Sample records for identity biological phenotype

  1. Racial Identity, Phenotype, and Self-Esteem among Biracial Polynesian/White Individuals

    ERIC Educational Resources Information Center

    Allen, G. E. Kawika; Garriott, Patton O.; Reyes, Carla J.; Hsieh, Catherine

    2013-01-01

    This study examined racial identity, self-esteem, and phenotype among biracial Polynesian/White adults. Eighty-four Polynesian/White persons completed the Biracial Identity Attitude Scale, the Rosenberg Self-Esteem Inventory, and a Polynesian phenotype scale. Profile analyses showed participants identified more with their Polynesian parent. A…

  2. Progeny Clustering: A Method to Identify Biological Phenotypes

    PubMed Central

    Hu, Chenyue W.; Kornblau, Steven M.; Slater, John H.; Qutub, Amina A.

    2015-01-01

    Estimating the optimal number of clusters is a major challenge in applying cluster analysis to any type of dataset, especially to biomedical datasets, which are high-dimensional and complex. Here, we introduce an improved method, Progeny Clustering, which is stability-based and exceptionally efficient in computing, to find the ideal number of clusters. The algorithm employs a novel Progeny Sampling method to reconstruct cluster identity, a co-occurrence probability matrix to assess the clustering stability, and a set of reference datasets to overcome inherent biases in the algorithm and data space. Our method was shown successful and robust when applied to two synthetic datasets (datasets of two-dimensions and ten-dimensions containing eight dimensions of pure noise), two standard biological datasets (the Iris dataset and Rat CNS dataset) and two biological datasets (a cell phenotype dataset and an acute myeloid leukemia (AML) reverse phase protein array (RPPA) dataset). Progeny Clustering outperformed some popular clustering evaluation methods in the ten-dimensional synthetic dataset as well as in the cell phenotype dataset, and it was the only method that successfully discovered clinically meaningful patient groupings in the AML RPPA dataset. PMID:26267476

  3. Evidence supporting the biologic nature of gender identity.

    PubMed

    Saraswat, Aruna; Weinand, Jamie D; Safer, Joshua D

    2015-02-01

    To review current literature that supports a biologic basis of gender identity. A traditional literature review. Evidence that there is a biologic basis for gender identity primarily involves (1) data on gender identity in patients with disorders of sex development (DSDs, also known as differences of sex development) along with (2) neuroanatomical differences associated with gender identity. Although the mechanisms remain to be determined, there is strong support in the literature for a biologic basis of gender identity.

  4. The effects of perceived phenotypic racial stereotypicality and social identity threat on racial minorities' attitudes about police.

    PubMed

    Kahn, Kimberly Barsamian; Lee, J Katherine; Renauer, Brian; Henning, Kris R; Stewart, Greg

    2017-01-01

    This study examines the role of perceived phenotypic racial stereotypicality and race-based social identity threat on racial minorities' trust and cooperation with police. We hypothesize that in police interactions, racial minorities' phenotypic racial stereotypicality may increase race-based social identity threat, which will lead to distrust and decreased participation with police. Racial minorities (Blacks, Latinos, Native Americans, and multi-racials) and Whites from a representative random sample of city residents were surveyed about policing attitudes. A serial multiple mediation model confirmed that racial minorities' self-rated phenotypic racial stereotypicality indirectly affected future cooperation through social identity threat and trust. Due to the lack of negative group stereotypes in policing, the model did not hold for Whites. This study provides evidence that phenotypic stereotypicality influences racial minorities' psychological experiences interacting with police.

  5. The multiscale backbone of the human phenotype network based on biological pathways.

    PubMed

    Darabos, Christian; White, Marquitta J; Graham, Britney E; Leung, Derek N; Williams, Scott M; Moore, Jason H

    2014-01-25

    Networks are commonly used to represent and analyze large and complex systems of interacting elements. In systems biology, human disease networks show interactions between disorders sharing common genetic background. We built pathway-based human phenotype network (PHPN) of over 800 physical attributes, diseases, and behavioral traits; based on about 2,300 genes and 1,200 biological pathways. Using GWAS phenotype-to-genes associations, and pathway data from Reactome, we connect human traits based on the common patterns of human biological pathways, detecting more pleiotropic effects, and expanding previous studies from a gene-centric approach to that of shared cell-processes. The resulting network has a heavily right-skewed degree distribution, placing it in the scale-free region of the network topologies spectrum. We extract the multi-scale information backbone of the PHPN based on the local densities of the network and discarding weak connection. Using a standard community detection algorithm, we construct phenotype modules of similar traits without applying expert biological knowledge. These modules can be assimilated to the disease classes. However, we are able to classify phenotypes according to shared biology, and not arbitrary disease classes. We present examples of expected clinical connections identified by PHPN as proof of principle. We unveil a previously uncharacterized connection between phenotype modules and discuss potential mechanistic connections that are obvious only in retrospect. The PHPN shows tremendous potential to become a useful tool both in the unveiling of the diseases' common biology, and in the elaboration of diagnosis and treatments.

  6. Relevance of protein-protein interactions on the biological identity of nanoparticles.

    PubMed

    Vasti, Cecilia; Bonnet, Laura V; Galiano, Mauricio R; Rojas, Ricardo; Giacomelli, Carla E

    2018-06-01

    Considering that the use of nanoparticles (NPs) as carriers of therapeutic or theranostic agents has increased in the last years, it is mandatory to understand the interaction between NPs and living systems. In contact with biological fluids, the NPs (synthetic identity) are covered with biomolecules that form a protein corona, which defines the biological identity. It is well known that the protein corona formation is mediated by non-specific physical interactions, but protein-protein interactions (PPI), involving specific recognition sites of the polypeptides, are also involved. This work explores the relationship between the synthetic and biological identities of layered double hydroxides nanoparticles (LDH-NPs) and the effect of the protein corona on the cellular response. With such a purpose, the synthetic identity was modified by coating LDH-NPs with either a single protein or a complex mixture of them, followed by the characterization of the protein corona formed in a commonly used cell culture medium. A proteomic approach was used to identify the protein corona molecules and the PPI network was constructed with a novel bioinformatic tool. The coating on LDH-NPs defines the biological identity in such a way that the composition of the protein corona as well as PPI are changed. Electrostatic interactions appear not to be the only driving force regulating the interactions between NPs, proteins and cells since the specific recognition also play a fundamental role. However, the biological identity of LDH-NPs does not affect the interactions with cells that shows negligible cytotoxicity and high internalization levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Predicting Phenotypes from Genetic Crosses: A Mathematical Concept to Help Struggling Biology Students

    ERIC Educational Resources Information Center

    Baurhoo, Neerusha; Darwish, Shireef

    2012-01-01

    Predicting phenotypic outcomes from genetic crosses is often very difficult for biology students, especially those with learning disabilities. With our mathematical concept, struggling students in inclusive biology classrooms are now better equipped to solve genetic problems and predict phenotypes, because of improved understanding of dominance…

  8. Integration of Network Biology and Imaging to Study Cancer Phenotypes and Responses.

    PubMed

    Tian, Ye; Wang, Sean S; Zhang, Zhen; Rodriguez, Olga C; Petricoin, Emanuel; Shih, Ie-Ming; Chan, Daniel; Avantaggiati, Maria; Yu, Guoqiang; Ye, Shaozhen; Clarke, Robert; Wang, Chao; Zhang, Bai; Wang, Yue; Albanese, Chris

    2014-01-01

    Ever growing "omics" data and continuously accumulated biological knowledge provide an unprecedented opportunity to identify molecular biomarkers and their interactions that are responsible for cancer phenotypes that can be accurately defined by clinical measurements such as in vivo imaging. Since signaling or regulatory networks are dynamic and context-specific, systematic efforts to characterize such structural alterations must effectively distinguish significant network rewiring from random background fluctuations. Here we introduced a novel integration of network biology and imaging to study cancer phenotypes and responses to treatments at the molecular systems level. Specifically, Differential Dependence Network (DDN) analysis was used to detect statistically significant topological rewiring in molecular networks between two phenotypic conditions, and in vivo Magnetic Resonance Imaging (MRI) was used to more accurately define phenotypic sample groups for such differential analysis. We applied DDN to analyze two distinct phenotypic groups of breast cancer and study how genomic instability affects the molecular network topologies in high-grade ovarian cancer. Further, FDA-approved arsenic trioxide (ATO) and the ND2-SmoA1 mouse model of Medulloblastoma (MB) were used to extend our analyses of combined MRI and Reverse Phase Protein Microarray (RPMA) data to assess tumor responses to ATO and to uncover the complexity of therapeutic molecular biology.

  9. Stochastic switching in biology: from genotype to phenotype

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.

    2017-03-01

    There has been a resurgence of interest in non-equilibrium stochastic processes in recent years, driven in part by the observation that the number of molecules (genes, mRNA, proteins) involved in gene expression are often of order 1-1000. This means that deterministic mass-action kinetics tends to break down, and one needs to take into account the discrete, stochastic nature of biochemical reactions. One of the major consequences of molecular noise is the occurrence of stochastic biological switching at both the genotypic and phenotypic levels. For example, individual gene regulatory networks can switch between graded and binary responses, exhibit translational/transcriptional bursting, and support metastability (noise-induced switching between states that are stable in the deterministic limit). If random switching persists at the phenotypic level then this can confer certain advantages to cell populations growing in a changing environment, as exemplified by bacterial persistence in response to antibiotics. Gene expression at the single-cell level can also be regulated by changes in cell density at the population level, a process known as quorum sensing. In contrast to noise-driven phenotypic switching, the switching mechanism in quorum sensing is stimulus-driven and thus noise tends to have a detrimental effect. A common approach to modeling stochastic gene expression is to assume a large but finite system and to approximate the discrete processes by continuous processes using a system-size expansion. However, there is a growing need to have some familiarity with the theory of stochastic processes that goes beyond the standard topics of chemical master equations, the system-size expansion, Langevin equations and the Fokker-Planck equation. Examples include stochastic hybrid systems (piecewise deterministic Markov processes), large deviations and the Wentzel-Kramers-Brillouin (WKB) method, adiabatic reductions, and queuing/renewal theory. The major aim of this

  10. The fluidity of biosocial identity and the effects of place, space, and time.

    PubMed

    Wiese, Daniel; Rodriguez Escobar, Jeronimo; Hsu, Yohsiang; Kulathinal, Rob J; Hayes-Conroy, Allison

    2018-02-01

    Public and scientific conceptions of identity are changing alongside advances in biotechnology, with important relevance to health and medicine. In particular, biological identity, once predominantly conceived as static (e.g., related to DNA, dental records, fingerprints) is now being recognized as dynamic or fluid, mirroring contemporary understandings of psychological and social identity. The dynamism of biological identity comes from the individual body's unique relationship with the world surrounding it, and therefore may best be described as biosocial. This paper reviews advances in scientific understandings of identity and presents a model that contrasts prior static approaches to biological identity from more recent dynamically-relational ones. This emerging viewpoint is of broad significance to health and medicine, particularly as medicine recognizes the significance of biography - i.e. the multiple, dense interactions imparted on a body across spatio-temporal dimensions - to phenotypic prediction, especially disease risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Science Identity's Influence on Community College Students' Engagement, Persistence, and Performance in Biology

    NASA Astrophysics Data System (ADS)

    Riccitelli, Melinda

    In the United States (U.S.), student engagement, persistence, and academic performance levels in college science, technology, engineering, and mathematics (STEM) programs have been unsatisfactory over the last decade. Low student engagement, persistence, and academic performance in STEM disciplines have been identified as major obstacles to U.S. economic goals and U.S. science education objectives. The central and salient science identity a college student claims can influence his engagement, persistence, and academic achievement in college science. While science identity studies have been conducted on four-year college populations there is a gap in the literature concerning community college students' science identity and science performance. The purpose of this quantitative correlational study was to examine the relationship between community college students claimed science identities and engagement, persistence, and academic performance. A census sample of 264 community college students enrolled in biology during the summer of 2015 was used to study this relationship. Science identity and engagement levels were calculated using the Science Identity Centrality Scale and the Biology Motivation Questionnaire II, respectively. Persistence and final grade data were collected from institutional and instructor records. Engagement significantly correlated to, r =.534, p = .01, and varied by science identity, p < .001. Percent final grade also varied by science identity (p < .005), but this relationship was weaker (r = .208, p = .01). Results for science identity and engagement and final grade were consistent with the identity literature. Persistence did not vary by science identity in this student sample (chi2 =2.815, p = .421). This result was inconsistent with the literature on science identity and persistence. Quantitative results from this study present a mixed picture of science identity status at the community college level. It is suggested, based on the findings

  12. Evolutionary characters, phenotypes and ontologies: curating data from the systematic biology literature.

    PubMed

    Dahdul, Wasila M; Balhoff, James P; Engeman, Jeffrey; Grande, Terry; Hilton, Eric J; Kothari, Cartik; Lapp, Hilmar; Lundberg, John G; Midford, Peter E; Vision, Todd J; Westerfield, Monte; Mabee, Paula M

    2010-05-20

    The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of

  13. Phenotypic variability in patients with ADA2 deficiency due to identical homozygous R169Q mutations.

    PubMed

    Van Montfrans, Joris M; Hartman, Esther A R; Braun, Kees P J; Hennekam, Eric A M; Hak, Elisabeth A; Nederkoorn, Paul J; Westendorp, Willeke F; Bredius, Robbert G M; Kollen, Wouter J W; Schölvinck, Elisabeth H; Legger, G Elizabeth; Meyts, Isabelle; Liston, Adrian; Lichtenbelt, Klaske D; Giltay, Jacques C; Van Haaften, Gijs; De Vries Simons, Gaby M; Leavis, Helen; Sanders, Cornelis J G; Bierings, Marc B; Nierkens, Stefan; Van Gijn, Marielle E

    2016-05-01

    To determine the genotype-phenotype association in patients with adenosine deaminase-2 (ADA2) deficiency due to identical homozygous R169Q mutations inCECR1 METHODS: We present a case series of nine ADA2-deficient patients with an identical homozygous R169Q mutation. Clinical and diagnostic data were collected and available MRI studies were reviewed. We performed genealogy and haplotype analyses and measured serum ADA2 activity. ADA2 activity values were correlated to clinical symptoms. Age of presentation differed widely between the nine presented patients (range: 0 months to 8 years). The main clinical manifestations were (hepato)splenomegaly (8/9), skin involvement (8/9) and neurological involvement (8/9, of whom 6 encountered stroke). Considerable variation was seen in type, frequency and intensity of other symptoms, which included aplastic anaemia, acute myeloid leukaemia and cutaneous ulcers. Common laboratory abnormalities included cytopenias and hypogammaglobulinaemia. ADA2 enzyme activity in patients was significantly decreased compared with healthy controls. ADA2 activity levels tended to be lower in patients with stroke compared with patients without stroke. Genealogical studies did not identify a common ancestor; however, based on allele frequency, a North-West European founder effect can be noted. Three patients underwent haematopoietic cell transplantation, after which ADA2 activity was restored and clinical symptoms resolved. This case series revealed large phenotypic variability in patients with ADA2 deficiency though they were homozygous for the same R169Q mutation inCECR1 Disease modifiers, including epigenetic and environmental factors, thus seem important in determining the phenotype. Furthermore, haematopoietic cell transplantation appears promising for those patients with a severe clinical phenotype. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions

  14. A systems biology approach to defining regulatory mechanisms for cartilage and tendon cell phenotypes.

    PubMed

    Mueller, A J; Tew, S R; Vasieva, O; Clegg, P D; Canty-Laird, E G

    2016-09-27

    Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin.

  15. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view. PMID:23515240

  16. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology.

    PubMed

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view.

  17. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  18. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology.

    PubMed

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  19. φ-evo: A program to evolve phenotypic models of biological networks.

    PubMed

    Henry, Adrien; Hemery, Mathieu; François, Paul

    2018-06-01

    Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.

  20. Hemiclonal analysis of interacting phenotypes in male and female Drosophila melanogaster

    PubMed Central

    2014-01-01

    Background Identifying the sources of variation in mating interactions between males and females is important because this variation influences the strength and/or the direction of sexual selection that populations experience. While the origins and effects of variation in male attractiveness and ornamentation have received much scrutiny, the causes and consequences of intraspecific variation in females have been relatively overlooked. We used cytogenetic cloning techniques developed for Drosophila melanogaster to create “hemiclonal” males and females with whom we directly observed sexual interaction between individuals of different known genetic backgrounds and measured subsequent reproductive outcomes. Using this approach, we were able to quantify the genetic contribution of each mate to the observed phenotypic variation in biologically important traits including mating speed, copulation duration, and subsequent offspring production, as well as measure the magnitude and direction of intersexual genetic correlation between female choosiness and male attractiveness. Results We found significant additive genetic variation contributing to mating speed that can be attributed to male genetic identity, female genetic identity, but not their interaction. Furthermore we found that phenotypic variation in copulation duration had a significant male-associated genetic component. Female genetic identity and the interaction between male and female genetic identity accounted for a substantial amount of the observed phenotypic variation in egg size. Although previous research predicts a trade-off between egg size and fecundity, this was not evident in our results. We found a strong negative genetic correlation between female choosiness and male attractiveness, a result that suggests a potentially important role for sexually antagonistic alleles in sexual selection processes in our population. Conclusion These results further our understanding of sexual selection because they

  1. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation

    PubMed Central

    Hawes, Norman L.; Trantow, Colleen M.; Chang, Bo; John, Simon W.M.

    2010-01-01

    Summary Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among sixteen mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease. PMID:18715234

  2. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.

    PubMed

    Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M

    2008-10-01

    Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.

  3. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease.

    PubMed

    Dumas, Marc-Emmanuel; Kinross, James; Nicholson, Jeremy K

    2014-01-01

    Metabolic syndrome, a cluster of risk factors for type 2 diabetes mellitus and cardiovascular disease, is becoming an increasing global health concern. Insulin resistance is often associated with metabolic syndrome and also typical hepatic manifestations such as nonalcoholic fatty liver disease. Profiling of metabolic products (metabolic phenotyping or metabotyping) has provided new insights into metabolic syndrome and nonalcoholic fatty liver disease. Data from nuclear magnetic resonance spectroscopy and mass spectrometry combined with statistical modeling and top-down systems biology have allowed us to analyze and interpret metabolic signatures in terms of metabolic pathways and protein interaction networks and to identify the genomic and metagenomic determinants of metabolism. For example, metabolic phenotyping has shown that relationships between host cells and the microbiome affect development of the metabolic syndrome and fatty liver disease. We review recent developments in metabolic phenotyping and systems biology technologies and how these methodologies have provided insights into the mechanisms of metabolic syndrome and nonalcoholic fatty liver disease. We discuss emerging areas of research in this field and outline our vision for how metabolic phenotyping could be used to study metabolic syndrome and fatty liver disease. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs.

    PubMed

    Liu, Mei; Wu, Yonghui; Chen, Yukun; Sun, Jingchun; Zhao, Zhongming; Chen, Xue-wen; Matheny, Michael Edwin; Xu, Hua

    2012-06-01

    Adverse drug reaction (ADR) is one of the major causes of failure in drug development. Severe ADRs that go undetected until the post-marketing phase of a drug often lead to patient morbidity. Accurate prediction of potential ADRs is required in the entire life cycle of a drug, including early stages of drug design, different phases of clinical trials, and post-marketing surveillance. Many studies have utilized either chemical structures or molecular pathways of the drugs to predict ADRs. Here, the authors propose a machine-learning-based approach for ADR prediction by integrating the phenotypic characteristics of a drug, including indications and other known ADRs, with the drug's chemical structures and biological properties, including protein targets and pathway information. A large-scale study was conducted to predict 1385 known ADRs of 832 approved drugs, and five machine-learning algorithms for this task were compared. This evaluation, based on a fivefold cross-validation, showed that the support vector machine algorithm outperformed the others. Of the three types of information, phenotypic data were the most informative for ADR prediction. When biological and phenotypic features were added to the baseline chemical information, the ADR prediction model achieved significant improvements in area under the curve (from 0.9054 to 0.9524), precision (from 43.37% to 66.17%), and recall (from 49.25% to 63.06%). Most importantly, the proposed model successfully predicted the ADRs associated with withdrawal of rofecoxib and cerivastatin. The results suggest that phenotypic information on drugs is valuable for ADR prediction. Moreover, they demonstrate that different models that combine chemical, biological, or phenotypic information can be built from approved drugs, and they have the potential to detect clinically important ADRs in both preclinical and post-marketing phases.

  5. Anorexia nervosa and gender identity disorder in biologic males: a report of two cases.

    PubMed

    Winston, Anthony P; Acharya, Sudha; Chaudhuri, Shreemantee; Fellowes, Lynette

    2004-07-01

    Gender identity disorder is a rare disorder of uncertain etiology. The emphasis on body shape in this disorder suggests that there may be an association with anorexia nervosa. We report two cases of anorexia nervosa and gender identity disorder in biologic males who presented to an eating disorders service. One was treated successfully as an outpatient and subsequently underwent gender reassignment surgery. The other patient required admission and prolonged psychotherapy. Differences between the two cases are discussed. Issues of gender identity should be considered in the assessment of male patients presenting with anorexia nervosa. Copyright 2004 by Wiley Periodicals, Inc.

  6. Biological origins of sexual orientation and gender identity: Impact on health.

    PubMed

    O'Hanlan, Katherine A; Gordon, Jennifer C; Sullivan, Mackenzie W

    2018-04-01

    Gynecologic Oncologists are sometimes consulted to care for patients who present with diverse gender identities or sexual orientations. Clinicians can create more helpful relationships with their patients if they understand the etiologies of these diverse expressions of sexual humanity. Multidisciplinary evidence reveals that a sexually dimorphic spectrum of somatic and neurologic anatomy, traits and abilities, including sexual orientation and gender identity, are conferred together during the first half of pregnancy due to genetics, epigenetics and the diversity of timing and function of sex chromosomes, sex-determining protein secretion, gonadal hormone secretion, receptor levels, adrenal function, maternally ingested dietary hormones, fetal health, and many other factors. Multiple layers of evidence confirm that sexual orientation and gender identity are as biological, innate and immutable as the other traits conferred during that critical time in gestation. Negative social responses to diverse orientations or gender identities have caused marginalization of these individuals with resultant alienation from medical care, reduced self-care and reduced access to medical care. The increased risks for many diseases, including gynecologic cancers are reviewed. Gynecologic Oncologists can potentially create more effective healthcare relationships with their patients if they have this information. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Insomnia with Objective Short Sleep Duration: the Most Biologically Severe Phenotype of the Disorder

    PubMed Central

    Vgontzas, Alexandros N.; Fernandez-Mendoza, Julio; Liao, Duanping; Bixler, Edward O.

    2013-01-01

    Summary Until recently, the association of chronic insomnia with significant medical morbidity was not established and its diagnosis was based solely on subjective complaints. We present evidence that insomnia with objective short sleep duration is the most biologically severe phenotype of the disorder, as it is associated with cognitive-emotional and cortical arousal, activation of both limbs of the stress system, and a higher risk for hypertension, impaired heart rate variability, diabetes, neurocognitive impairment, and mortality. Also, it appears that objective short sleep duration is a biological marker of genetic predisposition to chronic insomnia. In contrast, insomnia with objective normal sleep duration is associated with cognitive-emotional and cortical arousal and sleep misperception but not with signs of activation of both limbs of the stress system or medical complications. Furthermore, the first phenotype is associated with unremitting course, whereas the latter is more likely to remit. We propose that short sleep duration in insomnia is a reliable marker of the biological severity and medical impact of the disorder. Objective measures of sleep obtained in the home environment of the patient would become part of the routine assessment of insomnia patients in a clinician’s office setting. We speculate that insomnia with objective short sleep duration has primarily biological roots and may respond better to biological treatments, whereas insomnia with objective normal sleep duration has primarily psychological roots and may respond better to psychological interventions alone. PMID:23419741

  8. Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder.

    PubMed

    Vgontzas, Alexandros N; Fernandez-Mendoza, Julio; Liao, Duanping; Bixler, Edward O

    2013-08-01

    Until recently, the association of chronic insomnia with significant medical morbidity was not established and its diagnosis was based solely on subjective complaints. We present evidence that insomnia with objective short sleep duration is the most biologically severe phenotype of the disorder, as it is associated with cognitive-emotional and cortical arousal, activation of both limbs of the stress system, and a higher risk for hypertension, impaired heart rate variability, diabetes, neurocognitive impairment, and mortality. Also, it appears that objective short sleep duration is a biological marker of genetic predisposition to chronic insomnia. In contrast, insomnia with objective normal sleep duration is associated with cognitive-emotional and cortical arousal and sleep misperception but not with signs of activation of both limbs of the stress system or medical complications. Furthermore, the first phenotype is associated with unremitting course, whereas the latter is more likely to remit. We propose that short sleep duration in insomnia is a reliable marker of the biological severity and medical impact of the disorder. Objective measures of sleep obtained in the home environment of the patient would become part of the routine assessment of insomnia patients in a clinician's office setting. We speculate that insomnia with objective short sleep duration has primarily biological roots and may respond better to biological treatments, whereas insomnia with objective normal sleep duration has primarily psychological roots and may respond better to psychological interventions alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Mutational robustness accelerates the origin of novel RNA phenotypes through phenotypic plasticity.

    PubMed

    Wagner, Andreas

    2014-02-18

    Novel phenotypes can originate either through mutations in existing genotypes or through phenotypic plasticity, the ability of one genotype to form multiple phenotypes. From molecules to organisms, plasticity is a ubiquitous feature of life, and a potential source of exaptations, adaptive traits that originated for nonadaptive reasons. Another ubiquitous feature is robustness to mutations, although it is unknown whether such robustness helps or hinders the origin of new phenotypes through plasticity. RNA is ideal to address this question, because it shows extensive plasticity in its secondary structure phenotypes, a consequence of their continual folding and unfolding, and these phenotypes have important biological functions. Moreover, RNA is to some extent robust to mutations. This robustness structures RNA genotype space into myriad connected networks of genotypes with the same phenotype, and it influences the dynamics of evolving populations on a genotype network. In this study I show that both effects help accelerate the exploration of novel phenotypes through plasticity. My observations are based on many RNA molecules sampled at random from RNA sequence space, and on 30 biological RNA molecules. They are thus not only a generic feature of RNA sequence space but are relevant for the molecular evolution of biological RNA. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. An Inquiry-Infused Introductory Biology Laboratory That Integrates Mendel's Pea Phenotypes with Molecular Mechanisms

    ERIC Educational Resources Information Center

    Kudish, Philip; Schlag, Erin; Kaplinsky, Nicholas J.

    2015-01-01

    We developed a multi-week laboratory in which college-level introductory biology students investigate Mendel's stem length phenotype in peas. Students collect, analyze and interpret convergent evidence from molecular and physiological techniques. In weeks 1 and 2, students treat control and experimental plants with Gibberellic Acid (GA) to…

  11. Molecular Phenotyping Combines Molecular Information, Biological Relevance, and Patient Data to Improve Productivity of Early Drug Discovery.

    PubMed

    Drawnel, Faye Marie; Zhang, Jitao David; Küng, Erich; Aoyama, Natsuyo; Benmansour, Fethallah; Araujo Del Rosario, Andrea; Jensen Zoffmann, Sannah; Delobel, Frédéric; Prummer, Michael; Weibel, Franziska; Carlson, Coby; Anson, Blake; Iacone, Roberto; Certa, Ulrich; Singer, Thomas; Ebeling, Martin; Prunotto, Marco

    2017-05-18

    Today, novel therapeutics are identified in an environment which is intrinsically different from the clinical context in which they are ultimately evaluated. Using molecular phenotyping and an in vitro model of diabetic cardiomyopathy, we show that by quantifying pathway reporter gene expression, molecular phenotyping can cluster compounds based on pathway profiles and dissect associations between pathway activities and disease phenotypes simultaneously. Molecular phenotyping was applicable to compounds with a range of binding specificities and triaged false positives derived from high-content screening assays. The technique identified a class of calcium-signaling modulators that can reverse disease-regulated pathways and phenotypes, which was validated by structurally distinct compounds of relevant classes. Our results advocate for application of molecular phenotyping in early drug discovery, promoting biological relevance as a key selection criterion early in the drug development cascade. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biological aspects of gender disorders.

    PubMed

    Corsello, S M; Di Donna, V; Senes, P; Luotto, V; Ricciato, M P; Paragliola, R M; Pontecorvi, A

    2011-12-01

    The scientific community is very interested in the biological aspects of gender disorders and sexual orientation. There are different levels to define an individual's sex: chromosomal, gonadic, and phenotypic sex. Concerning the psychological sex, men and women are different by virtue of their own gender identity, which means they recognize themselves as belonging to a determinate sex. They are different also as a result of their own role identity, a set of behaviors, tendencies, and cognitive and emotional attitudes, commonly defined as "male" and "female". Transsexuality is a disorder characterized by the development of a gender identity opposed to phenotypic sex, whereas homosexuality is not a disturbance of gender identity but only of sexual attraction, expressing sexual orientation towards people of the same sex. We started from a critical review of literature on genetic and hormonal mechanisms involved in sexual differentiation. We re-examined the neuro-anatomic and functional differences between men and women, with special reference to their role in psychosexual differentiation and to their possible implication in the genesis of homosexuality and identity gender disorders. Homosexuality and transsexuality are conditions without a well defined etiology. Although the influence of educational and environmental factors in humans is undeniable, it seems that organic neurohormonal prenatal and postnatal factors might contribute in a determinant way in the development of these two conditions. This "organicistic neurohormal theory" might find support in the study of particular situations in which the human fetus is exposed to an abnormal hormonal environment in utero.

  13. Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis.

    PubMed

    Bos, L D; Schouten, L R; van Vught, L A; Wiewel, M A; Ong, D S Y; Cremer, O; Artigas, A; Martin-Loeches, I; Hoogendijk, A J; van der Poll, T; Horn, J; Juffermans, N; Calfee, C S; Schultz, M J

    2017-10-01

    We hypothesised that patients with acute respiratory distress syndrome (ARDS) can be clustered based on concentrations of plasma biomarkers and that the thereby identified biological phenotypes are associated with mortality. Consecutive patients with ARDS were included in this prospective observational cohort study. Cluster analysis of 20 biomarkers of inflammation, coagulation and endothelial activation provided the phenotypes in a training cohort, not taking any outcome data into account. Logistic regression with backward selection was used to select the most predictive biomarkers, and these predicted phenotypes were validated in a separate cohort. Multivariable logistic regression was used to quantify the independent association with mortality. Two phenotypes were identified in 454 patients, which we named 'uninflamed' (N=218) and 'reactive' (N=236). A selection of four biomarkers (interleukin-6, interferon gamma, angiopoietin 1/2 and plasminogen activator inhibitor-1) could be used to accurately predict the phenotype in the training cohort (area under the receiver operating characteristics curve: 0.98, 95% CI 0.97 to 0.99). Mortality rates were 15.6% and 36.4% (p<0.001) in the training cohort and 13.6% and 37.5% (p<0.001) in the validation cohort (N=207). The 'reactive phenotype' was independent from confounders associated with intensive care unit mortality (training cohort: OR 1.13, 95% CI 1.04 to 1.23; validation cohort: OR 1.18, 95% CI 1.06 to 1.31). Patients with ARDS can be clustered into two biological phenotypes, with different mortality rates. Four biomarkers can be used to predict the phenotype with high accuracy. The phenotypes were very similar to those found in cohorts derived from randomised controlled trials, and these results may improve patient selection for future clinical trials targeting host response in patients with ARDS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please

  14. The molecular mechanisms of sexual orientation and gender identity.

    PubMed

    Fisher, Alessandra D; Ristori, Jiska; Morelli, Girolamo; Maggi, Mario

    2018-05-15

    Differences between males and females are widely represented in nature. There are gender differences in phenotypes, personality traits, behaviors and interests, cognitive performance, and proneness to specific diseases. The most marked difference in humans is represented by sexual orientation and core gender identity, the origins of which are still controversial and far from being understood. Debates continue on whether sexual behavior and gender identity are a result of biological (nature) or cultural (nurture) factors, with biology possibly playing a major role. The main goal of this review is to summarize the studies available to date on the biological factors involved in the development of both sexual orientation and gender identity. A systematic search of published evidence was performed using Medline (from January 1948 to June 2017). Review of the relevant literature was based on authors' expertise. Indeed, different studies have documented the possible role and interaction of neuroanatomic, hormonal and genetic factors. The sexual dimorphic brain is considered the anatomical substrate of psychosexual development, on which genes and gonadal hormones may have a shaping effect. In particular, growing evidence shows that prenatal and pubertal sex hormones permanently affect human behavior. In addition, heritability studies have demonstrated a role of genetic components. However, a convincing candidate gene has not been identified. Future studies (e.i. genome wide studies) are needed to better clarify the complex interaction between genes, anatomy and hormonal influences on psychosexual development. Copyright © 2017. Published by Elsevier B.V.

  15. Knowledge Discovery in Biological Databases for Revealing Candidate Genes Linked to Complex Phenotypes.

    PubMed

    Hassani-Pak, Keywan; Rawlings, Christopher

    2017-06-13

    Genetics and "omics" studies designed to uncover genotype to phenotype relationships often identify large numbers of potential candidate genes, among which the causal genes are hidden. Scientists generally lack the time and technical expertise to review all relevant information available from the literature, from key model species and from a potentially wide range of related biological databases in a variety of data formats with variable quality and coverage. Computational tools are needed for the integration and evaluation of heterogeneous information in order to prioritise candidate genes and components of interaction networks that, if perturbed through potential interventions, have a positive impact on the biological outcome in the whole organism without producing negative side effects. Here we review several bioinformatics tools and databases that play an important role in biological knowledge discovery and candidate gene prioritization. We conclude with several key challenges that need to be addressed in order to facilitate biological knowledge discovery in the future.

  16. The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer.

    PubMed

    Honda, Kazufumi

    2015-01-01

    Invasion and metastasis are malignant phenotypes in cancer that lead to patient death. Cell motility is involved in these processes. In 1998, we identified overexpression of the actin-bundling protein actinin-4 in several types of cancer. Protein expression of actinin-4 is closely associated with the invasive phenotypes of cancers. Actinin-4 is predominantly expressed in the cellular protrusions that stimulate the invasive phenotype in cancer cells and is essential for formation of cellular protrusions such as filopodia and lamellipodia. ACTN4 (gene name encoding actinin-4 protein) is located on human chromosome 19q. ACTN4 amplification is frequently observed in patients with carcinomas of the pancreas, ovary, lung, and salivary gland, and patients with ACTN4 amplifications have worse outcomes than patients without amplification. In addition, nuclear distribution of actinin-4 is frequently observed in small cell lung, breast, and ovarian cancer. Actinin-4, when expressed in cancer cell nuclei, functions as a transcriptional co-activator. In this review, we summarize recent developments regarding the biological roles of actinin-4 in cancer invasion.

  17. The Biological Contributions to Gender Identity and Gender Diversity: Bringing Data to the Table.

    PubMed

    Polderman, Tinca J C; Kreukels, Baudewijntje P C; Irwig, Michael S; Beach, Lauren; Chan, Yee-Ming; Derks, Eske M; Esteva, Isabel; Ehrenfeld, Jesse; Heijer, Martin Den; Posthuma, Danielle; Raynor, Lewis; Tishelman, Amy; Davis, Lea K

    2018-03-01

    The American Psychological Association defines gender identity as, "A person's deeply-felt, inherent sense of being a boy, a man, or a male; a girl, a woman, or a female; or an alternative gender (e.g., genderqueer, gender nonconforming, gender neutral) that may or may not correspond to a person's sex assigned at birth or to a person's primary or secondary sex characteristics" (American Psychological Association, Am Psychol 70(9):832-864, 2015). Here we review the evidence that gender identity and related socially defined gender constructs are influenced in part by innate factors including genes. Based on the data reviewed, we hypothesize that gender identity is a multifactorial complex trait with a heritable polygenic component. We argue that increasing the awareness of the biological diversity underlying gender identity development is relevant to all domains of social, medical, and neuroscience research and foundational for reducing health disparities and promoting human-rights protections for gender minorities.

  18. Phenotype, genotype and gender identity in a large cohort of patients from India with 5α-reductase 2 deficiency.

    PubMed

    Shabir, I; Khurana, M L; Joseph, A A; Eunice, M; Mehta, M; Ammini, A C

    2015-11-01

    Deficiency of the 5α-reductase 2 enzyme impairs the conversion of testosterone to dihydrotestosterone (DHT) and differentiation of external genitalia, seminal vesicles and prostate in males. The present study describes the phenotype, genotype and gender identity in a large cohort of patients with 5αRD2. All patients underwent detailed clinical evaluation, hormonal profile, karyotyping and molecular analysis of the SRD5A2 gene. The molecular analysis of the SRD5A2 gene showed the presence of mutant alleles in 24 patients. We found 6 novel mutations IVS(1-2) T>C, p.A52T, 188-189insTA, 904-905ins A, p.A12T and p.E57X in our patients. All patients had ambiguous genitalia and the degrees of under-virilization ranged from penoscrotal hypospadias and microphallus to clitoromegaly. The position of gonads was variable in patients with same mutation. All the patients with mutations in the SRD5A2 gene had male gender identity. Those reared as female had gender dysphoria and underwent gender reassignment. Though a specific genotype-phenotype correlation could not be established in our patient but confirming the diagnosis of 5αRD2 with assessment of the SRD5A2 gene may help in appropriate gender assignment. © 2015 American Society of Andrology and European Academy of Andrology.

  19. Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling

    PubMed Central

    Wagner, Bridget K.; Clemons, Paul A.

    2009-01-01

    Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene-expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe- and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of “virtual” profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe and drug discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections. PMID:19825513

  20. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

    PubMed Central

    Köhler, Sebastian; Doelken, Sandra C.; Mungall, Christopher J.; Bauer, Sebastian; Firth, Helen V.; Bailleul-Forestier, Isabelle; Black, Graeme C. M.; Brown, Danielle L.; Brudno, Michael; Campbell, Jennifer; FitzPatrick, David R.; Eppig, Janan T.; Jackson, Andrew P.; Freson, Kathleen; Girdea, Marta; Helbig, Ingo; Hurst, Jane A.; Jähn, Johanna; Jackson, Laird G.; Kelly, Anne M.; Ledbetter, David H.; Mansour, Sahar; Martin, Christa L.; Moss, Celia; Mumford, Andrew; Ouwehand, Willem H.; Park, Soo-Mi; Riggs, Erin Rooney; Scott, Richard H.; Sisodiya, Sanjay; Vooren, Steven Van; Wapner, Ronald J.; Wilkie, Andrew O. M.; Wright, Caroline F.; Vulto-van Silfhout, Anneke T.; de Leeuw, Nicole; de Vries, Bert B. A.; Washingthon, Nicole L.; Smith, Cynthia L.; Westerfield, Monte; Schofield, Paul; Ruef, Barbara J.; Gkoutos, Georgios V.; Haendel, Melissa; Smedley, Damian; Lewis, Suzanna E.; Robinson, Peter N.

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online. PMID:24217912

  1. Gender identity outcomes in children with disorders/differences of sex development: Predictive factors.

    PubMed

    Bakula, Dana M; Mullins, Alexandria J; Sharkey, Christina M; Wolfe-Christensen, Cortney; Mullins, Larry L; Wisniewski, Amy B

    2017-06-01

    Disorders/differences of sex development (DSD) comprise multiple congenital conditions in which chromosomal, gonadal, and/or anatomical sex are discordant. The prediction of future gender identity (i.e., self-identifying as male, female, or other) in children with DSD can be imprecise, and current knowledge about the development of gender identity in people with, and without DSD, is limited. However, sex of rearing is the strongest predictor of gender identity for the majority of individuals with various DSD conditions. When making decisions regarding sex of rearing biological factors (e.g., possession of a Y chromosome, degree and duration of pre- and postnatal androgen exposure, phenotypic presentation of the external genitalia, and fertility potential), social and cultural factors, as well as quality of life should be considered. Information on gender identity outcomes across a range of DSD diagnoses is presented to aid in sex of rearing assignment. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Clinical phenotypes and the biological parameters of Congolese patients suffering from sickle cell anemia: A first report from Central Africa.

    PubMed

    Mikobi, Tite M; Lukusa Tshilobo, Prosper; Aloni, Michel N; Akilimali, Pierre Z; Mvumbi-Lelo, Georges; Mbuyi-Muamba, Jean Marie

    2017-11-01

    The influence of phenotype on the clinical course and laboratory features of sickle cell anemia (SCA) is rarely described in sub-Saharan Africa. A cross-sectional study was conducted in Kinshasa. A clinical phenotype score was built up. The following definitions were applied: asymptomatic clinical phenotype (ACP; score≤5), moderate clinical phenotype (MCP; score between 6 and 15), and severe clinical phenotype (SCP; score≥16). ANOVA test were used to compare differences among categorical variables. We have studied 140 patients. The mean body mass index (BMI) value of three groups was lower (<25 kg/m 2 ) than the limit defining overweight. BMI of the subjects with ACP was significantly higher than those of other phenotypes (P<.05). Sickle cell patients with ACP have a high mean steady-state hemoglobin concentration compared to those with MCP and SCP (P<.001). A significant elevated baseline leukocyte count is associated with SCP (P<.001). Fetal Hemoglobin (HbF) was significantly higher in ACP. Significant elevation of alpha 1 and alpha 2 globulins in SCP were observed. In our study, fetal hemoglobin has an influence on the clinical severity and the biological parameters of SCA. The study provides data concerning the sickle cell anemia clinical and biological variability in our midst. © 2017 Wiley Periodicals, Inc.

  3. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    PubMed

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Finding Our Way through Phenotypes

    PubMed Central

    Deans, Andrew R.; Lewis, Suzanna E.; Huala, Eva; Anzaldo, Salvatore S.; Ashburner, Michael; Balhoff, James P.; Blackburn, David C.; Blake, Judith A.; Burleigh, J. Gordon; Chanet, Bruno; Cooper, Laurel D.; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T. Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E.; Dumontier, Michel; Franz, Nico M.; Friedrich, Frank; Gkoutos, George V.; Haendel, Melissa; Harmon, Luke J.; Hayamizu, Terry F.; He, Yongqun; Hines, Heather M.; Ibrahim, Nizar; Jackson, Laura M.; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J.; Le Novère, Nicolas; Lundberg, John G.; Macklin, James; Mast, Austin R.; Midford, Peter E.; Mikó, István; Mungall, Christopher J.; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J.; Richter, Stefan; Robinson, Peter N.; Ruttenberg, Alan; Schulz, Katja S.; Segerdell, Erik; Seltmann, Katja C.; Sharkey, Michael J.; Smith, Aaron D.; Smith, Barry; Specht, Chelsea D.; Squires, R. Burke; Thacker, Robert W.; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D.; Vogt, Lars; Wall, Christine E.; Walls, Ramona L.; Westerfeld, Monte; Wharton, Robert A.; Wirkner, Christian S.; Woolley, James B.; Yoder, Matthew J.; Zorn, Aaron M.; Mabee, Paula

    2015-01-01

    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility. PMID:25562316

  5. Finding our way through phenotypes.

    PubMed

    Deans, Andrew R; Lewis, Suzanna E; Huala, Eva; Anzaldo, Salvatore S; Ashburner, Michael; Balhoff, James P; Blackburn, David C; Blake, Judith A; Burleigh, J Gordon; Chanet, Bruno; Cooper, Laurel D; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E; Dumontier, Michel; Franz, Nico M; Friedrich, Frank; Gkoutos, George V; Haendel, Melissa; Harmon, Luke J; Hayamizu, Terry F; He, Yongqun; Hines, Heather M; Ibrahim, Nizar; Jackson, Laura M; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J; Le Novère, Nicolas; Lundberg, John G; Macklin, James; Mast, Austin R; Midford, Peter E; Mikó, István; Mungall, Christopher J; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J; Richter, Stefan; Robinson, Peter N; Ruttenberg, Alan; Schulz, Katja S; Segerdell, Erik; Seltmann, Katja C; Sharkey, Michael J; Smith, Aaron D; Smith, Barry; Specht, Chelsea D; Squires, R Burke; Thacker, Robert W; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D; Vogt, Lars; Wall, Christine E; Walls, Ramona L; Westerfeld, Monte; Wharton, Robert A; Wirkner, Christian S; Woolley, James B; Yoder, Matthew J; Zorn, Aaron M; Mabee, Paula

    2015-01-01

    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.

  6. Correlation between Relatives given Complete Genotypes: from Identity by Descent to Identity by Function

    PubMed Central

    Sverdlov, Serge; Thompson, Elizabeth A.

    2013-01-01

    In classical quantitative genetics, the correlation between the phenotypes of individuals with unknown genotypes and a known pedigree relationship is expressed in terms of probabilities of IBD states. In existing approaches to the inverse problem where genotypes are observed but pedigree relationships are not, dependence between phenotypes is either modeled as Bayesian uncertainty or mapped to an IBD model via inferred relatedness parameters. Neither approach yields a relationship between genotypic similarity and phenotypic similarity with a probabilistic interpretation corresponding to a generative model. We introduce a generative model for diploid allele effect based on the classic infinite allele mutation process. This approach motivates the concept of IBF (Identity by Function). The phenotypic covariance between two individuals given their diploid genotypes is expressed in terms of functional identity states. The IBF parameters define a genetic architecture for a trait without reference to specific alleles or population. Given full genome sequences, we treat a gene-scale functional region, rather than a SNP, as a QTL, modeling patterns of dominance for multiple alleles. Applications demonstrated by simulation include phenotype and effect prediction and association, and estimation of heritability and classical variance components. A simulation case study of the Missing Heritability problem illustrates a decomposition of heritability under the IBF framework into Explained and Unexplained components. PMID:23851163

  7. Molecular Biology at the Cutting Edge: A Review on CRISPR/CAS9 Gene Editing for Undergraduates

    ERIC Educational Resources Information Center

    Thurtle-Schmidt, Deborah M.; Lo, Te-Wen

    2018-01-01

    Disrupting a gene to determine its effect on an organism's phenotype is an indispensable tool in molecular biology. Such techniques are critical for understanding how a gene product contributes to the development and cellular identity of organisms. The explosion of genomic sequencing technologies combined with recent advances in genome-editing…

  8. Emerging semantics to link phenotype and environment

    PubMed Central

    Bunker, Daniel E.; Buttigieg, Pier Luigi; Cooper, Laurel D.; Dahdul, Wasila M.; Domisch, Sami; Franz, Nico M.; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J.; Midford, Peter E.; Mungall, Christopher J.; Ramírez, Martín J.; Specht, Chelsea D.; Vogt, Lars; Vos, Rutger Aldo; Walls, Ramona L.; White, Jeffrey W.; Zhang, Guanyang; Deans, Andrew R.; Huala, Eva; Lewis, Suzanna E.; Mabee, Paula M.

    2015-01-01

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments. PMID:26713234

  9. Emerging semantics to link phenotype and environment.

    PubMed

    Thessen, Anne E; Bunker, Daniel E; Buttigieg, Pier Luigi; Cooper, Laurel D; Dahdul, Wasila M; Domisch, Sami; Franz, Nico M; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J; Midford, Peter E; Mungall, Christopher J; Ramírez, Martín J; Specht, Chelsea D; Vogt, Lars; Vos, Rutger Aldo; Walls, Ramona L; White, Jeffrey W; Zhang, Guanyang; Deans, Andrew R; Huala, Eva; Lewis, Suzanna E; Mabee, Paula M

    2015-01-01

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.

  10. Biological mechanisms discriminating growth rate and adult body weight phenotypes in two Chinese indigenous chicken breeds.

    PubMed

    Dou, Tengfei; Zhao, Sumei; Rong, Hua; Gu, Dahai; Li, Qihua; Huang, Ying; Xu, Zhiqiang; Chu, Xiaohui; Tao, Linli; Liu, Lixian; Ge, Changrong; Te Pas, Marinus F W; Jia, Junjing

    2017-06-20

    Intensive selection has resulted in increased growth rates and muscularity in broiler chickens, in addition to adverse effects, including delayed organ development, sudden death syndrome, and altered metabolic rates. The biological mechanisms underlying selection responses remain largely unknown. Non-artificially-selected indigenous Chinese chicken breeds display a wide variety of phenotypes, including differential growth rate, body weight, and muscularity. The Wuding chicken breed is a fast growing large chicken breed, and the Daweishan mini chicken breed is a slow growing small chicken breed. Together they form an ideal model system to study the biological mechanisms underlying broiler chicken selection responses in a natural system. The objective of this study was to study the biological mechanisms underlying differential phenotypes between the two breeds in muscle and liver tissues, and relate these to the growth rate and body development phenotypes of the two breeds. The muscle tissue in the Wuding breed showed higher expression of muscle development genes than muscle tissue in the Daweishan chicken breed. This expression was accompanied by higher expression of acute inflammatory response genes in Wuding chicken than in Daweishan chicken. The muscle tissue of the Daweishan mini chicken breed showed higher expression of genes involved in several metabolic mechanisms including endoplasmic reticulum, protein and lipid metabolism, energy metabolism, as well as specific immune traits than in the Wuding chicken. The liver tissue showed fewer differences between the two breeds. Genes displaying higher expression in the Wuding breed than in the Daweishan breed were not associated with a specific gene network or biological mechanism. Genes highly expressed in the Daweishan mini chicken breed compared to the Wuding breed were enriched for protein metabolism, ABC receptors, signal transduction, and IL6-related mechanisms. We conclude that faster growth rates and larger

  11. Low but significant genetic differentiation underlies biologically meaningful phenotypic divergence in a large Atlantic salmon population.

    PubMed

    Aykanat, Tutku; Johnston, Susan E; Orell, Panu; Niemelä, Eero; Erkinaro, Jaakko; Primmer, Craig R

    2015-10-01

    Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high-resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined single nucleotide polymorphism (SNP)-based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine-scale subpopulation differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring subpopulations had low but significant genetic differentiation (FST  = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late-maturing individuals were virtually absent from one of the two subpopulations, and there were significant differences in juvenile growth rates and size at age after oceanic migration between individuals in the respective subpopulations. Our findings suggest that different evolutionary processes affect each subpopulation and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence. © 2015 John Wiley & Sons Ltd.

  12. IdentityMap Visualization of the Super Identity Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Super Identity Model is a collaboration with six United Kingdom universities to develop use cases used to piece together a person's identity across biological, cyber, psychological, and biographical domains. PNNL visualized the model in a web-based application called IdentityMap. This is the first step in a promising new field of research. Interested future collaborators are welcome to find out more by emailing superid@pnnl.gov.

  13. IdentityMap Visualization of the Super Identity Model

    ScienceCinema

    None

    2018-06-08

    The Super Identity Model is a collaboration with six United Kingdom universities to develop use cases used to piece together a person's identity across biological, cyber, psychological, and biographical domains. PNNL visualized the model in a web-based application called IdentityMap. This is the first step in a promising new field of research. Interested future collaborators are welcome to find out more by emailing superid@pnnl.gov.

  14. Identifying biologically relevant putative mechanisms in a given phenotype comparison

    PubMed Central

    Hanoudi, Samer; Donato, Michele; Draghici, Sorin

    2017-01-01

    A major challenge in life science research is understanding the mechanism involved in a given phenotype. The ability to identify the correct mechanisms is needed in order to understand fundamental and very important phenomena such as mechanisms of disease, immune systems responses to various challenges, and mechanisms of drug action. The current data analysis methods focus on the identification of the differentially expressed (DE) genes using their fold change and/or p-values. Major shortcomings of this approach are that: i) it does not consider the interactions between genes; ii) its results are sensitive to the selection of the threshold(s) used, and iii) the set of genes produced by this approach is not always conducive to formulating mechanistic hypotheses. Here we present a method that can construct networks of genes that can be considered putative mechanisms. The putative mechanisms constructed by this approach are not limited to the set of DE genes, but also considers all known and relevant gene-gene interactions. We analyzed three real datasets for which both the causes of the phenotype, as well as the true mechanisms were known. We show that the method identified the correct mechanisms when applied on microarray datasets from mouse. We compared the results of our method with the results of the classical approach, showing that our method produces more meaningful biological insights. PMID:28486531

  15. High Throughput Phenotypic Analysis of Mycobacterium tuberculosis and Mycobacterium bovis Strains' Metabolism Using Biolog Phenotype Microarrays

    PubMed Central

    Khatri, Bhagwati; Fielder, Mark; Jones, Gareth; Newell, William; Abu-Oun, Manal; Wheeler, Paul R.

    2013-01-01

    Tuberculosis is a major human and animal disease of major importance worldwide. Genetically, the closely related strains within the Mycobacterium tuberculosis complex which cause disease are well-characterized but there is an urgent need better to understand their phenotypes. To search rapidly for metabolic differences, a working method using Biolog Phenotype MicroArray analysis was developed. Of 380 substrates surveyed, 71 permitted tetrazolium dye reduction, the readout over 7 days in the method. By looking for ≥5-fold differences in dye reduction, 12 substrates differentiated M. tuberculosis H37Rv and Mycobacterium bovis AF2122/97. H37Rv and a Beijing strain of M. tuberculosis could also be distinguished in this way, as could field strains of M. bovis; even pairs of strains within one spoligotype could be distinguished by 2 to 3 substrates. Cluster analysis gave three clear groups: H37Rv, Beijing, and all the M. bovis strains. The substrates used agreed well with prior knowledge, though an unexpected finding that AF2122/97 gave greater dye reduction than H37Rv with hexoses was investigated further, in culture flasks, revealing that hexoses and Tween 80 were synergistic for growth and used simultaneously rather than in a diauxic fashion. Potential new substrates for growth media were revealed, too, most promisingly N-acetyl glucosamine. Osmotic and pH arrays divided the mycobacteria into two groups with different salt tolerance, though in contrast to the substrate arrays the groups did not entirely correlate with taxonomic differences. More interestingly, these arrays suggested differences between the amines used by the M. tuberculosis complex and enteric bacteria in acid tolerance, with some hydrophobic amino acids being highly effective. In contrast, γ-aminobutyrate, used in the enteric bacteria, had no effect in the mycobacteria. This study proved principle that Phenotype MicroArrays can be used with slow-growing pathogenic mycobacteria and already has

  16. Emerging semantics to link phenotype and environment

    DOE PAGES

    Thessen, Anne E.; Bunker, Daniel E.; Buttigieg, Pier Luigi; ...

    2015-12-14

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies aremore » well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. Lastly, in this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.« less

  17. Emerging molecular phenotypes of asthma

    PubMed Central

    Ray, Anuradha; Oriss, Timothy B.

    2014-01-01

    Although asthma has long been considered a heterogeneous disease, attempts to define subgroups of asthma have been limited. In recent years, both clinical and statistical approaches have been utilized to better merge clinical characteristics, biology, and genetics. These combined characteristics have been used to define phenotypes of asthma, the observable characteristics of a patient determined by the interaction of genes and environment. Identification of consistent clinical phenotypes has now been reported across studies. Now the addition of various 'omics and identification of specific molecular pathways have moved the concept of clinical phenotypes toward the concept of molecular phenotypes. The importance of these molecular phenotypes is being confirmed through the integration of molecularly targeted biological therapies. Thus the global term asthma is poised to become obsolete, being replaced by terms that more specifically identify the pathology associated with the disease. PMID:25326577

  18. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    PubMed

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  19. Does surgical genitoplasty affect gender identity in the intersex infant?

    PubMed

    Nihoul-Fékété, C

    2005-01-01

    There is no clear-cut answer to the question of whether surgical genitoplasty affects gender identity in the intersex infant. The debate centres around which is more important for the development of gender identity: the biological sex of a child or the sex in which a child is reared. We believe that the surgical achievement of a phenotype concordant with the sex of rearing is a tremendous help to the parents of an intersex infant. We do not consider that the 'neutral' upbringing of a child with ambiguous genitalia is a feasible option, first because of the parents' distress which prevents them from raising their child normally and second because in most cultures around the world gender variants are not treated as equals. A neutral upbringing may induce psychosocial consequences that are more pernicious than carefully considered neonatal sex attribution and concordant surgical genitoplasty. (c) 2005 S. Karger AG, Basel.

  20. Components of Sexual Identity

    ERIC Educational Resources Information Center

    Shively, Michael G.; DeCecco, John P.

    1977-01-01

    This paper examines the four components of sexual identity: biological sex, gender identity, social sex-role, and sexual orientation. Theories about the development of each component and how they combine and conflict to form the individual's sexual identity are discussed. (Author)

  1. Computational Approaches to Phenotyping

    PubMed Central

    Lussier, Yves A.; Liu, Yang

    2007-01-01

    The recent completion of the Human Genome Project has made possible a high-throughput “systems approach” for accelerating the elucidation of molecular underpinnings of human diseases, and subsequent derivation of molecular-based strategies to more effectively prevent, diagnose, and treat these diseases. Although altered phenotypes are among the most reliable manifestations of altered gene functions, research using systematic analysis of phenotype relationships to study human biology is still in its infancy. This article focuses on the emerging field of high-throughput phenotyping (HTP) phenomics research, which aims to capitalize on novel high-throughput computation and informatics technology developments to derive genomewide molecular networks of genotype–phenotype associations, or “phenomic associations.” The HTP phenomics research field faces the challenge of technological research and development to generate novel tools in computation and informatics that will allow researchers to amass, access, integrate, organize, and manage phenotypic databases across species and enable genomewide analysis to associate phenotypic information with genomic data at different scales of biology. Key state-of-the-art technological advancements critical for HTP phenomics research are covered in this review. In particular, we highlight the power of computational approaches to conduct large-scale phenomics studies. PMID:17202287

  2. Identifying niche-mediated regulatory factors of stem cell phenotypic state: a systems biology approach.

    PubMed

    Ravichandran, Srikanth; Del Sol, Antonio

    2017-02-01

    Understanding how the cellular niche controls the stem cell phenotype is often hampered due to the complexity of variegated niche composition, its dynamics, and nonlinear stem cell-niche interactions. Here, we propose a systems biology view that considers stem cell-niche interactions as a many-body problem amenable to simplification by the concept of mean field approximation. This enables approximation of the niche effect on stem cells as a constant field that induces sustained activation/inhibition of specific stem cell signaling pathways in all stem cells within heterogeneous populations exhibiting the same phenotype (niche determinants). This view offers a new basis for the development of single cell-based computational approaches for identifying niche determinants, which has potential applications in regenerative medicine and tissue engineering. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  3. Noise-Driven Phenotypic Heterogeneity with Finite Correlation Time in Clonal Populations.

    PubMed

    Lee, UnJin; Skinner, John J; Reinitz, John; Rosner, Marsha Rich; Kim, Eun-Jin

    2015-01-01

    There has been increasing awareness in the wider biological community of the role of clonal phenotypic heterogeneity in playing key roles in phenomena such as cellular bet-hedging and decision making, as in the case of the phage-λ lysis/lysogeny and B. Subtilis competence/vegetative pathways. Here, we report on the effect of stochasticity in growth rate, cellular memory/intermittency, and its relation to phenotypic heterogeneity. We first present a linear stochastic differential model with finite auto-correlation time, where a randomly fluctuating growth rate with a negative average is shown to result in exponential growth for sufficiently large fluctuations in growth rate. We then present a non-linear stochastic self-regulation model where the loss of coherent self-regulation and an increase in noise can induce a shift from bounded to unbounded growth. An important consequence of these models is that while the average change in phenotype may not differ for various parameter sets, the variance of the resulting distributions may considerably change. This demonstrates the necessity of understanding the influence of variance and heterogeneity within seemingly identical clonal populations, while providing a mechanism for varying functional consequences of such heterogeneity. Our results highlight the importance of a paradigm shift from a deterministic to a probabilistic view of clonality in understanding selection as an optimization problem on noise-driven processes, resulting in a wide range of biological implications, from robustness to environmental stress to the development of drug resistance.

  4. Application of genotypic and phenotypic analyses to commercial probiotic strain identity and relatedness.

    PubMed

    Yeung, P S M; Kitts, C L; Cano, R; Tong, P S; Sanders, M E

    2004-01-01

    The objective of this study was to generate strain-specific genomic patterns of a bank of 67 commercial and reference probiotic strains, with a focus on probiotic lactobacilli. Pulsed-field gel electrophoresis (PFGE) was used as the primary method for strain differentiation. This method was compared with carbohydrate fermentation analysis. To supplement visual comparison, PFGE patterns were analysed quantitatively by cluster analysis using unweighted pair group method with arithmetic averages. SmaI, NotI and XbaI were found to effectively generate clear and easy-to-interpret PFGE patterns of a range of probiotic strains. Some probiotic strains from different sources shared highly similar PFGE patterns. Results document the value of genotypic strain identification methods, combined with phenotypic methods, for determining probiotic strain identity and relatedness. No correlation was found between relatedness determined by carbohydrate fermentation profiles alone compared with PFGE analysis alone. Some commercial strains are probably derived from similar sources. This approach is valuable to the probiotic industry to develop commercial strain identification patterns, to provide quality control of strain manufacturing production runs, to track use of protected strains and to determine the relatedness among different research and commercial probiotic strains.

  5. 21 CFR 610.14 - Identity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Identity. 610.14 Section 610.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.14 Identity. The contents of a final container of each...

  6. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data.

    PubMed

    Kang, Tianyu; Ding, Wei; Zhang, Luoyan; Ziemek, Daniel; Zarringhalam, Kourosh

    2017-12-19

    Stratification of patient subpopulations that respond favorably to treatment or experience and adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is currently feasible to generate omic-scale biological measurements for all patients in a study, providing an opportunity for machine learning models to identify molecular markers for disease diagnosis and progression. However, the high variability of genetic background in human populations hampers the reproducibility of omic-scale markers. In this paper, we develop a biological network-based regularized artificial neural network model for prediction of phenotype from transcriptomic measurements in clinical trials. To improve model sparsity and the overall reproducibility of the model, we incorporate regularization for simultaneous shrinkage of gene sets based on active upstream regulatory mechanisms into the model. We benchmark our method against various regression, support vector machines and artificial neural network models and demonstrate the ability of our method in predicting the clinical outcomes using clinical trial data on acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. We show that integration of prior biological knowledge into the classification as developed in this paper, significantly improves the robustness and generalizability of predictions to independent datasets. We provide a Java code of our algorithm along with a parsed version of the STRING DB database. In summary, we present a method for prediction of clinical phenotypes using baseline genome-wide expression data that makes use of prior biological knowledge on gene-regulatory interactions in order to increase robustness and reproducibility of omic-scale markers. The integrated group-wise regularization methods increases the interpretability of biological signatures and gives stable performance estimates across independent test sets.

  7. Text-based phenotypic profiles incorporating biochemical phenotypes of inborn errors of metabolism improve phenomics-based diagnosis.

    PubMed

    Lee, Jessica J Y; Gottlieb, Michael M; Lever, Jake; Jones, Steven J M; Blau, Nenad; van Karnebeek, Clara D M; Wasserman, Wyeth W

    2018-05-01

    Phenomics is the comprehensive study of phenotypes at every level of biology: from metabolites to organisms. With high throughput technologies increasing the scope of biological discoveries, the field of phenomics has been developing rapid and precise methods to collect, catalog, and analyze phenotypes. Such methods have allowed phenotypic data to be widely used in medical applications, from assisting clinical diagnoses to prioritizing genomic diagnoses. To channel the benefits of phenomics into the field of inborn errors of metabolism (IEM), we have recently launched IEMbase, an expert-curated knowledgebase of IEM and their disease-characterizing phenotypes. While our efforts with IEMbase have realized benefits, taking full advantage of phenomics requires a comprehensive curation of IEM phenotypes in core phenomics projects, which is dependent upon contributions from the IEM clinical and research community. Here, we assess the inclusion of IEM biochemical phenotypes in a core phenomics project, the Human Phenotype Ontology. We then demonstrate the utility of biochemical phenotypes using a text-based phenomics method to predict gene-disease relationships, showing that the prediction of IEM genes is significantly better using biochemical rather than clinical profiles. The findings herein provide a motivating goal for the IEM community to expand the computationally accessible descriptions of biochemical phenotypes associated with IEM in phenomics resources.

  8. Precision phenotyping, panomics, and system-level bioinformatics to delineate complex biologies of atherosclerosis: rationale and design of the "Genetic Loci and the Burden of Atherosclerotic Lesions" study.

    PubMed

    Voros, Szilard; Maurovich-Horvat, Pal; Marvasty, Idean B; Bansal, Aruna T; Barnes, Michael R; Vazquez, Gustavo; Murray, Sarah S; Voros, Viktor; Merkely, Bela; Brown, Bradley O; Warnick, G Russell

    2014-01-01

    Complex biological networks of atherosclerosis are largely unknown. The main objective of the Genetic Loci and the Burden of Atherosclerotic Lesions study is to assemble comprehensive biological networks of atherosclerosis using advanced cardiovascular imaging for phenotyping, a panomic approach to identify underlying genomic, proteomic, metabolomic, and lipidomic underpinnings, analyzed by systems biology-driven bioinformatics. By design, this is a hypothesis-free unbiased discovery study collecting a large number of biologically related factors to examine biological associations between genomic, proteomic, metabolomic, lipidomic, and phenotypic factors of atherosclerosis. The Genetic Loci and the Burden of Atherosclerotic Lesions study (NCT01738828) is a prospective, multicenter, international observational study of atherosclerotic coronary artery disease. Approximately 7500 patients are enrolled and undergo non-contrast-enhanced coronary calcium scanning by CT for the detection and quantification of coronary artery calcium, as well as coronary artery CT angiography for the detection and quantification of plaque, stenosis, and overall coronary artery disease burden. In addition, patients undergo whole genome sequencing, DNA methylation, whole blood-based transcriptome sequencing, unbiased proteomics based on mass spectrometry, as well as metabolomics and lipidomics on a mass spectrometry platform. The study is analyzed in 3 subsequent phases, and each phase consists of a discovery cohort and an independent validation cohort. For the primary analysis, the primary phenotype will be the presence of any atherosclerotic plaque, as detected by cardiac CT. Additional phenotypic analyses will include per patient maximal luminal stenosis defined as 50% and 70% diameter stenosis. Single-omic and multi-omic associations will be examined for each phenotype; putative biomarkers will be assessed for association, calibration, discrimination, and reclassification. Copyright

  9. History, biology, and health inequities: emergent embodied phenotypes and the illustrative case of the breast cancer estrogen receptor.

    PubMed

    Krieger, Nancy

    2013-01-01

    How we think about biology--in historical, ecological, and societal context--matters for framing causes of and solutions to health inequities. Drawing on new insights from ecological evolutionary developmental biology and ecosocial theory, I question dominant gene-centric and ultimately static approaches to conceptualizing biology, using the example of the breast cancer estrogen receptor (ER). Analyzed in terms of its 4 histories--societal, individual (life course), tumor (cellular pathology), and evolutionary--the ER is revealed as a flexible characteristic of cells, tumors, individuals, and populations, with magnitudes of health inequities tellingly changing over time. This example suggests our science will likely be better served by conceptualizing disease and its biomarkers, along with changing magnitudes of health inequities, as embodied history--that is, emergent embodied phenotype, not innate biology.

  10. Parental effects and the evolution of phenotypic memory.

    PubMed

    Kuijper, B; Johnstone, R A

    2016-02-01

    Despite growing evidence for nongenetic inheritance, the ecological conditions that favour the evolution of heritable parental or grandparental effects remain poorly understood. Here, we systematically explore the evolution of parental effects in a patch-structured population with locally changing environments. When selection favours the production of a mix of offspring types, this mix differs according to the parental phenotype, implying that parental effects are favoured over selection for bet-hedging in which the mixture of offspring phenotypes produced does not depend on the parental phenotype. Positive parental effects (generating a positive correlation between parental and offspring phenotype) are favoured in relatively stable habitats and when different types of local environment are roughly equally abundant, and can give rise to long-term parental inheritance of phenotypes. By contrast, unstable habitats can favour negative parental effects (generating a negative correlation between parental and offspring phenotype), and under these circumstances, even slight asymmetries in the abundance of local environmental states select for marked asymmetries in transmission fidelity. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Effects of simulated microgravity on gene expression and biological phenotypes of a single generation Caenorhabditis elegans cultured on 2 different media

    NASA Astrophysics Data System (ADS)

    Tee, Ling Fei; Neoh, Hui-min; Then, Sue Mian; Murad, Nor Azian; Asillam, Mohd Fairos; Hashim, Mohd Helmy; Nathan, Sheila; Jamal, Rahman

    2017-11-01

    Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity

  12. Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity.

    PubMed

    Paul, Anirban; Crow, Megan; Raudales, Ricardo; He, Miao; Gillis, Jesse; Huang, Z Josh

    2017-10-19

    Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of ∼40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications.

    PubMed

    Malta, Tathiane M; de Souza, Camila F; Sabedot, Thais S; Silva, Tiago C; Mosella, Maritza S; Kalkanis, Steven N; Snyder, James; Castro, Ana Valeria B; Noushmehr, Houtan

    2018-04-09

    Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties. Despite advances in surgical techniques and clinical regimens, treatment of high-grade glioma remains challenging and carries dismal rates of therapeutic success and overall survival. Challenges include the molecular complexity of gliomas, as well as inconsistencies in histopathological grading, resulting in an inaccurate prediction of disease progression and failure in the use of standard therapy. The updated 2016 World Health Organization (WHO) classification of tumors of the central nervous system reflects a refinement of tumor diagnostics by integrating the genotypic and phenotypic features, thereby narrowing the defined subgroups. The new classification recommends molecular diagnosis of isocitrate dehydrogenase (IDH) mutational status in gliomas. IDH-mutant gliomas manifest the cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP). Notably, the recent identification of clinically relevant subsets of G-CIMP tumors (G-CIMP-high and G-CIMP-low) provides a further refinement in glioma classification that is independent of grade and histology. This scheme may be useful for predicting patient outcome and may be translated into effective therapeutic strategies tailored to each patient. In this review, we highlight the evolution of our understanding of the G-CIMP subsets and how recent advances in characterizing the genome and epigenome of gliomas may influence future basic and translational research.

  14. The genotype-phenotype map of an evolving digital organism.

    PubMed

    Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-02-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  15. The genotype-phenotype map of an evolving digital organism

    PubMed Central

    Zaman, Luis; Wagner, Andreas

    2017-01-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable. PMID:28241039

  16. 21 CFR 610.14 - Identity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Identity. 610.14 Section 610.14 Food and Drugs... BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.14 Identity. The contents of a final container of each filling of each lot shall be tested for identity after all labeling operations shall have been completed...

  17. 21 CFR 610.14 - Identity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Identity. 610.14 Section 610.14 Food and Drugs... BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.14 Identity. The contents of a final container of each filling of each lot shall be tested for identity after all labeling operations shall have been completed...

  18. 21 CFR 610.14 - Identity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Identity. 610.14 Section 610.14 Food and Drugs... BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.14 Identity. The contents of a final container of each filling of each lot shall be tested for identity after all labeling operations shall have been completed...

  19. Gender identity development in adolescence.

    PubMed

    Steensma, Thomas D; Kreukels, Baudewijntje P C; de Vries, Annelou L C; Cohen-Kettenis, Peggy T

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence".This article aims to provide an outline of what is currently known on trajectories, and contributing factors to gender identity development in adolescence. We give a historical overview of the concept of gender identity, and describe general identity development in adolescence, gender identity development in the general population and in gender variant youth. Possible psychosocial (such as child and parental characteristics) and biological factors (such as the effects of prenatal exposure to gonadal hormones and the role of genetics) contributing to a gender variant identity are discussed. Studies focusing on a number of psychosocial and biological factors separately, indicate that each of these factors influence gender identity formation, but little is known about the complex interplay between the factors, nor about the way individuals themselves contribute to the process. Research into normative and gender variant identity development of adolescents is clearly lagging behind. However, studies on persons with gender dysphoria and disorders of sex development, show that the period of adolescence, with its changing social environment and the onset of physical puberty, seems to be crucial for the development of a non-normative gender identity. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. 21 CFR 610.14 - Identity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Identity. 610.14 Section 610.14 Food and Drugs FOOD... BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.14 Identity. The contents of a final container of each filling of each lot shall be tested for identity after all labeling operations shall have been completed...

  1. Redefining Aging in HIV Infection Using Phenotypes.

    PubMed

    Stoff, David M; Goodkin, Karl; Jeste, Dilip; Marquine, Maria

    2017-10-01

    This article critically reviews the utility of "phenotypes" as behavioral descriptors in aging/HIV research that inform biological underpinnings and treatment development. We adopt a phenotypic redefinition of aging conceptualized within a broader context of HIV infection and of aging. Phenotypes are defined as dimensions of behavior, closely related to fundamental mechanisms, and, thus, may be more informative than chronological age. Primary emphasis in this review is given to comorbid aging and cognitive aging, though other phenotypes (i.e., disability, frailty, accelerated aging, successful aging) are also discussed in relation to comorbid aging and cognitive aging. The main findings that emerged from this review are as follows: (1) the phenotypes, comorbid aging and cognitive aging, are distinct from each other, yet overlapping; (2) associative relationships are the rule in HIV for comorbid and cognitive aging phenotypes; and (3) HIV behavioral interventions for both comorbid aging and cognitive aging have been limited. Three paths for research progress are identified for phenotype-defined aging/HIV research (i.e., clinical and behavioral specification, biological mechanisms, intervention targets), and some important research questions are suggested within each of these research paths.

  2. Linking MedDRA®-coded Clinical Phenotypes to Biological Mechanisms by The Ontology of Adverse Events: A pilot study on Tyrosine Kinase Inhibitors (TKIs)

    PubMed Central

    Sarntivijai, Sirarat; Zhang, Shelley; Jagannathan, Desikan G.; Zaman, Shadia; Burkhart, Keith K.; Omenn, Gilbert S.; He, Yongqun; Athey, Brian D.; Abernethy, Darrell R.

    2016-01-01

    Introduction A translational bioinformatics challenge lies in connecting population and individual’s clinical phenotypes in various formats to biological mechanisms. The Medical Dictionary for Regulatory Activities (MedDRA®) is the default dictionary for Adverse Event (AE) reporting in the FDA Adverse Event Reporting System (FAERS). The Ontology of Adverse Events (OAE) represents AEs as pathological processes occurring after drug exposures. Objectives The aim is to establish a semantic framework to link biological mechanisms to phenotypes of AEs by combining OAE with MedDRA® in FAERS data analysis. We investigated the AEs associated with Tyrosine Kinase Inhibitors (TKIs) and monoclonal antibodies (mAbs) targeting tyrosine kinases. The selected 5 TKIs/mAbs (i.e., dasatinib, imatinib, lapatinib, cetuximab, and trastuzumab) are known to induce impaired ventricular function (non-QT) cardiotoxicity. Results Statistical analysis of FAERS data identified 1,053 distinct MedDRA® terms significantly associated with TKIs/mAbs, where 884 did not have corresponding OAE terms. We manually annotated these terms, added them to OAE by the standard OAE development strategy, and mapped them to MedDRA®. The data integration to provide insights into molecular mechanisms for drug-associated AEs is performed by including linkages in OAE for all related AE terms to MedDRA® and existing ontologies including Human Phenotype Ontology (HP), Uber Anatomy Ontology (UBERON), and Gene Ontology (GO). Sixteen AEs are shared by all 5 TKIs/mAbs, and each of 17 cardiotoxicity AEs was associated with at least one TKI/mAb. As an example, we analyzed ‘cardiac failure’ using the relations established in OAE with other ontologies, and demonstrated that one of the biological processes associated with cardiac failure maps to the genes associated with heart contraction. Conclusion By expanding existing OAE ontological design, our TKI use case demonstrates that the combination of OAE and Med

  3. Altered cytoskeletal organization characterized lethal but not surviving Brtl+/− mice: insight on phenotypic variability in osteogenesis imperfecta

    PubMed Central

    Bianchi, Laura; Gagliardi, Assunta; Maruelli, Silvia; Besio, Roberta; Landi, Claudia; Gioia, Roberta; Kozloff, Kenneth M.; Khoury, Basma M.; Coucke, Paul J.; Symoens, Sofie; Marini, Joan C.; Rossi, Antonio; Bini, Luca; Forlino, Antonella

    2015-01-01

    Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl+/− to investigate the molecular basis of OI phenotypic variability. Brtl+/− resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl+/− mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl+/− lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-β signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment. PMID:26264579

  4. Phenotypic switching in bacteria

    NASA Astrophysics Data System (ADS)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial

  5. Cosmetics as a feature of the extended human phenotype: modulation of the perception of biologically important facial signals.

    PubMed

    Etcoff, Nancy L; Stock, Shannon; Haley, Lauren E; Vickery, Sarah A; House, David M

    2011-01-01

    Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural), to moderate (professional), to dramatic (glamorous). Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important signals at first

  6. Cosmetics as a Feature of the Extended Human Phenotype: Modulation of the Perception of Biologically Important Facial Signals

    PubMed Central

    Etcoff, Nancy L.; Stock, Shannon; Haley, Lauren E.; Vickery, Sarah A.; House, David M.

    2011-01-01

    Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural), to moderate (professional), to dramatic (glamorous). Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important signals at first

  7. Molecular mechanisms of phenotypic plasticity in social insects

    USDA-ARS?s Scientific Manuscript database

    Polyphenism in insects, whereby a single genome expresses different phenotypes in response to environmental cues, is a fascinating biological phenomenon. Social insects are especially intriguing examples of phenotypic plasticity because division of labor results in the development of extreme morphol...

  8. The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology.

    PubMed

    Burrell, Thomas; Fozard, Susan; Holroyd, Geoff H; French, Andrew P; Pound, Michael P; Bigley, Christopher J; James Taylor, C; Forde, Brian G

    2017-01-01

    Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. The 'Microphenotron' platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the 'Phytostrip', a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m 2 , giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical

  9. Morphological and population genomic evidence that human faces have evolved to signal individual identity.

    PubMed

    Sheehan, Michael J; Nachman, Michael W

    2014-09-16

    Facial recognition plays a key role in human interactions, and there has been great interest in understanding the evolution of human abilities for individual recognition and tracking social relationships. Individual recognition requires sufficient cognitive abilities and phenotypic diversity within a population for discrimination to be possible. Despite the importance of facial recognition in humans, the evolution of facial identity has received little attention. Here we demonstrate that faces evolved to signal individual identity under negative frequency-dependent selection. Faces show elevated phenotypic variation and lower between-trait correlations compared with other traits. Regions surrounding face-associated single nucleotide polymorphisms show elevated diversity consistent with frequency-dependent selection. Genetic variation maintained by identity signalling tends to be shared across populations and, for some loci, predates the origin of Homo sapiens. Studies of human social evolution tend to emphasize cognitive adaptations, but we show that social evolution has shaped patterns of human phenotypic and genetic diversity as well.

  10. Early constraints in sexual dimorphism: survival benefits of feminized phenotypes.

    PubMed

    López-Rull, I; Vergara, P; Martínez-Padilla, J; Fargallo, J A

    2016-02-01

    Sexual dimorphism (SD) has evolved in response to selection pressures that differ between sexes. Since such pressures change across an individual's life, SD may vary within age classes. Yet, little is known about how selection on early phenotypes may drive the final SD observed in adults. In many dimorphic species, juveniles resemble adult females rather than adult males, meaning that out of the selective pressures established by sexual selection feminized phenotypes may be adaptive. If true, fitness benefits of early female-like phenotypes may constrain the expression of male phenotypes in adulthood. Using the common kestrel Falco tinnunculus as a study model, we evaluated the fitness advantages of expressing more feminized phenotypes at youth. Although more similar to adult females than to adult males, common kestrel fledglings are still sexually dimorphic in size and coloration. Integrating morphological and chromatic variables, we analysed the phenotypic divergence between sexes as a measure of how much each individual looks like the sex to which it belongs (phenotypic sexual resemblance, PSR). We then tested the fitness benefits associated with PSR by means of the probability of recruitment in the population. We found a significant interaction between PSR and sex, showing that in both sexes more feminized phenotypes recruited more into the population than less feminized phenotypes. Moreover, males showed lower PSR than females and a higher proportion of incorrect sex classifications. These findings suggest that the mechanisms in males devoted to resembling female phenotypes in youth, due to a trend to increase fitness through more feminized phenotypes, may provide a mechanism to constrain the SD in adulthood. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Application of a phenotypic drug discovery strategy to identify biological and chemical starting points for inhibition of TSLP production in lung epithelial cells

    PubMed Central

    Orellana, Adelina; García-González, Vicente; López, Rosa; Pascual-Guiral, Sonia; Lozoya, Estrella; Díaz, Julia; Casals, Daniel; Barrena, Antolín; Paris, Stephane; Andrés, Miriam; Segarra, Victor; Vilella, Dolors; Malhotra, Rajneesh; Eastwood, Paul; Planagumà, Anna; Miralpeix, Montserrat

    2018-01-01

    Thymic stromal lymphopoietin (TSLP) is a cytokine released by human lung epithelium in response to external insult. Considered as a master switch in T helper 2 lymphocyte (Th2) mediated responses, TSLP is believed to play a key role in allergic diseases including asthma. The aim of this study was to use a phenotypic approach to identify new biological and chemical starting points for inhibition of TSLP production in human bronchial epithelial cells (NHBE), with the objective of reducing Th2-mediated airway inflammation. To this end, a phenotypic screen was performed using poly I:C / IL-4 stimulated NHBE cells interrogated with a 44,974 compound library. As a result, 85 hits which downregulated TSLP protein and mRNA levels were identified and a representative subset of 7 hits was selected for further characterization. These molecules inhibited the activity of several members of the MAPK, PI3K and tyrosine kinase families and some of them have been reported as modulators of cellular phenotypic endpoints like cell-cell contacts, microtubule polymerization and caspase activation. Characterization of the biological profile of the hits suggested that mTOR could be a key activity involved in the regulation of TSLP production in NHBE cells. Among other targeted kinases, inhibition of p38 MAPK and JAK kinases showed different degrees of correlation with TSLP downregulation, while Syk kinase did not seem to be related. Overall, inhibition of TSLP production by the selected hits, rather than resulting from inhibition of single isolated targets, appeared to be due to a combination of activities with different levels of relevance. Finally, a hit expansion exercise yielded additional active compounds that could be amenable to further optimization, providing an opportunity to dissociate TSLP inhibition from other non-desired activities. This study illustrates the potential of phenotypic drug discovery to complement target based approaches by providing new chemistry and biology

  12. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement.

    PubMed

    Cobb, Joshua N; Declerck, Genevieve; Greenberg, Anthony; Clark, Randy; McCouch, Susan

    2013-04-01

    More accurate and precise phenotyping strategies are necessary to empower high-resolution linkage mapping and genome-wide association studies and for training genomic selection models in plant improvement. Within this framework, the objective of modern phenotyping is to increase the accuracy, precision and throughput of phenotypic estimation at all levels of biological organization while reducing costs and minimizing labor through automation, remote sensing, improved data integration and experimental design. Much like the efforts to optimize genotyping during the 1980s and 1990s, designing effective phenotyping initiatives today requires multi-faceted collaborations between biologists, computer scientists, statisticians and engineers. Robust phenotyping systems are needed to characterize the full suite of genetic factors that contribute to quantitative phenotypic variation across cells, organs and tissues, developmental stages, years, environments, species and research programs. Next-generation phenotyping generates significantly more data than previously and requires novel data management, access and storage systems, increased use of ontologies to facilitate data integration, and new statistical tools for enhancing experimental design and extracting biologically meaningful signal from environmental and experimental noise. To ensure relevance, the implementation of efficient and informative phenotyping experiments also requires familiarity with diverse germplasm resources, population structures, and target populations of environments. Today, phenotyping is quickly emerging as the major operational bottleneck limiting the power of genetic analysis and genomic prediction. The challenge for the next generation of quantitative geneticists and plant breeders is not only to understand the genetic basis of complex trait variation, but also to use that knowledge to efficiently synthesize twenty-first century crop varieties.

  13. Genome-scale investigation of phenotypically distinct but nearly clonal Trichoderma strains

    PubMed Central

    Weld, Richard J.; Cox, Murray P.; Bradshaw, Rosie E.; McLean, Kirstin L.; Stewart, Alison; Steyaert, Johanna M.

    2016-01-01

    Biological control agents (BCA) are beneficial organisms that are applied to protect plants from pests. Many fungi of the genus Trichoderma are successful BCAs but the underlying mechanisms are not yet fully understood. Trichoderma cf. atroviride strain LU132 is a remarkably effective BCA compared to T. cf. atroviride strain LU140 but these strains were found to be highly similar at the DNA sequence level. This unusual combination of phenotypic variability and high DNA sequence similarity between separately isolated strains prompted us to undertake a genome comparison study in order to identify DNA polymorphisms. We further investigated if the polymorphisms had functional effects on the phenotypes. The two strains were clearly identified as individuals, exhibiting different growth rates, conidiation and metabolism. Superior pathogen control demonstrated by LU132 depended on its faster growth, which is a prerequisite for successful distribution and competition. Genome sequencing identified only one non-synonymous single nucleotide polymorphism (SNP) between the strains. Based on this SNP, we successfully designed and validated an RFLP protocol that can be used to differentiate LU132 from LU140 and other Trichoderma strains. This SNP changed the amino acid sequence of SERF, encoded by the previously undescribed single copy gene “small EDRK-rich factor” (serf). A deletion of serf in the two strains did not lead to identical phenotypes, suggesting that, in addition to the single functional SNP between the nearly clonal Trichoderma cf. atroviride strains, other non-genomic factors contribute to their phenotypic variation. This finding is significant as it shows that genomics is an extremely useful but not exhaustive tool for the study of biocontrol complexity and for strain typing. PMID:27190719

  14. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity

    NASA Technical Reports Server (NTRS)

    Fox, G. E.; Wisotzkey, J. D.; Jurtshuk, P. Jr

    1992-01-01

    16S rRNA (genes coding for rRNA) sequence comparisons were conducted with the following three psychrophilic strains: Bacillus globisporus W25T (T = type strain) and Bacillus psychrophilus W16AT, and W5. These strains exhibited more than 99.5% sequence identity and within experimental uncertainty could be regarded as identical. Their close taxonomic relationship was further documented by phenotypic similarities. In contrast, previously published DNA-DNA hybridization results have convincingly established that these strains do not belong to the same species if current standards are used. These results emphasize the important point that effective identity of 16S rRNA sequences is not necessarily a sufficient criterion to guarantee species identity. Thus, although 16S rRNA sequences can be used routinely to distinguish and establish relationships between genera and well-resolved species, very recently diverged species may not be recognizable.

  15. [Genotype/phenotype correlation in autism: genetic models and phenotypic characterization].

    PubMed

    Bonnet-Brilhault, F

    2011-02-01

    Autism spectrum disorders are a class of conditions categorized by communication problems, ritualistic behaviors, and deficits in social behaviors. This class of disorders merges a heterogeneous group of neurodevelopmental disorders regarding some phenotypic and probably physiopathological aspects. Genetic basis is well admitted, however, considering phenotypic and genotypic heterogeneity, correspondences between genotype and phenotype have yet to be established. To better identify such correspondences, genetic models have to be identified and phenotypic markers have to be characterized. Recent insights show that a variety of genetic mechanisms may be involved in autism spectrum disorders, i.e. single gene disorders, copy number variations and polygenic mechanisms. These current genetic models are described. Regarding clinical aspects, several approaches can be used in genetic studies. Nosographical approach, especially with the concept of autism spectrum disorders, merges a large group of disorders with clinical heterogeneity and may fail to identify clear genotype/phenotype correlations. Dimensional approach referred in genetic studies to the notion of "Broad Autism Phenotype" related to a constellation of language, personality, and social-behavioral features present in relatives that mirror the symptom domains of autism, but are much milder in expression. Studies of this broad autism phenotype may provide a potentially important complementary approach for detecting the genes involved in these domains. However, control population used in those studies need to be well characterized too. Identification of endophenotypes seems to offer more promising results. Endophenotypes, which are supposed to be more proximal markers of gene action in the same biological pathway, linking genes and complex clinical symptoms, are thought to be less genetically complex than the broader disease phenotype, indexing a limited aspect of genetic risk for the disorder as a whole. However

  16. Gene expression and the biological phenotype of papillary thyroid carcinomas.

    PubMed

    Delys, L; Detours, V; Franc, B; Thomas, G; Bogdanova, T; Tronko, M; Libert, F; Dumont, J E; Maenhaut, C

    2007-12-13

    The purpose of this paper is to correlate the molecular phenotype of papillary thyroid carcinoma (PTC) to their biological pathology. We hybridized 26 PTC on microarrays and showed that nearly 44% of the transcriptome was regulated in these tumors. We then combined our data set with two published PTC microarray studies to produce a platform- and study-independent list of PTC-associated genes. We further confirmed the mRNA regulation of 15 genes from this list by quantitative reverse transcription-PCR. Analysis of this list with statistical tools led to several conclusions: (1) there is a change in cell population with an increased expression of genes involved in the immune response, reflecting lymphocyte infiltration in the tumor compared to the normal tissue. (2) The c-jun N-terminal kinase pathway is activated by overexpression of its components. (3) The activation of ERKK1/2 by genetic alterations is supplemented by activation of the epidermal growth factor but not of the insulin-like growth factor signaling pathway. (4) There is a downregulation of immediate early genes. (5) We observed an overexpression of many proteases in accordance with tumor remodeling, and suggested a probable role of S100 proteins and annexin A2 in this process. (6) Numerous overexpressed genes favor the hypothesis of a collective migration mode of tumor cells.

  17. Identity of the xerophilic species Aspergillus penicillioides: Integrated analysis of the genotypic and phenotypic characters.

    PubMed

    Tamura, Miki; Kawasaki, Hiroko; Sugiyama, Junta

    1999-02-01

    We examined the identity of Aspergillus penicillioides, the typical xerophilic and strictly anamorphic species, using an integrated analysis of the genotypic and phenotypic characters. Our experimental methods on two genotypic characters, i.e., DNA base composition using the HPLC method and DNA relatedness using the nitrocellulose filter hybridization technique between A. flavus, A. oryzae, and their close relations revealed a good agreement with the values by buoyant density (for DNA base composition) and spectrophotometric determination (for DNA relatedness) reported by Kurtzman et al. in 1986. On the basis of these comparisons, we examined DNA base composition and DNA relatedness of six selected strains of A. penicillioides, including IFO 8155 (originally described as A. vitricola), one strain of A. restrictus, and the respective strains from Eurotium amstelodami, E. repens, and E. rubrum. As a result, five strains within A. penicillioides, including the neotype strain NRRL 4548, had G+C contents of 46 to 49 mol%, whereas IFO 8155 had 50 mol%. A. restrictus had 52 mol%, and three Eurotium species ranged from 46 to 49 mol%. The DNA relatedness between A. penicillioides (five strains), except for IFO 8155, exhibited values greater than 70%, but the DNA complementarity between four strains and IFO 8155 in A. penicillioides revealed values of less than 40%. DNA relatedness values between three species of Eurotium were 65 to 72%. We determined 18S, 5.8S, and ITS rDNA sequences as other genotypic characters from A. penicillioides (six strains), A. restrictus, and related teleomorphic species of Eurotium. In three phylogenetic trees inferred from these sequences, five strains of A. penicillioides, including the neotype strain, were closely related to each other, whereas IFO 8155 was distantly related and grouped with other xerophilic species. Our results have suggested that A. penicillioides typified by NRRL 4548 and A. penicillioides IFO 8155 (ex holotype of A

  18. GC[Formula: see text]NMF: A Novel Matrix Factorization Framework for Gene-Phenotype Association Prediction.

    PubMed

    Zhang, Yaogong; Liu, Jiahui; Liu, Xiaohu; Hong, Yuxiang; Fan, Xin; Huang, Yalou; Wang, Yuan; Xie, Maoqiang

    2018-04-24

    Gene-phenotype association prediction can be applied to reveal the inherited basis of human diseases and facilitate drug development. Gene-phenotype associations are related to complex biological processes and influenced by various factors, such as relationship between phenotypes and that among genes. While due to sparseness of curated gene-phenotype associations and lack of integrated analysis of the joint effect of multiple factors, existing applications are limited to prediction accuracy and potential gene-phenotype association detection. In this paper, we propose a novel method by exploiting weighted graph constraint learned from hierarchical structures of phenotype data and group prior information among genes by inheriting advantages of Non-negative Matrix Factorization (NMF), called Weighted Graph Constraint and Group Centric Non-negative Matrix Factorization (GC[Formula: see text]NMF). Specifically, first we introduce the depth of parent-child relationships between two adjacent phenotypes in hierarchical phenotypic data as weighted graph constraint for a better phenotype understanding. Second, we utilize intra-group correlation among genes in a gene group as group constraint for gene understanding. Such information provides us with the intuition that genes in a group probably result in similar phenotypes. The model not only allows us to achieve a high-grade prediction performance, but also helps us to learn interpretable representation of genes and phenotypes simultaneously to facilitate future biological analysis. Experimental results on biological gene-phenotype association datasets of mouse and human demonstrate that GC[Formula: see text]NMF can obtain superior prediction accuracy and good understandability for biological explanation over other state-of-the-arts methods.

  19. Examining the sex difference in lateralisation for processing facial emotion: does biological sex or psychological gender identity matter?

    PubMed

    Bourne, Victoria J; Maxwell, Adele M

    2010-04-01

    The research examining sex differences in functional lateralisation has shown varying results. While some provide evidence for males being more strongly lateralised than females, a number have shown either no relationship or the opposite pattern of findings. In this study we consider whether psychological gender identity might clarify some of the conflicting results in this area of research. Eight five participants (39 males) aged from 18 to 49 years old were tested. We found that psychological masculinity was associated with stronger patterns of lateralisation for the processing of a range of emotional expressions. We also found an interaction between biological sex and psychological gender identity, with a positive relationship between psychological masculinity and lateralisation found for males, but a negative relationship found for females. The possible role of hormonal exposure in this relationship is discussed. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Testing evolutionary hypotheses for phenotypic divergence using landscape genetics.

    PubMed

    Funk, W Chris; Murphy, Melanie A

    2010-02-01

    Understanding the evolutionary causes of phenotypic variation among populations has long been a central theme in evolutionary biology. Several factors can influence phenotypic divergence, including geographic isolation, genetic drift, divergent natural or sexual selection, and phenotypic plasticity. But the relative importance of these factors in generating phenotypic divergence in nature is still a tantalizing and unresolved problem in evolutionary biology. The origin and maintenance of phenotypic divergence is also at the root of many ongoing debates in evolutionary biology, such as the extent to which gene flow constrains adaptive divergence (Garant et al. 2007) and the relative importance of genetic drift, natural selection, and sexual selection in initiating reproductive isolation and speciation (Coyne & Orr 2004). In this issue, Wang & Summers (2010) test the causes of one of the most fantastic examples of phenotypic divergence in nature: colour pattern divergence among populations of the strawberry poison frog (Dendrobates pumilio) in Panama and Costa Rica (Fig. 1). This study provides a beautiful example of the use of the emerging field of landscape genetics to differentiate among hypotheses for phenotypic divergence. Using landscape genetic analyses, Wang & Summers were able to reject the hypotheses that colour pattern divergence is due to isolation-by-distance (IBD) or landscape resistance. Instead, the hypothesis left standing is that colour divergence is due to divergent selection, in turn driving reproductive isolation among populations with different colour morphs. More generally, this study provides a wonderful example of how the emerging field of landscape genetics, which has primarily been applied to questions in conservation and ecology, now plays an essential role in evolutionary research.

  1. Developmental biology, the stem cell of biological disciplines.

    PubMed

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  2. Towards an informative mutant phenotype for every bacterial gene

    DOE PAGES

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; ...

    2014-08-11

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, inmore » Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.« less

  3. Speaking of Gender Identity: Theoretical Approaches.

    ERIC Educational Resources Information Center

    Freedman, Susan A.

    Various definitions of gender identity have ranged from recognition of one's biological sex to an individual's sense of masculinity or femininity. For the purpose of this paper, which examines some of the theoretical approaches to the subject, gender identity will be defined as "the degree to which individuals are 'aware' of and accept their…

  4. The developmental genetics of biological robustness

    PubMed Central

    Mestek Boukhibar, Lamia; Barkoulas, Michalis

    2016-01-01

    Background Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype–phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. Scope and Conclusions Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The

  5. The digital revolution in phenotyping

    PubMed Central

    Oellrich, Anika; Collier, Nigel; Groza, Tudor; Rebholz-Schuhmann, Dietrich; Shah, Nigam; Bodenreider, Olivier; Boland, Mary Regina; Georgiev, Ivo; Liu, Hongfang; Livingston, Kevin; Luna, Augustin; Mallon, Ann-Marie; Manda, Prashanti; Robinson, Peter N.; Rustici, Gabriella; Simon, Michelle; Wang, Liqin; Winnenburg, Rainer; Dumontier, Michel

    2016-01-01

    Phenotypes have gained increased notoriety in the clinical and biological domain owing to their application in numerous areas such as the discovery of disease genes and drug targets, phylogenetics and pharmacogenomics. Phenotypes, defined as observable characteristics of organisms, can be seen as one of the bridges that lead to a translation of experimental findings into clinical applications and thereby support ‘bench to bedside’ efforts. However, to build this translational bridge, a common and universal understanding of phenotypes is required that goes beyond domain-specific definitions. To achieve this ambitious goal, a digital revolution is ongoing that enables the encoding of data in computer-readable formats and the data storage in specialized repositories, ready for integration, enabling translational research. While phenome research is an ongoing endeavor, the true potential hidden in the currently available data still needs to be unlocked, offering exciting opportunities for the forthcoming years. Here, we provide insights into the state-of-the-art in digital phenotyping, by means of representing, acquiring and analyzing phenotype data. In addition, we provide visions of this field for future research work that could enable better applications of phenotype data. PMID:26420780

  6. New genes as drivers of phenotypic evolution

    PubMed Central

    Chen, Sidi; Krinsky, Benjamin H.; Long, Manyuan

    2014-01-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution. PMID:23949544

  7. New genes as drivers of phenotypic evolution.

    PubMed

    Chen, Sidi; Krinsky, Benjamin H; Long, Manyuan

    2013-09-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution.

  8. Machine learning and computer vision approaches for phenotypic profiling

    PubMed Central

    Morris, Quaid

    2017-01-01

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. PMID:27940887

  9. Machine learning and computer vision approaches for phenotypic profiling.

    PubMed

    Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J

    2017-01-02

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.

  10. Phenex: ontological annotation of phenotypic diversity.

    PubMed

    Balhoff, James P; Dahdul, Wasila M; Kothari, Cartik R; Lapp, Hilmar; Lundberg, John G; Mabee, Paula; Midford, Peter E; Westerfield, Monte; Vision, Todd J

    2010-05-05

    Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.

  11. Biology of two larval morphological phenotypes of Aedes aegypti in Abidjan, Côte d'Ivoire.

    PubMed

    Guindo-Coulibaly, N; Diakite, N R; Adja, A M; Coulibaly, J T; Bassa, K F; Konan, Y L; N'Goran, K E

    2017-11-23

    Since 2008, several outbreaks of yellow fever and dengue occurred in Abidjan, the economic capital of Côte d'Ivoire. A better knowledge of the biology of Aedes aegypti populations, the main vector of yellow fever and dengue viruses, is necessary to tailor vector control strategies implemented in the city. This study was designed to determine some biological parameters, occurring during the life cycle of two morphological phenotypes of Ae. aegypti larvae. Mosquitoes were sampled in a suburb of Abidjan (Treichville) using the WHO layer-traps technique. Biological parameters were studied in laboratory under standard conditions of temperature (27°C ± 2°C) and relative humidity (80% ± 10%). Our results indicated that the mean eggs laid by females from 'brown larvae' (BL) (85.95, 95% confidence interval (CI 95%) 78.87-93.02) was higher than those from 'white larvae' (WL) (64.40%, CI 95% 55.27-73.54). The gonotrophic cycle was 3 and 4 days in females from BL and WL, respectively. The overall yield of breeding mosquitoes from BL (63.88%, CI 95% 62.61-65.14) was higher compared with those of mosquitoes from WL (59.73%, CI 95% 58.35-61.12). The sex ratio (male/female) was 0.95 and 1.68 in Ae. aegypti populations from BL and WL, respectively. Females from BL lived slightly longer than those from WL (t = -2.332; P = 0.021). This study shows that Ae. Aegypti populations from BL and WL present different biological parameters during their life cycle. This could have an implication on their ability to transmit human disease viruses such as dengue and yellow fever. Further molecular studies are needed to determine genetic divergence between these Ae. aegypti populations.

  12. Metabolomic phenotyping of a cloned pig model

    PubMed Central

    2011-01-01

    Background Pigs are widely used as models for human physiological changes in intervention studies, because of the close resemblance between human and porcine physiology and the high degree of experimental control when using an animal model. Cloned animals have, in principle, identical genotypes and possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal outbred pigs. Results The metabolic phenotype of cloned pigs (n = 5) was for the first time elucidated by nuclear magnetic resonance (NMR)-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n = 6) by multivariate data analysis, which revealed differences in the metabolic phenotypes. Plasma lactate was higher for cloned vs control pigs, while multiple metabolites were altered in the bile. However a lower inter-individual variability for cloned pigs compared with control pigs could not be established. Conclusions From the present study we conclude that cloned and normal outbred pigs are phenotypically different. However, it cannot be concluded that the use of cloned animals will reduce the inter-individual variation in intervention studies, though this is based on a limited number of animals. PMID:21859467

  13. Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies

    PubMed Central

    Bouwman, Jildau; Dragsted, Lars O.; Drevon, Christian A.; Elliott, Ruan; de Groot, Philip; Kaput, Jim; Mathers, John C.; Müller, Michael; Pepping, Fre; Saito, Jahn; Scalbert, Augustin; Radonjic, Marijana; Rocca-Serra, Philippe; Travis, Anthony; Wopereis, Suzan; Evelo, Chris T.

    2010-01-01

    The challenge of modern nutrition and health research is to identify food-based strategies promoting life-long optimal health and well-being. This research is complex because it exploits a multitude of bioactive compounds acting on an extensive network of interacting processes. Whereas nutrition research can profit enormously from the revolution in ‘omics’ technologies, it has discipline-specific requirements for analytical and bioinformatic procedures. In addition to measurements of the parameters of interest (measures of health), extensive description of the subjects of study and foods or diets consumed is central for describing the nutritional phenotype. We propose and pursue an infrastructural activity of constructing the “Nutritional Phenotype database” (dbNP). When fully developed, dbNP will be a research and collaboration tool and a publicly available data and knowledge repository. Creation and implementation of the dbNP will maximize benefits to the research community by enabling integration and interrogation of data from multiple studies, from different research groups, different countries and different—omics levels. The dbNP is designed to facilitate storage of biologically relevant, pre-processed—omics data, as well as study descriptive and study participant phenotype data. It is also important to enable the combination of this information at different levels (e.g. to facilitate linkage of data describing participant phenotype, genotype and food intake with information on study design and—omics measurements, and to combine all of this with existing knowledge). The biological information stored in the database (i.e. genetics, transcriptomics, proteomics, biomarkers, metabolomics, functional assays, food intake and food composition) is tailored to nutrition research and embedded in an environment of standard procedures and protocols, annotations, modular data-basing, networking and integrated bioinformatics. The dbNP is an evolving enterprise

  14. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map

  15. Mistaken gender identity in non-classical congenital adrenal hyperplasia.

    PubMed

    Kukreti, Prerna; Kandpal, Manish; Jiloha, R C

    2014-04-01

    Gender identity is the sense of belonging that one feels for a particular sex psychologically and socially, independent of one's biological sex. There is much less systematic data on gender identity in females with congenital adrenal hyperplasia (CAH). We report a case of non-classical CAH presenting as a case of gender identity disorder.

  16. Mistaken gender identity in non-classical congenital adrenal hyperplasia

    PubMed Central

    Kukreti, Prerna; Kandpal, Manish; Jiloha, R. C.

    2014-01-01

    Gender identity is the sense of belonging that one feels for a particular sex psychologically and socially, independent of one's biological sex. There is much less systematic data on gender identity in females with congenital adrenal hyperplasia (CAH). We report a case of non-classical CAH presenting as a case of gender identity disorder. PMID:24891708

  17. Adaptation of the Biolog Phenotype MicroArrayTM Technology to Profile the Obligate Anaerobe Geobacter metallireducens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyner, Dominique; Fortney, Julian; Chakraborty, Romy

    2010-05-17

    The Biolog OmniLog? Phenotype MicroArray (PM) plate technology was successfully adapted to generate a select phenotypic profile of the strict anaerobe Geobacter metallireducens (G.m.). The profile generated for G.m. provides insight into the chemical sensitivity of the organism as well as some of its metabolic capabilities when grown with a basal medium containing acetate and Fe(III). The PM technology was developed for aerobic organisms. The reduction of a tetrazolium dye by the test organism represents metabolic activity on the array which is detected and measured by the OmniLog(R) system. We have previously adapted the technology for the anaerobic sulfate reducingmore » bacterium Desulfovibrio vulgaris. In this work, we have taken the technology a step further by adapting it for the iron reducing obligate anaerobe Geobacter metallireducens. In an osmotic stress microarray it was determined that the organism has higher sensitivity to impermeable solutes 3-6percent KCl and 2-5percent NaNO3 that result in osmotic stress by osmosis to the cell than to permeable non-ionic solutes represented by 5-20percent ethylene glycol and 2-3percent urea. The osmotic stress microarray also includes an array of osmoprotectants and precursor molecules that were screened to identify substrates that would provide osmotic protection to NaCl stress. None of the substrates tested conferred resistance to elevated concentrations of salt. Verification studies in which G.m. was grown in defined medium amended with 100mM NaCl (MIC) and the common osmoprotectants betaine, glycine and proline supported the PM findings. Further verification was done by analysis of transcriptomic profiles of G.m. grown under 100mM NaCl stress that revealed up-regulation of genes related to degradation rather than accumulation of the above-mentioned osmoprotectants. The phenotypic profile, supported by additional analysis indicates that the accumulation of these osmoprotectants as a response to salt stress does

  18. The differential view of genotype–phenotype relationships

    PubMed Central

    Orgogozo, Virginie; Morizot, Baptiste; Martin, Arnaud

    2015-01-01

    An integrative view of diversity and singularity in the living world requires a better understanding of the intricate link between genotypes and phenotypes. Here we re-emphasize the old standpoint that the genotype–phenotype (GP) relationship is best viewed as a connection between two differences, one at the genetic level and one at the phenotypic level. As of today, predominant thinking in biology research is that multiple genes interact with multiple environmental variables (such as abiotic factors, culture, or symbionts) to produce the phenotype. Often, the problem of linking genotypes and phenotypes is framed in terms of genotype and phenotype maps, and such graphical representations implicitly bring us away from the differential view of GP relationships. Here we show that the differential view of GP relationships is a useful explanatory framework in the context of pervasive pleiotropy, epistasis, and environmental effects. In such cases, it is relevant to view GP relationships as differences embedded into differences. Thinking in terms of differences clarifies the comparison between environmental and genetic effects on phenotypes and helps to further understand the connection between genotypes and phenotypes. PMID:26042146

  19. A System-Level Pathway-Phenotype Association Analysis Using Synthetic Feature Random Forest

    PubMed Central

    Pan, Qinxin; Hu, Ting; Malley, James D.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.

    2015-01-01

    As the cost of genome-wide genotyping decreases, the number of genome-wide association studies (GWAS) has increased considerably. However, the transition from GWAS findings to the underlying biology of various phenotypes remains challenging. As a result, due to its system-level interpretability, pathway analysis has become a popular tool for gaining insights on the underlying biology from high-throughput genetic association data. In pathway analyses, gene sets representing particular biological processes are tested for significant associations with a given phenotype. Most existing pathway analysis approaches rely on single-marker statistics and assume that pathways are independent of each other. As biological systems are driven by complex biomolecular interactions, embracing the complex relationships between single-nucleotide polymorphisms (SNPs) and pathways needs to be addressed. To incorporate the complexity of gene-gene interactions and pathway-pathway relationships, we propose a system-level pathway analysis approach, synthetic feature random forest (SF-RF), which is designed to detect pathway-phenotype associations without making assumptions about the relationships among SNPs or pathways. In our approach, the genotypes of SNPs in a particular pathway are aggregated into a synthetic feature representing that pathway via Random Forest (RF). Multiple synthetic features are analyzed using RF simultaneously and the significance of a synthetic feature indicates the significance of the corresponding pathway. We further complement SF-RF with pathway-based Statistical Epistasis Network (SEN) analysis that evaluates interactions among pathways. By investigating the pathway SEN, we hope to gain additional insights into the genetic mechanisms contributing to the pathway-phenotype association. We apply SF-RF to a population-based genetic study of bladder cancer and further investigate the mechanisms that help explain the pathway-phenotype associations using SEN. The

  20. Predicting phenotype from genotype: Improving accuracy through more robust experimental and computational modeling

    PubMed Central

    Gallion, Jonathan; Koire, Amanda; Katsonis, Panagiotis; Schoenegge, Anne‐Marie; Bouvier, Michel

    2017-01-01

    Abstract Computational prediction yields efficient and scalable initial assessments of how variants of unknown significance may affect human health. However, when discrepancies between these predictions and direct experimental measurements of functional impact arise, inaccurate computational predictions are frequently assumed as the source. Here, we present a methodological analysis indicating that shortcomings in both computational and biological data can contribute to these disagreements. We demonstrate that incomplete assaying of multifunctional proteins can affect the strength of correlations between prediction and experiments; a variant's full impact on function is better quantified by considering multiple assays that probe an ensemble of protein functions. Additionally, many variants predictions are sensitive to protein alignment construction and can be customized to maximize relevance of predictions to a specific experimental question. We conclude that inconsistencies between computation and experiment can often be attributed to the fact that they do not test identical hypotheses. Aligning the design of the computational input with the design of the experimental output will require cooperation between computational and biological scientists, but will also lead to improved estimations of computational prediction accuracy and a better understanding of the genotype–phenotype relationship. PMID:28230923

  1. Predicting phenotype from genotype: Improving accuracy through more robust experimental and computational modeling.

    PubMed

    Gallion, Jonathan; Koire, Amanda; Katsonis, Panagiotis; Schoenegge, Anne-Marie; Bouvier, Michel; Lichtarge, Olivier

    2017-05-01

    Computational prediction yields efficient and scalable initial assessments of how variants of unknown significance may affect human health. However, when discrepancies between these predictions and direct experimental measurements of functional impact arise, inaccurate computational predictions are frequently assumed as the source. Here, we present a methodological analysis indicating that shortcomings in both computational and biological data can contribute to these disagreements. We demonstrate that incomplete assaying of multifunctional proteins can affect the strength of correlations between prediction and experiments; a variant's full impact on function is better quantified by considering multiple assays that probe an ensemble of protein functions. Additionally, many variants predictions are sensitive to protein alignment construction and can be customized to maximize relevance of predictions to a specific experimental question. We conclude that inconsistencies between computation and experiment can often be attributed to the fact that they do not test identical hypotheses. Aligning the design of the computational input with the design of the experimental output will require cooperation between computational and biological scientists, but will also lead to improved estimations of computational prediction accuracy and a better understanding of the genotype-phenotype relationship. © 2017 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  2. Different prion disease phenotypes result from inoculation of cattle with two temporally separated sources of sheep scrapie from Great Britain

    PubMed Central

    Konold, Timm; Lee, Yoon Hee; Stack, Michael J; Horrocks, Claire; Green, Robert B; Chaplin, Melanie; Simmons, Marion M; Hawkins, Steve AC; Lockey, Richard; Spiropoulos, John; Wilesmith, John W; Wells, Gerald AH

    2006-01-01

    Background Given the theoretical proposal that bovine spongiform encephalopathy (BSE) could have originated from sheep scrapie, this study investigated the pathogenicity for cattle, by intracerebral (i.c.) inoculation, of two pools of scrapie agents sourced in Great Britain before and during the BSE epidemic. Two groups of ten cattle were each inoculated with pools of brain material from sheep scrapie cases collected prior to 1975 and after 1990. Control groups comprised five cattle inoculated with sheep brain free from scrapie, five cattle inoculated with saline, and for comparison with BSE, naturally infected cattle and cattle i.c. inoculated with BSE brainstem homogenate from a parallel study. Phenotypic characterisation of the disease forms transmitted to cattle was conducted by morphological, immunohistochemical, biochemical and biological methods. Results Disease occurred in 16 cattle, nine inoculated with the pre-1975 inoculum and seven inoculated with the post-1990 inoculum, with four cattle still alive at 83 months post challenge (as at June 2006). The different inocula produced predominantly two different disease phenotypes as determined by histopathological, immunohistochemical and Western immunoblotting methods and biological characterisation on transmission to mice, neither of which was identical to BSE. Whilst the disease presentation was uniform in all scrapie-affected cattle of the pre-1975 group, the post-1990 inoculum produced a more variable disease, with two animals sharing immunohistochemical and molecular profile characteristics with animals in the pre-1975 group. Conclusion The study has demonstrated that cattle inoculated with different pooled scrapie sources can develop different prion disease phenotypes, which were not consistent with the phenotype of BSE of cattle and whose isolates did not have the strain typing characteristics of the BSE agent on transmission to mice. PMID:17044917

  3. The GP problem: quantifying gene-to-phenotype relationships.

    PubMed

    Cooper, Mark; Chapman, Scott C; Podlich, Dean W; Hammer, Graeme L

    2002-01-01

    In this paper we refer to the gene-to-phenotype modeling challenge as the GP problem. Integrating information across levels of organization within a genotype-environment system is a major challenge in computational biology. However, resolving the GP problem is a fundamental requirement if we are to understand and predict phenotypes given knowledge of the genome and model dynamic properties of biological systems. Organisms are consequences of this integration, and it is a major property of biological systems that underlies the responses we observe. We discuss the E(NK) model as a framework for investigation of the GP problem and the prediction of system properties at different levels of organization. We apply this quantitative framework to an investigation of the processes involved in genetic improvement of plants for agriculture. In our analysis, N genes determine the genetic variation for a set of traits that are responsible for plant adaptation to E environment-types within a target population of environments. The N genes can interact in epistatic NK gene-networks through the way that they influence plant growth and development processes within a dynamic crop growth model. We use a sorghum crop growth model, available within the APSIM agricultural production systems simulation model, to integrate the gene-environment interactions that occur during growth and development and to predict genotype-to-phenotype relationships for a given E(NK) model. Directional selection is then applied to the population of genotypes, based on their predicted phenotypes, to simulate the dynamic aspects of genetic improvement by a plant-breeding program. The outcomes of the simulated breeding are evaluated across cycles of selection in terms of the changes in allele frequencies for the N genes and the genotypic and phenotypic values of the populations of genotypes.

  4. Microbiology in Introductory Biology.

    ERIC Educational Resources Information Center

    Callery, Michael L.; And Others

    1980-01-01

    Describes a microbiology unit developed for an introductory college biology course in which the identity of an unknown bacterium is determined. Also described is an interactive taxonomy computer program which aids in the identity of the unknown organism. (CS)

  5. The nucleic acid revolution continues - will forensic biology become forensic molecular biology?

    PubMed

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  6. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning.

    PubMed

    Wu, Mon-Ju; Mwangi, Benson; Bauer, Isabelle E; Passos, Ives C; Sanches, Marsal; Zunta-Soares, Giovana B; Meyer, Thomas D; Hasan, Khader M; Soares, Jair C

    2017-01-15

    Diagnosis, clinical management and research of psychiatric disorders remain subjective - largely guided by historically developed categories which may not effectively capture underlying pathophysiological mechanisms of dysfunction. Here, we report a novel approach of identifying and validating distinct and biologically meaningful clinical phenotypes of bipolar disorders using both unsupervised and supervised machine learning techniques. First, neurocognitive data were analyzed using an unsupervised machine learning approach and two distinct clinical phenotypes identified namely; phenotype I and phenotype II. Second, diffusion weighted imaging scans were pre-processed using the tract-based spatial statistics (TBSS) method and 'skeletonized' white matter fractional anisotropy (FA) and mean diffusivity (MD) maps extracted. The 'skeletonized' white matter FA and MD maps were entered into the Elastic Net machine learning algorithm to distinguish individual subjects' phenotypic labels (e.g. phenotype I vs. phenotype II). This calculation was performed to ascertain whether the identified clinical phenotypes were biologically distinct. Original neurocognitive measurements distinguished individual subjects' phenotypic labels with 94% accuracy (sensitivity=92%, specificity=97%). TBSS derived FA and MD measurements predicted individual subjects' phenotypic labels with 76% and 65% accuracy respectively. In addition, individual subjects belonging to phenotypes I and II were distinguished from healthy controls with 57% and 92% accuracy respectively. Neurocognitive task variables identified as most relevant in distinguishing phenotypic labels included; Affective Go/No-Go (AGN), Cambridge Gambling Task (CGT) coupled with inferior fronto-occipital fasciculus and callosal white matter pathways. These results suggest that there may exist two biologically distinct clinical phenotypes in bipolar disorders which can be identified from healthy controls with high accuracy and at an

  7. Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases.

    PubMed

    Louridas, George E; Lourida, Katerina G

    2017-02-21

    Systems biology is an important concept that connects molecular biology and genomics with computing science, mathematics and engineering. An endeavor is made in this paper to associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases are clinical phenotypes generated by integration of genetic, molecular and environmental factors. Basic concepts of systems biology like network construction, modular thinking, biological constraints (downward biological direction) and emergence (upward biological direction) could be applied to clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases are biological complex entities which like other biological phenomena can be explained by a systems biology approach. The above powerful biological tools of systems biology can explain robustness growth and stability during disease process from modulation to phenotype. The purpose of the present review paper is to implement systems biology strategy and incorporate some conceptual issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease process and progression can be addressed by the holistic realistic approach of systems biology in order to define in better terms earlier diagnosis and more effective therapy.

  8. PHENOTYPIC VARIABILITY IN INDIVIDUALS WITH TYPE V OSTEOGENESIS IMPERFECTA WITH IDENTICAL IFITM5 MUTATIONS

    PubMed Central

    Fitzgerald, Jamie; Holden, Paul; Wright, Hollis; Wilmot, Beth; Hata, Abigail; Steiner, Robert D.; Basel, Don

    2016-01-01

    Background Osteogenesis imperfecta (OI) type V is a dominantly inherited skeletal dysplasia characterized by fractures and progressive deformity of long bones. In addition, patients often present with radial head dislocation, hyperplastic callus, and calcification of the forearm interosseous membrane. Recently, a specific mutation in the IFITM5 gene was found to be responsible for OI type V. This mutation, a C to T transition 14 nucleotides upstream from the endogenous start codon, creates a new start methionine that appears to be preferentially used by the translational machinery. However, the mechanism by which the lengthened protein results in a dominant type of OI is unknown. Methods and Results We report 7 ethnically diverse (African-American, Caucasian, Hispanic, and African) individuals with OI type V from 2 families and 2 sporadic cases. Exome sequencing failed to identify a causative mutation. Using Sanger sequencing, we found that all affected individuals in our cohort possess the c.−14 IFITM5 variant, further supporting the notion that OI type V is caused by a single, discrete mutation. Our patient cohort demonstrated inter-and intrafamilial phenotypic variability, including a father with classic OI type V whose daughter had a phenotype similar to OI type I. This clinical variability suggests that modifier genes influence the OI type V phenotype. We also confirm that the mutation creates an aberrant IFITM5 protein containing an additional 5 amino acids at the N-terminus. Conclusions The variable clinical signs in these cases illustrate the significant variability of the OI type V phenotype caused by the c.−14 IFITM5 mutation. The affected individuals are more ethnically diverse than previously reported. PMID:28824928

  9. [Cloning, mutagenesis and symbiotic phenotype of three lipid transfer protein encoding genes from Mesorhizobium huakuii 7653R].

    PubMed

    Li, Yanan; Zeng, Xiaobo; Zhou, Xuejuan; Li, Youguo

    2016-12-04

    Lipid transfer protein superfamily is involved in lipid transport and metabolism. This study aimed to construct mutants of three lipid transfer protein encoding genes in Mesorhizobium huakuii 7653R, and to study the phenotypes and function of mutations during symbiosis with Astragalus sinicus. We used bioinformatics to predict structure characteristics and biological functions of lipid transfer proteins, and conducted semi-quantitative and fluorescent quantitative real-time PCR to analyze the expression levels of target genes in free-living and symbiotic conditions. Using pK19mob insertion mutagenesis to construct mutants, we carried out pot plant experiments to observe symbiotic phenotypes. MCHK-5577, MCHK-2172 and MCHK-2779 genes encoding proteins belonged to START/RHO alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) superfamily, involved in lipid transport or metabolism, and were identical to M. loti at 95% level. Gene relative transcription level of the three genes all increased compared to free-living condition. We obtained three mutants. Compared with wild-type 7653R, above-ground biomass of plants and nodulenitrogenase activity induced by the three mutants significantly decreased. Results indicated that lipid transfer protein encoding genes of Mesorhizobium huakuii 7653R may play important roles in symbiotic nitrogen fixation, and the mutations significantly affected the symbiotic phenotypes. The present work provided a basis to study further symbiotic function mechanism associated with lipid transfer proteins from rhizobia.

  10. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51.

    PubMed

    van Heemst, D; Swart, K; Holub, E F; van Dijk, R; Offenberg, H H; Goosen, T; van den Broek, H W; Heyting, C

    1997-05-01

    We have cloned the uvsC gene of Aspergillus nidulans by complementation of the A. nidulans uvsC114 mutant. The predicted protein UVSC shows 67.4% sequence identity to the Saccharomyces cerevisiae Rad51 protein and 27.4% sequence identity to the Escherichia coli RecA protein. Transcription of uvsC is induced by methyl-methane sulphonate (MMS), as is transcription of RAD51 of yeast. Similar levels of uvsC transcription were observed after MMS induction in a uvsC+ strain and the uvsC114 mutant. The coding sequence of the uvsC114 allele has a deletion of 6 bp, which results in deletion of two amino acids and replacement of one amino acid in the translation product. In order to gain more insight into the biological function of the uvsC gene, a uvsC null mutant was constructed, in which the entire uvsC coding sequence was replaced by a selectable marker gene. Meiotic and mitotic phenotypes of a uvsC+ strain, the uvsC114 mutant and the uvsC null mutant were compared. The uvsC null mutant was more sensitive to both UV and MMS than the uvsC114 mutant. The uvsC114 mutant arrested in meiotic prophase-I. The uvsC null mutant arrested at an earlier stage, before the onset of meiosis. One possible interpretation of these meiotic phenotypes is that the A. nidulans homologue of Rad51 of yeast has a role both in the specialized processes preceding meiosis and in meiotic prophase I.

  11. Phenotype-information-phenotype cycle for deconvolution of combinatorial antibody libraries selected against complex systems.

    PubMed

    Zhang, Hongkai; Torkamani, Ali; Jones, Teresa M; Ruiz, Diana I; Pons, Jaume; Lerner, Richard A

    2011-08-16

    Use of large combinatorial antibody libraries and next-generation sequencing of nucleic acids are two of the most powerful methods in modern molecular biology. The libraries are screened using the principles of evolutionary selection, albeit in real time, to enrich for members with a particular phenotype. This selective process necessarily results in the loss of information about less-fit molecules. On the other hand, sequencing of the library, by itself, gives information that is mostly unrelated to phenotype. If the two methods could be combined, the full potential of very large molecular libraries could be realized. Here we report the implementation of a phenotype-information-phenotype cycle that integrates information and gene recovery. After selection for phage-encoded antibodies that bind to targets expressed on the surface of Escherichia coli, the information content of the selected pool is obtained by pyrosequencing. Sequences that encode specific antibodies are identified by a bioinformatic analysis and recovered by a stringent affinity method that is uniquely suited for gene isolation from a highly degenerate collection of nucleic acids. This approach can be generalized for selection of antibodies against targets that are present as minor components of complex systems.

  12. Bladder smooth muscle organ culture preparation maintains the contractile phenotype

    PubMed Central

    Wang, Tanchun; Kendig, Derek M.; Chang, Shaohua; Trappanese, Danielle M.; Chacko, Samuel

    2012-01-01

    Smooth muscle cells, when subjected to culture, modulate from a contractile to a secretory phenotype. This has hampered the use of cell culture for molecular techniques to study the regulation of smooth muscle biology. The goal of this study was to develop a new organ culture model of bladder smooth muscle (BSM) that would maintain the contractile phenotype and aid in the study of BSM biology. Our results showed that strips of BSM subjected to up to 9 days of organ culture maintained their contractile phenotype, including the ability to achieve near-control levels of force with a temporal profile similar to that of noncultured tissues. The technical aspects of our organ culture preparation that were responsible, in part, for the maintenance of the contractile phenotype were a slight longitudinal stretch during culture and subjection of the strips to daily contraction-relaxation. The tissues contained viable cells throughout the cross section of the strips. There was an increase in extracellular collagenous matrix, resulting in a leftward shift in the passive length-tension relationship. There were no significant changes in the content of smooth muscle-specific α-actin, calponin, h-caldesmon, total myosin heavy chain, protein kinase G, Rho kinase-I, or the ratio of SM1 to SM2 myosin isoforms. Moreover the organ cultured tissues maintained functional voltage-gated calcium channels and large-conductance calcium-activated potassium channels. Therefore, we propose that this novel BSM organ culture model maintains the contractile phenotype and will be a valuable tool for the use in cellular/molecular biology studies of bladder myocytes. PMID:22896042

  13. [Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments].

    PubMed

    Afonnikov, D A; Genaev, M A; Doroshkov, A V; Komyshev, E G; Pshenichnikova, T A

    2016-07-01

    Phenomics is a field of science at the junction of biology and informatics which solves the problems of rapid, accurate estimation of the plant phenotype; it was rapidly developed because of the need to analyze phenotypic characteristics in large scale genetic and breeding experiments in plants. It is based on using the methods of computer image analysis and integration of biological data. Owing to automation, new approaches make it possible to considerably accelerate the process of estimating the characteristics of a phenotype, to increase its accuracy, and to remove a subjectivism (inherent to humans). The main technologies of high-throughput plant phenotyping in both controlled and field conditions, their advantages and disadvantages, and also the prospects of their use for the efficient solution of problems of plant genetics and breeding are presented in the review.

  14. Using Machine Learning to Discover Latent Social Phenotypes in Free-Ranging Macaques

    PubMed Central

    Madlon-Kay, Seth; Brent, Lauren J. N.; Heller, Katherine A.; Platt, Michael L.

    2017-01-01

    Investigating the biological bases of social phenotypes is challenging because social behavior is both high-dimensional and richly structured, and biological factors are more likely to influence complex patterns of behavior rather than any single behavior in isolation. The space of all possible patterns of interactions among behaviors is too large to investigate using conventional statistical methods. In order to quantitatively define social phenotypes from natural behavior, we developed a machine learning model to identify and measure patterns of behavior in naturalistic observational data, as well as their relationships to biological, environmental, and demographic sources of variation. We applied this model to extensive observations of natural behavior in free-ranging rhesus macaques, and identified behavioral states that appeared to capture periods of social isolation, competition over food, conflicts among groups, and affiliative coexistence. Phenotypes, represented as the rate of being in each state for a particular animal, were strongly and broadly influenced by dominance rank, sex, and social group membership. We also identified two states for which variation in rates had a substantial genetic component. We discuss how this model can be extended to identify the contributions to social phenotypes of particular genetic pathways. PMID:28754001

  15. Mapping biological to clinical phenotypes during the development (21 days) and resolution (21 days) of experimental gingivitis.

    PubMed

    Scott, Ann E; Milward, Mike; Linden, Gerard J; Matthews, John B; Carlile, Monica J; Lundy, Fionnuala T; Naeeni, Mojgan A; Lorraine Martin, S; Walker, Brian; Kinane, Denis; Brock, Gareth R; Chapple, Iain L C

    2012-02-01

    To characterize and map temporal changes in the biological and clinical phenotype during a 21-day experimental gingivitis study. Experimental gingivitis was induced over 21 days in healthy human volunteers (n = 56), after which normal brushing was resumed (resolution phase). Gingival and plaque indices were assessed. Gingival crevicular fluid was collected from four paired test and contra-lateral control sites in each volunteer during induction (Days 0, 7, 14 and 21) and resolution (Days 28 and 42) of experimental gingivitis. Fluid volumes were measured and a single analyte was quantified from each site-specific, 30s sample. Data were evaluated by analysis of repeated measurements and paired sample tests. Clinical indices and gingival crevicular fluid volumes at test sites increased from Day 0, peaking at Day 21 (test/control differences all p < 0.0001) and decreased back to control levels by Day 28. Levels of four inflammatory markers showed similar patterns, with significant differences between test and control apparent at Day 7 (substance P, cathepsin G, interleukin-1β, elastase: all p < 0.03) and peaking at Day 21 (all p < 0.002). Levels of α-1-antitrypsin showed no pattern. Levels of substance P, cathepsin G, interleukin-1β and neutrophil elastase act as objective biomarkers of gingival inflammation induction and resolution that typically precede phenotypical changes. © 2011 John Wiley & Sons A/S.

  16. Childhood Gender Identity...Disorder? Developmental, Cultural, and Diagnostic Concerns

    ERIC Educational Resources Information Center

    Dragowski, Eliza A.; Scharron-del Rio, Maria R.; Sandigorsky, Amy L.

    2011-01-01

    Childhood gender identity development is reviewed in the context of biological, environmental, cultural, and diagnostic factors. With the upcoming 5th revision of the "Diagnostic and Statistical Manual of Mental Disorders," the authors offer a critical consideration of childhood gender identity disorder, along with proposed diagnostic changes.…

  17. Directed evolution and synthetic biology applications to microbial systems.

    PubMed

    Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T

    2016-06-01

    Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution

    PubMed Central

    Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D.; Rainey, Paul B.; de Visser, J. Arjan G. M.; Baudry, Jean; Bibette, Jérôme

    2016-01-01

    Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes–via growth–over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology. PMID:27077662

  19. Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution.

    PubMed

    Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D; Rainey, Paul B; de Visser, J Arjan G M; Baudry, Jean; Bibette, Jérôme

    2016-01-01

    Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes-via growth-over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology.

  20. PRIMARY CILIARY DYSKINESIA: DIAGNOSTIC AND PHENOTYPIC FEATURES

    EPA Science Inventory

    Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormalities in ciliary structure/function. We hypothesized that the major clinical and biologic phenotypic markers of the disease could be evaluated by studying a cohort of subjects suspected of having PCD. ...

  1. Prevalence of sexual dimorphism in mammalian phenotypic traits.

    PubMed

    Karp, Natasha A; Mason, Jeremy; Beaudet, Arthur L; Benjamini, Yoav; Bower, Lynette; Braun, Robert E; Brown, Steve D M; Chesler, Elissa J; Dickinson, Mary E; Flenniken, Ann M; Fuchs, Helmut; Angelis, Martin Hrabe de; Gao, Xiang; Guo, Shiying; Greenaway, Simon; Heller, Ruth; Herault, Yann; Justice, Monica J; Kurbatova, Natalja; Lelliott, Christopher J; Lloyd, K C Kent; Mallon, Ann-Marie; Mank, Judith E; Masuya, Hiroshi; McKerlie, Colin; Meehan, Terrence F; Mott, Richard F; Murray, Stephen A; Parkinson, Helen; Ramirez-Solis, Ramiro; Santos, Luis; Seavitt, John R; Smedley, Damian; Sorg, Tania; Speak, Anneliese O; Steel, Karen P; Svenson, Karen L; Wakana, Shigeharu; West, David; Wells, Sara; Westerberg, Henrik; Yaacoby, Shay; White, Jacqueline K

    2017-06-26

    The role of sex in biomedical studies has often been overlooked, despite evidence of sexually dimorphic effects in some biological studies. Here, we used high-throughput phenotype data from 14,250 wildtype and 40,192 mutant mice (representing 2,186 knockout lines), analysed for up to 234 traits, and found a large proportion of mammalian traits both in wildtype and mutants are influenced by sex. This result has implications for interpreting disease phenotypes in animal models and humans.

  2. The Psychological Rights of the Child and Sexual Identity.

    ERIC Educational Resources Information Center

    Ramage, Jean C.; And Others

    1982-01-01

    Recent thinking about the components of sexual identity (biological sex, gender identity, sexual preference, and social sex role) are examined. It is argued that confusion between correlation and causality in these areas restrict the development of all children. Examples and suggestions for avoiding stereotyping of school children are given.…

  3. Epigenomics and the concept of degeneracy in biological systems

    PubMed Central

    Mason, Paul H.; Barron, Andrew B.

    2014-01-01

    Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy—referring to the multiple pathways that a system recruits to achieve functional plasticity—is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability. PMID:24335757

  4. Experiences of Judeo-Christian Students in Undergraduate Biology

    PubMed Central

    Barnes, M. Elizabeth; Truong, Jasmine M.; Brownell, Sara E.

    2017-01-01

    A major research thrust in science, technology, engineering, and mathematics (STEM) education is focused on how to retain students as STEM majors. The accumulation of seemingly insignificant negative experiences in STEM classes can, over time, lead STEM students to have a low sense of belonging in their disciplines, and this can lead to lower retention. In this paper, we explore how Judeo-Christian students in biology have experiences related to their religious identities that could impact their retention in biology. In 28 interviews with Judeo-Christian students taking undergraduate biology classes, students reported a religious identity that can conflict with the secular culture and content of biology. Some students felt that, because they are religious, they fall within a minority in their classes and would not be seen as credible within the biology community. Students reported adverse experiences when instructors had negative dispositions toward religion and when instructors were rigid in their instructional practices when teaching evolution. These data suggest that this may be a population susceptible to experiences of cultural conflict between their religious identities and their STEM identities, which could have implications for retention. We argue that more research should explore how Judeo-Christian students’ experiences in biology classes influence their sense of belonging and retention. PMID:28232586

  5. Modeling the Transition from a Phenotypic to Genotypic Conceptualization of Genetics in a University-Level Introductory Biology Context

    NASA Astrophysics Data System (ADS)

    Todd, Amber; Romine, William L.; Correa-Menendez, Josefina

    2017-07-01

    Identifying contingencies between constructs in a multi-faceted learning progression (LP) is a challenging task. Often, there is not enough evidence in the literature to support connections, and once identified, they are difficult to empirically test. Here, we use causal model search to evaluate how connections between ideas in a genetics LP change over time in the context of an introductory biology course. We identify primary and secondary hub ideas and connections between concepts before and after instruction to illustrate how students moved from a phenotypic grounding of genetics knowledge to a more genotypic grounding of their genetics knowledge after instruction. We discuss our results in light of conceptual change and illustrate the importance of understanding students' idea structures within a domain.

  6. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  7. Towards the resolution of a long-standing evolutionary question: muscle identity and attachments are mainly related to topological position and not to primordium or homeotic identity of digits.

    PubMed

    Diogo, Rui; Walsh, Sean; Smith, Christopher; Ziermann, Janine M; Abdala, Virginia

    2015-06-01

    Signaling for limb bone development usually precedes that for muscle development, such that cartilage is generally present before muscle formation. It remains obscure, however, if: (i) tetrapods share a general, predictable spatial correlation between bones and muscles; and, if that is the case, if (ii) such a correlation would reflect an obligatory association between the signaling involved in skeletal and muscle morphogenesis. We address these issues here by using the results of a multidisciplinary analysis of the appendicular muscles of all major tetrapod groups integrating dissections, muscle antibody stainings, regenerative and ontogenetic analyses of fluorescently-labeled (GFP) animals, and studies of non-pentadactyl human limbs related to birth defects. Our synthesis suggests that there is a consistent, surprising anatomical pattern in both normal and abnormal phenotypes, in which the identity and attachments of distal limb muscles are mainly related to the topological position, and not to the developmental primordium (anlage) or even the homeotic identity, of the digits to which they are attached. This synthesis is therefore a starting point towards the resolution of a centuries-old question raised by authors such as Owen about the specific associations between limb bones and muscles. This question has crucial implications for evolutionary and developmental biology, and for human medicine because non-pentadactyly is the most common birth defect in human limbs. In particular, this synthesis paves the way for future developmental experimental and mechanistic studies, which are needed to clarify the processes that may be involved in the elaboration of the anatomical patterns described here, and to specifically test the hypothesis that distal limb muscle identity/attachment is mainly related to digit topology. © 2015 Anatomical Society.

  8. Prevalence of sexual dimorphism in mammalian phenotypic traits

    PubMed Central

    Karp, Natasha A.; Mason, Jeremy; Beaudet, Arthur L.; Benjamini, Yoav; Bower, Lynette; Braun, Robert E.; Brown, Steve D.M.; Chesler, Elissa J.; Dickinson, Mary E.; Flenniken, Ann M.; Fuchs, Helmut; Angelis, Martin Hrabe de; Gao, Xiang; Guo, Shiying; Greenaway, Simon; Heller, Ruth; Herault, Yann; Justice, Monica J.; Kurbatova, Natalja; Lelliott, Christopher J.; Lloyd, K.C. Kent; Mallon, Ann-Marie; Mank, Judith E.; Masuya, Hiroshi; McKerlie, Colin; Meehan, Terrence F.; Mott, Richard F.; Murray, Stephen A.; Parkinson, Helen; Ramirez-Solis, Ramiro; Santos, Luis; Seavitt, John R.; Smedley, Damian; Sorg, Tania; Speak, Anneliese O.; Steel, Karen P.; Svenson, Karen L.; Obata, Yuichi; Suzuki, Tomohiro; Tamura, Masaru; Kaneda, Hideki; Furuse, Tamio; Kobayashi, Kimio; Miura, Ikuo; Yamada, Ikuko; Tanaka, Nobuhiko; Yoshiki, Atsushi; Ayabe, Shinya; Clary, David A.; Tolentino, Heather A.; Schuchbauer, Michael A.; Tolentino, Todd; Aprile, Joseph Anthony; Pedroia, Sheryl M.; Kelsey, Lois; Vukobradovic, Igor; Berberovic, Zorana; Owen, Celeste; Qu, Dawei; Guo, Ruolin; Newbigging, Susan; Morikawa, Lily; Law, Napoleon; Shang, Xueyuan; Feugas, Patricia; Wang, Yanchun; Eskandarian, Mohammad; Zhu, Yingchun; Nutter, Lauryl M. J.; Penton, Patricia; Laurin, Valerie; Clarke, Shannon; Lan, Qing; Sohel, Khondoker; Miller, David; Clark, Greg; Hunter, Jane; Cabezas, Jorge; Bubshait, Mohammed; Carroll, Tracy; Tondat, Sandra; MacMaster, Suzanne; Pereira, Monica; Gertsenstein, Marina; Danisment, Ozge; Jacob, Elsa; Creighton, Amie; Sleep, Gillian; Clark, James; Teboul, Lydia; Fray, Martin; Caulder, Adam; Loeffler, Jorik; Codner, Gemma; Cleak, James; Johnson, Sara; Szoke-Kovacs, Zsombor; Radage, Adam; Maritati, Marina; Mianne, Joffrey; Gardiner, Wendy; Allen, Susan; Cater, Heather; Stewart, Michelle; Keskivali-Bond, Piia; Sinclair, Caroline; Brown, Ellen; Doe, Brendan; Wardle-Jones, Hannah; Grau, Evelyn; Griggs, Nicola; Woods, Mike; Kundi, Helen; Griffiths, Mark N. D.; Kipp, Christian; Melvin, David G.; Raj, Navis P. S.; Holroyd, Simon A.; Gannon, David J.; Alcantara, Rafael; Galli, Antonella; Hooks, Yvette E.; Tudor, Catherine L.; Green, Angela L.; Kussy, Fiona L.; Tuck, Elizabeth J.; Siragher, Emma J.; Maguire, Simon A.; Lafont, David T.; Vancollie, Valerie E.; Pearson, Selina A.; Gates, Amy S.; Sanderson, Mark; Shannon, Carl; Anthony, Lauren F. E.; Sumowski, Maksymilian T.; McLaren, Robbie S. B.; Swiatkowska, Agnieszka; Isherwood, Christopher M.; Cambridge, Emma L; Wilson, Heather M.; Caetano, Susana S.; Mazzeo, Cecilia Icoresi; Dabrowska, Monika H.; Lillistone, Charlotte; Estabel, Jeanne; Maguire, Anna Karin B.; Roberson, Laura-Anne; Pavlovic, Guillaume; Birling, Marie-Christine; Marie, Wattenhofer-Donze; Jacquot, Sylvie; Ayadi, Abdel; Ali-Hadji, Dalila; Charles, Philippe; André, Philippe; Le Marchand, Elise; El Amri, Amal; Vasseur, Laurent; Aguilar-Pimentel, Antonio; Becker, Lore; Treise, Irina; Moreth, Kristin; Stoeger, Tobias; Amarie, Oana V.; Neff, Frauke; Wurst, Wolfgang; Bekeredjian, Raffi; Ollert, Markus; Klopstock, Thomas; Calzada-Wack, Julia; Marschall, Susan; Brommage, Robert; Steinkamp, Ralph; Lengger, Christoph; Östereicher, Manuela A.; Maier, Holger; Stoeger, Claudia; Leuchtenberger, Stefanie; Yildrim, AliÖ; Garrett, Lillian; Hölter, Sabine M; Zimprich, Annemarie; Seisenberger, Claudia; Bürger, Antje; Graw, Jochen; Eickelberg, Oliver; Zimmer, Andreas; Wolf, Eckhard; Busch, Dirk H; Klingenspor, Martin; Schmidt-Weber, Carsten; Gailus-Durner, Valérie; Beckers, Johannes; Rathkolb, Birgit; Rozman, Jan; Wakana, Shigeharu; West, David; Wells, Sara; Westerberg, Henrik; Yaacoby, Shay; White, Jacqueline K.

    2017-01-01

    The role of sex in biomedical studies has often been overlooked, despite evidence of sexually dimorphic effects in some biological studies. Here, we used high-throughput phenotype data from 14,250 wildtype and 40,192 mutant mice (representing 2,186 knockout lines), analysed for up to 234 traits, and found a large proportion of mammalian traits both in wildtype and mutants are influenced by sex. This result has implications for interpreting disease phenotypes in animal models and humans. PMID:28650954

  9. [FOXP2 and the molecular biology of language: new evidence. I. Phenotypic aspects and animal models].

    PubMed

    Benítez-Burraco, A

    FOXP2 is the first gene linked to a hereditary variant of specific language impairment and seems to code for a transcriptional repressor that intervenes in the regulation of development and the functioning of certain thalamic-cortical-striatal circuits. In the last three years significant progress has been made in the analysis of the structural and functional properties of the gene. The most notable advances have been made in the genotypic and phenotypic characterisation of new alterations in its sequencing in human beings; the determination in vivo of the functional properties of the mutated proteins generated from said variants; the cloning and characterisation of new orthologues of the gene; the generation of the first knockout and knockdown organisms for it; and a more precise molecular characterisation of the biological role played by the orthologues corresponding to species that are also capable of learning the articulatory patterns of the vocalisations they use to communicate. The latest clinical evidence and that obtained from analysing animal models generated to date appear to suggest the presence of a 'sensory-motor disorder' as the central deficit behind the different phenotypes associated to the different mutations of the gene in the human species, the functionality of the gene FOXP2 during development of the embryo and during the adult phase, its involvement in the development and functioning of the thalamic-cortical-striatal circuits associated to motor planning, sequential behaviour and procedural learning, and significant old age, in developmental terms, of a part of the neuroanatomical substrate that is involved in processing linguistic stimuli in our species.

  10. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures.

    PubMed

    Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary

    2014-10-01

    The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.

  11. The nucleic acid revolution continues – will forensic biology become forensic molecular biology?

    PubMed Central

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to “forensic molecular biology.” Aside from DNA’s established role in identifying the “who” in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about “when” a crime took place and “what” took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future. PMID:24634675

  12. A conceptual review on systems biology in health and diseases: from biological networks to modern therapeutics.

    PubMed

    Somvanshi, Pramod Rajaram; Venkatesh, K V

    2014-03-01

    Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.

  13. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age.

    PubMed

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-03-09

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. Copyright © 2015 Brown et al.

  14. Learning, memory and exploratory similarities in genetically identical cloned dogs.

    PubMed

    Shin, Chi Won; Kim, Geon A; Park, Won Jun; Park, Kwan Yong; Jeon, Jeong Min; Oh, Hyun Ju; Kim, Min Jung; Lee, Byeong Chun

    2016-12-30

    Somatic cell nuclear transfer allows generation of genetically identical animals using donor cells derived from animals with particular traits. To date, few studies have investigated whether or not these cloned dogs will show identical behavior patterns. To address this question, learning, memory and exploratory patterns were examined using six cloned dogs with identical nuclear genomes. The variance of total incorrect choice number in the Y-maze test among cloned dogs was significantly lower than that of the control dogs. There was also a significant decrease in variance in the level of exploratory activity in the open fields test compared to age-matched control dogs. These results indicate that cloned dogs show similar cognitive and exploratory patterns, suggesting that these behavioral phenotypes are related to the genotypes of the individuals.

  15. Student Identity Considerations and Implications Associated with Socioscientific Issues Instruction

    ERIC Educational Resources Information Center

    Ruzek, Mitchel James

    2014-01-01

    The purpose of this investigation was to explore how aspects of identity, perceived levels of controversy, and the strength of a student's attachment to their controversial identity relate to conceptual understanding and knowledge acquisition during socioscientific issues (SSI) based instruction in a biology classroom. The knowledge gained from…

  16. Sex-sensitive cognitive performance in untreated patients with early onset gender identity disorder.

    PubMed

    Haraldsen, I R; Opjordsmoen, S; Egeland, T; Finset, A

    2003-10-01

    We explored whether the cognitive performance of gender identity disorder patients (GID) was comparable to that of their biological sex or skewed towards that of their gender identity. We tested four potentially sex-sensitive cognitive factors (rotation, visualization, perception, and verbalization) as well as two neutral factors (logic and arithmetic) in GID patients from Norway (GID-N, n = 33) or the USA (GID-US, n = 19) and in a control group (C, n = 29). The testing was undertaken prior to cross sex hormone treatment. Four-way ANOVA was applied in the final analysis of the cognitive performance and its dependency on different predictors (age, biological sex, education, group). In both GID groups as well as in the control group (C) males excelled in visualization and rotation, also when controlling for potential confounders (biological sex, group, age and education). No female advantage was detected. Furthermore, no interaction between biological sex and group assignment was revealed in the samples. In this study the cognitive pattern of GID patients is consistent with that of their biological sex and not that of their gender identity.

  17. Biologic Phenotyping of the Human Small Airway Epithelial Response to Cigarette Smoking

    PubMed Central

    Tilley, Ann E.; O'Connor, Timothy P.; Hackett, Neil R.; Strulovici-Barel, Yael; Salit, Jacqueline; Amoroso, Nancy; Zhou, Xi Kathy; Raman, Tina; Omberg, Larsson; Clark, Andrew; Mezey, Jason; Crystal, Ronald G.

    2011-01-01

    Background The first changes associated with smoking are in the small airway epithelium (SAE). Given that smoking alters SAE gene expression, but only a fraction of smokers develop chronic obstructive pulmonary disease (COPD), we hypothesized that assessment of SAE genome-wide gene expression would permit biologic phenotyping of the smoking response, and that a subset of healthy smokers would have a “COPD-like” SAE transcriptome. Methodology/Principal Findings SAE (10th–12th generation) was obtained via bronchoscopy of healthy nonsmokers, healthy smokers and COPD smokers and microarray analysis was used to identify differentially expressed genes. Individual responsiveness to smoking was quantified with an index representing the % of smoking-responsive genes abnormally expressed (ISAE), with healthy smokers grouped into “high” and “low” responders based on the proportion of smoking-responsive genes up- or down-regulated in each smoker. Smokers demonstrated significant variability in SAE transcriptome with ISAE ranging from 2.9 to 51.5%. While the SAE transcriptome of “low” responder healthy smokers differed from both “high” responders and smokers with COPD, the transcriptome of the “high” responder healthy smokers was indistinguishable from COPD smokers. Conclusion/Significance The SAE transcriptome can be used to classify clinically healthy smokers into subgroups with lesser and greater responses to cigarette smoking, even though these subgroups are indistinguishable by clinical criteria. This identifies a group of smokers with a “COPD-like” SAE transcriptome. PMID:21829517

  18. Racial identity invalidation with multiracial individuals: An instrument development study.

    PubMed

    Franco, Marisa G; O'Brien, Karen M

    2018-01-01

    Racial identity invalidation, others' denial of an individual's racial identity, is a salient racial stressor with harmful effects on the mental health and well-being of Multiracial individuals. The purpose of this study was to create a psychometrically sound measure to assess racial identity invalidation for use with Multiracial individuals (N = 497). The present sample was mostly female (75%) with a mean age of 26.52 years (SD = 9.60). The most common racial backgrounds represented were Asian/White (33.4%) and Black/White (23.7%). Participants completed several online measures via Qualtrics. Exploratory factor analyses revealed 3 racial identity invalidation factors: behavior invalidation, phenotype invalidation, and identity incongruent discrimination. A confirmatory factor analysis provided support for the initial factor structure. Alternative model testing indicated that the bifactor model was superior to the 3-factor model. Thus, a total score and/or 3 subscale scores can be used when administering this instrument. Support was found for the reliability and validity of the total scale and subscales. In line with the minority stress theory, challenges with racial identity mediated relationships between racial identity invalidation and mental health and well-being outcomes. The findings highlight the different dimensions of racial identity invalidation and indicate their negative associations with connectedness and psychological well-being. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. The queen's gut refines with age: longevity phenotypes in a social insect model.

    PubMed

    Anderson, Kirk E; Ricigliano, Vincent A; Mott, Brendon M; Copeland, Duan C; Floyd, Amy S; Maes, Patrick

    2018-06-18

    In social insects, identical genotypes can show extreme lifespan variation providing a unique perspective on age-associated microbial succession. In honey bees, short- and long-lived host phenotypes are polarized by a suite of age-associated factors including hormones, nutrition, immune senescence, and oxidative stress. Similar to other model organisms, the aging gut microbiota of short-lived (worker) honey bees accrue Proteobacteria and are depleted of Lactobacillus and Bifidobacterium, consistent with a suite of host senescence markers. In contrast, long-lived (queen) honey bees maintain youthful cellular function with much lower expression of oxidative stress genes, suggesting a very different host environment for age-associated microbial succession. We sequenced the microbiota of 63 honey bee queens exploring two chronological ages and four alimentary tract niches. To control for genetic and environmental variation, we quantified carbonyl accumulation in queen fat body tissue as a proxy for biological aging. We compared our results to the age-specific microbial succession of worker guts. Accounting for queen source variation, two or more bacterial species per niche differed significantly by queen age. Biological aging in queens was correlated with microbiota composition highlighting the relationship of microbiota with oxidative stress. Queens and workers shared many major gut bacterial species, but differ markedly in community structure and age succession. In stark contrast to aging workers, carbonyl accumulation in queens was significantly associated with increased Lactobacillus and Bifidobacterium and depletion of various Proteobacteria. We present a model system linking changes in gut microbiota to diet and longevity, two of the most confounding variables in human microbiota research. The pattern of age-associated succession in the queen microbiota is largely the reverse of that demonstrated for workers. The guts of short-lived worker phenotypes are

  20. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species

    PubMed Central

    Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; Balhoff, James P.; Borromeo, Charles; Brush, Matthew; Carbon, Seth; Conlin, Tom; Dunn, Nathan; Engelstad, Mark; Foster, Erin; Gourdine, J.P.; Jacobsen, Julius O.B.; Keith, Dan; Laraway, Bryan; Lewis, Suzanna E.; NguyenXuan, Jeremy; Shefchek, Kent; Vasilevsky, Nicole; Yuan, Zhou; Washington, Nicole; Hochheiser, Harry; Groza, Tudor; Smedley, Damian; Robinson, Peter N.; Haendel, Melissa A.

    2017-01-01

    The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype–phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype–phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species. PMID:27899636

  1. PCAN: phenotype consensus analysis to support disease-gene association.

    PubMed

    Godard, Patrice; Page, Matthew

    2016-12-07

    Bridging genotype and phenotype is a fundamental biomedical challenge that underlies more effective target discovery and patient-tailored therapy. Approaches that can flexibly and intuitively, integrate known gene-phenotype associations in the context of molecular signaling networks are vital to effectively prioritize and biologically interpret genes underlying disease traits of interest. We describe Phenotype Consensus Analysis (PCAN); a method to assess the consensus semantic similarity of phenotypes in a candidate gene's signaling neighborhood. We demonstrate that significant phenotype consensus (p < 0.05) is observable for ~67% of 4,549 OMIM disease-gene associations, using a combination of high quality String interactions + Metabase pathways and use Joubert Syndrome to demonstrate the ease with which a significant result can be interrogated to highlight discriminatory traits linked to mechanistically related genes. We advocate phenotype consensus as an intuitive and versatile method to aid disease-gene association, which naturally lends itself to the mechanistic deconvolution of diverse phenotypes. We provide PCAN to the community as an R package ( http://bioconductor.org/packages/PCAN/ ) to allow flexible configuration, extension and standalone use or integration to supplement existing gene prioritization workflows.

  2. The background puzzle: how identical mutations in the same gene lead to different disease symptoms.

    PubMed

    Kammenga, Jan E

    2017-10-01

    Identical disease-causing mutations can lead to different symptoms in different people. The reason for this has been a puzzling problem for geneticists. Differential penetrance and expressivity of mutations has been observed within individuals with different and similar genetic backgrounds. Attempts have been made to uncover the underlying mechanisms that determine differential phenotypic effects of identical mutations through studies of model organisms. From these studies evidence is accumulating that to understand disease mechanism or predict disease prevalence, an understanding of the influence of genetic background is as important as the putative disease-causing mutations of relatively large effect. This review highlights current insights into phenotypic variation due to gene interactions, epigenetics and stochasticity in model organisms, and discusses their importance for understanding the mutational effect on disease symptoms. © 2017 Federation of European Biochemical Societies.

  3. Phenotypic screening in cancer drug discovery - past, present and future.

    PubMed

    Moffat, John G; Rudolph, Joachim; Bailey, David

    2014-08-01

    There has been a resurgence of interest in the use of phenotypic screens in drug discovery as an alternative to target-focused approaches. Given that oncology is currently the most active therapeutic area, and also one in which target-focused approaches have been particularly prominent in the past two decades, we investigated the contribution of phenotypic assays to oncology drug discovery by analysing the origins of all new small-molecule cancer drugs approved by the US Food and Drug Administration (FDA) over the past 15 years and those currently in clinical development. Although the majority of these drugs originated from target-based discovery, we identified a significant number whose discovery depended on phenotypic screening approaches. We postulate that the contribution of phenotypic screening to cancer drug discovery has been hampered by a reliance on 'classical' nonspecific drug effects such as cytotoxicity and mitotic arrest, exacerbated by a paucity of mechanistically defined cellular models for therapeutically translatable cancer phenotypes. However, technical and biological advances that enable such mechanistically informed phenotypic models have the potential to empower phenotypic drug discovery in oncology.

  4. Testing the phenotype-linked fertility hypothesis in the presence and absence of inbreeding.

    PubMed

    Forstmeier, W; Ihle, M; Opatová, P; Martin, K; Knief, U; Albrechtová, J; Albrecht, T; Kempenaers, B

    2017-05-01

    The phenotype-linked fertility hypothesis suggests that females can judge male fertility by inspecting male phenotypic traits. This is because male sexually selected traits might correlate with sperm quality if both are sensitive to factors that influence male condition. A recent meta-analysis found little support for this hypothesis, suggesting little or no shared condition dependence. However, we recently reported that in captive zebra finches (Taeniopygia guttata) inbreeding had detrimental effects both on phenotypic traits and on measures of sperm quality, implying that variation in inbreeding could induce positive covariance between indicator traits and sperm quality. Therefore, we here assess empirically the average strength of correlations between phenotypic traits (courtship rate, beak colour, tarsus length) and measures of sperm quality (proportion of functional sperm, sperm velocity, sperm length) in populations of only outbred individuals and in mixed populations consisting of inbreds (F = 0.25) and outbreds (F = 0). As expected, phenotype sperm-trait correlations were stronger when the population contained a mix of inbred and outbred individuals. We also found unexpected heterogeneity between our two study populations, with correlations being considerably stronger in a domesticated population than in a recently wild-derived population. Correlations ranged from essentially zero among outbred-only wild-derived birds (mean Fisher's Zr ± SE = 0.03 ± 0.10) to moderately strong among domesticated birds of mixed inbreeding status (Zr ± SE = 0.38 ± 0.08). Our results suggest that, under some conditions, the phenotype-linked fertility hypothesis might apply. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  5. Pathway-Based Factor Analysis of Gene Expression Data Produces Highly Heritable Phenotypes That Associate with Age

    PubMed Central

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-01-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824

  6. Experiences of Judeo-Christian Students in Undergraduate Biology.

    PubMed

    Barnes, M Elizabeth; Truong, Jasmine M; Brownell, Sara E

    2017-01-01

    A major research thrust in science, technology, engineering, and mathematics (STEM) education is focused on how to retain students as STEM majors. The accumulation of seemingly insignificant negative experiences in STEM classes can, over time, lead STEM students to have a low sense of belonging in their disciplines, and this can lead to lower retention. In this paper, we explore how Judeo-Christian students in biology have experiences related to their religious identities that could impact their retention in biology. In 28 interviews with Judeo-Christian students taking undergraduate biology classes, students reported a religious identity that can conflict with the secular culture and content of biology. Some students felt that, because they are religious, they fall within a minority in their classes and would not be seen as credible within the biology community. Students reported adverse experiences when instructors had negative dispositions toward religion and when instructors were rigid in their instructional practices when teaching evolution. These data suggest that this may be a population susceptible to experiences of cultural conflict between their religious identities and their STEM identities, which could have implications for retention. We argue that more research should explore how Judeo-Christian students' experiences in biology classes influence their sense of belonging and retention. © 2017 M. E. Barnes et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Methodology for the inference of gene function from phenotype data.

    PubMed

    Ascensao, Joao A; Dolan, Mary E; Hill, David P; Blake, Judith A

    2014-12-12

    Biomedical ontologies are increasingly instrumental in the advancement of biological research primarily through their use to efficiently consolidate large amounts of data into structured, accessible sets. However, ontology development and usage can be hampered by the segregation of knowledge by domain that occurs due to independent development and use of the ontologies. The ability to infer data associated with one ontology to data associated with another ontology would prove useful in expanding information content and scope. We here focus on relating two ontologies: the Gene Ontology (GO), which encodes canonical gene function, and the Mammalian Phenotype Ontology (MP), which describes non-canonical phenotypes, using statistical methods to suggest GO functional annotations from existing MP phenotype annotations. This work is in contrast to previous studies that have focused on inferring gene function from phenotype primarily through lexical or semantic similarity measures. We have designed and tested a set of algorithms that represents a novel methodology to define rules for predicting gene function by examining the emergent structure and relationships between the gene functions and phenotypes rather than inspecting the terms semantically. The algorithms inspect relationships among multiple phenotype terms to deduce if there are cases where they all arise from a single gene function. We apply this methodology to data about genes in the laboratory mouse that are formally represented in the Mouse Genome Informatics (MGI) resource. From the data, 7444 rule instances were generated from five generalized rules, resulting in 4818 unique GO functional predictions for 1796 genes. We show that our method is capable of inferring high-quality functional annotations from curated phenotype data. As well as creating inferred annotations, our method has the potential to allow for the elucidation of unforeseen, biologically significant associations between gene function and

  8. Affective temperament and personal identity.

    PubMed

    Stanghellini, Giovanni; Rosfort, René

    2010-10-01

    The complex relationship between temperament and personal identity, and between these and mental disorders, is of critical interest to both philosophy and psychopathology. More than other living creatures, human beings are constituted and characterized by the interplay of their genotype and phenotype. There appears to be an explanatory gap between the almost perfect genetic identity and the individual differences among humans. One reason for this gap is that a human being is a person besides a physiological organism. We propose an outline of a theoretical model that might somewhat mitigate the explanatory discrepancies between physiological mechanisms and individual human emotional experience and behaviour. Arguing for the pervasive nature of human affectivity, i.e., for the assumption that human consciousness and behaviour is characterised by being permeated by affectivity; to envisage the dynamics of emotional experience, we make use of a three-levelled model of human personal identity that differentiates between factors that are simultaneously at work in the constitution of the individual human person: 1) core emotions, 2) affective temperament types/affective character traits, and 3) personhood. These levels are investigated separately in order to respect the methodological diversity among them (neuroscience, psychopathology, and philosophy), but they are eventually brought together in a hermeneutical account of human personhood. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Modular control of glutamatergic neuronal identity in C.elegans by distinct homeodomain proteins

    PubMed Central

    Serrano-Saiz, Esther; Poole, Richard J.; Felton, Terry; Zhang, Feifan; De La Cruz, Estanisla Daniel; Hobert, Oliver

    2013-01-01

    The choice of using one of many possible neurotransmitter systems is a critical step in defining the identity of an individual neuron type. We show here that the key defining feature of glutamatergic neurons, the vesicular glutamate transporter EAT-4/VGLUT is expressed in 38 of the 118 anatomically defined neuron classes of the C.elegans nervous system. We show that eat-4/VGLUT expression is controlled in a modular manner, with distinct cis-regulatory modules driving expression in distinct glutamatergic neuron classes. We identify 13 different transcription factors, 11 of them homeodomain proteins, that act in specific combinations in 25 different glutamatergic neuron classes to initiate and maintain eat-4/VGLUT expression. We show that the adoption of a glutamatergic phenotype is linked to the adoption of other terminal identity features of a neuron, including cotransmitter phenotypes. Examination of mouse orthologs of these homeodomain proteins resulted in the identification of mouse LHX1 as a regulator of glutamatergic neurons in the brainstem. PMID:24243022

  10. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species

    DOE PAGES

    Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; ...

    2016-11-29

    The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Nonhuman organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research datamore » can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.« less

  11. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease.

    PubMed

    Abdala-Valencia, Hiam; Coden, Mackenzie E; Chiarella, Sergio E; Jacobsen, Elizabeth A; Bochner, Bruce S; Lee, James J; Berdnikovs, Sergejs

    2018-04-14

    Eosinophils play homeostatic roles in different tissues and are found in several organs at a homeostatic baseline, though their tissue numbers increase significantly in development and disease. The morphological, phenotypical, and functional plasticity of recruited eosinophils are influenced by the dynamic tissue microenvironment changes between homeostatic, morphogenetic, and disease states. Activity of the epithelial-mesenchymal interface, extracellular matrix, hormonal inputs, metabolic state of the environment, as well as epithelial and mesenchymal-derived innate cytokines and growth factors all have the potential to regulate the attraction, retention, in situ hematopoiesis, phenotype, and function of eosinophils. This review examines the reciprocal relationship between eosinophils and such tissue factors, specifically addressing: (1) tissue microenvironments associated with the presence and activity of eosinophils; (2) non-immune tissue ligands regulatory for eosinophil accumulation, hematopoiesis, phenotype, and function (with an emphasis on the extracellular matrix and epithelial-mesenchymal interface); (3) the contribution of eosinophils to regulating tissue biology; (4) eosinophil phenotypic heterogeneity in different tissue microenvironments, classifying eosinophils as progenitors, steady state eosinophils, and Type 1 and 2 activated phenotypes. An appreciation of eosinophil regulation by non-immune tissue factors is necessary for completing the picture of eosinophil immune activation and understanding the functional contribution of these cells to development, homeostasis, and disease. ©2018 Society for Leukocyte Biology.

  12. Phenotypic Evolution With and Beyond Genome Evolution.

    PubMed

    Félix, M-A

    2016-01-01

    DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis. © 2016 Elsevier Inc. All rights reserved.

  13. The biology of human psychosexual differentiation.

    PubMed

    Gooren, Louis

    2006-11-01

    Most attempts to identify biological underpinnings of gender identity and sexual orientation in humans have investigated effects of sex steroids, so pivotal in the differentiation of the genitalia, showing strong parallels between animals and the human. The information on humans is derived from the so-called 'experiments of nature', clinical entities with a lesser-than-normal androgen exposure in XY subjects and a higher than normal androgen exposure in XX subjects. Prenatal androgenization appears to predispose to a male gender identity development, but apparently not decisively since 40-50% of 46,XY intersexed children with a history of prenatal androgen exposure do not develop a male gender identity. Obviously, male-to-female transsexuals, with a normal androgen exposure prenatally (there is no serious evidence to the contrary) develop a female gender identity, through unknown biological mechanisms apparently overriding the effects of prenatal androgens. The latest studies in 46, XX subjects exposed to prenatal androgens show that prenatal androgenization of 46,XX fetuses leads to marked masculinization of later gender-related behavior but does not lead to gender confusion/dysphoria. The example of female-to-male transsexuals, without evidence of prenatal androgen exposure, indicates that a male gender identity can develop without a significant androgen stimulus. So we are far away from any comprehensive understanding of hormonal imprinting on gender identity formation. Brain studies in homosexuals have not held up in replication studies or are in need of replication in transsexuals. Genetic studies and the fraternal birth order hypothesis provide indications of familial clustering of homosexuality but in many homosexuals these genetic patterns cannot be identified. The biological explanations advanced for the birth order hypothesis lack any experimental support.

  14. Regulatory mechanisms link phenotypic plasticity to evolvability

    PubMed Central

    van Gestel, Jordi; Weissing, Franz J.

    2016-01-01

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticity tend to adopt a phenomenological reaction norm (RN) approach, which neglects the mechanisms underlying plasticity. Focusing on a concrete question – the optimal timing of bacterial sporulation – we here also consider a mechanistic approach, the evolution of a gene regulatory network (GRN) underlying plasticity. Using individual-based simulations, we compare the RN and GRN approach and find a number of striking differences. Most importantly, the GRN model results in a much higher diversity of responsive strategies than the RN model. We show that each of the evolved strategies is pre-adapted to a unique set of unseen environmental conditions. The regulatory mechanisms that control plasticity therefore critically link phenotypic plasticity to the adaptive potential of biological populations. PMID:27087393

  15. Forensic aspects of DNA-based human identity testing.

    PubMed

    Roper, Stephen M; Tatum, Owatha L

    2008-01-01

    The forensic applications of DNA-based human identity laboratory testing are often underappreciated. Molecular biology has seen an exponential improvement in the accuracy and statistical power provided by identity testing in the past decade. This technology, dependent upon an individual's unique DNA sequence, has cemented the use of DNA technology in the forensic laboratory. This paper will discuss the state of modern DNA-based identity testing, describe the technology used to perform this testing, and describe its use as it relates to forensic applications. We will also compare individual technologies, including polymerase chain reaction (PCR) and Southern Blotting, that are used to detect the molecular differences that make all individuals unique. An increasing reliance on DNA-based identity testing dictates that healthcare providers develop an understanding of the background, techniques, and guiding principles of this important forensic tool.

  16. Gender identity: a multidimensional analysis with implications for psychosocial adjustment.

    PubMed

    Egan, S K; Perry, D G

    2001-07-01

    This study examined the relations between components of gender identity and psychosocial adjustment. The aspects of gender identity assessed were (a) feelings of psychological compatibility with one's gender (i.e.. feeling one is a typical member of one's sex and feeling content with one's biological sex), (b) feelings of pressure from parents, peers, and self for conformity to gender stereotypes. and (c) the sentiment that one's own sex is superior to the other (intergroup bias). Adjustment was assessed in terms of self-esteem and peer acceptance. Participants were 182 children in Grades 4 through 8. Felt gender compatibility (when operationalized as either self-perceived gender typicality or feelings of contentment with one's biological sex) was positively related to adjustment, whereas felt pressure and intergroup bias were negatively associated with adjustment. The results provide new insights into the role of gender identity in children's well-being, help identify sources of confusion in previous work, and suggest directions for future inquiry.

  17. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory.

    PubMed

    Jia, Dongya; Jolly, Mohit Kumar; Kulkarni, Prakash; Levine, Herbert

    2017-06-22

    Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a

  18. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory

    PubMed Central

    Kulkarni, Prakash; Levine, Herbert

    2017-01-01

    Waddington’s epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of “landscape” in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an “attractor” that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of “cancer attractors”—hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes “recanalization”, i.e., the exit from “cancer attractors” and re-entry into “normal attractors”, is more likely to

  19. The dual biological identity of human beings and the naturalization of morality.

    PubMed

    Azzone, Giovanni Felice

    2003-01-01

    The last two centuries have been the centuries of the discovery of the cell evolution: in the XIX century of the germinal cells and in the XX century of two groups of somatic cells, namely those of the brain-mind and of the immune systems. Since most cells do not behave in this way, the evolutionary character of the brain-mind and of the immune systems renders human beings formed by t wo different groups of somatic cells, one with a deterministic and another with an indeterministic (say Darwinian) behavior. An inherent consequence is that of the generation, during ontogenesis, of a dual biological identity. The concept of the dual biological identity may be used to explain the Kantian concept of the two metaphysical worlds, namely of the causal necessity and of the free will (Azzone, 2001). Two concepts, namely those of complex adaptive systems (CAS) and of emergence (Holland, 2002), are useful tools for understanding the mechanisms of adaptation and of evolution. The concept of complex adaptive systems indicates that living organisms contain series of stratified components, denoted as building blocks, forming stratified layers of increasing complexity. The concept of emergence implies the use of repeating patterns and of building blocks for the generation of structures of increasing levels of complexity, structures capable of exchanging communications both in the top-down and in the bottom-up direction. Against the concept of emergence it has been argued that nothing can produce something which is really new and endowed of causal efficacy. The defence of the concept of emergence is based on two arguments. The first is the interpretation of the variation-selection mechanism as a process of generation of information and of optimization of free energy dissipation in accord with the second principle of thermodynamics. The second is the objective evidence of the cosmological evolution from the Big Bang to the human mind and its products. Darwin has defended the concept

  20. Phylogenetic divergence of cell biological features

    PubMed Central

    2018-01-01

    Most cellular features have a range of states, but understanding the mechanisms responsible for interspecific divergence is a challenge for evolutionary cell biology. Models are developed for the distribution of mean phenotypes likely to evolve under the joint forces of mutation and genetic drift in the face of constant selection pressures. Mean phenotypes will deviate from optimal states to a degree depending on the effective population size, potentially leading to substantial divergence in the absence of diversifying selection. The steady-state distribution for the mean can even be bimodal, with one domain being largely driven by selection and the other by mutation pressure, leading to the illusion of phenotypic shifts being induced by movement among alternative adaptive domains. These results raise questions as to whether lineage-specific selective pressures are necessary to account for interspecific divergence, providing a possible platform for the establishment of null models for the evolution of cell-biological traits. PMID:29927740

  1. In the jungle of time: the concept of identity as a way out.

    PubMed

    Zhou, Bin; Pöppel, Ernst; Bao, Yan

    2014-01-01

    WHAT COULD BE A UNIFYING PRINCIPLE FOR THE MANIFOLD OF TEMPORAL EXPERIENCES: the simultaneity or temporal order of events, the subjective present, the duration of experiences, or the impression of a continuity of time? Furthermore, we time travel to the past visiting in imagination previous experiences in episodic memory, and we also time travel to the future anticipating actions or plans. For such time traveling we divide time into three domains: past, present, and future. What could be an escape out of this "jungle of time" characterized by many different perceptual and conceptual phenomena? The key concept we want to propose is "identity" which is derived from homeostasis as a fundamental biological principle. Within this conceptual frame two modes of identity are distinguished: individual or self-identity required because of homeostatic demands, and object-related identity necessary for the reliability and efficiency of neuro-cognitive processing. With this concept of self- and object-identity, the different temporal experiences can be conceptualized within a common frame. Thus, we propose a fundamental biological principle to conceptually unify temporal phenomena on the psychological level.

  2. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum.

    PubMed

    Smith, Frank W; Jockusch, Elizabeth L

    2014-11-01

    The establishment of segment identity is a key developmental process that allows for divergence along the anteroposterior body axis in arthropods. In Drosophila, the identity of a segment is determined by the complement of Hox genes it expresses. In many contexts, Hox transcription factors require the protein products of extradenticle (exd) and homothorax (hth) as cofactors to perform their identity specification functions. In holometabolous insects, segment identity may be specified twice, during embryogenesis and metamorphosis. To glean insight into the relationship between embryonic and metamorphic segmental identity specification, we have compared these processes in the flour beetle Tribolium castaneum, which develops ventral appendages during embryogenesis that later metamorphose into adult appendages with distinct morphologies. At metamorphosis, comparisons of RNAi phenotypes indicate that Hox genes function jointly with Tc-hth and Tc-exd to specify several region-specific aspects of the adult body wall. On the other hand, Hox genes specify appendage identities along the anteroposterior axis independently of Tc-hth/Tc-exd and Tc-hth/Tc-exd specify proximal vs. distal identity within appendages independently of Hox genes during this stage. During embryogenesis, Tc-hth and Tc-exd play a broad role in the segmentation process and are required for specification of body wall identities in the thorax; however, contrasting with results from other species, we did not obtain homeotic transformations of embryonic appendages in response to Tc-hth or Tc-exd RNAi. In general, the homeotic effects of interference with the function of Hox genes and Tc-hth/Tc-exd during metamorphosis did not match predictions based on embryonic roles of these genes. Comparing metamorphic patterning in T. castaneum to embryonic and post-embryonic development in hemimetabolous insects suggests that holometabolous metamorphosis combines patterning processes of both late embryogenesis and

  3. Disorders of sex development and gender identity outcome in adolescence and adulthood: understanding gender identity development and its clinical implications.

    PubMed

    de Vries, Annelou L C; Doreleijers, Theo A H; Cohen-Kettenis, Peggy T

    2007-06-01

    This article reviews studies on gender identity outcome in individuals with disorders of sex development (DSD). It appears that a high percentage of affected individuals suffer from gender dysphoria. However, these figures differ substantially among the various DSD and they never reach 100%. From the studies it also becomes clear that a distinction should be made between gender role behavior and gender identity. Put in a broader theoretical framework, there is now more evidence that biological factors influence the development of gender role behavior than gender identity. Developmental psychology studies add evidence that social and psychological factors play a role as well in gender development. Clinicians should be aware of, but not overestimate the influences of neurobiological factors in gender development.

  4. Network motifs that stabilize the hybrid epithelial/mesenchymal phenotype

    NASA Astrophysics Data System (ADS)

    Jolly, Mohit Kumar; Jia, Dongya; Tripathi, Satyendra; Hanash, Samir; Mani, Sendurai; Ben-Jacob, Eshel; Levine, Herbert

    Epithelial to Mesenchymal Transition (EMT) and its reverse - MET - are hallmarks of cancer metastasis. While transitioning between E and M phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) phenotype that enables collective cell migration as a cluster of Circulating Tumor Cells (CTCs). These clusters can form 50-times more tumors than individually migrating CTCs, underlining their importance in metastasis. However, this hybrid E/M phenotype has been hypothesized to be only a transient one that is attained en route EMT. Here, via mathematically modeling, we identify certain `phenotypic stability factors' that couple with the core three-way decision-making circuit (miR-200/ZEB) and can maintain or stabilize the hybrid E/M phenotype. Further, we show experimentally that this phenotype can be maintained stably at a single-cell level, and knockdown of these factors impairs collective cell migration. We also show that these factors enable the association of hybrid E/M with high stemness or tumor-initiating potential. Finally, based on these factors, we deduce specific network motifs that can maintain the E/M phenotype. Our framework can be used to elucidate the effect of other players in regulating cellular plasticity during metastasis. This work was supported by NSF PHY-1427654 (Center for Theoretical Biological Physics) and the CPRIT Scholar in Cancer Research of the State of Texas at Rice University.

  5. Lessons from a phenotyping center revealed by the genome-guided mapping of powdery mildew resistance loci

    USDA-ARS?s Scientific Manuscript database

    The genomics era brought unprecedented tools for genetic analysis of host resistance, but careful attention is needed on obtaining accurate and reproducible phenotypes so that genomic results appropriately reflect biology. Phenotyping host resistance by natural infection in the field can produce var...

  6. Biotypology, regionalism, and the construction of a plural Brazilian bodily identity, 1930s.

    PubMed

    Vimieiro-Gomes, Ana Carolina

    2016-12-01

    This article investigates regional biotypological studies and the construction of biological deterministic discourses about the Brazilian identity in the 1930s. Biotypological research was undertaken to determine the normal body type of the Brazilian man, using its peculiar classificatory lexicon. Studies into the bodily profile of specific regions, like the northeast and São Paulo state, featured in this research. In the context of the contemporary debates about race, miscegenation, and national identity, these investigations were geared towards biological determinism and the influence of the environment and social and cultural aspects on the bodily development of Brazilians. It is shown how regional biotypological studies echoed racial, normalizing, exclusive viewpoints and contributed to the construction of a miscegenated Brazilian bodily identity.

  7. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities

    PubMed Central

    Chong, Jessica X.; Buckingham, Kati J.; Jhangiani, Shalini N.; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D.; Harrell, Tanya M.; McMillin, Margaret J.; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H.; Doheny, Kimberly; Scott, Alan F.; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P. Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E.; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V. Reid; Tabor, Holly K.; Leal, Suzanne M.; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A.; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R.; Lifton, Richard P.; Valle, David; Nickerson, Deborah A.; Bamshad, Michael J.

    2015-01-01

    Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families. PMID:26166479

  8. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System

    PubMed Central

    Panek, Jacek; Frąc, Magdalena; Bilińska-Wielgus, Nina

    2016-01-01

    Spoilage of heat processed food and beverage by heat resistant fungi (HRF) is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700), the other from thermal processed strawberry product in 2012 (KC179765), used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I) acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods. PMID:26815302

  9. EuroPhenome: a repository for high-throughput mouse phenotyping data

    PubMed Central

    Morgan, Hugh; Beck, Tim; Blake, Andrew; Gates, Hilary; Adams, Niels; Debouzy, Guillaume; Leblanc, Sophie; Lengger, Christoph; Maier, Holger; Melvin, David; Meziane, Hamid; Richardson, Dave; Wells, Sara; White, Jacqui; Wood, Joe; de Angelis, Martin Hrabé; Brown, Steve D. M.; Hancock, John M.; Mallon, Ann-Marie

    2010-01-01

    The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project (http://www.EuroPhenome.org) is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline (http://www.empress.har.mrc.ac.uk/) which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies. PMID:19933761

  10. Transcription termination factor Rho and microbial phenotypic heterogeneity.

    PubMed

    Bidnenko, Elena; Bidnenko, Vladimir

    2018-06-01

    Populations of genetically identical microorganisms exhibit high degree of cell-to-cell phenotypic diversity even when grown in uniform environmental conditions. Heterogeneity is a genetically determined trait, which ensures bacterial adaptation and survival in the ever changing environmental conditions. Fluctuations in gene expression (noise) at the level of transcription initiation largely contribute to cell-to-cell variability within population. Not surprisingly, the analyses of the mechanisms driving phenotypic heterogeneity are mainly focused on the activity of promoters and transcriptional factors. Less attention is currently given to a role of intrinsic and factor-dependent transcription terminators. Here, we discuss recent advances in understanding the regulatory role of the multi-functional transcription termination factor Rho, the major inhibitor of pervasive transcription in bacteria and the emerging global regulator of gene expression. We propose that termination activity of Rho might be among the mechanisms by which cells manage the intensity of transcriptional noise, thus affecting population heterogeneity.

  11. Pathways to Identity: Aiding Law Enforcement in Identification Tasks With Visual Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce, Joseph R.; Scholtz, Jean; Hodges, Duncan

    The nature of identity has changed dramatically in recent years, and has grown in complexity. Identities are defined in multiple domains: biological and psychological elements strongly contribute, but also biographical and cyber elements are necessary to complete the picture. Law enforcement is beginning to adjust to these changes, recognizing its importance in criminal justice. The SuperIdentity project seeks to aid law enforcement officials in their identification tasks through research of techniques for discovering identity traits, generation of statistical models of identity and analysis of identity traits through visualization. We present use cases compiled through user interviews in multiple fields, includingmore » law enforcement, as well as the modeling and visualization tools design to aid in those use cases.« less

  12. Pathways to Identity. Using Visualization to Aid Law Enforcement in Identification Tasks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce, Joseph R.; Scholtz, Jean; Hodges, Duncan

    The nature of identity has changed dramatically in recent years and has grown in complexity. Identities are defined in multiple domains: biological and psychological elements strongly contribute, but biographical and cyber elements also are necessary to complete the picture. Law enforcement is beginning to adjust to these changes, recognizing identity’s importance in criminal justice. The SuperIdentity project seeks to aid law enforcement officials in their identification tasks through research of techniques for discovering identity traits, generation of statistical models of identity and analysis of identity traits through visualization. We present use cases compiled through user interviews in multiple fields, includingmore » law enforcement, and describe the modeling and visualization tools design to aid in those use cases.« less

  13. Recombination and phenotype evolution dynamics of Helicobacter pylori in colonized hosts.

    PubMed

    Shafiee, Ahmad; Amini, Massoud; Emamirad, Hassan; Abadi, Amin Talebi Bezmin

    2016-07-01

    The ample genetic diversity and variability of Helicobater pylori, and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of H. pylori populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.

  14. Biological phenotypes associated with individuals at high risk for developing alcohol-related disorders: Part 1.

    PubMed

    Hill, S Y

    2000-01-01

    This article reviews the results of studies concerning particular classes of biological phenotypes that may have relevance for alcohol dependence. Broadly defined, these classes include brain neurotransmitter systems and neuroelectric potentials. Evidence is presented concerning genotypic variation in alcoholics and high-risk relatives suggesting that the etiology of alcoholism and other addictive diseases is mediated in part through suboptimal neurotransmitter functioning. Research opportunities are offered with respect to specific candidate genes that have been cloned from these neurotransmitter systems that could be most fully utilized in family-based genetic analyses. Additional evidence is offered, suggesting that characteristics of particular neuroelectric potentials (e.g. the amplitude of the P300 component of the event-related potential) may provide another dimension of potential markers that could be used to identify children at risk. Finally, methodological considerations specific to high risk studies are discussed. Among these are the need to include a plan for studying more severe cases of alcohol dependence that are relatively uncomplicated by other major psychiatric disorders. Plans for long-term follow-up of children at highest risk for developing the disorder should also be included. Multiple domains of inquiry should not be viewed as "unfocused" but rather as an economical means for utilizing highly characterized samples of individuals meeting rigorous research criteria.

  15. Phenotypic divergence despite low genetic differentiation in house sparrow populations.

    PubMed

    Ben Cohen, Shachar; Dor, Roi

    2018-01-10

    Studying patterns of phenotypic variation among populations can shed light on the drivers of evolutionary processes. The house sparrow (Passer domesticus) is one of the world's most ubiquitous bird species, as well as a successful invader. We investigated phenotypic variation in house sparrow populations across a climatic gradient and in relation to a possible scenario of an invasion. We measured variation in morphological, coloration, and behavioral traits (exploratory behavior and neophobia) and compared it to the neutral genetic variation. We found that sparrows were larger and darker in northern latitudes, in accordance with Bergmann's and Gloger's biogeographic rules. Morphology and behavior mostly differed between the southernmost populations and the other regions, supporting the possibility of an invasion. Genetic differentiation was low and diversity levels were similar across populations, indicating high gene flow. Nevertheless, the southernmost and northern populations differed genetically to some extent. Furthermore, genetic differentiation (F ST ) was lower in comparison to phenotypic variation (P ST ), indicating that the phenotypic variation is shaped by directional selection or by phenotypic plasticity. This study expands our knowledge on evolutionary mechanisms and biological invasions.

  16. Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity.

    PubMed

    Rubin, Ilan N; Doebeli, Michael

    2017-12-21

    Phenotypic heterogeneity refers to genetically identical individuals that express different phenotypes, even when in the same environment. Traditionally, "bet-hedging" in fluctuating environments is offered as the explanation for the evolution of phenotypic heterogeneity. However, there are an increasing number of examples of microbial populations that display phenotypic heterogeneity in stable environments. Here we present an evolutionary model of phenotypic heterogeneity of microbial metabolism and a resultant theory for the evolution of phenotypic versus genetic specialization. We use two-dimensional adaptive dynamics to track the evolution of the population phenotype distribution of the expression of two metabolic processes with a concave trade-off. Rather than assume a Gaussian phenotype distribution, we use a Beta distribution that is capable of describing genotypes that manifest as individuals with two distinct phenotypes. Doing so, we find that environmental variation is not a necessary condition for the evolution of phenotypic heterogeneity, which can evolve as a form of specialization in a stable environment. There are two competing pressures driving the evolution of specialization: directional selection toward the evolution of phenotypic heterogeneity and disruptive selection toward genetically determined specialists. Because of the lack of a singular point in the two-dimensional adaptive dynamics and the fact that directional selection is a first order process, while disruptive selection is of second order, the evolution of phenotypic heterogeneity dominates and often precludes speciation. We find that branching, and therefore genetic specialization, occurs mainly under two conditions: the presence of a cost to maintaining a high phenotypic variance or when the effect of mutations is large. A cost to high phenotypic variance dampens the strength of selection toward phenotypic heterogeneity and, when sufficiently large, introduces a singular point into

  17. 3D Electrospun scaffolds promote a cytotrophic phenotype of cultured primary astrocytes.

    PubMed

    Lau, Chew L; Kovacevic, Michelle; Tingleff, Tine S; Forsythe, John S; Cate, Holly S; Merlo, Daniel; Cederfur, Cecilia; Maclean, Francesca L; Parish, Clare L; Horne, Malcolm K; Nisbet, David R; Beart, Philip M

    2014-07-01

    Astrocytes are a target for regenerative neurobiology because in brain injury their phenotype arbitrates brain integrity, neuronal death and subsequent repair and reconstruction. We explored the ability of 3D scaffolds to direct astrocytes into phenotypes with the potential to support neuronal survival. Poly-ε-caprolactone scaffolds were electrospun with random and aligned fibre orientations on which murine astrocytes were sub-cultured and analysed at 4 and 12 DIV. Astrocytes survived, proliferated and migrated into scaffolds adopting 3D morphologies, mimicking in vivo stellated phenotypes. Cells on random poly-ε-caprolactone scaffolds grew as circular colonies extending processes deep within sub-micron fibres, whereas astrocytes on aligned scaffolds exhibited rectangular colonies with processes following not only the direction of fibre alignment but also penetrating the scaffold. Cell viability was maintained over 12 DIV, and cytochemistry for F-/G-actin showed fewer stress fibres on bioscaffolds relative to 2D astrocytes. Reduced cytoskeletal stress was confirmed by the decreased expression of glial fibrillary acidic protein. PCR demonstrated up-regulation of genes (excitatory amino acid transporter 2, brain-derived neurotrophic factor and anti-oxidant) reflecting healthy biologies of mature astrocytes in our extended culture protocol. This study illustrates the therapeutic potential of bioengineering strategies using 3D electrospun scaffolds which direct astrocytes into phenotypes supporting brain repair. Astrocytes exist in phenotypes with pro-survival and destructive components, and their biology can be modulated by changing phenotype. Our findings demonstrate murine astrocytes adopt a healthy phenotype when cultured in 3D. Astrocytes proliferate and extend into poly-ε-caprolactone scaffolds displaying 3D stellated morphologies with reduced GFAP expression and actin stress fibres, plus a cytotrophic gene profile. Bioengineered 3D scaffolds have potential

  18. Migration, cultural bereavement and cultural identity

    PubMed Central

    BHUGRA, DINESH; BECKER, MATTHEW A

    2005-01-01

    Migration has contributed to the richness in diversity of cultures, ethnicities and races in developed countries. Individuals who migrate experience multiple stresses that can impact their mental well being, including the loss of cultural norms, religious customs, and social support systems, adjustment to a new culture and changes in identity and concept of self. Indeed, the rates of mental illness are increased in some migrant groups. Mental health practitioners need to be attuned to the unique stresses and cultural aspects that affect immigrants and refugees in order to best address the needs of this increasing and vulnerable population. This paper will review the concepts of migration, cultural bereavement and cultural identity, and explore the interrelationship between these three aspects of the migrant's experience and cultural congruity. The complex interplay of the migration process, cultural bereavement, cultural identity, and cultural congruity, along with biological, psychological and social factors, is hypothesized as playing a major role in the increased rates of mental illness in affected migrant groups. PMID:16633496

  19. Essentialist beliefs, sexual identity uncertainty, internalized homonegativity and psychological wellbeing in gay men.

    PubMed

    Morandini, James S; Blaszczynski, Alexander; Ross, Michael W; Costa, Daniel S J; Dar-Nimrod, Ilan

    2015-07-01

    The present study examined essentialist beliefs about sexual orientation and their implications for sexual identity uncertainty, internalized homonegativity and psychological wellbeing in a sample of gay men. A combination of targeted sampling and snowball strategies were used to recruit 639 gay identifying men for a cross-sectional online survey. Participants completed a questionnaire assessing sexual orientation beliefs, sexual identity uncertainty, internalized homonegativity, and psychological wellbeing outcomes. Structural equation modeling was used to test whether essentialist beliefs were associated with psychological wellbeing indirectly via their effect on sexual identity uncertainty and internalized homonegativity. A unique pattern of direct and indirect effects was observed in which facets of essentialism predicted sexual identity uncertainty, internalized homonegativity and psychological wellbeing. Of note, viewing sexual orientation as immutable/biologically based and as existing in discrete categories, were associated with less sexual identity uncertainty. On the other hand, these beliefs had divergent relationships with internalized homonegativity, with immutability/biological beliefs associated with lower, and discreteness beliefs associated with greater internalized homonegativity. Of interest, although sexual identity uncertainty was associated with poorer psychological wellbeing via its contribution to internalized homophobia, there was no direct relationship between identity uncertainty and psychological wellbeing. Findings indicate that essentializing sexual orientation has mixed implications for sexual identity uncertainty and internalized homonegativity and wellbeing in gay men. Those undertaking educational and clinical interventions with gay men should be aware of the benefits and of caveats of essentialist theories of homosexuality for this population. (c) 2015 APA, all rights reserved).

  20. Evolution of the rate of biological aging using a phenotype based computational model.

    PubMed

    Kittas, Aristotelis

    2010-10-07

    In this work I introduce a simple model to study how natural selection acts upon aging, which focuses on the viability of each individual. It is able to reproduce the Gompertz law of mortality and can make predictions about the relation between the level of mutation rates (beneficial/deleterious/neutral), age at reproductive maturity and the degree of biological aging. With no mutations, a population with low age at reproductive maturity R stabilizes at higher density values, while with mutations it reaches its maximum density, because even for large pre-reproductive periods each individual evolves to survive to maturity. Species with very short pre-reproductive periods can only tolerate a small number of detrimental mutations. The probabilities of detrimental (P(d)) or beneficial (P(b)) mutations are demonstrated to greatly affect the process. High absolute values produce peaks in the viability of the population over time. Mutations combined with low selection pressure move the system towards weaker phenotypes. For low values in the ratio P(d)/P(b), the speed at which aging occurs is almost independent of R, while higher values favor significantly species with high R. The value of R is critical to whether the population survives or dies out. The aging rate is controlled by P(d) and P(b) and the amount of the viability of each individual is modified, with neutral mutations allowing the system more "room" to evolve. The process of aging in this simple model is revealed to be fairly complex, yielding a rich variety of results. 2010 Elsevier Ltd. All rights reserved.

  1. Phenotypic Robustness and the Assortativity Signature of Human Transcription Factor Networks

    PubMed Central

    Pechenick, Dov A.; Payne, Joshua L.; Moore, Jason H.

    2014-01-01

    Many developmental, physiological, and behavioral processes depend on the precise expression of genes in space and time. Such spatiotemporal gene expression phenotypes arise from the binding of sequence-specific transcription factors (TFs) to DNA, and from the regulation of nearby genes that such binding causes. These nearby genes may themselves encode TFs, giving rise to a transcription factor network (TFN), wherein nodes represent TFs and directed edges denote regulatory interactions between TFs. Computational studies have linked several topological properties of TFNs — such as their degree distribution — with the robustness of a TFN's gene expression phenotype to genetic and environmental perturbation. Another important topological property is assortativity, which measures the tendency of nodes with similar numbers of edges to connect. In directed networks, assortativity comprises four distinct components that collectively form an assortativity signature. We know very little about how a TFN's assortativity signature affects the robustness of its gene expression phenotype to perturbation. While recent theoretical results suggest that increasing one specific component of a TFN's assortativity signature leads to increased phenotypic robustness, the biological context of this finding is currently limited because the assortativity signatures of real-world TFNs have not been characterized. It is therefore unclear whether these earlier theoretical findings are biologically relevant. Moreover, it is not known how the other three components of the assortativity signature contribute to the phenotypic robustness of TFNs. Here, we use publicly available DNaseI-seq data to measure the assortativity signatures of genome-wide TFNs in 41 distinct human cell and tissue types. We find that all TFNs share a common assortativity signature and that this signature confers phenotypic robustness to model TFNs. Lastly, we determine the extent to which each of the four components of

  2. Arabidopsis phenotyping through Geometric Morphometrics.

    PubMed

    Manacorda, Carlos A; Asurmendi, Sebastian

    2018-06-18

    Recently, much technical progress was achieved in the field of plant phenotyping. High-throughput platforms and the development of improved algorithms for rosette image segmentation make it now possible to extract shape and size parameters for genetic, physiological and environmental studies on a large scale. The development of low-cost phenotyping platforms and freeware resources make it possible to widely expand phenotypic analysis tools for Arabidopsis. However, objective descriptors of shape parameters that could be used independently of platform and segmentation software used are still lacking and shape descriptions still rely on ad hoc or even sometimes contradictory descriptors, which could make comparisons difficult and perhaps inaccurate. Modern geometric morphometrics is a family of methods in quantitative biology proposed to be the main source of data and analytical tools in the emerging field of phenomics studies. Based on the location of landmarks (corresponding points) over imaged specimens and by combining geometry, multivariate analysis and powerful statistical techniques, these tools offer the possibility to reproducibly and accurately account for shape variations amongst groups and measure them in shape distance units. Here, a particular scheme of landmarks placement on Arabidopsis rosette images is proposed to study shape variation in the case of viral infection processes. Shape differences between controls and infected plants are quantified throughout the infectious process and visualized. Quantitative comparisons between two unrelated ssRNA+ viruses are shown and reproducibility issues are assessed. Combined with the newest automated platforms and plant segmentation procedures, geometric morphometric tools could boost phenotypic features extraction and processing in an objective, reproducible manner.

  3. Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates.

    PubMed

    Thurtle-Schmidt, Deborah M; Lo, Te-Wen

    2018-03-01

    Disrupting a gene to determine its effect on an organism's phenotype is an indispensable tool in molecular biology. Such techniques are critical for understanding how a gene product contributes to the development and cellular identity of organisms. The explosion of genomic sequencing technologies combined with recent advances in genome-editing techniques has elevated the possibilities of genetic manipulations in numerous organisms in which these experiments were previously not readily accessible or possible. Introducing the next generation of molecular biologists to these emerging techniques is key in the modern biology classroom. This comprehensive review introduces undergraduates to CRISPR/Cas9 editing and its uses in genetic studies. The goals of this review are to explain how CRISPR functions as a prokaryotic immune system, describe how researchers generate mutations with CRISPR/Cas9, highlight how Cas9 has been adapted for new functions, and discuss ethical considerations of genome editing. Additionally, anticipatory guides and questions for discussion are posed throughout the review to encourage active exploration of these topics in the classroom. Finally, the supplement includes a study guide and practical suggestions to incorporate CRISPR/Cas9 experiments into lab courses at the undergraduate level. © 2018 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 46(2):195-205, 2018. © 2018 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  4. Detecting phenotype-driven transitions in regulatory network structure.

    PubMed

    Padi, Megha; Quackenbush, John

    2018-01-01

    Complex traits and diseases like human height or cancer are often not caused by a single mutation or genetic variant, but instead arise from functional changes in the underlying molecular network. Biological networks are known to be highly modular and contain dense "communities" of genes that carry out cellular processes, but these structures change between tissues, during development, and in disease. While many methods exist for inferring networks and analyzing their topologies separately, there is a lack of robust methods for quantifying differences in network structure. Here, we describe ALPACA (ALtered Partitions Across Community Architectures), a method for comparing two genome-scale networks derived from different phenotypic states to identify condition-specific modules. In simulations, ALPACA leads to more nuanced, sensitive, and robust module discovery than currently available network comparison methods. As an application, we use ALPACA to compare transcriptional networks in three contexts: angiogenic and non-angiogenic subtypes of ovarian cancer, human fibroblasts expressing transforming viral oncogenes, and sexual dimorphism in human breast tissue. In each case, ALPACA identifies modules enriched for processes relevant to the phenotype. For example, modules specific to angiogenic ovarian tumors are enriched for genes associated with blood vessel development, and modules found in female breast tissue are enriched for genes involved in estrogen receptor and ERK signaling. The functional relevance of these new modules suggests that not only can ALPACA identify structural changes in complex networks, but also that these changes may be relevant for characterizing biological phenotypes.

  5. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  6. Behavioural and Cognitive Phenotypes in Idiopathic Autism versus Autism Associated with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Dissanayake, Cheryl; Bui, Quang; Bulhak-Paterson, Danuta; Huggins, Richard; Loesch, Danuta Z.

    2009-01-01

    Background: In order to better understand the underlying biological mechanism/s involved in autism, it is important to investigate the cognitive and behavioural phenotypes associated with idiopathic autism (autism without a known cause) and comorbid autism (autism associated with known genetic/biological disorders such as fragile X syndrome).…

  7. Cognitive Phenotypes and the Evolution of Animal Decisions.

    PubMed

    Mendelson, Tamra C; Fitzpatrick, Courtney L; Hauber, Mark E; Pence, Charles H; Rodríguez, Rafael L; Safran, Rebecca J; Stern, Caitlin A; Stevens, Jeffrey R

    2016-11-01

    Despite the clear fitness consequences of animal decisions, the science of animal decision making in evolutionary biology is underdeveloped compared with decision science in human psychology. Specifically, the field lacks a conceptual framework that defines and describes the relevant components of a decision, leading to imprecise language and concepts. The 'judgment and decision-making' (JDM) framework in human psychology is a powerful tool for framing and understanding human decisions, and we apply it here to components of animal decisions, which we refer to as 'cognitive phenotypes'. We distinguish multiple cognitive phenotypes in the context of a JDM framework and highlight empirical approaches to characterize them as evolvable traits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Relational machine learning for electronic health record-driven phenotyping.

    PubMed

    Peissig, Peggy L; Santos Costa, Vitor; Caldwell, Michael D; Rottscheit, Carla; Berg, Richard L; Mendonca, Eneida A; Page, David

    2014-12-01

    Electronic health records (EHR) offer medical and pharmacogenomics research unprecedented opportunities to identify and classify patients at risk. EHRs are collections of highly inter-dependent records that include biological, anatomical, physiological, and behavioral observations. They comprise a patient's clinical phenome, where each patient has thousands of date-stamped records distributed across many relational tables. Development of EHR computer-based phenotyping algorithms require time and medical insight from clinical experts, who most often can only review a small patient subset representative of the total EHR records, to identify phenotype features. In this research we evaluate whether relational machine learning (ML) using inductive logic programming (ILP) can contribute to addressing these issues as a viable approach for EHR-based phenotyping. Two relational learning ILP approaches and three well-known WEKA (Waikato Environment for Knowledge Analysis) implementations of non-relational approaches (PART, J48, and JRIP) were used to develop models for nine phenotypes. International Classification of Diseases, Ninth Revision (ICD-9) coded EHR data were used to select training cohorts for the development of each phenotypic model. Accuracy, precision, recall, F-Measure, and Area Under the Receiver Operating Characteristic (AUROC) curve statistics were measured for each phenotypic model based on independent manually verified test cohorts. A two-sided binomial distribution test (sign test) compared the five ML approaches across phenotypes for statistical significance. We developed an approach to automatically label training examples using ICD-9 diagnosis codes for the ML approaches being evaluated. Nine phenotypic models for each ML approach were evaluated, resulting in better overall model performance in AUROC using ILP when compared to PART (p=0.039), J48 (p=0.003) and JRIP (p=0.003). ILP has the potential to improve phenotyping by independently delivering

  9. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds.

    PubMed

    Feng, Yan; Mitchison, Timothy J; Bender, Andreas; Young, Daniel W; Tallarico, John A

    2009-07-01

    Multi-parameter phenotypic profiling of small molecules provides important insights into their mechanisms of action, as well as a systems level understanding of biological pathways and their responses to small molecule treatments. It therefore deserves more attention at an early step in the drug discovery pipeline. Here, we summarize the technologies that are currently in use for phenotypic profiling--including mRNA-, protein- and imaging-based multi-parameter profiling--in the drug discovery context. We think that an earlier integration of phenotypic profiling technologies, combined with effective experimental and in silico target identification approaches, can improve success rates of lead selection and optimization in the drug discovery process.

  10. Collaboratively charting the gene-to-phenotype network of human congenital heart defects

    PubMed Central

    2010-01-01

    Background How to efficiently integrate the daily practice of molecular biologists, geneticists, and clinicians with the emerging computational strategies from systems biology is still much of an open question. Description We built on the recent advances in Wiki-based technologies to develop a collaborative knowledge base and gene prioritization portal aimed at mapping genes and genomic regions, and untangling their relations with corresponding human phenotypes, congenital heart defects (CHDs). This portal is not only an evolving community repository of current knowledge on the genetic basis of CHDs, but also a collaborative environment for the study of candidate genes potentially implicated in CHDs - in particular by integrating recent strategies for the statistical prioritization of candidate genes. It thus serves and connects the broad community that is facing CHDs, ranging from the pediatric cardiologist and clinical geneticist to the basic investigator of cardiogenesis. Conclusions This study describes the first specialized portal to collaboratively annotate and analyze gene-phenotype networks. Of broad interest to the biological community, we argue that such portals will play a significant role in systems biology studies of numerous complex biological processes. CHDWiki is accessible at http://www.esat.kuleuven.be/~bioiuser/chdwiki PMID:20193066

  11. Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models

    PubMed Central

    Siner, Joshua I.; Samelson-Jones, Benjamin J.; Crudele, Julie M.; French, Robert A.; Lee, Benjamin J.; Zhou, Shanzhen; Merricks, Elizabeth; Raymer, Robin; Camire, Rodney M.; Arruda, Valder R.

    2016-01-01

    Processing by the proprotein convertase furin is believed to be critical for the biological activity of multiple proteins involved in hemostasis, including coagulation factor VIII (FVIII). This belief prompted the retention of the furin recognition motif (amino acids 1645–1648) in the design of B-domain–deleted FVIII (FVIII-BDD) products in current clinical use and in the drug development pipeline, as well as in experimental FVIII gene therapy strategies. Here, we report that processing by furin is in fact deleterious to FVIII-BDD secretion and procoagulant activity. Inhibition of furin increases the secretion and decreases the intracellular retention of FVIII-BDD protein in mammalian cells. Our new variant (FVIII-ΔF), in which this recognition motif is removed, efficiently circumvents furin. FVIII-ΔF demonstrates increased recombinant protein yields, enhanced clotting activity, and higher circulating FVIII levels after adeno-associated viral vector–based liver gene therapy in a murine model of severe hemophilia A (HA) compared with FVIII-BDD. Moreover, we observed an amelioration of the bleeding phenotype in severe HA dogs with sustained therapeutic FVIII levels after FVIII-ΔF gene therapy at a lower vector dose than previously employed in this model. The immunogenicity of FVIII-ΔF did not differ from that of FVIII-BDD as a protein or a gene therapeutic. Thus, contrary to previous suppositions, FVIII variants that can avoid furin processing are likely to have enhanced translational potential for HA therapy. PMID:27734034

  12. Dimensions of belonging as an aspect of racial-ethnic-cultural identity: an exploration of indigenous Australians.

    PubMed

    Neville, Helen A; Oyama, Kathleen E; Odunewu, Latifat O; Huggins, Jackie G

    2014-07-01

    Sense of belonging is a key aspect of racial and ethnic identity. Interestingly, there is little exploration of the multiple characteristics of belongingness within the racial and ethnic identity literature. Through individual interviews and a focus group, we explored the sense of racial-ethnic-cultural (REC) belonging among 19 self-identified Black Indigenous Australians (Aborigines and Torres Strait Islanders). Using dimensional analysis, we uncovered 5 core interrelated dimensions of REC belonging: History/Memory, Place, and Peoplehood; Sense of Community; Acceptance and Pride; Shared Language and Culture; and Interconnections. We also uncovered 3 main barriers undermining participants' sense of REC belonging: phenotype, social identity, and history of colonization. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Co-clustering phenome–genome for phenotype classification and disease gene discovery

    PubMed Central

    Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui

    2012-01-01

    Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708

  14. Phenotypic covariance at species' borders.

    PubMed

    Caley, M Julian; Cripps, Edward; Game, Edward T

    2013-05-28

    Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species' borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species' borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future.

  15. Towards recommendations for metadata and data handling in plant phenotyping.

    PubMed

    Krajewski, Paweł; Chen, Dijun; Ćwiek, Hanna; van Dijk, Aalt D J; Fiorani, Fabio; Kersey, Paul; Klukas, Christian; Lange, Matthias; Markiewicz, Augustyn; Nap, Jan Peter; van Oeveren, Jan; Pommier, Cyril; Scholz, Uwe; van Schriek, Marco; Usadel, Björn; Weise, Stephan

    2015-09-01

    Recent methodological developments in plant phenotyping, as well as the growing importance of its applications in plant science and breeding, are resulting in a fast accumulation of multidimensional data. There is great potential for expediting both discovery and application if these data are made publicly available for analysis. However, collection and storage of phenotypic observations is not yet sufficiently governed by standards that would ensure interoperability among data providers and precisely link specific phenotypes and associated genomic sequence information. This lack of standards is mainly a result of a large variability of phenotyping protocols, the multitude of phenotypic traits that are measured, and the dependence of these traits on the environment. This paper discusses the current situation of standardization in the area of phenomics, points out the problems and shortages, and presents the areas that would benefit from improvement in this field. In addition, the foundations of the work that could revise the situation are proposed, and practical solutions developed by the authors are introduced. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.

    PubMed

    Niu, Yuanling; Wang, Yue; Zhou, Da

    2015-12-07

    The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Male gender identity in complete androgen insensitivity syndrome.

    PubMed

    T'Sjoen, Guy; De Cuypere, Griet; Monstrey, Stan; Hoebeke, Piet; Freedman, F Kenneth; Appari, Mahesh; Holterhus, Paul-Martin; Van Borsel, John; Cools, Martine

    2011-06-01

    Women and girls with complete androgen insensitivity syndrome (CAIS) invariably have a female typical core gender identity. In this case report, we describe the first case of male gender identity in a CAIS individual raised female leading to complete sex reassignment involving both androgen treatment and phalloplasty. CAIS was diagnosed at age 17, based on an unambiguously female phenotype, a 46,XY karyotype, and a 2660delT androgen receptor (AR) gene mutation, leading to a premature stop in codon 807. Bilateral gonadectomy was performed but a short period of estrogen treatment induced a negative emotional reaction and treatment was stopped. Since the age of 3, childhood-onset cross gender behavior had been noticed. After a period of psychotherapy, persisting male gender identity was confirmed. There was no psychiatric co-morbidity and there was an excellent real life experience. Testosterone substitution was started, however without inducing any of the desired secondary male characteristics. A subcutaneous mastectomy was performed and the patient received phalloplasty by left forearm free flap and scrotoplasty. Testosterone treatment was continued, without inducing virilization, and bone density remained normal. The patient qualifies as female-to-male transsexual and was treated according to the Standards of Care by the World Professional Association for Transgender Health with good outcome. However, we do not believe that female sex of rearing as a standard procedure should be questioned in CAIS. Our case challenges the role of a functional AR pathway in the development of male gender identity.

  18. Constitutive gene expression and specification of tissue identity in adult planarian biology

    PubMed Central

    Reddien, Peter W.

    2011-01-01

    Planarians are flatworms that constitutively maintain adult tissues through cell turnover and can regenerate entire organisms from tiny body fragments. In addition to requiring new cells (from neoblasts), these feats require mechanisms that specify tissue identity in the adult. Critical roles for Wnt and BMP signaling in regeneration and maintenance of the body axes have been uncovered, among other regulatory factors. Available data indicate that genes involved in positional identity regulation at key embryonic stages in other animals display persisting regionalized expression in adult planarians. These expression patterns suggest that a constitutively active gene expression map exists for maintenance of the planarian body. Planarians therefore present a fertile ground for identification of factors regulating regionalization of the metazoan body plan and for study of the attributes of these factors that can lead to maintenance and regeneration of adult tissues. PMID:21680047

  19. Determining which phenotypes underlie a pleiotropic signal

    PubMed Central

    Majumdar, Arunabha; Haldar, Tanushree; Witte, John S.

    2016-01-01

    Discovering pleiotropic loci is important to understand the biological basis of seemingly distinct phenotypes. Most methods for assessing pleiotropy only test for the overall association between genetic variants and multiple phenotypes. To determine which specific traits are pleiotropic, we evaluate via simulation and application three different strategies. The first is model selection techniques based on the inverse regression of genotype on phenotypes. The second is a subset-based meta-analysis ASSET [Bhattacharjee et al., 2012], which provides an optimal subset of non-null traits. And the third is a modified Benjamini-Hochberg (B-H) procedure of controlling the expected false discovery rate [Benjamini and Hochberg, 1995] in the framework of phenome-wide association study. From our simulations we see that an inverse regression based approach MultiPhen [O’Reilly et al., 2012] is more powerful than ASSET for detecting overall pleiotropic association, except for when all the phenotypes are associated and have genetic effects in the same direction. For determining which specific traits are pleiotropic, the modified B-H procedure performs consistently better than the other two methods. The inverse regression based selection methods perform competitively with the modified B-H procedure only when the phenotypes are weakly correlated. The efficiency of ASSET is observed to lie below and in between the efficiency of the other two methods when the traits are weakly and strongly correlated, respectively. In our application to a large GWAS, we find that the modified B-H procedure also performs well, indicating that this may be an optimal approach for determining the traits underlying a pleiotropic signal. PMID:27238845

  20. Exploring biology with small organic molecules

    PubMed Central

    Stockwell, Brent R.

    2011-01-01

    Small organic molecules have proven to be invaluable tools for investigating biological systems, but there is still much to learn from their use. To discover and to use more effectively new chemical tools to understand biology, strategies are needed that allow us to systematically explore ‘biological-activity space’. Such strategies involve analysing both protein binding of, and phenotypic responses to, small organic molecules. The mapping of biological-activity space using small molecules is akin to mapping the stars — uncharted territory is explored using a system of coordinates that describes where each new feature lies. PMID:15602550

  1. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions

    PubMed Central

    Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc

    2015-01-01

    Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and

  2. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to

  3. The secret identity of science education: masculine and politically conservative?

    NASA Astrophysics Data System (ADS)

    Lemke, Jay

    2011-06-01

    This response to Jesse Bazzul and Heather Sykes' paper, The secret identity of a biology textbook: straight and naturally sexed, explores their critiques of textbooks and curricula that authoritatively present scientific accounts of the natural world without engaging students in critical thinking. It proposes that we need to go beyond such useful critiques to develop alternatives to the unsatisfactory heteronormative status quo in biology textbooks and in science education more generally.

  4. [MALE, FEMALE, NEUTRUM. SEXUAL IDENTITY, UNCERTAIN SEX AND BIOLOGY].

    PubMed

    Famularo, Simone

    2014-01-01

    For almost 2000 years, human beings have been discussing about gender. New scientific evidences give interesting new points of view, partially subverting the normal dichotomy described by the "two-gender" theory. In this article, we are going to critically review the history of the approach towards people born with a Sexual-Differentiation-Disorder, passing through the analysis of the Italian National Ethics Committee's opinion, describing the modern scientific evidences on the gender-identity development, furthermore ruling out the new approach borned from the femminist philosophies, and the new biogiuridical experiments borned in Australia and Germany. Would it be possible a world where a person could be more then a male or a female?

  5. Statistical Selection of Biological Models for Genome-Wide Association Analyses.

    PubMed

    Bi, Wenjian; Kang, Guolian; Pounds, Stanley B

    2018-05-24

    Genome-wide association studies have discovered many biologically important associations of genes with phenotypes. Typically, genome-wide association analyses formally test the association of each genetic feature (SNP, CNV, etc) with the phenotype of interest and summarize the results with multiplicity-adjusted p-values. However, very small p-values only provide evidence against the null hypothesis of no association without indicating which biological model best explains the observed data. Correctly identifying a specific biological model may improve the scientific interpretation and can be used to more effectively select and design a follow-up validation study. Thus, statistical methodology to identify the correct biological model for a particular genotype-phenotype association can be very useful to investigators. Here, we propose a general statistical method to summarize how accurately each of five biological models (null, additive, dominant, recessive, co-dominant) represents the data observed for each variant in a GWAS study. We show that the new method stringently controls the false discovery rate and asymptotically selects the correct biological model. Simulations of two-stage discovery-validation studies show that the new method has these properties and that its validation power is similar to or exceeds that of simple methods that use the same statistical model for all SNPs. Example analyses of three data sets also highlight these advantages of the new method. An R package is freely available at www.stjuderesearch.org/site/depts/biostats/maew. Copyright © 2018. Published by Elsevier Inc.

  6. Behavioral phenotypes of genetic mouse models of autism.

    PubMed

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Screening and advanced lipid phenotyping in familial hypercholesterolemia: The Very Large Database of Lipids Study-17 (VLDL-17).

    PubMed

    Miller, P Elliott; Martin, Seth S; Toth, Peter P; Santos, Raul D; Blaha, Michael J; Nasir, Khurram; Virani, Salim S; Post, Wendy S; Blumenthal, Roger S; Jones, Steven R

    2015-01-01

    Familial hypercholesterolemia (FH) is an autosomal dominant dyslipidemia characterized by defective low-density lipoprotein (LDL) clearance. The aim of this study was to compare Friedewald-estimated LDL cholesterol (LDL-C) to biologic LDL-C in individuals screening positive for FH and then further characterize FH phenotypes. We studied 1,320,581 individuals from the Very Large Database of Lipids, referred from 2009 to 2011 for Vertical Auto Profile ultracentrifugation testing. Friedewald LDL-C was defined as the cholesterol content of LDL-C, intermediate-density lipoprotein cholesterol, and lipoprotein(a) cholesterol (Lp(a)-C), with LDL-C representing biologic LDL-C. Using Friedewald LDL-C, we phenotypically categorized patients by the National Lipid Association guideline age-based screening thresholds for FH. In those meeting criteria, we categorized patients using population percentile-equivalent biologic LDL-C cutpoints and explored Lp(a)-C and remnant lipoprotein cholesterol (RLP-C) levels. Overall, 3829 patients met phenotypic criteria for FH by Friedewald LDL-C screening (FH+). Of those screening FH+, 78.8% were above and 21.2% were below the population percentile-equivalent biologic LDL-C. The mean difference in Friedewald biologic LDL-C percentiles was -0.01 (standard deviation, 0.17) for those above, and 1.92 (standard deviation, 9.16) for those below, respectively. Over 1 of 3 were found to have an elevated Lp(a)-C and over 50% had RLP-C greater than 95th percentile of the entire VLDL population. Of those who screened FH+, Friedewald and biologic LDL-C levels were closely correlated. Large proportions of the FH+ group had excess levels of Lp(a)-C and RLP-C. Future studies are warranted to study these mixed phenotypic groups and determine the role for further risk stratification and treatment algorithms. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  8. Skin phenotypes can offer some insight about the association between telomere length and cancer susceptibility.

    PubMed

    Ribero, S; Mangino, M; Bataille, V

    2016-12-01

    The role of telomere biology in cancer has been studied for a wide variety of different cancers but the association with telomere length has been controversial. This is because some cancers have been found to be associated with longer telomeres in circulating white cells whilst other cancer types are more common in individuals with shorter telomeres. Hence, there has been some skepticism as to whether telomere length may be helpful in estimating cancer risk. For melanoma, however, results have been fairly consistent showing that longer telomeres are associated with an increased risk. This link was first discovered because of a link between longer telomeres and a high number of naevi. In contrast, for cutaneous squamous cell carcinomas, the relationship is reversed with higher risk in individuals with shorter telomeres. Differences in skin phenotypes with the presence of high number of naevi versus photoageing with solar elastosis and solar keratoses have already been valuable for dermatologists as the former phenotype is associated with melanoma whilst the latter is more common in patients with squamous cell carcinoma of the skin. The hypothesis is that the differences in cutaneous phenotypes already observed by dermatologists for skin cancers may, in fact, be useful as well for cancer prediction in general as it may reflect underlying telomere biology. This manuscript will address the evidence for links between telomere biology, skin phenotypes and cancer risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Nutritional Phenotype in the Age of Metabolomics

    PubMed Central

    Zeisel, S. H.; Freake, H. C.; Bauman, D. E.; Bier, D. M.; Burrin, D. G.; German, J. B.; Klein, S.; Marquis, G. S.; Milner, J. A.; Pelto, G. H.; Rasmussen, K. M.

    2008-01-01

    The concept of the nutritional phenotype is proposed as a defined and integrated set of genetic, proteomic, metabolomic, functional, and behavioral factors that, when measured, form the basis for assessment of human nutritional status. The nutritional phenotype integrates the effects of diet on disease/wellness and is the quantitative indication of the paths by which genes and environment exert their effects on health. Advances in technology and in fundamental biological knowledge make it possible to define and measure the nutritional phenotype accurately in a cross section of individuals with various states of health and disease. This growing base of data and knowledge could serve as a resource for all scientific disciplines involved in human health. Nutritional sciences should be a prime mover in making key decisions that include: what environmental inputs (in addition to diet) are needed; what genes/proteins/metabolites should be measured; what end-point phenotypes should be included; and what informatics tools are available to ask nutritionally relevant questions. Nutrition should be the major discipline establishing how the elements of the nutritional phenotype vary as a function of diet. Nutritional sciences should also be instrumental in linking the elements that are responsive to diet with the functional outcomes in organisms that derive from them. As the first step in this initiative, a prioritized list of genomic, proteomic, and metabolomic as well as functional and behavioral measures that defines a practically useful subset of the nutritional phenotype for use in clinical and epidemiological investigations must be developed. From this list, analytic platforms must then be identified that are capable of delivering highly quantitative data on these endpoints. This conceptualization of a nutritional phenotype provides a concrete form and substance to the recognized future of nutritional sciences as a field addressing diet, integrated metabolism, and health

  10. Dental Age Estimation Helps Create a New Identity.

    PubMed

    De Angelis, Danilo; Gibelli, Daniele; Fabbri, Paolo; Cattaneo, Cristina

    2015-09-01

    Age estimation involves the reconstruction of age by biological parameters such as skeletal and dental development in minors, or reduction of pulp chamber in adults, to gain indications concerning the chronological age of the person. In most cases, it is needed in forensic scenarios to verify if the supposed age of an individual is correct; in exceptional cases, age estimation is instead required by judicial authorities to create a new identity usually in persons who do not remember who they are.This article aims at reporting the case of J. who was found in 2005 with signs of amnesia because he did not remember his name and age. After several unsuccessful attempts at identifying him, the judicial authority decided to assign a new identity, which was to be constructed according to the real biological data of the individual. The help of a forensic pathologist and a forensic odontologist was then requested, and age estimation was reached by applying methods for adults based on the physiological reduction of pulp chamber. Dental age estimation yielded a final result of approximately 31 years, which was the new age assigned to the person.This article shows a peculiar application of dental age estimation, which can be used not only to ascertain or deny supposed age, but is sometimes needed to create a new identity.

  11. Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm.

    PubMed

    Janicke, T; Sandner, P; Ramm, S A; Vizoso, D B; Schärer, L

    2016-09-01

    Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male-biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  12. Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems.

    PubMed

    Yu, Michael Ku; Kramer, Michael; Dutkowski, Janusz; Srivas, Rohith; Licon, Katherine; Kreisberg, Jason; Ng, Cherie T; Krogan, Nevan; Sharan, Roded; Ideker, Trey

    2016-02-24

    Accurately translating genotype to phenotype requires accounting for the functional impact of genetic variation at many biological scales. Here we present a strategy for genotype-phenotype reasoning based on existing knowledge of cellular subsystems. These subsystems and their hierarchical organization are defined by the Gene Ontology or a complementary ontology inferred directly from previously published datasets. Guided by the ontology's hierarchical structure, we organize genotype data into an "ontotype," that is, a hierarchy of perturbations representing the effects of genetic variation at multiple cellular scales. The ontotype is then interpreted using logical rules generated by machine learning to predict phenotype. This approach substantially outperforms previous, non-hierarchical methods for translating yeast genotype to cell growth phenotype, and it accurately predicts the growth outcomes of two new screens of 2,503 double gene knockouts impacting DNA repair or nuclear lumen. Ontotypes also generalize to larger knockout combinations, setting the stage for interpreting the complex genetics of disease.

  13. Integrating evo-devo with ecology for a better understanding of phenotypic evolution

    PubMed Central

    Emília Santos, M.; Berger, Chloé S.; Refki, Peter N.

    2015-01-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. PMID:25750411

  14. Integrating evo-devo with ecology for a better understanding of phenotypic evolution.

    PubMed

    Santos, M Emília; Berger, Chloé S; Refki, Peter N; Khila, Abderrahman

    2015-11-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. © The Author 2015. Published by Oxford University Press.

  15. Strategy Revealing Phenotypic Differences among Synthetic Oscillator Designs

    PubMed Central

    2015-01-01

    Considerable progress has been made in identifying and characterizing the component parts of genetic oscillators, which play central roles in all organisms. Nonlinear interaction among components is sufficiently complex that mathematical models are required to elucidate their elusive integrated behavior. Although natural and synthetic oscillators exhibit common architectures, there are numerous differences that are poorly understood. Utilizing synthetic biology to uncover basic principles of simpler circuits is a way to advance understanding of natural circadian clocks and rhythms. Following this strategy, we address the following questions: What are the implications of different architectures and molecular modes of transcriptional control for the phenotypic repertoire of genetic oscillators? Are there designs that are more realizable or robust? We compare synthetic oscillators involving one of three architectures and various combinations of the two modes of transcriptional control using a methodology that provides three innovations: a rigorous definition of phenotype, a procedure for deconstructing complex systems into qualitatively distinct phenotypes, and a graphical representation for illuminating the relationship between genotype, environment, and the qualitatively distinct phenotypes of a system. These methods provide a global perspective on the behavioral repertoire, facilitate comparisons of alternatives, and assist the rational design of synthetic gene circuitry. In particular, the results of their application here reveal distinctive phenotypes for several designs that have been studied experimentally as well as a best design among the alternatives that has yet to be constructed and tested. PMID:25019938

  16. Ethical, legal and social issues in restoring genetic identity after forced disappearance and suppression of identity in Argentina.

    PubMed

    Penchaszadeh, Victor B

    2015-07-01

    Human genetic identification has been increasingly associated with the preservation, defence and reparation of human rights, in particular the right to genetic identity. The Argentinian military dictatorship of 1976-1983 engaged in a savage repression and egregious violations of human rights, including forced disappearance, torture, assassination and appropriation of children of the disappeared with suppression of their identity. The ethical, legal and social nuances in the use of forensic genetics to support the right to identity in Argentina included issues such as the best interest of children being raised by criminals, the right to learn the truth of one's origin and identity, rights of their biological families, the issue of voluntary versus compulsory testing of victims, as well as the duty of the state to investigate crimes against humanity, punish perpetrators and provide justice and reparation to the victims. In the 30 years following the return to democracy in 1984, the search, localization and DNA testing of disappeared children and young adults has led, so far, to the genetic identification of 116 persons who had been abducted as babies. The high value placed on DNA testing to identify victims of identity suppression did not conflict with the social consensus that personal identity is a complex and dynamic concept, attained by the interaction of genetics with historical, social, emotional, educational, cultural and other important environmental factors. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics within a developing set of ethical and political circumstances.

  17. Understanding Transgender Identity Development in Childhood and Adolescence

    ERIC Educational Resources Information Center

    Boskey, Elizabeth R.

    2014-01-01

    Many sexuality educators and professionals, even those involved in program development and planning, are not aware of the biological and social factors involved in gender identity development in youth. As such, this topic is often not as well addressed in whole life educational curricula as better understood topics, such as reproductive anatomy,…

  18. The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants.

    PubMed

    Hoehndorf, Robert; Alshahrani, Mona; Gkoutos, Georgios V; Gosline, George; Groom, Quentin; Hamann, Thomas; Kattge, Jens; de Oliveira, Sylvia Mota; Schmidt, Marco; Sierra, Soraya; Smets, Erik; Vos, Rutger A; Weiland, Claus

    2016-11-14

    The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established vocabularies or ontologies, but rather

  19. Asynchrony of senescence among phenotypic traits in a wild mammal population

    PubMed Central

    Hayward, Adam D.; Moorad, Jacob; Regan, Charlotte E.; Berenos, Camillo; Pilkington, Jill G.; Pemberton, Josephine M.; Nussey, Daniel H.

    2015-01-01

    The degree to which changes in lifespan are coupled to changes in senescence in different physiological systems and phenotypic traits is a central question in biogerontology. It is underpinned by deeper biological questions about whether or not senescence is a synchronised process, or whether levels of synchrony depend on species or environmental context. Understanding how natural selection shapes patterns of synchrony in senescence across physiological systems and phenotypic traits demands the longitudinal study of many phenotypes under natural conditions. Here, we examine the patterns of age-related variation in late adulthood in a wild population of Soay sheep (Ovis aries) that have been the subject of individual-based monitoring for thirty years. We examined twenty different phenotypic traits in both males and females, encompassing vital rates (survival and fecundity), maternal reproductive performance (offspring birth weight, birth date and survival), male rutting behaviour, home range measures, parasite burdens, and body mass. We initially quantified age-related variation in each trait having controlled for annual variation in the environment, among-individual variation and selective disappearance effects. We then standardised our age-specific trait means and tested whether age trajectories could be meaningfully grouped according to sex or the type of trait. Whilst most traits showed age-related declines in later life, we found striking levels of asynchrony both within and between the sexes. Of particular note, female fecundity and reproductive performance declined with age, but male annual reproductive success did not. We also discovered that whilst home range size and quality decline with age in females, home range size increases with age in males. Our findings highlight the complexity of phenotypic ageing under natural conditions and, along with emerging data from other wild populations and laboratory models, suggest that the long-standing hypothesis

  20. Establishing the identity of the massacred tigress in a case of wildlife crime.

    PubMed

    Gupta, Sandeep Kumar; Bhagavatula, Jyotsna; Thangaraj, Kumarasamy; Singh, Lalji

    2011-01-01

    We report a case study, where we have established the identity from a challenging biological sample of a deceased tigress by parentage analysis. A wildlife crime was committed in one of the zoological parks in India in the year 2000, where one young tigress was killed for its claws. This was of media interest for several days and remained an unsolved case for four years. A framed claw and decomposed tiger hide were seized from the accused in 2005. Biological samples of the victim tigress was not available for further forensics examination, therefore; DNA samples of the biological parents and a male sibling were used to establish the identity of the claw using STRs and mitochondrial DNA markers. Our analysis indicates that the seized claw belongs to the victim tigress. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Social parasitism and the molecular basis of phenotypic evolution.

    PubMed

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B J; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization.

  2. Social parasitism and the molecular basis of phenotypic evolution

    PubMed Central

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B. J.; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer—Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  3. Natural Variation of Model Mutant Phenotypes in Ciona intestinalis

    PubMed Central

    Brown, Euan R.; Leccia, Nicola I.; Squarzoni, Paola; Tarallo, Raffaella; Alfano, Christian; Caputi, Luigi; D'Ambrosio, Palmira; Daniele, Paola; D'Aniello, Enrico; D'Aniello, Salvatore; Maiella, Sylvie; Miraglia, Valentina; Russo, Monia Teresa; Sorrenti, Gerarda; Branno, Margherita; Cariello, Lucio; Cirino, Paola; Locascio, Annamaria; Spagnuolo, Antonietta; Zanetti, Laura; Ristoratore, Filomena

    2008-01-01

    Background The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. Methodology/Principal Findings Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. Conclusions/Significance Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity. PMID:18523552

  4. Comparative biology of cystic fibrosis animal models.

    PubMed

    Fisher, John T; Zhang, Yulong; Engelhardt, John F

    2011-01-01

    Animal models of human diseases are critical for dissecting mechanisms of pathophysiology and developing therapies. In the context of cystic fibrosis (CF), mouse models have been the dominant species by which to study CF disease processes in vivo for the past two decades. Although much has been learned through these CF mouse models, limitations in the ability of this species to recapitulate spontaneous lung disease and several other organ abnormalities seen in CF humans have created a need for additional species on which to study CF. To this end, pig and ferret CF models have been generated by somatic cell nuclear transfer and are currently being characterized. These new larger animal models have phenotypes that appear to closely resemble human CF disease seen in newborns, and efforts to characterize their adult phenotypes are ongoing. This chapter will review current knowledge about comparative lung cell biology and cystic fibrosis transmembrane conductance regulator (CFTR) biology among mice, pigs, and ferrets that has implications for CF disease modeling in these species. We will focus on methods used to compare the biology and function of CFTR between these species and their relevance to phenotypes seen in the animal models. These cross-species comparisons and the development of both the pig and the ferret CF models may help elucidate pathophysiologic mechanisms of CF lung disease and lead to new therapeutic approaches.

  5. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    PubMed Central

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students’ LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. PMID:27543636

  6. Phenotype characterization of embryoid body structures generated by a crystal comet effect tail in an intercellular cancer collision scenario.

    PubMed

    Diaz, Jairo A; Murillo, Mauricio F

    2012-01-01

    Cancer is, by definition, the uncontrolled growth of autonomous cells that eventually destroy adjacent tissues and generate architectural disorder. However, this concept cannot be totally true. In three well documented studies, we have demonstrated that cancer tissues produce order zones that evolve over time and generate embryoid body structures in a space-time interval. The authors decided to revise the macroscopic and microscopic material in well-developed malignant tumors in which embryoid bodies were identified to determine the phenotype characterization that serves as a guideline for easy recognition. The factors responsible for this morphogenesis are physical, bioelectric, and magnetic susceptibilities produced by crystals that act as molecular designers for the topographic gradients that guide the surrounding silhouette and establish tissue head-tail positional identities. The structures are located in amniotic-like cavities and show characteristic somite-like embryologic segmentation. Immunophenotypic study has demonstrated exclusion factor positional identity in relation to enolase-immunopositive expression of embryoid body and human chorionic gonadotropin immunopositivity exclusion factor expression in the surrounding tissues. The significance of these observations is that they can also be predicted by experimental image data collected by the Large Hadron Collider (LHC) accelerator at the European Organization for Nuclear Research, in which two-beam subatomic collision particles in the resulting debris show hyperorder domains similar to those identified by us in intercellular cancer collisions. Our findings suggest that we are dealing with true reverse biologic system information in an activated collective cancer stem cell memory, in which physics participates in the elaboration of geometric complexes and chiral biomolecules that serve to build bodies with embryoid print as it develops during gestation. Reversal mechanisms in biology are intimately

  7. Phenotype characterization of embryoid body structures generated by a crystal comet effect tail in an intercellular cancer collision scenario

    PubMed Central

    Diaz, Jairo A; Murillo, Mauricio F

    2012-01-01

    Cancer is, by definition, the uncontrolled growth of autonomous cells that eventually destroy adjacent tissues and generate architectural disorder. However, this concept cannot be totally true. In three well documented studies, we have demonstrated that cancer tissues produce order zones that evolve over time and generate embryoid body structures in a space-time interval. The authors decided to revise the macroscopic and microscopic material in well-developed malignant tumors in which embryoid bodies were identified to determine the phenotype characterization that serves as a guideline for easy recognition. The factors responsible for this morphogenesis are physical, bioelectric, and magnetic susceptibilities produced by crystals that act as molecular designers for the topographic gradients that guide the surrounding silhouette and establish tissue head-tail positional identities. The structures are located in amniotic-like cavities and show characteristic somite-like embryologic segmentation. Immunophenotypic study has demonstrated exclusion factor positional identity in relation to enolase-immunopositive expression of embryoid body and human chorionic gonadotropin immunopositivity exclusion factor expression in the surrounding tissues. The significance of these observations is that they can also be predicted by experimental image data collected by the Large Hadron Collider (LHC) accelerator at the European Organization for Nuclear Research, in which two-beam subatomic collision particles in the resulting debris show hyperorder domains similar to those identified by us in intercellular cancer collisions. Our findings suggest that we are dealing with true reverse biologic system information in an activated collective cancer stem cell memory, in which physics participates in the elaboration of geometric complexes and chiral biomolecules that serve to build bodies with embryoid print as it develops during gestation. Reversal mechanisms in biology are intimately

  8. Evolution of cooperation in a multidimensional phenotype space.

    PubMed

    Kroumi, Dhaker; Lessard, Sabin

    2015-06-01

    The emergence of cooperation in populations of selfish individuals is a fascinating topic that has inspired much theoretical work. An important model to study cooperation is the phenotypic model, where individuals are characterized by phenotypic properties that are visible to others. The phenotype of an individual can be represented for instance by a vector x = (x1,…,xn), where x1,…,xn are integers. The population can be well mixed in the sense that everyone is equally likely to interact with everyone else, but the behavioral strategies of the individuals can depend on their distance in the phenotype space. A cooperator can choose to help other individuals exhibiting the same phenotype and defects otherwise. Cooperation is said to be favored by selection if it is more abundant than defection in the stationary state. This means that the average frequency of cooperators in the stationary state strictly exceeds 1/2. Antal et al. (2009c) found conditions that ensure that cooperation is more abundant than defection in a one-dimensional (i.e. n = 1) and an infinite-dimensional (i.e. n = ∞) phenotype space in the case of the Prisoner's Dilemma under weak selection. However, reality lies between these two limit cases. In this paper, we derive the corresponding condition in the case of a phenotype space of any finite dimension. This is done by applying a perturbation method to study a mutation-selection equilibrium under weak selection. This condition is obtained in the limit of a large population size by using the ancestral process. The best scenario for cooperation to be more likely to evolve is found to be a high population-scaled phenotype mutation rate, a low population-scaled strategy mutation rate and a high phenotype space dimension. The biological intuition is that a high population-scaled phenotype mutation rate reduces the quantity of interactions between cooperators and defectors, while a high population-scaled strategy mutation rate introduces newly

  9. Phenotypic covariance at species’ borders

    PubMed Central

    2013-01-01

    Background Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species’ borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Results Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Conclusions Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species’ borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future. PMID:23714580

  10. Directional selection effects on patterns of phenotypic (co)variation in wild populations

    PubMed Central

    Patton, J. L.; Hubbe, A.; Marroig, G.

    2016-01-01

    Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient. PMID:27881744

  11. Directional selection effects on patterns of phenotypic (co)variation in wild populations.

    PubMed

    Assis, A P A; Patton, J L; Hubbe, A; Marroig, G

    2016-11-30

    Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient. © 2016 The Author(s).

  12. Active Learning Strategies for Phenotypic Profiling of High-Content Screens.

    PubMed

    Smith, Kevin; Horvath, Peter

    2014-06-01

    High-content screening is a powerful method to discover new drugs and carry out basic biological research. Increasingly, high-content screens have come to rely on supervised machine learning (SML) to perform automatic phenotypic classification as an essential step of the analysis. However, this comes at a cost, namely, the labeled examples required to train the predictive model. Classification performance increases with the number of labeled examples, and because labeling examples demands time from an expert, the training process represents a significant time investment. Active learning strategies attempt to overcome this bottleneck by presenting the most relevant examples to the annotator, thereby achieving high accuracy while minimizing the cost of obtaining labeled data. In this article, we investigate the impact of active learning on single-cell-based phenotype recognition, using data from three large-scale RNA interference high-content screens representing diverse phenotypic profiling problems. We consider several combinations of active learning strategies and popular SML methods. Our results show that active learning significantly reduces the time cost and can be used to reveal the same phenotypic targets identified using SML. We also identify combinations of active learning strategies and SML methods which perform better than others on the phenotypic profiling problems we studied. © 2014 Society for Laboratory Automation and Screening.

  13. Integrative Radiation Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcellos-Hoff, Mary Helen

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive andmore » negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.« less

  14. Neurobiology of Gender Identity and Sexual Orientation.

    PubMed

    Roselli, Charles E

    2017-12-06

    Sexual identity and sexual orientation are independent components of a person's sexual identity. These dimensions are most often in harmony with each other and with an individual's genital sex, but not always. This review discusses the relationship of sexual identity and sexual orientation to prenatal factors that act to shape the development of the brain and the expression of sexual behaviors in animals and humans. One major influence discussed relates to organizational effects that the early hormone environment exerts on both gender identity and sexual orientation. Evidence that gender identity and sexual orientation are masculinized by prenatal exposure to testosterone and feminized in it absence is drawn from basic research in animals, correlations of biometric indices of androgen exposure and studies of clinical conditions associated with disorders in sexual development. There are, however, important exceptions to this theory that have yet to be resolved. Family and twin studies indicate that genes play a role, but no specific candidate genes have been identified. Evidence that relates to the number of older brothers implicates maternal immune responses as a contributing factor for male sexual orientation. It remains speculative how these influences might relate to each other and interact with postnatal socialization. Nonetheless, despite the many challenges to research in this area, existing empirical evidence makes it clear that there is a significant biological contribution to the development of an individual's sexual identity and sexual orientation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Evolving phenotypic networks in silico.

    PubMed

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  16. In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.

    PubMed

    Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica

    2018-01-01

    microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.

  17. Genomic individuality and its biological implications.

    PubMed

    Zhao, J

    1996-06-01

    It is a widely accepted fundamental concept that all somatic genomes of a human individual are identical to each other. The theoretical basis of this concept is that all of these somatic genomes are the descendants of the genome of a single fertilized cell as well as the simple replicated products of asexual reproduction, thus not forming any new recombined genomes. The question here is whether such a concept might only represent one side of somatic genome biology and, even worse, whether it has perhaps already led to a very prevalent misconception that within the organism body, there exists no variability among individual somatic genomes. A hypothesis, called genomic individuality, is proposed, simply saying that every individual somatic genome, perhaps with rare exceptions, has its own unique or individual 'genetic identity' or 'fingerprint', which is characterized by its distinctive sequences or patterns of deoxyribonucleic acid molecules, or both. Thus, no two somatic genomes can be identical to each other in every or all aspects, and consequently, there must be a great deal of genomic variation present within the body of any multicellular organism. The concept or hypothesis of genomic individuality would not only provide a more complete understanding of genome biology, but also suggest a new insight into the studies of the biology of cells and organisms.

  18. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students.

    PubMed

    Cooper, Katelyn M; Brownell, Sara E

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students' LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. © 2016 K. M. Cooper and S. E. Brownell. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Understanding Biological Regulation Through Synthetic Biology.

    PubMed

    Bashor, Caleb J; Collins, James J

    2018-05-20

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function.

  20. OVA: integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization.

    PubMed

    Antanaviciute, Agne; Watson, Christopher M; Harrison, Sally M; Lascelles, Carolina; Crinnion, Laura; Markham, Alexander F; Bonthron, David T; Carr, Ian M

    2015-12-01

    Exome sequencing has become a de facto standard method for Mendelian disease gene discovery in recent years, yet identifying disease-causing mutations among thousands of candidate variants remains a non-trivial task. Here we describe a new variant prioritization tool, OVA (ontology variant analysis), in which user-provided phenotypic information is exploited to infer deeper biological context. OVA combines a knowledge-based approach with a variant-filtering framework. It reduces the number of candidate variants by considering genotype and predicted effect on protein sequence, and scores the remainder on biological relevance to the query phenotype.We take advantage of several ontologies in order to bridge knowledge across multiple biomedical domains and facilitate computational analysis of annotations pertaining to genes, diseases, phenotypes, tissues and pathways. In this way, OVA combines information regarding molecular and physical phenotypes and integrates both human and model organism data to effectively prioritize variants. By assessing performance on both known and novel disease mutations, we show that OVA performs biologically meaningful candidate variant prioritization and can be more accurate than another recently published candidate variant prioritization tool. OVA is freely accessible at http://dna2.leeds.ac.uk:8080/OVA/index.jsp. Supplementary data are available at Bioinformatics online. umaan@leeds.ac.uk. © The Author 2015. Published by Oxford University Press.

  1. MPHASYS: a mouse phenotype analysis system

    PubMed Central

    Calder, R Brent; Beems, Rudolf B; van Steeg, Harry; Mian, I Saira; Lohman, Paul HM; Vijg, Jan

    2007-01-01

    Background Systematic, high-throughput studies of mouse phenotypes have been hampered by the inability to analyze individual animal data from a multitude of sources in an integrated manner. Studies generally make comparisons at the level of genotype or treatment thereby excluding associations that may be subtle or involve compound phenotypes. Additionally, the lack of integrated, standardized ontologies and methodologies for data exchange has inhibited scientific collaboration and discovery. Results Here we introduce a Mouse Phenotype Analysis System (MPHASYS), a platform for integrating data generated by studies of mouse models of human biology and disease such as aging and cancer. This computational platform is designed to provide a standardized methodology for working with animal data; a framework for data entry, analysis and sharing; and ontologies and methodologies for ensuring accurate data capture. We describe the tools that currently comprise MPHASYS, primarily ones related to mouse pathology, and outline its use in a study of individual animal-specific patterns of multiple pathology in mice harboring a specific germline mutation in the DNA repair and transcription-specific gene Xpd. Conclusion MPHASYS is a system for analyzing multiple data types from individual animals. It provides a framework for developing data analysis applications, and tools for collecting and distributing high-quality data. The software is platform independent and freely available under an open-source license [1]. PMID:17553167

  2. Prediction of gene-phenotype associations in humans, mice, and plants using phenologs.

    PubMed

    Woods, John O; Singh-Blom, Ulf Martin; Laurent, Jon M; McGary, Kriston L; Marcotte, Edward M

    2013-06-21

    Phenotypes and diseases may be related to seemingly dissimilar phenotypes in other species by means of the orthology of underlying genes. Such "orthologous phenotypes," or "phenologs," are examples of deep homology, and may be used to predict additional candidate disease genes. In this work, we develop an unsupervised algorithm for ranking phenolog-based candidate disease genes through the integration of predictions from the k nearest neighbor phenologs, comparing classifiers and weighting functions by cross-validation. We also improve upon the original method by extending the theory to paralogous phenotypes. Our algorithm makes use of additional phenotype data--from chicken, zebrafish, and E. coli, as well as new datasets for C. elegans--establishing that several types of annotations may be treated as phenotypes. We demonstrate the use of our algorithm to predict novel candidate genes for human atrial fibrillation (such as HRH2, ATP4A, ATP4B, and HOPX) and epilepsy (e.g., PAX6 and NKX2-1). We suggest gene candidates for pharmacologically-induced seizures in mouse, solely based on orthologous phenotypes from E. coli. We also explore the prediction of plant gene-phenotype associations, as for the Arabidopsis response to vernalization phenotype. We are able to rank gene predictions for a significant portion of the diseases in the Online Mendelian Inheritance in Man database. Additionally, our method suggests candidate genes for mammalian seizures based only on bacterial phenotypes and gene orthology. We demonstrate that phenotype information may come from diverse sources, including drug sensitivities, gene ontology biological processes, and in situ hybridization annotations. Finally, we offer testable candidates for a variety of human diseases, plant traits, and other classes of phenotypes across a wide array of species.

  3. Cpd-1 Null Mice Display a Subtle Neurological Phenotype

    PubMed Central

    Kular, Rupinder K.; Gogliotti, Rocky G.; Opal, Puneet

    2010-01-01

    Background CPD1 (also known as ANP32-E) belongs to a family of evolutionarily conserved acidic proteins with leucine rich repeats implicated in a variety of cellular processes regulating gene expression, vesicular trafficking, intracellular signaling and apoptosis. Because of its spatiotemporal expression pattern, CPD1 has been proposed to play an important role in brain morphogenesis and synaptic development. Methodology/Principal Findings We have generated CPD1 knock-out mice that we have subsequently characterized. These mice are viable and fertile. However, they display a subtle neurological clasping phenotype and mild motor deficits. Conclusions/Significance CPD1 is not essential for normal development; however, it appears to play a role in the regulation of fine motor functions. The minimal phenotype suggests compensatory biological mechanisms. PMID:20844742

  4. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis.

    PubMed

    Moore, Jason H; Williams, Scott M

    2005-06-01

    Epistasis plays an important role in the genetic architecture of common human diseases and can be viewed from two perspectives, biological and statistical, each derived from and leading to different assumptions and research strategies. Biological epistasis is the result of physical interactions among biomolecules within gene regulatory networks and biochemical pathways in an individual such that the effect of a gene on a phenotype is dependent on one or more other genes. In contrast, statistical epistasis is defined as deviation from additivity in a mathematical model summarizing the relationship between multilocus genotypes and phenotypic variation in a population. The goal of this essay is to review definitions and examples of biological and statistical epistasis and to explore the relationship between the two. Specifically, we present and discuss the following two questions in the context of human health and disease. First, when does statistical evidence of epistasis in human populations imply underlying biomolecular interactions in the etiology of disease? Second, when do biomolecular interactions produce patterns of statistical epistasis in human populations? Answers to these two reciprocal questions will provide an important framework for using genetic information to improve our ability to diagnose, prevent and treat common human diseases. We propose that systems biology will provide the necessary information for addressing these questions and that model systems such as bacteria, yeast and digital organisms will be a useful place to start.

  5. Constructing nurses' professional identity through social identity theory.

    PubMed

    Willetts, Georgina; Clarke, David

    2014-04-01

    The profession of nursing continues to struggle with defining and clarifying its professional identity. The definitive recognition of nursing as a profession was the moving of training from the hospital apprentice model to the tertiary sector. However, this is only part of the story of professional identity in nursing. Once training finishes and enculturation into the workplace commences, professional identity becomes a complicated social activity. This paper proposes social identity theory as a valuable research framework to assist with clarifying and describing the professional identity of nurses. The paper outlines the key elements of a profession and then goes on to describe the main concepts of social identity theory. Lastly, a connection is made between the usefulness of using social identity theory in researching professional identity in nursing, recognizing the contextual nature of the social activity of the profession within its workplace environment. © 2013 Wiley Publishing Asia Pty Ltd.

  6. [Biologics - nomenclature and classification].

    PubMed

    Eichbaum, Christine; Haefeli, Walter E

    2011-11-01

    Biological medicines are a heterogeneous group of drugs that are produced by living organisms using genetic or biological technology. Unlike chemically derived small molecules biologics are structurally complex making characterization and manufacturing difficult. Moreover, biological medicines show a great variety concerning their clinical use. To appropriately consider these particularities, there are other standards and guidelines for approval of similar derivatives of biologics, the so-called biosimilars or follow-on biologics. In contrast to a generic medicinal product containing a chemically identical active ingredient, a biosimilar is only expected to be similar to the innovator drug. Nowadays, monoclonal antibodies, fragments of antibodies, and fusion proteins manufactured by recombinant procedures play an important role. They have been used in many specialties for diagnostic and therapeutic purposes and are subject to continuous further development and improvement. Their nomenclature is based on a classification by the WHO which allows drawing conclusions for class of substance, origin, and pharmacological target.

  7. Open innovation for phenotypic drug discovery: The PD2 assay panel.

    PubMed

    Lee, Jonathan A; Chu, Shaoyou; Willard, Francis S; Cox, Karen L; Sells Galvin, Rachelle J; Peery, Robert B; Oliver, Sarah E; Oler, Jennifer; Meredith, Tamika D; Heidler, Steven A; Gough, Wendy H; Husain, Saba; Palkowitz, Alan D; Moxham, Christopher M

    2011-07-01

    Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.

  8. The 'PhenoBox', a flexible, automated, open-source plant phenotyping solution.

    PubMed

    Czedik-Eysenberg, Angelika; Seitner, Sebastian; Güldener, Ulrich; Koemeda, Stefanie; Jez, Jakub; Colombini, Martin; Djamei, Armin

    2018-04-05

    There is a need for flexible and affordable plant phenotyping solutions for basic research and plant breeding. We demonstrate our open source plant imaging and processing solution ('PhenoBox'/'PhenoPipe') and provide construction plans, source code and documentation to rebuild the system. Use of the PhenoBox is exemplified by studying infection of the model grass Brachypodium distachyon by the head smut fungus Ustilago bromivora, comparing phenotypic responses of maize to infection with a solopathogenic Ustilago maydis (corn smut) strain and effector deletion strains, and studying salt stress response in Nicotiana benthamiana. In U. bromivora-infected grass, phenotypic differences between infected and uninfected plants were detectable weeks before qualitative head smut symptoms. Based on this, we could predict the infection outcome for individual plants with high accuracy. Using a PhenoPipe module for calculation of multi-dimensional distances from phenotyping data, we observe a time after infection-dependent impact of U. maydis effector deletion strains on phenotypic response in maize. The PhenoBox/PhenoPipe system is able to detect established salt stress responses in N. benthamiana. We have developed an affordable, automated, open source imaging and data processing solution that can be adapted to various phenotyping applications in plant biology and beyond. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. Yap1 Protein Regulates Vascular Smooth Muscle Cell Phenotypic Switch by Interaction with Myocardin*

    PubMed Central

    Xie, Changqing; Guo, Yanhong; Zhu, Tianqing; Zhang, Jifeng; Ma, Peter X.; Chen, Y. Eugene

    2012-01-01

    The Hippo-Yap (Yes-associated protein) signaling pathway has emerged as one of the critical pathways regulating cell proliferation, differentiation, and apoptosis in response to environmental and developmental cues. However, Yap1 roles in vascular smooth muscle cell (VSMC) biology have not been investigated. VSMCs undergo phenotypic switch, a process characterized by decreased gene expression of VSMC contractile markers and increased proliferation, migration, and matrix synthesis. The goals of the present studies were to investigate the relationship between Yap1 and VSMC phenotypic switch and to determine the molecular mechanisms by which Yap1 affects this essential process in VSMC biology. Results demonstrated that the expression of Yap1 was rapidly up-regulated by stimulation with PDGF-BB (a known inducer of phenotypic switch in VSMCs) and in the injured vessel wall. Knockdown of Yap1 impaired VSMC proliferation in vitro and enhanced the expression of VSMC contractile genes as well by increasing serum response factor binding to CArG-containing regions of VSMC-specific contractile genes within intact chromatin. Conversely, the interaction between serum response factor and its co-activator myocardin was reduced by overexpression of Yap1 in a dose-dependent manner. Taken together, these results indicate that down-regulation of Yap1 promotes VSMC contractile phenotype by both up-regulating myocardin expression and promoting the association of the serum response factor-myocardin complex with VSMC contractile gene promoters and suggest that the Yap1 signaling pathway is a central regulator of phenotypic switch of VSMCs. PMID:22411986

  10. Pheno-phenotypes: a holistic approach to the psychopathology of schizophrenia.

    PubMed

    Stanghellini, Giovanni; Rossi, Rodolfo

    2014-05-01

    Mental disorders are mainly characterized via symptom assessment. Symptoms are state-like macroscopic anomalies of behaviour, experience, and expression that are deemed relevant for diagnostic purposes. An alternative approach is based on the concept of endophenotypes, which are physiological or behavioural measures occupying the terrain between symptoms and risk genotypes. We will critically discuss these two approaches, and later focus on the concept of pheno-phenotype as it is revealed by recent phenomenological research on schizophrenia. Several studies have been recently published on the schizophrenic pheno-phenotype mainly addressing self-disorders, as well as disorders of time and bodily experience. The mainstream approach to psychopathological phenotypes is focussed on easy-to-assess operationalizable symptoms. Thinness of phenotypes and simplification of clinical constructs are the consequences of this. Also, this approach has not been successful in investigating the biological causes of mental disorders. An integrative approach is based on the concept of 'endophenotype'. Endophenotypes were conceptualized as a supportive tool for the genetic dissection of psychiatric disorders. The underlying rationale states that disease-specific phenotypes should be the upstream phenotypic manifestation of a smaller genotype than the whole disease-related genotype. Psychopathological phenotypes can also be characterized in terms of pheno-phenotypes. This approach aims at delineating the manifold phenomena experienced by patients in all of their concrete and distinctive features, so that the features of a pathological condition emerge, while preserving their peculiar feel, meaning, and value for the patient. Systematic explorations of anomalies in the patients' experience, for example, of time, space, body, self, and otherness, may provide a useful integration to the symptom-based and endophenotype-based approaches. These abnormal phenomena can be used as pointers to the

  11. Resolving an identity crisis: Implicit drinking identity and implicit alcohol identity are related but not the same.

    PubMed

    Ramirez, Jason J; Olin, Cecilia C; Lindgren, Kristen P

    2017-09-01

    Two variations of the Implicit Association Test (IAT), the Drinking Identity IAT and the Alcohol Identity IAT, assess implicit associations held in memory between one's identity and alcohol-related constructs. Both have been shown to predict numerous drinking outcomes, but these IATs have never been directly compared to one another. The purpose of this study was to compare these IATs and evaluate their incremental predictive validity. US undergraduate students (N=64, 50% female, mean age=21.98years) completed the Drinking Identity IAT, the Alcohol Identity IAT, an explicit measure of drinking identity, as well as measures of typical alcohol consumption and hazardous drinking. When evaluated in separate regression models that controlled for explicit drinking identity, results indicated that the Drinking Identity IAT and the Alcohol Identity IAT were significant, positive predictors of typical alcohol consumption, and that the Drinking Identity IAT, but not the Alcohol Identity IAT, was a significant predictor of hazardous drinking. When evaluated in the same regression models, the Drinking Identity IAT, but not the Alcohol Identity IAT, was significantly associated with typical and hazardous drinking. These results suggest that the Drinking Identity IAT and Alcohol Identity IAT are related but not redundant. Moreover, given that the Drinking Identity IAT, but not the Alcohol Identity IAT, incrementally predicted variance in drinking outcomes, identification with drinking behavior and social groups, as opposed to identification with alcohol itself, may be an especially strong predictor of drinking outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Epistasis and Pleiotropy Affect the Modularity of the Genotype-Phenotype Map of Cross-Resistance in HIV-1.

    PubMed

    Polster, Robert; Petropoulos, Christos J; Bonhoeffer, Sebastian; Guillaume, Frédéric

    2016-12-01

    The genotype-phenotype (GP) map is a central concept in evolutionary biology as it describes the mapping of molecular genetic variation onto phenotypic trait variation. Our understanding of that mapping remains partial, especially when trying to link functional clustering of pleiotropic gene effects with patterns of phenotypic trait co-variation. Only on rare occasions have studies been able to fully explore that link and tend to show poor correspondence between modular structures within the GP map and among phenotypes. By dissecting the structure of the GP map of the replicative capacity of HIV-1 in 15 drug environments, we provide a detailed view of that mapping from mutational pleiotropic variation to phenotypic co-variation, including epistatic effects of a set of amino-acid substitutions in the reverse transcriptase and protease genes. We show that epistasis increases the pleiotropic degree of single mutations and provides modularity to the GP map of drug resistance in HIV-1. Moreover, modules of epistatic pleiotropic effects within the GP map match the phenotypic modules of correlated replicative capacity among drug classes. Epistasis thus increases the evolvability of cross-resistance in HIV by providing more drug- and class-specific pleiotropic profiles to the main effects of the mutations. We discuss the implications for the evolution of cross-resistance in HIV. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Complete androgen insensitivity syndrome associated with male gender identity or female precocious puberty in the same family.

    PubMed

    Bermúdez de la Vega, José A; Fernández-Cancio, Mónica; Bernal, Susana; Audí, Laura

    2015-01-01

    In 4 complete androgen insensitivity syndrome (CAIS) members of one family, 2 presented extreme and unusual clinical features: male gender identity disorder (case 1) and female precocious central puberty (case 2). The AR gene carried the mutation c.1752C>G, p.Phe584Leu. Gender dysphoria in CAIS may be considered as a true transgender and has been described in 3 other cases. Central precocious puberty has only been described in 1 case; Müllerian ducts in case 2 permitted menarche. Despite the common CAIS phenotype, there was a familial disparity for gender identity adequacy and timing and type of puberty.

  14. Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state.

    PubMed

    Ge, Hao; Wu, Pingping; Qian, Hong; Xie, Xiaoliang Sunney

    2018-03-01

    Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional "variations" among genetically identical cells, for the emergence of bistability and

  15. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    PubMed

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-02

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudomonas biovars.

    PubMed Central

    Johnsen, K; Andersen, S; Jacobsen, C S

    1996-01-01

    A total of 41 phenanthrene degraders were isolated from a former coal gasification site by using Pseudomonas-selective Gould's S1 medium. All isolates were found to belong to the fluorescent Pseudomonas group and were subjected to characterization by phenotypic methods, including classical taxonomic tests, API 20NE, and Biolog GN, and the strains were further characterized by the genotypic method repetitive extragenic palindromic PCR (REP-PCR). By using classical tests, the population was found to consist of 38 strains belonging to P. fluorescens, 2 P. putida strains, and 1 Pseudomonas sp. Bacteria in phenograms from Biolog GN and REP-PCR data were divided into groups, which were in good agreement with classical test and API 20NE results. We found a nonfluorescent group of 22 bacteria inconsistent with any Pseudomonas sp. in Bergey's Manual of Systematic Bacteriology. The group showed small differences in the genotypic test, indicating that all 22 isolates were not recent clones of the same isolate. Analyses of the nonfluorescent group indicated that it belonged to Pseudomonas, but the group could not be affiliated with P. fluorescens because of differences in DNA-DNA hybridization. Identifications using classical tests and API 20NE were found to correlate, but Biolog GN identifications after 24-h incubation resulted very often in the distantly related P. corrugata. The reproducibilities of individual tests of each phenotypic method were assessed, and low reproducibilities were mainly found to be associated with specific Biolog GN test wells. Classical tests and API 20NE proved to be the best for identification of isolates, whereas Biolog GN and REP-PCR were found to be the best tests for high resolution among these closely related isolates. PMID:8837438

  17. [Womanhood today--identity experiences and identity crises].

    PubMed

    Kast, V

    1985-01-01

    Modern women's identity crises and the various possibilities of identification along the way towards a new identity can be seen as her attempts to develop out of the depressive situation that her once normal role identity had, to a large extent, placed her in. Under this aspect, even concepts of living that are seen by many to be problematic can be justified as leading along the way towards identity, which is so essential for human relationships and interpersonal empathy.

  18. Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?

    PubMed Central

    Carneiro, Renê Gonçalves da Silva; Pacheco, Priscilla; Isaias, Rosy Mary dos Santos

    2015-01-01

    Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum - N. cattleianum, and P. myrtoides - N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs) and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs) that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities. PMID:26053863

  19. The next step in biology: a periodic table?

    PubMed

    Dhar, Pawan K

    2007-08-01

    Systems biology is an approach to explain the behaviour of a system in relation to its individual components. Synthetic biology uses key hierarchical and modular concepts of systems biology to engineer novel biological systems. In my opinion the next step in biology is to use molecule-to-phenotype data using these approaches and integrate them in the form a periodic table. A periodic table in biology would provide chassis to classify, systematize and compare diversity of component properties vis-a-vis system behaviour. Using periodic table it could be possible to compute higher- level interactions from component properties. This paper examines the concept of building a bio-periodic table using protein fold as the fundamental unit.

  20. Mathematical modeling of atopic dermatitis reveals "double-switch" mechanisms underlying 4 common disease phenotypes.

    PubMed

    Domínguez-Hüttinger, Elisa; Christodoulides, Panayiotis; Miyauchi, Kosuke; Irvine, Alan D; Okada-Hatakeyama, Mariko; Kubo, Masato; Tanaka, Reiko J

    2017-06-01

    The skin barrier acts as the first line of defense against constant exposure to biological, microbial, physical, and chemical environmental stressors. Dynamic interplay between defects in the skin barrier, dysfunctional immune responses, and environmental stressors are major factors in the development of atopic dermatitis (AD). A systems biology modeling approach can yield significant insights into these complex and dynamic processes through integration of prior biological data. We sought to develop a multiscale mathematical model of AD pathogenesis that describes the dynamic interplay between the skin barrier, environmental stress, and immune dysregulation and use it to achieve a coherent mechanistic understanding of the onset, progression, and prevention of AD. We mathematically investigated synergistic effects of known genetic and environmental risk factors on the dynamic onset and progression of the AD phenotype, from a mostly asymptomatic mild phenotype to a severe treatment-resistant form. Our model analysis identified a "double switch," with 2 concatenated bistable switches, as a key network motif that dictates AD pathogenesis: the first switch is responsible for the reversible onset of inflammation, and the second switch is triggered by long-lasting or frequent activation of the first switch, causing irreversible onset of systemic T H 2 sensitization and worsening of AD symptoms. Our mathematical analysis of the bistable switch predicts that genetic risk factors decrease the threshold of environmental stressors to trigger systemic T H 2 sensitization. This analysis predicts and explains 4 common clinical AD phenotypes from a mild and reversible phenotype through to severe and recalcitrant disease and provides a mechanistic explanation for clinically demonstrated preventive effects of emollient treatments against development of AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Masculinity, male development, gender, and identity: modern and postmodern meanings.

    PubMed

    Phillips, Debby A

    2006-05-01

    Modern and postmodern scholars are addressing the crisis in masculinity by questioning the meaning of masculinity and by rethinking masculinity, male development, gender, and identity. This article explicates current modern humanist positions and postmodern positions on these topics. The first section summarizes contemporary theories advanced by scholars in the relatively new discipline of men's studies. The second section presents postmodern positions exploring sex as a biological given, the emerging critiques of differentiating sex and gender, and poststructural psychoanalytic positions on simultaneous production of individual subjectivity (sense of self), masculine identity, and society. Implications of these perspectives are identified.

  2. Phenotypes on demand via switchable target protein degradation in multicellular organisms

    PubMed Central

    Faden, Frederik; Ramezani, Thomas; Mielke, Stefan; Almudi, Isabel; Nairz, Knud; Froehlich, Marceli S.; Höckendorff, Jörg; Brandt, Wolfgang; Hoehenwarter, Wolfgang; Dohmen, R. Jürgen; Schnittger, Arp; Dissmeyer, Nico

    2016-01-01

    Phenotypes on-demand generated by controlling activation and accumulation of proteins of interest are invaluable tools to analyse and engineer biological processes. While temperature-sensitive alleles are frequently used as conditional mutants in microorganisms, they are usually difficult to identify in multicellular species. Here we present a versatile and transferable, genetically stable system based on a low-temperature-controlled N-terminal degradation signal (lt-degron) that allows reversible and switch-like tuning of protein levels under physiological conditions in vivo. Thereby, developmental effects can be triggered and phenotypes on demand generated. The lt-degron was established to produce conditional and cell-type-specific phenotypes and is generally applicable in a wide range of organisms, from eukaryotic microorganisms to plants and poikilothermic animals. We have successfully applied this system to control the abundance and function of transcription factors and different enzymes by tunable protein accumulation. PMID:27447739

  3. Organelles – understanding noise and heterogeneity in cell biology at an intermediate scale

    PubMed Central

    Chang, Amy Y.

    2017-01-01

    ABSTRACT Many studies over the years have shown that non-genetic mechanisms for producing cell-to-cell variation can lead to highly variable behaviors across genetically identical populations of cells. Most work to date has focused on gene expression noise as the primary source of phenotypic heterogeneity, yet other sources may also contribute. In this Commentary, we explore organelle-level heterogeneity as a potential secondary source of cellular ‘noise’ that contributes to phenotypic heterogeneity. We explore mechanisms for generating organelle heterogeneity and present evidence of functional links between organelle morphology and cellular behavior. Given the many instances in which molecular-level heterogeneity has been linked to phenotypic heterogeneity, we posit that organelle heterogeneity may similarly contribute to overall phenotypic heterogeneity and underline the importance of studying organelle heterogeneity to develop a more comprehensive understanding of phenotypic heterogeneity. Finally, we conclude with a discussion of the medical challenges associated with phenotypic heterogeneity and outline how improved methods for characterizing and controlling this heterogeneity may lead to improved therapeutic strategies and outcomes for patients. PMID:28183729

  4. Longitudinal studies on maternal HIV-1 variants by biological phenotyping, sequence analysis and viral load.

    PubMed

    Renta, J Y; Cadilla, C L; Vega, M E; Hillyer, G V; Estrada, C; Jiménez, E; Abreu, E; Méndez, I; Gandía, J; Meléndez-Guerrero, L M

    1997-11-01

    In this study, the HIV-1 variant viruses from ten pregnant women and their infants were isolated and characterized longitudinally in order to determine the role that viral envelope (gp120-V3 loop) gene variation and viral tropism play in vertical transmission. Biological phenotyping of each HIV variant was accomplished by growth in MT-2, and macrophages from healthy and non-HIV-infected donors. Genetic characterization of the variants was accomplished by DNA sequence analysis. All the women enrolled in this study received ZDV therapy. Virus was cultured from eight out of ten env V3-PCR positive mothers. HIV-1 isolates were all non-syncitium inducing variants. None of the mothers were found to transmit HIV, as determined by DNA PCR and quantitative co-cultures on their infants which were seronegative for HIV-1 through one year after birth. Viral cultures from infant blood samples were negative and infants were all healthy. However, nested env V3-PCR detected proviral DNA in five out of ten infants. In contrast, conventional gag-PCR was negative in the same five infants. Sequences of the five maternal-infant pairs were different, suggesting unique infant HIV-1 variants. The three highest maternal viral load values corresponded to infants that were env V3-PCR positive. These results suggest that HIV-1 particles are transmitted from ZDV-treated mothers to infants. Infant follow up is recommended to determine if HIV-1 has been inhibited by the immune system of the infants.

  5. Moving beyond a descriptive aquatic toxicology: the value of biological process and trait information.

    PubMed

    Segner, Helmut

    2011-10-01

    In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor. 2011 Elsevier B.V. All rights reserved.

  6. Social traits, social networks and evolutionary biology.

    PubMed

    Fisher, D N; McAdam, A G

    2017-12-01

    effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  7. Coming out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    ERIC Educational Resources Information Center

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual,…

  8. Culture and biology in the origins of linguistic structure.

    PubMed

    Kirby, Simon

    2017-02-01

    Language is systematically structured at all levels of description, arguably setting it apart from all other instances of communication in nature. In this article, I survey work over the last 20 years that emphasises the contributions of individual learning, cultural transmission, and biological evolution to explaining the structural design features of language. These 3 complex adaptive systems exist in a network of interactions: individual learning biases shape the dynamics of cultural evolution; universal features of linguistic structure arise from this cultural process and form the ultimate linguistic phenotype; the nature of this phenotype affects the fitness landscape for the biological evolution of the language faculty; and in turn this determines individuals' learning bias. Using a combination of computational simulation, laboratory experiments, and comparison with real-world cases of language emergence, I show that linguistic structure emerges as a natural outcome of cultural evolution once certain minimal biological requirements are in place.

  9. The Secret Identity of Science Education: Masculine and Politically Conservative?

    ERIC Educational Resources Information Center

    Lemke, Jay

    2011-01-01

    This response to Jesse Bazzul and Heather Sykes' paper, "The secret identity of a biology textbook: straight and naturally sexed," explores their critiques of textbooks and curricula that authoritatively present scientific accounts of the natural world without engaging students in critical thinking. It proposes that we need to go beyond such…

  10. The structure of a gene co-expression network reveals biological functions underlying eQTLs.

    PubMed

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology.

  11. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability

    PubMed Central

    Kirby, Jacqueline C; Speltz, Peter; Rasmussen, Luke V; Basford, Melissa; Gottesman, Omri; Peissig, Peggy L; Pacheco, Jennifer A; Tromp, Gerard; Pathak, Jyotishman; Carrell, David S; Ellis, Stephen B; Lingren, Todd; Thompson, Will K; Savova, Guergana; Haines, Jonathan; Roden, Dan M; Harris, Paul A

    2016-01-01

    Objective Health care generated data have become an important source for clinical and genomic research. Often, investigators create and iteratively refine phenotype algorithms to achieve high positive predictive values (PPVs) or sensitivity, thereby identifying valid cases and controls. These algorithms achieve the greatest utility when validated and shared by multiple health care systems. Materials and Methods We report the current status and impact of the Phenotype KnowledgeBase (PheKB, http://phekb.org), an online environment supporting the workflow of building, sharing, and validating electronic phenotype algorithms. We analyze the most frequent components used in algorithms and their performance at authoring institutions and secondary implementation sites. Results As of June 2015, PheKB contained 30 finalized phenotype algorithms and 62 algorithms in development spanning a range of traits and diseases. Phenotypes have had over 3500 unique views in a 6-month period and have been reused by other institutions. International Classification of Disease codes were the most frequently used component, followed by medications and natural language processing. Among algorithms with published performance data, the median PPV was nearly identical when evaluated at the authoring institutions (n = 44; case 96.0%, control 100%) compared to implementation sites (n = 40; case 97.5%, control 100%). Discussion These results demonstrate that a broad range of algorithms to mine electronic health record data from different health systems can be developed with high PPV, and algorithms developed at one site are generally transportable to others. Conclusion By providing a central repository, PheKB enables improved development, transportability, and validity of algorithms for research-grade phenotypes using health care generated data. PMID:27026615

  12. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes.

    PubMed

    Kayser, Manfred

    2015-09-01

    Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or unknown deceased (missing) persons, directly from biological materials found at the scene. "Biological witness" outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of DNA marks a substantially different forensic use of genetic material rather than that of current DNA profiling presented in the courtroom. Currently, group-specific pigmentation traits are already predictable from DNA with reasonably high accuracies, while several other externally visible characteristics are under genetic investigation. Until individual-specific appearance becomes accurately predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much) smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the crime scene stain or from the deceased person's remains. Provided sufficient funding being made available, future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Spectrum of phenotypic anomalies in four families with deletion of the SHOX enhancer region.

    PubMed

    Gatta, Valentina; Palka, Chiara; Chiavaroli, Valentina; Franchi, Sara; Cannataro, Giovanni; Savastano, Massimo; Cotroneo, Antonio Raffaele; Chiarelli, Francesco; Mohn, Angelika; Stuppia, Liborio

    2014-07-23

    SHOX alterations have been reported in 67% of patients affected by Léri-Weill dyschondrosteosis (LWD), with a larger prevalence of gene deletions than point mutations. It has been recently demonstrated that these deletions can involve the SHOX enhancer region, rather that the coding region, with variable phenotype of the affected patients.Here, we report a SHOX gene analysis carried out by MLPA in 14 LWD patients from 4 families with variable phenotype. All patients presented a SHOX enhancer deletion. In particular, a patient with a severe bilateral Madelung deformity without short stature showed a homozygous alteration identical to the recently described 47.5 kb PAR1 deletion. Moreover, we identified, for the first time, in three related patients with a severe bilateral Madelung deformity, a smaller deletion than the 47.5 kb PAR1 deletion encompassing the same enhancer region (ECR1/CNE7). Data reported in this study provide new information about the spectrum of phenotypic alterations showed by LWD patients with different deletions of the SHOX enhancer region.

  14. Spectrum of phenotypic anomalies in four families with deletion of the SHOX enhancer region

    PubMed Central

    2014-01-01

    Background SHOX alterations have been reported in 67% of patients affected by Léri-Weill dyschondrosteosis (LWD), with a larger prevalence of gene deletions than point mutations. It has been recently demonstrated that these deletions can involve the SHOX enhancer region, rather that the coding region, with variable phenotype of the affected patients. Here, we report a SHOX gene analysis carried out by MLPA in 14 LWD patients from 4 families with variable phenotype. Case presentation All patients presented a SHOX enhancer deletion. In particular, a patient with a severe bilateral Madelung deformity without short stature showed a homozygous alteration identical to the recently described 47.5 kb PAR1 deletion. Moreover, we identified, for the first time, in three related patients with a severe bilateral Madelung deformity, a smaller deletion than the 47.5 kb PAR1 deletion encompassing the same enhancer region (ECR1/CNE7). Conclusions Data reported in this study provide new information about the spectrum of phenotypic alterations showed by LWD patients with different deletions of the SHOX enhancer region. PMID:25056248

  15. Synthetic biology: Emerging bioengineering in Indonesia

    NASA Astrophysics Data System (ADS)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  16. Phenotypic and genotypic characteristics of Trueperella pyogenes isolated from ruminants.

    PubMed

    Rogovskyy, Artem S; Lawhon, Sara; Kuczmanski, Kathryn; Gillis, David C; Wu, Jing; Hurley, Helen; Rogovska, Yuliya V; Konganti, Kranti; Yang, Ching-Yuan; Duncan, Kay

    2018-05-01

    Trueperella pyogenes is an opportunistic pathogen that causes suppurative infections in animals including humans. Data on phenotypic and genotypic properties of T. pyogenes isolated from ruminants, particularly goats and sheep, are lacking. We characterized, by phenotypic and genotypic means, T. pyogenes of caprine and ovine origin, and established their phylogenetic relationship with isolates from other ruminants. T. pyogenes isolates ( n = 50) from diagnostic specimens of bovine ( n = 25), caprine ( n = 19), and ovine ( n = 6) origin were analyzed. Overall, variable biochemical activities were observed among the T. pyogenes isolates. The fimbriae-encoding gene, fimE, and neuraminidase-encoding gene, nanH, were, respectively, more frequently detected in the large ( p = 0.0006) and small ( p = 0.0001) ruminant isolates. Moreover, genotype V ( plo/ nanH/ nanP/ fimA/ fimC) was only detected in the caprine and ovine isolates, whereas genotype IX ( plo/ nanP/ fimA/ fimC/ fimE) was solely present in the isolates of bovine origin ( p = 0.0223). The 16S rRNA gene sequences of all T. pyogenes isolates were clustered with the reference T. pyogenes strain ATCC 19411 and displayed a high degree of identity to each other. Our results highlight phenotypic and genotypic diversity among ruminant isolates of T. pyogenes and reinforce the importance of characterization of more clinical isolates to better understand the pathogenesis of this bacterium in different animal species.

  17. Beyond the Central Dogma: Model-Based Learning of How Genes Determine Phenotypes

    ERIC Educational Resources Information Center

    Reinagel, Adam; Speth, Elena Bray

    2016-01-01

    In an introductory biology course, we implemented a learner-centered, model-based pedagogy that frequently engaged students in building conceptual models to explain how genes determine phenotypes. Model-building tasks were incorporated within case studies and aimed at eliciting students' understanding of 1) the origin of variation in a population…

  18. Metabolomics: Definitions and Significance in Systems Biology.

    PubMed

    Klassen, Aline; Faccio, Andréa Tedesco; Canuto, Gisele André Baptista; da Cruz, Pedro Luis Rocha; Ribeiro, Henrique Caracho; Tavares, Marina Franco Maggi; Sussulini, Alessandra

    2017-01-01

    Nowadays, there is a growing interest in deeply understanding biological mechanisms not only at the molecular level (biological components) but also the effects of an ongoing biological process in the organism as a whole (biological functionality), as established by the concept of systems biology. Within this context, metabolomics is one of the most powerful bioanalytical strategies that allow obtaining a picture of the metabolites of an organism in the course of a biological process, being considered as a phenotyping tool. Briefly, metabolomics approach consists in identifying and determining the set of metabolites (or specific metabolites) in biological samples (tissues, cells, fluids, or organisms) under normal conditions in comparison with altered states promoted by disease, drug treatment, dietary intervention, or environmental modulation. The aim of this chapter is to review the fundamentals and definitions used in the metabolomics field, as well as to emphasize its importance in systems biology and clinical studies.

  19. Increased entropy of signal transduction in the cancer metastasis phenotype.

    PubMed

    Teschendorff, Andrew E; Severini, Simone

    2010-07-30

    The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may predispose the tumour to metastasize. These results

  20. SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments.

    PubMed

    Jessen, Leon Eyrich; Hoof, Ilka; Lund, Ole; Nielsen, Morten

    2013-07-01

    Identifying which mutation(s) within a given genotype is responsible for an observable phenotype is important in many aspects of molecular biology. Here, we present SigniSite, an online application for subgroup-free residue-level genotype-phenotype correlation. In contrast to similar methods, SigniSite does not require any pre-definition of subgroups or binary classification. Input is a set of protein sequences where each sequence has an associated real number, quantifying a given phenotype. SigniSite will then identify which amino acid residues are significantly associated with the data set phenotype. As output, SigniSite displays a sequence logo, depicting the strength of the phenotype association of each residue and a heat-map identifying 'hot' or 'cold' regions. SigniSite was benchmarked against SPEER, a state-of-the-art method for the prediction of specificity determining positions (SDP) using a set of human immunodeficiency virus protease-inhibitor genotype-phenotype data and corresponding resistance mutation scores from the Stanford University HIV Drug Resistance Database, and a data set of protein families with experimentally annotated SDPs. For both data sets, SigniSite was found to outperform SPEER. SigniSite is available at: http://www.cbs.dtu.dk/services/SigniSite/.

  1. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy

    PubMed Central

    Tyler, Anna L.; Asselbergs, Folkert W.; Williams, Scott M.; Moore, Jason H.

    2011-01-01

    Pleiotropy, in which one mutation causes multiple phenotypes, has traditionally been seen as a deviation from the conventional observation in which one gene affects one phenotype. Epistasis, or gene-gene interaction, has also been treated as an exception to the Mendelian one gene-one phenotype paradigm. This simplified perspective belies the pervasive complexity of biology and hinders progress toward a deeper understanding of biological systems. We assert that epistasis and pleiotropy are not isolated occurrences, but ubiquitous and inherent properties of biomolecular networks. These phenomena should not be treated as exceptions, but rather as fundamental components of genetic analyses. A systems level understanding of epistasis and pleiotropy is, therefore, critical to furthering our understanding of human genetics and its contribution to common human disease. Finally, graph theory offers an intuitive and powerful set of tools with which to study the network bases of these important genetic phenomena. PMID:19204994

  2. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    PubMed

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2018-03-01

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  3. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.

    PubMed

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza

    2017-02-01

    Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Finding novel pharmaceuticals in the systems biology era using multiple effective drug targets, phenotypic screening and knowledge of transporters: where drug discovery went wrong and how to fix it.

    PubMed

    Kell, Douglas B

    2013-12-01

    Despite the sequencing of the human genome, the rate of innovative and successful drug discovery in the pharmaceutical industry has continued to decrease. Leaving aside regulatory matters, the fundamental and interlinked intellectual issues proposed to be largely responsible for this are: (a) the move from 'function-first' to 'target-first' methods of screening and drug discovery; (b) the belief that successful drugs should and do interact solely with single, individual targets, despite natural evolution's selection for biochemical networks that are robust to individual parameter changes; (c) an over-reliance on the rule-of-5 to constrain biophysical and chemical properties of drug libraries; (d) the general abandoning of natural products that do not obey the rule-of-5; (e) an incorrect belief that drugs diffuse passively into (and presumably out of) cells across the bilayers portions of membranes, according to their lipophilicity; (f) a widespread failure to recognize the overwhelmingly important role of proteinaceous transporters, as well as their expression profiles, in determining drug distribution in and between different tissues and individual patients; and (g) the general failure to use engineering principles to model biology in parallel with performing 'wet' experiments, such that 'what if?' experiments can be performed in silico to assess the likely success of any strategy. These facts/ideas are illustrated with a reasonably extensive literature review. Success in turning round drug discovery consequently requires: (a) decent systems biology models of human biochemical networks; (b) the use of these (iteratively with experiments) to model how drugs need to interact with multiple targets to have substantive effects on the phenotype; (c) the adoption of polypharmacology and/or cocktails of drugs as a desirable goal in itself; (d) the incorporation of drug transporters into systems biology models, en route to full and multiscale systems biology models that

  5. Circadian Phenotype Composition is a Major Predictor of Diurnal Physical Performance in Teams.

    PubMed

    Facer-Childs, Elise; Brandstaetter, Roland

    2015-01-01

    Team performance is a complex phenomenon involving numerous influencing factors including physiology, psychology, and management. Biological rhythms and the impact of circadian phenotype have not been studied for their contribution to this array of factors so far despite our knowledge of the circadian regulation of key physiological processes involved in physical and mental performance. This study involved 216 individuals from 12 different teams who were categorized into circadian phenotypes using the novel RBUB chronometric test. The composition of circadian phenotypes within each team was used to model predicted daily team performance profiles based on physical performance tests. Our results show that the composition of circadian phenotypes within teams is variable and unpredictable. Predicted physical peak performance ranged from 1:52 to 8:59 p.m. with performance levels fluctuating by up to 14.88% over the course of the day. The major predictor for peak performance time in the course of a day in a team is the occurrence of late circadian phenotypes. We conclude that circadian phenotype is a performance indicator in teams that allows new insight and a better understanding of team performance variation in the course of a day as often observed in different groupings of individuals.

  6. Circadian Phenotype Composition is a Major Predictor of Diurnal Physical Performance in Teams

    PubMed Central

    Facer-Childs, Elise; Brandstaetter, Roland

    2015-01-01

    Team performance is a complex phenomenon involving numerous influencing factors including physiology, psychology, and management. Biological rhythms and the impact of circadian phenotype have not been studied for their contribution to this array of factors so far despite our knowledge of the circadian regulation of key physiological processes involved in physical and mental performance. This study involved 216 individuals from 12 different teams who were categorized into circadian phenotypes using the novel RBUB chronometric test. The composition of circadian phenotypes within each team was used to model predicted daily team performance profiles based on physical performance tests. Our results show that the composition of circadian phenotypes within teams is variable and unpredictable. Predicted physical peak performance ranged from 1:52 to 8:59 p.m. with performance levels fluctuating by up to 14.88% over the course of the day. The major predictor for peak performance time in the course of a day in a team is the occurrence of late circadian phenotypes. We conclude that circadian phenotype is a performance indicator in teams that allows new insight and a better understanding of team performance variation in the course of a day as often observed in different groupings of individuals. PMID:26483754

  7. Biophysics and systems biology.

    PubMed

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  8. Biophysics and systems biology

    PubMed Central

    Noble, Denis

    2010-01-01

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights. PMID:20123750

  9. CpG island methylation phenotype (CIMP) in oral cancer: associated with a marked inflammatory response and less aggressive tumour biology.

    PubMed

    Shaw, Richard J; Hall, Gillian L; Lowe, Derek; Bowers, Naomi L; Liloglou, Triantafillos; Field, John K; Woolgar, Julia A; Risk, Janet M

    2007-10-01

    Studies in several tumour sites highlight the significance of the CpG island methylation phenotype (CIMP), with distinct features of histology, biological aggression and outcome. We utilise pyrosequencing techniques of quantitative methylation analysis to investigate the presence of CIMP in oral squamous cell carcinoma (OSCC) for the first time, and evaluate its correlation with allelic imbalance, pathology and clinical behaviour. Tumour tissue, control tissue and PBLs were obtained from 74 patients with oral squamous cell carcinoma. Pyrosequencing was used to analyse methylation patterns in 75-200 bp regions of the CpG rich gene promoters of 10 genes with a broad range of cellular functions. Allelic imbalance was investigated using a multiplexed panel of 11 microsatellite markers. Corresponding variables, histopathological staging and grading were correlated with these genetic and epigenetic aberrations. A cluster of tumours with a greater degree of promoter methylation than would be predicted by chance alone (P=0.001) were designated CIMP+ve. This group had less aggressive tumour biology in terms of tumour thickness (p=0.015) and nodal metastasis (P=0.012), this being apparently independent of tumour diameter. Further, it seems that these CIMP+ve tumours excited a greater host inflammatory response (P=0.019). The exact mechanisms underlying CIMP remain obscure but the association with a greater inflammatory host response supports existing theories relating these features in other tumour sites. As CIMP has significant associations with other well documented prognostic indicators, it may prove beneficial to include methylation analyses in molecular risk modelling of tumours.

  10. A Convenient Dichotomy: Critical Eyes on the Limits to Biological Knowledge

    ERIC Educational Resources Information Center

    Milne, Catherine

    2011-01-01

    In "The Secret Identity of a Biology Textbook: straight and naturally sexed," Jesse Bazzul and Heather Sykes conduct a case study of a biology textbook as an oppressive instructional material. Using queer theory they explore how the text of the biology textbook produces "truths" about sex, gender, and sexuality. Their analysis is complemented by…

  11. A Summary of the Biological Basis of Frailty.

    PubMed

    Fielding, Roger A

    2015-01-01

    Frailty has been defined as a geriatric syndrome that is characterized by a reduction in the physiological reserve required for an individual to respond to endogenous and exogenous stressors. Using a discrete definition of frailty that includes sedentariness, involuntary weight loss, fatigue, poor muscle strength, and slow gait speed, 'frailty' has been associated with increased disability, postsurgical complications, and increased mortality. Despite the strong associations between frailty and subsequent poor outcomes, limited attention to this common geriatric condition has been paid in clinical settings. A more fundamental basic understanding of the biological factors that contribute to the frailty phenotype has begun to emerge. Multiple underlying biological factors such as dysregulation of inflammatory processes, genomic instability, oxidative stress, mitochondrial dysfunction, and cellular senescence appear to contribute to the clinical presentation of frailty. This chapter summarizes the papers presented on the biological basis of frailty from the 83rd Nestlé Nutrition Institute Workshop on 'Frailty, Pathophysiology, Phenotype and Patient Care' held in Barcelona, Spain, in March 2014. © 2015 Nestec Ltd., Vevey/S. Karger AG, Basel.

  12. Phenotypic switching of populations of cells in a stochastic environment

    NASA Astrophysics Data System (ADS)

    Hufton, Peter G.; Lin, Yen Ting; Galla, Tobias

    2018-02-01

    In biology phenotypic switching is a common bet-hedging strategy in the face of uncertain environmental conditions. Existing mathematical models often focus on periodically changing environments to determine the optimal phenotypic response. We focus on the case in which the environment switches randomly between discrete states. Starting from an individual-based model we derive stochastic differential equations to describe the dynamics, and obtain analytical expressions for the mean instantaneous growth rates based on the theory of piecewise-deterministic Markov processes. We show that optimal phenotypic responses are non-trivial for slow and intermediate environmental processes, and systematically compare the cases of periodic and random environments. The best response to random switching is more likely to be heterogeneity than in the case of deterministic periodic environments, net growth rates tend to be higher under stochastic environmental dynamics. The combined system of environment and population of cells can be interpreted as host-pathogen interaction, in which the host tries to choose environmental switching so as to minimise growth of the pathogen, and in which the pathogen employs a phenotypic switching optimised to increase its growth rate. We discuss the existence of Nash-like mutual best-response scenarios for such host-pathogen games.

  13. Droplet microfluidics for synthetic biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gach, Philip Charles; Iwai, Kosuke; Kim, Peter Wonhee

    Here, synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to mostmore » researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.« less

  14. Droplet microfluidics for synthetic biology

    DOE PAGES

    Gach, Philip Charles; Iwai, Kosuke; Kim, Peter Wonhee; ...

    2017-08-10

    Here, synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to mostmore » researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.« less

  15. The cross-sectional GRAS sample: A comprehensive phenotypical data collection of schizophrenic patients

    PubMed Central

    2010-01-01

    Background Schizophrenia is the collective term for an exclusively clinically diagnosed, heterogeneous group of mental disorders with still obscure biological roots. Based on the assumption that valuable information about relevant genetic and environmental disease mechanisms can be obtained by association studies on patient cohorts of ≥ 1000 patients, if performed on detailed clinical datasets and quantifiable biological readouts, we generated a new schizophrenia data base, the GRAS (Göttingen Research Association for Schizophrenia) data collection. GRAS is the necessary ground to study genetic causes of the schizophrenic phenotype in a 'phenotype-based genetic association study' (PGAS). This approach is different from and complementary to the genome-wide association studies (GWAS) on schizophrenia. Methods For this purpose, 1085 patients were recruited between 2005 and 2010 by an invariable team of traveling investigators in a cross-sectional field study that comprised 23 German psychiatric hospitals. Additionally, chart records and discharge letters of all patients were collected. Results The corresponding dataset extracted and presented in form of an overview here, comprises biographic information, disease history, medication including side effects, and results of comprehensive cross-sectional psychopathological, neuropsychological, and neurological examinations. With >3000 data points per schizophrenic subject, this data base of living patients, who are also accessible for follow-up studies, provides a wide-ranging and standardized phenotype characterization of as yet unprecedented detail. Conclusions The GRAS data base will serve as prerequisite for PGAS, a novel approach to better understanding 'the schizophrenias' through exploring the contribution of genetic variation to the schizophrenic phenotypes. PMID:21067598

  16. Applications of CRISPR Genome Engineering in Cell Biology

    PubMed Central

    Wang, Fangyuan; Qi, Lei S.

    2016-01-01

    Recent advances in genome engineering are starting a revolution in biological research and translational applications. The CRISPR-associated RNA-guided endonuclease Cas9 and its variants enable diverse manipulations of genome function. In this review, we describe the development of Cas9 tools for a variety of applications in cell biology research, including the study of functional genomics, the creation of transgenic animal models, and genomic imaging. Novel genome engineering methods offer a new avenue to understand the causality between genome and phenotype, thus promising a fuller understanding of cell biology. PMID:27599850

  17. Phenological shifts in North American red squirrels: disentangling the roles of phenotypic plasticity and microevolution.

    PubMed

    Lane, Jeffrey E; McAdam, Andrew G; McFarlane, S Eryn; Williams, Cory T; Humphries, Murray M; Coltman, David W; Gorrell, Jamieson C; Boutin, Stan

    2018-06-01

    Phenological shifts are the most widely reported ecological responses to climate change, but the requirements to distinguish their causes (i.e. phenotypic plasticity vs. microevolution) are rarely met. To do so, we analysed almost two decades of parturition data from a wild population of North American red squirrels (Tamiasciurus hudsonicus). Although an observed advance in parturition date during the first decade provided putative support for climate change-driven microevolution, a closer look revealed a more complex pattern. Parturition date was heritable [h 2  = 0.14 (0.07-0.21 (HPD interval)] and under phenotypic selection [β = -0.14 ± 0.06 (SE)] across the full study duration. However, the early advance reversed in the second decade. Further, selection did not act on the genetic contribution to variation in parturition date, and observed changes in predicted breeding values did not exceed those expected due to genetic drift. Instead, individuals responded plastically to environmental variation, and high food [white spruce (Picea glauca) seed] production in the first decade appears to have produced a plastic advance. In addition, there was little evidence of climate change affecting the advance, as there was neither a significant influence of spring temperature on parturition date or evidence of a change in spring temperatures across the study duration. Heritable traits not responding to selection in accordance with quantitative genetic predictions have long presented a puzzle to evolutionary ecologists. Our results on red squirrels provide empirical support for one potential solution: phenotypic selection arising from an environmental, as opposed to genetic, covariance between the phenotypic trait and annual fitness. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  18. Atomic force microscopy captures length phenotypes in single proteins

    PubMed Central

    Carrion-Vazquez, Mariano; Marszalek, Piotr E.; Oberhauser, Andres F.; Fernandez, Julio M.

    1999-01-01

    We use single-protein atomic force microscopy techniques to detect length phenotypes in an Ig module. To gain amino acid resolution, we amplify the mechanical features of a single module by engineering polyproteins composed of up to 12 identical repeats. We show that on mechanical unfolding, mutant polyproteins containing five extra glycine residues added to the folded core of the module extend 20 Å per module farther than the wild-type polyproteins. By contrast, similar insertions near the N or C termini have no effect. Hence, our atomic force microscopy measurements readily discriminate the location of the insert and measure its size with a resolution similar to that of NMR and x-ray crystallography. PMID:10500169

  19. The equally wonderful field: Ernst Mayr and organismic biology.

    PubMed

    Milam, Erika Lorraine

    2010-01-01

    Biologists in the 1960s witnessed a period of intense intra-disciplinary negotiations, especially the positioning of organismic biologists relative to molecular biologists. The perceived valorization of the physical sciences by "molecular" biologists became a catalyst creating a unified front of "organismic" biology that incorporated not just evolutionary biologists, but also students of animal behavior, ecology, systematics, botany - in short, almost any biological community that predominantly conducted their research in the field or museum and whose practitioners felt the pinch of the prestige and funding accruing to molecular biologists and biochemists. Ernst Mayr, Theodosius Dobzhansky, and George Gaylord Simpson took leading roles in defending alternatives to what they categorized as the mechanistic approach of chemistry and physics applied to living systems - the "equally wonderful field of organismic biology." Thus, it was through increasingly tense relations with molecular biology that organismic biologists cohered into a distinct community, with their own philosophical grounding, institutional security, and historical identity. Because this identity was based in large part on a fundamental rejection of the physical sciences as a desirable model within biology, organismic biologists succeeded in protecting the future of their field by emphasizing deep divisions that ran through the biological sciences as a whole.

  20. Evolution of egg coats: linking molecular biology and ecology.

    PubMed

    Shu, Longfei; Suter, Marc J-F; Räsänen, Katja

    2015-08-01

    One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.

  1. Discovery of novel drug targets and their functions using phenotypic screening of natural products.

    PubMed

    Chang, Junghwa; Kwon, Ho Jeong

    2016-03-01

    Natural products are valuable resources that provide a variety of bioactive compounds and natural pharmacophores in modern drug discovery. Discovery of biologically active natural products and unraveling their target proteins to understand their mode of action have always been critical hurdles for their development into clinical drugs. For effective discovery and development of bioactive natural products into novel therapeutic drugs, comprehensive screening and identification of target proteins are indispensable. In this review, a systematic approach to understanding the mode of action of natural products isolated using phenotypic screening involving chemical proteomics-based target identification is introduced. This review highlights three natural products recently discovered via phenotypic screening, namely glucopiericidin A, ecumicin, and terpestacin, as representative case studies to revisit the pivotal role of natural products as powerful tools in discovering the novel functions and druggability of targets in biological systems and pathological diseases of interest.

  2. Revisiting the silence of Asian immigrant students: The negotiation of Korean immigrant students' identities in science classrooms

    NASA Astrophysics Data System (ADS)

    Ryu, Minjung

    This dissertation is a study about Korean immigrant students' identities, including academic identities related to science learning and identities along various social dimensions. I explore how Korean immigrant students participate in science classrooms and how they enact and negotiate their identities in their classroom discursive participation. My dissertation is motivated by the increasing attention in educational research to the intersectionality between science learning and various dimensions of identities (e.g., gender, race, ethnicity, social networks) and a dearth of such research addressing Asian immigrant students. Asian immigrant students are stereotyped as quiet and successful learners, particularly in science and mathematics classes, and their success is often explained by cultural differences. I confront this static and oversimplified notion of cultural differences and Asians' academic success and examine the intersectionality between science learning and identities of Asian immigrant students, with the specific case of Korean immigrants. Drawing upon cultural historical and sociolinguistic perspectives of identity, I propose a theoretical framework that underscores multiple levels of contexts (macro level, meso level, personal, and micro level contexts) in understanding and analyzing students' identities. Based on a year-long ethnographic study in two high school Advanced Placement Biology classes in a public high school, I present the meso level contexts of the focal school and biology classes, and in-depth analyses of three focal students. The findings illustrate: (1) how meso level contexts play a critical role in these students' identities and science classroom participation, (2) how the meso level contexts are reinterpreted and have different meanings to different students depending on their personal contexts, and (3) how students negotiated their positions to achieve certain identity goals. I discuss the implications of the findings for the

  3. A link between thrifty phenotype and maternal care across two generations of intercrossed mice

    PubMed Central

    Goes, Carolina P.; Forti, Isabela; O. do Monte, Bruno Gabriel; Watanabe, Isabela M.; Cunha, Joao; Peripato, Andrea C.

    2017-01-01

    Maternal effects are causal influences from mother to offspring beyond genetic information, and have lifelong consequences for multiple traits. Previously, we reported that mice whose mothers did not nurse properly had low birth weight followed by rapid fat accumulation and disturbed development of some organs. That pattern resembles metabolic syndromes known collectively as the thrifty phenotype, which is believed to be an adaptation to a stressful environment which prepares offspring for reduced nutrient supply. The potential link between maternal care, stress reactivity, and the thrifty phenotype, however, has been poorly explored in the human and animal literature: only a couple of studies even mention (much less, test) these concepts under a cohesive framework. Here, we explored this link using mice of the parental inbred strains SM/J and LG/J–who differ dramatically in their maternal care–and the intercrossed generations F1 and F2. We measured individual differences in 15 phenotypes and used structural equation modeling to test our hypotheses. We found a remarkable relationship between thrifty phenotype and lower quality of maternal behaviors, including nest building, pup retrieval, grooming/licking, and nursing. To our knowledge, this is the first study to show, in any mammal, a clear connection between the natural variation in thrifty phenotype and maternal care. Both traits in the mother also had a substantial effect on survival rate in the F3 offspring. To our surprise, however, stress reactivity seemed to play no role in our models. Furthermore, the strain of maternal grandmother, but not of paternal grandmother, affected the variation of maternal care in F2 mice, and this effect was mediated by thrifty phenotype in F2. Since F1 animals were all genetically identical, this finding suggests that maternal effects pass down both maternal care and thrifty phenotype in these mice across generations via epigenetic transmission. PMID:28542485

  4. [Biological etiologies of transsexualism].

    PubMed

    Butty, Anne-Virginie; Bianchi-Demicheli, Francesco

    2016-03-16

    Transsexualism or gender dysphoria is a disorder of sexual identity of unknown etiology. At the biological level, one assumes atypical brain development during certain periods of its formation (genesis) notably during embryogenesis, as a result of altered hormonal influence and a particular genetic polymorphism. This article summarizes the research conducted to date in these three areas only, excluding psycho-social and environmental factors.

  5. Identity recognition in response to different levels of genetic relatedness in commercial soya bean

    PubMed Central

    Van Acker, Rene; Rajcan, Istvan; Swanton, Clarence J.

    2017-01-01

    Identity recognition systems allow plants to tailor competitive phenotypes in response to the genetic relatedness of neighbours. There is limited evidence for the existence of recognition systems in crop species and whether they operate at a level that would allow for identification of different degrees of relatedness. Here, we test the responses of commercial soya bean cultivars to neighbours of varying genetic relatedness consisting of other commercial cultivars (intraspecific), its wild progenitor Glycine soja, and another leguminous species Phaseolus vulgaris (interspecific). We found, for the first time to our knowledge, that a commercial soya bean cultivar, OAC Wallace, showed identity recognition responses to neighbours at different levels of genetic relatedness. OAC Wallace showed no response when grown with other commercial soya bean cultivars (intra-specific neighbours), showed increased allocation to leaves compared with stems with wild soya beans (highly related wild progenitor species), and increased allocation to leaves compared with stems and roots with white beans (interspecific neighbours). Wild soya bean also responded to identity recognition but these responses involved changes in biomass allocation towards stems instead of leaves suggesting that identity recognition responses are species-specific and consistent with the ecology of the species. In conclusion, elucidating identity recognition in crops may provide further knowledge into mechanisms of crop competition and the relationship between crop density and yield. PMID:28280587

  6. Genetics and molecular biology of hypotension

    NASA Technical Reports Server (NTRS)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  7. C. elegans network biology: a beginning.

    PubMed Central

    Piano, Fabio; Gunsalus, Kristin C; Hill, David E; Vidal, Marc

    2006-01-01

    The architecture and dynamics of molecular networks can provide an understanding of complex biological processes complementary to that obtained from the in-depth study of single genes and proteins. With a completely sequenced and well-annotated genome, a fully characterized cell lineage, and powerful tools available to dissect development, Caenorhabditis elegans, among metazoans, provides an optimal system to bridge cellular and organismal biology with the global properties of macromolecular networks. This chapter considers omic technologies available for C. elegans to describe molecular networks--encompassing transcriptional and phenotypic profiling as well as physical interaction mapping--and discusses how their individual and integrated applications are paving the way for a network-level understanding of C. elegans biology. PMID:18050437

  8. Born This Way?: How U.S. College Students Make Sense of the Biosocial Underpinnings of Race and Other Identities

    ERIC Educational Resources Information Center

    Johnston-Guerrero, Marc P.; Tran, Vu

    2016-01-01

    With advances in biotechnology come potential changes in how college students may understand the nature of identity. This study explores sensemaking around the biological underpinnings of proclaimed "social" identities (e.g., race, class, and gender). Based on interviews with 34 undergraduate students recruited from two large public…

  9. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes.

    PubMed

    Cyganek, Lukas; Tiburcy, Malte; Sekeres, Karolina; Gerstenberg, Kathleen; Bohnenberger, Hanibal; Lenz, Christof; Henze, Sarah; Stauske, Michael; Salinas, Gabriela; Zimmermann, Wolfram-Hubertus; Hasenfuss, Gerd; Guan, Kaomei

    2018-06-21

    Generation of homogeneous populations of subtype-specific cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) and their comprehensive phenotyping is crucial for a better understanding of the subtype-related disease mechanisms and as tools for the development of chamber-specific drugs. The goals of this study were to apply a simple and efficient method for differentiation of iPSCs into defined functional CM subtypes in feeder-free conditions and to obtain a comprehensive understanding of the molecular, cell biological, and functional properties of atrial and ventricular iPSC-CMs on both the single-cell and engineered heart muscle (EHM) level. By a stage-specific activation of retinoic acid signaling in monolayer-based and well-defined culture, we showed that cardiac progenitors can be directed towards a highly homogeneous population of atrial CMs. By combining the transcriptome and proteome profiling of the iPSC-CM subtypes with functional characterizations via optical action potential and calcium imaging, and with contractile analyses in EHM, we demonstrated that atrial and ventricular iPSC-CMs and -EHM highly correspond to the atrial and ventricular heart muscle, respectively. This study provides a comprehensive understanding of the molecular and functional identities characteristic of atrial and ventricular iPSC-CMs and -EHM and supports their suitability in disease modeling and chamber-specific drug screening.

  10. New approaches to the representation and analysis of phenotype knowledge in human diseases and their animal models.

    PubMed

    Schofield, Paul N; Sundberg, John P; Hoehndorf, Robert; Gkoutos, Georgios V

    2011-09-01

    The systematic investigation of the phenotypes associated with genotypes in model organisms holds the promise of revealing genotype-phenotype relations directly and without additional, intermediate inferences. Large-scale projects are now underway to catalog the complete phenome of a species, notably the mouse. With the increasing amount of phenotype information becoming available, a major challenge that biology faces today is the systematic analysis of this information and the translation of research results across species and into an improved understanding of human disease. The challenge is to integrate and combine phenotype descriptions within a species and to systematically relate them to phenotype descriptions in other species, in order to form a comprehensive understanding of the relations between those phenotypes and the genotypes involved in human disease. We distinguish between two major approaches for comparative phenotype analyses: the first relies on evolutionary relations to bridge the species gap, while the other approach compares phenotypes directly. In particular, the direct comparison of phenotypes relies heavily on the quality and coherence of phenotype and disease databases. We discuss major achievements and future challenges for these databases in light of their potential to contribute to the understanding of the molecular mechanisms underlying human disease. In particular, we discuss how the use of ontologies and automated reasoning can significantly contribute to the analysis of phenotypes and demonstrate their potential for enabling translational research.

  11. Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study.

    PubMed

    Loza, Matthew J; Djukanovic, Ratko; Chung, Kian Fan; Horowitz, Daniel; Ma, Keying; Branigan, Patrick; Barnathan, Elliot S; Susulic, Vedrana S; Silkoff, Philip E; Sterk, Peter J; Baribaud, Frédéric

    2016-12-15

    Asthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED. Fuzzy partition-around-medoid clustering was performed on pre-specified data from the ADEPT participants (n = 156) and independently on data from a subset of U-BIOPRED asthma participants (n = 82) for whom the same variables were available. Models for cluster classification probabilities were derived and applied to the 12-month longitudinal ADEPT data and to a larger subset of the U-BIOPRED asthma dataset (n = 397). High and low type-2 inflammation phenotypes were defined as high or low Th2 activity, indicated by endobronchial biopsies gene expression changes downstream of IL-4 or IL-13. Four phenotypes were identified in the ADEPT (training) cohort, with distinct clinical and biomarker profiles. Phenotype 1 was "mild, good lung function, early onset", with a low-inflammatory, predominantly Type-2, phenotype. Phenotype 2 had a "moderate, hyper-responsive, eosinophilic" phenotype, with moderate asthma control, mild airflow obstruction and predominant Type-2 inflammation. Phenotype 3 had a "mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic" phenotype, with moderate asthma control and low Type-2 inflammation. Phenotype 4 had a "severe uncontrolled, severe reversible obstruction, mixed granulocytic" phenotype, with moderate Type-2 inflammation. These phenotypes had good longitudinal stability in the ADEPT cohort. They were reproduced and demonstrated high classification probability in two subsets of the U-BIOPRED asthma cohort. Focusing on the biology of the four clinical

  12. DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes.

    PubMed

    Tretyakova, Natalia Y; Groehler, Arnold; Ji, Shaofei

    2015-06-16

    Noncovalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences. DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine. This structural

  13. DNA-Protein Cross-links: Formation, Structural Identities, and Biological Outcomes

    PubMed Central

    Tretyakova, Natalia Y.; Groehler, Arnold; Ji, Shaofei

    2015-01-01

    CONSPECTUS Non-covalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences. DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine

  14. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability.

    PubMed

    Kirby, Jacqueline C; Speltz, Peter; Rasmussen, Luke V; Basford, Melissa; Gottesman, Omri; Peissig, Peggy L; Pacheco, Jennifer A; Tromp, Gerard; Pathak, Jyotishman; Carrell, David S; Ellis, Stephen B; Lingren, Todd; Thompson, Will K; Savova, Guergana; Haines, Jonathan; Roden, Dan M; Harris, Paul A; Denny, Joshua C

    2016-11-01

    Health care generated data have become an important source for clinical and genomic research. Often, investigators create and iteratively refine phenotype algorithms to achieve high positive predictive values (PPVs) or sensitivity, thereby identifying valid cases and controls. These algorithms achieve the greatest utility when validated and shared by multiple health care systems.Materials and Methods We report the current status and impact of the Phenotype KnowledgeBase (PheKB, http://phekb.org), an online environment supporting the workflow of building, sharing, and validating electronic phenotype algorithms. We analyze the most frequent components used in algorithms and their performance at authoring institutions and secondary implementation sites. As of June 2015, PheKB contained 30 finalized phenotype algorithms and 62 algorithms in development spanning a range of traits and diseases. Phenotypes have had over 3500 unique views in a 6-month period and have been reused by other institutions. International Classification of Disease codes were the most frequently used component, followed by medications and natural language processing. Among algorithms with published performance data, the median PPV was nearly identical when evaluated at the authoring institutions (n = 44; case 96.0%, control 100%) compared to implementation sites (n = 40; case 97.5%, control 100%). These results demonstrate that a broad range of algorithms to mine electronic health record data from different health systems can be developed with high PPV, and algorithms developed at one site are generally transportable to others. By providing a central repository, PheKB enables improved development, transportability, and validity of algorithms for research-grade phenotypes using health care generated data. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Quantitative monitoring of Arabidopsis thaliana growth and development using high-throughput plant phenotyping

    PubMed Central

    Arend, Daniel; Lange, Matthias; Pape, Jean-Michel; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Mücke, Ingo; Klukas, Christian; Altmann, Thomas; Scholz, Uwe; Junker, Astrid

    2016-01-01

    With the implementation of novel automated, high throughput methods and facilities in the last years, plant phenomics has developed into a highly interdisciplinary research domain integrating biology, engineering and bioinformatics. Here we present a dataset of a non-invasive high throughput plant phenotyping experiment, which uses image- and image analysis- based approaches to monitor the growth and development of 484 Arabidopsis thaliana plants (thale cress). The result is a comprehensive dataset of images and extracted phenotypical features. Such datasets require detailed documentation, standardized description of experimental metadata as well as sustainable data storage and publication in order to ensure the reproducibility of experiments, data reuse and comparability among the scientific community. Therefore the here presented dataset has been annotated using the standardized ISA-Tab format and considering the recently published recommendations for the semantical description of plant phenotyping experiments. PMID:27529152

  16. Quantitative monitoring of Arabidopsis thaliana growth and development using high-throughput plant phenotyping.

    PubMed

    Arend, Daniel; Lange, Matthias; Pape, Jean-Michel; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Mücke, Ingo; Klukas, Christian; Altmann, Thomas; Scholz, Uwe; Junker, Astrid

    2016-08-16

    With the implementation of novel automated, high throughput methods and facilities in the last years, plant phenomics has developed into a highly interdisciplinary research domain integrating biology, engineering and bioinformatics. Here we present a dataset of a non-invasive high throughput plant phenotyping experiment, which uses image- and image analysis- based approaches to monitor the growth and development of 484 Arabidopsis thaliana plants (thale cress). The result is a comprehensive dataset of images and extracted phenotypical features. Such datasets require detailed documentation, standardized description of experimental metadata as well as sustainable data storage and publication in order to ensure the reproducibility of experiments, data reuse and comparability among the scientific community. Therefore the here presented dataset has been annotated using the standardized ISA-Tab format and considering the recently published recommendations for the semantical description of plant phenotyping experiments.

  17. Social identity change: shifts in social identity during adolescence.

    PubMed

    Tanti, Chris; Stukas, Arthur A; Halloran, Michael J; Foddy, Margaret

    2011-06-01

    This study investigated the proposition that adolescence involves significant shifts in social identity as a function of changes in social context and cognitive style. Using an experimental design, we primed either peer or gender identity with a sample of 380 early- (12-13 years), mid- (15-16 years), and late-adolescents (18-20 years) and then measured the effect of the prime on self-stereotyping and ingroup favouritism. The findings showed significant differences in social identity across adolescent groups, in that social identity effects were relatively strong in early- and late-adolescents, particularly when peer group identity rather than gender identity was salient. While these effects were consistent with the experience of change in educational social context, differences in cognitive style were only weakly related to ingroup favouritism. The implications of the findings for theory and future research on social identity during adolescence are discussed. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  18. Comparative Associations Between Achieved Bicultural Identity, Achieved Ego Identity, and Achieved Religious Identity and Adaptation Among Australian Adolescent Muslims.

    PubMed

    Abu-Rayya, Hisham M; Abu-Rayya, Maram H; White, Fiona A; Walker, Richard

    2018-04-01

    This study examined the comparative roles of biculturalism, ego identity, and religious identity in the adaptation of Australian adolescent Muslims. A total of 504 high school Muslim students studying at high schools in metropolitan Sydney and Melbourne, Australia, took part in this study which required them to complete a self-report questionnaire. Analyses indicated that adolescent Muslims' achieved religious identity seems to play a more important role in shaping their psychological and socio-cultural adaptation compared to adolescents' achieved bicultural identity. Adolescents' achieved ego identity tended also to play a greater role in their psychological and socio-cultural adaptation than achieved bicultural identity. The relationships between the three identities and negative indicators of psychological adaptation were consistently indifferent. Based on these findings, we propose that the three identity-based forces-bicultural identity development, religious identity attainment, and ego identity formation-be amalgamated into one framework in order for researchers to more accurately examine the adaptation of Australian adolescent Muslims.

  19. Exploring the Phenotypic Space and the Evolutionary History of a Natural Mutation in Drosophila melanogaster.

    PubMed

    Ullastres, Anna; Petit, Natalia; González, Josefa

    2015-07-01

    A major challenge of modern Biology is elucidating the functional consequences of natural mutations. Although we have a good understanding of the effects of laboratory-induced mutations on the molecular- and organismal-level phenotypes, the study of natural mutations has lagged behind. In this work, we explore the phenotypic space and the evolutionary history of a previously identified adaptive transposable element insertion. We first combined several tests that capture different signatures of selection to show that there is evidence of positive selection in the regions flanking FBti0019386 insertion. We then explored several phenotypes related to known phenotypic effects of nearby genes, and having plausible connections to fitness variation in nature. We found that flies with FBti0019386 insertion had a shorter developmental time and were more sensitive to stress, which are likely to be the adaptive effect and the cost of selection of this mutation, respectively. Interestingly, these phenotypic effects are not consistent with a role of FBti0019386 in temperate adaptation as has been previously suggested. Indeed, a global analysis of the population frequency of FBti0019386 showed that climatic variables explain well the FBti0019386 frequency patterns only in Australia. Finally, although FBti0019386 insertion could be inducing the formation of heterochromatin by recruiting HP1a (Heterochromatin Protein 1a) protein, the insertion is associated with upregulation of sra in adult females. Overall, our integrative approach allowed us to shed light on the evolutionary history, the relevant fitness effects, and the likely molecular mechanisms of an adaptive mutation and highlights the complexity of natural genetic variants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems

    PubMed Central

    Lomnitz, Jason G.; Savageau, Michael A.

    2016-01-01

    Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment, and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1) enumeration of the repertoire of model phenotypes, (2) prediction of values for the parameters for any model phenotype, and (3) analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between three stable states by transient stimulation through one of two input channels: a positive channel that increases the count

  1. Potentials of single-cell biology in identification and validation of disease biomarkers.

    PubMed

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Total synthesis and biological investigation of (-)-promysalin.

    PubMed

    Steele, Andrew D; Knouse, Kyle W; Keohane, Colleen E; Wuest, William M

    2015-06-17

    Compounds that specifically target pathogenic bacteria are greatly needed, and identifying the method by which they act would provide new avenues of treatment. Herein we report the concise, high-yielding total synthesis (eight steps, 35% yield) of promysalin, a natural product that displays antivirulence phenotypes against pathogenic bacteria. Guided by bioinformatics, four diastereomers were synthesized, and the relative and absolute stereochemistries were confirmed by spectral and biological analysis. Finally, we show for the first time that promysalin displays two antivirulence phenotypes: the dispersion of mature biofilms and the inhibition of pyoverdine production, hinting at a unique pathogenic-specific mechanism of action.

  3. Swiss identity smells like chocolate: Social identity shapes olfactory judgments

    PubMed Central

    Coppin, Géraldine; Pool, Eva; Delplanque, Sylvain; Oud, Bastiaan; Margot, Christian; Sander, David; Van Bavel, Jay J.

    2016-01-01

    There is extensive evidence that social identities can shape people’s attitudes and behavior, but what about sensory judgments? We examined the possibility that social identity concerns may also shape the judgment of non-social properties—namely, olfactory judgment. In two experiments, we presented Swiss and non-Swiss participants with the odor of chocolate, for which Switzerland is world-famous, and a control odor (popcorn). Swiss participants primed with Swiss identity reported the odor of chocolate (but not popcorn) as more intense than non-Swiss participants (Experiments 1 and 2) and than Swiss participants primed with individual identity or not primed (Experiment 2). The self-reported intensity of chocolate smell tended to increase as identity accessibility increased—but only among Swiss participants (Experiment 1). These results suggest that identity priming can counter-act classic sensory habituation effects, allowing identity-relevant smells to maintain their intensity after repeated presentations. This suggests that social identity dynamically influences sensory judgment. We discuss the potential implications for models of social identity and chemosensory perception. PMID:27725715

  4. Swiss identity smells like chocolate: Social identity shapes olfactory judgments.

    PubMed

    Coppin, Géraldine; Pool, Eva; Delplanque, Sylvain; Oud, Bastiaan; Margot, Christian; Sander, David; Van Bavel, Jay J

    2016-10-11

    There is extensive evidence that social identities can shape people's attitudes and behavior, but what about sensory judgments? We examined the possibility that social identity concerns may also shape the judgment of non-social properties-namely, olfactory judgment. In two experiments, we presented Swiss and non-Swiss participants with the odor of chocolate, for which Switzerland is world-famous, and a control odor (popcorn). Swiss participants primed with Swiss identity reported the odor of chocolate (but not popcorn) as more intense than non-Swiss participants (Experiments 1 and 2) and than Swiss participants primed with individual identity or not primed (Experiment 2). The self-reported intensity of chocolate smell tended to increase as identity accessibility increased-but only among Swiss participants (Experiment 1). These results suggest that identity priming can counter-act classic sensory habituation effects, allowing identity-relevant smells to maintain their intensity after repeated presentations. This suggests that social identity dynamically influences sensory judgment. We discuss the potential implications for models of social identity and chemosensory perception.

  5. Recent advances in plant centromere biology.

    PubMed

    Feng, Chao; Liu, YaLin; Su, HanDong; Wang, HeFei; Birchler, James; Han, FangPu

    2015-03-01

    The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the centromeric DNA sequences evolve rapidly and have few similarities among species. The histone H3 variant CENH3 (CENP-A in human), which mostly exists in centromeric nucleosomes, is a universal active centromere mark in eukaryotes and plays an essential role in centromere identity determination. The relationship between centromeric DNA sequences and centromere identity determination is one of the intriguing questions in studying centromere formation. Due to the discoveries in the past decades, including "neocentromeres" and "centromere inactivation", it is now believed that the centromere identity is determined by epigenetic mechanisms. This review will present recent progress in plant centromere biology.

  6. “Gestaltomics”: Systems Biology Schemes for the Study of Neuropsychiatric Diseases

    PubMed Central

    Gutierrez Najera, Nora A.; Resendis-Antonio, Osbaldo; Nicolini, Humberto

    2017-01-01

    The integration of different sources of biological information about what defines a behavioral phenotype is difficult to unify in an entity that reflects the arithmetic sum of its individual parts. In this sense, the challenge of Systems Biology for understanding the “psychiatric phenotype” is to provide an improved vision of the shape of the phenotype as it is visualized by “Gestalt” psychology, whose fundamental axiom is that the observed phenotype (behavior or mental disorder) will be the result of the integrative composition of every part. Therefore, we propose the term “Gestaltomics” as a term from Systems Biology to integrate data coming from different sources of information (such as the genome, transcriptome, proteome, epigenome, metabolome, phenome, and microbiome). In addition to this biological complexity, the mind is integrated through multiple brain functions that receive and process complex information through channels and perception networks (i.e., sight, ear, smell, memory, and attention) that in turn are programmed by genes and influenced by environmental processes (epigenetic). Today, the approach of medical research in human diseases is to isolate one disease for study; however, the presence of an additional disease (co-morbidity) or more than one disease (multimorbidity) adds complexity to the study of these conditions. This review will present the challenge of integrating psychiatric disorders at different levels of information (Gestaltomics). The implications of increasing the level of complexity, for example, studying the co-morbidity with another disease such as cancer, will also be discussed. PMID:28536537

  7. Gender identity disorder and schizophrenia: neurodevelopmental disorders with common causal mechanisms?

    PubMed

    Rajkumar, Ravi Philip

    2014-01-01

    Gender identity disorder (GID), recently renamed gender dysphoria (GD), is a rare condition characterized by an incongruity between gender identity and biological sex. Clinical evidence suggests that schizophrenia occurs in patients with GID at rates higher than in the general population and that patients with GID may have schizophrenia-like personality traits. Conversely, patients with schizophrenia may experience alterations in gender identity and gender role perception. Neurobiological research, including brain imaging and studies of finger length ratio and handedness, suggests that both these disorders are associated with altered cerebral sexual dimorphism and changes in cerebral lateralization. Various mechanisms, such as Toxoplasma infection, reduced levels of brain-derived neurotrophic factor (BDNF), early childhood adversity, and links with autism spectrum disorders, may account for some of this overlap. The implications of this association for further research are discussed.

  8. Gender Identity Disorder and Schizophrenia: Neurodevelopmental Disorders with Common Causal Mechanisms?

    PubMed Central

    Rajkumar, Ravi Philip

    2014-01-01

    Gender identity disorder (GID), recently renamed gender dysphoria (GD), is a rare condition characterized by an incongruity between gender identity and biological sex. Clinical evidence suggests that schizophrenia occurs in patients with GID at rates higher than in the general population and that patients with GID may have schizophrenia-like personality traits. Conversely, patients with schizophrenia may experience alterations in gender identity and gender role perception. Neurobiological research, including brain imaging and studies of finger length ratio and handedness, suggests that both these disorders are associated with altered cerebral sexual dimorphism and changes in cerebral lateralization. Various mechanisms, such as Toxoplasma infection, reduced levels of brain-derived neurotrophic factor (BDNF), early childhood adversity, and links with autism spectrum disorders, may account for some of this overlap. The implications of this association for further research are discussed. PMID:25548672

  9. Rapid classification of biological components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens of the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array,more » thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.« less

  10. Rapid classification of biological components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array,more » thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.« less

  11. Rapid classification of biological components

    DOEpatents

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    2013-10-15

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  12. Rapid classification of biological components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine, methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immunemore » complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.« less

  13. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods.

    PubMed

    Notaro, Marco; Schubach, Max; Robinson, Peter N; Valentini, Giorgio

    2017-10-12

    The prediction of human gene-abnormal phenotype associations is a fundamental step toward the discovery of novel genes associated with human disorders, especially when no genes are known to be associated with a specific disease. In this context the Human Phenotype Ontology (HPO) provides a standard categorization of the abnormalities associated with human diseases. While the problem of the prediction of gene-disease associations has been widely investigated, the related problem of gene-phenotypic feature (i.e., HPO term) associations has been largely overlooked, even if for most human genes no HPO term associations are known and despite the increasing application of the HPO to relevant medical problems. Moreover most of the methods proposed in literature are not able to capture the hierarchical relationships between HPO terms, thus resulting in inconsistent and relatively inaccurate predictions. We present two hierarchical ensemble methods that we formally prove to provide biologically consistent predictions according to the hierarchical structure of the HPO. The modular structure of the proposed methods, that consists in a "flat" learning first step and a hierarchical combination of the predictions in the second step, allows the predictions of virtually any flat learning method to be enhanced. The experimental results show that hierarchical ensemble methods are able to predict novel associations between genes and abnormal phenotypes with results that are competitive with state-of-the-art algorithms and with a significant reduction of the computational complexity. Hierarchical ensembles are efficient computational methods that guarantee biologically meaningful predictions that obey the true path rule, and can be used as a tool to improve and make consistent the HPO terms predictions starting from virtually any flat learning method. The implementation of the proposed methods is available as an R package from the CRAN repository.

  14. Customized Molecular Phenotyping by Quantitative Gene Expression and Pattern Recognition Analysis

    PubMed Central

    Akilesh, Shreeram; Shaffer, Daniel J.; Roopenian, Derry

    2003-01-01

    Description of the molecular phenotypes of pathobiological processes in vivo is a pressing need in genomic biology. We have implemented a high-throughput real-time PCR strategy to establish quantitative expression profiles of a customized set of target genes. It enables rapid, reproducible data acquisition from limited quantities of RNA, permitting serial sampling of mouse blood during disease progression. We developed an easy to use statistical algorithm—Global Pattern Recognition—to readily identify genes whose expression has changed significantly from healthy baseline profiles. This approach provides unique molecular signatures for rheumatoid arthritis, systemic lupus erythematosus, and graft versus host disease, and can also be applied to defining the molecular phenotype of a variety of other normal and pathological processes. PMID:12840047

  15. Phenotype variability and allelic heterogeneity in KMT2B-Associated disease.

    PubMed

    Kawarai, Toshitaka; Miyamoto, Ryosuke; Nakagawa, Eiji; Koichihara, Reiko; Sakamoto, Takashi; Mure, Hideo; Morigaki, Ryoma; Koizumi, Hidetaka; Oki, Ryosuke; Montecchiani, Celeste; Caltagirone, Carlo; Orlacchio, Antonio; Hattori, Ayako; Mashimo, Hideaki; Izumi, Yuishin; Mezaki, Takahiro; Kumada, Satoko; Taniguchi, Makoto; Yokochi, Fusako; Saitoh, Shinji; Goto, Satoshi; Kaji, Ryuji

    2018-04-05

    Mutations in Lysine-Specific Histone Methyltransferase 2B gene (KMT2B) have been reported to be associated with complex early-onset dystonia. Almost all reported KMT2B mutations occurred de novo in the paternal germline or in the early development of the patient. We describe clinico-genetic features on four Japanese patients with novel de novo mutations and demonstrate the phenotypic spectrum of KMT2B mutations. We performed genetic studies, including trio-based whole exome sequencing (WES), in a cohort of Japanese patients with a seemingly sporadic early-onset generalized combined dystonia. Potential effects by the identified nucleotide variations were evaluated biologically. Genotype-phenotype correlations were also investigated. Four patients had de novo heterozygous mutations in KMT2B, c.309delG, c.1656dupC, c.3325_3326insC, and c.5636delG. Biological analysis of KMT2B mRNA levels showed a reduced expression of mutant transcript frame. All patients presented with motor milestone delay, microcephaly, mild psychomotor impairment, childhood-onset generalized dystonia and superimposed choreoathetosis or myoclonus. One patient cannot stand due to axial hypotonia associated with cerebellar dysfunction. Three patients had bilateral globus pallidal deep brain stimulation (DBS) with excellent or partial response. We further demonstrate the allelic heterogeneity and phenotypic variations of KMT2B-associated disease. Haploinsufficiency is one of molecular pathomechanisms underlying the disease. Cardinal clinical features include combined dystonia accompanying mild psychomotor disability. Cerebellum would be affected in KMT2B-associated disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Distinct Phenotypes of Cigarette Smokers Identified by Cluster Analysis of Patients with Severe Asthma.

    PubMed

    Konno, Satoshi; Taniguchi, Natsuko; Makita, Hironi; Nakamaru, Yuji; Shimizu, Kaoruko; Shijubo, Noriharu; Fuke, Satoshi; Takeyabu, Kimihiro; Oguri, Mitsuru; Kimura, Hirokazu; Maeda, Yukiko; Suzuki, Masaru; Nagai, Katsura; Ito, Yoichi M; Wenzel, Sally E; Nishimura, Masaharu

    2015-12-01

    Smoking may have multifactorial effects on asthma phenotypes, particularly in severe asthma. Cluster analysis has been applied to explore novel phenotypes, which are not based on any a priori hypotheses. To explore novel severe asthma phenotypes by cluster analysis when including cigarette smokers. We recruited a total of 127 subjects with severe asthma, including 59 current or ex-smokers, from our university hospital and its 29 affiliated hospitals/pulmonary clinics. Twelve clinical variables obtained during a 2-day hospital stay were used for cluster analysis. After clustering using clinical variables, the sputum levels of 14 molecules were measured to biologically characterize the clinical clusters. Five clinical clusters were identified, including two characterized by high pack-year exposure to cigarette smoking and low FEV1/FVC. There were marked differences between the two clusters of cigarette smokers. One had high levels of circulating eosinophils, high IgE levels, and a high sinus disease score. The other was characterized by low levels of the same parameters. Sputum analysis revealed increased levels of IL-5 in the former cluster and increased levels of IL-6 and osteopontin in the latter. The other three clusters were similar to those previously reported: young onset/atopic, nonsmoker/less eosinophilic, and female/obese. Key clinical variables were confirmed to be stable and consistent 1 year later. This study reveals two distinct phenotypes of severe asthma in current and former cigarette smokers with potentially different biological pathways contributing to fixed airflow limitation. Clinical trial registered with www.umin.ac.jp (000003254).

  17. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype.

    PubMed

    Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B

    2015-10-01

    What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized

  18. Comparative Transcriptomics of Seasonal Phenotypic Flexibility in Two North American Songbirds.

    PubMed

    Cheviron, Z A; Swanson, D L

    2017-11-01

    Phenotypic flexibility allows organisms to reversibly alter their phenotypes to match the changing demands of seasonal environments. Because phenotypic flexibility is mediated, at least in part, by changes in gene regulation, comparative transcriptomic studies can provide insights into the mechanistic underpinnings of seasonal phenotypic flexibility, and the extent to which regulatory responses to changing seasons are conserved across species. To begin to address these questions, we sampled individuals of two resident North American songbird species, American goldfinch (Spinus tristis) and black-capped chickadee (Poecile atricapillus) in summer and winter to measure seasonal variation in pectoralis transcriptomic profiles and to identify conserved and species-specific elements of these seasonal profiles. We found that very few genes exhibited divergent responses to changes in season between species, and instead, a core set of over 1200 genes responded to season concordantly in both species. Moreover, several key metabolic pathways, regulatory networks, and gene functional classes were commonly recruited to induce seasonal phenotypic shifts in these species. The seasonal transcriptomic responses mirror winter increases in pectoralis mass and cellular metabolic intensity documented in previous studies of both species, suggesting that these seasonal phenotypic responses are due in part to changes in gene expression. Despite growing evidence of muscle nonshivering thermogenesis (NST) in young precocial birds, we did not find strong evidence of upregulation of genes putatively involved in NST during winter in either species, suggesting that seasonal modification of muscular NST is not a prominent contributor to winter increases in thermogenic capacity for adult passerine birds. Together, these results provide the first comprehensive overview of potential common regulatory mechanisms underlying seasonally flexible phenotypes in wild, free-ranging birds. © The Author

  19. Fragment-based screening in tandem with phenotypic screening provides novel antiparasitic hits.

    PubMed

    Blaazer, Antoni R; Orrling, Kristina M; Shanmugham, Anitha; Jansen, Chimed; Maes, Louis; Edink, Ewald; Sterk, Geert Jan; Siderius, Marco; England, Paul; Bailey, David; de Esch, Iwan J P; Leurs, Rob

    2015-01-01

    Methods to discover biologically active small molecules include target-based and phenotypic screening approaches. One of the main difficulties in drug discovery is elucidating and exploiting the relationship between drug activity at the protein target and disease modification, a phenotypic endpoint. Fragment-based drug discovery is a target-based approach that typically involves the screening of a relatively small number of fragment-like (molecular weight <300) molecules that efficiently cover chemical space. Here, we report a fragment screening on TbrPDEB1, an essential cyclic nucleotide phosphodiesterase (PDE) from Trypanosoma brucei, and human PDE4D, an off-target, in a workflow in which fragment hits and a series of close analogs are subsequently screened for antiparasitic activity in a phenotypic panel. The phenotypic panel contained T. brucei, Trypanosoma cruzi, Leishmania infantum, and Plasmodium falciparum, the causative agents of human African trypanosomiasis (sleeping sickness), Chagas disease, leishmaniasis, and malaria, respectively, as well as MRC-5 human lung cells. This hybrid screening workflow has resulted in the discovery of various benzhydryl ethers with antiprotozoal activity and low toxicity, representing interesting starting points for further antiparasitic optimization. © 2014 Society for Laboratory Automation and Screening.

  20. Phenotypic integration mediated by hormones: associations among digit ratios, body size and testosterone during tadpole development.

    PubMed

    Lofeu, Leandro; Brandt, Renata; Kohlsdorf, Tiana

    2017-08-02

    Developmental associations often explain phenotypic integration. The intersected hormonal regulation of ontogenetic processes fosters predictions of steroid-mediated phenotypic integration among sexually dimorphic traits, a statement defied by associations between classical dimorphism predictors (e.g. body size) and traits that apparently lack sex-specific functions (e.g. ratios between the lengths of Digits II and IV - 2D:4D). Developmental bases of female-biased 2D:4D have been identified, but these remain unclear for taxa presenting male-biased 2D:4D (e.g. anura). Here we propose two alternative hypotheses to investigate evolution of male-biased 2D:4D associated with sexually dimorphic body size using Leptodactylus frogs: I)'hypothesis of sex-specific digit responses' - Digit IV would be reactive to testosterone but exhibit responses in the opposite direction of those observed in female-biased 2D:4D lineages, so that Digit IV turns shorter in males; II) 'hypothesis of identity of the dimorphic digit'- Digit II would be the dimorphic digit. We compiled the following databases using Leptodactylus frogs: 1) adults of two species from natural populations and 2) testosterone-treated L. fuscus at post-metamorphic stage. Studied traits seem monomorphic in L. fuscus; L. podicipinus exhibits male-biased 2D:4D. When present, 2D:4D dimorphism was male-biased and associated with dimorphic body size; sex differences resided on Digit II instead of IV, corroborating our 'hypothesis of identity of the dimorphic digit'. Developmental steroid roles were validated: testosterone-treated L. fuscus frogs were smaller and exhibited masculinized 2D:4D, and Digit II was the digit that responded to testosterone. We propose a model where evolution of sexual dimorphism in 2D:4D first originates from the advent, in a given digit, of increased tissue sensitivity to steroids. Phenotypic integration with other sexually dimorphic traits would then occur through multi-trait hormonal effects

  1. Genotype-phenotype variability of retinal manifestation in primary hyperoxaluria type 1.

    PubMed

    Dulz, S; Bigdon, E; Atiskova, Y; Schuettauf, F; Cerkauskiene, R; Oh, J; Brinkert, F

    2018-04-01

    Primary hyperoxaluria type 1 (PH1) is a rare congenital metabolic disorder of the glyoxylate pathway, which manifests with nephrocalcinosis, urolithiasis, and end-stage renal failure (ESRD) as well as deposition of oxalate crystals within ocular tissues. This report demonstrates classical ocular features of PH1 of the posterior pole and furthermore highlights the ocular genotype-phenotype variability among siblings with identical compound heterozygous alanine-glyoxylate aminotransferase (AGXT) mutations. Two siblings, an 8-year-old boy and an 18-year-old girl, with genetically confirmed AGXT mutation (c.364C>T (p.R122X) and c.33dupC), but different renal phenotype underwent an ophthalmic examination, including slit-lamp examination and funduscopy as well as optical coherence tomography (OCT), near-infrared autofluorescence (NIA), and microperimetry examination. The 8-year-old boy presented with a best-corrected visual acuity (BCVA) of 20/630. Fundus examination revealed bilateral, whitish oxalate deposits and prominent fibrotic macular scars. OCT imaging illustrated hyperdense deposits in all retinal layers and the choroid and the vitreous body along with a prominent dome-shaped macular fibrosis. NIA imaging outlined macular retinal pigment epithelium (RPE) atrophy with panretinal hyperreflective material. Bilateral symptomatic epiphora was putatively due to bilateral depositions of palpable nodular oxalate deposits at the level of the lacrimal sac. In contrary, the 18-year-old sister presented without any signs of ocular oxalate deposition and a BCVA of 20/20. PH1 is potentially accompanied with a considerable decline in visual acuity due to macular scaring and fibrosis, whereas a profound variability of ocular manifestations can be observed in PH1 patients with identical genotypes.

  2. Phenotype-Based Screening of Small Molecules to Modify Plant Cell Walls Using BY-2 Cells.

    PubMed

    Okubo-Kurihara, Emiko; Matsui, Minami

    2018-01-01

    The plant cell wall is an important and abundant biomass with great potential for use as a modern recyclable resource. For effective utilization of this cellulosic biomass, its ability to degrade efficiently is key point. With the aim of modifying the cell wall to allow easy decomposition, we used chemical biological technology to alter its structure. As a first step toward evaluating the chemicals in the cell wall we employed a phenotype-based approach using high-throughput screening. As the plant cell wall is essential in determining cell morphology, phenotype-based screening is particularly effective in identifying compounds that bring about alterations in the cell wall. For rapid and reproducible screening, tobacco BY-2 cell is an excellent system in which to observe cell morphology. In this chapter, we provide a detailed chemical biological methodology for studying cell morphology using tobacco BY-2 cells.

  3. Droplet microfluidics for synthetic biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gach, PC; Iwai, K; Kim, PW

    2017-01-01

    © 2017 The Royal Society of Chemistry. Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselvesmore » expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.« less

  4. Incorporating zebrafish omics into chemical biology and toxicology.

    PubMed

    Sukardi, Hendrian; Ung, Choong Yong; Gong, Zhiyuan; Lam, Siew Hong

    2010-03-01

    In this communication, we describe the general aspects of omics approaches for analyses of transcriptome, proteome, and metabolome, and how they can be strategically incorporated into chemical screening and perturbation studies using the zebrafish system. Pharmacological efficacy and selectivity of chemicals can be evaluated based on chemical-induced phenotypic effects; however, phenotypic observation has limitations in identifying mechanistic action of chemicals. We suggest adapting gene-expression-based high-throughput screening as a complementary strategy to zebrafish-phenotype-based screening for mechanistic insights about the mode of action and toxicity of a chemical, large-scale predictive applications and comparative analysis of chemical-induced omics signatures, which are useful to identify conserved biological responses, signaling pathways, and biomarkers. The potential mechanistic, predictive, and comparative applications of omics approaches can be implemented in the zebrafish system. Examples of these using the omics approaches in zebrafish, including data of ours and others, are presented and discussed. Omics also facilitates the translatability of zebrafish studies across species through comparison of conserved chemical-induced responses. This review is intended to update interested readers with the current omics approaches that have been applied in chemical studies on zebrafish and their potential in enhancing discovery in chemical biology.

  5. Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants

    PubMed Central

    Weston, David J; Gunter, Lee E; Rogers, Alistair; Wullschleger, Stan D

    2008-01-01

    Background One of the eminent opportunities afforded by modern genomic technologies is the potential to provide a mechanistic understanding of the processes by which genetic change translates to phenotypic variation and the resultant appearance of distinct physiological traits. Indeed much progress has been made in this area, particularly in biomedicine where functional genomic information can be used to determine the physiological state (e.g., diagnosis) and predict phenotypic outcome (e.g., patient survival). Ecology currently lacks an analogous approach where genomic information can be used to diagnose the presence of a given physiological state (e.g., stress response) and then predict likely phenotypic outcomes (e.g., stress duration and tolerance, fitness). Results Here, we demonstrate that a compendium of genomic signatures can be used to classify the plant abiotic stress phenotype in Arabidopsis according to the architecture of the transcriptome, and then be linked with gene coexpression network analysis to determine the underlying genes governing the phenotypic response. Using this approach, we confirm the existence of known stress responsive pathways and marker genes, report a common abiotic stress responsive transcriptome and relate phenotypic classification to stress duration. Conclusion Linking genomic signatures to gene coexpression analysis provides a unique method of relating an observed plant phenotype to changes in gene expression that underlie that phenotype. Such information is critical to current and future investigations in plant biology and, in particular, to evolutionary ecology, where a mechanistic understanding of adaptive physiological responses to abiotic stress can provide researchers with a tool of great predictive value in understanding species and population level adaptation to climate change. PMID:18248680

  6. Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data

    PubMed Central

    Kussell, Edo

    2017-01-01

    Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such as abundance of growth-related proteins in single cells may have differential effects on the reproductive success of cells, rigorous experimental quantification of this process has remained elusive due to the complexity of single cell physiology within the context of a proliferating population. We introduce and apply a practical empirical method to quantify the fitness landscapes of arbitrary phenotypic traits, using genealogical data in the form of population lineage trees which can include phenotypic data of various kinds. Our inference methodology for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and provides a natural generalization of bulk growth rate measures for single-cell histories. Using this technique, we quantify the strength of selection acting on different cellular phenotypic traits within populations, which allows us to determine whether a change in population growth is caused by individual cells’ response, selection within a population, or by a mixture of these two processes. By applying these methods to single-cell time-lapse data of growing bacterial populations that express a resistance-conferring protein under antibiotic stress, we show how the distributions, fitness landscapes, and selection strength of single-cell phenotypes are affected by the drug. Our work provides a unified and practical framework for quantitative measurements of fitness landscapes and selection strength for any statistical quantities definable on lineages, and thus elucidates the adaptive significance of phenotypic states in time series data. The method is applicable in diverse fields, from single cell biology to stem cell differentiation and viral evolution. PMID:28267748

  7. Developing a Teacher Identity: TAs' Perspectives about Learning to Teach Inquiry-Based Biology Labs

    ERIC Educational Resources Information Center

    Gormally, Cara

    2016-01-01

    Becoming a teacher involves a continual process of identity development and negotiation. Expectations and norms for particular pedagogies impact and inform this development. In inquiry based classes, instructors are expected to act as learning facilitators rather than information providers. For novice inquiry instructors, developing a teacher…

  8. Determinant factors of gender identity: a commentary.

    PubMed

    Liao, Lih-Mei; Audi, Laura; Magritte, Ellie; Meyer-Bahlburg, Heino F L; Quigley, Charmian A

    2012-12-01

    Paediatric specialists involved in the care of children with disorders of sex development may be expected to provide straightforward answers to questions concerning the "true sex" of a child, reflecting common perceptions of sex/gender as an immutable binary biological reality. This article highlights how much more broad and complex the topic of gender identity and its development is. Many theories have been put forward to advance knowledge of gender identity. Against the breadth and depth of this vast topic, the current overview is inevitably incomplete. It begins by arguing for a more consistent use of 'sex' and 'gender'. It considers in turn three influential theoretical frameworks that lend themselves to empirical research. These are: 1) the role of the brain; 2) the role of socialisation; and 3) multi-dimensional gender development. The article ends by suggesting potentially fruitful questions and areas for future research. Copyright © 2012 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  9. Linking genotype to phenotype in a changing ocean: inferring the genomic architecture of a blue mussel stress response with genome-wide association.

    PubMed

    Kingston, S E; Martino, P; Melendy, M; Reed, F A; Carlon, D B

    2018-03-01

    A key component to understanding the evolutionary response to a changing climate is linking underlying genetic variation to phenotypic variation in stress response. Here, we use a genome-wide association approach (GWAS) to understand the genetic architecture of calcification rates under simulated climate stress. We take advantage of the genomic gradient across the blue mussel hybrid zone (Mytilus edulis and Mytilus trossulus) in the Gulf of Maine (GOM) to link genetic variation with variance in calcification rates in response to simulated climate change. Falling calcium carbonate saturation states are predicted to negatively impact many marine organisms that build calcium carbonate shells - like blue mussels. We sampled wild mussels and measured net calcification phenotypes after exposing mussels to a 'climate change' common garden, where we raised temperature by 3°C, decreased pH by 0.2 units and limited food supply by filtering out planktonic particles >5 μm, compared to ambient GOM conditions in the summer. This climate change exposure greatly increased phenotypic variation in net calcification rates compared to ambient conditions. We then used regression models to link the phenotypic variation with over 170 000 single nucleotide polymorphism loci (SNPs) generated by genotype by sequencing to identify genomic locations associated with calcification phenotype, and estimate heritability and architecture of the trait. We identified at least one of potentially 2-10 genomic regions responsible for 30% of the phenotypic variation in calcification rates that are potential targets of natural selection by climate change. Our simulations suggest a power of 13.7% with our study's average effective sample size of 118 individuals and rare alleles, but a power of >90% when effective sample size is 900. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  10. Neurocognitive Allied Phenotypes for Schizophrenia and Bipolar Disorder

    PubMed Central

    Hill, S. Kristian; Harris, Margret S. H.; Herbener, Ellen S.; Pavuluri, Mani; Sweeney, John A.

    2008-01-01

    Psychiatric disorders are genetically complex and represent the end product of multiple biological and social factors. Links between genes and disorder-related abnormalities can be effectively captured via assessment of phenotypes that are both associated with genetic effects and potentially contributory to behavioral abnormalities. Identifying intermediate or allied phenotypes as a strategy for clarifying genetic contributions to disorders has been successful in other areas of medicine and is a promising strategy for identifying susceptibility genes in complex psychiatric disorders. There is growing evidence that schizophrenia and bipolar disorder, rather than being wholly distinct disorders, share genetic risk at several loci. Further, there is growing evidence of similarity in the pattern of cognitive and neurobiological deficits in these groups, which may be the result of the effects of these common genetic factors. This review was undertaken to identify patterns of performance on neurocognitive and affective tasks across probands with schizophrenia and bipolar disorder as well as unaffected family members, which warrant further investigation as potential intermediate trait markers. Available evidence indicates that measures of attention regulation, working memory, episodic memory, and emotion processing offer potential for identifying shared and illness-specific allied neurocognitive phenotypes for schizophrenia and bipolar disorder. However, very few studies have evaluated neurocognitive dimensions in bipolar probands or their unaffected relatives, and much work in this area is needed. PMID:18448479

  11. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  12. Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype.

    PubMed

    Dowling, Damian K

    2014-04-01

    Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes. I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains. Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed. Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial-nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. Copyright © 2013. Published by Elsevier B.V.

  13. Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes

    PubMed Central

    Bushel, Pierre R; Wolfinger, Russell D; Gibson, Greg

    2007-01-01

    Background Commonly employed clustering methods for analysis of gene expression data do not directly incorporate phenotypic data about the samples. Furthermore, clustering of samples with known phenotypes is typically performed in an informal fashion. The inability of clustering algorithms to incorporate biological data in the grouping process can limit proper interpretation of the data and its underlying biology. Results We present a more formal approach, the modk-prototypes algorithm, for clustering biological samples based on simultaneously considering microarray gene expression data and classes of known phenotypic variables such as clinical chemistry evaluations and histopathologic observations. The strategy involves constructing an objective function with the sum of the squared Euclidean distances for numeric microarray and clinical chemistry data and simple matching for histopathology categorical values in order to measure dissimilarity of the samples. Separate weighting terms are used for microarray, clinical chemistry and histopathology measurements to control the influence of each data domain on the clustering of the samples. The dynamic validity index for numeric data was modified with a category utility measure for determining the number of clusters in the data sets. A cluster's prototype, formed from the mean of the values for numeric features and the mode of the categorical values of all the samples in the group, is representative of the phenotype of the cluster members. The approach is shown to work well with a simulated mixed data set and two real data examples containing numeric and categorical data types. One from a heart disease study and another from acetaminophen (an analgesic) exposure in rat liver that causes centrilobular necrosis. Conclusion The modk-prototypes algorithm partitioned the simulated data into clusters with samples in their respective class group and the heart disease samples into two groups (sick and buff denoting samples

  14. Achieving Masculinity: A Review of the Literature on Male Gender Identity Development.

    ERIC Educational Resources Information Center

    Puls, Daniel W.

    Distinctions between males and females arise as a result of a complex developmental process involving biological, psychological, and sociological forces. Much research on male gender identity development has spurred from the increased interest in the etiology of homosexuality over the last two decades. Political, religious, and moral issues often…

  15. CRAVE: a database, middleware and visualization system for phenotype ontologies.

    PubMed

    Gkoutos, Georgios V; Green, Eain C J; Greenaway, Simon; Blake, Andrew; Mallon, Ann-Marie; Hancock, John M

    2005-04-01

    A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches.

  16. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms

    PubMed Central

    Esplin, M Sean; Manuck, Tracy A.; Varner, Michael W.; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M.; Ilekis, John

    2015-01-01

    Objective We sought to employ an innovative tool based on common biological pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB), in order to enhance investigators' ability to identify to highlight common mechanisms and underlying genetic factors responsible for SPTB. Study Design A secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks gestation. Each woman was assessed for the presence of underlying SPTB etiologies. A hierarchical cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis using VEGAS software. Results 1028 women with SPTB were assigned phenotypes. Hierarchical clustering of the phenotypes revealed five major clusters. Cluster 1 (N=445) was characterized by maternal stress, cluster 2 (N=294) by premature membrane rupture, cluster 3 (N=120) by familial factors, and cluster 4 (N=63) by maternal comorbidities. Cluster 5 (N=106) was multifactorial, characterized by infection (INF), decidual hemorrhage (DH) and placental dysfunction (PD). These three phenotypes were highly correlated by Chi-square analysis [PD and DH (p<2.2e-6); PD and INF (p=6.2e-10); INF and DH (p=0.0036)]. Gene-based testing identified the INS (insulin) gene as significantly associated with cluster 3 of SPTB. Conclusion We identified 5 major clusters of SPTB based on a phenotype tool and hierarchal clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors underlying SPTB. PMID:26070700

  17. Phenotypic and evolutionary implications of modulating the ERK-MAPK cascade using the dentition as a model

    NASA Astrophysics Data System (ADS)

    Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent

    2015-06-01

    The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2-/-, Spry4-/-, and Rsk2-/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents.

  18. Clinical features of Friedreich's ataxia: classical and atypical phenotypes.

    PubMed

    Parkinson, Michael H; Boesch, Sylvia; Nachbauer, Wolfgang; Mariotti, Caterina; Giunti, Paola

    2013-08-01

    One hundred and fifty years since Nikolaus Friedreich's first description of the degenerative ataxic syndrome which bears his name, his description remains at the core of the classical clinical phenotype of gait and limb ataxia, poor balance and coordination, leg weakness, sensory loss, areflexia, impaired walking, dysarthria, dysphagia, eye movement abnormalities, scoliosis, foot deformities, cardiomyopathy and diabetes. Onset is typically around puberty with slow progression and shortened life-span often related to cardiac complications. Inheritance is autosomal recessive with the vast majority of cases showing an unstable intronic GAA expansion in both alleles of the frataxin gene on chromosome 9q13. A small number of cases are caused by a compound heterozygous expansion with a point mutation or deletion. Understanding of the underlying molecular biology has enabled identification of atypical phenotypes with late onset, or atypical features such as retained reflexes. Late-onset cases tend to have slower progression and are associated with smaller GAA expansions. Early-onset cases tend to have more rapid progression and a higher frequency of non-neurological features such as diabetes, cardiomyopathy, scoliosis and pes cavus. Compound heterozygotes, including those with large deletions, often have atypical features. In this paper, we review the classical and atypical clinical phenotypes of Friedreich's ataxia. © 2013 International Society for Neurochemistry.

  19. Evaluation of Classifier Performance for Multiclass Phenotype Discrimination in Untargeted Metabolomics.

    PubMed

    Trainor, Patrick J; DeFilippis, Andrew P; Rai, Shesh N

    2017-06-21

    Statistical classification is a critical component of utilizing metabolomics data for examining the molecular determinants of phenotypes. Despite this, a comprehensive and rigorous evaluation of the accuracy of classification techniques for phenotype discrimination given metabolomics data has not been conducted. We conducted such an evaluation using both simulated and real metabolomics datasets, comparing Partial Least Squares-Discriminant Analysis (PLS-DA), Sparse PLS-DA, Random Forests, Support Vector Machines (SVM), Artificial Neural Network, k -Nearest Neighbors ( k -NN), and Naïve Bayes classification techniques for discrimination. We evaluated the techniques on simulated data generated to mimic global untargeted metabolomics data by incorporating realistic block-wise correlation and partial correlation structures for mimicking the correlations and metabolite clustering generated by biological processes. Over the simulation studies, covariance structures, means, and effect sizes were stochastically varied to provide consistent estimates of classifier performance over a wide range of possible scenarios. The effects of the presence of non-normal error distributions, the introduction of biological and technical outliers, unbalanced phenotype allocation, missing values due to abundances below a limit of detection, and the effect of prior-significance filtering (dimension reduction) were evaluated via simulation. In each simulation, classifier parameters, such as the number of hidden nodes in a Neural Network, were optimized by cross-validation to minimize the probability of detecting spurious results due to poorly tuned classifiers. Classifier performance was then evaluated using real metabolomics datasets of varying sample medium, sample size, and experimental design. We report that in the most realistic simulation studies that incorporated non-normal error distributions, unbalanced phenotype allocation, outliers, missing values, and dimension reduction

  20. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways

    PubMed Central

    Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George

    2016-01-01

    Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the

  1. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.

    PubMed

    Koumakis, Lefteris; Kanterakis, Alexandros; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Tsiknakis, Manolis; Vassou, Despoina; Kafetzopoulos, Dimitris; Marias, Kostas; Moustakis, Vassilis; Potamias, George

    2016-11-01

    Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the

  2. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  3. Cranial suture biology of the Aleutian Island inhabitants.

    PubMed

    Cray, James; Mooney, Mark P; Siegel, Michael I

    2011-04-01

    Research on cranial suture biology suggests there is biological and taxonomic information to be garnered from the heritable pattern of suture synostosis. Suture synostosis along with brain growth patterns, diet, and biomechanical forces influence phenotypic variability in cranial vault morphology. This study was designed to determine the pattern of ectocranial suture synostosis in skeletal populations from the Aleutian Islands. We address the hypothesis that ectocranial suture synostosis pattern will differ according to cranial vault shape. Ales Hrdlicka identified two phenotypes in remains excavated from the Aleutian Island. The Paleo-Aleutians, exhibiting a dolichocranic phenotype with little prognathism linked to artifacts distinguished from later inhabitants, Aleutians, who exhibited a brachycranic phenotype with a greater amount of prognathism. A total of 212 crania representing Paleo-Aleuts and Aleutian as defined by Hrdlicka were investigated for suture synostosis pattern following standard methodologies. Comparisons were performed using Guttmann analyses. Results revealed similar suture fusion patterns for the Paleo-Aleut and Aleutian, a strong anterior to posterior pattern of suture fusion for the lateral-anterior suture sites, and a pattern of early termination at the sagittal suture sites for the vault. These patterns were found to differ from that reported in the literature. Because these two populations with distinct cranial shapes exhibit similar patterns of suture synostosis it appears pattern is independent of cranial shape in these populations of Homo sapiens. These findings suggest that suture fusion patterns may be population dependent and that a standardized methodology, using suture fusion to determine age-at-death, may not be applicable to all populations. Copyright © 2011 Wiley-Liss, Inc.

  4. Mistaken identity: activating conservative political identities induces "conservative" financial decisions.

    PubMed

    Morris, Michael W; Carranza, Erica; Fox, Craig R

    2008-11-01

    Four studies investigated whether activating a social identity can lead group members to choose options that are labeled in words associated with that identity. When political identities were made salient, Republicans (but not Democrats) became more likely to choose the gamble or investment option labeled "conservative." This shift did not occur in a condition in which the same options were unlabeled. Thus, the mechanism underlying the effect appears to be not activated identity-related values prioritizing low risk, but rather activated identity-related language (the group label "conservative"). Indeed, when political identities were salient, Republicans favored options labeled "conservative" regardless of whether the options were low or high risk. Finally, requiring participants to explain the label "conservative" before making their choice did not diminish the effect, which suggests that it does not merely reflect inattention to content or construct accessibility. We discuss the implications of these results for the literatures on identity, priming, choice, politics, and marketing.

  5. PhenomeExpress: a refined network analysis of expression datasets by inclusion of known disease phenotypes.

    PubMed

    Soul, Jamie; Hardingham, Timothy E; Boot-Handford, Raymond P; Schwartz, Jean-Marc

    2015-01-29

    We describe a new method, PhenomeExpress, for the analysis of transcriptomic datasets to identify pathogenic disease mechanisms. Our analysis method includes input from both protein-protein interaction and phenotype similarity networks. This introduces valuable information from disease relevant phenotypes, which aids the identification of sub-networks that are significantly enriched in differentially expressed genes and are related to the disease relevant phenotypes. This contrasts with many active sub-network detection methods, which rely solely on protein-protein interaction networks derived from compounded data of many unrelated biological conditions and which are therefore not specific to the context of the experiment. PhenomeExpress thus exploits readily available animal model and human disease phenotype information. It combines this prior evidence of disease phenotypes with the experimentally derived disease data sets to provide a more targeted analysis. Two case studies, in subchondral bone in osteoarthritis and in Pax5 in acute lymphoblastic leukaemia, demonstrate that PhenomeExpress identifies core disease pathways in both mouse and human disease expression datasets derived from different technologies. We also validate the approach by comparison to state-of-the-art active sub-network detection methods, which reveals how it may enhance the detection of molecular phenotypes and provide a more detailed context to those previously identified as possible candidates.

  6. Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity

    PubMed Central

    Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu

    2014-01-01

    During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623

  7. In the Beginning Was the Familiar Voice Personally Familiar Voices in the Evolutionary and Contemporary Biology of Communication

    PubMed Central

    Sidtis, Diana; Kreiman, Jody

    2011-01-01

    The human voice is described in dialogic linguistics as an embodiment of self in a social context, contributing to expression, perception and mutual exchange of self, consciousness, inner life, and personhood. While these approaches are subjective and arise from phenomenological perspectives, scientific facts about personal vocal identity, and its role in biological development, support these views. It is our purpose to review studies of the biology of personal vocal identity -- the familiar voice pattern-- as providing an empirical foundation for the view that the human voice is an embodiment of self in the social context. Recent developments in the biology and evolution of communication are concordant with these notions, revealing that familiar voice recognition (also known as vocal identity recognition or individual vocal recognition) or contributed to survival in the earliest vocalizing species. Contemporary ethology documents the crucial role of familiar voices across animal species in signaling and perceiving internal states and personal identities. Neuropsychological studies of voice reveal multimodal cerebral associations arising across brain structures involved in memory, emotion, attention, and arousal in vocal perception and production, such that the voice represents the whole person. Although its roots are in evolutionary biology, human competence for processing layered social and personal meanings in the voice, as well as personal identity in a large repertory of familiar voice patterns, has achieved an immense sophistication. PMID:21710374

  8. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    PubMed

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for

  9. Mouse Retinal Pigmented Epithelial Cell Lines retain their phenotypic characteristics after transfection with Human Papilloma Virus: A new tool to further the study of RPE biology

    PubMed Central

    Catanuto, Paola; Espinosa-Heidmann, Diego; Pereira-Simon, Simone; Sanchez, Patricia; Salas, Pedro; Hernandez, Eleut; Cousins, Scott W.; Elliot, Sharon J.

    2009-01-01

    Development of immortalized mouse retinal pigmented epithelial cell (RPE) lines that retain many of their in vivo phenotypic characteristics, would aid in studies of ocular diseases including age related macular degeneration (AMD). RPE cells were isolated from 16 month old (estrogen receptor knockout) ERKOα and ERKOβ mice and their C57Bl/6 wild type littermates. RPE65 and cellular retinaldehyde binding protein (CRALBP) expression, in vivo markers of RPE cells, were detected by real-time RT-PCR and western analysis. We confirmed the presence of epithelial cell markers, ZO1, cytokeratin 8 and 18 by immunofluorescence staining. In addition, we confirmed the distribution of actin filaments and the expression of ezrin. To develop cell lines, RPE cells were isolated, propagated and immortalized using human papilloma virus (HPV) 16 (E6/E7). RPE-specific markers and morphology were assessed before and after immortalization. In wildtype littermate controls, there was no evidence of any alterations in the parameters that we examined including MMP-2, TIMP-2, collagen type IV, and estrogen receptor (ER) α and ERβ protein expression and ER copy number ratio. Therefore, immortalized mouse RPE cell lines that retain their in vivo phenotype can be isolated from either pharmacologically or genetically manipulated mice, and may be used to study RPE cell biology. PMID:19013153

  10. Proteomics and metabolomics in ageing research: from biomarkers to systems biology

    PubMed Central

    Hoffman, Jessica M.; Lyu, Yang; Pletcher, Scott D.; Promislow, Daniel E.L.

    2017-01-01

    Age is the single greatest risk factor for a wide range of diseases, and as the mean age of human populations grows steadily older, the impact of this risk factor grows as well. Laboratory studies on the basic biology of ageing have shed light on numerous genetic pathways that have strong effects on lifespan. However, we still do not know the degree to which the pathways that affect ageing in the lab also influence variation in rates of ageing and age-related disease in human populations. Similarly, despite considerable effort, we have yet to identify reliable and reproducible ‘biomarkers’, which are predictors of one’s biological as opposed to chronological age. One challenge lies in the enormous mechanistic distance between genotype and downstream ageing phenotypes. Here, we consider the power of studying ‘endophenotypes’ in the context of ageing. Endophenotypes are the various molecular domains that exist at intermediate levels of organization between the genotype and phenotype. We focus our attention specifically on proteins and metabolites. Proteomic and metabolomic profiling has the potential to help identify the underlying causal mechanisms that link genotype to phenotype. We present a brief review of proteomics and metabolomics in ageing research with a focus on the potential of a systems biology and network-centric perspective in geroscience. While network analyses to study ageing utilizing proteomics and metabolomics are in their infancy, they may be the powerful model needed to discover underlying biological processes that influence natural variation in ageing, age-related disease, and longevity. PMID:28698311

  11. Mammalian synthetic biology for studying the cell

    PubMed Central

    Mathur, Melina; Xiang, Joy S.

    2017-01-01

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. PMID:27932576

  12. Mammalian synthetic biology for studying the cell.

    PubMed

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  13. Macrophage Phenotype and Function in Different Stages of Atherosclerosis

    PubMed Central

    Tabas, Ira; Bornfeldt, Karin E.

    2016-01-01

    The remarkable plasticity and plethora of biological functions performed by macrophages have enticed scientists to study these cells in relation to atherosclerosis for more than 50 years, and major discoveries continue to be made today. It is now understood that macrophages play important roles in all stages of atherosclerosis, from initiation of lesions and lesion expansion, to necrosis leading to rupture and the clinical manifestations of atherosclerosis, to resolution and regression of atherosclerotic lesions. Lesional macrophages are derived primarily from blood monocytes, although recent research has shown that lesional macrophage-like cells can also be derived from smooth muscle cells. Lesional macrophages take on different phenotypes depending on their environment and which intracellular signaling pathways are activated. Rather than a few distinct populations of macrophages, the phenotype of the lesional macrophage is more complex and likely changes during the different phases of atherosclerosis and with the extent of lipid and cholesterol loading, activation by a plethora of receptors, and metabolic state of the cells. These different phenotypes allow the macrophage to engulf lipids, dead cells, and other substances perceived as danger signals; efflux cholesterol to HDL; proliferate and migrate; undergo apoptosis and death; and secrete a large number of inflammatory and pro-resolving molecules. This review article, part of the Compendium on Atherosclerosis, discusses recent advances in our understanding of lesional macrophage phenotype and function in different stages of atherosclerosis. With the increasing understanding of the roles of lesional macrophages, new research areas and treatment strategies are beginning to emerge. PMID:26892964

  14. Inflammatory Genes and Psychological Factors Predict Induced Shoulder Pain Phenotype

    PubMed Central

    George, Steven Z.; Parr, Jeffrey J.; Wallace, Margaret R.; Wu, Samuel S.; Borsa, Paul A.; Dai, Yunfeng; Fillingim, Roger B.

    2014-01-01

    Purpose The pain experience has multiple influences but little is known about how specific biological and psychological factors interact to influence pain responses. The current study investigated the combined influences of genetic (pro-inflammatory) and psychological factors on several pre-clinical shoulder pain phenotypes. Methods An exercise-induced shoulder injury model was used, and a priori selected genetic (IL1B, TNF/LTA region, IL6 single nucleotide polymorphisms, SNPs) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, kinesiophobia) factors were included as the predictors of interest. The phenotypes were pain intensity (5-day average and peak reported on numerical rating scale), upper-extremity disability (5-day average and peak reported on the QuickDASH instrument), and duration of shoulder pain (in days). Results After controlling for age, sex, and race, the genetic and psychological predictors were entered separately as main effects and interaction terms in regression models for each pain phenotype. Results from the recruited cohort (n = 190) indicated strong statistical evidence for the interactions between 1) TNF/LTA SNP rs2229094 and depressive symptoms for average pain intensity and duration and 2) IL1B two-SNP diplotype and kinesiophobia for average shoulder pain intensity. Moderate statistical evidence for prediction of additional shoulder pain phenotypes included interactions of kinesiophobia, fear of pain, or depressive symptoms with TNF/LTA rs2229094 and IL1B. Conclusion These findings support the combined predictive ability of specific genetic and psychological factors for shoulder pain phenotypes by revealing novel combinations that may merit further investigation in clinical cohorts, to determine their involvement in the transition from acute to chronic pain conditions. PMID:24598699

  15. Volatile organic compounds as non-invasive markers for plant phenotyping.

    PubMed

    Niederbacher, B; Winkler, J B; Schnitzler, J P

    2015-09-01

    Plants emit a great variety of volatile organic compounds (VOCs) that can actively participate in plant growth and protection against biotic and abiotic stresses. VOC emissions are strongly dependent on environmental conditions; the greatest ambiguity is whether or not the predicted change in climate will influence and modify plant-pest interactions that are mediated by VOCs. The constitutive and induced emission patterns between plant genotypes, species, and taxa are highly variable and can be used as pheno(chemo)typic markers to distinguish between different origins and provenances. In recent years significant progress has been made in molecular and genetic plant breeding. However, there is actually a lack of knowledge in functionally linking genotypes and phenotypes, particularly in analyses of plant-environment interactions. Plant phenotyping, the assessment of complex plant traits such as growth, development, tolerance, resistance, etc., has become a major bottleneck, and quantitative information on genotype-environment relationships is the key to addressing major future challenges. With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to measure accurately increasingly large numbers of plants and plant traits. In this review article, we focus on the promising outlook of VOC phenotyping as a fast and non-invasive measure of phenotypic dynamics. The basic principle is to define plant phenotypes according to their disease resistance and stress tolerance, which in turn will help in improving the performance and yield of economically relevant plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. DEL phenotype.

    PubMed

    Kwon, Dong H; Sandler, S G; Flegel, Willy A

    2017-09-01

    DEL red blood cells (RBCs) type as D- by routine serologic methods and are transfused routinely, without being identified as expressing a very weak D antigen, to D- recipients. DEL RBCs are detected only by adsorption and elution of anti-D or by molecular methods. Most DEL phenotypes have been reported in population studies conducted in East Asia, although DEL phenotypes have been detected also among Caucasian individuals. Approximately 98 percent of DEL phenotypes in East Asians are associated with the RHD*DEL1 or RHD*01EL.01 allele. The prevalence of DEL phenotypes has been reported among D- Han Chinese (30%), Japanese (28%), and Korean (17%) populations. The prevalence of DEL phenotypes is significantly lower among D- Caucasian populations (0.1%). Among the 3-5 percent of African individuals who are D-, there are no reports of the DEL phenotype. Case reports from East Asia indicate that transfusion of DEL RBCs to D- recipients has been associated with D alloimmunization. East Asian immigrants constitute 2.1 percent of the 318.9 million persons residing in the United States, and an estimated 2.8 percent are blood donors. Using these statistics, we estimate that 68-683 units of DEL RBCs from donors of East Asian ancestry are transfused as D- annually in the United States. Given the reports from East Asia of D alloimmunization attributed to transfusion of DEL RBCs, one would expect an occasional report of D alloimmunization in the United States following transfusion of DEL RBCs to a D- recipient. If such cases do occur, the most likely reason that they are not detected is the absence of active post-transfusion monitoring for formation of anti-D.

  17. Systems biology of eukaryotic superorganisms and the holobiont concept.

    PubMed

    Kutschera, Ulrich

    2018-06-14

    The founders of modern biology (Jean Lamarck, Charles Darwin, August Weismann etc.) were organismic life scientists who attempted to understand the morphology and evolution of living beings as a whole (i.e., the phenotype). However, with the emergence of the study of animal and plant physiology in the nineteenth century, this "holistic view" of the living world changed and was ultimately replaced by a reductionistic perspective. Here, I summarize the history of systems biology, i.e., the modern approach to understand living beings as integrative organisms, from genotype to phenotype. It is documented that the physiologists Claude Bernard and Julius Sachs, who studied humans and plants, respectively, were early pioneers of this discipline, which was formally founded 50 years ago. In 1968, two influential monographs, authored by Ludwig von Bertalanffy and Mihajlo D. Mesarović, were published, wherein a "systems theory of biology" was outlined. Definitions of systems biology are presented with reference to metabolic or cell signaling networks, analyzed via genomics, proteomics, and other methods, combined with computer simulations/mathematical modeling. Then, key insights of this discipline with respect to epiphytic microbes (Methylobacterium sp.) and simple bacteria (Mycoplasma sp.) are described. The principles of homeostasis, molecular systems energetics, gnotobiology, and holobionts (i.e., complexities of host-microbiota interactions) are outlined, and the significance of systems biology for evolutionary theories is addressed. Based on the microbe-Homo sapiens-symbiosis, it is concluded that human biology and health should be interpreted in light of a view of the biomedical sciences that is based on the holobiont concept.

  18. Mouse phenotyping.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin

    2011-02-01

    Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Unisexual and Heterosexual Meiotic Reproduction Generate Aneuploidy and Phenotypic Diversity De Novo in the Yeast Cryptococcus neoformans

    PubMed Central

    Li, Wenjun; Floyd-Averette, Anna; Mieczkowski, Piotr; Dietrich, Fred S.; Heitman, Joseph

    2013-01-01

    Aneuploidy is known to be deleterious and underlies several common human diseases, including cancer and genetic disorders such as trisomy 21 in Down's syndrome. In contrast, aneuploidy can also be advantageous and in fungi confers antifungal drug resistance and enables rapid adaptive evolution. We report here that sexual reproduction generates phenotypic and genotypic diversity in the human pathogenic yeast Cryptococcus neoformans, which is globally distributed and commonly infects individuals with compromised immunity, such as HIV/AIDS patients, causing life-threatening meningoencephalitis. C. neoformans has a defined a-α opposite sexual cycle; however, >99% of isolates are of the α mating type. Interestingly, α cells can undergo α-α unisexual reproduction, even involving genotypically identical cells. A central question is: Why would cells mate with themselves given that sex is costly and typically serves to admix preexisting genetic diversity from genetically divergent parents? In this study, we demonstrate that α-α unisexual reproduction frequently generates phenotypic diversity, and the majority of these variant progeny are aneuploid. Aneuploidy is responsible for the observed phenotypic changes, as chromosome loss restoring euploidy results in a wild-type phenotype. Other genetic changes, including diploidization, chromosome length polymorphisms, SNPs, and indels, were also generated. Phenotypic/genotypic changes were not observed following asexual mitotic reproduction. Aneuploidy was also detected in progeny from a-α opposite-sex congenic mating; thus, both homothallic and heterothallic sexual reproduction can generate phenotypic diversity de novo. Our study suggests that the ability to undergo unisexual reproduction may be an evolutionary strategy for eukaryotic microbial pathogens, enabling de novo genotypic and phenotypic plasticity and facilitating rapid adaptation to novel environments. PMID:24058295

  20. Applications of CRISPR Genome Engineering in Cell Biology.

    PubMed

    Wang, Fangyuan; Qi, Lei S

    2016-11-01

    Recent advances in genome engineering are starting a revolution in biological research and translational applications. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated RNA-guided endonuclease CRISPR associated protein 9 (Cas9) and its variants enable diverse manipulations of genome function. In this review, we describe the development of Cas9 tools for a variety of applications in cell biology research, including the study of functional genomics, the creation of transgenic animal models, and genomic imaging. Novel genome engineering methods offer a new avenue to understand the causality between the genome and phenotype, thus promising a fuller understanding of cell biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Quantitative Systems Pharmacology Approach to Infer Pathways Involved in Complex Disease Phenotypes.

    PubMed

    Schurdak, Mark E; Pei, Fen; Lezon, Timothy R; Carlisle, Diane; Friedlander, Robert; Taylor, D Lansing; Stern, Andrew M

    2018-01-01

    Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington's disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.

  2. Peptide processing and biology in human disease

    PubMed Central

    Kovac, Suzana; Shulkes, Arthur; Baldwin, Graham S.

    2008-01-01

    Purpose of review To describe recent advances in the processing of gastrointestinal hormones, and the consequences for human disease of mutations in the enzymes involved. Recent findings Although gastrointestinal prohormones were long regarded as devoid of biological activity, recent data indicates that the prohormones for both gastrin and gastrin-releasing peptide are bioactive, through different receptors from the mature hormones. Mutations in the family of prohormone convertases responsible for the initial steps in the processing of gastrointestinal hormones are associated with several different pathophysiological conditions in humans. Summary Human mutational studies, when taken together with the phenotypes observed in mice deficient in the prohormone convertases, emphasize the crucial importance of the processing enzymes in mammalian biology. Although the phenotypes may often be ascribed to defective production of a mature hormone or growth factor, the recognition that the precursors are independently bioactive suggests that the increased precursor concentrations may also contribute to the symptoms. The observation that the precursors often act through different receptors from the mature hormones may permit the development of precursor-selective antagonists for therapeutic use. PMID:19104240

  3. Peptide processing and biology in human disease.

    PubMed

    Kovac, Suzana; Shulkes, Arthur; Baldwin, Graham S

    2009-02-01

    To describe recent advances in the processing of gastrointestinal hormones, and the consequences for human disease of mutations in the enzymes involved. Although gastrointestinal prohormones were long regarded as devoid of biological activity, recent data indicate that the prohormones for both gastrin and gastrin-releasing peptide are bioactive, through different receptors from the mature hormones. Mutations in the family of prohormone convertases responsible for the initial steps in the processing of gastrointestinal hormones are associated with several different pathophysiological conditions in humans. Human mutational studies, when taken together with the phenotypes observed in mice deficient in the prohormone convertases, emphasize the crucial importance of the processing enzymes in mammalian biology. Although the phenotypes may often be ascribed to defective production of a mature hormone or growth factor, the recognition that the precursors are independently bioactive suggests that the increased precursor concentrations may also contribute to the symptoms. The observation that the precursors often act through different receptors from the mature hormones may permit the development of precursor-selective antagonists for therapeutic use.

  4. Characterizing visible and invisible cell wall mutant phenotypes.

    PubMed

    Carpita, Nicholas C; McCann, Maureen C

    2015-07-01

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with 'invisible' phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Behavioral Genetic Toolkits: Toward the Evolutionary Origins of Complex Phenotypes.

    PubMed

    Rittschof, C C; Robinson, G E

    2016-01-01

    The discovery of toolkit genes, which are highly conserved genes that consistently regulate the development of similar morphological phenotypes across diverse species, is one of the most well-known observations in the field of evolutionary developmental biology. Surprisingly, this phenomenon is also relevant for a wide array of behavioral phenotypes, despite the fact that these phenotypes are highly complex and regulated by many genes operating in diverse tissues. In this chapter, we review the use of the toolkit concept in the context of behavior, noting the challenges of comparing behaviors and genes across diverse species, but emphasizing the successes in identifying genetic toolkits for behavior; these successes are largely attributable to the creative research approaches fueled by advances in behavioral genomics. We have two general goals: (1) to acknowledge the groundbreaking progress in this field, which offers new approaches to the difficult but exciting challenge of understanding the evolutionary genetic basis of behaviors, some of the most complex phenotypes known, and (2) to provide a theoretical framework that encompasses the scope of behavioral genetic toolkit studies in order to clearly articulate the research questions relevant to the toolkit concept. We emphasize areas for growth and highlight the emerging approaches that are being used to drive the field forward. Behavioral genetic toolkit research has elevated the use of integrative and comparative approaches in the study of behavior, with potentially broad implications for evolutionary biologists and behavioral ecologists alike. © 2016 Elsevier Inc. All rights reserved.

  6. Comprehensive detection of genes causing a phenotype using phenotype sequencing and pathway analysis.

    PubMed

    Harper, Marc; Gronenberg, Luisa; Liao, James; Lee, Christopher

    2014-01-01

    Discovering all the genetic causes of a phenotype is an important goal in functional genomics. We combine an experimental design for detecting independent genetic causes of a phenotype with a high-throughput sequencing analysis that maximizes sensitivity for comprehensively identifying them. Testing this approach on a set of 24 mutant strains generated for a metabolic phenotype with many known genetic causes, we show that this pathway-based phenotype sequencing analysis greatly improves sensitivity of detection compared with previous methods, and reveals a wide range of pathways that can cause this phenotype. We demonstrate our approach on a metabolic re-engineering phenotype, the PEP/OAA metabolic node in E. coli, which is crucial to a substantial number of metabolic pathways and under renewed interest for biofuel research. Out of 2157 mutations in these strains, pathway-phenoseq discriminated just five gene groups (12 genes) as statistically significant causes of the phenotype. Experimentally, these five gene groups, and the next two high-scoring pathway-phenoseq groups, either have a clear connection to the PEP metabolite level or offer an alternative path of producing oxaloacetate (OAA), and thus clearly explain the phenotype. These high-scoring gene groups also show strong evidence of positive selection pressure, compared with strictly neutral selection in the rest of the genome.

  7. Ethnic Identity in Everyday Life: The Influence of Identity Development Status

    PubMed Central

    Yip, Tiffany

    2013-01-01

    The current study explores the intersection of ethnic identity development and significance in a sample of 354 diverse adolescents (mean age 14). Adolescents completed surveys 5 times a day for 1 week. Cluster analyses revealed 4 identity clusters: diffused, foreclosed, moratorium, achieved. Achieved adolescents reported the highest levels of identity salience across situations, followed by moratorium adolescents. Achieved and moratorium adolescents also reported a positive association between identity salience and private regard. For foreclosed and achieved adolescents reporting low levels of centrality, identity salience was associated with lower private regard. For foreclosed and achieved adolescents reporting high levels of centrality, identity salience was associated with higher private regard. PMID:23581701

  8. Experimental evolution reveals differences between phenotypic and evolutionary responses to population density.

    PubMed

    McNamara, K B; Simmons, L W

    2017-09-01

    Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  9. Teacher Educators: Their Identities, Sub-Identities and Implications for Professional Development

    ERIC Educational Resources Information Center

    Swennen, Anja; Jones, Ken; Volman, Monique

    2010-01-01

    In this article we address the question: "What sub-identities of teacher educators emerge from the research literature about teacher educators and what are the implications of the sub-identities for the professional development of teacher educators?" Like other professional identities, the identity of teacher educators is a construction of various…

  10. Bridging Identities and Disciplines: Advances and Challenges in Understanding Multiple Identities

    ERIC Educational Resources Information Center

    Phinney, Jean S.

    2008-01-01

    The chapters in this volume address the need for a better understanding of the development of intersecting identities over age and context. The chapters provide valuable insights into the development of identities, particularly group identities. They highlight common processes across identities, such as the role of contrast and comparison and the…

  11. Toward a mechanistic explanation of phenotypic evolution: The need for a theory of theory integration.

    PubMed

    Laubichler, Manfred D; Prohaska, Sonja J; Stadler, Peter F

    2018-01-01

    Reconciling different underlying ontologies and explanatory contexts has been one of the main challenges and impediments for theory integration in biology. Here, we analyze the challenge of developing an inclusive and integrative theory of phenotypic evolution as an example for the broader challenge of developing a theory of theory integration within the life sciences and suggest a number of necessary formal steps toward the resolution of often incompatible (hidden) assumptions. Theory integration in biology requires a better formal understanding of the structure of biological theories The strategy for integrating theories crucially depends on the relationships of the underlying ontologies. © 2018 Wiley Periodicals, Inc.

  12. Beyond the Central Dogma: Model-Based Learning of How Genes Determine Phenotypes

    PubMed Central

    Reinagel, Adam; Bray Speth, Elena

    2016-01-01

    In an introductory biology course, we implemented a learner-centered, model-based pedagogy that frequently engaged students in building conceptual models to explain how genes determine phenotypes. Model-building tasks were incorporated within case studies and aimed at eliciting students’ understanding of 1) the origin of variation in a population and 2) how genes/alleles determine phenotypes. Guided by theory on hierarchical development of systems-thinking skills, we scaffolded instruction and assessment so that students would first focus on articulating isolated relationships between pairs of molecular genetics structures and then integrate these relationships into an explanatory network. We analyzed models students generated on two exams to assess whether students’ learning of molecular genetics progressed along the theoretical hierarchical sequence of systems-thinking skills acquisition. With repeated practice, peer discussion, and instructor feedback over the course of the semester, students’ models became more accurate, better contextualized, and more meaningful. At the end of the semester, however, more than 25% of students still struggled to describe phenotype as an output of protein function. We therefore recommend that 1) practices like modeling, which require connecting genes to phenotypes; and 2) well-developed case studies highlighting proteins and their functions, take center stage in molecular genetics instruction. PMID:26903496

  13. Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging

    PubMed Central

    Wong, Michael D.; Dazai, Jun; Altaf, Maliha; Mark Henkelman, R.; Lerch, Jason P.; Nieman, Brian J.

    2012-01-01

    The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm3) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs. PMID:22718750

  14. Composition and applications of focus libraries to phenotypic assays

    PubMed Central

    Wassermann, Anne Mai; Camargo, Luiz M.; Auld, Douglas S.

    2014-01-01

    The wealth of bioactivity information now available on low-molecular weight compounds has enabled a paradigm shift in chemical biology and early phase drug discovery efforts. Traditionally chemical libraries have been most commonly employed in screening approaches where a bioassay is used to characterize a chemical library in a random search for active samples. However, robust curating of bioassay data, establishment of ontologies enabling mining of large chemical biology datasets, and a wealth of public chemical biology information has made possible the establishment of highly annotated compound collections. Such annotated chemical libraries can now be used to build a pathway/target hypothesis and have led to a new view where chemical libraries are used to characterize a bioassay. In this article we discuss the types of compounds in these annotated libraries composed of tools, probes, and drugs. As well, we provide rationale and a few examples for how such libraries can enable phenotypic/forward chemical genomic approaches. As with any approach, there are several pitfalls that need to be considered and we also outline some strategies to avoid these. PMID:25104937

  15. Phenotypic and evolutionary implications of modulating the ERK-MAPK cascade using the dentition as a model

    PubMed Central

    Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent

    2015-01-01

    The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2−/−, Spry4−/−, and Rsk2−/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents. PMID:26123406

  16. Essentialist Reasoning and Knowledge Effects on Biological Reasoning in Young Children

    ERIC Educational Resources Information Center

    Herrmann, Patricia A.; French, Jason A.; DeHart, Ganie B.; Rosengren, Karl S.

    2013-01-01

    Biological kinds undergo a variety of changes during their life span, and these changes vary in degree by organism. Understanding that an organism, such as a caterpillar, maintains category identity over its life span despite dramatic changes is a key concept in biological reasoning. At present, we know little about the developmental trajectory of…

  17. A Dual Identity Approach for Conceptualizing and Measuring Children's Gender Identity.

    PubMed

    Martin, Carol Lynn; Andrews, Naomi C Z; England, Dawn E; Zosuls, Kristina; Ruble, Diane N

    2017-01-01

    The goal was to test a new dual identity perspective on gender identity by asking children (n = 467) in three grades (M age  = 5.7, 7.6, 9.5) to consider the relation of the self to both boys and girls. This change shifted the conceptualization of gender identity from one to two dimensions, provided insights into the meaning and measurement of gender identity, and allowed for revisiting ideas about the roles of gender identity in adjustment. Using a graphical measure to allow assessment of identity in young children and cluster analyses to determine types of identity, it was found that individual and developmental differences in how similar children feel to both genders, and these variations matter for many important personal and social outcomes. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  18. Phenotypic variation in Lactococcus lactis subsp. lactis isolates derived from intestinal tracts of marine and freshwater fish.

    PubMed

    Itoi, S; Yuasa, K; Washio, S; Abe, T; Ikuno, E; Sugita, H

    2009-09-01

    We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture. In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l-arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate. Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described. The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.

  19. The biology of recent thymic emigrants.

    PubMed

    Fink, Pamela J

    2013-01-01

    The generation of the TCRαβ lineage of T cells occurs in the thymus through a series of orchestrated developmental events that result in a carefully selected population of CD4 or CD8 lineage-committed TCR(+) thymocytes capable of recognizing foreign antigen in the context of self MHC. T cells first exit the thymus in a phenotypically and functionally immature state and require an approximately 3-week period of post-thymic maturation before transitioning into the mature T cell compartment. A greater understanding of recent thymic emigrant biology has come with the development of methods to exclusively identify and isolate this population for further characterization. I now review current knowledge about the phenotype and function of this key but understudied population of peripheral T cells.

  20. Theoretical principles for biology: Variation.

    PubMed

    Montévil, Maël; Mossio, Matteo; Pocheville, Arnaud; Longo, Giuseppe

    2016-10-01

    Darwin introduced the concept that random variation generates new living forms. In this paper, we elaborate on Darwin's notion of random variation to propose that biological variation should be given the status of a fundamental theoretical principle in biology. We state that biological objects such as organisms are specific objects. Specific objects are special in that they are qualitatively different from each other. They can undergo unpredictable qualitative changes, some of which are not defined before they happen. We express the principle of variation in terms of symmetry changes, where symmetries underlie the theoretical determination of the object. We contrast the biological situation with the physical situation, where objects are generic (that is, different objects can be assumed to be identical) and evolve in well-defined state spaces. We derive several implications of the principle of variation, in particular, biological objects show randomness, historicity and contextuality. We elaborate on the articulation between this principle and the two other principles proposed in this special issue: the principle of default state and the principle of organization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. 29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype.

    PubMed

    Monin, Marie-Lorraine; Mignot, Cyril; De Lonlay, Pascale; Héron, Bénédicte; Masurel, Alice; Mathieu-Dramard, Michèle; Lenaerts, Catherine; Thauvin, Christel; Gérard, Marion; Roze, Emmanuel; Jacquette, Aurélia; Charles, Perrine; de Baracé, Claire; Drouin-Garraud, Valérie; Khau Van Kien, Philippe; Cormier-Daire, Valérie; Mayer, Michèle; Ogier, Hélène; Brice, Alexis; Seta, Nathalie; Héron, Delphine

    2014-12-11

    PMM2-CDG (formerly known as CDG Ia) a deficiency in phosphomannomutase, is the most frequent congenital disorder of glycosylation. The phenotype encompasses a wide range of neurological and non-neurological manifestations comprising cerebellar atrophy and intellectual deficiency. The phenotype of the disorder is well characterized in children but the long term course of the disease is unknown and the phenotype of late onset forms has not been comprehensively described. We thus retrospectively collected the clinical, biological and radiological data of 29 French PMM2-CDG patients aged 15 years or more with a proven molecular diagnosis (16 females and 13 males). In addition, thirteen of these patients were reexamined at the time of the study to obtain detailed information. 27 of the 29 patients had a typical PMM2-CDG phenotype, with infantile hypotonia, strabismus, developmental delay followed by intellectual deficiency, epilepsy, retinitis pigmentosa and/or visceral manifestations. The main health problems for these patients as teenagers and in adulthood were primary ovarian insufficiency, growth retardation, coagulation anomalies and thrombotic events, skeletal deformities and osteopenia/osteoporosis, retinitis pigmentosa, as well as peripheral neuropathy. Three patients had never walked and three lost their ability to walk. The two remaining patients had a late-onset phenotype unreported to date. All patients (n = 29) had stable cerebellar atrophy. Our findings are in line with those of previous adult PMM2-CDG cohorts and points to the need for a multidisciplinary approach to the follow up of PMM2-CDG patients to prevent late complications. Additionally, our findings add weight to the view that PMM2-CDG may be diagnosed in teenage/adult patients with cerebellar atrophy, even in the absence of intellectual deficiency or non-neurological involvement.

  2. The Identity Mapping Project: Demographic differences in patterns of distributed identity.

    PubMed

    Gilbert, Richard L; Dionisio, John David N; Forney, Andrew; Dorin, Philip

    2015-01-01

    The advent of cloud computing and a multi-platform digital environment is giving rise to a new phase of human identity called "The Distributed Self." In this conception, aspects of the self are distributed into a variety of 2D and 3D digital personas with the capacity to reflect any number of combinations of now malleable personality traits. In this way, the source of human identity remains internal and embodied, but the expression or enactment of the self becomes increasingly external, disembodied, and distributed on demand. The Identity Mapping Project (IMP) is an interdisciplinary collaboration between psychology and computer Science designed to empirically investigate the development of distributed forms of identity. Methodologically, it collects a large database of "identity maps" - computerized graphical representations of how active someone is online and how their identity is expressed and distributed across 7 core digital domains: email, blogs/personal websites, social networks, online forums, online dating sites, character based digital games, and virtual worlds. The current paper reports on gender and age differences in online identity based on an initial database of distributed identity profiles.

  3. Phenotyping Pharyngeal Pathophysiology using Polysomnography in Patients with Obstructive Sleep Apnea.

    PubMed

    Sands, Scott A; Edwards, Bradley A; Terrill, Philip I; Taranto-Montemurro, Luigi; Azarbarzin, Ali; Marques, Melania; Hess, Lauren B; White, David P; Wellman, Andrew

    2018-05-01

    Therapies for obstructive sleep apnea (OSA) could be administered on the basis of a patient's own phenotypic causes ("traits") if a clinically applicable approach were available. Here we aimed to provide a means to quantify two key contributors to OSA-pharyngeal collapsibility and compensatory muscle responsiveness-that is applicable to diagnostic polysomnography. Based on physiological definitions, pharyngeal collapsibility determines the ventilation at normal (eupneic) ventilatory drive during sleep, and pharyngeal compensation determines the rise in ventilation accompanying a rising ventilatory drive. Thus, measuring ventilation and ventilatory drive (e.g., during spontaneous cyclic events) should reveal a patient's phenotypic traits without specialized intervention. We demonstrate this concept in patients with OSA (N = 29), using a novel automated noninvasive method to estimate ventilatory drive (polysomnographic method) and using "gold standard" ventilatory drive (intraesophageal diaphragm EMG) for comparison. Specialized physiological measurements using continuous positive airway pressure manipulation were employed for further comparison. The validity of nasal pressure as a ventilation surrogate was also tested (N = 11). Polysomnography-derived collapsibility and compensation estimates correlated favorably with those quantified using gold standard ventilatory drive (R = 0.83, P < 0.0001; and R = 0.76, P < 0.0001; respectively) and using continuous positive airway pressure manipulation (R = 0.67, P < 0.0001; and R = 0.64, P < 0.001; respectively). Polysomnographic estimates effectively stratified patients into high versus low subgroups (accuracy, 69-86% vs. ventilatory drive measures; P < 0.05). Traits were near-identical using nasal pressure versus pneumotach (N = 11, R ≥ 0.98, both traits; P < 0.001). Phenotypes of pharyngeal dysfunction in OSA are evident from spontaneous changes in ventilation and

  4. Asthma phenotypes in childhood.

    PubMed

    Reddy, Monica B; Covar, Ronina A

    2016-04-01

    This review describes the literature over the past 18 months that evaluated childhood asthma phenotypes, highlighting the key aspects of these studies, and comparing these studies to previous ones in this area. Recent studies on asthma phenotypes have identified new phenotypes on the basis of statistical analyses (using cluster analysis and latent class analysis methodology) and have evaluated the outcomes and associated risk factors of previously established early childhood asthma phenotypes that are based on asthma onset and patterns of wheezing illness. There have also been investigations focusing on immunologic, physiologic, and genetic correlates of various phenotypes, as well as identification of subphenotypes of severe childhood asthma. Childhood asthma remains a heterogeneous condition, and investigations into these various presentations, risk factors, and outcomes are important since they can offer therapeutic and prognostic relevance. Further investigation into the immunopathology and genetic basis underlying childhood phenotypes is important so therapy can be tailored accordingly.

  5. Variation in reaction norms: Statistical considerations and biological interpretation.

    PubMed

    Morrissey, Michael B; Liefting, Maartje

    2016-09-01

    Analysis of reaction norms, the functions by which the phenotype produced by a given genotype depends on the environment, is critical to studying many aspects of phenotypic evolution. Different techniques are available for quantifying different aspects of reaction norm variation. We examine what biological inferences can be drawn from some of the more readily applicable analyses for studying reaction norms. We adopt a strongly biologically motivated view, but draw on statistical theory to highlight strengths and drawbacks of different techniques. In particular, consideration of some formal statistical theory leads to revision of some recently, and forcefully, advocated opinions on reaction norm analysis. We clarify what simple analysis of the slope between mean phenotype in two environments can tell us about reaction norms, explore the conditions under which polynomial regression can provide robust inferences about reaction norm shape, and explore how different existing approaches may be used to draw inferences about variation in reaction norm shape. We show how mixed model-based approaches can provide more robust inferences than more commonly used multistep statistical approaches, and derive new metrics of the relative importance of variation in reaction norm intercepts, slopes, and curvatures. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  6. New genes contribute to genetic and phenotypic novelties in human evolution

    PubMed Central

    Zhang, Yong E.; Long, Manyuan

    2014-01-01

    New genes in human genomes have been found relevant in evolution and biology of humans. It was conservatively estimated that the human genome encodes more than 300 human-specific genes and 1,000 primate-specific genes. These new arrivals appear to be implicated in brain function and male reproduction. Surprisingly, increasing evidence indicates that they may also bring negative pleiotropic effects, while assuming various possible biological functions as sources of phenotypic novelties, suggesting a non-progressive route for functional evolution. Similar to these fixed new genes, polymorphic new genes were found to contribute to functional evolution within species, e.g. with respect to digestion or disease resistance, revealing that new genes can acquire new or diverged functions in its initial stage as prototypic genes. These progresses have provided new opportunity to explore the genetic basis of human biology and human evolutionary history in a new dimension. PMID:25218862

  7. Neurodegeneration and Identity.

    PubMed

    Strohminger, Nina; Nichols, Shaun

    2015-09-01

    There is a widespread notion, both within the sciences and among the general public, that mental deterioration can rob individuals of their identity. Yet there have been no systematic investigations of what types of cognitive damage lead people to appear to no longer be themselves. We measured perceived identity change in patients with three kinds of neurodegenerative disease: frontotemporal dementia, Alzheimer's disease, and amyotrophic lateral sclerosis. Structural equation models revealed that injury to the moral faculty plays the primary role in identity discontinuity. Other cognitive deficits, including amnesia, have no measurable impact on identity persistence. Accordingly, frontotemporal dementia has the greatest effect on perceived identity, and amyotrophic lateral sclerosis has the least. We further demonstrated that perceived identity change fully mediates the impact of neurodegenerative disease on relationship deterioration between patient and caregiver. Our results mark a departure from theories that ground personal identity in memory, distinctiveness, dispositional emotion, or global mental function. © The Author(s) 2015.

  8. The Identity and Identity Identification of Teachers

    ERIC Educational Resources Information Center

    Qu, Zhengwei

    2008-01-01

    When we tend to analyze the living conditions of teachers, system arrangement and identity identification can be considered a significant method for analysis. In reality, there appears a phenomenon of overlapping identification in the identity identification of teachers in China, which leads to plural selections in the identification manners of…

  9. Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines

    PubMed Central

    Noguchi, Ken; Dalton, Annamarie C.; Howley, Breege V.; McCall, Buckley J.; Yoshida, Akihiro; Diehl, J. Alan

    2017-01-01

    ILEI (FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell biological process that confers metastatic properties to a tumor cell. Initially, we found that ILEI mRNA is highly expressed in melanoma metastases but not in primary tumors, suggesting that ILEI contributes to the malignant properties of melanoma. While melanoma is not an epithelial cell-derived tumor and does not undergo a traditional EMT, melanoma undergoes a similar process known as phenotype switching in which high (micropthalmia-related transcription factor) MITF expressing (MITF-high) proliferative cells switch to a low expressing (MITF-low) invasive state. We observed that MITF-high proliferative cells express low levels of ILEI (ILEI-low) and MITF-low invasive cells express high levels of ILEI (ILEI-high). We found that inducing phenotype switching towards the MITF-low invasive state increases ILEI mRNA expression, whereas phenotype switching towards the MITF-high proliferative state decreases ILEI mRNA expression. Next, we used in vitro assays to show that knockdown of ILEI attenuates invasive potential but not MITF expression or chemoresistance. Finally, we used gene expression analysis to show that ILEI regulates several genes involved in the MITF-low invasive phenotype including JARID1B, HIF-2α, and BDNF. Gene set enrichment analysis suggested that ILEI-regulated genes are enriched for JUN signaling, a known regulator of the MITF-low invasive phenotype. In conclusion, we demonstrate that phenotype switching regulates ILEI expression, and that ILEI regulates partial phenotype switching in MITF-low melanoma cell lines. PMID:28545079

  10. FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila

    PubMed Central

    Tang, Hui Yuan; Smith-Caldas, Martha S. B.; Driscoll, Michael V.; Salhadar, Samy; Shingleton, Alexander W.

    2011-01-01

    Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in

  11. Association Between the Probability of Autism Spectrum Disorder and Normative Sex-Related Phenotypic Diversity in Brain Structure

    PubMed Central

    Andrews, Derek S.; Gudbrandsen, Christina M.; Marquand, Andre F.; Ginestet, Cedric E.; Daly, Eileen M.; Murphy, Clodagh M.; Lai, Meng-Chuan; Lombardo, Michael V.; Ruigrok, Amber N. V.; Bullmore, Edward T.; Suckling, John; Williams, Steven C. R.; Baron-Cohen, Simon; Craig, Michael C.; Murphy, Declan G. M.

    2017-01-01

    Importance Autism spectrum disorder (ASD) is 2 to 5 times more common in male individuals than in female individuals. While the male preponderant prevalence of ASD might partially be explained by sex differences in clinical symptoms, etiological models suggest that the biological male phenotype carries a higher intrinsic risk for ASD than the female phenotype. To our knowledge, this hypothesis has never been tested directly, and the neurobiological mechanisms that modulate ASD risk in male individuals and female individuals remain elusive. Objectives To examine the probability of ASD as a function of normative sex-related phenotypic diversity in brain structure and to identify the patterns of sex-related neuroanatomical variability associated with low or high probability of ASD. Design, Setting, and Participants This study examined a cross-sectional sample of 98 right-handed, high-functioning adults with ASD and 98 matched neurotypical control individuals aged 18 to 42 years. A multivariate probabilistic classification approach was used to develop a predictive model of biological sex based on cortical thickness measures assessed via magnetic resonance imaging in neurotypical controls. This normative model was subsequently applied to individuals with ASD. The study dates were June 2005 to October 2009, and this analysis was conducted between June 2015 and July 2016. Main Outcomes and Measures Sample and population ASD probability estimates as a function of normative sex-related diversity in brain structure, as well as neuroanatomical patterns associated with low or high ASD probability in male individuals and female individuals. Results Among the 98 individuals with ASD, 49 were male and 49 female, with a mean (SD) age of 26.88 (7.18) years. Among the 98 controls, 51 were male and 47 female, with a mean (SD) age of 27.39 (6.44) years. The sample probability of ASD increased significantly with predictive probabilities for the male neuroanatomical brain phenotype. For

  12. SuperIdentity: Fusion of Identity across Real and Cyber Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Sue; Creese, Sadie; Guest, Richard

    Under both benign and malign circumstances, people now manage a spectrum of identities across both real-world and cyber domains. Our belief, however, is that all these instances ultimately track back for an individual to reflect a single 'SuperIdentity'. This paper outlines the assumptions underpinning the SuperIdentity Project, describing the innovative use of data fusion to incorporate novel real-world and cyber cues into a rich framework appropriate for modern identity. The proposed combinatorial model will support a robust identification or authentication decision, with confidence indexed both by the level of trust in data provenance, and the diagnosticity of the identity factorsmore » being used. Additionally, the exploration of correlations between factors may underpin the more intelligent use of identity information so that known information may be used to predict previously hidden information. With modern living supporting the 'distribution of identity' across real and cyber domains, and with criminal elements operating in increasingly sophisticated ways in the hinterland between the two, this approach is suggested as a way forwards, and is discussed in terms of its impact on privacy, security, and the detection of threat.« less

  13. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen

    PubMed Central

    Adissu, Hibret A.; Estabel, Jeanne; Sunter, David; Tuck, Elizabeth; Hooks, Yvette; Carragher, Damian M.; Clarke, Kay; Karp, Natasha A.; Project, Sanger Mouse Genetics; Newbigging, Susan; Jones, Nora; Morikawa, Lily; White, Jacqueline K.; McKerlie, Colin

    2014-01-01

    The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice. PMID:24652767

  14. Research Review: Gender identity in youth: treatment paradigms and controversies.

    PubMed

    Turban, Jack L; Ehrensaft, Diane

    2017-10-26

    Pediatric gender identity has gained increased attention over the past several years in the popular media, political arena, and medical literature. This article reviews terminology in this evolving field, traditional models of gender identity development and their limitations, epidemiology and natural history of cross-gender identification among children and adolescents, co-occurring conditions and behaviors, research into the biological and psychosocial determinants of cross-gender identification, and research into the options regarding and benefits of clinical approaches to gender incongruent youth. Based on a critical review of the extant literature, both theoretical and empirical, that addresses the issue of pediatric gender identity, the authors synthesized what is presently known and what is in need of further research in order to elucidate the developmental trajectory and clinical needs of gender diverse youth. The field of pediatric gender identity has evolved substantially over the past several years. New research suggests that cross-gender identification is prevalent (approximately 1% of youth). These youth suffer disproportionately high rates of anxiety, depression, and suicidality. Although research into the etiology of cross-gender identification is limited, emerging data have shown that affirmative treatment protocols may improve the high rates of mental health difficulties seen among these patients. The field of pediatric gender identity has evolved dramatically. Emerging data suggest that these patients' high rates of anxiety, depression, and suicidality appear to be improved with affirmative protocols, although future longitudinal data are needed. © 2017 Association for Child and Adolescent Mental Health.

  15. Highly designable phenotypes and mutational buffers emerge from a systematic mapping between network topology and dynamic output.

    PubMed

    Nochomovitz, Yigal D; Li, Hao

    2006-03-14

    Deciphering the design principles for regulatory networks is fundamental to an understanding of biological systems. We have explored the mapping from the space of network topologies to the space of dynamical phenotypes for small networks. Using exhaustive enumeration of a simple model of three- and four-node networks, we demonstrate that certain dynamical phenotypes can be generated by an atypically broad spectrum of network topologies. Such dynamical outputs are highly designable, much like certain protein structures can be designed by an unusually broad spectrum of sequences. The network topologies that encode a highly designable dynamical phenotype possess two classes of connections: a fully conserved core of dedicated connections that encodes the stable dynamical phenotype and a partially conserved set of variable connections that controls the transient dynamical flow. By comparing the topologies and dynamics of the three- and four-node network ensembles, we observe a large number of instances of the phenomenon of "mutational buffering," whereby addition of a fourth node suppresses phenotypic variation amongst a set of three-node networks.

  16. Does Everyone Have a Musical Identity?: Reflections on "Musical Identities"

    ERIC Educational Resources Information Center

    Gracyk, Theodore

    2004-01-01

    The book, "Musical Identities" (Raymond MacDonald, David Hargreaves, Dorothy Miell, eds.; Oxford and New York: Oxford University Press, 2002) consists of 11 essays on the psychology of music. The editors divided the essays into two groups: those on developing musical identities ("identities in music" involving recognizable…

  17. Korean Adoptee Identity: Adoptive and Ethnic Identity Profiles of Adopted Korean Americans.

    PubMed

    Beaupre, Adam J; Reichwald, Reed; Zhou, Xiang; Raleigh, Elizabeth; Lee, Richard M

    2015-12-01

    Adopted Korean adolescents face the task of grappling with their identity as Koreans and coming to terms with their adoptive status. In order to explore these dual identities, the authors conducted a person-centered study of the identity profiles of 189 adopted Korean American adolescents. Using cluster analytic procedures, the study examined patterns of commitment to ethnic and adoptive identities, revealing six conceptually unique identity clusters. Analyzing the association between these identity profiles and psychological adjustment, the study found that the identity profiles were undifferentiated with respect to behavioral development and risk behaviors. However, group differences were found on life satisfaction, school adjustment, and family functioning. Results confirm the importance of considering the collective impact of multiple social identities on a variety of outcomes. The social implications of the results are discussed. © 2015 Wiley Periodicals, Inc.

  18. Perspectives on Sexual Identity Formation, Identity Practices, and Identity Transitions Among Men Who Have Sex With Men in India.

    PubMed

    Tomori, Cecilia; Srikrishnan, Aylur K; Ridgeway, Kathleen; Solomon, Sunil S; Mehta, Shruti H; Solomon, Suniti; Celentano, David D

    2018-01-01

    Men who have sex with men (MSM) remain at high risk for HIV infection. Culturally specific sexual identities, encompassing sexual roles, behavior, and appearance, may shape MSM's experiences of stigmatization and discrimination, and affect their vulnerability to HIV. This multi-site qualitative study (n = 363) encompassing 31 focus group discussions (FGDs) and 121 in-depth interviews (IDIs) across 15 sites in India investigated sexual identity formation, identity practices, and transitions and their implications for HIV prevention. IDIs and FGDs were transcribed, translated, and underwent thematic analysis. Our findings document heterogeneous sexual identity formation, with MSM who have more gender nonconforming behaviors or appearance reporting greater family- and community-level disapproval, harassment, violence, and exclusion. Concealing feminine aspects of sexual identities was important in daily life, especially for married MSM. Some participants negotiated their identity practices in accordance with socioeconomic and cultural pressures, including taking on identity characteristics to suit consumer demand in sex work and on extended periods of joining communities of hijras (sometimes called TG or transgender women). Participants also reported that some MSM transition toward more feminine and hijra or transgender women identities, motivated by intersecting desires for feminine gender expression and by social exclusion and economic marginalization. Future studies should collect information on gender nonconformity stigma, and any changes in sexual identity practices or plans for transitions to other identities over time, in relation to HIV risk behaviors and outcomes.

  19. Quantum entanglement of identical particles by standard information-theoretic notions

    PubMed Central

    Lo Franco, Rosario; Compagno, Giuseppe

    2016-01-01

    Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates. PMID:26857475

  20. Revealing the vectors of cellular identity with single-cell genomics

    PubMed Central

    Wagner, Allon; Regev, Aviv; Yosef, Nir

    2017-01-01

    Single-cell genomics has now made it possible to create a comprehensive atlas of human cells. At the same time, it has reopened definitions of a cell’s identity and type and of the ways in which they are regulated by the cell’s molecular circuitry. Emerging computational analysis methods, especially in single-cell RNA sequencing (scRNA-seq), have already begun to reveal, in a data-driven way, the diverse simultaneous facets of a cell’s identity, from a taxonomy of discrete cell types to continuous dynamic transitions and spatial locations. These developments will eventually allow a cell to be represented as a superposition of ‘basis vectors’, each determining a different (but possibly dependent) aspect of cellular organization and function. However, computational methods must also overcome considerable challenges—from handling technical noise and data scale to forming new abstractions of biology. As the scale of single-cell experiments continues to increase, new computational approaches will be essential for constructing and characterizing a reference map of cell identities. PMID:27824854

  1. High-Content Screening for Quantitative Cell Biology.

    PubMed

    Mattiazzi Usaj, Mojca; Styles, Erin B; Verster, Adrian J; Friesen, Helena; Boone, Charles; Andrews, Brenda J

    2016-08-01

    High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A longitudinal integration of identity styles and educational identity processes in adolescence.

    PubMed

    Negru-Subtirica, Oana; Pop, Eleonora Ioana; Crocetti, Elisabetta

    2017-11-01

    Identity formation is a main adolescent psychosocial developmental task. The complex interconnection between different processes that are at the basis of one's identity is a research and applied intervention priority. In this context, the identity style model focuses on social-cognitive strategies (i.e., informational, normative, and diffuse-avoidant) that individuals can use to deal with identity formation. The 3-factor identity dimensional model examines the interplay between identity processes of commitment, in-depth exploration, and reconsideration of commitment in different life domains. Theoretical integrations between these models have been proposed, but there is a dearth of studies unraveling their longitudinal links in specific identity domains. We addressed this gap by testing in a 3-wave longitudinal study the bidirectional associations between identity styles and educational identity processes measured during 1 academic year. Participants were 1,151 adolescents (58.7% female). Results highlighted that the informational style was related over time to higher levels of educational commitment and in-depth exploration, whereas the diffuse-avoidant style was related to lower levels of commitment and higher levels of reconsideration of commitment. Educational commitment was positively related to the informational and normative styles; in-depth exploration was positively related to the informational style; and reconsideration of commitment was positively related to the diffuse-avoidant style. These relations were not moderated by adolescents' gender and age. Hence, identity styles and educational identity processes reinforce each other during 1 academic year. Theoretical integrations between these models, suggestions for integration with other identity approaches (e.g., narrative identity models), and practical implications are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities

    DTIC Science & Technology

    2016-10-01

    Award Number: W81XWH-12-2-0128 TITLE: Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities...SUBTITLE Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities 5a. CONTRACT NUMBER 5b. GRANT NUMBER...identification of cell phenotype, extracellular 5 matrix characterization, and histomorphometric analysis. The main endpoint of this study was to

  4. Quantitative genetic methods depending on the nature of the phenotypic trait.

    PubMed

    de Villemereuil, Pierre

    2018-01-24

    A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression. © 2018 New York Academy of Sciences.

  5. Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens

    PubMed Central

    Yin, Zheng; Zhou, Xiaobo; Bakal, Chris; Li, Fuhai; Sun, Youxian; Perrimon, Norbert; Wong, Stephen TC

    2008-01-01

    Background The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens. Results Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of image-based datasets

  6. Identity Styles and Religiosity: Examining the Role of Identity Commitment

    ERIC Educational Resources Information Center

    Grajales, Tevni E.; Sommers, Brittany

    2016-01-01

    This study observed the role of identity styles, identity commitment, and identity statuses in predicting religiosity in a sample of undergraduate students attending a Seventh-day Adventist university (N = 138). Two structural models were evaluated via path analysis. Results revealed two strong models for the prediction of religiosity. Identity…

  7. Color Code: Using Hair Color to Make a Clear Connection between Genotype and Phenotype

    ERIC Educational Resources Information Center

    Bonner, J. Jose

    2011-01-01

    Students may wonder why they look the way they do. The answer lies in genetics, the branch of biology that deals with heredity and the variation of inherited traits. However, understanding how an organism's genetic code (i.e., genotype) affects its characteristics (i.e., phenotype) is more than a matter of idle curiosity: It's essential for…

  8. Proteomics and metabolomics in ageing research: from biomarkers to systems biology.

    PubMed

    Hoffman, Jessica M; Lyu, Yang; Pletcher, Scott D; Promislow, Daniel E L

    2017-07-15

    Age is the single greatest risk factor for a wide range of diseases, and as the mean age of human populations grows steadily older, the impact of this risk factor grows as well. Laboratory studies on the basic biology of ageing have shed light on numerous genetic pathways that have strong effects on lifespan. However, we still do not know the degree to which the pathways that affect ageing in the lab also influence variation in rates of ageing and age-related disease in human populations. Similarly, despite considerable effort, we have yet to identify reliable and reproducible 'biomarkers', which are predictors of one's biological as opposed to chronological age. One challenge lies in the enormous mechanistic distance between genotype and downstream ageing phenotypes. Here, we consider the power of studying 'endophenotypes' in the context of ageing. Endophenotypes are the various molecular domains that exist at intermediate levels of organization between the genotype and phenotype. We focus our attention specifically on proteins and metabolites. Proteomic and metabolomic profiling has the potential to help identify the underlying causal mechanisms that link genotype to phenotype. We present a brief review of proteomics and metabolomics in ageing research with a focus on the potential of a systems biology and network-centric perspective in geroscience. While network analyses to study ageing utilizing proteomics and metabolomics are in their infancy, they may be the powerful model needed to discover underlying biological processes that influence natural variation in ageing, age-related disease, and longevity. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Political, religious and occupational identities in context: placing identity status paradigm in context.

    PubMed

    Solomontos-Kountouri, Olga; Hurry, Jane

    2008-04-01

    This study critically contrasts global identity with domain-specific identities (political, religious and occupational) and considers context and gender as integral parts of identity. In a cross-sectional survey, 1038 Greek Cypriot adolescents (449 boys and 589 girls, mean age 16.8) from the three different types of secondary schools (state, state technical and private) and from different SES completed part of the Extended Objective Measure of Ego Identity Status-2 (EOMEIS-2). The macro-context of Greek Cypriot society is used to understand the role of context in adolescents' identities. Results showed that Greek Cypriot young people were not in the same statuses across their global, political, religious and occupational identities. This heterogeneity in the status of global identity and of each identity domain is partially explained by differences in gender, type of school and SES (socio-economic status). The fact that identity status is found to be reactive to context suggests that developmental stage models of identity status should place greater emphasis on context.

  10. Disappearance of the inversion effect during memory-guided tracking of scrambled biological motion.

    PubMed

    Jiang, Changhao; Yue, Guang H; Chen, Tingting; Ding, Jinhong

    2016-08-01

    The human visual system is highly sensitive to biological motion. Even when a point-light walker is temporarily occluded from view by other objects, our eyes are still able to maintain tracking continuity. To investigate how the visual system establishes a correspondence between the biological-motion stimuli visible before and after the disruption, we used the occlusion paradigm with biological-motion stimuli that were intact or scrambled. The results showed that during visually guided tracking, both the observers' predicted times and predictive smooth pursuit were more accurate for upright biological motion (intact and scrambled) than for inverted biological motion. During memory-guided tracking, however, the processing advantage for upright as compared with inverted biological motion was not found in the scrambled condition, but in the intact condition only. This suggests that spatial location information alone is not sufficient to build and maintain the representational continuity of the biological motion across the occlusion, and that the object identity may act as an important information source in visual tracking. The inversion effect disappeared when the scrambled biological motion was occluded, which indicates that when biological motion is temporarily occluded and there is a complete absence of visual feedback signals, an oculomotor prediction is executed to maintain the tracking continuity, which is established not only by updating the target's spatial location, but also by the retrieval of identity information stored in long-term memory.

  11. Juxtaposed Polycomb complexes co-regulate vertebral identity.

    PubMed

    Kim, Se Young; Paylor, Suzanne W; Magnuson, Terry; Schumacher, Armin

    2006-12-01

    Best known as epigenetic repressors of developmental Hox gene transcription, Polycomb complexes alter chromatin structure by means of post-translational modification of histone tails. Depending on the cellular context, Polycomb complexes of diverse composition and function exhibit cooperative interaction or hierarchical interdependency at target loci. The present study interrogated the genetic, biochemical and molecular interaction of BMI1 and EED, pivotal constituents of heterologous Polycomb complexes, in the regulation of vertebral identity during mouse development. Despite a significant overlap in dosage-sensitive homeotic phenotypes and co-repression of a similar set of Hox genes, genetic analysis implicated eed and Bmi1 in parallel pathways, which converge at the level of Hox gene regulation. Whereas EED and BMI1 formed separate biochemical entities with EzH2 and Ring1B, respectively, in mid-gestation embryos, YY1 engaged in both Polycomb complexes. Strikingly, methylated lysine 27 of histone H3 (H3-K27), a mediator of Polycomb complex recruitment to target genes, stably associated with the EED complex during the maintenance phase of Hox gene repression. Juxtaposed EED and BMI1 complexes, along with YY1 and methylated H3-K27, were detected in upstream regulatory regions of Hoxc8 and Hoxa5. The combined data suggest a model wherein epigenetic and genetic elements cooperatively recruit and retain juxtaposed Polycomb complexes in mammalian Hox gene clusters toward co-regulation of vertebral identity.

  12. Topological methods reveal high and low functioning neuro-phenotypes within fragile X syndrome

    PubMed Central

    Romano, David; Nicolau, Monica; Quintin, Eve-Marie; Mazaika, Paul; Lightbody, Amy; Hazlett, Heather; Piven, Joseph; Carlsson, Gunnar; Reiss, Allan

    2014-01-01

    Fragile X syndrome (FXS), due to mutations of the FMR1 gene, is the most common known inherited cause of developmental disability as well as the most common single-gene risk factor for autism. Our goal was to examine variation in brain structure in FXS with topological data analysis (TDA), and to assess how such variation is associated with measures of IQ and autism-related behaviors. To this end, we analyzed imaging and behavioral data from young boys (n=52; aged 1.57-4.15 years) diagnosed with FXS. Application of topological methods to structural MRI data revealed two large subgroups within the study population. Comparison of these subgroups showed significant between-subgroup neuroanatomical differences similar to those previously reported to distinguish children with FXS from typically developing controls (e.g., enlarged caudate). In addition to neuroanatomy, the groups showed significant differences in IQ and autism severity scores. These results suggest that despite arising from a single gene mutation, fragile X syndrome may encompass two biologically and clinically separable phenotypes. In addition, these findings underscore the potential of TDA as a powerful tool in the search for biological phenotypes of neuropsychiatric disorders. PMID:24737721

  13. Histological Stratification of Thick and Thin Plaque Psoriasis Explores Molecular Phenotypes with Clinical Implications

    PubMed Central

    Kim, Dong Joo; Brodmerkel, Carrie; Correa da Rosa, Joel; Krueger, James G.; Suárez-Fariñas, Mayte

    2015-01-01

    Psoriasis, which presents as red, scaly patches on the body, is a common, autoimmune skin disease that affects 2 to 3 percent of the world population. To leverage recent molecular findings into the personalized treatment of psoriasis, we need a strategy that integrates clinical stratification with molecular phenotyping. In this study, we sought to stratify psoriasis patients by histological measurements of epidermal thickness, and to compare their molecular characterizations by gene expression, serum cytokines, and response to biologics. We obtained histological measures of epidermal thickness in a cohort of 609 psoriasis patients, and identified a mixture of two subpopulations—thick and thin plaque psoriasis—from which they were derived. This stratification was verified in a subcohort of 65 patients from a previously published study with significant differences in inflammatory cell infiltrates in the psoriatic skin. Thick and thin plaque psoriasis shared 84.8% of the meta-analysis-derived psoriasis transcriptome, but a stronger dysregulation of the meta-analysis-derived psoriasis transcriptome was seen in thick plaque psoriasis on microarray. RT-PCR revealed that gene expression in thick and thin plaque psoriasis was different not only within psoriatic lesional skin but also in peripheral non-lesional skin. Additionally, differences in circulating cytokines and their changes in response to biologic treatments were found between the two subgroups. All together, we were able to integrate histological stratification with molecular phenotyping as a way of exploring clinical phenotypes with different expression levels of the psoriasis transcriptome and circulating cytokines. PMID:26176783

  14. Plasticity as Phenotype: G x E Interaction in a Freshwater Snail

    NASA Astrophysics Data System (ADS)

    Brunkow, P. E.; Calloway, S. A.

    2005-05-01

    Plasticity in morphological development allows species to accommodate environmental variation experienced during growth; however, genetic variation for phenotypic plasticity per se has been relatively under-studied. We utilized the well-documented plastic response of shell development to predator cues in a freshwater snail to quantify genetic variation for plasticity in growth rate and shell shape. Field-caught pairs of snails reproduced in the laboratory to create families of full siblings, which were then divided and allowed to grow in control and predator cue treatments. Predator (crayfish) cues had significant effects on both size-corrected growth rate and shell shape; family identity also significantly affected both final shell shape and growth rate. The interaction between predator treatment and family identity significantly affected snail growth rate but not final shell shape, suggesting genetic variation in the plastic response to predator cues for a physiological variable (growth rate) but not for a variable known to mechanically reduce the risk of predation (shell shape), at least in this population of snails. The possibility that risk of multiple modes of predation (i.e., both fish and crayfish) in some populations might maintain genetic variation in morphological plasticity is discussed.

  15. Identity and Intimacy during Adolescence: Connections among Identity Styles, Romantic Attachment and Identity Commitment

    ERIC Educational Resources Information Center

    Kerpelman, Jennifer L.; Pittman, Joe F.; Cadely, Hans Saint-Eloi; Tuggle, Felicia J.; Harrell-Levy, Marinda K.; Adler-Baeder, Francesca M.

    2012-01-01

    Integration of adult attachment and psychosocial development theories suggests that adolescence is a time when capacities for romantic intimacy and identity formation are co-evolving. The current study addressed direct, indirect and moderated associations among identity and romantic attachment constructs with a diverse sample of 2178 middle…

  16. Oncogenes induce the cancer-associated fibroblast phenotype

    PubMed Central

    Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica

    2013-01-01

    Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers. PMID:23860382

  17. Similar patterns of frequency-dependent selection on animal personalities emerge in three species of social spiders.

    PubMed

    Lichtenstein, J L L; Pruitt, J N

    2015-06-01

    Frequency-dependent selection is thought to be a major contributor to the maintenance of phenotypic variation. We tested for frequency-dependent selection on contrasting behavioural strategies, termed here 'personalities', in three species of social spiders, each thought to represent an independent evolutionary origin of sociality. The evolution of sociality in the spider genus Anelosimus is consistently met with the emergence of two temporally stable discrete personality types: an 'aggressive' or 'docile' form. We assessed how the foraging success of each phenotype changes as a function of its representation within a colony. We did this by creating experimental colonies of various compositions (six aggressives, three aggressives and three dociles, one aggressive and five dociles, six dociles), maintaining them in a common garden for 3 weeks, and tracking the mass gained by individuals of either phenotype. We found that both the docile and aggressive phenotypes experienced their greatest mass gain in mixed colonies of mostly docile individuals. However, the performance of both phenotypes decreased as the frequency of the aggressive phenotype increased. Nearly identical patterns of phenotype-specific frequency dependence were recovered in all three species. Naturally occurring colonies of these spiders exhibit mixtures dominated by the docile phenotype, suggesting that these spiders may have evolved mechanisms to maintain the compositions that maximize the success of the colony without compromising the expected reproductive output of either phenotype. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  18. Directed Evolution as a Powerful Synthetic Biology Tool

    PubMed Central

    Cobb, Ryan E.; Sun, Ning; Zhao, Huimin

    2012-01-01

    At the heart of synthetic biology lies the goal of rationally engineering a complete biological system to achieve a specific objective, such as bioremediation and synthesis of a valuable drug, chemical, or biofuel molecule. However, the inherent complexity of natural biological systems has heretofore precluded generalized application of this approach. Directed evolution, a process which mimics Darwinian selection on a laboratory scale, has allowed significant strides to be made in the field of synthetic biology by allowing rapid identification of desired properties from large libraries of variants. Improvement in biocatalyst activity and stability, engineering of biosynthetic pathways, tuning of functional regulatory systems and logic circuits, and development of desired complex phenotypes in industrial host organisms have all been achieved by way of directed evolution. Here, we review recent contributions of directed evolution to synthetic biology at the protein, pathway, network, and whole cell levels. PMID:22465795

  19. Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium

    PubMed Central

    Meehan, Terrence F.; Conte, Nathalie; West, David B.; Jacobsen, Julius O.; Mason, Jeremy; Warren, Jonathan; Chen, Chao-Kung; Tudose, Ilinca; Relac, Mike; Matthews, Peter; Karp, Natasha; Santos, Luis; Fiegel, Tanja; Ring, Natalie; Westerberg, Henrik; Greenaway, Simon; Sneddon, Duncan; Morgan, Hugh; Codner, Gemma F; Stewart, Michelle E; Brown, James; Horner, Neil; Haendel, Melissa; Washington, Nicole; Mungall, Christopher J.; Reynolds, Corey L; Gallegos, Juan; Gailus-Durner, Valerie; Sorg, Tania; Pavlovic, Guillaume; Bower, Lynette R; Moore, Mark; Morse, Iva; Gao, Xiang; Tocchini-Valentini, Glauco P; Obata, Yuichi; Cho, Soo Young; Seong, Je Kyung; Seavitt, John; Beaudet, Arthur L.; Dickinson, Mary E.; Herault, Yann; Wurst, Wolfgang; de Angelis, Martin Hrabe; Lloyd, K.C. Kent; Flenniken, Ann M; Nutter, Lauryl MJ; Newbigging, Susan; McKerlie, Colin; Justice, Monica J.; Murray, Stephen A.; Svenson, Karen L.; Braun, Robert E.; White, Jacqueline K.; Bradley, Allan; Flicek, Paul; Wells, Sara; Skarnes, William C.; Adams, David J.; Parkinson, Helen; Mallon, Ann-Marie; Brown, Steve D.M.; Smedley, Damian

    2017-01-01

    Although next generation sequencing has revolutionised the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by our lack of knowledge of function and pathobiological mechanism for most genes. To address this challenge, the International Mouse Phenotyping Consortium (IMPC) is creating a genome- and phenome-wide catalogue of gene function by characterizing new knockout mouse strains across diverse biological systems through a broad set of standardised phenotyping tests, with all mice made readily available to the biomedical community. Analysing the first 3328 genes reveals models for 360 diseases including the first for type C Bernard-Soulier, Bardet-Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations are novel, providing the first functional evidence for 1092 genes and candidates in unsolved diseases such as Arrhythmogenic Right Ventricular Dysplasia 3. Finally, we describe our role in variant functional validation with the 100,000 Genomes and other projects. PMID:28650483

  20. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms.

    PubMed

    Esplin, M Sean; Manuck, Tracy A; Varner, Michael W; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M; Ilekis, John

    2015-09-01

    We sought to use an innovative tool that is based on common biologic pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB) to enhance investigators' ability to identify and to highlight common mechanisms and underlying genetic factors that are responsible for SPTB. We performed a secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks' gestation. Each woman was assessed for the presence of underlying SPTB causes. A hierarchic cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis with the use of VEGAS software. One thousand twenty-eight women with SPTB were assigned phenotypes. Hierarchic clustering of the phenotypes revealed 5 major clusters. Cluster 1 (n = 445) was characterized by maternal stress; cluster 2 (n = 294) was characterized by premature membrane rupture; cluster 3 (n = 120) was characterized by familial factors, and cluster 4 (n = 63) was characterized by maternal comorbidities. Cluster 5 (n = 106) was multifactorial and characterized by infection (INF), decidual hemorrhage (DH), and placental dysfunction (PD). These 3 phenotypes were correlated highly by χ(2) analysis (PD and DH, P < 2.2e-6; PD and INF, P = 6.2e-10; INF and DH, (P = .0036). Gene-based testing identified the INS (insulin) gene as significantly associated with cluster 3 of SPTB. We identified 5 major clusters of SPTB based on a phenotype tool and hierarch clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors that were underlying SPTB. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Shades of American Identity: Implicit Relations between Ethnic and National Identities

    PubMed Central

    Devos, Thierry; Mohamed, Hafsa

    2015-01-01

    The issue of ethnic diversity and national identity in an immigrant nation such as the USA is a recurrent topic of debate. We review and integrate research examining the extent to which the American identity is implicitly granted or denied to members of different ethnic groups. Consistently, European Americans are implicitly conceived of as being more American than African, Asian, Latino, and even Native Americans. This implicit American = White effect emerges when explicit knowledge or perceptions point in the opposite direction. The propensity to deny the American identity to members of ethnic minorities is particularly pronounced when targets (individuals or groups) are construed through the lenses of ethnic identities. Implicit ethnic–national associations fluctuate as a function of perceivers’ ethnic identity and political orientation, but also contextual or situational factors. The tendency to equate being American with being White accounts for the strength of national identification (among European Americans) and behavioral responses including hiring recommendations and voting intentions. The robust propensity to deny the American identity to ethnic minority groups reflects an exclusionary national identity. PMID:27011765

  2. Identity configurations: a new perspective on identity formation in contemporary society.

    PubMed

    Schachter, Elli P

    2004-02-01

    This paper deals with the theoretical construct of "identity configuration." It portrays the different possible ways in which individuals configure the relationship among potentially conflicting identifications in the process of identity formation. In order to explicate these configurations, I analyzed narratives of identity development retold by individuals describing personal identity conflicts that arise within a larger context of sociocultural conflict. Thirty Jewish modern orthodox young adults were interviewed regarding a potentially conflictual identity issue (i.e. their religious and sexual development). Their deliberations, as described in the interviews, were examined, and four different configurations were identified: a configuration based on choice and suppression; an assimilative and synthesizing configuration; a confederacy of identifications; and a configuration based on the thrill of dissonance. The different configurations are illustrated through exemplars, and the possible implications of the concept of "configuration" for identity theory are discussed.

  3. The Resistome: A Comprehensive Database of Escherichia coli Resistance Phenotypes.

    PubMed

    Winkler, James D; Halweg-Edwards, Andrea L; Erickson, Keesha E; Choudhury, Alaksh; Pines, Gur; Gill, Ryan T

    2016-12-16

    The microbial ability to resist stressful environmental conditions and chemical inhibitors is of great industrial and medical interest. Much of the data related to mutation-based stress resistance, however, is scattered through the academic literature, making it difficult to apply systematic analyses to this wealth of information. To address this issue, we introduce the Resistome database: a literature-curated collection of Escherichia coli genotypes-phenotypes containing over 5,000 mutants that resist hundreds of compounds and environmental conditions. We use the Resistome to understand our current state of knowledge regarding resistance and to detect potential synergy or antagonism between resistance phenotypes. Our data set represents one of the most comprehensive collections of genomic data related to resistance currently available. Future development will focus on the construction of a combined genomic-transcriptomic-proteomic framework for understanding E. coli's resistance biology. The Resistome can be downloaded at https://bitbucket.org/jdwinkler/resistome_release/overview .

  4. Autism beyond diagnostic categories: characterization of autistic phenotypes in schizophrenia.

    PubMed

    Kästner, Anne; Begemann, Martin; Michel, Tanja Maria; Everts, Sarah; Stepniak, Beata; Bach, Christiane; Poustka, Luise; Becker, Joachim; Banaschewski, Tobias; Dose, Matthias; Ehrenreich, Hannelore

    2015-05-13

    Behavioral phenotypical continua from health to disease suggest common underlying mechanisms with quantitative rather than qualitative differences. Until recently, autism spectrum disorders and schizophrenia were considered distinct nosologic entities. However, emerging evidence contributes to the blurring of symptomatic and genetic boundaries between these conditions. The present study aimed at quantifying behavioral phenotypes shared by autism spectrum disorders and schizophrenia to prepare the ground for biological pathway analyses. Specific items of the Positive and Negative Syndrome Scale were employed and summed up to form a dimensional autism severity score (PAUSS). The score was created in a schizophrenia sample (N = 1156) and validated in adult high-functioning autism spectrum disorder (ASD) patients (N = 165). To this end, the Autism Diagnostic Observation Schedule (ADOS), the Autism (AQ) and Empathy Quotient (EQ) self-rating questionnaires were applied back to back with the newly developed PAUSS. PAUSS differentiated between ASD, schizophrenia and a disease-control sample and substantially correlated with the Autism Diagnostic Observation Schedule. Patients with ADOS scores ≥12 obtained highest, those with scores <7 lowest PAUSS values. AQ and EQ were not found to vary dependent on ADOS diagnosis. ROC curves for ADOS and PAUSS resulted in AuC values of 0.9 and 0.8, whereas AQ and EQ performed at chance level in the prediction of ASD. This work underscores the convergence of schizophrenia negative symptoms and autistic phenotypes. PAUSS evolved as a measure capturing the continuous nature of autistic behaviors. The definition of extreme-groups based on the dimensional PAUSS may permit future investigations of genetic constellations modulating autistic phenotypes.

  5. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    PubMed Central

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  6. Genotypic and phenotypic diversity of Alicyclobacillus acidocaldarius isolates.

    PubMed

    Félix-Valenzuela, L; Guardiola-Avila, I; Burgara-Estrella, A; Ibarra-Zavala, M; Mata-Haro, V

    2015-10-01

    The fruit juice industry recognizes Alicyclobacillus as a major quality control target micro-organism. In this study, we analysed 19 bacterial isolates to identify Alicyclobacillus species by polymerase chain reaction (PCR) and sequencing analyses. Phenotypic and genomic diversity among isolates were investigated by API 50CHB system and ERIC-PCR (enterobacterial repetitive intergenic consensus-PCR) respectively. All bacterial isolates were identified as Alicyclobacillus acidocaldarius, and almost all showed identical DNA sequences according to their 16S rRNA (rDNA) gene partial sequences. Only few carbohydrates were fermented by A. acidocaldarius isolates, and there was little variability in the biochemical profile. Genotypic fingerprinting of the A. acidocaldarius isolates showed high diversity, and clusters by ERIC-PCR were distinct to those obtained from the 16S rRNA gene phylogenetic tree. There was no correlation between phenotypic and genotypic variability in the A. acidocaldarius isolates analysed in this study. Detection of Alicyclobacillus strains is imperative in fruit concentrates and juices due to the production of guaiacol. Identification of the genera originates rejection of the product by processing industry. However, not all the Alicyclobacillus species are deteriorative and hence the importance to differentiate among them. In this study, partial 16S ribosomal RNA sequence alignment allowed the differentiation of species. In addition, ERIC-PCR was introduced for the genotypic characterization of Alicyclobacillus, as an alternative for differentiation among isolates from the same species. © 2015 The Society for Applied Microbiology.

  7. Phenotype heterogeneity in cancer cell populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a fewmore » results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms

  8. Phenotype heterogeneity in cancer cell populations

    NASA Astrophysics Data System (ADS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  9. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis.

    PubMed

    Lee, Hyokyeong; Moody-Davis, Asher; Saha, Utsab; Suzuki, Brian M; Asarnow, Daniel; Chen, Steven; Arkin, Michelle; Caffrey, Conor R; Singh, Rahul

    2012-01-01

    Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs. Together, these advancements represent a

  10. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis

    PubMed Central

    2012-01-01

    Background Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. Method We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. Results We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. Conclusions The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs

  11. Gender identity and substance use among students in two high schools in Monterrey, Mexico.

    PubMed

    Kulis, Stephen; Marsiglia, Flavio Francisco; Lingard, Erin Chase; Nieri, Tanya; Nagoshi, Julieann

    2008-06-01

    This study explored relationships between several hypothesized dimensions of gender identity and substance use outcomes within a non-probability sample of adolescents in Monterrey, Mexico. Based on Mexican concepts of machismo and marianismo, four gender identity constructs were measured: aggressive masculinity, assertive masculinity, affective femininity and submissive femininity. The study assessed how well these gender identity measures predicted substance use behaviors, substance use intentions, expectancies, and normative approval, and exposure and vulnerability to substance offers. Data were drawn from questionnaires completed by 327 students from 2 Monterrey secondary schools. Multivariate ordered logistic and linear regression analyses, adjusted for school level effects, indicated that aggressive masculinity was associated with higher risk of drug use on most outcomes, while affective femininity was associated with lower risk on selected outcomes. Assertive masculinity was associated with only one of the outcomes examined and submissive femininity with none of them. Most gender identity effects persisted after controlling for biological sex, academic performance, age, and other gender identity measures. For two of the outcomes, the gender identity measures had significantly stronger effects for males than for females. The findings are interpreted in light of males' higher risk for drug use and changes in gender roles and gendered behavior that are now occurring in Mexico as in the U.S.

  12. Gender identity and substance use among students in two high schools in Monterrey, Mexico

    PubMed Central

    Kulis, Stephen; Marsiglia, Flavio Francisco; Lingard, Erin Chase; Nieri, Tanya; Nagoshi, Julieann

    2011-01-01

    This study explored relationships between several hypothesized dimensions of gender identity and substance use outcomes within a non-probability sample of adolescents in Monterrey, Mexico. Based on Mexican concepts of machismo and marianismo, four gender identity constructs were measured: aggressive masculinity, assertive masculinity, affective femininity and submissive femininity. The study assessed how well these gender identity measures predicted substance use behaviors, substance use intentions, expectancies, and normative approval, and exposure and vulnerability to substance offers. Data were drawn from questionnaires completed by 327 students from 2 Monterrey secondary schools. Multivariate ordered logistic and linear regression analyses, adjusted for school level effects, indicated that aggressive masculinity was associated with higher risk of drug use on most outcomes, while affective femininity was associated with lower risk on selected outcomes. Assertive masculinity was associated with only one of the outcomes examined and submissive femininity with none of them. Most gender identity effects persisted after controlling for biological sex, academic performance, age, and other gender identity measures. For two of the outcomes, the gender identity measures had significantly stronger effects for males than for females. The findings are interpreted in light of males’ higher risk for drug use and changes in gender roles and gendered behavior that are now occurring in Mexico as in the U.S. PMID:18329826

  13. Glycolytic activity in breast cancer using 18F-FDG PET/CT as prognostic predictor: A molecular phenotype approach.

    PubMed

    Garcia Vicente, A M; Soriano Castrejón, A; Amo-Salas, M; Lopez Fidalgo, J F; Muñoz Sanchez, M M; Alvarez Cabellos, R; Espinosa Aunion, R; Muñoz Madero, V

    2016-01-01

    To explore the relationship between basal (18)F-FDG uptake in breast tumors and survival in patients with breast cancer (BC) using a molecular phenotype approach. This prospective and multicentre study included 193 women diagnosed with BC. All patients underwent an (18)F-FDG PET/CT prior to treatment. Maximum standardized uptake value (SUVmax) in tumor (T), lymph nodes (N), and the N/T index was obtained in all the cases. Metabolic stage was established. As regards biological prognostic parameters, tumors were classified into molecular sub-types and risk categories. Overall survival (OS) and disease free survival (DFS) were obtained. An analysis was performed on the relationship between semi-quantitative metabolic parameters with molecular phenotypes and risk categories. The effect of molecular sub-type and risk categories in prognosis was analyzed using Kaplan-Meier and univariate and multivariate tests. Statistical differences were found in both SUVT and SUVN, according to the molecular sub-types and risk classifications, with higher semi-quantitative values in more biologically aggressive tumors. No statistical differences were observed with respect to the N/T index. Kaplan-Meier analysis revealed that risk categories were significantly related to DFS and OS. In the multivariate analysis, metabolic stage and risk phenotype showed a significant association with DFS. High-risk phenotype category showed a worst prognosis with respect to the other categories with higher SUVmax in primary tumor and lymph nodes. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  14. The Human Phenotype Ontology in 2017

    PubMed Central

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; F. Laulederkind, Stanley J.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa; Robinson, Peter N.

    2017-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. PMID:27899602

  15. The Human Phenotype Ontology in 2017

    DOE PAGES

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; ...

    2016-11-24

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical softwaremore » tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.« less

  16. Spinocerebellar Ataxia 27: A Review and Characterization of an Evolving Phenotype

    PubMed Central

    Groth, Christopher L.; Berman, Brian D.

    2018-01-01

    Background Spinocerebellar ataxia (SCA) is an uncommon form of progressive cerebellar ataxia with multiple genetic causes and marked variability in phenotypic expression even across patients with identical genetic abnormalities. SCA27 is a recently identified SCA caused by mutations in the Fibroblast Growth Factor 14 gene, with a phenotypic expression that is only beginning to be fully appreciated. We report here a case of a 70-year-old male who presented with slowly worsening tremor and gait instability that began in his early adulthood along with additional features of parkinsonism on examination. Work-up revealed a novel pathogenic mutation in the Fibroblast Growth Factor 14 gene, and symptoms improved with amantadine and levodopa. We also provide a review of the literature in order to better characterize the phenotypic expression of this uncommon condition. Methods Case report and review of the literature. Results Review of the literature revealed a total of 32 previously reported clinical cases of SCA27. Including our case, we found that early-onset tremor (12.1 ± 10.5 years) was present in 95.8%, while gait ataxia tended to present later in life (23.7 ± 16.7 years) and was accompanied by limb ataxia, dysarthria, and nystagmus. Other features of SCA27 that may distinguish it from other SCAs include the potential for episodic ataxia, accompanying psychiatric symptoms, and cognitive impairment. Discussion Testing for SCA27 should be considered in individuals with ataxia who report tremor as an initial or early symptom, as well as those with additional findings of episodic ataxia, neuropsychiatric symptoms, or parkinsonism. PMID:29416937

  17. Insects as vectors: systematics and biology.

    PubMed

    Rodhain, F

    2015-04-01

    Among the many complex relationships between insects and microorganisms such as viruses, bacteria and parasites, some have resulted in the establishment of biological systems within which the insects act as a biological vector for infectious agents. It is therefore advisable to understand the identity and biology of these vectors in depth, in order to define procedures for epidemiological surveillance and anti-vector control. The following are successively reviewed in this article: Anoplura (lice), Siphonaptera (fleas), Heteroptera (bugs: Cimicidae, Triatoma, Belostomatidae), Psychodidae (sandflies), Simuliidae (black flies), Ceratopogonidae (biting midges), Culicidae (mosquitoes), Tabanidae (horseflies) and Muscidae (tsetse flies, stable flies and pupipara). The authors provide a rapid overview of the morphology, systematics, development cycle and bio-ecology of each of these groups of vectors. Finally, their medical and veterinary importance is briefly reviewed.

  18. Systems biology of the structural proteome.

    PubMed

    Brunk, Elizabeth; Mih, Nathan; Monk, Jonathan; Zhang, Zhen; O'Brien, Edward J; Bliven, Spencer E; Chen, Ke; Chang, Roger L; Bourne, Philip E; Palsson, Bernhard O

    2016-03-11

    The success of genome-scale models (GEMs) can be attributed to the high-quality, bottom-up reconstructions of metabolic, protein synthesis, and transcriptional regulatory networks on an organism-specific basis. Such reconstructions are biochemically, genetically, and genomically structured knowledge bases that can be converted into a mathematical format to enable a myriad of computational biological studies. In recent years, genome-scale reconstructions have been extended to include protein structural information, which has opened up new vistas in systems biology research and empowered applications in structural systems biology and systems pharmacology. Here, we present the generation, application, and dissemination of genome-scale models with protein structures (GEM-PRO) for Escherichia coli and Thermotoga maritima. We show the utility of integrating molecular scale analyses with systems biology approaches by discussing several comparative analyses on the temperature dependence of growth, the distribution of protein fold families, substrate specificity, and characteristic features of whole cell proteomes. Finally, to aid in the grand challenge of big data to knowledge, we provide several explicit tutorials of how protein-related information can be linked to genome-scale models in a public GitHub repository ( https://github.com/SBRG/GEMPro/tree/master/GEMPro_recon/). Translating genome-scale, protein-related information to structured data in the format of a GEM provides a direct mapping of gene to gene-product to protein structure to biochemical reaction to network states to phenotypic function. Integration of molecular-level details of individual proteins, such as their physical, chemical, and structural properties, further expands the description of biochemical network-level properties, and can ultimately influence how to model and predict whole cell phenotypes as well as perform comparative systems biology approaches to study differences between organisms. GEM

  19. Overcoming the anaerobic hurdle in phenotypic microarrays: Generation andvisualization of growth curve data for Desulfovibrio vulgaris Hildenborough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borglin, Sharon E; Joyner, Dominique; Jacobsen, Janet

    2008-10-04

    Growing anaerobic microorganisms in phenotypic microarrays (PM) and 96-well microtiter plates is an emerging technology that allows high throughput survey of the growth and physiology and/or phenotype of cultivable microorganisms. For non-model bacteria, a method for phenotypic analysis is invaluable, not only to serve as a starting point for further evaluation, but also to provide a broad understanding of the physiology of an uncharacterized wild-type organism or the physiology/phenotype of a newly created mutant of that organism. Given recent advances in genetic characterization and targeted mutations to elucidate genetic networks and metabolic pathways, high-throughput methods for determining phenotypic differences aremore » essential. Here we outline challenges presented in studying the physiology and phenotype of a sulfate reducing anaerobic delta proteobacterium, Desulfovibrio vulgaris Hildenborough. Modifications of the commercially available OmniLog(TM) system (Hayward, CA) for experimental setup, and configuration, as well as considerations in PM data analysis are presented. Also highlighted here is data viewing software that enables users to view and compare multiple PM data sets. The PM method promises to be a valuable strategy in our systems biology approach to D. vulgaris studies and is readily applicable to other anaerobic and aerobic bacteria.« less

  20. Sexual identity and orientation in adult men and women with spina bifida.

    PubMed

    Szymanski, Konrad M; Hensel, Devon J; Wiener, John S; Whittam, Benjamin; Cain, Mark P; Misseri, Rosalia

    2017-12-11

    Sexuality has received little attention in spina bifida (SB) care. The aim of this study was to assess sexual identity and orientation in adults with SB. An international online survey to adults with SB was administered over 10-months (recruitment: SB clinics, SB organizations via social media). Collected data included demographics, sexual identity and orientation. Non-parametric tests were used for analysis. Median age of 77 men and 119 women was 35 years old (52.0% shunted, 48.5% community ambulators, 42.3% outside United States). Most commonly, men identified as male (96.1%), while 1.3% each described themselves as female, transgender and other. All women reporting sexual identity identified as female (99.2%), 0.8% not providing an answer. Most men reported heterosexual orientation (89.6%), followed by gay (7.8%) and bisexual (2.6%). Most women reported heterosexual orientation (84.9%), followed by bisexual (10.4%), gay/lesbian (2.5%), asexual (0.8%) and other (1.7%). As in the general population, sexual identity typically coincides with biological gender. Sexual orientation of adults with SB mirrors the general population. Due to self-selection, these findings likely do not reflect exact prevalence in the SB population.

  1. Student Identity Considerations and Implications Associated with Socioscientific Issues Instruction

    NASA Astrophysics Data System (ADS)

    Ruzek, Mitchel James

    The purpose of this investigation was to explore how aspects of identity, perceived levels of controversy, and the strength of a student's attachment to their controversial identity relate to conceptual understanding and knowledge acquisition during socioscientific issues (SSI) based instruction in a biology classroom. The knowledge gained from this study will have the capacity to enhance our understanding of the role that attachment to identity plays during SSI negotiation. Additionally, insight was gained into the role played by aspects of identity in conceptual understanding of scientifically controversial topics during SSI based instruction. This study contributed to the existing knowledge base in science education by illuminating processes involved in socioscientific issue navigation among students of differing perceptions of controversy as well as students who held aspects of controversial identity that may or may not interact with the specific issues chosen. Students demonstrated evidence of variations of reasoning, justification, perception of controversy, and aspects of knowledge gain as they negotiated the issues of marijuana safety and fast food legality. Additionally, evidence was provided that showed general knowledge gain throughout the group during socioscientific issues instruction. It has been said that one of the appeals of the SSI instructional model is that is serves not only as a context for the delivery of content, but acts as a catalyst for various forms of epistemological beliefs and research into the development of conceptual and psychological knowledge structures (Zeidler, 2013). This investigation supports the deeper understanding of the contribution of controversy perception to epistemology as well as conceptual and psychological knowledge structures during SSI navigation.

  2. The Spring of Systems Biology-Driven Breeding.

    PubMed

    Lavarenne, Jérémy; Guyomarc'h, Soazig; Sallaud, Christophe; Gantet, Pascal; Lucas, Mikaël

    2018-05-12

    Genetics and molecular biology have contributed to the development of rationalized plant breeding programs. Recent developments in both high-throughput experimental analyses of biological systems and in silico data processing offer the possibility to address the whole gene regulatory network (GRN) controlling a given trait. GRN models can be applied to identify topological features helping to shortlist potential candidate genes for breeding purposes. Time-series data sets can be used to support dynamic modelling of the network. This will enable a deeper comprehension of network behaviour and the identification of the few elements to be genetically rewired to push the system towards a modified phenotype of interest. This paves the way to design more efficient, systems biology-based breeding strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Present Day Biology seen in the Looking Glass of Physics of Complexity

    NASA Astrophysics Data System (ADS)

    Schuster, P.

    Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept—originally introduced by Sewall Wright—and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.

  4. Omics Integration in Biology and Medicine Workshop | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The focus of this meeting will be on the emerging field of integrating disparate omic data from genomics, proteomics, glycomics, etc. in order to better understand key biological processes and also improve clinical practice. Discussants will focus on identifying the technical and biological barriers in omic integration, with solutions to build a consensus towards data integration in bioscience and to better define phenotypes.

  5. Personal Identity in Italy

    ERIC Educational Resources Information Center

    Crocetti, Elisabetta; Rabaglietti, Emanuela; Sica, Luigia Simona

    2012-01-01

    This chapter discusses specifics of identity formation in Italian adolescents and emerging adults. We review consistent evidence illustrating that, in Italy, a progressive deferral of transition to adulthood strongly impacts youth identity development by stimulating identity exploration and postponement of identity commitments. We also consider…

  6. Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor alpha1 or beta.

    PubMed

    O'Shea, Patrick J; Bassett, J H Duncan; Sriskantharajah, Srividya; Ying, Hao; Cheng, Sheue-yann; Williams, Graham R

    2005-12-01

    Thyroid hormone (T(3)) regulates bone turnover and mineralization in adults and is essential for skeletal development. Surprisingly, we identified a phenotype of skeletal thyrotoxicosis in T(3) receptor beta(PV) (TRbeta(PV)) mice in which a targeted frameshift mutation in TRbeta results in resistance to thyroid hormone. To characterize mechanisms underlying thyroid hormone action in bone, we analyzed skeletal development in TRalpha1(PV) mice in which the same PV mutation was targeted to TRalpha1. In contrast to TRbeta(PV) mice, TRalpha1(PV) mutants exhibited skeletal hypothyroidism with delayed endochondral and intramembranous ossification, severe postnatal growth retardation, diminished trabecular bone mineralization, reduced cortical bone deposition, and delayed closure of the skull sutures. Skeletal hypothyroidism in TRalpha1(PV) mutants was accompanied by impaired GH receptor and IGF-I receptor expression and signaling in the growth plate, whereas GH receptor and IGF-I receptor expression and signaling were increased in TRbeta(PV) mice. These data indicate that GH receptor and IGF-I receptor are physiological targets for T(3) action in bone in vivo. The divergent phenotypes observed in TRalpha1(PV) and TRbeta(PV) mice arise because the pituitary gland is a TRbeta-responsive tissue, whereas bone is TRalpha responsive. These studies provide a new understanding of the complex relationship between central and peripheral thyroid status.

  7. Advanced phenotyping and phenotype data analysis for the study of plant growth and development

    PubMed Central

    Rahaman, Md. Matiur; Chen, Dijun; Gillani, Zeeshan; Klukas, Christian; Chen, Ming

    2015-01-01

    Due to an increase in the consumption of food, feed, fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to breed high yielding crops that can adapt to the future climate changes, particularly in developing countries. To solve these global challenges, novel approaches are required to identify quantitative phenotypes and to explain the genetic basis of agriculturally important traits. These advances will facilitate the screening of germplasm with high performance characteristics in resource-limited environments. Recently, plant phenomics has offered and integrated a suite of new technologies, and we are on a path to improve the description of complex plant phenotypes. High-throughput phenotyping platforms have also been developed that capture phenotype data from plants in a non-destructive manner. In this review, we discuss recent developments of high-throughput plant phenotyping infrastructure including imaging techniques and corresponding principles for phenotype data analysis. PMID:26322060

  8. Advanced phenotyping and phenotype data analysis for the study of plant growth and development.

    PubMed

    Rahaman, Md Matiur; Chen, Dijun; Gillani, Zeeshan; Klukas, Christian; Chen, Ming

    2015-01-01

    Due to an increase in the consumption of food, feed, fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to breed high yielding crops that can adapt to the future climate changes, particularly in developing countries. To solve these global challenges, novel approaches are required to identify quantitative phenotypes and to explain the genetic basis of agriculturally important traits. These advances will facilitate the screening of germplasm with high performance characteristics in resource-limited environments. Recently, plant phenomics has offered and integrated a suite of new technologies, and we are on a path to improve the description of complex plant phenotypes. High-throughput phenotyping platforms have also been developed that capture phenotype data from plants in a non-destructive manner. In this review, we discuss recent developments of high-throughput plant phenotyping infrastructure including imaging techniques and corresponding principles for phenotype data analysis.

  9. Automated 3D Phenotype Analysis Using Data Mining

    PubMed Central

    Plyusnin, Ilya; Evans, Alistair R.; Karme, Aleksis; Gionis, Aristides; Jernvall, Jukka

    2008-01-01

    The ability to analyze and classify three-dimensional (3D) biological morphology has lagged behind the analysis of other biological data types such as gene sequences. Here, we introduce the techniques of data mining to the study of 3D biological shapes to bring the analyses of phenomes closer to the efficiency of studying genomes. We compiled five training sets of highly variable morphologies of mammalian teeth from the MorphoBrowser database. Samples were labeled either by dietary class or by conventional dental types (e.g. carnassial, selenodont). We automatically extracted a multitude of topological attributes using Geographic Information Systems (GIS)-like procedures that were then used in several combinations of feature selection schemes and probabilistic classification models to build and optimize classifiers for predicting the labels of the training sets. In terms of classification accuracy, computational time and size of the feature sets used, non-repeated best-first search combined with 1-nearest neighbor classifier was the best approach. However, several other classification models combined with the same searching scheme proved practical. The current study represents a first step in the automatic analysis of 3D phenotypes, which will be increasingly valuable with the future increase in 3D morphology and phenomics databases. PMID:18320060

  10. Elucidation of the Metabolic Network of Helicobacter pylori J99 and Malaysian Clinical Strains by Phenotype Microarray.

    PubMed

    Lee, Woon Ching; Goh, Khean Lee; Loke, Mun Fai; Vadivelu, Jamuna

    2017-02-01

    Helicobacter pylori colonizes almost half of the human population worldwide. H. pylori strains are genetically diverse, and the specific genotypes are associated with various clinical manifestations including gastric adenocarcinoma, peptic ulcer disease (PUD), and nonulcer dyspepsia (NUD). However, our current knowledge of the H. pylori metabolism is limited. To understand the metabolic differences among H. pylori strains, we investigated four Malaysian H. pylori clinical strains, which had been previously sequenced, and a standard strain, H. pylori J99, at the phenotypic level. The phenotypes of the H. pylori strains were profiled using the Biolog Phenotype Microarray system to corroborate genomic data. We initiated the analyses by predicting carbon and nitrogen metabolic pathways from the H. pylori genomic data from the KEGG database. Biolog PM aided the validation of the prediction and provided a more intensive analysis of the H. pylori phenomes. We have identified a core set of metabolic nutrient sources that was utilized by all strains tested and another set that was differentially utilized by only the local strains. Pentose sugars are the preferred carbon nutrients utilized by H. pylori. The amino acids l-aspartic acid, d-alanine, and l-asparagine serve as both carbon and nitrogen sources in the metabolism of the bacterium. The phenotypic profile based on this study provides a better understanding on the survival of H. pylori in its natural host. Our data serve as a foundation for future challenges in correlating interstrain metabolic differences in H. pylori. © 2016 The Authors. Helicobacter Published by John Wiley & Sons Ltd.

  11. The insomnia with short sleep duration phenotype: an update on it's importance for health and prevention.

    PubMed

    Fernandez-Mendoza, Julio

    2017-01-01

    It was first proposed in the late 1990s that objective markers of sleep disturbance could serve as an index of the biological severity of insomnia. In 2013, a heuristic model of two insomnia phenotypes based on objective sleep duration was proposed. Herein, we review the studies conducted in the past 3 years on the insomnia with short sleep duration phenotype and its implications for a clinical research agenda. Studies have shown that insomnia with objective short sleep duration is associated with physiologic hyperarousal and cardiometabolic and neurocognitive morbidity, whereas insomnia with normal sleep duration is not. Both insomnia phenotypes are associated with psychiatric morbidity albeit through different psychobiological mechanisms. Novel recent studies have included occupational outcomes, developmental approaches, at-home objective sleep testing, diagnostic accuracy measures, and response to cognitive-behavioral treatment. Accumulating evidence in the past years has continued to support that insomnia with short sleep duration is a more severe phenotype of the disorder associated with physiologic changes, significant morbidity and mortality and, potentially, a differential response to treatment.

  12. A review of thermoregulation and physiological performance in reptiles: what is the role of phenotypic flexibility?

    PubMed

    Seebacher, Frank

    2005-10-01

    Biological functions are dependent on the temperature of the organism. Animals may respond to fluctuation in the thermal environment by regulating their body temperature and by modifying physiological and biochemical rates. Phenotypic flexibility (reversible phenotypic plasticity, acclimation, or acclimatisation in rate functions occurs in all major taxonomic groups and may be considered as an ancestral condition. Within the Reptilia, representatives from all major groups show phenotypic flexibility in response to long-term or chronic changes in the thermal environment. Acclimation or acclimatisation in reptiles are most commonly assessed by measuring whole animal responses such as oxygen consumption, but whole animal responses are comprised of variation in individual traits such as enzyme activities, hormone expression, and cardiovascular functions. The challenge now lies in connecting the changes in the components to the functioning of the whole animal and its fitness. Experimental designs in research on reptilian thermal physiology should incorporate the capacity for reversible phenotypic plasticity as a null-hypothesis, because the significance of differential body temperature-performance relationships (thermal reaction norms) between individuals, populations, or species cannot be assessed without testing that null-hypothesis.

  13. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    PubMed

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Interoperability between phenotype and anatomy ontologies.

    PubMed

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-12-15

    Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.

  15. Contingency, convergence and hyper-astronomical numbers in biological evolution.

    PubMed

    Louis, Ard A

    2016-08-01

    Counterfactual questions such as "what would happen if you re-run the tape of life?" turn on the nature of the landscape of biological possibilities. Since the number of potential sequences that store genetic information grows exponentially with length, genetic possibility spaces can be so unimaginably vast that commentators frequently reach of hyper-astronomical metaphors that compare their size to that of the universe. Re-run the tape of life and the likelihood of encountering the same sequences in such hyper-astronomically large spaces is infinitesimally small, suggesting that evolutionary outcomes are highly contingent. On the other hand, the wide-spread occurrence of evolutionary convergence implies that similar phenotypes can be found again with relative ease. How can this be? Part of the solution to this conundrum must lie in the manner that genotypes map to phenotypes. By studying simple genotype-phenotype maps, where the counterfactual space of all possible phenotypes can be enumerated, it is shown that strong bias in the arrival of variation may explain why certain phenotypes are (repeatedly) observed in nature, while others never appear. This biased variation provides a non-selective cause for certain types of convergence. It illustrates how the role of randomness and contingency may differ significantly between genetic and phenotype spaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The search for Pleiades in trait constellations: functional integration and phenotypic selection in the complex flowers of Morrenia brachystephana (Apocynaceae).

    PubMed

    Baranzelli, M C; Sérsic, A N; Cocucci, A A

    2014-04-01

    Pollinator-mediated natural selection on single traits, such as corolla tube or spur length, has been well documented. However, flower phenotypes are usually complex, and selection is expected to act on several traits that functionally interact rather than on a single isolated trait. Despite the fact that selection on complex phenotypes is expectedly widespread, multivariate selection modelling on such phenotypes still remains under-explored in plants. Species of the subfamily Asclepiadoideae (Apocynaceae) provide an opportunity to study such complex flower contrivances integrated by fine-scaled organs from disparate developmental origin. We studied the correlation structure among linear floral traits (i) by testing a priori morphological, functional or developmental hypotheses among traits and (ii) by exploring the organization of flower covariation, considering alternative expectations of modular organization or whole flower integration through conditional dependence analysis (CDA) and integration matrices. The phenotypic selection approach was applied to determine whether floral traits involved in the functioning of the pollination mechanism were affected by natural selection. Floral integration was low, suggesting that flowers are organized in more than just one correlation pleiad; our hypothetical functional correlation matrix was significantly correlated with the empirical matrix, and the CDA revealed three putative modules. Analyses of phenotypic selection showed significant linear and correlational gradients, lending support to expectations of functional interactions between floral traits. Significant correlational selection gradients found involved traits of different floral whorls, providing evidence for the existence of functional integration across developmental domains. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  17. Isolation, Identification and Phenotypic Characterization of Microcystin-Degrading Bacteria from Lake Erie

    NASA Astrophysics Data System (ADS)

    Krishnan, A.; Mou, X. J.

    2015-12-01

    Lake Erie, the smallest and warmest lake among the Laurentian Great Lakes, is known for its problem of eutrophication and frequent occurrence of harmful cyanobacterial blooms (CyanoHABs). One major harmful effect of CyanoHABs is the production of cyanotoxins, especially microcystins. Microcystins (MC) are a group of hepatotoxins and the predominant variant of them is MC-LR. Field measurements and lab experiments indicate that MC degradation in Lake Erie is mainly carried out by indigenous bacteria. However, our knowledge on taxa involved in this process is very limited. This study aimed to fill this knowledge gap using a culture-dependent approach. Water and surface sediment samples were collected from Lake Erie in 2014 and 2015 and enriched with MC-LR. Cells were plated on a number of culturing media. The obtained pure bacterial cultures were screened for MC degrading abilities by MT2 BIO-LOG assays and by growing cells in liquid media containing MC-LR as the sole carbon source. In the latter experiment, MC concentrations were measured using HPLC. Isolates showing positive MC degradation activities in the screening steps were designated MC+ bacteria and characterized based on their phenotypic properties, including colony pigmentation, elevation, opacity, margin, gram nature and motility. The taxonomic identity of MC+ bacteria was determined by 16S rRNA gene full-length DNA sequencing. The presence of mlrA, a gene encoding MC cleavage pathway, was detected by PCR. Our culturing efforts obtained 520 pure cultures; 44 of them were identified as MC+. These MC+ isolates showed diversity in taxonomic identities and differed in their morphology, gram nature, colony characteristics and motility. PCR amplification of mlrA gene yield negative results for all MC+ isolates, indicating that the primers that were used may not be ubiquitous enough to cover the heterogeneity of mlrA genes or, more likely, alternative degradative genes/pathways were employed by Lake Erie bacteria

  18. EHR Big Data Deep Phenotyping

    PubMed Central

    Lenert, L.; Lopez-Campos, G.

    2014-01-01

    Summary Objectives Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. Methods As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increases. The growth of genomic data and adoption of Electronic Health Records (EHR) in medicine provides a unique opportunity to integrate phenotype and genotype data into medical records. The method by which collections of clinical findings and other health related data are leveraged to form meaningful phenotypes is an active area of research. Longitudinal data stored in EHRs provide a wealth of information that can be used to construct phenotypes of patients. We focus on a practical problem around data integration for deep phenotype identification within EHR data. The use of big data approaches are described that enable scalable markup of EHR events that can be used for semantic and temporal similarity analysis to support the identification of phenotype and genotype relationships. Conclusions Stead and colleagues’ 2005 concept of using light standards to increase the productivity of software systems by riding on the wave of hardware/processing power is described as a harbinger for designing future healthcare systems. The big data solution, using flexible markup, provides a route to improved utilization of processing power for organizing patient records in genotype and phenotype research. PMID:25123744

  19. Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis.

    PubMed

    Ravits, John; Appel, Stanley; Baloh, Robert H; Barohn, Richard; Brooks, Benjamin Rix; Elman, Lauren; Floeter, Mary Kay; Henderson, Christopher; Lomen-Hoerth, Catherine; Macklis, Jeffrey D; McCluskey, Leo; Mitsumoto, Hiroshi; Przedborski, Serge; Rothstein, Jeffrey; Trojanowski, John Q; van den Berg, Leonard H; Ringel, Steven

    2013-05-01

    Amyotrophic lateral sclerosis (ALS) is characterized phenotypically by progressive weakness and neuropathologically by loss of motor neurons. Phenotypically, there is marked heterogeneity. Typical ALS has mixed upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Primary lateral sclerosis has predominant UMN involvement. Progressive muscular atrophy has predominant LMN involvement. Bulbar and limb ALS have predominant regional involvement. Frontotemporal dementia has significant cognitive and behavioral involvement. These phenotypes can be so distinctive that they would seem to have differing biology. However, they cannot be distinguished, at least neuropathologically or genetically. In sporadic ALS (SALS), they are mostly characterized by ubiquitinated cytoplasmic inclusions of TDP-43. In familial ALS (FALS), where phenotypes are indistinguishable from SALS and similarly heterogeneous, each mutated gene has its own genetic and molecular signature. Overall, since the same phenotypes can have multiple causes including different gene mutations, there must be multiple molecular mechanisms causing ALS - and ALS is a syndrome. Since, however, multiple phenotypes can be caused by one single gene mutation, a single molecular mechanism can cause heterogeneity. What the mechanisms are remain unknown, but active propagation of the pathology neuroanatomically seems to be a principal component. Leading candidate mechanisms include RNA processing, cell-cell interactions between neurons and non-neuronal neighbors, focal seeding from a misfolded protein that has prion-like propagation, and fatal errors introduced during neurodevelopment of the motor system. If fundamental mechanisms could be identified and understood, ALS therapy could rationally target progression and stop the disease - a goal that seems increasingly achievable.

  20. Talkin' Musical Identities Blues

    ERIC Educational Resources Information Center

    Lamb, Roberta

    2004-01-01

    After reading the book "Musical Identities" (Raymond MacDonald, David Hargreaves, Dorothy Miell, eds.; Oxford and New York: Oxford University Press, 2002), this author states she finds it difficult to separate "identities in music" from "music in identities." In fact, she cannot conceive of music apart from identity.…