the addition of lecithin, especially at pH 5.5, was associated with the increase of droplet surface charge density. The in vitro digestion evaluation showed that WPI emulsion was more stable against gastrointestinal conditions.

  10. Guaifenesin stone matrix proteomics: a protocol for identifying proteins critical to stone formation.

    PubMed

    Kolbach-Mandel, A M; Mandel, N S; Cohen, S R; Kleinman, J G; Ahmed, F; Mandel, I C; Wesson, J A

    2017-04-01

    Drug-related kidney stones are a diagnostic problem, since they contain a large matrix (protein) fraction and are frequently incorrectly identified as matrix stones. A urine proteomics study patient produced a guaifenesin stone during her participation, allowing us to both correctly diagnose her disease and identify proteins critical to this drug stone-forming process. The patient provided three random midday urine samples for proteomics studies; one of which contained stone-like sediment with two distinct fractions. These solids were characterized with optical microscopy and Fourier transform infrared spectroscopy. Immunoblotting and quantitative mass spectrometry were used to quantitatively identify the proteins in urine and stone matrix. Infrared spectroscopy showed that the sediment was 60 % protein and 40 % guaifenesin and its metabolite guaiacol. Of the 156 distinct proteins identified in the proteomic studies, 49 were identified in the two stone-components with approximately 50 % of those proteins also found in this patient's urine. Many proteins observed in this drug-related stone have also been reported in proteomic matrix studies of uric acid and calcium containing stones. More importantly, nine proteins were highly enriched and highly abundant in the stone matrix and 8 were reciprocally depleted in urine, suggesting a critical role for these proteins in guaifenesin stone formation. Accurate stone analysis is critical to proper diagnosis and treatment of kidney stones. Many matrix proteins were common to all stone types, but likely not related to disease mechanism. This protocol defined a small set of proteins that were likely critical to guaifenesin stone formation based on their high enrichment and high abundance in stone matrix, and it should be applied to all stone types.

  11. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    PubMed

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. An integrated genomic analysis of Tudor domain-containing proteins identifies PHD finger protein 20-like 1 (PHF20L1) as a candidate oncogene in breast cancer.

    PubMed

    Jiang, Yuanyuan; Liu, Lanxin; Shan, Wenqi; Yang, Zeng-Quan

    2016-02-01

    Tudor domain-containing proteins (TDRDs), which recognize and bind to methyl-lysine/arginine residues on histones and non-histone proteins, play critical roles in regulating chromatin architecture, transcription, genomic stability, and RNA metabolism. Dysregulation of several TDRDs have been observed in various types of cancer. However, neither the genomic landscape nor clinical significance of TDRDs in breast cancer has been explored comprehensively. Here, we performed an integrated genomic and transcriptomic analysis of 41 TDRD genes in breast cancer (TCGA and METABRIC datasets) and identified associations among recurrent copy number alterations, gene expressions, clinicopathological features, and survival of patients. Among seven TDRDs that had the highest frequency (>10%) of gene amplification, the plant homeodomain finger protein 20-like 1 (PHF20L1) was the most commonly amplified (17.62%) TDRD gene in TCGA breast cancers. Different subtypes of breast cancer had different patterns of copy number and expression for each TDRD. Notably, amplification and overexpression of PHF20L1 were more prevalent in aggressive basal-like and Luminal B subtypes and were significantly associated with shorter survival of breast cancer patients. Furthermore, knockdown of PHF20L1 inhibited cell proliferation in PHF20L1-amplified breast cancer cell lines. PHF20L1 protein contains N-terminal Tudor and C-terminal plant homeodomain domains. Detailed characterization of PHF20L1 in breast cancer revealed that the Tudor domain likely plays a critical role in promoting cancer. Mechanistically, PHF20L1 might participate in regulating DNA methylation by stabilizing DNA methyltransferase 1 (DNMT1) protein in breast cancer. Thus, our results demonstrated the oncogenic potential of PHF20L1 and its association with poor prognostic parameters in breast cancer. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Neutral Sphingomyelinase 2 Activity and Protein Stability Are Modulated by Phosphorylation of Five Conserved Serines*

    PubMed Central

    Filosto, Simone; Ashfaq, Majid; Chung, Samuel; Fry, William; Goldkorn, Tzipora

    2012-01-01

    We previously presented that the neutral sphingomyelinase 2 (nSMase2) is the only SMase activated in human airway epithelial (HAE) cells following exposure to oxidative stress (ox-stress), yielding ceramide accumulation and thereby inducing apoptosis. Furthermore, we reported that nSMase2 is a phospho-protein in which the level of phosphorylation controls nSMase2 activation induced by ox-stress. Here we identify five specific serines that are phosphorylated in nSMase2 and demonstrate that their phosphorylation controls the nSMase2 activity upon ox-stress exposure in an interdependent manner. Furthermore, we show that the nSMase2 protein stability and thus its level of expression is also post-translationally regulated by these five serine phosphorylation sites. This study provides initial structure/function insights regarding nSMase2 phosphorylation sites and offers some new links for future studies aiming to fully elucidate nSMase2 regulatory machinery. PMID:22074919

  14. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    PubMed

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  15. Tryptophan to Glycine mutation in the position 116 leads to protein aggregation and decreases the stability of the LITAF protein.

    PubMed

    Kumar, Chundi Vinay; Swetha, Rayapadi G; Ramaiah, Sudha; Anbarasu, Anand

    2015-01-01

    Mutations in the gene-encoding vesicle lipopolysaccharide-induced tumor necrosis factor (LITAF) protein cause Charcot-Marie-Tooth type 1C (CMT1C) disease, a neurological disorder. The LITAF gene is mapped to chromosome number 16 and can be found at cytogenetic location 16p13 of the chromosome. CMT1C-linked small integral membrane protein of lysosome/late endosome mutants are loss-of-function mutants that act in a dominant negative manner to impair endosomal trafficking, leading to prolonged extracellular signal-regulated kinases 1/2 signaling downstream of ErbB activation. Mutation W116G in the LITAF decreases the stability of the protein and also interrupts the functioning of gene. We have analyzed the single nucleotide polymorphism (SNP) results of 28 nsSNPs obtained from dbSNP. We also carried out multiple molecular dynamics simulations of 200 ns and obtained results of root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent-accessible surface area, H-bond, and principal component analysis to check and prove the stability of both the wild type and the mutant. The protein was then checked for its aggregation and the results showed loss of helix. The loss of helix leads to the instability of the protein.

  16. Chemistry and stability of thiol based polyethylene glycol surface coatings on colloidal gold and their relationship to protein adsorption and clearance in vivo

    NASA Astrophysics Data System (ADS)

    Carpinone, Paul

    Nanomaterials have presented a wide range of novel biomedical applications, with particular emphasis placed on advances in imaging and treatment delivery. Of the many particulate nanomaterials researched for biomedical applications, gold is one of the most widely used. Colloidal gold has been of great interest due to its chemical inertness and its ability to perform multiple functions, such as drug delivery, localized heating of tissues (hyperthermia), and imaging (as a contrast agent). It is also readily functionalized through the use of thiols, which spontaneously form sulfur to gold bonds with the surface. Polyethylene glycol (PEG) is the most widely used coating material for these particles as it provides both steric stability to the suspension and protein resistance. These properties extend the circulation time of the particles in blood, and consequently the efficacy of the treatment. Despite widespread use of PEG coated gold particles, the coating chemistry and stability of these particles are largely unknown. The goal of this work was to identify the mechanisms leading to degradation and stability of thiol based polyethylene glycol coatings on gold particles and to relate this behavior to protein adsorption and clearance in vivo. The results indicate that the protective PEG coating is susceptible to sources of oxidation (including dissolved oxygen) and competing adsorbates, among other factors. The quality of commercially available thiolated PEG reagents was also found to play a key role in the quality and protein resistance of the final PEG coating. Analysis of the stability of these coatings indicated that they rapidly degrade under physiological conditions, leading to the onset of protein adsorption when exposed to plasma or blood. Paralleling the protein adsorption behavior and onset of coating degradation observed in vitro, blood clearance of parenterally administered PEG coated particles in mice began after approximately 2h of circulation time. Taken

  17. Thermal stability and gel quality of myofibrillar protein as affected by soy protein isolates subjected to an acidic pH and mild heating.

    PubMed

    Niu, Haili; Xia, Xiufang; Wang, Chao; Kong, Baohua; Liu, Qian

    2018-03-01

    Thermal stability and gel quality of myofibrillar protein were evaluated with regard to the addition of native soy protein isolates (SPI) and SPI subjected to acidic pH and mild heating (modified SPI). Compared with the control, the addition of modified SPI increased the compression force of the protein gel and decreased water loss (P<0.05). Differential scanning calorimetry results showed that an addition of 0.75% native SPI decreased the first transition temperature (P<0.05), and addition of 0.5% and 0.75% modified SPI exhibited no appreciable changes on it (P>0.05), indicating that a higher concentration of modified SPI would not damage the protein thermal stability. Moreover, the addition of modified SPI enhanced hydrogen bonding and disulphide linkages. Atomic force microscopy analysis revealed that the addition of modified SPI decreased the roughness of the mixed myofibrillar protein gels. Overall, modified SPI has the potential to improve myofibrillar protein gel texture and water holding capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Complementarity of stability patches at the interfaces of protein complexes: Implication for the structural organization of energetic hot spots.

    PubMed

    Kuttner, Yosef Y; Engel, Stanislav

    2018-02-01

    A rational design of protein complexes with defined functionalities and of drugs aimed at disrupting protein-protein interactions requires fundamental understanding of the mechanisms underlying the formation of specific protein complexes. Efforts to develop efficient small-molecule or protein-based binders often exploit energetic hot spots on protein surfaces, namely, the interfacial residues that provide most of the binding free energy in the complex. The molecular basis underlying the unusually high energy contribution of the hot spots remains obscure, and its elucidation would facilitate the design of interface-targeted drugs. To study the nature of the energetic hot spots, we analyzed the backbone dynamic properties of contact surfaces in several protein complexes. We demonstrate that, in most complexes, the backbone dynamic landscapes of interacting surfaces form complementary "stability patches," in which static areas from the opposing surfaces superimpose, and that these areas are predominantly located near the geometric center of the interface. We propose that a diminished enthalpy-entropy compensation effect augments the degree to which residues positioned within the complementary stability patches contribute to complex affinity, thereby giving rise to the energetic hot spots. These findings offer new insights into the nature of energetic hot spots and the role that backbone dynamics play in facilitating intermolecular recognition. Mapping the interfacial stability patches may provide guidance for protein engineering approaches aimed at improving the stability of protein complexes and could facilitate the design of ligands that target complex interfaces. © 2017 Wiley Periodicals, Inc.

  19. Effects of monohydric alcohols and polyols on the thermal stability of a protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Shota; Kinoshita, Masahiro, E-mail: kinoshit@iae.kyoto-u.ac.jp

    2016-03-28

    The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either puremore » water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance

  20. Effects of monohydric alcohols and polyols on the thermal stability of a protein

    NASA Astrophysics Data System (ADS)

    Murakami, Shota; Kinoshita, Masahiro

    2016-03-01

    The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either pure water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the

  1. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects

    PubMed Central

    Zhao, Hua

    2015-01-01

    There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the ‘specific ion effect’ instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule. PMID:26949281

  2. Identifying Unstable Regions of Proteins Involved in Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-05-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  3. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

    PubMed

    Chen, Linan; Dumelie, Jason G; Li, Xiao; Cheng, Matthew Hk; Yang, Zhiyong; Laver, John D; Siddiqui, Najeeb U; Westwood, J Timothy; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2014-01-07

    Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug's target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.

  4. Matrin 3 binds and stabilizes mRNA.

    PubMed

    Salton, Maayan; Elkon, Ran; Borodina, Tatiana; Davydov, Aleksey; Yaspo, Marie-Laure; Halperin, Eran; Shiloh, Yosef

    2011-01-01

    Matrin 3 (MATR3) is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM), whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq) identified several small noncoding RNA species. Using microarray analysis to explore MATR3's role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts.

  5. Matrin 3 Binds and Stabilizes mRNA

    PubMed Central

    Salton, Maayan; Elkon, Ran; Borodina, Tatiana; Davydov, Aleksey; Yaspo, Marie-Laure; Halperin, Eran; Shiloh, Yosef

    2011-01-01

    Matrin 3 (MATR3) is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM), whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq) identified several small noncoding RNA species. Using microarray analysis to explore MATR3′s role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts. PMID:21858232

  6. Genomes2Drugs: Identifies Target Proteins and Lead Drugs from Proteome Data

    PubMed Central

    Toomey, David; Hoppe, Heinrich C.; Brennan, Marian P.; Nolan, Kevin B.; Chubb, Anthony J.

    2009-01-01

    Background Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. Methodology/Principal Findings To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. Conclusions/Significance Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under ‘change-of-application’ patents. PMID:19593435

  7. Enhancement of Peroxidase Stability Against Oxidative Self-Inactivation by Co-immobilization with a Redox-Active Protein in Mesoporous Silicon and Silica Microparticles

    NASA Astrophysics Data System (ADS)

    Sahare, P.; Ayala, M.; Vazquez-Duhalt, R.; Pal, U.; Loni, A.; Canham, L. T.; Osorio, I.; Agarwal, V.

    2016-09-01

    The study of the stability enhancement of a peroxidase immobilized onto mesoporous silicon/silica microparticles is presented. Peroxidases tend to get inactivated in the presence of hydrogen peroxide, their essential co-substrate, following an auto-inactivation mechanism. In order to minimize this inactivation, a second protein was co-immobilized to act as an electron acceptor and thus increase the stability against self-oxidation of peroxidase. Two heme proteins were immobilized into the microparticles: a fungal commercial peroxidase and cytochrome c from equine heart. Two types of biocatalysts were prepared: one with only covalently immobilized peroxidase (one-protein system) and another based on covalent co-immobilization of peroxidase and cytochrome c (two-protein system), both immobilized by using carbodiimide chemistry. The amount of immobilized protein was estimated spectrophotometrically, and the characterization of the biocatalyst support matrix was performed using Brunauer-Emmett-Teller (BET), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared (FTIR) analyses. Stability studies show that co-immobilization with the two-protein system enhances the oxidative stability of peroxidase almost four times with respect to the one-protein system. Thermal stability analysis shows that the immobilization of peroxidase in derivatized porous silicon microparticles does not protect the protein from thermal denaturation, whereas biogenic silica microparticles confer significant thermal stabilization.

  8. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.

    PubMed

    Vasantha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama

    2012-10-04

    Protein folding/unfolding is a fascinating study in the presence of cosolvents, which protect/disrupt the native structure of protein, respectively. The structure and stability of proteins and their functional groups may be modulated by the addition of cosolvents. Ionic liquids (ILs) are finding a vast array of applications as novel cosolvents for a wide variety of biochemical processes that include protein folding. Here, the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of protein model compounds from water to ILs through solubility measurements as a function of IL concentration at 25 °C have been exploited to quantify and interpret biomolecular interactions between model compounds of glycine peptides (GPs) with ammonium based ILs. The investigated aqueous systems consist of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), tetraglycine (Gly(4)), and cyclic glycylglycine (c(GG)) in the presence of six ILs such as diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA). We have observed positive values of ΔG'(tr) for GPs from water to ILs, indicating that interactions between ILs and GPs are unfavorable, which leads to stabilization of the structure of model protein compounds. Moreover, our experimental data ΔG'(tr) is used to obtain transfer free energies (Δg'(tr)) of the peptide backbone unit (or glycyl unit) (-CH(2)C═ONH-), which is the most numerous group in globular proteins, from water to IL solutions. To obtain the mechanism events of the ILs' role in enhancing the stability of the model compounds, we have further obtained m-values for GPs from solubility limits. These results explicitly elucidate that all alkyl ammonium ILs act as stabilizers for model compounds through the exclusion of ILs from model compounds of

  9. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles.

    PubMed

    Davey, James A; Chica, Roberto A

    2014-05-01

    Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single-state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on- or off-target models of the native protein fold and could be used in future studies to design for desired properties other than stability. Copyright © 2013 Wiley Periodicals, Inc.

  10. Influence of protein-pectin electrostatic interaction on the foam stability mechanism.

    PubMed

    Sadahira, Mitie S; Lopes, Fernanda C Rezende; Rodrigues, Maria I; Netto, Flavia M

    2014-03-15

    This study aimed at evaluating the effect of three independent variables: biopolymer concentration (egg white proteins and pectin) (2.0-4.0%, w/w); protein:pectin ratio (15:1-55:1); and temperature (70-80 °C), at pH 3.0, using a central composite design on the foaming properties (overrun, drainage and bubble growth rate). Foams produced with protein:pectin ratio 15:1 showed the lowest bubble growth rate and the greatest drainage, whereas protein:pectin ratio 55:1 presented the lowest drainage. Complexes obtained with protein:pectin ratio 15:1 were close to electroneutrality and showed larger size (95.91 ± 8.19 μm) than those obtained with protein:pectin ratio 55:1 (45.92 ± 3.47 μm) not electrically neutral. Larger particles seemed to build an interfacial viscoelastic network at the air-water interface with reduced gas permeability, leading to greater stability concerning the disproportionation. Soluble complexes of smaller sizes increased viscosity leading to a low drainage of liquid and inhibiting the bubbles coalescence. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Patterns of HIV-1 Protein Interaction Identify Perturbed Host-Cellular Subsystems

    PubMed Central

    MacPherson, Jamie I.; Dickerson, Jonathan E.; Pinney, John W.; Robertson, David L.

    2010-01-01

    Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell functions in order to replicate. This is mediated through a network of virus-host interactions. A variety of recent studies have catalogued this information. In particular the HIV-1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein interaction detail. However, as a map of HIV-1 infection, the HHPID is problematic, as it contains curation error and redundancy; in addition, it is based on a heterogeneous set of experimental methods. Based on identifying shared patterns of HIV-host interaction, we have developed a novel methodology to delimit the core set of host-cellular functions and their associated perturbation from the HHPID. Initially, using biclustering, we identify 279 significant sets of host proteins that undergo the same types of interaction. The functional cohesiveness of these protein sets was validated using a human protein-protein interaction network, gene ontology annotation and sequence similarity. Next, using a distance measure, we group host protein sets and identify 37 distinct higher-level subsystems. We further demonstrate the biological significance of these subsystems by cross-referencing with global siRNA screens that have been used to detect host factors necessary for HIV-1 replication, and investigate the seemingly small intersect between these data sets. Our results highlight significant host-cell subsystems that are perturbed during the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that contribute to these perturbations. Thus, our work disentangles the complex set of HIV-1-host protein interactions in the HHPID, reconciles these with siRNA screens and provides an accessible and interpretable map of infection. PMID:20686668

  12. Optimization of protein buffer cocktails using Thermofluor.

    PubMed

    Reinhard, Linda; Mayerhofer, Hubert; Geerlof, Arie; Mueller-Dieckmann, Jochen; Weiss, Manfred S

    2013-02-01

    The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.

  13. On the effect of hydrostatic pressure on the conformational stability of globular proteins.

    PubMed

    Graziano, Giuseppe

    2015-12-01

    The model developed for cold denaturation (Graziano, PCCP 2010, 12, 14245-14252) is extended to rationalize the dependence of protein conformational stability upon hydrostatic pressure, at room temperature. A pressure- volume work is associated with the process of cavity creation for the need to enlarge the liquid volume against hydrostatic pressure. This contribution destabilizes the native state that has a molecular volume slightly larger than the denatured state due to voids existing in the protein core. Therefore, there is a hydrostatic pressure value at which the pressure-volume contribution plus the conformational entropy loss of the polypeptide chain are able to overwhelm the stabilizing gain in translational entropy of water molecules, due to the decrease in water accessible surface area upon folding, causing denaturation. © 2015 Wiley Periodicals, Inc.

  14. Identifying DNA-binding proteins using structural motifs and the electrostatic potential

    PubMed Central

    Shanahan, Hugh P.; Garcia, Mario A.; Jones, Susan; Thornton, Janet M.

    2004-01-01

    Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif. PMID:15356290

  15. Protein attributes contribute to halo-stability, bioinformatics approach

    PubMed Central

    2011-01-01

    Halophile proteins can tolerate high salt concentrations. Understanding halophilicity features is the first step toward engineering halostable crops. To this end, we examined protein features contributing to the halo-toleration of halophilic organisms. We compared more than 850 features for halophilic and non-halophilic proteins with various screening, clustering, decision tree, and generalized rule induction models to search for patterns that code for halo-toleration. Up to 251 protein attributes selected by various attribute weighting algorithms as important features contribute to halo-stability; from them 14 attributes selected by 90% of models and the count of hydrogen gained the highest value (1.0) in 70% of attribute weighting models, showing the importance of this attribute in feature selection modeling. The other attributes mostly were the frequencies of di-peptides. No changes were found in the numbers of groups when K-Means and TwoStep clustering modeling were performed on datasets with or without feature selection filtering. Although the depths of induced trees were not high, the accuracies of trees were higher than 94% and the frequency of hydrophobic residues pointed as the most important feature to build trees. The performance evaluation of decision tree models had the same values and the best correctness percentage recorded with the Exhaustive CHAID and CHAID models. We did not find any significant difference in the percent of correctness, performance evaluation, and mean correctness of various decision tree models with or without feature selection. For the first time, we analyzed the performance of different screening, clustering, and decision tree algorithms for discriminating halophilic and non-halophilic proteins and the results showed that amino acid composition can be used to discriminate between halo-tolerant and halo-sensitive proteins. PMID:21592393

  16. Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display

    PubMed Central

    Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna

    2013-01-01

    Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310

  17. The Extracellular Matrix Protein TGFBI Induces Microtubule Stabilization and Sensitizes Ovarian Cancers to Paclitaxel

    PubMed Central

    Ahmed, Ahmed Ashour; Mills, Anthony D.; Ibrahim, Ashraf E.K.; Temple, Jillian; Blenkiron, Cherie; Vias, Maria; Massie, Charlie E.; Iyer, N. Gopalakrishna; McGeoch, Adam; Crawford, Robin; Nicke, Barbara; Downward, Julian; Swanton, Charles; Bell, Stephen D.; Earl, Helena M.; Laskey, Ronald A.; Caldas, Carlos; Brenton, James D.

    2007-01-01

    Summary The extracellular matrix (ECM) can induce chemotherapy resistance via AKT-mediated inhibition of apoptosis. Here, we show that loss of the ECM protein TGFBI (transforming growth factor beta induced) is sufficient to induce specific resistance to paclitaxel and mitotic spindle abnormalities in ovarian cancer cells. Paclitaxel-resistant cells treated with recombinant TGFBI protein show integrin-dependent restoration of paclitaxel sensitivity via FAK- and Rho-dependent stabilization of microtubules. Immunohistochemical staining for TGFBI in paclitaxel-treated ovarian cancers from a prospective clinical trial showed that morphological changes of paclitaxel-induced cytotoxicity were restricted to areas of strong expression of TGFBI. These data show that ECM can mediate taxane sensitivity by modulating microtubule stability. PMID:18068629

  18. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel.

    PubMed

    Ahmed, Ahmed Ashour; Mills, Anthony D; Ibrahim, Ashraf E K; Temple, Jillian; Blenkiron, Cherie; Vias, Maria; Massie, Charlie E; Iyer, N Gopalakrishna; McGeoch, Adam; Crawford, Robin; Nicke, Barbara; Downward, Julian; Swanton, Charles; Bell, Stephen D; Earl, Helena M; Laskey, Ronald A; Caldas, Carlos; Brenton, James D

    2007-12-01

    The extracellular matrix (ECM) can induce chemotherapy resistance via AKT-mediated inhibition of apoptosis. Here, we show that loss of the ECM protein TGFBI (transforming growth factor beta induced) is sufficient to induce specific resistance to paclitaxel and mitotic spindle abnormalities in ovarian cancer cells. Paclitaxel-resistant cells treated with recombinant TGFBI protein show integrin-dependent restoration of paclitaxel sensitivity via FAK- and Rho-dependent stabilization of microtubules. Immunohistochemical staining for TGFBI in paclitaxel-treated ovarian cancers from a prospective clinical trial showed that morphological changes of paclitaxel-induced cytotoxicity were restricted to areas of strong expression of TGFBI. These data show that ECM can mediate taxane sensitivity by modulating microtubule stability.

  19. Application of a high-throughput relative chemical stability assay to screen therapeutic protein formulations by assessment of conformational stability and correlation to aggregation propensity.

    PubMed

    Rizzo, Joseph M; Shi, Shuai; Li, Yunsong; Semple, Andrew; Esposito, Jessica J; Yu, Shenjiang; Richardson, Daisy; Antochshuk, Valentyn; Shameem, Mohammed

    2015-05-01

    In this study, an automated high-throughput relative chemical stability (RCS) assay was developed in which various therapeutic proteins were assessed to determine stability based on the resistance to denaturation post introduction to a chaotrope titration. Detection mechanisms of both intrinsic fluorescence and near UV circular dichroism (near-UV CD) are demonstrated. Assay robustness was investigated by comparing multiple independent assays and achieving r(2) values >0.95 for curve overlays. The complete reversibility of the assay was demonstrated by intrinsic fluorescence, near-UV CD, and biologic potency. To highlight the method utility, we compared the RCS assay with differential scanning calorimetry and dynamic scanning fluorimetry methodologies. Utilizing C1/2 values obtained from the RCS assay, formulation rank-ordering of 12 different mAb formulations was performed. The prediction of long-term stability on protein aggregation is obtained by demonstrating a good correlation with an r(2) of 0.83 between RCS and empirical aggregation propensity data. RCS promises to be an extremely useful tool to aid in candidate formulation development efforts based on the complete reversibility of the method to allow for multiple assessments without protein loss and the strong correlation between the C1/2 data obtained and accelerated stability under stressed conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein.

    PubMed

    Kotake, Yojiro; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Niida, Hiroyuki; Naemura, Madoka; Kitagawa, Masatoshi

    2016-04-01

    P21-associated noncoding RNA DNA damage-activated (PANDA) is induced in response to DNA damage and represses apoptosis by inhibiting the function of nuclear transcription factor Y subunit alpha (NF-YA) transcription factor. Herein, we report that PANDA affects regulation of p53 tumor-suppressor protein. U2OS cells were transfected with PANDA siRNAs. At 72 h post-transfection, cells were subjected to immunoblotting and quantitative reverse transcription-polymerase chain reaction. Depletion of PANDA was associated with decreased levels of p53 protein, but not p53 mRNA. The stability of p53 protein was markedly reduced by PANDA silencing. Degradation of p53 protein by silencing PANDA was prevented by treatment of MG132, a proteasome inhibitor. Moreover, depletion of PANDA prevented accumulation of p53 protein, as a result of DNA damage, induced by the genotoxic agent etoposide. These results suggest that PANDA stabilizes p53 protein in response to DNA damage, and provide new insight into the regulatory mechanisms of p53. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Physical and molecular bases of protein thermal stability and cold adaptation.

    PubMed

    Pucci, Fabrizio; Rooman, Marianne

    2017-02-01

    The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles

    PubMed Central

    Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.

    2012-01-01

    Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443

  3. Stability of milk fat globule membrane proteins toward human enzymatic gastrointestinal digestion.

    PubMed

    Le, T T; Van de Wiele, T; Do, T N H; Debyser, G; Struijs, K; Devreese, B; Dewettinck, K; Van Camp, J

    2012-05-01

    The milk fat globule membrane (MFGM) fraction refers to the thin film of polar lipids and membrane proteins that surrounds fat globules in milk. It is its unique biochemical composition that renders MFGM with some beneficial biological activities, such as anti-adhesive effects toward pathogens. However, a prerequisite for the putative bioactivity of MFGM is its stability during gastrointestinal digestion. We, therefore, subjected MFGM material, isolated from raw milk, to an in vitro enzymatic gastrointestinal digestion. Sodium dodecyl sulfate PAGE, in combination with 2 staining methods, Coomassie Blue and periodic acid Schiff staining, was used to evaluate polypeptide patterns of the digest, whereas mass spectrometry was used to confirm the presence of specific MFGM proteins. Generally, it was observed that glycoproteins showed higher resistance to endogenous proteases compared with non-glycosylated proteins. Mucin 1 displayed the highest resistance to digestion and a considerable part of this protein was still detected at its original molecular weight after gastric and small intestine digestion. Cluster of differentiation 36 was also quite resistant to pepsin. A significant part of periodic acid Schiff 6/7 survived the gastric digestion, provided that the lipid moiety was not removed from the MFGM material. Overall, MFGM glycoproteins are generally more resistant to gastrointestinal digestion than serum milk proteins and the presence of lipids, besides glycosylation, may protect MFGM glycoproteins from gastrointestinal digestion. This gastrointestinal stability makes MFGM glycoproteins amenable to further studies in which their putative health-promoting effects can be explored. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2014-05-28

    Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Stability of dilute solutions of tuberculin purified protein derivative.

    PubMed

    Landi, S; Held, H R

    1978-06-01

    The biological potency of 15 commercially available tuberculin solutions prepared from a master batch of tuberculin purified protein derivative (PPD) (PPD-CT68) and using a newly formulated diluent (Connaught diluent) containing 0.0005% Tween 80 as an anti-adsorption agent and 0.3% phenol as a preservative, was determined after storage for various intervals at 4, 24 and 37 degrees C. The 5 tuberculin units (TU) per 0.1 ml dose solutions were bioequivalent to a non-stabilized solution of PPD-S whereas the 1 TU and 250 TU per dose solutions were equivalent by calculation to a non-stabilized solution of PPD-S. It was found that the PPD solutions of all 3 strengths, 1, 5 and 250 TU per dose, were stable for at least 3 years at 4 degrees C and for 2 years at room temperature (24 degrees C). Even at 37 degrees C the solutions of all 3 strengths were stable for at least 1 year. The stability of Connaught tuberculin PPD solutions has not been affected by the changes in formulation. The stability data suggest that the expiry date of the newly formulated tuberculin products could be at least two years from the data of the last satisfactory potency test. Although these products are stable for at least 1 year even at 37 degrees C, we nonetheless agree with the Canadian and U.S. regulations that they be stored at 2 to 8 degrees C in their original containers.

  6. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan, E-mail: stefan.weger@charite.de

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 inducedmore » polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability. - Highlights: • KCTD5 nuclear translocation depends upon M phase and protein oligomerization. • Identification of MCM7, ZNF711 and FAM193 as KCTD5 interaction partners. • Formation of trimeric complexes of KCTD5/cullin3 with MCM7, ZNF711 and FAM193B. • KCTD5 is not involved in polyubiquitylation of MCM7 replication factor. • The KCTD5/cullin3 complex stabilizes ZNF711 transcription factor.« less

  7. Protein denaturants at aqueous-hydrophobic interfaces: self-consistent correlation between induced interfacial fluctuations and denaturant stability at the interface.

    PubMed

    Cui, Di; Ou, Shu-Ching; Patel, Sandeep

    2015-01-08

    The notion of direct interaction between denaturing cosolvent and protein residues has been proposed in dialogue relevant to molecular mechanisms of protein denaturation. Here we consider the correlation between free energetic stability and induced fluctuations of an aqueous-hydrophobic interface between a model hydrophobically associating protein, HFBII, and two common protein denaturants, guanidinium cation (Gdm(+)) and urea. We compute potentials of mean force along an order parameter that brings the solute molecule close to the known hydrophobic region of the protein. We assess potentials of mean force for different relative orientations between the protein and denaturant molecule. We find that in both cases of guanidinium cation and urea relative orientations of the denaturant molecule that are parallel to the local protein-water interface exhibit greater stability compared to edge-on or perpendicular orientations. This behavior has been observed for guanidinium/methylguanidinium cations at the liquid-vapor interface of water, and thus the present results further corroborate earlier findings. Further analysis of the induced fluctuations of the aqueous-hydrophobic interface upon approach of the denaturant molecule indicates that the parallel orientation, displaying a greater stability at the interface, also induces larger fluctuations of the interface compared to the perpendicular orientations. The correlation of interfacial stability and induced interface fluctuation is a recurring theme for interface-stable solutes at hydrophobic interfaces. Moreover, observed correlations between interface stability and induced fluctuations recapitulate connections to local hydration structure and patterns around solutes as evidenced by experiment (Cooper et al., J. Phys. Chem. A 2014, 118, 5657.) and high-level ab initio/DFT calculations (Baer et al., Faraday Discuss 2013, 160, 89).

  8. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles

    PubMed Central

    Alsenaidy, Mohammad A.; Jain, Nishant K.; Kim, Jae H.; Middaugh, C. Russell; Volkin, David B.

    2014-01-01

    In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies. PMID:24659968

  9. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles.

    PubMed

    Alsenaidy, Mohammad A; Jain, Nishant K; Kim, Jae H; Middaugh, C Russell; Volkin, David B

    2014-01-01

    In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies.

  10. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    PubMed

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of <3%, we identified 111 candidates from conditioned medium, including 44 proteins that have signal peptides or are described as secreted proteins in the UniProt database. As validation, we confirmed that one of these proteins, insulin-like growth factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  11. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.

    2014-08-07

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunitymore » to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.« less

  12. Engineering Proteins for Thermostability with iRDP Web Server

    PubMed Central

    Ghanate, Avinash; Ramasamy, Sureshkumar; Suresh, C. G.

    2015-01-01

    Engineering protein molecules with desired structure and biological functions has been an elusive goal. Development of industrially viable proteins with improved properties such as stability, catalytic activity and altered specificity by modifying the structure of an existing protein has widely been targeted through rational protein engineering. Although a range of factors contributing to thermal stability have been identified and widely researched, the in silico implementation of these as strategies directed towards enhancement of protein stability has not yet been explored extensively. A wide range of structural analysis tools is currently available for in silico protein engineering. However these tools concentrate on only a limited number of factors or individual protein structures, resulting in cumbersome and time-consuming analysis. The iRDP web server presented here provides a unified platform comprising of iCAPS, iStability and iMutants modules. Each module addresses different facets of effective rational engineering of proteins aiming towards enhanced stability. While iCAPS aids in selection of target protein based on factors contributing to structural stability, iStability uniquely offers in silico implementation of known thermostabilization strategies in proteins for identification and stability prediction of potential stabilizing mutation sites. iMutants aims to assess mutants based on changes in local interaction network and degree of residue conservation at the mutation sites. Each module was validated using an extensively diverse dataset. The server is freely accessible at http://irdp.ncl.res.in and has no login requirements. PMID:26436543

  13. Engineering Proteins for Thermostability with iRDP Web Server.

    PubMed

    Panigrahi, Priyabrata; Sule, Manas; Ghanate, Avinash; Ramasamy, Sureshkumar; Suresh, C G

    2015-01-01

    Engineering protein molecules with desired structure and biological functions has been an elusive goal. Development of industrially viable proteins with improved properties such as stability, catalytic activity and altered specificity by modifying the structure of an existing protein has widely been targeted through rational protein engineering. Although a range of factors contributing to thermal stability have been identified and widely researched, the in silico implementation of these as strategies directed towards enhancement of protein stability has not yet been explored extensively. A wide range of structural analysis tools is currently available for in silico protein engineering. However these tools concentrate on only a limited number of factors or individual protein structures, resulting in cumbersome and time-consuming analysis. The iRDP web server presented here provides a unified platform comprising of iCAPS, iStability and iMutants modules. Each module addresses different facets of effective rational engineering of proteins aiming towards enhanced stability. While iCAPS aids in selection of target protein based on factors contributing to structural stability, iStability uniquely offers in silico implementation of known thermostabilization strategies in proteins for identification and stability prediction of potential stabilizing mutation sites. iMutants aims to assess mutants based on changes in local interaction network and degree of residue conservation at the mutation sites. Each module was validated using an extensively diverse dataset. The server is freely accessible at http://irdp.ncl.res.in and has no login requirements.

  14. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length

    PubMed Central

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.; Du, Yang; Nielsen, Anne K.; Byrne, Bernadette; Kobilka, Brian K.; Loland, Claus J.; Guan, Lan

    2017-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. PMID:27981750

  15. Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction.

    PubMed

    Butkevich, Eugenia; Bodensiek, Kai; Fakhri, Nikta; von Roden, Kerstin; Schaap, Iwan A T; Majoul, Irina; Schmidt, Christoph F; Klopfenstein, Dieter R

    2015-07-06

    Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling.

  16. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation.

    PubMed

    Joglekar, Madhav M; Panaskar, Shrimant N; Chougale, Ashok D; Kulkarni, Mahesh J; Arvindekar, Akalpita U

    2013-10-01

    Inhibition of protein glycation is known to ameliorate secondary complications in diabetes. In the present study antiglycative properties of limonene, a natural product, were evaluated using BSA as a model protein. AMG (aminoguanidine) was used as a positive control. Measurement of total AGEs (Advanced Glycation End-products) and specific AGEs revealed that limonene could inhibit protein glycation to the extent of 56.3% and 75.1% respectively at 50 μM concentration as against 54.4% and 82.2% by AMG at 1 mM. Congo red binding and CD (Circular Dichroism) analysis revealed inhibition of α-helix to β-sheet transition wherein 18.5% β-sheet structures were observed in glycated BSA (bovine serum albumin) as against 4.9% with limonene. Glycation of protein in the presence of urea was enhanced by 18%, while in the presence of limonene it was reduced by 23% revealing the stabilizing effect of limonene. Electrophoretic mobility was similar to the normal control and a zeta potential value of -12.1 mV as against -15.1 mV in diabetic control was observed. Inhibition of glycation in limonene treated samples was confirmed through LC-MS analysis wherein AGEs such as pentosidine, CML (N(ε)-(carboxymethyl)lysine), CEL (N(ε)-(carboxyethyl)lysine), MOLD (methylglyoxal-lysine dimer) and imidazolone observed in glycated samples were absent in limonene treated samples. PatchDock studies revealed that limonene could bind to the major glycation sites IB, IIA and IIB sub domains and AMG to the IIIA sub domain. Thus limonene is a potent protein glycation inhibitor that prevents protein glycation through a novel mechanism of stabilization of protein structure through hydrophobic interactions.

  17. Juvenile hormone-binding proteins of Melanoplus bivittatus identified by EFDA photoaffinity labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winder, B.S.

    1988-01-01

    Proteins that bind juvenile hormone in the hemolymph and fat body of the grasshopper, Melanoplus bivittatus were identified by photoaffinity labeling with radiolabeled epoxyfarnesyl diazoacetate ({sup 3}H-EFDA), and were characterized by electrophoretic analysis. A protocol was developed which allowed detection of {sup 3}H-EFDA that was covalently linked to proteins upon exposure to ultraviolet light at 254 nm. Quantification of protein-linked {sup 3}H-EFDA by liquid scintillation spectrometry took advantage of the differential solubility of unlinked {sup 3}H-EFDA in toluene alone, and of the protein-linked {sup 3}H-EFDA in toluene plus the detergent, Triton X-100. Competition between EFDA and juvenile hormone (JH) formore » binding to JH-specific binding sites was measured by hydroxyapatite protein binding assays in the presence of radiolabeled JH or EFDA and competing non-radiolabeled hormone. The protein-linked EFDA was detected on fluorograms of SDS or nondenaturing polyacrylamide gels (PAGE), and by liquid scintillation spectrometry of membranes to which the proteins had been electrophoretically transferred. Proteins which specifically bound JH were identified by photolabeling proteins in the presence and absence of nonlabeled JH-III.« less

  18. Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning.

    PubMed

    Waskiewicz, A J; Rikhof, H A; Hernandez, R E; Moens, C B

    2001-11-01

    Homeodomain-containing Hox proteins regulate segmental identity in Drosophila in concert with two partners known as Extradenticle (Exd) and Homothorax (Hth). These partners are themselves DNA-binding, homeodomain proteins, and probably function by revealing the intrinsic specificity of Hox proteins. Vertebrate orthologs of Exd and Hth, known as Pbx and Meis (named for a myeloid ecotropic leukemia virus integration site), respectively, are encoded by multigene families and are present in multimeric complexes together with vertebrate Hox proteins. Previous results have demonstrated that the zygotically encoded Pbx4/Lazarus (Lzr) protein is required for segmentation of the zebrafish hindbrain and proper expression and function of Hox genes. We demonstrate that Meis functions in the same pathway as Pbx in zebrafish hindbrain development, as expression of a dominant-negative mutant Meis results in phenotypes that are remarkably similar to that of lzr mutants. Surprisingly, expression of Meis protein partially rescues the lzr(-) phenotype. Lzr protein levels are increased in embryos overexpressing Meis and are reduced for lzr mutants that cannot bind to Meis. This implies a mechanism whereby Meis rescues lzr mutants by stabilizing maternally encoded Lzr. Our results define two functions of Meis during zebrafish hindbrain segmentation: that of a DNA-binding partner of Pbx proteins, and that of a post-transcriptional regulator of Pbx protein levels.

  19. A novel approach to identify genes that determine grain protein deviation in cereals.

    PubMed

    Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J

    2015-06-01

    Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Counteraction of the deleterious effects of urea on structure and stability of mammalian kidney proteins by osmolytes.

    PubMed

    Dar, Mohammad Aasif; Wahiduzzaman; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2018-02-01

    Owing to the urine concentrating mechanism of kidney cells, urea concentration is very high (3.0-5.0M) in mammalian kidneys which may denature many kidney proteins. Methylamines are known to counteract the deleterious effects of urea on structure, stability and function of proteins at 2:1 molar ratio of urea to methylamines. It is known that mammalian kidney cells also contain stabilizing osmolytes, non-methylamines (myo-inositol and sorbitol). A question arises: Do these non-methylmine osmolytes have ability to counteract the deleterious effects of urea on kidney proteins? To answer this question, we took two kidney proteins, namely, sheep serum albumin and Human carbonic anhydrase II. We measured their thermodynamic stability (ΔG 0 N↔D , the Gibbs free energy change in absence of GdmCl (guanidinium chloride) associated with the equilibrium, native (N) state↔denatured (D) state) from the GdmCl-induced denaturation curves in the presence of different concentrations of urea and each kidney osmolyte individually and in combination. For both proteins, we observed that (i) glycine betaine and myo-inositol provide perfect counteraction at 2:1 molar ratio of urea to osmolyte, i.e., denaturing effect of 2M urea is 100% neutralized by 1M of glycine betaine (or myo-inositol), and (ii) sorbitol fails to refold urea denatured proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life

    PubMed Central

    Romero-Romero, M. Luisa; Risso, Valeria A.; Martinez-Rodriguez, Sergio; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2016-01-01

    The relationship between the denaturation temperatures of proteins (Tm values) and the living temperatures of their host organisms (environmental temperatures: TENV values) is poorly understood. Since different proteins in the same organism may show widely different Tm’s, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm’s are oftentimes found to correlate with TENV’s but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm’s for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate) can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C) that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms. PMID:27253436

  2. Folding 19 proteins to their native state and stability of large proteins from a coarse-grained model.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2014-03-01

    We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described. Copyright © 2013 Wiley Periodicals, Inc.

  3. The Methionine-aromatic Motif Plays a Unique Role in Stabilizing Protein Structure*

    PubMed Central

    Valley, Christopher C.; Cembran, Alessandro; Perlmutter, Jason D.; Lewis, Andrew K.; Labello, Nicholas P.; Gao, Jiali; Sachs, Jonathan N.

    2012-01-01

    Of the 20 amino acids, the precise function of methionine (Met) remains among the least well understood. To establish a determining characteristic of methionine that fundamentally differentiates it from purely hydrophobic residues, we have used in vitro cellular experiments, molecular simulations, quantum calculations, and a bioinformatics screen of the Protein Data Bank. We show that approximately one-third of all known protein structures contain an energetically stabilizing Met-aromatic motif and, remarkably, that greater than 10,000 structures contain this motif more than 10 times. Critically, we show that as compared with a purely hydrophobic interaction, the Met-aromatic motif yields an additional stabilization of 1–1.5 kcal/mol. To highlight its importance and to dissect the energetic underpinnings of this motif, we have studied two clinically relevant TNF ligand-receptor complexes, namely TRAIL-DR5 and LTα-TNFR1. In both cases, we show that the motif is necessary for high affinity ligand binding as well as function. Additionally, we highlight previously overlooked instances of the motif in several disease-related Met mutations. Our results strongly suggest that the Met-aromatic motif should be exploited in the rational design of therapeutics targeting a range of proteins. PMID:22859300

  4. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein

    PubMed Central

    2014-01-01

    Background Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. Results To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug’s target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Conclusions Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism. PMID:24393533

  5. Beta-Barrel Scaffold of Fluorescent Proteins: Folding, Stability and Role in Chromophore Formation

    PubMed Central

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Kuznetsova, Irina M.; Verkhusha, Vladislav V.; Turoverov, Konstantin K.

    2013-01-01

    This review focuses on the current view of the interaction between the β-barrel scaffold of fluorescent proteins and their unique chromophore located in the internal helix. The chromophore originates from the polypeptide chain and its properties are influenced by the surrounding protein matrix of the β-barrel. On the other hand, it appears that a chromophore tightens the β-barrel scaffold and plays a crucial role in its stability. Furthermore, the presence of a mature chromophore causes hysteresis of protein unfolding and refolding. We survey studies measuring protein unfolding and refolding using traditional methods as well as new approaches, such as mechanical unfolding and reassembly of truncated fluorescent proteins. We also analyze models of fluorescent protein unfolding and refolding obtained through different approaches, and compare the results of protein folding in vitro to co-translational folding of a newly synthesized polypeptide chain. PMID:23351712

  6. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.

    PubMed

    Le, Duc-Hau

    2015-01-01

    Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with

  7. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  8. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  9. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  10. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  11. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  12. Identify High-Quality Protein Structural Models by Enhanced K-Means.

    PubMed

    Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.

  13. Identify High-Quality Protein Structural Models by Enhanced K-Means

    PubMed Central

    Li, Haiou; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K-means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K-means clustering (SK-means), whereas the other employs squared distance to optimize the initial centroids (K-means++). Our results showed that SK-means and K-means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K-means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK-means and K-means++ demonstrated substantial improvements relative to results from SPICKER and classical K-means. PMID:28421198

  14. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking.

    PubMed

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-03-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80°C for 15 min. During heating of w/o emulsions containing 10% (w/v) WPI proteins in the water phase, the emulsions displayed turbid-transparent-turbid phase transitions, which is ascribed to the change in the size of the protein-containing water droplets caused by thermal cross-linking between denatured protein molecules. The transparent stage indicated the formation of WPI NPs. WPI NPs of different sizes were obtained by varying the mixing speed. WPI NPs of 200-500 nm were selected to prepare o/w Pickering emulsions because of their good stability against coalescence. By Confocal Laser Scanning Microscopy, it was observed that WPI NPs were closely packed and distributed at the surface of the emulsion droplets. By measuring water contact angles of WPI NPs films, it was found that under most conditions WPI NPs present good partial wetting properties, but that at the isoelectric point (pI) and high ionic strength the particles become more hydrophobic, resulting in less stable Pickering emulsion. Thus, at pH above and below the pI of WPI NPs and low to moderate ionic strengths (1-10 mM), and with a WPI NPs concentration of 2% (w/v), a stable Pickering emulsion can be obtained. The results may provide useful information for applications of WPI NPs in environmentally friendly and food grade applications, notably in food, pharmaceutical and cosmetic products. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Protein Denaturants at Aqueous–Hydrophobic Interfaces: Self-Consistent Correlation between Induced Interfacial Fluctuations and Denaturant Stability at the Interface

    PubMed Central

    2015-01-01

    The notion of direct interaction between denaturing cosolvent and protein residues has been proposed in dialogue relevant to molecular mechanisms of protein denaturation. Here we consider the correlation between free energetic stability and induced fluctuations of an aqueous–hydrophobic interface between a model hydrophobically associating protein, HFBII, and two common protein denaturants, guanidinium cation (Gdm+) and urea. We compute potentials of mean force along an order parameter that brings the solute molecule close to the known hydrophobic region of the protein. We assess potentials of mean force for different relative orientations between the protein and denaturant molecule. We find that in both cases of guanidinium cation and urea relative orientations of the denaturant molecule that are parallel to the local protein–water interface exhibit greater stability compared to edge-on or perpendicular orientations. This behavior has been observed for guanidinium/methylguanidinium cations at the liquid–vapor interface of water, and thus the present results further corroborate earlier findings. Further analysis of the induced fluctuations of the aqueous–hydrophobic interface upon approach of the denaturant molecule indicates that the parallel orientation, displaying a greater stability at the interface, also induces larger fluctuations of the interface compared to the perpendicular orientations. The correlation of interfacial stability and induced interface fluctuation is a recurring theme for interface-stable solutes at hydrophobic interfaces. Moreover, observed correlations between interface stability and induced fluctuations recapitulate connections to local hydration structure and patterns around solutes as evidenced by experiment (Cooper et al., J. Phys. Chem. A2014, 118, 5657.) and high-level ab initio/DFT calculations (Baer et al., Faraday Discuss2013, 160, 89). PMID:25536388

  16. Adding biological meaning to human protein-protein interactions identified by yeast two-hybrid screenings: A guide through bioinformatics tools.

    PubMed

    Felgueiras, Juliana; Silva, Joana Vieira; Fardilha, Margarida

    2018-01-16

    "A man is known by the company he keeps" is a popular expression that perfectly fits proteins. A common approach to characterize the function of a target protein is to identify its interacting partners and thus infer its roles based on the known functions of the interactors. Protein-protein interaction networks (PPINs) have been created for several organisms, including humans, primarily as results of high-throughput screenings, such as yeast two-hybrid (Y2H). Their unequivocal use to understand events underlying human pathophysiology is promising in identifying genes and proteins associated with diseases. Therefore, numerous opportunities have emerged for PPINs as tools for clinical management of diseases: network-based disease classification systems, discovery of biomarkers and identification of therapeutic targets. Despite the great advantages of PPINs, their use is still unrecognised by several researchers who generate high-throughput data to generally characterize interactions in a certain model or to select an interaction to study in detail. We strongly believe that both approaches are not exclusive and that we can use PPINs as a complementary methodology and rich-source of information to the initial study proposal. Here, we suggest a pipeline to deal with Y2H results using bioinformatics tools freely available for academics. Yeast two-hybrid is widely-used to identify protein-protein interactions. Conventionally, the positive clones that result from a yeast two-hybrid screening are sequenced to identify the interactors of the protein of interest (also known as bait protein), and few interactions, thought as potentially relevant for the model in study, are selected for further validation using biochemical methods (e.g. co-immunoprecipitation and co-localization). The huge amount of data that is potentially lost during this conservative approach motivated us to write this tutorial-like review, so that researchers feel encouraged to take advantage of

  17. Rapid and Tunable Control of Protein Stability in Caenorhabditis elegans Using a Small Molecule

    PubMed Central

    Cho, Ukrae; Zimmerman, Stephanie M.; Chen, Ling-chun; Owen, Elliot; Kim, Jesse V.; Kim, Stuart K.; Wandless, Thomas J.

    2013-01-01

    Destabilizing domains are conditionally unstable protein domains that can be fused to a protein of interest resulting in degradation of the fusion protein in the absence of stabilizing ligand. These engineered protein domains enable rapid, reversible and dose-dependent control of protein expression levels in cultured cells and in vivo. To broaden the scope of this technology, we have engineered new destabilizing domains that perform well at temperatures of 20–25°C. This raises the possibility that our technology could be adapted for use at any temperature. We further show that these new destabilizing domains can be used to regulate protein concentrations in C. elegans. These data reinforce that DD can function in virtually any organism and temperature. PMID:23991108

  18. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    PubMed

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.

  19. Affinity resins as new tools for identifying target proteins of ascorbic acid.

    PubMed

    Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro

    2018-02-12

    l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.

  20. Identifying protein biomarkers in predicting disease severity of dengue virus infection using immune-related protein microarray.

    PubMed

    Soe, Hui Jen; Yong, Yean K; Al-Obaidi, Mazen M Jamil; Raju, Chandramathi Samudi; Gudimella, Ranganath; Manikam, Rishya; Sekaran, Shamala Devi

    2018-02-01

    Dengue virus is one of the most widespread flaviviruses that re-emerged throughout recent decades. The progression from mild dengue to severe dengue (SD) with the complications such as vascular leakage and hemorrhage increases the fatality rate of dengue. The pathophysiology of SD is not entirely clear. To investigate potential biomarkers that are suggestive of pathogenesis of SD, a small panel of serum samples selected from 1 healthy individual, 2 dengue patients without warning signs (DWS-), 2 dengue patients with warning signs (DWS+), and 5 patients with SD were subjected to a pilot analysis using Sengenics Immunome protein array. The overall fold changes of protein expressions and clustering heat map revealed that PFKFB4, TPM1, PDCL3, and PTPN20A were elevated among patients with SD. Differential expression analysis identified that 29 proteins were differentially elevated greater than 2-fold in SD groups than DWS- and DWS+. From the 29 candidate proteins, pathways enrichment analysis also identified insulin signaling and cytoskeleton pathways were involved in SD, suggesting that the insulin pathway may play a pivotal role in the pathogenesis of SD.

  1. Folding and stability of the isolated Greek key domains of the long-lived human lens proteins γD-crystallin and γS-crystallin

    PubMed Central

    Mills, Ishara A.; Flaugh, Shannon L.; Kosinski-Collins, Melissa S.; King, Jonathan A.

    2007-01-01

    The transparency of the eye lens depends on the high solubility and stability of the lens crystallin proteins. The monomeric γ-crystallins and oligomeric β-crystallins have paired homologous double Greek key domains, presumably evolved through gene duplication and fusion. Prior investigation of the refolding of human γD-crystallin revealed that the C-terminal domain folds first and nucleates the folding of the N-terminal domain. This result suggested that the human N-terminal domain might not be able to fold on its own. We constructed and expressed polypeptide chains corresponding to the isolated N- and C-terminal domains of human γD-crystallin, as well as the isolated domains of human γS-crystallin. Both circular dichroism and fluorescence spectroscopy indicated that the isolated domains purified from Escherichia coli were folded into native-like monomers. After denaturation, the isolated domains refolded efficiently at pH 7 and 37°C into native-like structures. The in vitro refolding of all four domains revealed two kinetic phases, identifying partially folded intermediates for the Greek key motifs. When subjected to thermal denaturation, the isolated N-terminal domains were less stable than the full-length proteins and less stable than the C-terminal domains, and this was confirmed in equilibrium unfolding/refolding experiments. The decrease in stability of the N-terminal domain of human γD-crystallin with respect to the complete protein indicated that the interdomain interface contributes of 4.2 kcal/mol to the overall stability of this very long-lived protein. PMID:17905830

  2. C-Terminal Helical Domains of Dengue Virus Type 4 E Protein Affect the Expression/Stability of prM Protein and Conformation of prM and E Proteins

    PubMed Central

    Tsai, Wen-Yang; Hsieh, Szu-Chia; Lai, Chih-Yun; Lin, Hong-En; Nerurkar, Vivek R.; Wang, Wei-Kung

    2012-01-01

    Background The envelope (E) protein of dengue virus (DENV) is the major immunogen for dengue vaccine development. At the C-terminus are two α-helices (EH1 and EH2) and two transmembrane domains (ET1 and ET2). After synthesis, E protein forms a heterodimer with the precursor membrane (prM) protein, which has been shown as a chaperone for E protein and could prevent premature fusion of E protein during maturation. Recent reports of enhancement of DENV infectivity by anti-prM monoclonal antibodies (mAbs) suggest the presence of prM protein in dengue vaccine is potentially harmful. A better understanding of prM-E interaction and its effect on recognition of E and prM proteins by different antibodies would provide important information for future design of safe and effective subunit dengue vaccines. Methodology/Principal Findings In this study, we examined a series of C-terminal truncation constructs of DENV4 prME, E and prM. In the absence of E protein, prM protein expressed poorly. In the presence of E protein, the expression of prM protein increased in a dose-dependent manner. Radioimmunoprecipitation, sucrose gradient sedimentation and pulse-chase experiments revealed ET1 and EH2 were involved in prM-E interaction and EH2 in maintaining the stability of prM protein. Dot blot assay revealed E protein affected the recognition of prM protein by an anti-prM mAb; truncation of EH2 or EH1 affected the recognition of E protein by several anti-E mAbs, which was further verified by capture ELISA. The E protein ectodomain alone can be recognized well by all anti-E mAbs tested. Conclusions/Significance A C-terminal domain (EH2) of DENV E protein can affect the expression and stability of its chaperone prM protein. These findings not only add to our understanding of the interaction between prM and E proteins, but also suggest the ectodomain of E protein alone could be a potential subunit immunogen without inducing anti-prM response. PMID:23300717

  3. General Characteristics of the Changes in the Thermal Stability of Proteins and Enzymes After the Chemical Modification of Their Functional Groups

    NASA Astrophysics Data System (ADS)

    Kutuzova, G. D.; Ugarova, N. N.; Berezin, Ilya V.

    1984-11-01

    The principal structural and physicochemical factors determining the stability of protein macromolecules in solution and the characteristics of the structure of the proteins from thermophilic microorganisms are examined. The mechanism of the changes in the thermal stability of proteins and enzymes after the chemical modification of their functional side groups and the experimental data concerning the influence of chemical modification on the thermal stability of proteins are analysed. The dependence of the stabilisation effect and of the changes in the structure of protein macromolecules on the degree of modification and on the nature of the modified groups and the groups introduced into proteins in the course of modification (their charge and hydrophobic properties) is demonstrated. The great practical value of the method of chemical modification for the preparation of stabilised forms of biocatalysts is shown in relation to specific examples. The bibliography includes 178 references.

  4. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface.

    PubMed

    Harnsilawat, Thepkunya; Pongsawatmanit, Rungnaphar; McClements, David J

    2006-07-26

    The potential of utilizing interfacial complexes, formed through the electrostatic interactions of proteins and polysaccharides at oil-water interfaces, to stabilize model beverage cloud emulsions has been examined. These interfacial complexes were formed by mixing charged polysaccharides with oil-in-water emulsions containing oppositely charged protein-coated oil droplets. Model beverage emulsions were prepared that consisted of 0.1 wt % corn oil droplets coated by beta-lactoglobulin (beta-Lg), beta-Lg/alginate, beta-Lg/iota-carrageenan, or beta-Lg/gum arabic interfacial layers (pH 3 or 4). Stable emulsions were formed when the polysaccharide concentration was sufficient to saturate the protein-coated droplets. The emulsions were subjected to variations in pH (from 3 to 7), ionic strength (from 0 to 250 mM NaCl), and thermal processing (from 30 or 90 degrees C), and the influence on their stability was determined. The emulsions containing alginate and carrageenan had the best stability to ionic strength and thermal processing. This study shows that the controlled formation of protein-polysaccharide complexes at droplet surfaces may be used to produce stable beverage emulsions, which may have important implications for industrial applications.

  5. Method for early detection of infectious mononucleosis by identifying inmono proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, K. E.

    1984-10-02

    Early detection of infectious mononucleosis is carried out using a sample of human blood by isolating and identifying the presence of Inmono proteins in the sample from a two-dimensional protein map with the proteins being characterized by having isoelectric banding as measured in urea of about -16 to -17 with respect to certain isoelectric point standards and molecular mass of about 70 to 75 K daltons as measured in the presence of sodium dodecylsulfate containing polyacrylamide gels, the presence of the Inmono proteins being correlated with the existence of infectious mononucleosis.

  6. Method for early detection of infectious mononucleosis by identifying Inmono proteins

    DOEpatents

    Willard, Karen E.

    1984-01-01

    Early detection of infectious mononucleosis is carried out using a sample of human blood by isolating and identifying the presence of Inmono proteins in the sample from a two-dimensional protein map with the proteins being characterized by having isoelectric banding as measured in urea of about -16 to -17 with respect to certain isoelectric point standards and molecular mass of about 70 to 75 K daltons as measured in the presence of sodium dodecylsulfate containing polyacrylamide gels, the presence of the Inmono proteins being correlated with the existence of infectious mononucleosis.

  7. Phosphorylation of Arabidopsis ubiquitin ligase ATL31 is critical for plant carbon/nitrogen nutrient balance response and controls the stability of 14-3-3 proteins.

    PubMed

    Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji

    2014-05-30

    Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr(209), Ser(247), Ser(270), and Ser(303) as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr(209) and Ser(247) on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr(209) peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  9. The Effect of Natural Osmolyte Mixtures on the Temperature-Pressure Stability of the Protein RNase A

    NASA Astrophysics Data System (ADS)

    Arns, Loana; Schuabb, Vitor; Meichsner, Shari; Berghaus, Melanie; Winter, Roland

    2018-05-01

    In biological cells, osmolytes appear as complex mixtures with variable compositions, depending on the particular environmental conditions of the organism. Based on various spectroscopic, thermodynamic and small-angle scattering data, we explored the effect of two different natural osmolyte mixtures, which are found in shallow-water and deep-sea shrimps, on the temperature and pressure stability of a typical monomeric protein, RNase A. Both natural osmolyte mixtures stabilize the protein against thermal and pressure denaturation. This effect seems to be mainly caused by the major osmolyte components of the osmolyte mixtures, i.e. by glycine and trimethylamine-N-oxide (TMAO), respectively. A minor compaction of the structure, in particular in the unfolded state, seems to be largely due to TMAO. Differences in thermodynamic properties observed for glycine and TMAO, and hence also for the two osmolyte mixtures, are most likely due to different solvation properties and interactions with the protein. Different from TMAO, glycine seems to interact with the amino acid side chains and/or the backbone of the protein, thus competing with hydration water and leading to a less hydrated protein surface.

  10. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length.

    PubMed

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok

    2016-12-14

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Microtubule-Stabilizing Protein CLASP1 Associates with the Theileria annulata Schizont Surface via Its Kinetochore-Binding Domain

    PubMed Central

    Huber, Sandra; Theiler, Romina; de Quervain, Daniel; Wiens, Olga; Karangenc, Tulin; Heussler, Volker; Dobbelaere, Dirk

    2017-01-01

    ABSTRACT Theileria is an apicomplexan parasite whose presence within the cytoplasm of a leukocyte induces cellular transformation and causes uncontrolled proliferation and clonal expansion of the infected cell. The intracellular schizont utilizes the host cell’s own mitotic machinery to ensure its distribution to both daughter cells by associating closely with microtubules (MTs) and incorporating itself within the central spindle. We show that CLASP1, an MT-stabilizing protein that plays important roles in regulating kinetochore-MT attachment and central spindle positioning, is sequestered at the Theileria annulata schizont surface. We used live-cell imaging and immunofluorescence in combination with MT depolymerization assays to demonstrate that CLASP1 binds to the schizont surface in an MT-independent manner throughout the cell cycle and that the recruitment of the related CLASP2 protein to the schizont is MT dependent. By transfecting Theileria-infected cells with a panel of truncation mutants, we found that the kinetochore-binding domain of CLASP1 is necessary and sufficient for parasite localization, revealing that CLASP1 interaction with the parasite occurs independently of EB1. We overexpressed the MT-binding domain of CLASP1 in parasitized cells. This exhibited a dominant negative effect on host MT stability and led to altered parasite size and morphology, emphasizing the importance of proper MT dynamics for Theileria partitioning during host cell division. Using coimmunoprecipitation, we demonstrate that CLASP1 interacts, directly or indirectly, with the schizont membrane protein p104, and we describe for the first time TA03615, a Theileria protein which localizes to the parasite surface, where it has the potential to participate in parasite-host interactions. IMPORTANCE T. annulata, the only eukaryote known to be capable of transforming another eukaryote, is a widespread parasite of veterinary importance that puts 250 million cattle at risk worldwide

  12. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.

    PubMed

    Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques

    2015-12-29

    Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the

  13. Allosteric Regulation of the Hsp90 Dynamics and Stability by Client Recruiter Cochaperones: Protein Structure Network Modeling

    PubMed Central

    Blacklock, Kristin; Verkhivker, Gennady M.

    2014-01-01

    The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific

  14. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.

    PubMed

    Blacklock, Kristin; Verkhivker, Gennady M

    2014-01-01

    The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific

  15. Impact of different wort boiling temperatures on the beer foam stabilizing properties of lipid transfer protein 1.

    PubMed

    Van Nierop, Sandra N E; Evans, David E; Axcell, Barry C; Cantrell, Ian C; Rautenbach, Marina

    2004-05-19

    Beer consumers demand satisfactory and consistent foam stability; thus, it is a high priority for brewers. Beer foam is stabilized by the interaction between certain beer proteins, including lipid transfer protein 1 (LTP1), and isomerized hop alpha-acids, but destabilized by lipids. In this study it was shown that the wort boiling temperature during the brewing process was critical in determining the final beer LTP1 content and conformation. LTP1 levels during brewing were measured by an LTP1 ELISA, using antinative barley LTP1 polyclonal antibodies. It was observed that the higher wort boiling temperatures ( approximately 102 degrees C), resulting from low altitude at sea level, reduced the final beer LTP1 level to 2-3 microg/mL, whereas the lower wort boiling temperatures ( approximately 96 degrees C), resulting from higher altitudes (1800 m), produced LTP1 levels between 17 and 35 microg/mL. Low levels of LTP1 in combination with elevated levels of free fatty acids (FFA) resulted in poor foam stability, whereas beer produced with low levels of LTP1 and FFA had satisfactory foam stability. Previous studies indicated the need for LTP1 denaturing to improve its foam stabilizing properties. However, the results presented here show that LTP1 denaturation reduces its ability to act as a binding protein for foam-damaging FFA. These investigations suggest that wort boiling temperature is an important factor in determining the level and conformation of LTP1, thereby favoring satisfactory beer foam stability.

  16. Maximum likelihood identification and optimal input design for identifying aircraft stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Stepner, D. E.; Mehra, R. K.

    1973-01-01

    A new method of extracting aircraft stability and control derivatives from flight test data is developed based on the maximum likelihood cirterion. It is shown that this new method is capable of processing data from both linear and nonlinear models, both with and without process noise and includes output error and equation error methods as special cases. The first application of this method to flight test data is reported for lateral maneuvers of the HL-10 and M2/F3 lifting bodies, including the extraction of stability and control derivatives in the presence of wind gusts. All the problems encountered in this identification study are discussed. Several different methods (including a priori weighting, parameter fixing and constrained parameter values) for dealing with identifiability and uniqueness problems are introduced and the results given. The method for the design of optimal inputs for identifying the parameters of linear dynamic systems is also given. The criterion used for the optimization is the sensitivity of the system output to the unknown parameters. Several simple examples are first given and then the results of an extensive stability and control dervative identification simulation for a C-8 aircraft are detailed.

  17. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins.

    PubMed

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A; Kruse, Andrew C; Nurva, Shailika; Loland, Claus J; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H

    2010-12-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.

  18. Identification of kinetically hot residues in proteins.

    PubMed Central

    Demirel, M. C.; Atilgan, A. R.; Jernigan, R. L.; Erman, B.; Bahar, I.

    1998-01-01

    A number of recent studies called attention to the presence of kinetically important residues underlying the formation and stabilization of folding nuclei in proteins, and to the possible existence of a correlation between conserved residues and those participating in the folding nuclei. Here, we use the Gaussian network model (GNM), which recently proved useful in describing the dynamic characteristics of proteins for identifying the kinetically hot residues in folded structures. These are the residues involved in the highest frequency fluctuations near the native state coordinates. Their high frequency is a manifestation of the steepness of the energy landscape near their native state positions. The theory is applied to a series of proteins whose kinetically important residues have been extensively explored: chymotrypsin inhibitor 2, cytochrome c, and related C2 proteins. Most of the residues previously pointed out to underlie the folding process of these proteins, and to be critically important for the stabilization of the tertiary fold, are correctly identified, indicating a correlation between the kinetic hot spots and the early forming structural elements in proteins. Additionally, a strong correlation between kinetically hot residues and loci of conserved residues is observed. Finally, residues that may be important for the stability of the tertiary structure of CheY are proposed. PMID:9865946

  19. Alcohol oxidase protein mediated in-situ synthesized and stabilized gold nanoparticles for developing amperometric alcohol biosensor.

    PubMed

    Chinnadayyala, Somasekhar R; Santhosh, Mallesh; Singh, Naveen K; Goswami, Pranab

    2015-07-15

    A simple one step method for the alcohol oxidases (AOx) protein mediated synthesis of gold nano-particles (AuNPs) in alkaline (pH 8.5) condition with simultaneous stabilization of the nanoparticles on the AOx protein surface under native environment has been developed. The formation of the AOx conjugated AuNPs was confirmed by advanced analytical and spectroscopic techniques. The significant increase in zeta potential (ζ) value of -57mV for the synthesized AOx-AuNPs conjugate from the AOx (pI 4.5) protein (ζ, -30mV) implied good stability of the in-situ synthesized nano-conjugate. The AOx-AuNPs conjugate showed steady stability in alkaline (upto pH 8.5) and NaCl (up to 10(-1)M) solutions. The efficiency (Kcat/Km) of the AuNP conjugated AOx was increased by 18% from the free enzyme confirming the activating role of the surface stabilized AuNPs for the enzyme. The AuNPs-AOx conjugate was encapsulated with polyaniline (PANI) synthesized by oxidative polymerization of aniline using H2O2 generated in-situ from the AOx catalysed oxidation of alcohol. The PANI encapsulated AuNPs-AOx assembly was stabilized on a glassy carbon electrode (GCE) by chitosan-Nafion mixture and then utilized the fabricated bioelectrode for detection of alcohol amperometrically using H2O2 as redox indicator at +0.6V. The constructed biosensor showed high operational stability (6.3% loss after 25 measurements), wide linear detection range of 10µM-4.7mM (R(2)=0.9731), high sensitivity of 68.3±0.35µAmM(-1) and low detection limit of 7±0.027µM for ethanol. The fabricated bioelectrode was successfully used for the selective determination of alcohol in beverage samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A facile approach to the isolation of proteins in Ferula asafoetida and their enzyme stabilizing, anti-microbial and anti-oxidant activity.

    PubMed

    Chandran, Sanjana; Sakthivel, Meenakumari; Thirumavalavan, Munusamy; Thota, Jagadeshwar Reddy; Mariappanadar, Vairamani; Raman, Pachaiappan

    2017-09-01

    The objective of the present study was to identify the proteome pattern, isolate and study the functions of selective proteins from Ferula asafoetida root exudate using chromatographic techniques. The root exudate proteins were fractionated using ion-exchange and gel filtration chromatography. A range of bioactive protein fractions were then separated in sufficient quantity which is the focus of this study. Based on studies, here we report three main proteins with molecular weights 14kDa, 27kDa, and 39kDa. The biological and pharmacological activities of both purified and unpurified proteins obtained were extensively studied to understand their significance. The study revelaed that 27kDa protein interestingly stabilized trypsin activity in 24h of time and retained about 64% of the enzyme activity. Analyses confirmed 40°C and pH 8.0 are the optimum temperature and pH respectively. The 39kDa protein remarkably increased the activity of chymotrypsin and the 14kDa protein showed anti-bacterial activity against Pseudomonas aeruginosa. Invariably all of the three purified proteins showed enhanced anti-oxidant activity. In conclusion, results here obtained suggested that the primary metabolites (proteins) in asafoetida are mainly responsible for its versatile biological and pharmacological activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Actin-Binding Protein Requirement for Cortical Stability and Efficient Locomotion

    NASA Astrophysics Data System (ADS)

    Cunningham, C. Casey; Gorlin, Jed B.; Kwiatkowski, David J.; Hartwig, John H.; Janmey, Paul A.; Randolph Byers, H.; Stossel, Thomas P.

    1992-01-01

    Three unrelated tumor cell lines derived from human malignant melanomas lack actin-binding protein (ABP), which cross-links actin filaments in vitro and connects these filaments to plasma membrane glycoproteins. The ABP-deficient cells have impaired locomotion and display circumferential blebbing of the plasma membrane. Expression of ABP in one of the lines after transfection restored translocational motility and reduced membrane blebbing. These findings establish that ABP functions to stabilize cortical actin in vivo and is required for efficient cell locomotion.

  2. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties.

    PubMed

    Del Caño, Rafael; Mateus, Lucia; Sánchez-Obrero, Guadalupe; Sevilla, José Manuel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2017-11-01

    The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A Recombinant Saccharomyces cerevisiae Strain Overproducing Mannoproteins Stabilizes Wine against Protein Haze▿

    PubMed Central

    Gonzalez-Ramos, Daniel; Cebollero, Eduardo; Gonzalez, Ramon

    2008-01-01

    Stabilization against protein haze was one of the first positive properties attributed to yeast mannoproteins in winemaking. In previous work we demonstrated that deletion of KNR4 leads to increased mannoprotein release in laboratory Saccharomyces cerevisiae strains. We have now constructed strains with KNR4 deleted in two different industrial wine yeast backgrounds. This required replacement of two and three alleles of KNR4 for the EC1118 and T73-4 backgrounds, respectively, and the use of three different selection markers for yeast genetic transformation. The actual effect of the genetic modification was dependent on both the genetic background and the culture conditions. The fermentation performance of T73-4 derivatives was clearly impaired, and these derivatives did not contribute to the protein stability of the wine, even though they showed increased mannoprotein release in vitro. In contrast, the EC1118 derivative with both alleles of KNR4 deleted released increased amounts of mannoproteins both in vitro and during wine fermentation assays, and the resulting wines were consistently less susceptible to protein haze. The fermentation performance of this strain was slightly impaired, but only with must with a very high sugar content. These results pave the way for the development of new commercial strains with the potential to improve several mannoprotein-related quality and technological parameters of wine. PMID:18606802

  4. Mechanical stability analysis of the protein L immunoglobulin-binding domain by full alanine screening using molecular dynamics simulations.

    PubMed

    Glyakina, Anna V; Likhachev, Ilya V; Balabaev, Nikolay K; Galzitskaya, Oxana V

    2015-03-01

    This article is the first to study the mechanical properties of the immunoglobulin-binding domain of protein L (referred to as protein L) and its mutants at the atomic level. In the structure of protein L, each amino acid residue (except for alanines and glycines) was replaced sequentially by alanine. Thus, 49 mutants of protein L were obtained. The proteins were stretched at their termini at constant velocity using molecular dynamics simulations in water, i.e. by forced unfolding. 19 out of 49 mutations resulted in a large decrease of mechanical protein stability. These amino acids were affecting either the secondary structure (11 mutations) or loop structures (8 mutations) of protein L. Analysis of mechanical unfolding of the generated protein that has the same topology as protein L but consists of only alanines and glycines allows us to suggest that the mechanical stability of proteins, and specifically protein L, is determined by interactions between certain amino acid residues, although the unfolding pathway depends on the protein topology. This insight can now be used to modulate the mechanical properties of proteins and their unfolding pathways in the desired direction for using them in various biochips, biosensors and biomaterials for medicine, industry, and household purposes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Predicting protein thermal stability changes upon point mutations using statistical potentials: Introducing HoTMuSiC.

    PubMed

    Pucci, Fabrizio; Bourgeas, Raphaël; Rooman, Marianne

    2016-03-18

    The accurate prediction of the impact of an amino acid substitution on the thermal stability of a protein is a central issue in protein science, and is of key relevance for the rational optimization of various bioprocesses that use enzymes in unusual conditions. Here we present one of the first computational tools to predict the change in melting temperature ΔTm upon point mutations, given the protein structure and, when available, the melting temperature Tm of the wild-type protein. The key ingredients of our model structure are standard and temperature-dependent statistical potentials, which are combined with the help of an artificial neural network. The model structure was chosen on the basis of a detailed thermodynamic analysis of the system. The parameters of the model were identified on a set of more than 1,600 mutations with experimentally measured ΔTm. The performance of our method was tested using a strict 5-fold cross-validation procedure, and was found to be significantly superior to that of competing methods. We obtained a root mean square deviation between predicted and experimental ΔTm values of 4.2 °C that reduces to 2.9 °C when ten percent outliers are removed. A webserver-based tool is freely available for non-commercial use at soft.dezyme.com.

  6. Preheated milk proteins improve the stability of grape skin anthocyanins extracts.

    PubMed

    He, Zhiyong; Xu, Mingzhu; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-11-01

    The effects of casein and whey proteins, preheated at 40-100°C and 45-60°C for 15min, respectively, on color loss and anthocyanins degradation in grape skin anthocyanins extracts (GSAE) at pH 3.2 and 6.3 were evaluated. Preheating milk proteins effectively improved their protective effects against color loss and anthocyanins degradation in GSAE solutions during thermal treatment (at 80°C for 2h), H2O2 oxidation (0.005% H2O2 for 1h) and illumination (at 5000lx for 5 d). Whey proteins and casein, preheated at 50°C and 60°C for 15min, respectively, demonstrated the optimal protective effects. However, preheated whey proteins had a better protective effect on the thermal, oxidation and photo stability of GSAE, decreasing the thermal, oxidative and photo degradation of anthocyanins in GSAE 71.59%, 32.22% and 56.92% at pH 3.2 and 54.91%, 22.89% and 46.68% at pH 6.3, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Mitochondrion-Targeted PENTATRICOPEPTIDE REPEAT78 Protein Is Required for nad5 Mature mRNA Stability and Seed Development in Maize.

    PubMed

    Zhang, Ya-Feng; Suzuki, Masaharu; Sun, Feng; Tan, Bao-Cai

    2017-10-09

    Pentatricopepetide repeat (PPR) proteins are a large family of RNA-binding proteins involved in RNA metabolism in plant organelles. Although many PPR proteins have been functionally studied, few of them are identified with a function in mitochondrial RNA stability. By using a reverse genetic approach, we characterized the role of the mitochondrion-targeted PPR78 protein in nad5 mature mRNA stability and maize (Zea mays) seed development. Loss of PPR78 function leads to a dramatic reduction in the steady-state level of mitochondrial nad5 mature mRNA, blocks the assembly of complex I in the electron transport chain, and causes an arrest in embryogenesis and endosperm development. Characterization of a second strong allele confirms the function of PPR78 in nad5 mRNA accumulation and maize seed development. The generation of mature nad5 requires the assembly of three distinct precursor RNAs via trans-splicing reactions, and the accumulation of nad5T1 precursor is reduced in the ppr78 mutants. However, it is the instability of mature nad5 rather than nad5T1 causing loss of the full-length nad5 transcript, and degradation of nad5 losing both translation start and stop codons is enriched in the mutant. Our data imply the assembly of mature nad5 mRNA precedes the protection of PPR78. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  8. Discriminating between stabilizing and destabilizing protein design mutations via recombination and simulation.

    PubMed

    Johnson, Lucas B; Gintner, Lucas P; Park, Sehoo; Snow, Christopher D

    2015-08-01

    Accuracy of current computational protein design (CPD) methods is limited by inherent approximations in energy potentials and sampling. These limitations are often used to qualitatively explain design failures; however, relatively few studies provide specific examples or quantitative details that can be used to improve future CPD methods. Expanding the design method to include a library of sequences provides data that is well suited for discriminating between stabilizing and destabilizing design elements. Using thermophilic endoglucanase E1 from Acidothermus cellulolyticus as a model enzyme, we computationally designed a sequence with 60 mutations. The design sequence was rationally divided into structural blocks and recombined with the wild-type sequence. Resulting chimeras were assessed for activity and thermostability. Surprisingly, unlike previous chimera libraries, regression analysis based on one- and two-body effects was not sufficient for predicting chimera stability. Analysis of molecular dynamics simulations proved helpful in distinguishing stabilizing and destabilizing mutations. Reverting to the wild-type amino acid at destabilized sites partially regained design stability, and introducing predicted stabilizing mutations in wild-type E1 significantly enhanced thermostability. The ability to isolate stabilizing and destabilizing elements in computational design offers an opportunity to interpret previous design failures and improve future CPD methods. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Effect of the geometry of confining media on the stability and folding rate of α -helix proteins

    NASA Astrophysics Data System (ADS)

    Wang, Congyue; Piroozan, Nariman; Javidpour, Leili; Sahimi, Muhammad

    2018-05-01

    Protein folding in confined media has attracted wide attention over the past 15 years due to its importance to both in vivo and in vitro applications. It is generally believed that protein stability increases by decreasing the size of the confining medium, if the medium's walls are repulsive, and that the maximum folding temperature in confinement is in a pore whose size D0 is only slightly larger than the smallest dimension of a protein's folded state. Until recently, the stability of proteins in pores with a size very close to that of the folded state has not received the attention it deserves. In a previous paper [L. Javidpour and M. Sahimi, J. Chem. Phys. 135, 125101 (2011)], we showed that, contrary to the current theoretical predictions, the maximum folding temperature occurs in larger pores for smaller α-helices. Moreover, in very tight pores, the free energy surface becomes rough, giving rise to a new barrier for protein folding close to the unfolded state. In contrast to unbounded domains, in small nanopores proteins with an α-helical native state that contain the β structures are entropically stabilized implying that folding rates decrease notably and that the free energy surface becomes rougher. In view of the potential significance of such results to interpretation of many sets of experimental data that could not be explained by the current theories, particularly the reported anomalously low rates of folding and the importance of entropic effects on proteins' misfolded states in highly confined environments, we address the following question in the present paper: To what extent the geometry of a confined medium affects the stability and folding rates of proteins? Using millisecond-long molecular dynamics simulations, we study the problem in three types of confining media, namely, cylindrical and slit pores and spherical cavities. Most importantly, we find that the prediction of the previous theories that the dependence of the maximum folding

  10. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes.

    PubMed

    Sittka, Alexandra; Sharma, Cynthia M; Rolle, Katarzyna; Vogel, Jörg

    2009-01-01

    The bacterial Sm-like protein, Hfq, is a key factor for the stability and function of small non-coding RNAs (sRNAs) in Escherichia coli. Homologues of this protein have been predicted in many distantly related organisms yet their functional conservation as sRNA-binding proteins has not entirely been clear. To address this, we expressed in Salmonella the Hfq proteins of two eubacteria (Neisseria meningitides, Aquifex aeolicus) and an archaeon (Methanocaldococcus jannaschii), and analyzed the associated RNA by deep sequencing. This in vivo approach identified endogenous Salmonella sRNAs as a major target of the foreign Hfq proteins. New Salmonella sRNA species were also identified, and some of these accumulated specifically in the presence of a foreign Hfq protein. In addition, we observed specific RNA processing defects, e.g., suppression of precursor processing of SraH sRNA by Methanocaldococcus Hfq, or aberrant accumulation of extracytoplasmic target mRNAs of the Salmonella GcvB, MicA or RybB sRNAs. Taken together, our study provides evidence of a conserved inherent sRNA-binding property of Hfq, which may facilitate the lateral transmission of regulatory sRNAs among distantly related species. It also suggests that the expression of heterologous RNA-binding proteins combined with deep sequencing analysis of RNA ligands can be used as a molecular tool to dissect individual steps of RNA metabolism in vivo.

  11. Microscopic significance of hydrophobic residues in the protein-stabilizing effect of trimethylamine N-oxide (TMAO).

    PubMed

    Yang, Yanmei; Mu, Yuguang; Li, Weifeng

    2016-08-10

    Although it is widely known that trimethylamine N-oxide (TMAO) stabilizes the native structure of proteins, the underlying mechanism of its action is poorly documented. To obtain an in-depth understanding of this important osmolyte molecule, we conducted large-scale molecular dynamic simulations of model proteins, namely, wild-type villin headpiece protein HP35 and its doubly norleucine-substituent mutant (Lys24/29Nle) HP35NN in pure urea and urea + TMAO mixed solutions for direct comparison. From extensive sampling, the protective capability of TMAO was well captured in the simulations, where HP35NN demonstrated a significantly more stable native structure than HP35 in the presence of TMAO, whereas in pure urea solution, the former denatured in a shorter time. These findings highlight the importance of the two norleucine residues that regulates the interactions of proteins with urea and TMAO. By accessing the hydration and conformational dynamics of both proteins, we were able to directly probe how TMAO compensates the denaturing effect of urea at the atomic level. The accumulation of urea around hydrophobic residues is clearly suppressed, which indicates that the van der Waals interactions between urea and proteins are weakened by TMAO. As a consequence, the hydrophobic core of protein is preferentially protected by TMAO against urea attack. Although the hydrogen bonds (H-bonds) between proteins and urea are suppressed by TMAO, this plays a very minor role than expected in the enhanced protein stability. In addition, TMAO was found to be always excluded from the protein surface and incapable of forming H-bonds with proteins. Thus, the present study provides solid evidence to support the indirect mechanism of TMAO counteracting the denaturing effects of urea.

  12. Identifying Disease Associated miRNAs Based on Protein Domains.

    PubMed

    Qin, Gui-Min; Li, Rui-Yi; Zhao, Xing-Ming

    2016-01-01

    MicroRNAs (miRNAs) are a class of small endogenous non-coding genes, acting as regulators in the post-transcriptional processes. Recently, the miRNAs are found to be widely involved in different types of diseases. Therefore, the identification of disease associated miRNAs can help understand the mechanisms that underlie the disease and identify new biomarkers. However, it is not easy to identify the miRNAs related to diseases due to its extensive involvements in various biological processes. In this work, we present a new approach to identify disease associated miRNAs based on domains, the functional and structural blocks of proteins. The results on real datasets demonstrate that our method can effectively identify disease related miRNAs with high precision.

  13. Empirical Methods for Identifying Specific Peptide-protein Interactions for Smart Reagent Development

    DTIC Science & Technology

    2012-09-01

    orientated immobilization of proteins,” Biotechnology Progress, 22(2), 401-405 ( 2006 ). [26] J. M. Kogot, D. A. Sarkes , I. Val-Addo et al...Empirical Methods for Identifying Specific Peptide-protein Interactions for Smart Reagent Development by Joshua M. Kogot, Deborah A. Sarkes ...Peptide-protein Interactions for Smart Reagent Development Joshua M. Kogot, Deborah A. Sarkes , Dimitra N. Stratis-Cullum, and Paul M

  14. Long-term stability of sodium caseinate-stabilized nanoemulsions.

    PubMed

    Yerramilli, Manispuritha; Ghosh, Supratim

    2017-01-01

    Oil-in-water (5 wt%) nanoemulsions were prepared with different concentration (2.5-10 wt%) of sodium caseinate as a sole emulsifier and their long-term storage stability was investigated for 6 months. Previous studies associated with sodium caseinate looked only into nanoemulsion formation; hence the challenges with long-term stability were not addressed. All nanoemulsions displayed an average droplet size <200 nm, which remained unchanged over 6 months. However, all of them displayed rapid creaming due to unabsorbed protein induced depletion flocculation, whose extent increased with protein concentration, although the cream layer formed was weak and re-dispersible upon gentle mixing. Microstructural analysis of the cream layer showed compaction of flocculated nanodroplet network with time leaving the aqueous phase out. Calculation of depletion interaction energy showed an increase in inter-droplet attraction with protein concentration and decrease with a reduction in droplet size, making the nanoemulsions more resistant to flocculation than conventional emulsions. This work aids in understanding the dependence of protein concentration on long-term stability of sodium caseinate-stabilized nanoemulsions.

  15. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    PubMed Central

    Chae, Pil Seok; Rasmussen, Søren G. F.; Rana, Rohini; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A.; Kruse, Andrew C.; Nurva, Shailika; Loland, Claus J.; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G.; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H.

    2011-01-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces displayed by native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each of which is built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family display favorable behavior relative to conventional detergents, as tested on multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied. PMID:21037590

  16. Role of Nucleoid Associated Proteins in Stabilizing Supercoils

    NASA Astrophysics Data System (ADS)

    Dahlke, Katelyn; Sing, Charles

    Nucleoid associated proteins (NAPs) play an important role in prokaryotic cells by manipulating the shape and structure of the DNA. These NAPs act by bending or twisting DNA, and there are indications that NAPs bind preferentially to DNA that is already bent or twisted. We hypothesize that these binding behaviors strongly impact the stability and structure of DNA. We use coarse-grained simulation of NAPs and DNA that allow us to achieve the time and length scales where DNA supercoiling occurs. Supercoils are twist-induced structures that are the result of relaxing highly-twisted DNA by inducing higher degrees of bending and writhe. We are able to reproduce experimental observations, such as the extension of a DNA molecule as a function of force, linking number, and NAP concentration. Building upon these test cases, we allow the binding and unbinding energy of the simulated NAPs to be a function of the bending angle of the DNA at the site of binding (ΔEB (θ)). Consequently, NAPs localize along the contour of the supercoil, and this binding preference is capable of stabilizing supercoils that form within the nucleoid. National Institute Of General Medical Sciences of the National Institutes of Health under Award Number T32GM070421.

  17. Use of Phage Display to Identify Novel Mineralocorticoid Receptor-Interacting Proteins

    PubMed Central

    Yang, Jun; Fuller, Peter J.; Morgan, James; Shibata, Hirotaka; McDonnell, Donald P.; Clyne, Colin D.

    2014-01-01

    The mineralocorticoid receptor (MR) plays a central role in salt and water homeostasis via the kidney; however, inappropriate activation of the MR in the heart can lead to heart failure. A selective MR modulator that antagonizes MR signaling in the heart but not the kidney would provide the cardiovascular protection of current MR antagonists but allow for normal electrolyte balance. The development of such a pharmaceutical requires an understanding of coregulators and their tissue-selective interactions with the MR, which is currently limited by the small repertoire of MR coregulators described in the literature. To identify potential novel MR coregulators, we used T7 phage display to screen tissue-selective cDNA libraries for MR-interacting proteins. Thirty MR binding peptides were identified, from which three were chosen for further characterization based on their nuclear localization and their interaction with other MR-interacting proteins or, in the case of x-ray repair cross-complementing protein 6, its known status as an androgen receptor coregulator. Eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 modulated MR-mediated transcription in a ligand-, cell- and/or promoter-specific manner and colocalized with the MR upon agonist treatment when imaged using immunofluorescence microscopy. These results highlight the utility of phage display for rapid and sensitive screening of MR binding proteins and suggest that eukaryotic elongation factor 1A1, structure-specific recognition protein 1, and x-ray repair cross-complementing protein 6 may be potential MR coactivators whose activity is dependent on the ligand, cellular context, and target gene promoter. PMID:25000480

  18. Metrics that differentiate the origins of osmolyte effects on protein stability: a test of the surface tension proposal.

    PubMed

    Auton, Matthew; Ferreon, Allan Chris M; Bolen, D Wayne

    2006-09-01

    Osmolytes that are naturally selected to protect organisms against environmental stresses are known to confer stability to proteins via preferential exclusion from protein surfaces. Solvophobicity, surface tension, excluded volume, water structure changes and electrostatic repulsion are all examples of forces proposed to account for preferential exclusion and the ramifications exclusion has on protein properties. What has been lacking is a systematic way of determining which force(s) is(are) responsible for osmolyte effects. Here, we propose the use of two experimental metrics for assessing the abilities of various proposed forces to account for osmolyte-mediated effects on protein properties. Metric 1 requires prediction of the experimentally determined ability of the osmolyte to bring about folding/unfolding resulting from the application of the force in question (i.e. prediction of the m-value of the protein in osmolyte). Metric 2 requires prediction of the experimentally determined ability of the osmolyte to contract or expand the Stokes radius of the denatured state resulting from the application of the force. These metrics are applied to test separate claims that solvophobicity/solvophilicity and surface tension are driving forces for osmolyte-induced effects on protein stability. The results show clearly that solvophobic/solvophilic forces readily account for protein stability and denatured state dimensional effects, while surface tension alone fails to do so. The agreement between experimental and predicted m-values involves both positive and negative m-values for three different proteins, and as many as six different osmolytes, illustrating that the tests are robust and discriminating. The ability of the two metrics to distinguish which forces account for the effects of osmolytes on protein properties and which do not, provides a powerful means of investigating the origins of osmolyte-protein effects.

  19. Cellular uptake of beta-carotene from protein stabilized solid lipid nano-particles prepared by homogenization-evaporation method

    USDA-ARS?s Scientific Manuscript database

    Using a homogenization-evaporation method, beta-carotene (BC) loaded nano-particles were prepared with different ratios of food-grade sodium caseinate (SC), whey protein isolate (WPI), or soy protein isolate (SPI) to BC and evaluated for their physiochemical stability, in vitro cytotoxicity, and cel...

  20. Protein assembly and heat stability in developing thylakoid membranes during greening

    PubMed Central

    Kóta, Zoltán; Horváth, László I.; Droppa, Magdolna; Horváth, Gábor; Farkas, Tibor; Páli, Tibor

    2002-01-01

    The development of the thylakoid membrane was studied during illumination of dark-grown barley seedlings by using biochemical methods, and Fourier transform infrared and spin label electron paramagnetic resonance spectroscopic techniques. Correlated, gross changes in the secondary structure of membrane proteins, conformation, composition, and dynamics of lipid acyl chains, SDS/PAGE pattern, and thermally induced structural alterations show that greening is accompanied with the reorganization of membrane protein assemblies and the protein–lipid interface. Changes in overall membrane fluidity and noncovalent protein–lipid interactions are not monotonic, despite the monotonic accumulation of chlorophyll, LHCII [light-harvesting chlorophyll a/b-binding (polypeptides) associated with photosystem II] apoproteins, and 18:3 fatty acids that follow a similar time course with highest rates between 12–24 h of greening. The 18:3 fatty acid content increases 2.8-fold during greening. This appears to both compensate for lipid immobilization by membrane proteins and facilitate packing of larger protein assemblies. The increase in the amount of protein-solvating immobile lipids, which reaches a maximum at 12 h, is caused by 40% decrease in the membranous mean diameter of protein assemblies at constant protein/lipid mass ratio. Alterations in the SDS/PAGE pattern are most significant between 6–24 h. The size of membrane protein assemblies increases ≈4.5-fold over the 12–48-h period, likely caused by the 2-fold gain in LHCII apoproteins. The thermal stability of thylakoid membrane proteins increases monotonically, as detected by an increasing temperature of partial protein unfolding during greening. Our data suggest that a structural coupling between major protein and lipid components develops during greening. This protein–lipid interaction is required for the development and protection of thylakoid membrane protein assemblies. PMID:12213965

  1. A conserved protein interaction interface on the type 5 G protein beta subunit controls proteolytic stability and activity of R7 family regulator of G protein signaling proteins.

    PubMed

    Porter, Morwenna Y; Xie, Keqiang; Pozharski, Edwin; Koelle, Michael R; Martemyanov, Kirill A

    2010-12-24

    Regulators of G protein signaling (RGS) proteins of the R7 subfamily limit signaling by neurotransmitters in the brain and by light in the retina. They form obligate complexes with the Gβ5 protein that are subject to proteolysis to control their abundance and alter signaling. The mechanisms that regulate this proteolysis, however, remain unclear. We used genetic screens to find mutations in Gβ5 that selectively destabilize one of the R7 RGS proteins in Caenorhabditis elegans. These mutations cluster at the binding interface between Gβ5 and the N terminus of R7 RGS proteins. Equivalent mutations within mammalian Gβ5 allowed the interface to still bind the N-terminal DEP domain of R7 RGS proteins, and mutant Gβ5-R7 RGS complexes initially formed in cells but were then rapidly degraded by proteolysis. Molecular dynamics simulations suggest the mutations weaken the Gβ5-DEP interface, thus promoting dynamic opening of the complex to expose determinants of proteolysis known to exist on the DEP domain. We propose that conformational rearrangements at the Gβ5-DEP interface are key to controlling the stability of R7 RGS protein complexes.

  2. Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations

    PubMed Central

    Porto, Markus; Bastolla, Ugo

    2010-01-01

    Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction. PMID:20463869

  3. Stability of α-tocopherol in freeze-dried sugar-protein-oil emulsion solids as affected by water plasticization and sugar crystallization.

    PubMed

    Zhou, Yankun; Roos, Yrjö H

    2012-08-01

    Water plasticization of sugar-protein encapsulants may cause structural changes and decrease the stability of encapsulated compounds during storage. The retention of α-tocopherol in freeze-dried lactose-milk protein-oil, lactose-soy protein-oil, trehalose-milk protein-oil, and trehalose-soy protein-oil systems at various water activities (a(w)) and in the presence of sugar crystallization was studied. Water sorption was determined gravimetrically. Glass transition and sugar crystallization were studied using differential scanning calorimetry and the retention of α-tocopherol spectrophotometrically. The loss of α-tocopherol followed lipid oxidation, but the greatest stability was found at 0 a(w) presumably because of α-tocopherol immobilization at interfaces and consequent reduction in antioxidant activity. A considerable loss of α-tocopherol coincided with sugar crystallization. The results showed that glassy matrices may protect encapsulated α-tocopherol; however, its role as an antioxidant at increasing aw accelerated its loss. Sugar crystallization excluded the oil-containing α-tocopherol from the protecting matrices and exposed it to surroundings, which decreased the stability of α-tocopherol.

  4. Folding and stability of helical bundle proteins from coarse-grained models.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2013-07-01

    We develop a coarse-grained model where solvent is considered implicitly, electrostatics are included as short-range interactions, and side-chains are coarse-grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side-chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics. Copyright © 2013 Wiley Periodicals, Inc.

  5. Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins

    PubMed Central

    Valéry, Céline; Deville-Foillard, Stéphanie; Lefebvre, Christelle; Taberner, Nuria; Legrand, Pierre; Meneau, Florian; Meriadec, Cristelle; Delvaux, Camille; Bizien, Thomas; Kasotakis, Emmanouil; Lopez-Iglesias, Carmen; Gall, Andrew; Bressanelli, Stéphane; Le Du, Marie-Hélène; Paternostre, Maïté; Artzner, Franck

    2015-01-01

    External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. PMID:26190377

  6. Proteomic profiling of human plasma exosomes identifies PPAR{gamma} as an exosome-associated protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looze, Christopher; Yui, David; Leung, Lester

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatorymore » cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPAR{gamma} as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.« less

  7. Decoding the Effect of Isobaric Substitutions on Identifying Missing Proteins and Variant Peptides in Human Proteome.

    PubMed

    Choong, Wai-Kok; Lih, Tung-Shing Mamie; Chen, Yu-Ju; Sung, Ting-Yi

    2017-12-01

    To confirm the existence of missing proteins, we need to identify at least two unique peptides with length of 9-40 amino acids of a missing protein in bottom-up mass-spectrometry-based proteomic experiments. However, an identified unique peptide of the missing protein, even identified with high level of confidence, could possibly coincide with a peptide of a commonly observed protein due to isobaric substitutions, mass modifications, alternative splice isoforms, or single amino acid variants (SAAVs). Besides unique peptides of missing proteins, identified variant peptides (SAAV-containing peptides) could also alternatively map to peptides of other proteins due to the aforementioned issues. Therefore, we conducted a thorough comparative analysis on data sets in PeptideAtlas Tiered Human Integrated Search Proteome (THISP, 2017-03 release), including neXtProt (2017-01 release), to systematically investigate the possibility of unique peptides in missing proteins (PE2-4), unique peptides in dubious proteins, and variant peptides affected by isobaric substitutions, causing doubtful identification results. In this study, we considered 11 isobaric substitutions. From our analysis, we found <5% of the unique peptides of missing proteins and >6% of variant peptides became shared with peptides of PE1 proteins after isobaric substitutions.

  8. Ligand induced stabilization of the melting temperature of the HSV-1 single-strand DNA binding protein using the thermal shift assay.

    PubMed

    Rupesh, Kanchi Ravi; Smith, Aaron; Boehmer, Paul E

    2014-11-28

    We have adapted the thermal shift assay to measure the ligand binding properties of the herpes simplex virus-1 single-strand DNA binding protein, ICP8. By measuring SYPRO Orange fluorescence in microtiter plates using a fluorescence-enabled thermal cycler, we have quantified the effects of oligonucleotide ligands on the melting temperature of ICP8. We found that single-stranded oligomers raise the melting temperature of ICP8 in a length- and concentration-dependent manner, ranging from 1°C for (dT)5 to a maximum of 9°C with oligomers ⩾10 nucleotides, with an apparent Kd of <1μM for (dT)20. Specifically, the results indicate that ICP8 is capable of interacting with oligomers as short as 5 nucleotides. Moreover, the observed increases in melting temperature of up to 9°C, indicates that single-strand DNA binding significantly stabilizes the structure of ICP8. This assay may be applied to investigate the ligand binding proteins of other single-strand DNA binding proteins and used as a high-throughput screen to identify compounds with therapeutic potential that inhibit single-strand DNA binding. As proof of concept, the single-strand DNA binding agent ciprofloxacin reduces the ligand induced stabilization of the melting temperature of ICP8 in a dose-dependent manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Glycosylation Changes in Serum Proteins Identify Patients with Pancreatic Cancer.

    PubMed

    Drabik, Anna; Bodzon-Kulakowska, Anna; Suder, Piotr; Silberring, Jerzy; Kulig, Jan; Sierzega, Marek

    2017-04-07

    After more than a decade of biomarker discovery using advanced proteomic and genomic approaches, very few biomarkers have been involved in clinical diagnostics. Most candidate biomarkers are focused on the protein component. Targeting post-translational modifications (PTMs) in combination with protein sequences will provide superior diagnostic information with regards to sensitivity and specificity. Glycosylation is one of the most common and functionally important PTMs. It plays a central role in many biological processes, including protein folding, host-pathogen interactions, immune response, and inflammation. Cancer-associated aberrant glycosylation has been identified in various types of cancer. Expression of cancer-specific glycan epitopes represents an excellent opportunity for diagnostics and potentially specific detection of tumors. Here, we report four proteins (LIFR, CE350, VP13A, HPT) found in sera from pancreatic cancer patients carrying aberrant glycan structures as compared to those of controls.

  10. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.

    PubMed

    Lee, Chi-Wen; Wang, Hsiu-Jung; Hwang, Jenn-Kang; Tseng, Ching-Ping

    2014-01-01

    Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα-Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K-D49, E96R-D28, E96K-D28, S440K-E70, T231K-D388, and Q277E-D282 was detected, respectively. Reversing the polarity of T231K-D388 to T231D-D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K) generated a melting temperature increase of 15.7°C. Thus, this study demonstrated a novel

  11. The RNA Binding Protein Tudor-SN Is Essential for Stress Tolerance and Stabilizes Levels of Stress-Responsive mRNAs Encoding Secreted Proteins in Arabidopsis[C][W][OA

    PubMed Central

    dit Frey, Nicolas Frei; Muller, Philippe; Jammes, Fabien; Kizis, Dimosthenis; Leung, Jeffrey; Perrot-Rechenmann, Catherine; Bianchi, Michele Wolfe

    2010-01-01

    Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death–associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway. PMID:20484005

  12. Proteins related to the functions of fibroblast-like synoviocytes identified by proteomic analysis.

    PubMed

    Zhang, Hui; Fan, Lie Ying; Zong, Ming; Sun, Li Shan; Lu, Liu

    2012-01-01

    It is well known that the fibroblast-like synoviocytes (FLS) play a key role in pathogenesis of rheumatoid arthritis (RA). This study was performed to separate the differentially expressed proteins of FLS from the patients with RA or osteoarthritis (OA) by two-dimensional electrophoresis (2-DE), and found proteins associated with the functions of FLS by mass spectrometry (MS). Total proteins were extracted and quantified from the primary cultured FLS from patients of RA (n=8) or OA (n=6). Proteins were separated by high-resolution 2-DE, and identified the differentially expressed proteins by MS. Western blot analyses was used to validated the expression of candidate proteins. The mRNA of these proteins was detected by semi-quantitative fluorescent PCR. There are 1147 protein spots from RA and 1324 protein spots from OA showed on 2-DE graphs, respectively. We have selected 84 protein spots for MS analysis, and 27 protein spots were successfully identified. We have found that protein isoaspartyl methyltransferase (PIMT) and pirin (iron-binding nuclear protein, PIR) with lower expression in RA, and thioredoxin 1(Trx-1) only expressed in RA may be associated with functions of FLS. Western Blot confirmed the expression of PIMT and pirin lower in RA, and Trx-1 expressed only in RA. The results of semi-quantitative fluorescent PCR are also consistent with 2-DE graphs. PIMT, pirin and Trx-1 affect the functions of FLS in some style and can be the drug targets of RA.

  13. Stability and immunogenicity of hypoallergenic peanut protein-polyphenol complexes during in vitro pepsin digestion.

    PubMed

    Plundrich, Nathalie J; White, Brittany L; Dean, Lisa L; Davis, Jack P; Foegeding, E Allen; Lila, Mary Ann

    2015-07-01

    Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated during simulated in vitro gastric digestion. When digested with pepsin, the basic subunit of the peanut allergen Ara h 3 was more rapidly hydrolyzed in peanut protein-cranberry or green tea polyphenol complexes compared to uncomplexed peanut flour. Ara h 2 was also hydrolyzed more quickly in the peanut protein-cranberry polyphenol complex than in uncomplexed peanut flour. Peptides from peanut protein-cranberry polyphenol complexes and peanut protein-green tea polyphenol complexes were substantially less immunoreactive (based on their capacity to bind to peanut-specific IgE from patient plasma) compared to peptides from uncomplexed peanut flour. These results suggest that peanut protein-polyphenol complexes may be less immunoreactive passing through the digestive tract in vivo, contributing to their attenuated allergenicity.

  14. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  15. Grafting of functional motifs onto protein scaffolds identified by PDB screening--an efficient route to design optimizable protein binders.

    PubMed

    Tlatli, Rym; Nozach, Hervé; Collet, Guillaume; Beau, Fabrice; Vera, Laura; Stura, Enrico; Dive, Vincent; Cuniasse, Philippe

    2013-01-01

    Artificial miniproteins that are able to target catalytic sites of matrix metalloproteinases (MMPs) were designed using a functional motif-grafting approach. The motif corresponded to the four N-terminal residues of TIMP-2, a broad-spectrum protein inhibitor of MMPs. Scaffolds that are able to reproduce the functional topology of this motif were obtained by exhaustive screening of the Protein Data Bank (PDB) using STAMPS software (search for three-dimensional atom motifs in protein structures). Ten artificial protein binders were produced. The designed proteins bind catalytic sites of MMPs with affinities ranging from 450 nm to 450 μm prior to optimization. The crystal structure of one artificial binder in complex with the catalytic domain of MMP-12 showed that the inter-molecular interactions established by the functional motif in the artificial binder corresponded to those found in the MMP-14-TIMP-2 complex, albeit with some differences in geometry. Molecular dynamics simulations of the ten binders in complex with MMP-14 suggested that these scaffolds may allow partial reproduction of native inter-molecular interactions, but differences in geometry and stability may contribute to the lower affinity of the artificial protein binders compared to the natural protein binder. Nevertheless, these results show that the in silico design method used provides sets of protein binders that target a specific binding site with a good rate of success. This approach may constitute the first step of an efficient hybrid computational/experimental approach to protein binder design. © 2012 The Authors Journal compilation © 2012 FEBS.

  16. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M.; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H.; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-01-01

    Aims Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein–protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. Methods and results We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. Conclusions This study

  17. MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins

    PubMed Central

    Li, Hui; Wang, Rong; Gan, Yong

    2017-01-01

    Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area. PMID:28744305

  18. MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins.

    PubMed

    Wang, Xiao; Li, Hui; Wang, Rong; Zhang, Qiuwen; Zhang, Weiwei; Gan, Yong

    2017-01-01

    Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area.

  19. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution.

    PubMed

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.

  20. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution

    PubMed Central

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Background Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Methods Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. Results The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Conclusion Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions. PMID:23983465

  1. Dramatically stabilizing multiprotein complex structure in the absence of bulk water using tuned Hofmeister salts.

    PubMed

    Han, Linjie; Hyung, Suk-Joon; Ruotolo, Brandon T

    2013-01-01

    . Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures

  2. Improved thermal-stability and mechanical properties of type I collagen by crosslinking with casein, keratin and soy protein isolate using transglutaminase.

    PubMed

    Wu, Xiaomeng; Liu, Yaowei; Liu, Anjun; Wang, Wenhang

    2017-05-01

    The inferior thermal- stability of collagen hinders its extensive application in food industry, including edible packaging. To improve the thermal- stability and mechanical properties of collagen, we attempted to crosslink collagen with some proteins possessing excellent thermal stability (i. e., casein, keratin and soy protein isolate (SPI)). Observed from the SDS- PAGE and particle size distribution, some complexes with higher molecule weight and relative bigger size particle occurred in the protein mixture, especially after TGase crosslinking. Importantly, the crosslinking greatly improved the thermal- stable property of protein complex, especially that of the collagen- casein complex judged from differential scanning calorimetric (DSC). Moreover, the crosslinking enhanced the mechanical properties of the combined films in terms of tensile strength (TS) and elongation at break (EAB). Also, some obvious differences in morphology of proteins before and after TGase crosslinking were observed by scanning electron microscopy (SEM). These impacts of TGase crosslinking with heat- resistant proteins on collagen features were associated with the conformational changes of the protein complex analyzed by Fourier transform infrared spectroscopy (FTIR). In conclusion, TGase crosslinking with higher thermally stable proteins could be an effective method to contribute to collagen' application in food packaging field. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate.

    PubMed

    Sato, A C K; Perrechil, F A; Costa, A A S; Santana, R C; Cunha, R L

    2015-09-01

    The aim of this work was to evaluate the influence of laccase and ferulic acid on the characteristics of oil-in-water emulsions stabilized by sodium caseinate at different pH (3, 5 and 7). Emulsions were prepared by high pressure homogenization of soybean oil with sodium caseinate solution containing varied concentrations of laccase (0, 1 and 5mg/mL) and ferulic acid (5 and 10mM). Laccase treatment and pH exerted a strong influence on the properties with a consequent effect on stability, structure and rheology of emulsions stabilized by Na-caseinate. At pH7, O/W emulsions were kinetically stable due to the negative protein charge which enabled electrostatic repulsion between oil droplets resulting in an emulsion with small droplet size, low viscosity, pseudoplasticity and viscoelastic properties. The laccase treatment led to emulsions showing shear-thinning behavior as a result of a more structured system. O/W emulsions at pH5 and 3 showed phase separation due to the proximity to protein pI, but the laccase treatment improved their stability of emulsions especially at pH3. At pH3, the addition of ferulic acid and laccase produced emulsions with larger droplet size but with narrower droplet size distribution, increased viscosity, pseudoplasticity and viscoelastic properties (gel-like behavior). Comparing laccase treatments, the combined addition of laccase and ferulic acid generally produced emulsions with lower stability (pH5), larger droplet size (pH3, 5 and 7) and higher pseudoplasticity (pH5 and 7) than emulsion with only ferulic acid. The results suggested that the cross-linking of proteins by laccase and ferulic acid improved protein emulsifying properties by changing functional mechanisms of the protein on emulsion structure and rheology, showing that sodium caseinate can be successfully used in acid products when treated with laccase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.

    PubMed

    O'Chiu, Emily; Vardhanabhuti, Bongkosh

    2017-05-01

    Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at

  5. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants.

    PubMed

    Jutras, Philippe V; D'Aoust, Marc-André; Couture, Manon M-J; Vézina, Louis-Philippe; Goulet, Marie-Claire; Michaud, Dominique; Sainsbury, Frank

    2015-09-01

    Eukaryotic expression systems are used for the production of complex secreted proteins. However, recombinant proteins face considerable biochemical challenges along the secretory pathway, including proteolysis and pH variation between organelles. As the use of synthetic biology matures into solutions for protein production, various host-cell engineering approaches are being developed to ameliorate host-cell factors that can limit recombinant protein quality and yield. We report the potential of the influenza M2 ion channel as a novel tool to neutralize the pH in acidic subcellular compartments. Using transient expression in the plant host, Nicotiana benthamiana, we show that ion channel expression can significantly raise pH in the Golgi apparatus and that this can have a strong stabilizing effect on a fusion protein separated by an acid-susceptible linker peptide. We exemplify the utility of this effect in recombinant protein production using influenza hemagglutinin subtypes differentially stable at low pH; the expression of hemagglutinins prone to conformational change in mildly acidic conditions is considerably enhanced by M2 co-expression. The co-expression of a heterologous ion channel to stabilize acid-labile proteins and peptides represents a novel approach to increasing the yield and quality of secreted recombinant proteins in plants and, possibly, in other eukaryotic expression hosts. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Milk protein composition and stability changes affected by iron in water sources.

    PubMed

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  7. Disordered Cold Regulated15 Proteins Protect Chloroplast Membranes during Freezing through Binding and Folding, But Do Not Stabilize Chloroplast Enzymes in Vivo1[W][OPEN

    PubMed Central

    Thalhammer, Anja; Bryant, Gary; Sulpice, Ronan; Hincha, Dirk K.

    2014-01-01

    Freezing can severely damage plants, limiting geographical distribution of natural populations and leading to major agronomical losses. Plants native to cold climates acquire increased freezing tolerance during exposure to low nonfreezing temperatures in a process termed cold acclimation. This involves many adaptative responses, including global changes in metabolite content and gene expression, and the accumulation of cold-regulated (COR) proteins, whose functions are largely unknown. Here we report that the chloroplast proteins COR15A and COR15B are necessary for full cold acclimation in Arabidopsis (Arabidopsis thaliana). They protect cell membranes, as indicated by electrolyte leakage and chlorophyll fluorescence measurements. Recombinant COR15 proteins stabilize lactate dehydrogenase during freezing in vitro. However, a transgenic approach shows that they have no influence on the stability of selected plastidic enzymes in vivo, although cold acclimation results in increased enzyme stability. This indicates that enzymes are stabilized by other mechanisms. Recombinant COR15 proteins are disordered in water, but fold into amphipathic α-helices at high osmolyte concentrations in the presence of membranes, a condition mimicking molecular crowding induced by dehydration during freezing. X-ray scattering experiments indicate protein-membrane interactions specifically under such crowding conditions. The COR15-membrane interactions lead to liposome stabilization during freezing. Collectively, our data demonstrate the requirement for COR15 accumulation for full cold acclimation of Arabidopsis. The function of these intrinsically disordered proteins is the stabilization of chloroplast membranes during freezing through a folding and binding mechanism, but not the stabilization of chloroplastic enzymes. This indicates a high functional specificity of these disordered plant proteins. PMID:25096979

  8. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3.

    PubMed

    Wilson, J B; Yamamoto, K; Marriott, A S; Hussain, S; Sung, P; Hoatlin, M E; Mathew, C G; Takata, M; Thompson, L H; Kupfer, G M; Jones, N J

    2008-06-12

    Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.

  9. Comparative study of urea and betaine solutions by dielectric spectroscopy: liquid structures of a protein denaturant and stabilizer.

    PubMed

    Hayashi, Yoshihito; Katsumoto, Yoichi; Oshige, Ikuya; Omori, Shinji; Yasuda, Akio

    2007-10-11

    We performed dielectric spectroscopy measurements on aqueous solutions of glycine betaine (N,N,N-trimethylglycine), which is known to be a strong stabilizer of globular proteins, over a wide concentration range (3-62 wt %) and compared the results with our previously published data for aqueous solutions of urea, a representative protein denaturant. The hydration number of betaine (9), calculated on the basis of the reduction in the dielectric relaxation strength of bulk water with addition of betaine, is significantly larger than that of urea (2). Furthermore, the dielectric relaxation time increased with betaine concentration, while that remained nearly constant for the urea-water system over a wide concentration range. This difference between urea and betaine is probably related to their opposite effects on the protein stabilization.

  10. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation.

    PubMed

    Ambrose, R L; Mackenzie, J M

    2015-07-01

    The West Nile virus strain Kunjin virus (WNVKUN) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNVKUN replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNVKUN replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function.

    PubMed

    Floyd, Brendan J; Wilkerson, Emily M; Veling, Mike T; Minogue, Catie E; Xia, Chuanwu; Beebe, Emily T; Wrobel, Russell L; Cho, Holly; Kremer, Laura S; Alston, Charlotte L; Gromek, Katarzyna A; Dolan, Brendan K; Ulbrich, Arne; Stefely, Jonathan A; Bohl, Sarah L; Werner, Kelly M; Jochem, Adam; Westphall, Michael S; Rensvold, Jarred W; Taylor, Robert W; Prokisch, Holger; Kim, Jung-Ja P; Coon, Joshua J; Pagliarini, David J

    2016-08-18

    Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A sequence-based hybrid predictor for identifying conformationally ambivalent regions in proteins.

    PubMed

    Liu, Yu-Cheng; Yang, Meng-Han; Lin, Win-Li; Huang, Chien-Kang; Oyang, Yen-Jen

    2009-12-03

    Proteins are dynamic macromolecules which may undergo conformational transitions upon changes in environment. As it has been observed in laboratories that protein flexibility is correlated to essential biological functions, scientists have been designing various types of predictors for identifying structurally flexible regions in proteins. In this respect, there are two major categories of predictors. One category of predictors attempts to identify conformationally flexible regions through analysis of protein tertiary structures. Another category of predictors works completely based on analysis of the polypeptide sequences. As the availability of protein tertiary structures is generally limited, the design of predictors that work completely based on sequence information is crucial for advances of molecular biology research. In this article, we propose a novel approach to design a sequence-based predictor for identifying conformationally ambivalent regions in proteins. The novelty in the design stems from incorporating two classifiers based on two distinctive supervised learning algorithms that provide complementary prediction powers. Experimental results show that the overall performance delivered by the hybrid predictor proposed in this article is superior to the performance delivered by the existing predictors. Furthermore, the case study presented in this article demonstrates that the proposed hybrid predictor is capable of providing the biologists with valuable clues about the functional sites in a protein chain. The proposed hybrid predictor provides the users with two optional modes, namely, the high-sensitivity mode and the high-specificity mode. The experimental results with an independent testing data set show that the proposed hybrid predictor is capable of delivering sensitivity of 0.710 and specificity of 0.608 under the high-sensitivity mode, while delivering sensitivity of 0.451 and specificity of 0.787 under the high-specificity mode. Though

  13. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases

    PubMed Central

    Jazurek, Magdalena; Ciesiolka, Adam; Starega-Roslan, Julia; Bilinska, Katarzyna; Krzyzosiak, Wlodzimierz J.

    2016-01-01

    RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases. PMID:27625393

  14. Properties and oxidative stability of emulsions prepared with myofibrillar protein and lard diacylglycerols.

    PubMed

    Diao, Xiaoqin; Guan, Haining; Zhao, Xinxin; Chen, Qian; Kong, Baohua

    2016-05-01

    The objective of this study was to investigate the emulsifying properties and oxidative stability of emulsions prepared with porcine myofibrillar proteins (MPs) and different lipids, including lard, glycerolized lard (GL) and purified glycerolized lard (PGL). The GL and PGL emulsions had significantly higher emulsifying activity indices and emulsion stability indices than the lard emulsion (P<0.05). The PGL emulsion presented smaller droplet sizes, thus decreasing particle aggregation and improving emulsion stability. The static and dynamic rheological observations of the emulsions showed that the emulsions had pseudo-plastic behavior, and the PGL emulsion presented a larger viscosity and a higher storage modulus (G') and loss modulus (G'') compared with the other two emulsions (P<0.05). The formation of thiobarbituric acid-reactive substances, carbonyl contents and total sulfhydryl contents was not significantly different between the emulsions with PGL, GL and lard (P<0.05). In general, lard diacylglycerols enhanced emulsifying abilities and had no adverse effects on the oxidation stability of the emulsions prepared with MPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Role of conformational sampling in computing mutation-induced changes in protein structure and stability.

    PubMed

    Kellogg, Elizabeth H; Leaver-Fay, Andrew; Baker, David

    2011-03-01

    The prediction of changes in protein stability and structure resulting from single amino acid substitutions is both a fundamental test of macromolecular modeling methodology and an important current problem as high throughput sequencing reveals sequence polymorphisms at an increasing rate. In principle, given the structure of a wild-type protein and a point mutation whose effects are to be predicted, an accurate method should recapitulate both the structural changes and the change in the folding-free energy. Here, we explore the performance of protocols which sample an increasing diversity of conformations. We find that surprisingly similar performances in predicting changes in stability are achieved using protocols that involve very different amounts of conformational sampling, provided that the resolution of the force field is matched to the resolution of the sampling method. Methods involving backbone sampling can in some cases closely recapitulate the structural changes accompanying mutations but not surprisingly tend to do more harm than good in cases where structural changes are negligible. Analysis of the outliers in the stability change calculations suggests areas needing particular improvement; these include the balance between desolvation and the formation of favorable buried polar interactions, and unfolded state modeling. Copyright © 2010 Wiley-Liss, Inc.

  16. BRD4 inhibitor IBET upregulates p27kip/cip protein stability in neuroendocrine tumor cells.

    PubMed

    Wang, Lei; Matkar, Smita; Xie, Gengchen; An, Chiying; He, Xin; Kong, Xiangchen; Liu, Xiuheng; Hua, Xianxin

    2017-04-03

    The prevalence of neuroendocrine tumors (NETs) has recently been increasing. Although various drugs such as Octreotide and its analogs show certain efficacy, NETs in many patients progress and metastasize. It is desirable to develop new interventions to improve the therapy. Here we show that human neuroendocrine tumor BON cells are resistant to several drugs commonly used for NET therapy, including Octreotide that activates somatostatin receptor-induced anti-proliferation, and Capecitabine and Temozolimide that damage DNA. In contrast, an inhibitor (IBET) to an epigenetic regulator, Brd4 that binds acetylated histones and upregulates transcription of multiple genes including protooncogene c-Myc, potently inhibited the NET cells. We found that IBET increased the protein levels of cyclin-dependent kinase (CDK) inhibitor p27 kip/cip (or p27), but not its mRNA levels. Moreover, the p27 induction at protein level by IBET was at least partly through increasing the protein stability of p27. The increased protein stability of p27 likely resulted from IBET-mediated suppression of Skp2, an E3 ligase that can mediate p27 degradation by increasing its ubiquitinylation. These findings unravel a new mechanism whereby the IBET-induced repression of proliferation of neuroendocrine cells.

  17. Nitric oxide stress and activation of AMP-activated protein kinase impair β-cell sarcoendoplasmic reticulum calcium ATPase 2b activity and protein stability.

    PubMed

    Tong, X; Kono, T; Evans-Molina, C

    2015-06-18

    The sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl L-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-D,L-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca(2+) imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca(2+) and decreased ER Ca(2+) levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b

  18. Identifying the missing proteins in human proteome by biological language model.

    PubMed

    Dong, Qiwen; Wang, Kai; Liu, Xuan

    2016-12-23

    With the rapid development of high-throughput sequencing technology, the proteomics research becomes a trendy field in the post genomics era. It is necessary to identify all the native-encoding protein sequences for further function and pathway analysis. Toward that end, the Human Proteome Organization lunched the Human Protein Project in 2011. However many proteins are hard to be detected by experiment methods, which becomes one of the bottleneck in Human Proteome Project. In consideration of the complicatedness of detecting these missing proteins by using wet-experiment approach, here we use bioinformatics method to pre-filter the missing proteins. Since there are analogy between the biological sequences and natural language, the n-gram models from Natural Language Processing field has been used to filter the missing proteins. The dataset used in this study contains 616 missing proteins from the "uncertain" category of the neXtProt database. There are 102 proteins deduced by the n-gram model, which have high probability to be native human proteins. We perform a detail analysis on the predicted structure and function of these missing proteins and also compare the high probability proteins with other mass spectrum datasets. The evaluation shows that the results reported here are in good agreement with those obtained by other well-established databases. The analysis shows that 102 proteins may be native gene-coding proteins and some of the missing proteins are membrane or natively disordered proteins which are hard to be detected by experiment methods.

  19. Characterisation of protein stability in rod-insert vaginal rings.

    PubMed

    Pattani, Aditya; Lowry, Deborah; Curran, Rhonda M; McGrath, Stephanie; Kett, Vicky L; Andrews, Gavin P; Malcolm, R Karl

    2012-07-01

    A major goal in vaccine development is elimination of the 'cold chain', the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4 °C, but not when stored at 40 °C/75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40 °C/75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation compared to the original formulation when stored at 40 °C/75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general. Copyright

  20. Peptide-based protein capture agents with high affinity, selectivity, and stability as antibody replacements in biodetection assays

    NASA Astrophysics Data System (ADS)

    Coppock, Matthew B.; Farrow, Blake; Warner, Candice; Finch, Amethist S.; Lai, Bert; Sarkes, Deborah A.; Heath, James R.; Stratis-Cullum, Dimitra

    2014-05-01

    Current biodetection assays that employ monoclonal antibodies as primary capture agents exhibit limited fieldability, shelf life, and performance due to batch-to-batch production variability and restricted thermal stability. In order to improve upon the detection of biological threats in fieldable assays and systems for the Army, we are investigating protein catalyzed capture (PCC) agents as drop-in replacements for the existing antibody technology through iterative in situ click chemistry. The PCC agent oligopeptides are developed against known protein epitopes and can be mass produced using robotic methods. In this work, a PCC agent under development will be discussed. The performance, including affinity, selectivity, and stability of the capture agent technology, is analyzed by immunoprecipitation, western blotting, and ELISA experiments. The oligopeptide demonstrates superb selectivity coupled with high affinity through multi-ligand design, and improved thermal, chemical, and biochemical stability due to non-natural amino acid PCC agent design.

  1. Identifying protein complexes in PPI network using non-cooperative sequential game.

    PubMed

    Maulik, Ujjwal; Basu, Srinka; Ray, Sumanta

    2017-08-21

    Identifying protein complexes from protein-protein interaction (PPI) network is an important and challenging task in computational biology as it helps in better understanding of cellular mechanisms in various organisms. In this paper we propose a noncooperative sequential game based model for protein complex detection from PPI network. The key hypothesis is that protein complex formation is driven by mechanism that eventually optimizes the number of interactions within the complex leading to dense subgraph. The hypothesis is drawn from the observed network property named small world. The proposed multi-player game model translates the hypothesis into the game strategies. The Nash equilibrium of the game corresponds to a network partition where each protein either belong to a complex or form a singleton cluster. We further propose an algorithm to find the Nash equilibrium of the sequential game. The exhaustive experiment on synthetic benchmark and real life yeast networks evaluates the structural as well as biological significance of the network partitions.

  2. Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization.

    PubMed

    Cho, Kyung Ho; Bae, Hyoung Eun; Das, Manabendra; Gellman, Samuel H; Chae, Pil Seok

    2014-02-01

    Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose-neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi-subunit membrane protein assembly. Furthermore, a detergent structure-property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Stress Protein BAG3 Stabilizes Mcl-1 Protein and Promotes Survival of Cancer Cells and Resistance to Antagonist ABT-737*

    PubMed Central

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D.; Marnett, Lawrence J.

    2013-01-01

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery. PMID:23341456

  4. The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737.

    PubMed

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D; Marnett, Lawrence J

    2013-03-08

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.

  5. Efficient protein-repelling thin films regulated by chain mobility of low-Tg polymers with increased stability via crosslinking

    NASA Astrophysics Data System (ADS)

    Zhang, Jinghui; Huang, Zhiwei; Liu, Dan

    2017-12-01

    Polymer thin films are generally employed as coatings on implants to prevent protein adsorption. Polymer chain mobility and surface softness have been found to contribute to the protein resistance, but also bring film instability in a liquid protein medium. We investigated the protein resistance ability of three low-Tg polymers, including hydrophobic polymers polyisoprene (PI), poly(n-butyl methacrylate) (PnBMA) and hydrophilic polyethylene oxide (PEO), by overcoming the instability issue with crosslinking. We found that the Tgs of PI and PEO can be increased to around 0 °C after crosslinking. The remained strong chain mobility of both films can still resist protein adsorption regardless the hydrophobicity, yet greatly increases the film stability under an aqueous circumstance. The PnBMA film increased its Tg to around room temperature after crosslinking, which deteriorated the protein-resistance ability having the surface covered by BSA molecules. Our results support that the chain mobility of a polymer film plays an important role in resisting protein adsorption due to the increased entropy associated with more mobile polymer chains. By tune the degree of crosslinking, the stability of polymer in aqueous environment can be increased while the protein resistant ability can be remained. Our results provide a new strategy to design polymer materials for effective antifouling.

  6. Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga.

    PubMed

    Estrada-Gómez, Sebastian; Vargas-Muñoz, Leidy Johana; Saldarriaga-Córdoba, Mónica; Cifuentes, Yeimy; Perafan, Carlos

    2017-04-01

    Theraphosidae spider venoms are well known for possess a complex mixture of protein and non-protein compounds in their venom. The objective of this study was to report and identify different proteins translated from the venom gland DNA information of the recently described Theraphosidae spider Pamphobeteus verdolaga. Using a venom gland transcriptomic analysis, we reported a set of the first complete sequences of seven different proteins of the recenlty described Theraphosidae spider P. verdolaga. Protein analysis indicates the presence of different proteins on the venom composition of this new spider, some of them uncommon in the Theraphosidae family. MS/MS analysis of P. verdolaga showed different fragments matching sphingomyelinases (sicaritoxin), barytoxins, hexatoxins, latroinsectotoxins, and linear (zadotoxins) peptides. Only four of the MS/MS fragments showed 100% sequence similarity with one of the transcribed proteins. Transcriptomic analysis showed the presence of different groups of proteins like phospholipases, hyaluronidases, inhibitory cysteine knots (ICK) peptides among others. The three database of protein domains used in this study (Pfam, SMART and CDD) showed congruency in the search of unique conserved protein domain for only four of the translated proteins. Those proteins matched with EF-hand proteins, cysteine rich secretory proteins, jingzhaotoxins, theraphotoxins and hexatoxins, from different Mygalomorphae spiders belonging to the families Theraphosidae, Barychelidae and Hexathelidae. None of the analyzed sequences showed a complete 100% similarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Electrostatic Solvation Energy for Two Oppositely Charged Ions in a Solvated Protein System: Salt Bridges Can Stabilize Proteins

    PubMed Central

    Gong, Haipeng; Freed, Karl F.

    2010-01-01

    Abstract Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is grossly in error. Our calculations also suggest that a salt bridge on the protein's surface can be stabilizing when the charge separation is ≤4 Å. PMID:20141761

  8. Stabilities and Dynamics of Protein Folding Nuclei by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Song, Yong-Shun; Zhou, Xin; Zheng, Wei-Mou; Wang, Yan-Ting

    2017-07-01

    To understand how the stabilities of key nuclei fragments affect protein folding dynamics, we simulate by molecular dynamics (MD) simulation in aqueous solution four fragments cut out of a protein G, including one α-helix (seqB: KVFKQYAN), two β-turns (seqA: LNGKTLKG and seqC: YDDATKTF), and one β-strand (seqD: DGEWTYDD). The Markov State Model clustering method combined with the coarse-grained conformation letters method are employed to analyze the data sampled from 2-μs equilibrium MD simulation trajectories. We find that seqA and seqB have more stable structures than their native structures which become metastable when cut out of the protein structure. As expected, seqD alone is flexible and does not have a stable structure. Throughout our simulations, the native structure of seqC is stable but cannot be reached if starting from a structure other than the native one, implying a funnel-shape free energy landscape of seqC in aqueous solution. All the above results suggest that different nuclei have different formation dynamics during protein folding, which may have a major contribution to the hierarchy of protein folding dynamics. Supported by the National Basic Research Program of China under Grant No. 2013CB932804, the National Natural Science Foundation of China under Grant No. 11421063, and the CAS Biophysics Interdisciplinary Innovation Team Project

  9. Slow histidine H/D exchange protocol for thermodynamic analysis of protein folding and stability using mass spectrometry.

    PubMed

    Tran, Duc T; Banerjee, Sambuddha; Alayash, Abdu I; Crumbliss, Alvin L; Fitzgerald, Michael C

    2012-02-07

    Described here is a mass spectrometry-based protocol to study the thermodynamic stability of proteins and protein-ligand complexes using the chemical denaturant dependence of the slow H/D exchange reaction of the imidazole C(2) proton in histidine side chains. The protocol is developed using several model protein systems including: ribonuclease (Rnase) A, myoglobin, bovine carbonic anhydrase (BCA) II, hemoglobin (Hb), and the hemoglobin-haptoglobin (Hb-Hp) protein complex. Folding free energies consistent with those previously determined by other more conventional techniques were obtained for the two-state folding proteins, Rnase A and myoglobin. The protocol successfully detected a previously observed partially unfolded intermediate stabilized in the BCA II folding/unfolding reaction, and it could be used to generate a K(d) value of 0.24 nM for the Hb-Hp complex. The compatibility of the protocol with conventional mass spectrometry-based proteomic sample preparation and analysis methods was also demonstrated in an experiment in which the protocol was used to detect the binding of zinc to superoxide dismutase in the yeast cell lysate sample. The yeast cell sample analyses also helped define the scope of the technique, which requires the presence of globally protected histidine residues in a protein's three-dimensional structure for successful application. © 2011 American Chemical Society

  10. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4).

    PubMed

    Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D

    2014-09-01

    Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Interfacial Adsorption/Arrangement Properties.

    PubMed

    Qin, Xin-Sheng; Luo, Zhi-Gang; Peng, Xi-Chun

    2018-05-02

    The natural quinoa protein isolate (QPI) was largely reflected in the nanoparticle form at pH 7.0 (∼401 nm), and the ultrasound at 20 min progressively improved the contact angle (wettability) and surface hydrophobicity of the nanoparticles. Ultrasound process also modified the type of intraparticle interaction, and the internal forces of sonicated particles were largely maintained by both disulfide bonds and hydrophobic interaction forces. In emulsion system, the ultrasound progressively increased the emulsification efficiency of the QPI nanoparticles, particularly at high protein concentration ( c > 1%, w/ v) and higher emulsion stability against coalescence. As compared with the natural QPI-stabilized emulsions, the 20 min sonicated emulsions exhibited higher packing and adsorption at the protein interface. The microstructure of emulsions that occurs is bridging flocculation of droplets at low c (≤1%, w/ v), while the amount of protein particles could be high enough to cover the droplet surface at high c ( >1%, w/ v) with hexagonal array model arrangement. Thus these results illustrated that both natural and sonicated QPI nanoparticles could be performed as effective food-grade stabilizer for Pickering emulsion; however, the sonicated QPI nanoparticles exhibited much better emulsifying and interfacial properties.

  12. Microcosmic mechanisms for protein incomplete release and stability of various amphiphilic mPEG-PLA microspheres.

    PubMed

    Wei, Yi; Wang, Yu Xia; Wang, Wei; Ho, Sa V; Qi, Feng; Ma, Guang Hui; Su, Zhi Guo

    2012-10-02

    The microcosmic mechanisms of protein (recombinant human growth hormone, rhGH) incomplete release and stability from amphiphilic poly(monomethoxypolyethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA) microspheres were investigated. PELA with different hydrophilicities (PELA-1, PELA-2, and PELA-3) based on various ratios of mPEG to PLA were employed to prepare microspheres exhibiting a narrow size distribution using a combined double emulsion and premix membrane emulsification method. The morphology, rhGH encapsulation efficiency, in vitro release profile, and rhGH stability of PELA microspheres during the release were characterized and compared in detail. It was found that increasing amounts of PLA enhanced the encapsulation efficiency of PELA microspheres but reduced both the release rate of rhGH and its stability. Contact angle, atomic force microscope (AFM), and quartz crystal microbalance with dissipation (QCM-D) techniques were first combined to elucidate the microcosmic mechanism of incomplete release by measuring the hydrophilicity of the PELA film and its interaction with rhGH. In addition, the pH change within the microsphere microenvironment was monitored by confocal laser scanning microscopy (CLSM) employing a pH-sensitive dye, which clarified the stability of rhGH during the release. These results suggested that PELA hydrophilicity played an important role in rhGH incomplete release and stability. Thus, the selection of suitable hydrophilic polymers with adequate PEG lengths is critical in the preparation of optimum protein drug sustained release systems. This present work is a first report elucidating the microcosmic mechanisms responsible for rhGH stability and its interaction with the microspheres. Importantly, this research demonstrated the application of promising new experimental methods in investigating the interaction between biomaterials and biomacromolecules, thus opening up a range of exciting potential applications in the biomedical field

  13. Structure of the Small Outer Capsid Protein, Soc: A Clamp for Stabilizing Capsids of T4-like Phages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Li; Fokine, Andrei; O'Donnell, Erin

    2010-07-22

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a 'glue' between neighboring hexameric capsomers, forming a 'cage' that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 {angstrom} resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc weremore » fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.« less

  14. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Elliott, T. F.; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LNI) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered Trademark) Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark) software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  15. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LN1) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate Containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered TradeMark)Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark)a software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  16. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    PubMed

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure

  17. Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements.

    PubMed

    Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph

    2014-03-01

    In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.

  18. Connexin Type and Fluorescent Protein Fusion Tag Determine Structural Stability of Gap Junction Plaques.

    PubMed

    Stout, Randy F; Snapp, Erik Lee; Spray, David C

    2015-09-25

    Gap junctions (GJs) are made up of plaques of laterally clustered intercellular channels and the membranes in which the channels are embedded. Arrangement of channels within a plaque determines subcellular distribution of connexin binding partners and sites of intercellular signaling. Here, we report the discovery that some connexin types form plaque structures with strikingly different degrees of fluidity in the arrangement of the GJ channel subcomponents of the GJ plaque. We uncovered this property of GJs by applying fluorescence recovery after photobleaching to GJs formed from connexins fused with fluorescent protein tags. We found that connexin 26 (Cx26) and Cx30 GJs readily diffuse within the plaque structures, whereas Cx43 GJs remain persistently immobile for more than 2 min after bleaching. The cytoplasmic C terminus of Cx43 was required for stability of Cx43 plaque arrangement. We provide evidence that these qualitative differences in GJ arrangement stability reflect endogenous characteristics, with the caveat that the sizes of the GJs examined were necessarily large for these measurements. We also uncovered an unrecognized effect of non-monomerized fluorescent protein on the dynamically arranged GJs and the organization of plaques composed of multiple connexin types. Together, these findings redefine our understanding of the GJ plaque structure and should be considered in future studies using fluorescent protein tags to probe dynamics of highly ordered protein complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Identifying and reducing error in cluster-expansion approximations of protein energies.

    PubMed

    Hahn, Seungsoo; Ashenberg, Orr; Grigoryan, Gevorg; Keating, Amy E

    2010-12-01

    Protein design involves searching a vast space for sequences that are compatible with a defined structure. This can pose significant computational challenges. Cluster expansion is a technique that can accelerate the evaluation of protein energies by generating a simple functional relationship between sequence and energy. The method consists of several steps. First, for a given protein structure, a training set of sequences with known energies is generated. Next, this training set is used to expand energy as a function of clusters consisting of single residues, residue pairs, and higher order terms, if required. The accuracy of the sequence-based expansion is monitored and improved using cross-validation testing and iterative inclusion of additional clusters. As a trade-off for evaluation speed, the cluster-expansion approximation causes prediction errors, which can be reduced by including more training sequences, including higher order terms in the expansion, and/or reducing the sequence space described by the cluster expansion. This article analyzes the sources of error and introduces a method whereby accuracy can be improved by judiciously reducing the described sequence space. The method is applied to describe the sequence-stability relationship for several protein structures: coiled-coil dimers and trimers, a PDZ domain, and T4 lysozyme as examples with computationally derived energies, and SH3 domains in amphiphysin-1 and endophilin-1 as examples where the expanded pseudo-energies are obtained from experiments. Our open-source software package Cluster Expansion Version 1.0 allows users to expand their own energy function of interest and thereby apply cluster expansion to custom problems in protein design. © 2010 Wiley Periodicals, Inc.

  20. Structure and mechanism of maximum stability of isolated alpha-helical protein domains at a critical length scale.

    PubMed

    Qin, Zhao; Fabre, Andrea; Buehler, Markus J

    2013-05-01

    The stability of alpha helices is important in protein folding, bioinspired materials design, and controls many biological properties under physiological and disease conditions. Here we show that a naturally favored alpha helix length of 9 to 17 amino acids exists at which the propensity towards the formation of this secondary structure is maximized. We use a combination of thermodynamical analysis, well-tempered metadynamics molecular simulation and statistical analyses of experimental alpha helix length distributions and find that the favored alpha helix length is caused by a competition between alpha helix folding, unfolding into a random coil and formation of higher-order tertiary structures. The theoretical result is suggested to be used to explain the statistical distribution of the length of alpha helices observed in natural protein structures. Our study provides mechanistic insight into fundamental controlling parameters in alpha helix structure formation and potentially other biopolymers or synthetic materials. The result advances our fundamental understanding of size effects in the stability of protein structures and may enable the design of de novo alpha-helical protein materials.

  1. RNA-modifying proteins as anticancer drug targets.

    PubMed

    Boriack-Sjodin, P Ann; Ribich, Scott; Copeland, Robert A

    2018-06-01

    All major biological macromolecules (DNA, RNA, proteins and lipids) undergo enzyme-catalysed covalent modifications that impact their structure, function and stability. A variety of covalent modifications of RNA have been identified and demonstrated to affect RNA stability and translation to proteins; these mechanisms of translational control have been termed epitranscriptomics. Emerging data suggest that some epitranscriptomic mechanisms are altered in human cancers as well as other human diseases. In this Review, we examine the current understanding of RNA modifications with a focus on mRNA methylation, highlight their possible roles in specific cancer indications and discuss the emerging potential of RNA-modifying proteins as therapeutic targets.

  2. Characterization of highly concentrated antibody solution - A toolbox for the description of protein long-term solution stability

    PubMed Central

    Schermeyer, Marie-Therese; Wöll, Anna K.; Eppink, Michel; Hubbuch, Jürgen

    2017-01-01

    ABSTRACT High protein titers are gaining importance in biopharmaceutical industry. A major challenge in the development of highly concentrated mAb solutions is their long-term stability and often incalculable viscosity. The complexity of the molecule itself, as well as the various molecular interactions, make it difficult to describe their solution behavior. To study the formulation stability, long- and short-range interactions and the formation of complex network structures have to be taken into account. For a better understanding of highly concentrated solutions, we combined established and novel analytical tools to characterize the effect of solution properties on the stability of highly concentrated mAb formulations. In this study, monoclonal antibody solutions in a concentration range of 50–200 mg/ml at pH 5–9 with and without glycine, PEG4000, and Na2SO4 were analyzed. To determine the monomer content, analytical size-exclusion chromatography runs were performed. ζ-potential measurements were conducted to analyze the electrophoretic properties in different solutions. The melting and aggregation temperatures were determined with the help of fluorescence and static light scattering measurements. Additionally, rheological measurements were conducted to study the solution viscosity and viscoelastic behavior of the mAb solutions. The so-determined analytical parameters were scored and merged in an analytical toolbox. The resulting scoring was then successfully correlated with long-term storage (40 d of incubation) experiments. Our results indicate that the sensitivity of complex rheological measurements, in combination with the applied techniques, allows reliable statements to be made with respect to the effect of solution properties, such as protein concentration, ionic strength, and pH shift, on the strength of protein-protein interaction and solution colloidal stability. PMID:28617076

  3. The impact of thermal treatment on the stability of freeze-dried amorphous pharmaceuticals: II. Aggregation in an IgG1 fusion protein.

    PubMed

    Wang, Bingquan; Cicerone, Marcus T; Aso, Yukio; Pikal, Michael J

    2010-02-01

    The objective of this research was to investigate the impact of thermal treatment on storage stability of an IgG1 fusion protein. IgG1 protein formulations were prepared by freeze-drying the protein with sucrose. Some samples were used as controls, and others were subjected to a further heat treatment (annealing). The protein structure was investigated with Fourier transform infrared spectroscopy (FTIR), and protein aggregation was monitored with size exclusion HPLC. Enthalpy recovery was studied using DSC, and global mobility represented by the structural relaxation time constant (tau(beta)) was characterized by a thermal activity monitor (TAM). The local mobility of the protein system was monitored by both (13)C solid-state NMR and neutron backscattering. Annealing increased the storage stability of the protein, as shown by the smaller aggregation rate and less total aggregation at the end of a storage period. The structural relaxation time constant of an annealed sample was significantly higher than the unannealed control sample, suggesting a decrease in global mobility of the protein system upon annealing. However, annealing does not significantly impact the protein secondary structure or the local mobility. Given the similar protein native structure and specific surface area, the improved stability upon annealing is mainly a result of reduced global molecular mobility. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  4. Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories.

    PubMed

    Chikalov, Igor; Yao, Peggy; Moshkov, Mikhail; Latombe, Jean-Claude

    2011-02-15

    Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. They form and break while a protein deforms, for instance during the transition from a non-functional to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. This paper describes inductive learning methods to train protein-independent probabilistic models of H-bond stability from molecular dynamics (MD) simulation trajectories of various proteins. The training data contains 32 input attributes (predictors) that describe an H-bond and its local environment in a conformation c and the output attribute is the probability that the H-bond will be present in an arbitrary conformation of this protein achievable from c within a time duration Δ. We model dependence of the output variable on the predictors by a regression tree. Several models are built using 6 MD simulation trajectories containing over 4000 distinct H-bonds (millions of occurrences). Experimental results demonstrate that such models can predict H-bond stability quite well. They perform roughly 20% better than models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a conformation. In most tests, about 80% of the 10% H-bonds predicted as the least stable are actually among the 10% truly least stable. The important attributes identified during the tree construction are consistent with previous findings. We use inductive learning methods to build protein-independent probabilistic models to study H-bond stability, and demonstrate that the models perform better than H-bond energy alone.

  5. Intuitive, but not simple: including explicit water molecules in protein-protein docking simulations improves model quality.

    PubMed

    Parikh, Hardik I; Kellogg, Glen E

    2014-06-01

    Characterizing the nature of interaction between proteins that have not been experimentally cocrystallized requires a computational docking approach that can successfully predict the spatial conformation adopted in the complex. In this work, the Hydropathic INTeractions (HINT) force field model was used for scoring docked models in a data set of 30 high-resolution crystallographically characterized "dry" protein-protein complexes and was shown to reliably identify native-like models. However, most current protein-protein docking algorithms fail to explicitly account for water molecules involved in bridging interactions that mediate and stabilize the association of the protein partners, so we used HINT to illuminate the physical and chemical properties of bridging waters and account for their energetic stabilizing contributions. The HINT water Relevance metric identified the "truly" bridging waters at the 30 protein-protein interfaces and we utilized them in "solvated" docking by manually inserting them into the input files for the rigid body ZDOCK program. By accounting for these interfacial waters, a statistically significant improvement of ∼24% in the average hit-count within the top-10 predictions the protein-protein dataset was seen, compared to standard "dry" docking. The results also show scoring improvement, with medium and high accuracy models ranking much better than incorrect ones. These improvements can be attributed to the physical presence of water molecules that alter surface properties and better represent native shape and hydropathic complementarity between interacting partners, with concomitantly more accurate native-like structure predictions. © 2013 Wiley Periodicals, Inc.

  6. Stabilization of an α/β-hydrolase by introducing proline residues: salicylic binding protein 2 from tobacco

    PubMed Central

    Huang, Jun; Jones, Bryan J.; Kazlauskas, Romas J.

    2015-01-01

    α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. As a model α/β-hydrolase, we investigated a plant esterase, salicylic acid binding protein 2 (SABP2). SABP2 shows typical stability to urea (unfolding free energy 6.9±1.5 kcal/mol) and to heat inactivation (T1/215 min 49.2±0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homolog or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1) and E215P (+0.9). Introducing proline in the cap domain did not (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/215 min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P-S70P ΔT1/215 min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases. PMID:26110207

  7. Protein kinesis: The dynamics of protein trafficking and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  8. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    PubMed

    Shen, Xianjun; Yi, Li; Jiang, Xingpeng; He, Tingting; Yang, Jincai; Xie, Wei; Hu, Po; Hu, Xiaohua

    2017-01-01

    How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI) data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment). It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  9. Modeling the surface of Campylobacter fetus: protein surface layer stability and resistance to cationic antimicrobial peptides.

    PubMed

    Roberts, James M D; Graham, Lori L; Quinn, Bonnie; Pink, David A

    2013-03-01

    Campylobacter fetus is a Gram negative bacterium recognized for its virulence in animals and humans. This bacterium possesses a paracrystalline array of high molecular weight proteins known as surface-layer proteins covering its cell surface. A mathematical model has been made of the outer membrane of this bacterium, both with its surface-layer proteins (S+) and without (S-). Monte Carlo computer simulation was used to understand the stability of the surface-layer protein structure as a function of ionic concentration. The interactions of an electrically-charged antimicrobial agent, the cationic antimicrobial peptide protamine, with surface-layer proteins and with the lipopolysaccharides of the outer membrane were modeled and analyzed. We found that (1) divalent ions stabilize the surface-layer protein array by reducing the fluctuations perpendicular and parallel to the membrane plane thereby promoting adhesion to the LPS region. This was achieved via (2) divalent ions bridging the negatively-charged LPS Core. The effect of this bridging is to bring individual Core regions closer together so that the O-antigens can (3) increase their attractive van der Waals interactions and "collapse" to form a surface with reduced perpendicular fluctuations. These findings provide support for the proposal of Yang et al. [1]. (4) No evidence for a significant increase in Ca(2+) concentration in the region of the surface-layer protein subunits was observed in S+ simulations compared to S- simulations. (5) We predicted the trends of protamine MIC tests performed on C. fetus and these were in good agreement with our experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Reciprocal Regulation of ERα and ERβ Stability and Activity by Diptoindonesin G.

    PubMed

    Zhao, Zibo; Wang, Lu; James, Taryn; Jung, Youngeun; Kim, Ikyon; Tan, Renxiang; Hoffmann, F Michael; Xu, Wei

    2015-12-17

    ERβ is regarded as a "tumor suppressor" in breast cancer due to its anti-proliferative effects. However, unlike ERα, ERβ has not been developed as a therapeutic target in breast cancer due to loss of ERβ in aggressive cancers. In a small-molecule library screen for ERβ stabilizers, we identified Diptoindonesin G (Dip G), which significantly increases ERβ protein stability while decreasing ERα protein levels. Dip G enhances the transcription and anti-proliferative activities of ERβ, while attenuating the transcription and proliferative effects of ERα. Further investigation revealed that instead of targeting ER, Dip G targets the CHIP E3 ubiquitin ligase shared by ERα and ERβ. Thus, Dip G is a dual-functional moiety that reciprocally controls ERα and ERβ protein stability and activities via an indirect mechanism. The ERβ stabilization effects of Dip G may enable the development of ERβ-targeted therapies for human breast cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of osmolytes on the thermal stability of proteins: replica exchange simulations of Trp-cage in urea and betaine solutions.

    PubMed

    Adamczak, Beata; Kogut, Mateusz; Czub, Jacek

    2018-04-25

    Although osmolytes are known to modulate the folding equilibrium, the molecular mechanism of their effect on thermal denaturation of proteins is still poorly understood. Here, we simulated the thermal denaturation of a small model protein (Trp-cage) in the presence of denaturing (urea) and stabilizing (betaine) osmolytes, using the all-atom replica exchange molecular dynamics simulations. We found that urea destabilizes Trp-cage by enthalpically-driven association with the protein, acting synergistically with temperature to induce unfolding. In contrast, betaine is sterically excluded from the protein surface thereby exerting entropic depletion forces that contribute to the stabilization of the native state. In fact, we find that while at low temperatures betaine slightly increases the folding free energy of Trp-cage by promoting another near-native conformation, it protects the protein against temperature-induced denaturation. This, in turn, can be attributed to enhanced exclusion of betaine at higher temperatures that arises from less attractive interactions with the protein surface.

  12. Packing in protein cores

    NASA Astrophysics Data System (ADS)

    Gaines, J. C.; Clark, A. H.; Regan, L.; O'Hern, C. S.

    2017-07-01

    Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the packing of these residues, and are residues loosely packed with multiple allowed side chain conformations or densely packed with a single allowed side chain conformation? Here we show that to properly model the packing of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a packing fraction of φ ≈ 0.56 , which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the packing of amino acids in protein cores to results obtained for jammed packings from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores pack as densely as disordered jammed packings of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.

  13. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-06-01

    Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. This study provides the first extensive

  14. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellular {beta}-catenin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Munju; Park, Seoyoung; Gwak, Jungsug

    2008-02-29

    The Wnt/{beta}-catenin signaling pathway plays important roles in cell differentiation. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and mice. Here we revealed that bisindoylmaleimide I (BIM), which is widely used as a specific inhibitor of protein kinase C (PKC), inhibits adipocyte differentiation through activation of the Wnt/{beta}-catenin signaling pathway. BIM increased {beta}-catenin responsive transcription (CRT) and up-regulated intracellular {beta}-catenin levels in HEK293 cells and 3T3-L1 preadipocytes. BIM significantly decreased intracellular lipid accumulation and reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}) and CAATT enhancer-binding protein {alpha}more » (C/EBP{alpha}) in 3T3-L1 preadipocytes. Taken together, our findings indicate that BIM inhibits adipogenesis by increasing the stability of {beta}-catenin protein in 3T3-L1 preadipocyte cells.« less

  15. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.

    PubMed

    Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie

    2016-09-01

    Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems. © 2016 Institute of Food Technologists®

  16. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology

    PubMed Central

    Vyas, Sejal; Chesarone-Cataldo, Melissa; Todorova, Tanya; Huang, Yun-Han; Chang, Paul

    2013-01-01

    The poly(ADP-ribose) polymerase (PARP) family of proteins use NAD+ as their substrate to modify acceptor proteins with adenosine diphosphate-ribose (ADPr) modifications. The function of most PARPs under physiological conditions is unknown. Here, to better understand this protein family, we systematically analyze the cell cycle localization of each PARP and of poly(ADP-ribose), a product of PARP activity, then identify the knock-down phenotype of each protein and perform secondary assays to elucidate function. We show that most PARPs are cytoplasmic, identify cell cycle differences in the ratio of nuclear to cytoplasmic poly(ADP-ribose), and identify four phenotypic classes of PARP function. These include the regulation of membrane structures, cell viability, cell division, and the actin cytoskeleton. Further analysis of PARP14 shows that it is a component of focal adhesion complexes required for proper cell motility and focal adhesion function. In total, we show that PARP proteins are critical regulators of eukaryotic physiology. PMID:23917125

  17. Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis

    PubMed Central

    Larsen, Rachel A.; Cusumano, Christina; Fujioka, Akina; Lim-Fong, Grace; Patterson, Paula; Pogliano, Joe

    2007-01-01

    Prokaryotes rely on a distant tubulin homolog, FtsZ, for assembling the cytokinetic ring essential for cell division, but are otherwise generally thought to lack tubulin-like polymers that participate in processes such as DNA segregation. Here we characterize a protein (TubZ) from the Bacillus thuringiensis virulence plasmid pBtoxis, which is a member of the tubulin/FtsZ GTPase superfamily but is only distantly related to both FtsZ and tubulin. TubZ assembles dynamic, linear polymers that exhibit directional polymerization with plus and minus ends, movement by treadmilling, and a critical concentration for assembly. A point mutation (D269A) that alters a highly conserved catalytic residue within the T7 loop completely eliminates treadmilling and allows the formation of stable polymers at a much lower protein concentration than the wild-type protein. When expressed in trans, TubZ(D269A) coassembles with wild-type TubZ and significantly reduces the stability of pBtoxis, demonstrating a direct correlation between TubZ dynamics and plasmid maintenance. The tubZ gene is in an operon with tubR, which encodes a putative DNA-binding protein that regulates TubZ levels. Our results suggest that TubZ is representative of a novel class of prokaryotic cytoskeletal proteins important for plasmid stability that diverged long ago from the ancient tubulin/FtsZ ancestor. PMID:17510284

  18. Comparison of the structural basis for thermal stability between archaeal and bacterial proteins.

    PubMed

    Ding, Yanrui; Cai, Yujie; Han, Yonggang; Zhao, Bingqiang

    2012-01-01

    In this study, the structural basis for thermal stability in archaeal and bacterial proteins was investigated. There were many common factors that confer resistance to high temperature in both archaeal and bacterial proteins. These factors include increases in the Lys content, the bends and blanks of secondary structure, the Glu content of salt bridge; decreases in the number of main-side chain hydrogen bond and exposed surface area, and changes in the bends and blanks of amino acids. Certainly, the utilization of charged amino acids to form salt bridges is a primary factor. In both heat-resistant archaeal and bacterial proteins, most Glu and Asp participate in the formation of salt bridges. Other factors may influence either archaeal or bacterial protein thermostability, which includes the more frequent occurrence of shorter 3(10)-helices and increased hydrophobicity in heat-resistant archaeal proteins. However, there were increases in average helix length, the Glu content in salt bridges, temperature factors and decreases in the number of main-side chain hydrogen bonds, uncharged-uncharged hydrogen bonds, hydrophobicity, and buried and exposed polar surface area in heat-resistant bacterial proteins. Evidently, there are few similarities and many disparities between the heat-resistant mechanisms of archaeal and bacterial proteins.

  19. Immobilization-stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation.

    PubMed

    Arola, Suvi; Tammelin, Tekla; Setälä, Harri; Tullila, Antti; Linder, Markus B

    2012-03-12

    In a number of different applications for enzymes and specific binding proteins a key technology is the immobilization of these proteins to different types of supports. In this work we describe a concept for protein immobilization that is based on nanofibrillated cellulose (NFC). NFC is a form of cellulose where fibers have been disintegrated into fibrils that are only a few nanometers in diameter and have a very large aspect ratio. Proteins were conjugated through three different strategies using amine, epoxy, and carboxylic acid functionalized NFC. The conjugation chemistries were chosen according to the reactive groups on the NFC derivatives; epoxy amination, heterobifunctional modification of amino groups, and EDC/s-NHS activation of carboxylic acid groups. The conjugation reactions were performed in solution and immobilization was performed by spin coating the protein-NCF conjugates. The structure of NFC was shown to be advantageous for both protein performance and stability. The use of NFC allows all covalent chemistry to be performed in solution, while the immobilization is achieved by a simple spin coating or spreading of the protein-NFC conjugates on a support. This allows more scalable methods and better control of conditions compared to the traditional methods that depend on surface reactions.

  20. Chemical glycosylation of cytochrome c improves physical and chemical protein stability.

    PubMed

    Delgado, Yamixa; Morales-Cruz, Moraima; Hernández-Román, José; Martínez, Yashira; Griebenow, Kai

    2014-08-06

    Cytochrome c (Cyt c) is an apoptosis-initiating protein when released into the cytoplasm of eukaryotic cells and therefore a possible cancer drug candidate. Although proteins have been increasingly important as pharmaceutical agents, their chemical and physical instability during production, storage, and delivery remains a problem. Chemical glycosylation has been devised as a method to increase protein stability and thus enhance their long-lasting bioavailability. Three different molecular weight glycans (lactose and two dextrans with 1 kD and 10 kD) were chemically coupled to surface exposed Cyt c lysine (Lys) residues using succinimidyl chemistry via amide bonds. Five neo-glycoconjugates were synthesized, Lac4-Cyt-c, Lac9-Cyt-c, Dex5(10kD)-Cyt-c, Dex8(10kD)-Cyt-c, and Dex3(1kD)-Cyt-c. Subsequently, we investigated glycoconjugate structure, activity, and stability. Circular dichroism (CD) spectra demonstrated that Cyt c glycosylation did not cause significant changes to the secondary structure, while high glycosylation levels caused some minor tertiary structure perturbations. Functionality of the Cyt c glycoconjugates was determined by performing cell-free caspase 3 and caspase 9 induction assays and by measuring the peroxidase-like pseudo enzyme activity. The glycoconjugates showed ≥94% residual enzyme activity and 86 ± 3 to 95 ± 1% relative caspase 3 activation compared to non-modified Cyt c. Caspase 9 activation by the glycoconjugates was with 92 ± 7% to 96 ± 4% within the error the same as the caspase 3 activation. There were no major changes in Cyt c activity upon glycosylation. Incubation of Dex3(1 kD)-Cyt c with mercaptoethanol caused significant loss in the tertiary structure and a drop in caspase 3 and 9 activation to only 24 ± 8% and 26 ± 6%, respectively. This demonstrates that tertiary structure intactness of Cyt c was essential for apoptosis induction. Furthermore, glycosylation protected Cyt c from detrimental effects by some stresses (i