Sample records for idiopathic rem sleep

  1. Alexithymia Associated with Nightmare Distress in Idiopathic REM Sleep Behavior Disorder

    PubMed Central

    Godin, Isabelle; Montplaisir, Jaques; Gagnon, Jean-François; Nielsen, Tore

    2013-01-01

    Study Objectives: Idiopathic REM sleep behavior disorder (iRBD) is characterized by atypical REM sleep motor activity, vivid dreams and nightmares, and dream-enacting behaviors that can result in injuries to the patient and bed partner. It is also a known predictor of Parkinson disease (PD). Alexithymia has been associated with disturbances in sleep and dreaming (e.g., nightmares) and is a non-motor symptom of PD. We assessed alexithymia and disturbed dreaming in iRBD patients with the aim of determining if these two factors are elevated and interrelated among this population. Design: Questionnaire study of clinically diagnosed patients. Setting: Clinical sleep disorders center. Patients or participants: Thirty-two iRBD patients and 30 healthy age- and sex-matched control participants. Measurements and Results: Participants completed the 20-item Toronto Alexithymia Scale (TAS-20), the Dream Questionnaire, and the Beck Depression Inventory. iRBD patients obtained higher TAS-20 total scores (62.16 ± 13.90) than did controls (52.84 ± 7.62; F1,59 = 10.44, P < 0.01), even when controlling for depressive symptoms, and more frequently attained the suggested cutoff for alexithymia than did controls (P < 0.01). iRBD patients obtained higher scores on the Difficulty Identifying Feelings alexithymia subscale. For both iRBD and control groups, the Difficulty Indentifying Feelings subscale correlated positively with the Nightmare Distress scale of the Dream Questionnaire. Conclusions: Elevated alexithymia scores among idiopathic rapid eye movement sleep behavior disorder patients, and especially a difficulty in identifying feelings, parallels evidence of dysautonomia in this population. The higher incidence of distressing nightmares and the association of nightmares with alexithymia further extend similar findings for both clinical and non-clinical samples and suggest that an affect regulation disturbance may be common to the two sets of symptoms. Citation: Godin I

  2. REM sleep Behaviour Disorder.

    PubMed

    Ferini-Strambi, Luigi; Rinaldi, Fabrizio; Giora, Enrico; Marelli, Sara; Galbiati, Andrea

    2016-01-01

    Rapid Eye Movement (REM) sleep Behaviour Disorder (RBD) is a REM sleep parasomnia characterized by loss of the muscle atonia that typically occurs during REM sleep, therefore allowing patients to act out their dreams. RBD manifests itself clinically as a violent behaviour occurring during the night, and is detected at the polysomnography by phasic and/or tonic muscle activity on the electromyography channel. In absence of neurological signs or central nervous system lesions, RBD is defined as idiopathic. Nevertheless, in a large number of cases the development of neurodegenerative diseases in RBD patients has been described, with the duration of the follow-up representing a fundamental aspect. A growing number of clinical, neurophysiologic and neuropsychological studies aimed to detect early markers of neurodegenerative dysfunction in RBD patients. Anyway, the evidence of impaired cortical activity, subtle neurocognitive dysfunction, olfactory and autonomic impairment and neuroimaging brain changes in RBD patients is challenging the concept of an idiopathic form of RBD, supporting the idea of RBD as an early manifestation of a more complex neurodegenerative process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Motor-Behavioral Episodes in REM Sleep Behavior Disorder and Phasic Events During REM Sleep

    PubMed Central

    Manni, Raffaele; Terzaghi, Michele; Glorioso, Margaret

    2009-01-01

    Study Objectives: To investigate if sudden-onset motor-behavioral episodes in REM sleep behavior disorder (RBD) are associated with phasic events of REM sleep, and to explore the potential meaning of such an association. Design: Observational review analysis. Setting: Tertiary sleep center. Patients: Twelve individuals (11 males; mean age 67.6 ± 7.4 years) affected by idiopathic RBD, displaying a total of 978 motor-behavioral episodes during nocturnal in-laboratory video-PSG. Interventions: N/A Measurements and Results: The motor activity displayed was primitive in 69.1% and purposeful/semi-purposeful in 30.9% of the motor-behavioral episodes recorded. Sleeptalking was significantly more associated with purposeful/semi-purposeful motor activity than crying and/or incomprehensible muttering (71.0% versus 21.4%, P < 0.005). In 58.2% of the motor-behavioral episodes, phasic EEG-EOG events (rapid eye movements [REMs], α bursts, or sawtooth waves [STWs]) occurred simultaneously. Each variable (REMs, STWs, α bursts) was associated more with purposeful/semi-purposeful than with primitive movements (P < 0.05). Conclusions: Motor-behavioral episodes in RBD were significantly more likely to occur in association with phasic than with tonic periods of REM sleep. The presence of REMs, α bursts and STWs was found to be more frequent in more complex episodes. We hypothesize that motor-behavioral episodes in RBD are likely to occur when the brain, during REM sleep, is in a state of increased instability (presence of α bursts) and experiencing stronger stimulation of visual areas (REMs). Citation: Manni R; Terzaghi M; Glorioso M. Motor-behavioral episodes in REM sleep behavior disorder and phasic events during REM sleep. SLEEP 2009;32(2):241–245. PMID:19238811

  4. Risk Factors for Neurodegeneration in Idiopathic REM sleep Behavior Disorder: A Multicenter Study

    PubMed Central

    Postuma, RB; Iranzo, A; Hogl, B; Arnulf, I; Ferini-Strambi, L; Manni, R; Miyamoto, T.; Oertel, W; Dauvilliers, Y; Ju, Y; Puligheddu, M; Sonka, K; Pelletier, A; Santamaria, J; Frauscher, B; Leu-Semenescu, S; Zucconi, M; Terzaghi, M; Miyamoto, M.; Unger, MM; Carlander, B; Fantini, ML; Montplaisir, JY

    2018-01-01

    Objective To assess whether risk factors for Parkinson’s disease and Dementia with Lewy bodies increase rate of defined neurodegenerative disease in idiopathic REM sleep behavior disorder Methods 12 centers administered a detailed questionnaire assessing risk factors for neurodegenerative synucleinopathy to patients with idiopathic REM sleep behavior disorder. Variables included demographics, lifestyle factors, pesticide exposures, occupation, co-morbid conditions, medication use, family history, and autonomic/motor symptoms. After 4-years follow-up, patients were assessed for dementia or parkinsonism. Disease risk was assessed with Kaplan-Meier analysis, and epidemiologic variables were compared between convertors and those still idiopathic using logistic regression. Results Of 305 patients, follow-up information was available for 279, of whom 93 (33.3%) developed defined neurodegenerative disease. Disease risk was 25% at 3 years, and 41% after 5 years. Patients who converted were older (difference=4.5 years, p<0.001), with similar sex distribution. Neither caffeine, smoking, nor alcohol exposure predicted conversion. Although occupation was similar between groups, those who converted had a lower likelihood of pesticide exposure (occupational insecticide=2.3% vs. 9.0%). Convertors were more likely to report family history of dementia (OR=2.09), without significant differences in Parkinson’s disease or sleep disorders. Medication exposures and medical history were similar between groups. Autonomic and motor symptoms were more common among those who converted. Risk factors for primary dementia and parkinsonism were generally similar, except for a notably higher clonazepam use in dementia convertors (OR=2.6). Interpretation Patients with idiopathic RBD are at very high risk of neurodegenerative synucleinopathy. Risk factor profiles between convertors and non-convertors have both important commonalities and differences. PMID:25767079

  5. Alexithymia associated with nightmare distress in idiopathic REM sleep behavior disorder.

    PubMed

    Godin, Isabelle; Montplaisir, Jaques; Gagnon, Jean-François; Nielsen, Tore

    2013-12-01

    Idiopathic REM sleep behavior disorder (iRBD) is characterized by atypical REM sleep motor activity, vivid dreams and nightmares, and dream-enacting behaviors that can result in injuries to the patient and bed partner. It is also a known predictor of Parkinson disease (PD). Alexithymia has been associated with disturbances in sleep and dreaming (e.g., nightmares) and is a non-motor symptom of PD. We assessed alexithymia and disturbed dreaming in iRBD patients with the aim of determining if these two factors are elevated and interrelated among this population. Questionnaire study of clinically diagnosed patients. Clinical sleep disorders center. Thirty-two iRBD patients and 30 healthy age- and sex-matched control participants. Participants completed the 20-item Toronto Alexithymia Scale (TAS-20), the Dream Questionnaire, and the Beck Depression Inventory. iRBD patients obtained higher TAS-20 total scores (62.16 ± 13.90) than did controls (52.84 ± 7.62; F 1,59 = 10.44, P < 0.01), even when controlling for depressive symptoms, and more frequently attained the suggested cutoff for alexithymia than did controls (P < 0.01). iRBD patients obtained higher scores on the Difficulty Identifying Feelings alexithymia subscale. For both iRBD and control groups, the Difficulty Indentifying Feelings subscale correlated positively with the Nightmare Distress scale of the Dream Questionnaire. Elevated alexithymia scores among idiopathic rapid eye movement sleep behavior disorder patients, and especially a difficulty in identifying feelings, parallels evidence of dysautonomia in this population. The higher incidence of distressing nightmares and the association of nightmares with alexithymia further extend similar findings for both clinical and non-clinical samples and suggest that an affect regulation disturbance may be common to the two sets of symptoms.

  6. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease.

    PubMed

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi; Korbo, Lise; Friberg, Lars; Jennum, Poul

    2016-06-15

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown that patients with idiopathic RBD (iRBD) have an increased risk of developing an α-synucleinopathy in later life. Although abundant studies have shown that degeneration of the nigrostriatal dopaminergic system is associated with daytime motor function in Parkinson disease, only few studies have investigated the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. 10 iRBD patients, 10 PD patients with PD, 10 PD patients without RBD, and 10 healthy controls were included and assessed with (123)I-N-omega-fluoropropyl-2-beta-carboxymethoxy-3beta-(4-iodophenyl) nortropane ((123)I-FP-CIT) Single-photon emission computed tomography (SPECT) scanning ((123)I-FP-CIT SPECT), neurological examination, and polysomnography. iRBD patients and PD patients with RBD had increased EMG-activity compared to healthy controls. (123)I-FP-CIT uptake in the putamen-region was highest in controls, followed by iRBD patients, and lowest in PD patients. In iRBD patients, EMG-activity in the mentalis muscle was correlated to (123)I-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD. © 2016 American Academy of Sleep Medicine.

  7. Characterization of REM sleep without atonia in patients with narcolepsy and idiopathic hypersomnia using AASM scoring manual criteria.

    PubMed

    DelRosso, Lourdes M; Chesson, Andrew L; Hoque, Romy

    2013-07-15

    The AASM Manual for the Scoring of Sleep and Associated Events (Manual) has provided standardized definitions for tonic and phasic REM sleep without atonia (RSWA). This study used Manual criteria to characterize REM sleep in patients with narcolepsy and idiopathic hypersomnia (IH). A retrospective review of PSG data from ICSD-2 defined patients with narcolepsy or IH, performed by two board certified sleep medicine physicians. Data compiled included REM sleep epochs and the presence in REM sleep of epochs scored as sustained muscle activity (tonic), and excessive transient muscle activity (phasic) as defined by Manual criteria. PSG data from 8 narcolepsy patients (mean age: 27.5 years; age range: 11-55) showed mean ± standard deviation values for: total REM sleep epochs 205 ± 46.1; RSWA/ phasic epochs 56.1 ± 25.4; and RSWA/tonic epochs 15.0 ± 10.7. PSG data from 8 IH patients (mean age: 33.1 years; age range: 20-57) showed mean ± standard deviation values of total REM sleep epochs 163.8 ± 67.9; RSWA/phasic epochs 6.2 ± 3.5; and RSWA/tonic epochs 0.2 ± 0.4. Comparison revealed intergroup differences in phasic REM sleep (p < 0.01) and tonic REM sleep (p < 0.01) were significantly increased in narcoleptics compared to IH. Our retrospective analysis showed that RSWA phasic activity and RSWA tonic activity are significantly increased in patients meeting ICSD-2 criteria for narcolepsy compared to patients meeting ICSD-2 criteria for IH. This robust difference, with further validation, could be useful as electrophysiological criteria differentiating the two disorders and understanding the physiological differences.

  8. REM Sleep EEG Instability in REM Sleep Behavior Disorder and Clonazepam Effects.

    PubMed

    Ferri, Raffaele; Rundo, Francesco; Silvani, Alessandro; Zucconi, Marco; Bruni, Oliviero; Ferini-Strambi, Luigi; Plazzi, Giuseppe; Manconi, Mauro

    2017-08-01

    We aimed to analyze quantitatively rapid eye movement (REM) sleep electroencephalogram (EEG) in controls, drug-naïve idiopathic REM sleep behavior disorder patients (iRBD), and iRBD patients treated with clonazepam. Twenty-nine drug-naïve iRBD patients (mean age 68.2 years), 14 iRBD patients under chronic clonazepam therapy (mean age 66.3 years), and 21 controls (mean age 66.8 years) were recruited. Power spectra were obtained from sleep EEG (central derivation), using a 2-second sliding window, with 1-second steps. The power values of each REM sleep EEG spectral band (one every second) were normalized with respect to the average power value obtained during sleep stage 2 in the same individual. In drug-naïve patients, the normalized power values showed a less pronounced REM-related decrease of power in all bands with frequency <15 Hz than controls and an increase in the beta band, negatively correlated with muscle atonia; in patients treated with clonazepam there was a partial return of all bands <15 Hz toward the control values. The standard deviation values of the normalized power were higher for untreated patients in all EEG bands and were almost completely normalized in patients treated with clonazepam. The REM sleep EEG structure changes found in this study disclose subtle but significant alterations in the cortical electrophysiology of RBD that might represent the early expression of the supposed neurodegenerative processes already taking place at this stage of the disease and might be the target of better and effective future therapeutic strategies for this condition. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. [REM sleep behavior disorders in Parkinson's disease].

    PubMed

    Liashenko, E A; Poluéktov, M G; Levin, O S

    2014-01-01

    The article presents a literature review on REM sleep behavior disorder (RBD). The loss of REM atonia of sleep, such that patients act out the contents of their dreams, is described. The most important implication of research into this area is that patients with idiopathic RBD are at very high risk of developing synuclein-mediated neurodegenerative disease (Parkinson's disease, dementia with Lewy bodies and multiple system atrophy), with risk estimates that approximate 40-65% at 10 years. Thus, RBD is a reliable marker of prodromal synucleinopathy that open possibilities for neuroprotective therapy.

  10. REM sleep behaviour disorder: not just a bad dream.

    PubMed

    Matar, Elie; Lewis, Simon Jg

    2017-09-18

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is a parasomnia characterised by the loss of the normal atonia during the REM stage of sleep, resulting in overt motor behaviours that usually represent the enactment of dreams. Patients will seek medical attention due to sleep-related injuries or unpleasant dream content. Idiopathic RBD which occurs independently of any other disease occurs in up to 2% of the older population. Meanwhile, secondary RBD is very common in association with certain neurodegenerative conditions. RBD can also occur in the context of antidepressant use, obstructive sleep apnoea and narcolepsy. RBD can be diagnosed with a simple screening question followed by confirmation with polysomnography to exclude potential mimics. Treatment for RBD is effective and involves treatment of underlying causes, modification of the sleep environment, and pharmacotherapy with either clonazepam or melatonin. An important finding in the past decade is the recognition that almost all patients with idiopathic RBD will ultimately go on to develop Parkinson disease or dementia with Lewy bodies. This suggests that idiopathic RBD represents a prodromal phase of these conditions. Physicians should be aware of the risk of phenoconversion. They should educate idiopathic RBD patients to recognise the symptoms of these conditions and refer as appropriate for further testing and enrolment into research trials focused on neuroprotective measures.

  11. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study.

    PubMed

    Knudsen, Karoline; Fedorova, Tatyana D; Hansen, Allan K; Sommerauer, Michael; Otto, Marit; Svendsen, Kristina B; Nahimi, Adjmal; Stokholm, Morten G; Pavese, Nicola; Beier, Christoph P; Brooks, David J; Borghammer, Per

    2018-06-01

    Accumulating evidence suggests that α-synuclein aggregates-a defining pathology of Parkinson's disease-display cell-to-cell transmission. α-synuclein aggregation is hypothesised to start in autonomic nerve terminals years before the appearance of motor symptoms, and subsequently spread via autonomic nerves to the spinal cord and brainstem. To assess this hypothesis, we investigated sympathetic, parasympathetic, noradrenergic, and dopaminergic innervation in patients with idiopathic rapid eye movement (REM) sleep behaviour disorder, a prodromal phenotype of Parkinson's disease. In this prospective, case-control study, we recruited patients with idiopathic REM sleep behaviour disorder, confirmed by polysomnography, without clinical signs of parkinsonism or dementia, via advertisement and through sleep clinics in Denmark. We used 11 C-donepezil PET and CT to assess cholinergic (parasympathetic) gut innervation, 123 I-metaiodobenzylguanidine (MIBG) scintigraphy to measure cardiac sympathetic innervation, neuromelanin-sensitive MRI to measure integrity of pigmented neurons of the locus coeruleus, 11 C-methylreboxetine (MeNER) PET to assess noradrenergic nerve terminals originating in the locus coeruleus, and 18 F-dihydroxyphenylalanine (DOPA) PET to assess nigrostriatal dopamine storage capacity. For each imaging modality, we compared patients with idiopathic REM sleep behaviour disorder with previously published reference data of controls without neurological disorders or cognitive impairment and with symptomatic patients with Parkinson's disease. We assessed imaging data using one-way ANOVA corrected for multiple comparisons. Between June 3, 2016, and Dec 19, 2017, we recruited 22 consecutive patients with idiopathic REM sleep behaviour disorder to the study. Compared with controls, patients with idiopathic REM sleep behaviour disorder had decreased colonic 11 C-donepezil uptake (-0·322, 95% CI -0·112 to -0·531; p=0·0020), 123 I-MIBG heart:mediastinum ratio (-0

  12. Antidepressants Increase REM Sleep Muscle Tone in Patients with and without REM Sleep Behavior Disorder.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Sandness, David J; Arndt, Katlyn; Erickson, Maia; Tabatabai, Grace; Boeve, Bradley F; Silber, Michael H

    2015-06-01

    REM sleep behavior disorder (RBD) is associated with antidepressant treatment, especially in younger patients; but quantitative REM sleep without atonia (RSWA) analyses of psychiatric RBD patients remain limited. We analyzed RSWA in adults receiving antidepressants, with and without RBD. We comparatively analyzed visual, manual, and automated RSWA between RBD and control groups. RSWA metrics were compared between groups, and regression was used to explore associations with clinical variables. Tertiary-care sleep center. Participants included traditional RBD without antidepressant treatment (n = 30, 15 Parkinson disease [PD-RBD] and 15 idiopathic); psychiatric RBD receiving antidepressants (n = 30); and adults without RBD, including antidepressant-treated psychiatric (n = 30), untreated psychiatric (n = 15), and OSA (n = 60) controls. N/A. RSWA was highest in traditional and psychiatric RBD, intermediate in treated psychiatric controls, and lowest in untreated psychiatric and OSA controls (P < 0.01). RSWA distribution and type also differed between antidepressant-treated patients having higher values in anterior tibialis, and PD-RBD with higher submentalis and tonic RSWA. Psychiatric RBD had significantly younger age at onset than traditional RBD patients (P < 0.01). Antidepressant treatment was associated with elevated REM sleep without atonia (RSWA) even without REM sleep behavior disorder (RBD), suggesting that antidepressants, not depression, promote RSWA. Differences in RSWA distribution and type were also seen, with higher anterior tibialis RSWA in antidepressant-treated patients and higher tonic RSWA in Parkinson disease-RBD patients, which could aid distinction between RBD subtypes. These findings suggest that antidepressants may mediate different RSWA mechanisms or, alternatively, that RSWA type and distribution evolve during progressive neurodegeneration. Further prospective RSWA analyses are necessary to clarify the relationships between antidepressant

  13. REM Sleep Phase Preference in the Crepuscular Octodon degus Assessed by Selective REM Sleep Deprivation

    PubMed Central

    Ocampo-Garcés, Adrián; Hernández, Felipe; Palacios, Adrian G.

    2013-01-01

    Study Objectives: To determine rapid eye movement (REM) sleep phase preference in a crepuscular mammal (Octodon degus) by challenging the specific REM sleep homeostatic response during the diurnal and nocturnal anticrepuscular rest phases. Design: We have investigated REM sleep rebound, recovery, and documented REM sleep propensity measures during and after diurnal and nocturnal selective REM sleep deprivations. Subjects: Nine male wild-captured O. degus prepared for polysomnographic recordings Interventions: Animals were recorded during four consecutive baseline and two separate diurnal or nocturnal deprivation days, under a 12:12 light-dark schedule. Three-h selective REM sleep deprivations were performed, starting at midday (zeitgeber time 6) or midnight (zeitgeber time 18). Measurements and Results: Diurnal and nocturnal REM sleep deprivations provoked equivalent amounts of REM sleep debt, but a consistent REM sleep rebound was found only after nocturnal deprivation. The nocturnal rebound was characterized by a complete recovery of REM sleep associated with an augment in REM/total sleep time ratio and enhancement in REM sleep episode consolidation. Conclusions: Our results support the notion that the circadian system actively promotes REM sleep. We propose that the sleep-wake cycle of O. degus is modulated by a chorus of circadian oscillators with a bimodal crepuscular modulation of arousal and a unimodal promotion of nocturnal REM sleep. Citation: Ocampo-Garcés A; Hernández F; Palacios AG. REM sleep phase preference in the crepuscular Octodon degus assessed by selective REM sleep deprivation. SLEEP 2013;36(8):1247-1256. PMID:23904685

  14. The Biology of REM Sleep

    PubMed Central

    Peever, John; Fuller, Patrick M.

    2018-01-01

    Considerable advances in our understanding of the mechanisms and functions of rapid-eye-movement (REM) sleep have occurred over the past decade. Much of this progress can be attributed to the development of new neuroscience tools that have enabled high-precision interrogation of brain circuitry linked with REM sleep control, in turn revealing how REM sleep mechanisms themselves impact processes such as sensorimotor function. This review is intended to update the general scientific community about the recent mechanistic, functional and conceptual developments in our current understanding of REM sleep biology and pathobiology. Specifically, this review outlines the historical origins of the discovery of REM sleep, the diversity of REM sleep expression across and within species, the potential functions of REM sleep (e.g., memory consolidation), the neural circuits that control REM sleep, and how dysfunction of REM sleep mechanisms underlie debilitating sleep disorders such as REM sleep behaviour disorder and narcolepsy. PMID:26766231

  15. REM sleep behaviour disorder - More than just a parasomnia.

    PubMed

    Coeytaux, Alessandra; Wong, Keith; Grunstein, Ron; Lewis, Simon J G

    2013-11-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is a parasomnia characterised by loss of the usual muscle atonia that occurs during REM sleep, allowing patients to act out their dreams. This article aims to draw attention to RBD, allowing early recognition and treatment. As RBD patients are at high risk of hurting themselves and their bed partners while acting out their dreams, improving safety within the bedroom environment and treatment with exogenous melatonin or clonazepam are recommended. Longitudinal studies have shown that the onset of idiopathic RBD may be an early warning sign of specific neurodegenerative diseases.

  16. A Hypothalamic Switch for REM and Non-REM Sleep.

    PubMed

    Chen, Kai-Siang; Xu, Min; Zhang, Zhe; Chang, Wei-Cheng; Gaj, Thomas; Schaffer, David V; Dan, Yang

    2018-03-07

    Rapid eye movement (REM) and non-REM (NREM) sleep are controlled by specific neuronal circuits. Here we show that galanin-expressing GABAergic neurons in the dorsomedial hypothalamus (DMH) comprise separate subpopulations with opposing effects on REM versus NREM sleep. Microendoscopic calcium imaging revealed diverse sleep-wake activity of DMH GABAergic neurons, but the galanin-expressing subset falls into two distinct groups, either selectively activated (REM-on) or suppressed (REM-off) during REM sleep. Retrogradely labeled, preoptic area (POA)-projecting galaninergic neurons are REM-off, whereas the raphe pallidus (RPA)-projecting neurons are primarily REM-on. Bidirectional optogenetic manipulations showed that the POA-projecting neurons promote NREM sleep and suppress REM sleep, while the RPA-projecting neurons have the opposite effects. Thus, REM/NREM switch is regulated antagonistically by DMH galaninergic neurons with intermingled cell bodies but distinct axon projections. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. What Does One Sleep-Onset REM Period—During Either Nocturnal Polysomnography or Multiple Sleep Latency Test—Mean in Differential Diagnosis of Central Hypersomnias?

    PubMed

    Bozluolcay, Melda; Nalbantoglu, Mecbure; Benbir Senel, Gulcin; Karadeniz, Derya

    2015-08-01

    The differentiation of narcolepsy without cataplexy from idiopathic hypersomnia is based on the number of sleep-onset rapid eye movement periods (SOREMPs) observed by multiple sleep latency test (MSLT) and nocturnal polysomnography. The main aim of this study was to investigate the utility of SOREMP in differential diagnosis of central hypersomnias. The authors retrospectively evaluated consecutive 101 patients with a normal polysomnography other than the presence of SOREMP and/or REM without atonia and a latency of ≤8 minutes in MSLT. The authors classified patients as follows: 52 patients had at least 2 SOREMPs (narcolepsy group), 23 had no SOREMPs (idiopathic hypersomnia group), and 26 patients had only 1 SOREMP (intermediate group). In polysomnographic recordings, both mean sleep latency and REM latency were significantly shorter in the narcolepsy (P = 0.012, P < 0.001, respectively) and intermediate groups (P = 0.005 and P = 0.035, respectively) compared with the idiopathic hypersomnia group. In MSLT recordings, sleep latency was 2.7 ± 2.2 minutes in the narcolepsy group, 3.6 ± 1.4 minutes in the intermediate group, and 5.2 ± 2.7 minutes in the idiopathic hypersomnia group (P < 0.001). The mean REM latency and sleep stages SOREMPs arised from were similar between the narcolepsy and intermediate groups. To date, SOREMPs in MSLT and polysomnography remain the sole electrodiagnostic feature that discriminates narcolepsy without cataplexy from idiopathic hypersomnia. Different parameters or combined criteria are being increasingly investigated to increase the sensitivity and specificity of MSLT. The findings showed an altered instability of REM sleep not only in patients with 2 or more SOREMPs in MSLT but also in patients with one SOREMP.

  18. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    PubMed

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients. © 2015 European Sleep Research Society.

  19. Excessive Daytime Sleepiness Predicts Neurodegeneration in Idiopathic REM Sleep Behavior Disorder.

    PubMed

    Zhou, Junying; Zhang, Jihui; Lam, Siu Ping; Chan, Joey Wy; Mok, Vincent; Chan, Anne; Li, Shirley Xin; Liu, Yaping; Tang, Xiangdong; Yung, Wing Ho; Wing, Yun Kwok

    2017-05-01

    To determine the association of excessive daytime sleepiness (EDS) with the conversion of neurodegenerative diseases in patients with idiopathic REM sleep behavior disorder (iRBD). A total of 179 patients with iRBD (79.1% males, mean age = 66.3 ± 9.8 years) were consecutively recruited. Forty-five patients with Epworth Sleepiness Scale score ≥14 were defined as having EDS. Demographic, clinical, and polysomnographic data were compared between iRBD patients with and without EDS. The risk of developing neurodegenerative diseases was examined using Cox proportional hazards model. After a mean follow-up of 5.8 years (SD = 4.3 years), 50 (27.9%) patients developed neurodegenerative diseases. There was a significantly higher proportion of conversion in patients with EDS compared to those without EDS (42.2 % vs. 23.1%, p = .01). EDS significantly predicted an increased risk of developing neurodegenerative diseases (adjusted hazard ratios [HR] = 2.56, 95% confidence interval [CI] 1.37 to 4.77) after adjusting for age, sex, body mass index, current depression, obstructive sleep apnea, and periodic limb movements during sleep. Further analyses demonstrated that EDS predicted the conversion of Parkinson's disease (PD) (adjusted HR = 3.55, 95% CI 1.59 to 7.89) but not dementia (adjusted HR = 1.48, 95% CI 0.44 to 4.97). EDS is associated with an increased risk of developing neurodegenerative diseases, especially PD, in patients with iRBD. Our findings suggest that EDS is a potential clinical biomarker of α-synucleinopathies in iRBD. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  20. Characteristics of REM Sleep Behavior Disorder in Childhood

    PubMed Central

    Lloyd, Robin; Tippmann-Peikert, Maja; Slocumb, Nancy; Kotagal, Suresh

    2012-01-01

    Study Objective: To describe our experience regarding the clinical and polysomnographic features of REM sleep behavior disorder (RBD) in childhood. Methods: This was a retrospective chart review of children and adolescents with RBD and REM sleep without atonia. Demographics, and clinical and polysomnographic information were tabulated. Our findings were compared with those in the existing literature. Results: The 15 subjects identified (13 RBD and 2 having REM sleep without atonia) had a mean age at diagnosis of 9.5 years (range 3-17 years); 11/15 (73%) were male. Nightmares were reported in 13/15 and excessive daytime sleepiness in 6/15. Two children had caused bodily harm to bedmate siblings. Comorbidities, which were multiple in some subjects, included anxiety (8/15), attention deficit disorder (10/15), nonspecific developmental delay (6/15), Smith-Magenis syndrome (1/15), pervasive developmental disorder (1/15), narcolepsy (1/15), idiopathic hypersomnia (1/15), and Moebius Syndrome (1/15). Abnormal MRI scans were seen in 5/8 evaluated subjects. Treatments consisted of clonazepam (10/15), melatonin (2/15), and discontinuation of a tricyclic agent (1/15), with a favorable response in 11 of 13. Two of 15 patients with REM sleep without atonia did not require pharmacotherapy. Conclusions: RBD in children may be associated with neurodevelopmental disabilities, narcolepsy, or medication use. It seems to be modestly responsive to benzodiazepines or melatonin. The etiology is distinct from that of common childhood arousal parasomnias and RBD in adults; congenital and neurodevelopmental disorders, medication effect, and narcolepsy coexisted in some, but none had an extrapyramidal neurodegenerative disorder. Citation: Lloyd R; Tippmann-Peikert M; Slocumb N; Kotagal S. Characteristics of REM sleep behavior disorder in childhood. J Clin Sleep Med 2012;8(2):127-131. PMID:22505856

  1. Sodium oxybate for idiopathic REM sleep behavior disorder: a report on two patients.

    PubMed

    Moghadam, Keivan Kaveh; Pizza, Fabio; Primavera, Alberto; Ferri, Raffaele; Plazzi, Giuseppe

    2017-04-01

    REM-sleep behavior disorder (RBD) therapy is based on small to medium-sized case series, as no large controlled clinical trials have been performed. The most used and widely recognized effective drugs are clonazepam and melatonin, with anecdotal reports on the potential benefit of other drug classes. We report on two patients suffering from idiopathic RBD presenting with almost nightly complex and violent episodes, refractory to conventional drugs. Both patients, after informed consent, were treated off-label with sodium oxybate in add-on therapy. We followed up the patients in order to assess treatment efficacy by means of clinical interview, visual analog scales (VAS) for frequency and severity, Clinical Global Impression (CGI) improvement scale and efficacy index, video-polysomnography and at-home actigraphy. Sodium oxybate intake was well tolerated and effective in reducing the number and intensity of RBD episodes; patients reported no new traumatic episodes. Results were confirmed by bed-partner reports, VAS, CGI improvement scale and efficacy index, and at-home actigraphic monitoring, the latter showing a trend of improvement in nocturnal sleep quality and reduction in motor activity, compared to the baseline. Nevertheless, video-polysomnography did not show a clear beneficial effect on sleep-related electromyographic parameters. Our cases suggest that sodium oxybate can be an effective add-on option for the treatment of idiopathic RBD refractory to conventional therapies. The lack of improvement of polysomnographic parameters suggests caution in considering only polysomnographic data as endpoints in the assessment of the efficacy of therapies for RBD, and that long-term home-based assessment seems a promising tool. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Retention over a Period of REM or non-REM Sleep.

    ERIC Educational Resources Information Center

    Tilley, Andrew J.

    1981-01-01

    Subjects, awaked, presented with a word list, and tested with arousal measures, were reawaked during REM or non-REM sleep and retested. Recall was facilitated by REM sleep. It was hypothesized that the high arousal level associated with REM sleep incidentally maintained the memory trace in a more retrievable form. (Author/SJL)

  3. Comparison Between Automatic and Visual Scorings of REM Sleep Without Atonia for the Diagnosis of REM Sleep Behavior Disorder in Parkinson Disease.

    PubMed

    Figorilli, Michela; Ferri, Raffaele; Zibetti, Maurizio; Beudin, Patricia; Puligheddu, Monica; Lopiano, Leonardo; Cicolin, Alessandro; Durif, Frank; Marques, Ana; Fantini, Maria Livia

    2017-02-01

    To compare three different methods, two visual and one automatic, for the quantification of rapid eye movement (REM) sleep without atonia (RSWA) in the diagnosis of REM sleep behavior disorder (RBD) in Parkinson's disease (PD) patients. Sixty-two consecutive patients with idiopathic PD underwent video-polysomnographic recording and showed more than 5 minutes of REM sleep. The electromyogram during REM sleep was analyzed by means of two visual methods (Montréal and SINBAR) and one automatic analysis (REM Atonia Index or RAI). RBD was diagnosed according to standard criteria and a series of diagnostic accuracy measures were calculated for each method, as well as the agreement between them. RBD was diagnosed in 59.7% of patients. The accuracy (85.5%), receiver operating characteristic (ROC) area (0.833) and Cohen's K coefficient (0.688) obtained with RAI were similar to those of the visual parameters. Visual tonic parameters, alone or in combination with phasic activity, showed high values of accuracy (93.5-95.2%), ROC area (0.92-0.94), and Cohen's K (0.862-0.933). Similarly, the agreement between the two visual methods was very high, and the agreement between each visual methods and RAI was substantial. Visual phasic measures alone performed worse than all the other measures. The diagnostic accuracy of RSWA obtained with both visual and automatic methods was high and there was a general agreement between methods. RAI may be used as the first line method to detect RSWA in the diagnosis of RBD in PD, together with the visual inspection of video-recorded behaviors, while the visual analysis of RSWA might be used in doubtful cases. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Differential effects of non-REM and REM sleep on memory consolidation?

    PubMed

    Ackermann, Sandra; Rasch, Björn

    2014-02-01

    Sleep benefits memory consolidation. Previous theoretical accounts have proposed a differential role of slow-wave sleep (SWS), rapid-eye-movement (REM) sleep, and stage N2 sleep for different types of memories. For example the dual process hypothesis proposes that SWS is beneficial for declarative memories, whereas REM sleep is important for consolidation of non-declarative, procedural and emotional memories. In fact, numerous recent studies do provide further support for the crucial role of SWS (or non-REM sleep) in declarative memory consolidation. However, recent evidence for the benefit of REM sleep for non-declarative memories is rather scarce. In contrast, several recent studies have related consolidation of procedural memories (and some also emotional memories) to SWS (or non-REM sleep)-dependent consolidation processes. We will review this recent evidence, and propose future research questions to advance our understanding of the role of different sleep stages for memory consolidation.

  5. Daytime REM Sleep in Parkinson’s Disease

    PubMed Central

    Bliwise, Donald L.; Trotti, Lynn Marie; Juncos, Jorge J.; Factor, Stewart A.; Freeman, Alan; Rye, David B.

    2012-01-01

    Background Previous studies have demonstrated both clinical and neurochemical similarities between Parkinson’s disease (PD) and narcolepsy. The intrusion of REM sleep into the daytime remains a cardinal feature of narcolepsy, but the importance of these intrusions in PD remains unclear. In this study we examined REM sleep during daytime Maintenance of Wakefulness Testing (MWT) in PD patients. Methods Patients spent 2 consecutive nights and days in the sleep laboratory. During the daytime, we employed a modified MWT procedure in which each daytime nap opportunity (4 per day) was extended to 40 minutes, regardless of whether the patient was able to sleep or how much the patient slept. We examined each nap opportunity for the presence of REM sleep and time to fall asleep. Results Eleven of 63 PD patients studied showed 2 or more REM episodes and 10 showed 1 REM episode on their daytime MWTs. Nocturnal sleep characteristics and sleep disorders were unrelated to the presence of daytime REM sleep, however, patients with daytime REM were significantly sleepier during the daytime than those patients without REM. Demographic and clinical variables, including Unified Parkinson’s Disease Rating Scale motor scores and levodopa dose equivalents, were unrelated to the presence of REM sleep. Conclusions A sizeable proportion of PD patients demonstrated REM sleep and daytime sleep tendency during daytime nap testing. These data confirm similarities in REM intrusions between narcolepsy and PD, perhaps suggesting parallel neurodegenerative conditions of hypocretin deficiency. PMID:22939103

  6. Diagnostic Value of Isolated Mentalis Versus Mentalis Plus Upper Limb Electromyography in Idiopathic REM Sleep Behavior Disorder Patients Eventually Developing a Neurodegenerative Syndrome.

    PubMed

    Fernández-Arcos, Ana; Iranzo, Alex; Serradell, Mónica; Gaig, Carles; Guaita, Marc; Salamero, Manel; Santamaria, Joan

    2017-04-01

    To compare two electromyographic (EMG) montages, isolated mentalis muscle versus mentalis in combination with upper limb muscles in the baseline diagnostic video-polysomnography (V-PSG) of patients with idiopathic REM sleep behaviors disorder (IRBD) who eventually were diagnosed with a clinically defined neurodegenerative syndrome. Forty-nine patients were included. At baseline, diagnosis of RBD was based on a typical history of dream enactment behaviors plus V-PSG showing REM sleep with qualitative increased EMG activity and/or abnormal behaviors. Quantification of EMG activity (tonic, phasic and "any") in the mentalis and upper limb muscles (biceps brachii-BB, n = 36 or flexor digitorum superficialis-FDS, n = 13) was performed manually and compared with published cut-offs. Nine (18.4%) patients had either tonic or phasic EMG below the cut-offs for the isolated mentalis and four of them (11.1 %) also had values below the cut-off for the mentalis combined with BB. All 13 patients recorded with the FDS were above the mentalis combined with FDS cut-off. For the diagnosis of IRBD, sensitivity of isolated mentalis was 81.6% and of the combination of mentalis plus upper limb muscles was 91.8% (p = .03). Audiovisual analysis showed abnormal REM sleep behaviors in all nine patients with values below the cut-offs. Quantification of EMG activity in the upper limbs combined with the mentalis increases the ability to diagnose IRBD when compared with the isolated measurement of the mentalis. Detection of typical abnormal behaviors during REM sleep with audiovisual analysis is essential for the diagnosis of IRBD in patients with EMG values below the published cut-offs. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  7. Obstructive Sleep Apnea during REM Sleep and Cardiovascular Disease.

    PubMed

    Aurora, R Nisha; Crainiceanu, Ciprian; Gottlieb, Daniel J; Kim, Ji Soo; Punjabi, Naresh M

    2018-03-01

    Obstructive sleep apnea (OSA) during REM sleep is a common disorder. Data on whether OSA that occurs predominantly during REM sleep is associated with health outcomes are limited. The present study examined the association between OSA during REM sleep and a composite cardiovascular endpoint in a community sample with and without prevalent cardiovascular disease. Full-montage home polysomnography was conducted as part of the Sleep Heart Health Study. The study cohort was followed for an average of 9.5 years, during which time cardiovascular events were assessed. Only participants with a non-REM apnea-hypopnea index (AHI) of less than 5 events/h were included. A composite cardiovascular endpoint was determined as the occurrence of nonfatal or fatal events, including myocardial infarction, coronary artery revascularization, congestive heart failure, and stroke. Proportional hazards regression was used to derive the adjusted hazards ratios for the composite cardiovascular endpoint. The sample consisted of 3,265 subjects with a non-REM AHI of less than 5.0 events/h. Using a REM AHI of less than 5.0 events/h as the reference group (n = 1,758), the adjusted hazards ratios for the composite cardiovascular endpoint in those with severe REM OSA (≥30 events/h; n = 180) was 1.35 (95% confidence interval, 0.98-1.85). Stratified analyses demonstrated that the association was most notable in those with prevalent cardiovascular disease and severe OSA during REM sleep with an adjusted hazards ratio of 2.56 (95% confidence interval, 1.46-4.47). Severe OSA that occurs primarily during REM sleep is associated with higher incidence of a composite cardiovascular endpoint, but in only those with prevalent cardiovascular disease.

  8. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning.

    PubMed

    Watts, Alain; Gritton, Howard J; Sweigart, Jamie; Poe, Gina R

    2012-09-26

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.

  9. Antidepressant Suppression of Non-REM Sleep Spindles and REM Sleep Impairs Hippocampus-Dependent Learning While Augmenting Striatum-Dependent Learning

    PubMed Central

    Watts, Alain; Gritton, Howard J.; Sweigart, Jamie

    2012-01-01

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State–performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS. PMID:23015432

  10. Increased Reward-Related Behaviors during Sleep and Wakefulness in Sleepwalking and Idiopathic Nightmares.

    PubMed

    Perogamvros, Lampros; Aberg, Kristoffer; Gex-Fabry, Marianne; Perrig, Stephen; Cloninger, C Robert; Schwartz, Sophie

    2015-01-01

    We previously suggested that abnormal sleep behaviors, i.e., as found in parasomnias, may often be the expression of increased activity of the reward system during sleep. Because nightmares and sleepwalking predominate during REM and NREM sleep respectively, we tested here whether exploratory excitability, a waking personality trait reflecting high activity within the mesolimbic dopaminergic (ML-DA) system, may be associated with specific changes in REM and NREM sleep patterns in these two sleep disorders. Twenty-four unmedicated patients with parasomnia (12 with chronic sleepwalking and 12 with idiopathic nightmares) and no psychiatric comorbidities were studied. Each patient spent one night of sleep monitored by polysomnography. The Temperament and Character Inventory (TCI) was administered to all patients and healthy controls from the Geneva population (n = 293). Sleepwalkers were more anxious than patients with idiopathic nightmares (Spielberger Trait anxiety/STAI-T), but the patient groups did not differ on any personality dimension as estimated by the TCI. Compared to controls, parasomnia patients (sleepwalkers together with patients with idiopathic nightmares) scored higher on the Novelty Seeking (NS) TCI scale and in particular on the exploratory excitability/curiosity (NS1) subscale, and lower on the Self-directedness (SD) TCI scale, suggesting a general increase in reward sensitivity and impulsivity. Furthermore, parasomnia patients tended to worry about social separation persistently, as indicated by greater anticipatory worry (HA1) and dependence on social attachment (RD3). Moreover, exploratory excitability (NS1) correlated positively with the severity of parasomnia (i.e., the frequency of self-reported occurrences of nightmares and sleepwalking), and with time spent in REM sleep in patients with nightmares. These results suggest that patients with parasomnia might share common waking personality traits associated to reward-related brain functions

  11. Pramipexole in the treatment of REM sleep behaviour disorder: A critical review.

    PubMed

    Tan, Shian Ming; Wan, Yi Min

    2016-09-30

    While widely accepted as a first-line treatment for rapid eye movement sleep (REM) behaviour disorder, clonazepam (CNZP) has side effects that limit its applicability. Pramipexole is a possible alternative, but limited literature on its effectiveness exists. This review aims to summarize the available data on the use of pramipexole in REM sleep behaviour disorder. A systematic search of major databases was conducted to look for published and on-going trials. This search yielded a total of five articles, all of which are observational in nature. Factors associated with effectiveness include low doses (less than 1.5mg/day) and idiopathic rapid eye movement sleep behaviour disorder/absence of neurodegenerative disease. Overall, the evidence is inconclusive. This is due to the lack of randomised controlled trials and the challenges in interpreting polysomgraphy findings in rapid eye movement sleep behaviour disorder. Suggestions are given on how future trials evaluating pramipexole treatment in rapid eye movement sleep behaviour disorder could overcome current methodological issues in extant literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Mechanisms and models of REM sleep control.

    PubMed

    McCarley, R W

    2004-07-01

    The first sections of this paper survey the history and recent developments relevant to the major neurotransmitters and neuromodulators involved in REM sleep control. The last portion of this paper proposes a structural model of cellular interaction that produces the REM sleep cycle, and constitutes a further revision of the reciprocal interaction model This paper proposes seven criteria to define a causal role in REM sleep control for putative neuro-transmitters/modulators. The principal criteria are measurements during behavioral state changes of the extracellular concentrations of the putative substances, and electrophysiological recording of their neuronal source. A cautionary note is that, while pharmacological manipulations are suggestive, they alone do not provide definitive causal evidence. The extensive body of in vivo and in vitro evidence supporting cholinergic promotion of REM sleep via LDT/PPT neuronal activity is surveyed. An interesting question raised by some studies is whether cholinergic influences in rat are less puissant than in cat. At least some of the apparent lesser REM-inducing effect of carbachol in the rat may be due to incomplete control of circadian influences; almost all experiments have been run only in the daytime, inactive period, when REM sleep is more prominent, rather than in the REM-sparse nighttime inactive period. Monoaminergic inhibition of cholinergic neurons, once thought to be the most shaky proposal of the reciprocal interaction model, now enjoys considerable support from both in vivo and in vitro data. However, the observed time course of monoaminergic neurons, their "turning off" discharge activity as REM sleep is approached and entered would seem to be difficult to produce from feedback inhibition, as originally postulated by the reciprocal interaction model. New data suggest the possibility that GABAergic inhibition of Locus Coeruleus and Dorsal Raphe monoaminergic neurons may account for the "REM-off" neurons turning

  13. Auditory Verbal Experience and Agency in Waking, Sleep Onset, REM, and Non-REM Sleep.

    PubMed

    Speth, Jana; Harley, Trevor A; Speth, Clemens

    2017-04-01

    We present one of the first quantitative studies on auditory verbal experiences ("hearing voices") and auditory verbal agency (inner speech, and specifically "talking to (imaginary) voices or characters") in healthy participants across states of consciousness. Tools of quantitative linguistic analysis were used to measure participants' implicit knowledge of auditory verbal experiences (VE) and auditory verbal agencies (VA), displayed in mentation reports from four different states. Analysis was conducted on a total of 569 mentation reports from rapid eye movement (REM) sleep, non-REM sleep, sleep onset, and waking. Physiology was controlled with the nightcap sleep-wake mentation monitoring system. Sleep-onset hallucinations, traditionally at the focus of scientific attention on auditory verbal hallucinations, showed the lowest degree of VE and VA, whereas REM sleep showed the highest degrees. Degrees of different linguistic-pragmatic aspects of VE and VA likewise depend on the physiological states. The quantity and pragmatics of VE and VA are a function of the physiologically distinct state of consciousness in which they are conceived. Copyright © 2016 Cognitive Science Society, Inc.

  14. From bench to bed: putative animal models of REM sleep behavior disorder (RBD).

    PubMed

    Krenzer, Martina; Lu, Jun; Mayer, Geert; Oertel, Wolfgang

    2013-04-01

    REM behavior disorder (RBD) is a parasomnia characterized by REM sleep without atonia, leading to abnormal and potentially injurious behavior during REM sleep. It is considered one of the most specific predictors of neurodegenerative disorders, such as Parkinson's disease. In this paper, we provide an overview of animal models contributing to our current understanding of REM-associated atonia, and, as a consequence, the pathophysiology of RBD. The generator of REM-associated atonia is located in glutamatergic neurons of the pontine sublaterodorsal nucleus (SLD), as shown in cats, rats and mice. These findings are supported by clinical cases of patients with lesions of the homologous structure in humans. Glutamatergic SLD neurons, presumably in conjunction with others, project to (a) the ventromedial medulla, where they either directly target inhibitory interneurons to alpha motor neurons or are relayed, and (b) the spinal cord directly. At the spinal level, alpha motor neurons are inhibited by GABAergic and glycinergic interneurons. Our current understanding is that lesions of the glutamatergic SLD are the key factor for REM sleep behavior disorder. However, open questions remain, e.g. other features of RBD (such as the typically aggressive dream content) or the frequent progression from idiopathic RBD to neurodegenerative disorders, to name only a few. In order to elucidate these questions, a constant interaction between basic and clinical researchers is required, which might, ultimately, create an early therapeutic window for neurodegenerative disorders.

  15. REM Sleep Behavioral Events and Dreaming

    PubMed Central

    Muntean, Maria-Lucia; Trenkwalder, Claudia; Walters, Arthur S.; Mollenhauer, Brit; Sixel-Döring, Friederike

    2015-01-01

    Study Objectives: To clarify whether motor behaviors and/ or vocalizations during REM sleep, which do not yet fulfill diagnostic criteria for REM sleep behavior disorder (RBD) and were defined as REM sleep behavioral events (RBEs), correspond to dream enactments. Methods: 13 subjects (10 patients with Parkinson disease [PD] and 3 healthy controls) originally identified with RBE in a prospective study (DeNoPa cohort) were reinvestigated 2 years later with 2 nights of video-supported polysomnography (vPSG). The first night was used for sleep parameter analysis. During the 2nd night, subjects were awakened and questioned for dream recall and dream content when purposeful motor behaviors and/or vocalizations became evident during REM sleep. REM sleep without atonia (RWA) was analyzed on chin EMG and the cutoff set at 18.2% as specific for RBD. Results: At the time of this investigation 9 of 13 subjects with previous RBE were identified with RBD based upon clinical and EMG criteria. All recalled vivid dreams, and 7 subjects were able to describe dream content in detail. Four of 13 subjects with RBE showed RWA values below cutoff values for RBD. Three of these 4 subjects recalled having non-threatening dreams, and 2 (of these 3) were able to describe these dreams in detail. Conclusion: RBE with RWA below the RBD defining criteria correlate to dreaming in this selected cohort. There is evidence that RBEs are a precursor to RBD. Citation: Muntean ML, Trenkwalder C, Walters AS, Mollenhauer B, Sixel-Döring F. REM sleep behavioral events and dreaming. J Clin Sleep Med 2015;11(5):537–541. PMID:25665694

  16. Posttraining Increases in REM Sleep Intensity Implicate REM Sleep in Memory Processing and Provide a Biological Marker of Learning Potential

    ERIC Educational Resources Information Center

    Nader, Rebecca S.; Smith, Carlyle T.; Nixon, Margaret R.

    2004-01-01

    Posttraining rapid eye movement (REM) sleep has been reported to be important for efficient memory consolidation. The present results demonstrate increases in the intensity of REM sleep during the night of sleep following cognitive procedural/implicit task acquisition. These REM increases manifest as increases in total number of rapid eye…

  17. Coupled Flip-Flop Model for REM Sleep Regulation in the Rat

    PubMed Central

    Dunmyre, Justin R.; Mashour, George A.; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that

  18. Coupled flip-flop model for REM sleep regulation in the rat.

    PubMed

    Dunmyre, Justin R; Mashour, George A; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that

  19. Visual short-term memory deficits in REM sleep behaviour disorder mirror those in Parkinson's disease.

    PubMed

    Rolinski, Michal; Zokaei, Nahid; Baig, Fahd; Giehl, Kathrin; Quinnell, Timothy; Zaiwalla, Zenobia; Mackay, Clare E; Husain, Masud; Hu, Michele T M

    2016-01-01

    Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson's disease. Here we examined visual short-term memory deficits--long associated with Parkinson's disease--in patients with REM sleep behaviour disorder without Parkinson's disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson's disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson's disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson's disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson's disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of 'prodromal' Parkinson's disease that might be useful in tracking disease progression and for disease-modifying intervention trials. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  20. Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep.

    PubMed

    Shouse, M N; Siegel, J M

    1992-01-31

    Transection, lesion and unit recording studies have localized rapid eye movement (REM) sleep mechanisms to the pons. Recent work has emphasized the role of pontine cholinergic cells, especially those of the pedunculopontine tegmentum (PPT). The present study differentiated REM sleep deficits associated with lesions of the PPT from other pontine regions implicated in REM sleep generation, including those with predominantly cholinergic vs non-cholinergic cells. Twelve hour polygraphic recordings were obtained in 18 cats before and 1-2 weeks after bilateral electrolytic or radio frequency lesions of either: (1) PPT, which contains the dorsolateral pontine cholinergic cell column; (2) laterodorsal tegmental nucleus (LDT), which contains the dorsomedial pontine cholinergic cell column; (3) locus ceruleus (LC), which contains mostly noradrenergic cells; or (4) subceruleus (LC alpha, peri-LC alpha and the lateral tegmental field), which also contains predominantly noncholinergic cells. There were three main findings: (i) Only lesions of PPT and subceruleus significantly affected REM sleep time. These lesions produced comparable reductions in REM sleep time but influenced REM sleep components quite differently: (ii) PPT lesions, estimated to damage 90 +/- 4% of cholinergic cells, reduced the number of REM sleep entrances and phasic events, including ponto-geniculooccipital (PGO) spikes and rapid eye movements (REMs), but did not prevent complete atonia during REM sleep: (iii) Subceruleus lesions eliminated atonia during REM sleep. Mobility appeared to arouse the cat prematurely from REM sleep and may explain the brief duration of REM sleep epochs seen exclusively in this group. Despite the reduced amount of REM sleep, the total number of PGO spikes and REM sleep entrances increased over baseline values. Collectively, the results distinguish pontine loci regulating phasic events vs atonia. PPT lesions reduced phasic events, whereas subceruleus lesions created REM sleep

  1. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia

    PubMed Central

    Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J.

    2015-01-01

    The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated. PMID:26678391

  2. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia.

    PubMed

    Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J

    2015-01-01

    The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated.

  3. REM Sleep Behavioral Events and Dreaming.

    PubMed

    Muntean, Maria-Lucia; Trenkwalder, Claudia; Walters, Arthur S; Mollenhauer, Brit; Sixel-Döring, Friederike

    2015-04-15

    To clarify whether motor behaviors and/ or vocalizations during REM sleep, which do not yet fulfill diagnostic criteria for REM sleep behavior disorder (RBD) and were defined as REM sleep behavioral events (RBEs), correspond to dream enactments. 13 subjects (10 patients with Parkinson disease [PD] and 3 healthy controls) originally identified with RBE in a prospective study (DeNoPa cohort) were reinvestigated 2 years later with 2 nights of video-supported polysomnography (vPSG). The first night was used for sleep parameter analysis. During the 2nd night, subjects were awakened and questioned for dream recall and dream content when purposeful motor behaviors and/or vocalizations became evident during REM sleep. REM sleep without atonia (RWA) was analyzed on chin EMG and the cutoff set at 18.2% as specific for RBD. At the time of this investigation 9 of 13 subjects with previous RBE were identified with RBD based upon clinical and EMG criteria. All recalled vivid dreams, and 7 subjects were able to describe dream content in detail. Four of 13 subjects with RBE showed RWA values below cutoff values for RBD. Three of these 4 subjects recalled having non-threatening dreams, and 2 (of these 3) were able to describe these dreams in detail. RBE with RWA below the RBD defining criteria correlate to dreaming in this selected cohort. There is evidence that RBEs are a precursor to RBD. © 2015 American Academy of Sleep Medicine.

  4. REM sleep rescues learning from interference

    PubMed Central

    McDevitt, Elizabeth A.; Duggan, Katherine A.; Mednick, Sara C.

    2015-01-01

    Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost. PMID:25498222

  5. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation

    PubMed Central

    Grace, Kevin P.; Horner, Richard L.

    2015-01-01

    Rapid eye movement (REM) sleep – characterized by vivid dreaming, motor paralysis, and heightened neural activity – is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the “pontine REM sleep generator” by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832

  6. Diagnostic Thresholds for Quantitative REM Sleep Phasic Burst Duration, Phasic and Tonic Muscle Activity, and REM Atonia Index in REM Sleep Behavior Disorder with and without Comorbid Obstructive Sleep Apnea

    PubMed Central

    McCarter, Stuart J.; St. Louis, Erik K.; Duwell, Ethan J.; Timm, Paul C.; Sandness, David J.; Boeve, Bradley F.; Silber, Michael H.

    2014-01-01

    Objectives: We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. Design: We visually analyzed RSWA phasic burst durations, phasic, “any,” and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. Setting: N/A. Participants: Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. Interventions: N/A. Measurements and Results: All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, “any”) cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. Conclusions: This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. Citation: McCarter SJ, St. Louis EK, Duwell EJ, Timm PC

  7. Changes in EEG activity and hypothalamic temperature as indices for non-REM sleep to REM sleep transitions.

    PubMed

    Capitani, Paolo; Cerri, Matteo; Amici, Roberto; Baracchi, Francesca; Jones, Christine Ann; Luppi, Marco; Perez, Emanuele; Parmeggiani, Pier Luigi; Zamboni, Giovanni

    A shift of physiological regulations from a homeostatic to a non-homeostatic modality characterizes the passage from non-NREM sleep (NREMS) to REM sleep (REMS). In the rat, an EEG index which allows the automatic scoring of transitions from NREMS to REMS has been proposed: the NREMS to REMS transition indicator value, NIV [J.H. Benington et al., Sleep 17 (1994) 28-36]. However, such transitions are not always followed by a REMS episode, but are often followed by an awakening. In the present study, the relationship between changes in EEG activity and hypothalamic temperature (Thy), taken as an index of autonomic activity, was studied within a window consisting of the 60s which precedes a state change from a consolidated NREMS episode. Furthermore, the probability that a transition would lead to REMS or wake was analysed. The results showed that, within this time window, both a modified NIV (NIV(60)) and the difference between Thy at the limits of the window (Thy(D)) were related to the probability of REMS onset. Both the relationship between the indices and the probability of REMS onset was sigmoid, the latter of which saturated at a probability level around 50-60%. The efficacy for the prediction of successful transitions from NREMS to REMS found using Thy(D) as an index supports the view that such a transition is a dynamic process where the physiological risk to enter REMS is weighted at a central level.

  8. Morning REM Sleep Naps Facilitate Broad Access to Emotional Semantic Networks

    PubMed Central

    Carr, Michelle; Nielsen, Tore

    2015-01-01

    Study Objectives: The goals of the study were to assess semantic priming to emotion and nonemotion cue words using a novel measure of associational breadth for participants who either took rapid eye movement (REM) or nonrapid eye movement (NREM) naps or who remained awake, and to assess the relation of priming to REM sleep consolidation and REM sleep inertia effects. Design: The associational breadth task was applied in both a priming condition, where cue words were signaled to be memorized prior to sleep (primed), and a nonpriming condition, where cue words were not memorized (nonprimed). Cue words were either emotional (positive, negative) or nonemotional. Participants were randomly assigned to either an awake (WAKE) or a sleep condition, which was subsequently split into NREM or REM groups depending on stage at awakening. Setting: Hospital-based sleep laboratory. Participants: Fifty-eight healthy participants (22 male) ages 18 to 35 y (mean age = 23.3 ± 4.08 y). Measurements and Results: The REM group scored higher than the NREM or WAKE groups on primed, but not nonprimed emotional cue words; the effect was stronger for positive than for negative cue words. However, REM time and percent correlated negatively with degree of emotional priming. Priming occurred for REM awakenings but not for NREM awakenings, even when the latter sleep episodes contained some REM sleep. Conclusions: Associational breadth may be selectively consolidated during REM sleep for stimuli that have been tagged as important for future memory retrieval. That priming decreased with REM time and was higher only for REM sleep awakenings is consistent with two explanatory REM sleep processes: REM sleep consolidation serving emotional downregulation and REM sleep inertia. Citation: Carr M, Nielsen T. Morning REM sleep naps facilitate broad access to emotional semantic networks. SLEEP 2015;38(3):433–443. PMID:25409100

  9. Development of REM sleep drive and clinical implications

    PubMed Central

    Kobayashi, T.; Good, C.; Mamiya, K.; Skinner, R.D.; Garcia-Rill, E.

    2015-01-01

    REM sleep in the human declines from about 50% of total sleep time (~8 hours) in the newborn to about 15% of total sleep time (~1 hour) in the adult, and this decrease takes place mainly between birth and the end of puberty. We hypothesize that, if this developmental decrease in REM drive does not occur, lifelong increases in REM sleep drive may ensue. In the rat, the developmental decrease in REM sleep occurs between 10 and 30 days after birth, declining from over 70% of total sleep time in the newborn to the adult level of about 15% of sleep time during this period. Rats aged 12–21 days were anaesthetized with Ketamine, decapitated and brainstem slices cut for intracellular recordings. We found that excitatory responses of pedunculopontine nucleus (PPN) neurons to NMDA decrease, while responses to kainic acid increase, over this critical period. Serotonergic type 1 agonists have increasing inhibitory responses, while serotonergic type 2 agonists do not change, during this developmental period. The results suggest that, as PPN neurons develop, they are increasingly activated by kainic acid and increasingly inhibited by serotonergic type 1 receptors. These processes may be related to the developmental decrease in REM sleep. Developmental disturbances in each of these systems could induce differential increases in REM sleep drive, accounting for the post-pubertal onset of a number of different disorders manifesting increases in REM sleep drive. Examination of modulation by PPN projections to ascending and descending targets revealed the presence of common signals modulating both ascending arousal-related functions and descending postural/locomotor-related functions. PMID:14527968

  10. Electroencephalographic findings related with mild cognitive impairment in idiopathic rapid eye movement sleep behavior disorder.

    PubMed

    Sasai, Taeko; Matsuura, Masato; Inoue, Yuichi

    2013-12-01

    Mild cognitive impairment (MCI) and electroencephalographic (EEG) slowing have been reported as common findings of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) and α-synucleinopathies. The objective of this study is to clarify the relation between MCI and physiological markers in iRBD. Cross-sectional study. Yoyogi Sleep Disorder Center. Thirty-one patients with iRBD including 17 younger patients with iRBD (younger than 70 y) and 17 control patients for the younger patients with iRBD. N/A. Montreal Cognitive Assessment (MoCA) and n-polysomnogram (PSG) were conducted of all participants. In patients with iRBD, the factors associated with MCI were explored among parameters of REM sleep without atonia (RWA), score of Sniffin' Sticks Test (threshold-discrimination-identification [TDI] score), RBD morbidity, and RBD severity evaluated with the Japanese version of the RBD questionnaire (RBDQ-JP). The younger iRBD group showed significantly lower alpha power during wake and lower MoCA score than the age-matched control group. MCI was detected in 13 of 17 patients (76.5%) on MoCA in this group. Among patients wtih iRBD, the MoCA score negatively correlated with age, proportion of slow wave sleep, TDI score, and EEG spectral power. Multiple regression analysis provided the following equation: MoCA score = 50.871-0.116*age -5.307*log (δ power during REM sleep) + 0.086*TDI score (R² = 0.598, P < 0.01). The standardized partial regression coefficients were -0.558 for age, -0.491 for log (δ power during REM sleep), and 0.357 for TDI score (F = 9.900, P < 0.001). Electroencephalographic slowing, especially during rapid eye movement sleep and olfactory dysfunction, was revealed to be associated with cognitive decline in idiopathic rapid eye movement sleep behavior disorder.

  11. Prodromal Parkinson's disease--using REM sleep behavior disorder as a window.

    PubMed

    Postuma, Ronald B

    2014-01-01

    REM sleep behavior disorder (RBD) is characterized by loss of REM atonia of sleep, such that patients act out the contents of their dreams. Perhaps the most important facet of idiopathic RBD is that it is a powerful prodromal marker of Parkinson's disease (PD) and other synucleinopathies. Several prospective studies have now established that patients with idiopathic RBD have up to an 80% risk of developing a defined neurodegenerative synucleinopathy. This has profound implications for understanding and treating early disease. First, the extremely high risk and long latency/time to intervene make RBD patients the ideal candidates for neuroprotective therapy against synucleinopathy. Second, RBD patients can be used as a 'test lab' to assess other potential prodromal predictors of PD, which could be applied to the general population in future large-scale screening programs. Third, assessing epidemiology of RBD allows us to study the epidemiology of PD and dementia with Lewy bodies 10-15 years earlier, reducing bias and opening new hypotheses as to the mechanism of action of selected risk factors. Finally, by prospectively observing RBD patients as they transition to full neurodegenerative synucleinopathy, one has an unprecedented window in which to directly observe evolution of PD from its prodromal stages. The evidence for RBD as a marker of prodromal PD and all these implications will be discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Processing of a Subliminal Rebus during Sleep: Idiosyncratic Primary versus Secondary Process Associations upon Awakening from REM- versus Non-REM-Sleep

    PubMed Central

    Steinig, Jana; Bazan, Ariane; Happe, Svenja; Antonetti, Sarah; Shevrin, Howard

    2017-01-01

    Primary and secondary processes are the foundational axes of the Freudian mental apparatus: one horizontally as a tendency to associate, the primary process, and one vertically as the ability for perspective taking, the secondary process. Primary process mentation is not only supposed to be dominant in the unconscious but also, for example, in dreams. The present study tests the hypothesis that the mental activity during REM-sleep has more characteristics of the primary process, while during non-REM-sleep more secondary process operations take place. Because the solving of a rebus requires the ability to non-contexually condensate the literal reading of single stimuli into a new one, rebus solving is a primary process operation by excellence. In a replication of the dream-rebus study of Shevrin and Fisher (1967), a rebus, which consisted of an image of a comb (German: “Kamm”) and an image of a raft (German: “Floß”), resulting in the German rebus word “kampflos” (Engl.: without a struggle), was flashed subliminally (at 1 ms) to 20 participants before going to sleep. Upon consecutive awakenings participants were asked for a dream report, free associations and an image description. Based on objective association norms, there were significantly more conceptual associations referring to Kamm and Floß indexing secondary process mentation when subjects were awakened from non-REM sleep as compared to REM-awakenings. There were not significantly more rebus associations referring to kampflos indexing primary process mentation when awakened from REM-sleep as compared to non-REM awakenings. However, when the associations were scored on the basis of each subject’s individual norms, there was a rebus effect with more idiosyncratic rebus associations in awakenings after REM than after non-REM-sleep. Our results support the general idea that REM-sleep is characterized by primary process thinking, while non-REM-sleep mentation follows the rules of the secondary

  13. Percentage of REM Sleep is Associated with Overnight Change in Leptin

    PubMed Central

    Olson, Christy A.; Hamilton, Nancy A.; Somers, Virend K.

    2016-01-01

    Sleep contributes importantly to energy homeostasis, and may impact hormones regulating appetite, such as leptin, an adipocyte derived hormone. There is increasing evidence that sleep duration, and reduced REM sleep, are linked to obesity. Leptin has central neural effects beyond modulation of appetite alone. As sleep is not a unifrom process, interactions between leptin and sleep stages including REM sleep may play a role in the relationship between sleep and obesity. This study examined the relationship between serum leptin and REM sleep in a sample of healthy adults. Participants were 58 healthy adults who underwent polysomnography. Leptin was measured before and after sleep. We hypothesized that lower percentage of REM sleep would be related to lower leptin levels during sleep. The relationship between percentage of REM sleep and leptin was analyzed using hierarchical linear regression. Increased percentage of REM sleep was related to a greater reduction in leptin during sleep even when controlling for age, gender, percent body fat and total sleep time. A greater percentage of REM sleep was accompanied by more marked reductions in leptin. Studies examining the effects of selective REM sleep deprivation on leptin levels, and hence on energy homeostasis in humans, are needed. PMID:26919408

  14. REM Sleep at its Core – Circuits, Neurotransmitters, and Pathophysiology

    PubMed Central

    Fraigne, Jimmy J.; Torontali, Zoltan A.; Snow, Matthew B.; Peever, John H.

    2015-01-01

    Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD. PMID:26074874

  15. Effect of voluntary attention on auditory processing during REM sleep.

    PubMed

    Takahara, Madoka; Nittono, Hiroshi; Hori, Tadao

    2006-07-01

    The study investigates whether there is an effect of voluntary attention to external auditory stimuli during rapid eye movement (REM) sleep in humans by measuring event-related potentials (ERPs). Using a 2-tone auditory-discrimination task, a standard 1000-Hz tone and a deviant 2000-Hz tone were presented to participants when awake and during sleep. In the ATTENTIVE condition, participants were requested to detect the deviant stimuli during their sleep whenever possible. In the PASSIVE sleep condition, participants were only exposed to the tones. ERPs were measured during REM sleep and compared between the 2 conditions. All experiments were conducted at the sleep laboratory of Hiroshima University. Twenty healthy university student volunteers. N/A. In the tonic period of REM sleep (the period without REM), P200 and P400 were elicited by deviant stimuli, with scalp distributions maximal at central and occipital sites, respectively. The P400 in REM sleep showed larger amplitudes in the ATTENTIVE condition, whereas the P200 amplitude did not differ between the 2 conditions. No effects on ERPs due to attention were observed during stage 2 sleep. The instruction to pay attention to external stimuli during REM sleep influenced the late positive potentials. Thus electrophysiologic evidence of voluntary attention during REM sleep has been demonstrated.

  16. Association between Glucose Metabolism and Sleep-disordered Breathing during REM Sleep.

    PubMed

    Chami, Hassan A; Gottlieb, Daniel J; Redline, Susan; Punjabi, Naresh M

    2015-11-01

    Sleep-disordered breathing (SDB) has been associated with impaired glucose metabolism. It is possible that the association between SDB and glucose metabolism is distinct for non-REM versus REM sleep because of differences in sleep-state-dependent sympathetic activation and/or degree of hypoxemia. To characterize the association between REM-related SDB, glucose intolerance, and insulin resistance in a community-based sample. A cross-sectional analysis that included 3,310 participants from the Sleep Heart Health Study was undertaken (53% female; mean age, 66.1 yr). Full montage home-polysomnography and fasting glucose were available on all participants. SDB severity during REM and non-REM sleep was quantified using the apnea-hypopnea index in REM (AHIREM) and non-REM sleep (AHINREM), respectively. Fasting and 2-hour post-challenge glucose levels were assessed during a glucose tolerance test (n = 2,264). The homeostatic model assessment index for insulin resistance (HOMA-IR) was calculated (n = 1,543). Linear regression was used to assess the associations of AHIREM and AHINREM with fasting and post-prandial glucose levels and HOMA-IR. AHIREM and AHINREM were associated with fasting glycemia, post-prandial glucose levels, and HOMA-IR in models that adjusted for age, sex, race, and site. However, with additional adjustment for body mass index, waist circumference, and sleep duration, AHIREM was only associated with HOMA-IR (β = 0.04; 95% CI, 0.1-0.07; P = 0.01), whereas AHINREM was only associated with fasting (β = 0.93; 95% CI, 0.14-1.72; P = 0.02) and post-prandial glucose levels (β = 3.0; 95% CI, 0.5-5.5; P = 0.02). AHIREM is associated with insulin resistance but not with fasting glycemia or glucose intolerance.

  17. [Historical overview of REM sleep behavior disorder in relation to its pathophysiology].

    PubMed

    Tachibana, Naoko

    2009-05-01

    Rapid eye movement (REM) sleep behavior disorder (RBD), which is characterized by dream-enacted, sometimes violent and aggressive, behaviors was firstly reported by Schenck and his colleagues in 1986; thereafter, it was incorporated as parasomnia in the International Classification of Sleep Disorders 1st edition (ICSD-1). The polysomnographical hallmarks of RBD include intermittent/sustained loss of the skeletal muscle atonia of REM sleep (REM sleep without atonia [RWA]); further, this finding has been mandatory in the diagnostic criterion (requiring polysomnographic [PSG] monitoring) in the ICSD-2 in 2005. The animal equivalent of RBD was previously described by Jouvet's and Morrison's groups, dated back to 1965, when Jouvet's group firstly created experimentally lesioned cats (in the bilateral pontine tegmentum areas) presenting with "oneiric behaviors". In 1970s Hishikawa's group had also described peculiar sleep state in alcoholics and other subjects of drug withdrawal with rapid eye movements and tonically increased chin muscle activity (reffered to as "Stage 1-REM with tonic EMG" [Stage 1-REM]). It was difficult to determine from the polysomnographical features whether Stage 1-REM was REM sleep or not, as this state did not preserve proper cyclic appearance of REM sleep. They also reported Stage 1-REM in patients with Shy-Drager syndrome in 1981. The latter finding of Hishikawa's group, together with RBD observed in multiple system atrophy (MSA) reported by other groups, could be best explained by the experimental cat model because of its presumed extensive brainstem pathology. However, neurophysiology of withdrawal states has not been well understood; therefore, Stage 1-REM should be reappraised from new perspectives. After 1990, more extensive studies on RBD revealed that about half of RBD cases were associated with neurological disorders, especially neurodegenerative diseases pathologically known as syncleiopathies (Parkinson disease [PD], dementia with

  18. REM Sleep Behavior Disorder: Updated Review of the Core Features, the RBD-Neurodegenerative Disease Association, Evolving Concepts, Controversies, and Future Directions

    PubMed Central

    Boeve, Bradley F.

    2010-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia manifested by vivid, often frightening dreams associated with simple or complex motor behavior during REM sleep. Patients appear to “act out their dreams,” in which the exhibited behaviors mirror the content of the dreams, and the dream content often involves a chasing or attacking theme. The polysomnographic features of RBD include increased electromyographic tone +/- dream enactment behavior during REM sleep. Management with counseling and pharmacologic measures is usually straight-forward and effective. In this review, the terminology, clinical and polysomnographic features, demographic and epidemiologic features, diagnostic criteria, differential diagnosis, and management strategies are discussed. Recent data on the suspected pathophysiologic mechanisms of RBD are also reviewed. The literature and our institutional experience on RBD are next discussed, with an emphasis on the RBD-neurodegenerative disease association and particularly the RBD-synucleinopathy association. Several issues relating to evolving concepts, controversies, and future directions are then reviewed, with an emphasis on idiopathic RBD representing an early feature of a neurodegenerative disease and particularly an evolving synucleinopathy. Planning for future therapies that impact patients with idiopathic RBD is reviewed in detail. PMID:20146689

  19. Cold Exposure and Sleep in the Rat: REM Sleep Homeostasis and Body Size

    PubMed Central

    Amici, Roberto; Cerri, Matteo; Ocampo-Garcés, Adrian; Baracchi, Francesca; Dentico, Daniela; Jones, Christine Ann; Luppi, Marco; Perez, Emanuele; Parmeggiani, Pier Luigi; Zamboni, Giovanni

    2008-01-01

    Study Objectives: Exposure to low ambient temperature (Ta) depresses REM sleep (REMS) occurrence. In this study, both short and long-term homeostatic aspects of REMS regulation were analyzed during cold exposure and during subsequent recovery at Ta 24°C. Design: EEG activity, hypothalamic temperature, and motor activity were studied during a 24-h exposure to Tas ranging from 10°C to −10°C and for 4 days during recovery. Setting: Laboratory of Physiological Regulation during the Wake-Sleep Cycle, Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna. Subjects: 24 male albino rats. Interventions: Animals were implanted with electrodes for EEG recording and a thermistor to measure hypothalamic temperature. Measurements and Results: REMS occurrence decreased proportionally with cold exposure, but a fast compensatory REMS rebound occurred during the first day of recovery when the previous loss went beyond a “fast rebound” threshold corresponding to 22% of the daily REMS need. A slow REMS rebound apparently allowed the animals to fully restore the previous REMS loss during the following 3 days of recovery. Conclusion: Comparing the present data on rats with data from earlier studies on cats and humans, it appears that small mammals have less tolerance for REMS loss than large ones. In small mammals, this low tolerance may be responsible on a short-term basis for the shorter wake-sleep cycle, and on long-term basis, for the higher percentage of REMS that is quickly recovered following REMS deprivation. Citation: Amici R; Cerri M; Ocampo-Garcés A; Baracchi F; Dentico D; Jones CA; Luppi M; Perez E; Parmeggiani PL; Zamboni G. Cold exposure and sleep in the rat: REM sleep homeostasis and body size. SLEEP 2008;31(5):708–715. PMID:18517040

  20. Idiopathic REM Sleep Behavior Disorder in the development of Parkinson’s Disease

    PubMed Central

    Boeve, Bradley F.

    2016-01-01

    Summary Parkinson’s disease (PD) is a progressive neurodegenerative disorder associated with Lewy body disease (LBD) pathology in central and peripheral nervous system structures. While the etiology of PD is not fully understood, recent clinicopathologic analyses by Braak and colleagues have led to the development of a staging system of LBD pathology in the evolution of prototypical PD. This system posits a relatively predictable topography of progression of LBD pathology in the central nervous system, from olfactory structures and the medulla, which then progresses rostrally from the medulla to the pons, then midbrain/substantia nigra, then limbic, and then neocortical structures. If this topography and temporal evolution of LBD pathology indeed occur, one could hypothesize that other manifestations of LBD which reflect degeneration of olfactory and pontomedullary structures may begin many years prior to the development of prominent nigral degeneration and the associated parkinsonian features of classic PD. One such manifestation of prodromal PD is rapid eye movement (REM) sleep behavior disorder (RBD), which is a parasomnia manifested by vivid dreams associated with dream enactment behavior during REM sleep. Animal and human studies have implicated lesions or dysfunction in REM sleep and motor control circuitry in the pontomedullary structures cause RBD phenomenology, and degeneration of these structures could explain the presence of RBD years or decades prior to the onset of parkinsonism in those who develop PD. This review incorporates the rapidly growing literature on RBD and other prodromal features of PD as it pertains to the Braak staging system, and presents a framework from which many hypotheses can be (and already are being) tested. An important outcome of this framework will be to determine the natural history of RBD and associated features in the evolution to PD in the current era of no disease-modifying therapies – these natural history data will

  1. REM Sleep Behavior Disorder and Prodromal Neurodegeneration - Where Are We Headed?

    PubMed

    Postuma, Ronald B; Gagnon, Jean-Francois; Montplaisir, Jacques Y

    2013-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by loss of normal atonia during REM sleep, such that patients appear to act out their dreams. The most important implication of research into this area is that patients with idiopathic RBD are at very high risk of developing synuclein-mediated neurodegenerative disease (Parkinson's disease [PD], dementia with Lewy bodies [DLB], and multiple system atrophy), with risk estimates that approximate 40-65% at 10 years. Thus, RBD disorder is a very strong feature of prodromal synucleinopathy. This provides several opportunities for future research. First, patients with REM sleep behavior disorder can be studied to test other predictors of disease, which could potentially be applied to the general population. These studies have demonstrated that olfactory loss, decreased color vision, slowing on quantitative motor testing, and abnormal substantia nigra neuroimaging findings can predict clinical synucleinopathy. Second, prospectively studying patients with RBD allows a completely unprecedented opportunity to directly evaluate patients as they transition into clinical neurodegenerative disease. Studies assessing progression of markers of neurodegeneration in prodromal PD are beginning to appear. Third, RBD are very promising subjects for neuroprotective therapy trials because they have a high risk of disease conversion with a sufficiently long latency, which provides an opportunity for early intervention. As RBD research expands, collaboration between centers will become increasingly essential.

  2. Endothelial function and sleep: associations of flow-mediated dilation with perceived sleep quality and rapid eye movement (REM) sleep.

    PubMed

    Cooper, Denise C; Ziegler, Michael G; Milic, Milos S; Ancoli-Israel, Sonia; Mills, Paul J; Loredo, José S; Von Känel, Roland; Dimsdale, Joel E

    2014-02-01

    Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh Sleep Quality Index, along with a polysomnography assessment to obtain the following measures: slow wave sleep, percentage rapid eye movement (REM) sleep, REM sleep latency, total arousal index, total sleep time, wake after sleep onset, sleep efficiency and apnea-hypopnea index. Bivariate correlations and follow-up multiple regressions examined how FMD related to subjective (i.e., Pittsburgh Sleep Quality Index scores) and objective (i.e., polysomnography-derived) indicators of sleep quality. After FMD showed bivariate correlations with Pittsburgh Sleep Quality Index scores, percentage REM sleep and REM latency, further examination with separate regression models indicated that these associations remained significant after adjustments for sex, age, race, hypertension, body mass index, apnea-hypopnea index, smoking and income (Ps < 0.05). Specifically, as FMD decreased, scores on the Pittsburgh Sleep Quality Index increased (indicating decreased subjective sleep quality) and percentage REM sleep decreased, while REM sleep latency increased (Ps < 0.05). Poorer subjective sleep quality and adverse changes in REM sleep were associated with diminished vasodilation, which could link sleep disturbances to cardiovascular disease. © 2013 European Sleep Research Society.

  3. Isolated Cataplexy and REM Sleep Behavior Disorder After Pontine Stroke

    PubMed Central

    Reynolds, Thomas Q.; Roy, Asim

    2011-01-01

    Cataplexy is a complex neurologic phenomenon during wakefulness probably resulting from impairment of pontine and hypothalamic control over muscle tone. REM sleep behavior disorder (RSBD) is characterized by the presence of REM sleep without atonia manifesting clinically as disruptive or injurious behaviors. We present here a patient with both cataplexy and RSBD following pontine encephalomalacia. The clinical presentation provides insight into the possible pathobiology of both waking and sleeping disorders of REM sleep regulation. Citation: Reynolds TQ; Roy A. Isolated cataplexy and REM sleep behavior disorder after pontine stroke. J Clin Sleep Med 2011;7(2):211-213. PMID:21509338

  4. Lithium Prevents REM Sleep Deprivation-Induced Impairments on Memory Consolidation

    PubMed Central

    Ota, Simone M.; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M.; Tiba, Paula A.

    2013-01-01

    Background: Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. Objective: To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Design: Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Subjects: Wistar male rats weighing 300-400 g. Results: Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Conclusion: Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained. Citation: Ota SM; Moreira KDM; Suchecki D; Oliveira MGM; Tiba PA. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation. SLEEP 2013;36(11):1677-1684. PMID:24179301

  5. The effect of REM sleep deprivation on motivation for food reward.

    PubMed

    Hanlon, Erin C; Andrzejewski, Matthew E; Harder, Bridgette K; Kelley, Ann E; Benca, Ruth M

    2005-08-30

    Prolonged sleep deprivation in rats produces a characteristic syndrome consisting of an increase in food intake yet a decrease in weight. Moreover, the increase in food intake generally precedes the weight loss, suggesting that sleep deprivation may affect appetitive behaviors. Using the multiple platform method to produce rapid eye movement (REM) sleep deprivation, we investigated the effect of REM sleep deprivation (REMSD) on motivation for food reward utilizing food-reinforced operant tasks. In acquisition or maintenance of an operant task, REM sleep-deprived rats, with or without simultaneous food restriction, decreased responding for sucrose pellet reward in comparison to controls, despite the fact that all REM sleep-deprived rats lost weight. Furthermore, the overall response deficit of the REM sleep-deprived rats was due to a within-session decline in responding. REM sleep-deprived rats showed evidence of understanding the contingency of the task comparable to controls throughout deprivation period, suggesting that the decrements in responding were not primarily related to deficits in learning or memory. Rather, REM sleep deprivation appears to alter systems involved in motivational processes, reward, and/or attention.

  6. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    PubMed

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  7. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation.

    PubMed

    Ota, Simone M; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M; Tiba, Paula A

    2013-11-01

    Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Wistar male rats weighing 300-400 g. Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.

  8. Increases in cAMP, MAPK Activity and CREB Phosphorylation during REM Sleep: Implications for REM Sleep and Memory Consolidation

    PubMed Central

    Luo, Jie; Phan, Trongha X.; Yang, Yimei; Garelick, Michael G.; Storm, Daniel R.

    2013-01-01

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Since mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK and phospho-CREB are higher in rapid eye movement (REM) sleep compared to awake mice but are not elevated in non-rapid eye movement (NREM) sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844

  9. Carbachol models of REM sleep: recent developments and new directions.

    PubMed

    Kubin, L

    2001-02-01

    Since the early '60s, injections of a broad-spectrum muscarinic cholinergic agonist, carbachol, into the medial pontine reticular formation (mPRF) of cats have been extensively used as a tool with which to study the neural mechanisms of rapid eye movement (REM) sleep. During the last decade, new carbachol models of REM sleep were introduced, including chronically instrumented/behaving rats and "reduced" preparations such as decerebrate or anesthetized cats and rats. The combined results from these distinct models show interspecies similarities and differences. The dual nature, both REM sleep-promoting and wakefulness (or arousal)-promoting, of the cholinergic effects exerted within the mPRF is more strongly expressed in rats than in cats. This strengthens the possibility suggested by earlier central neuronal recordings that active wakefulness and REM sleep have extensive common neuronal substrates, and may have evolved from a common behavioral state. Carbachol studies using different intact and reduced models also suggest that powerful REM sleep episode-terminating effects originate in suprapontine structures. In contrast, the timing of REM sleep-like episodes in decerebrate models is determined by a pontomedullary neuronal network responsible for the generation of an ultradian cycle similar to the basic rest-activity cycle of N. Kleitman. Other presumed species differences, such as the more widespread distribution of carbachol-sensitive sites or the relative failure of carbachol to increase the duration of REM sleep episodes in rats when compared to cats, may be of a quantitative or technical nature. While carbachol and many other neurotransmitters and peptides microinjected into the mPRF evoke, enhance or suppress REM sleep, the most sensitive site(s) of their actions have not been fully mapped, and the nature of the cellular and neurochemical interactions taking place at the sites where carbachol triggers the REM sleep-like state remain largely unknown

  10. Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.

    PubMed

    Casey, Sarah J; Solomons, Luke C; Steier, Joerg; Kabra, Neeraj; Burnside, Anna; Pengo, Martino F; Moxham, John; Goldstein, Laura H; Kopelman, Michael D

    2016-11-01

    It has been debated whether different stages in the human sleep cycle preferentially mediate the consolidation of explicit and implicit memories, or whether all of the stages in succession are necessary for optimal consolidation. Here we investigated whether the selective deprivation of slow wave sleep (SWS) or rapid eye movement (REM) sleep over an entire night would have a specific effect on consolidation in explicit and implicit memory tasks. Participants completed a set of explicit and implicit memory tasks at night, prior to sleep. They had 1 control night of undisturbed sleep and 2 experimental nights, during which either SWS or REM sleep was selectively deprived across the entire night (sleep conditions counterbalanced across participants). Polysomnography recordings quantified precisely the amount of SWS and REM sleep that occurred during each of the sleep conditions, and spindle counts were recorded. In the morning, participants completed the experimental tasks in the same sequence as the night before. SWS deprivation disrupted the consolidation of explicit memories for visuospatial information (ηp2 = .23), and both SWS (ηp2 = .53) and REM sleep (ηp2 = .52) deprivation adversely affected explicit verbal recall. Neither SWS nor REM sleep deprivation affected aspects of short-term or working memory, and did not affect measures of verbal implicit memory. Spindle counts did not correlate significantly with memory performance. These findings demonstrate the importance of measuring the sleep cycles throughout the entire night, and the contribution of both SWS and REM sleep to memory consolidation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain

    PubMed Central

    RUKHADZE, I.; KAMANI, H.; KUBIN, L.

    2017-01-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N > GH > GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I > GH > N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70–120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes. PMID:22205596

  12. Assessing REM Sleep in Mice Using Video Data

    PubMed Central

    McShane, Blakeley B.; Galante, Raymond J.; Biber, Michael; Jensen, Shane T.; Wyner, Abraham J.; Pack, Allan I.

    2012-01-01

    Study Objectives: Assessment of sleep and its substages in mice currently requires implantation of chronic electrodes for measurement of electroencephalogram (EEG) and electromyogram (EMG). This is not ideal for high-throughput screening. To address this deficiency, we present a novel method based on digital video analysis. This methodology extends previous approaches that estimate sleep and wakefulness without EEG/EMG in order to now discriminate rapid eye movement (REM) from non-REM (NREM) sleep. Design: Studies were conducted in 8 male C57BL/6J mice. EEG/EMG were recorded for 24 hours and manually scored in 10-second epochs. Mouse behavior was continuously recorded by digital video at 10 frames/second. Six variables were extracted from the video for each 10-second epoch (i.e., intraepoch mean of velocity, aspect ratio, and area of the mouse and intraepoch standard deviation of the same variables) and used as inputs for our model. Measurements and Results: We focus on estimating features of REM (i.e., time spent in REM, number of bouts, and median bout length) as well as time spent in NREM and WAKE. We also consider the model's epoch-by-epoch scoring performance relative to several alternative approaches. Our model provides good estimates of these features across the day both when averaged across mice and in individual mice, but the epoch-by-epoch agreement is not as good. Conclusions: There are subtle changes in the area and shape (i.e., aspect ratio) of the mouse as it transitions from NREM to REM, likely due to the atonia of REM, thus allowing our methodology to discriminate these two states. Although REM is relatively rare, our methodology can detect it and assess the amount of REM sleep. Citation: McShane BB; Galante RJ; Biber M; Jensen ST; Wyner AJ; Pack AI. Assessing REM sleep in mice using video data. SLEEP 2012;35(3):433-442. PMID:22379250

  13. Pinellia ternata (Thunb.) Makino Preparation promotes sleep by increasing REM sleep.

    PubMed

    Lin, Sisi; Nie, Bo; Yao, Guihong; Yang, Hui; Ye, Ren; Yuan, Zhengzhong

    2018-05-15

    Pinellia ternata (Thunb.) Makino Preparation (PTP) is widely used to treat insomnia in traditional Chinese medicine; however, its specific role is not clear. In this study, PTP was prepared at three concentrations. For locomotor activity tests, mice were treated with PTP and evaluated for 14 days. For polygraph recordings, mice were treated for 14 days and recorded after treatment. The main chemical constituents in PTP were identified by Ultra performance liquid chromatography/quadrupole time spectrometry (UPLC/Q-TOF-MS). The results showed that 0.9 g/mL PTP significantly reduced locomotor activity. The effect was related to the time of treatment. PTP reduced wakefulness and increased sleep in mice. Furthermore, PTP promoted sleep by increasing the number of REM sleep episodes with a duration of 64-128s and increasing the number of transitions from NREM sleep to REM sleep and from REM sleep to wakefulness. A total of 17 compounds were identified.

  14. Diagnosis, disease notification, and management of rapid eye movement (REM) sleep behavior disorder.

    PubMed

    Shimohata, Takayoshi; Inoue, Yuichi; Hirata, Koichi

    2017-02-25

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by dream enactment behavior during REM sleep. It has been demonstrated that patients with idiopathic RBD are at a significantly increased risk of developing one of the α-synucleinopathies later in life, and this is called "phenoconversion". Although some physicians argue against disclosing information that could cause patients psychological stress, the patients also have a "right to know" about their own disease. Therefore, determining when and how to disclose this information, in addition to appropriate follow-up, is important. Clonazepam is the first choice of treatment for RBD associated with α-synucleinopathies. Since RBD is one of the premotor symptoms of α-synucleinopathies, and enables its early diagnosis, a combination of RBD and other examinations may contribute to the realization of a disease-modifying therapy. It is hoped that the early establishment of biomarkers could help predict the phenoconversion from RBD to α-synucleinopathies.

  15. Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy.

    PubMed

    Herscovici, Sarah; Pe'er, Avivit; Papyan, Surik; Lavie, Peretz

    2007-02-01

    Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.

  16. Intrahippocampal administration of anandamide increases REM sleep.

    PubMed

    Rueda-Orozco, Pavel Ernesto; Soria-Gómez, Edgar; Montes-Rodríguez, Corinne Jennifer; Pérez-Morales, Marcel; Prospéro-García, Oscar

    2010-04-05

    A nascent literature has postulated endocannabinoids (eCBs) as strong sleep-inducing lipids, particularly rapid-eye-movement sleep (REMs), nevertheless the exact mechanisms behind this effect remain to be determined. Anandamide and 2-arachidonyl glycerol, two of the most important eCBS, are synthesized in the hippocampus. This structure also expresses a high concentration of cannabinoid receptor 1 (CB1). Recent extensive literature supports eCBs as important regulators of hippocampal activity. It has also been shown that these molecules vary their expression on the hippocampus depending on the light-dark cycle. In this context we decided to analyze the effect of intrahippocampal administration of the eCB anandamide (ANA) on the sleep-waking cycle at two points of the light-dark cycle. Our data indicate that the administration of ANA directly into the hippocampus increases REMs in a dose dependent manner during the dark but not during the light phase of the cycle. The increase of REMs was blocked by the CB1 antagonist AM251. This effect was specific for the hippocampus since ANA administrations in the surrounding cortex did not elicit any change in REMs. These results support the idea of a direct relationship between hippocampal activity and sleep mechanisms by means of eCBs. The data presented here show, for the first time that eCBs administered into the hippocampus trigger REMs and support previous studies where chemical stimulation of limbic areas triggered sleep.

  17. Emotional facial expressions during REM sleep dreams.

    PubMed

    Rivera-García, Ana P; López Ruiz, Irma E; Ramírez-Salado, Ignacio; González-Olvera, Jorge J; Ayala-Guerrero, Fructuoso; Jiménez-Anguiano, Anabel

    2018-06-04

    Although motor activity is actively inhibited during rapid eye movement (REM) sleep, specific activations of the facial mimetic musculature have been observed during this stage, which may be associated with greater emotional dream mentation. Nevertheless, no specific biomarker of emotional valence or arousal related to dream content has been identified to date. In order to explore the electromyographic (EMG) activity (voltage, number, density and duration) of the corrugator and zygomaticus major muscles during REM sleep and its association with emotional dream mentation, this study performed a series of experimental awakenings after observing EMG facial activations during REM sleep. The study was performed with 12 healthy female participants using an 8-hr nighttime sleep recording. Emotional tone was evaluated by five blinded judges and final valence and intensity scores were obtained. Emotions were mentioned in 80.4% of dream reports. The voltage, number, density and duration of facial muscle contractions were greater for the corrugator muscle than for the zygomaticus muscle, whereas high positive emotions predicted the number (R 2 0.601, p = 0.0001) and voltage (R 2 0.332, p = 0.005) of the zygomaticus. Our findings suggest that zygomaticus events were predictive of the experience of positive affect during REM sleep in healthy women. © 2018 European Sleep Research Society.

  18. Orexin Neurons Are Necessary for the Circadian Control of REM Sleep

    PubMed Central

    Kantor, Sandor; Mochizuki, Takatoshi; Janisiewicz, Agnieszka M.; Clark, Erika; Nishino, Seiji; Scammell, Thomas E.

    2009-01-01

    Study Objectives: The orexin-producing neurons are hypothesized to be essential for the circadian control of sleep/wake behavior, but it remains unknown whether these rhythms are mediated by the orexin peptides or by other signaling molecules released by these neurons such as glutamate or dynorphin. To determine the roles of these neurotransmitters, we examined the circadian rhythms of sleep/wake behavior in mice lacking the orexin neurons (ataxin-3 [Atx] mice) and mice lacking just the orexin neuropeptides (orexin knockout [KO] mice). Design: We instrumented mice for recordings of sleep-wake behavior, locomotor activity (LMA), and body temperature (Tb) and recorded behavior after 6 days in constant darkness. Results: The amplitude of the rapid eye movement (REM) sleep rhythm was substantially reduced in Atx mice but preserved in orexin KO mice. This blunted rhythm in Atx mice was caused by an increase in the amount of REM sleep during the subjective night (active period) due to more transitions into REM sleep and longer REM sleep episodes. In contrast, the circadian variations of Tb, LMA, Wake, non-REM sleep, and cataplexy were normal, suggesting that the circadian timekeeping system and other output pathways are intact in both Atx and KO mice. Conclusions: These results indicate that the orexin neurons are necessary for the circadian suppression of REM sleep. Blunting of the REM sleep rhythm in Atx mice but not in orexin KO mice suggests that other signaling molecules such as dynorphin or glutamate may act in concert with orexins to suppress REM sleep during the active period. Citation: Kantor S; Mochizuki T; Janisiewicz AM; Clark E; Nishino S; Scammell TE. Orexin neurons are necessary for the circadian control of REM sleep. SLEEP 2009;32(9):1127-1134. PMID:19750917

  19. Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Duwell, Ethan J; Timm, Paul C; Sandness, David J; Boeve, Bradley F; Silber, Michael H

    2014-10-01

    We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. We visually analyzed RSWA phasic burst durations, phasic, "any," and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. N/A. Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. N/A. All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, "any") cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. © 2014 Associated Professional Sleep Societies, LLC.

  20. Polysomnographic study of nocturnal sleep in idiopathic hypersomnia without long sleep time.

    PubMed

    Pizza, Fabio; Ferri, Raffaele; Poli, Francesca; Vandi, Stefano; Cosentino, Filomena I I; Plazzi, Giuseppe

    2013-04-01

    We investigated nocturnal sleep abnormalities in 19 patients with idiopathic hypersomnia without long sleep time (IH) in comparison with two age- and sex- matched control groups of 13 normal subjects (C) and of 17 patients with narcolepsy with cataplexy (NC), the latter considered as the extreme of excessive daytime sleepiness (EDS). Sleep macro- and micro- (i.e. cyclic alternating pattern, CAP) structure as well as quantitative analysis of EEG, of periodic leg movements during sleep (PLMS), and of muscle tone during REM sleep were compared across groups. IH and NC patients slept more than C subjects, but IH showed the highest levels of sleep fragmentation (e.g. awakenings), associated with a CAP rate higher than NC during lighter sleep stages and lower than C during slow wave sleep respectively, and with the highest relative amount of A3 and the lowest of A1 subtypes. IH showed a delta power in between C and NC groups, whereas muscle tone and PLMS had normal characteristics. A peculiar profile of microstructural sleep abnormalities may contribute to sleep fragmentation and, possibly, EDS in IH. © 2012 European Sleep Research Society.

  1. Orexin neurons are necessary for the circadian control of REM sleep.

    PubMed

    Kantor, Sandor; Mochizuki, Takatoshi; Janisiewicz, Agnieszka M; Clark, Erika; Nishino, Seiji; Scammell, Thomas E

    2009-09-01

    The orexin-producing neurons are hypothesized to be essential for the circadian control of sleep/wake behavior, but it remains unknown whether these rhythms are mediated by the orexin peptides or by other signaling molecules released by these neurons such as glutamate or dynorphin. To determine the roles of these neurotransmitters, we examined the circadian rhythms of sleep/wake behavior in mice lacking the orexin neurons (ataxin-3 [Atx] mice) and mice lacking just the orexin neuropeptides (orexin knockout [KO] mice). We instrumented mice for recordings of sleep-wake behavior, locomotor activity (LMA), and body temperature (Tb) and recorded behavior after 6 days in constant darkness. The amplitude of the rapid eye movement (REM) sleep rhythm was substantially reduced in Atx mice but preserved in orexin KO mice. This blunted rhythm in Atx mice was caused by an increase in the amount of REM sleep during the subjective night (active period) due to more transitions into REM sleep and longer REM sleep episodes. In contrast, the circadian variations of Tb, LMA, Wake, non-REM sleep, and cataplexy were normal, suggesting that the circadian timekeeping system and other output pathways are intact in both Atx and KO mice. These results indicate that the orexin neurons are necessary for the circadian suppression of REM sleep. Blunting of the REM sleep rhythm in Atx mice but not in orexin KO mice suggests that other signaling molecules such as dynorphin or glutamate may act in concert with orexins to suppress REM sleep during the active period.

  2. Upper Airway Collapsibility During REM Sleep in Children with the Obstructive Sleep Apnea Syndrome

    PubMed Central

    Huang, Jingtao; Karamessinis, Laurie R.; Pepe, Michelle E.; Glinka, Stephen M.; Samuel, John M.; Gallagher, Paul R.; Marcus, Carole L.

    2009-01-01

    Study Objectives: In children, most obstructive events occur during rapid eye movement (REM) sleep. We hypothesized that children with the obstructive sleep apnea syndrome (OSAS), in contrast to age-matched control subjects, would not maintain airflow in the face of an upper airway inspiratory pressure drop during REM sleep. Design: During slow wave sleep (SWS) and REM sleep, we measured airflow, inspiratory time, inspiratory time/total respiratory cycle time, respiratory rate, tidal volume, and minute ventilation at a holding pressure at which flow limitation occurred and at 5 cm H2O below the holding pressure in children with OSAS and in control subjects. Setting: Sleep laboratory. Participants: Fourteen children with OSAS and 23 normal control subjects. Results: In both sleep states, control subjects were able to maintain airflow, whereas subjects with OSAS preserved airflow in SWS but had a significant decrease in airflow during REM sleep (change in airflow of 18.58 ± 12.41 mL/s for control subjects vs −44.33 ± 14.09 mL/s for children with OSAS, P = 0.002). Although tidal volume decreased, patients with OSAS were able to maintain minute ventilation by increasing the respiratory rate and also had an increase in inspiratory time and inspiratory time per total respiratory cycle time Conclusion: Children with OSAS do not maintain airflow in the face of upper-airway inspiratory-pressure drops during REM sleep, indicating a more collapsible upper airway, compared with that of control subjects during REM sleep. However, compensatory mechanisms exist to maintain minute ventilation. Local reflexes, central control mechanisms, or both reflexes and control mechanisms need to be further explored to better understand the pathophysiology of this abnormality and the compensation mechanism. Citation: Huang J; Karamessinis LR; Pepe ME; Glinka SM; Samuel JM; Gallagher PR; Marcus CL. Upper airway collapsibility during REM sleep in children with the obstructive sleep apnea

  3. Heart rate variability during carbachol-induced REM sleep and cataplexy.

    PubMed

    Torterolo, Pablo; Castro-Zaballa, Santiago; Cavelli, Matías; Velasquez, Noelia; Brando, Victoria; Falconi, Atilio; Chase, Michael H; Migliaro, Eduardo R

    2015-09-15

    The nucleus pontis oralis (NPO) exerts an executive control over REM sleep. Cholinergic input to the NPO is critical for REM sleep generation. In the cat, a single microinjection of carbachol (a cholinergic agonist) into the NPO produces either REM sleep (REMc) or wakefulness with muscle atonia (cataplexy, CA). In order to study the central control of the heart rate variability (HRV) during sleep, we conducted polysomnographic and electrocardiogram recordings from chronically prepared cats during REMc, CA as well as during sleep and wakefulness. Subsequently, we performed statistical and spectral analyses of the HRV. The heart rate was greater during CA compared to REMc, NREM or REM sleep. Spectral analysis revealed that the low frequency band (LF) power was significantly higher during REM sleep in comparison to REMc and CA. Furthermore, we found that during CA there was a decrease in coupling between the RR intervals plot (tachogram) and respiratory activity. In contrast, compared to natural behavioral states, during REMc and CA there were no significant differences in the HRV based upon the standard deviation of normal RR intervals (SDNN) and the mean squared difference of successive intervals (rMSSD). In conclusion, there were differences in the HRV during naturally-occurring REM sleep compared to REMc. In addition, in spite of the same muscle atonia, the HRV was different during REMc and CA. Therefore, the neuronal network that controls the HRV during REM sleep can be dissociated from the one that generates the muscle atonia during this state. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder.

    PubMed

    Valencia Garcia, Sara; Libourel, Paul-Antoine; Lazarus, Michael; Grassi, Daniela; Luppi, Pierre-Hervé; Fort, Patrice

    2017-02-01

    SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream

  5. REM sleep selectively prunes and maintains new synapses in development and learning

    PubMed Central

    Li, Wei; Ma, Lei; Yang, Guang; Gan, Wenbiao

    2017-01-01

    The functions and underlying mechanisms of rapid eye movement (REM) sleep remain unclear. Here we show that REM sleep prunes newly-formed postsynaptic dendritic spines of layer 5 pyramidal neurons in the mouse motor cortex during development and motor learning. This REM sleep-dependent elimination of new spines facilitates subsequent spine formation in development and when a new motor task is learned, indicating a role of REM sleep in pruning to balance the number of new spines formed over time. In addition, REM sleep also strengthens and maintains some newly-formed spines that are critical for neuronal circuit development and behavioral improvement after learning. We further show that dendritic calcium spikes arising during REM sleep are important for pruning and strengthening of new spines. Together, these findings indicate that REM sleep has multifaceted functions in brain development, learning, and memory consolidation by selectively eliminating and maintaining newly-formed synapses via dendritic calcium spike-dependent mechanisms. PMID:28092659

  6. REM sleep selectively prunes and maintains new synapses in development and learning.

    PubMed

    Li, Wei; Ma, Lei; Yang, Guang; Gan, Wen-Biao

    2017-03-01

    The functions and underlying mechanisms of rapid eye movement (REM) sleep remain unclear. Here we show that REM sleep prunes newly formed postsynaptic dendritic spines of layer 5 pyramidal neurons in the mouse motor cortex during development and motor learning. This REM sleep-dependent elimination of new spines facilitates subsequent spine formation during development and when a new motor task is learned, indicating a role for REM sleep in pruning to balance the number of new spines formed over time. Moreover, REM sleep also strengthens and maintains newly formed spines, which are critical for neuronal circuit development and behavioral improvement after learning. We further show that dendritic calcium spikes arising during REM sleep are important for pruning and strengthening new spines. Together, these findings indicate that REM sleep has multifaceted functions in brain development, learning and memory consolidation by selectively eliminating and maintaining newly formed synapses via dendritic calcium spike-dependent mechanisms.

  7. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

    PubMed

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

    2017-02-28

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

  8. Brain prolactin is involved in stress-induced REM sleep rebound.

    PubMed

    Machado, Ricardo Borges; Rocha, Murilo Ramos; Suchecki, Deborah

    2017-03-01

    REM sleep rebound is a common behavioural response to some stressors and represents an adaptive coping strategy. Animals submitted to multiple, intermittent, footshock stress (FS) sessions during 96h of REM sleep deprivation (REMSD) display increased REM sleep rebound (when compared to the only REMSD ones, without FS), which is correlated to high plasma prolactin levels. To investigate whether brain prolactin plays a role in stress-induced REM sleep rebound two experiments were carried out. In experiment 1, rats were either not sleep-deprived (NSD) or submitted to 96h of REMSD associated or not to FS and brains were evaluated for PRL immunoreactivity (PRL-ir) and determination of PRL concentrations in the lateral hypothalamus and dorsal raphe nucleus. In experiment 2, rats were implanted with cannulas in the dorsal raphe nucleus for prolactin infusion and were sleep-recorded. REMSD associated with FS increased PRL-ir and content in the lateral hypothalamus and all manipulations increased prolactin content in the dorsal raphe nucleus compared to the NSD group. Prolactin infusion in the dorsal raphe nucleus increased the time and length of REM sleep episodes 3h after the infusion until the end of the light phase of the day cycle. Based on these results we concluded that brain prolactin is a major mediator of stress-induced REMS. The effect of PRL infusion in the dorsal raphe nucleus is discussed in light of the existence of a bidirectional relationship between this hormone and serotonin as regulators of stress-induced REM sleep rebound. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep

    PubMed Central

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-01-01

    Study Objectives: It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. Methods: We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. Results: We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. Conclusions: These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. Citation: Fraize N, Carponcy J, Joseph MA, Comte JC, Luppi PH, Libourel PA, Salin PA, Malleret G, Parmentier R. Levels of interference in long and short-term memory differentially modulate non-REM and REM sleep. SLEEP 2016;39(12):2173–2188. PMID:27748246

  10. Sleep patterning and behaviour in cats with pontine lesions creating REM without atonia.

    PubMed

    Sanford; Morrison; Mann; Harris; Yoo; Ross

    1994-12-01

    Lesions of the dorsal pontine tegmentum release muscle tone and motor behaviour, much of it similar to orienting during wakefulness, into rapid eye movement sleep (REM), a state normally characterized by paralysis. Sleep after pontine lesions may be altered, with more REM-A episodes of shorter duration compared to normal REM. We examined behaviour, ponto-geniculo-occipital (PGO) waves (which may be central markers of orienting) and sleep in lesioned cats: (i) to characterize the relationship of PGO waves to behaviour in REM-A; (ii) to determine whether post-lesion changes in the timing and duration of REM-A episodes were due to activity-related awakenings: and (iii) to determine whether alterations in sleep changed the circadian sleep/wake cycle in cats. Behavioural release in REM-A was generally related to episode length, but episode length was not necessarily shorter than normal REM in cats capable of full locomotion in REM-A. PGO wave frequency was reduced overall during REM-A, but was higher during REM-A with behaviour than during quiet REM-A without overt behaviour. Pontine lesions did not significantly alter the circadian sleep/wake cycle: REM-A had approximately the same Light/Dark distribution as normal REM. Differences in the patterning of normal REM and REM-A within sleep involve more than mere movement-induced awakenings. Brainstem lesions that eliminate the atonia of REM may damage neural circuitry involved in REM initiation and maintenance; this circuitry is separate from circadian control mechanisms.

  11. Why does rem sleep occur? A wake-up hypothesis.

    PubMed

    Klemm, W R

    2011-01-01

    Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses rapid eye movement (REM) to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, (1) when first going to sleep, the brain plunges into Stage N3 (formerly called Stage IV), a deep abyss of sleep, and, as the night progresses, the sleep is punctuated by episodes of REM that become longer and more frequent toward morning, (2) conscious-like dreams are a reliable component of the REM state in which the dreamer is an active mental observer or agent in the dream, (3) the last awakening during a night's sleep usually occurs in a REM episode during or at the end of a dream, (4) both REM and awake consciousness seem to arise out of a similar brainstem ascending arousal system (5) N3 is a functionally perturbed state that eventually must be corrected so that embodied brain can direct adaptive behavior, and (6) cortico-fugal projections to brainstem arousal areas provide a way to trigger increased cortical activity in REM to progressively raise the sleeping brain to the threshold required for wakefulness. This paper shows how the hypothesis conforms to common experience and has substantial predictive and explanatory power regarding the phenomenology of sleep in terms of ontogeny, aging, phylogeny, abnormal/disease states, cognition, and behavioral physiology. That broad range of consistency is not matched by competing theories, which are summarized herein. Specific ways to test this wake-up hypothesis are suggested. Such research could lead to a better understanding of awake consciousness.

  12. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation

    PubMed Central

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E.; McCarley, Robert W.; Choi, Jee Hyun

    2017-01-01

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation. PMID:28193862

  13. Brain gene expression during REM sleep depends on prior waking experience.

    PubMed

    Ribeiro, S; Goyal, V; Mello, C V; Pavlides, C

    1999-01-01

    In most mammalian species studied, two distinct and successive phases of sleep, slow wave (SW), and rapid eye movement (REM), can be recognized on the basis of their EEG profiles and associated behaviors. Both phases have been implicated in the offline sensorimotor processing of daytime events, but the molecular mechanisms remain elusive. We studied brain expression of the plasticity-associated immediate-early gene (IEG) zif-268 during SW and REM sleep in rats exposed to rich sensorimotor experience in the preceding waking period. Whereas nonexposed controls show generalized zif-268 down-regulation during SW and REM sleep, zif-268 is upregulated during REM sleep in the cerebral cortex and the hippocampus of exposed animals. We suggest that this phenomenon represents a window of increased neuronal plasticity during REM sleep that follows enriched waking experience.

  14. Cold exposure and sleep in the rat: REM sleep homeostasis and body size.

    PubMed

    Amici, Roberto; Cerri, Matteo; Ocampo-Garcés, Adrian; Baracchi, Francesca; Dentico, Daniela; Jones, Christine Ann; Luppi, Marco; Perez, Emanuele; Parmeggiani, Pier Luigi; Zamboni, Giovanni

    2008-05-01

    Exposure to low ambient temperature (Ta) depresses REM sleep (REMS) occurrence. In this study, both short and long-term homeostatic aspects of REMS regulation were analyzed during cold exposure and during subsequent recovery at Ta 24 degrees C. EEG activity, hypothalamic temperature, and motor activity were studied during a 24-h exposure to Tas ranging from 10 degrees C to -10 degrees C and for 4 days during recovery. Laboratory of Physiological Regulation during the Wake-Sleep Cycle, Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna. 24 male albino rats. Animals were implanted with electrodes for EEG recording and a thermistor to measure hypothalamic temperature. REMS occurrence decreased proportionally with cold exposure, but a fast compensatory REMS rebound occurred during the first day of recovery when the previous loss went beyond a "fast rebound" threshold corresponding to 22% of the daily REMS need. A slow REMS rebound apparently allowed the animals to fully restore the previous REMS loss during the following 3 days of recovery. Comparing the present data on rats with data from earlier studies on cats and humans, it appears that small mammals have less tolerance for REMS loss than large ones. In small mammals, this low tolerance may be responsible on a short-term basis for the shorter wake-sleep cycle, and on long-term basis, for the higher percentage of REMS that is quickly recovered following REMS deprivation.

  15. Changes in Cardiac Variability after REM Sleep Deprivation in Recurrent Nightmares

    PubMed Central

    Nielsen, Tore; Paquette, Tyna; Solomonova, Elizaveta; Lara-Carrasco, Jessica; Colombo, Roberto; Lanfranchi, Paola

    2010-01-01

    Study Objectives: To assess whether dysfunctional autonomic regulation during REM sleep as indexed by heart rate variability (HRV) is a pathophysiological factor in frequent nightmares (NMs). Design: Monitoring with polysomnography (PSG) and electrocardiography (ECG) for 3 consecutive nights: Night 1 (N1), adaptation night; N2, administration of partial REM sleep deprivation; N3, recovery night. Differences between NM and control (CTL) groups assessed for ECG measures drawn from wakefulness, REM sleep, and Stage 2 sleep on both N1 and N3. Setting: Hospital-based sleep laboratory Participants: Sixteen subjects with frequent NMs ( ≥ 1 NM/week; mean age = 26.1 ± 8.7 years) but no other medical or psychiatric disorders and 11 healthy comparison subjects ( < 1 NM/month; mean age = 27.1±5.6 years). Results: NM and CTL groups differed on 2 REM sleep measures only on N1; the NM group had longer REM latencies and REM/NREM cycle durations than did the CTL group. No differences were found on time domain and absolute frequency domain ECG measures for either N1 or N3. However, altered HRV for the NM group was suggested by significantly higher LFnu, lower HFnu, and higher LF/HF ratio than for the CTL group. Conclusions: Results are consistent with a higher than normal sympathetic drive among NM subjects which is unmasked by high REM sleep propensity. Results also support a growing literature linking anxiety disorders of several types (panic disorder, posttraumatic stress disorder (PTSD), generalized anxiety disorder) to altered HR variability. Citation: Nielsen T; Paquette T; Solomonova E; Lara-Carrasco J; Colombo R; Lanfranchi P. Changes in cardiac variability after rem sleep deprivation in recurrent nightmares. SLEEP 2010;33(1):113-122. PMID:20120628

  16. Antidepressants and REM Sleep Behavior Disorder: Isolated Side Effect or Neurodegenerative Signal?

    PubMed Central

    Postuma, Ronald B.; Gagnon, Jean-Francois; Tuineaig, Maria; Bertrand, Josie-Anne; Latreille, Veronique; Desjardins, Catherine; Montplaisir, Jacques Y.

    2013-01-01

    Objectives: Antidepressants, among the most commonly prescribed medications, trigger symptoms of REM sleep behavior disorder (RBD) in up to 6% of users. Idiopathic RBD is a very strong prodromal marker of Parkinson disease and other synuclein-mediated neurodegenerative syndromes. It is therefore critically important to understand whether antidepressant-associated RBD is an independent pharmacologic syndrome or a sign of possible prodromal neurodegeneration. Design: Prospective cohort study. Setting: Tertiary sleep disorders center. Participants: 100 patients with idiopathic RBD, all with diagnosis confirmed on polysomnography, stratified to baseline antidepressant use, with 45 matched controls. Measurements/Results: Of 100 patients, 27 were taking antidepressants. Compared to matched controls, RBD patients taking antidepressants demonstrated significant abnormalities of 12/14 neurodegenerative markers tested, including olfaction (P = 0.007), color vision (P = 0.004), Unified Parkinson Disease Rating Scale II and III (P < 0.001 and 0.007), timed up-and-go (P = 0.003), alternate tap test (P = 0.002), Purdue Pegboard (P = 0.007), systolic blood pressure drop (P = 0.029), erectile dysfunction (P = 0.002), constipation (P = 0.003), depression indices (P < 0.001), and prevalence of mild cognitive impairment (13% vs. 60%, P < 0.001). All these abnormalities were indistinguishable in severity from RBD patients not taking antidepressants. However, on prospective follow-up, RBD patients taking antidepressants had a lower risk of developing neurodegenerative disease than those without antidepressant use (5-year risk = 22% vs. 59%, RR = 0.22, 95%CI = 0.06, 0.74). Conclusions: Although patients with antidepressant-associated RBD have a lower risk of neurodegeneration than patients with “purely-idiopathic” RBD, markers of prodromal neurodegeneration are still clearly present. Development of RBD with antidepressants can be an early signal of an underlying neurodegenerative

  17. Nocturnal sleep architecture in idiopathic hypersomnia: a systematic review and meta-analysis.

    PubMed

    Plante, David T

    2018-05-01

    Current sleep medicine nosology places increased importance on nocturnal polysomnographic sleep recordings in the diagnosis of central nervous system disorders of hypersomnolence, particularly idiopathic hypersomnia (IH). Determine what differences in sleep staging and architecture exist between IH and healthy controls using meta-analysis. Systematic review identified relevant studies that included nocturnal polysomnography data for IH and healthy control groups. Meta-analysis compared standardized mean differences (Hedge's g) for total sleep time (TST), sleep onset latency (SOL), sleep efficiency (SE), rapid eye movement (REM) sleep percentage, slow wave sleep (SWS) percentage, and REM latency (REML). Moderator analyses were also conducted for variables with significant heterogeneity among studies. The meta-analysis included 10 studies. Relative to controls, IH demonstrated increased TST (pooled g = 0.92; 95% CI: 0.46 to 1.38, p < 0.0001) and REM percentage (pooled g = 0.36, 95% CI: 0.09 to 0.64, p = 0.01), decreased SOL (pooled g = -0.46; 95% CI: -0.81 to -0.12, p = 0.009) and SWS percentage (pooled g = -0.28, 95% CI: -0.50 to -0.07, p = 0.01), without significant differences in SE (pooled g = 0.03; 95% CI: -0.32 to 0.38, p = 0.86) or REML (pooled g = 0.14, 95% CI: -0.21 to 0.49, p = 0.42). Moderator analysis demonstrated a significant effect of sex on SE, with a higher proportion of women to men significantly predicting lower SE between in IH and controls (p < 0.0001). IH is associated with several changes in sleep staging and architecture relative to healthy persons, including alterations in REM and SWS not currently delineated in nosological constructs. Further research is indicated to clarify how these findings are related the pathophysiology of IH and related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. REM sleep respiratory behaviours mental content in narcoleptic lucid dreamers.

    PubMed

    Oudiette, Delphine; Dodet, Pauline; Ledard, Nahema; Artru, Emilie; Rachidi, Inès; Similowski, Thomas; Arnulf, Isabelle

    2018-02-08

    Breathing is irregular during rapid eye-movement (REM) sleep, whereas it is stable during non-REM sleep. Why this is so remains a mystery. We propose that irregular breathing has a cortical origin and reflects the mental content of dreams, which often accompany REM sleep. We tested 21 patients with narcolepsy who had the exceptional ability to lucid dream in REM sleep, a condition in which one is conscious of dreaming during the dream and can signal lucidity with an ocular code. Sleep and respiration were monitored during multiple naps. Participants were instructed to modify their dream scenario so that it involved vocalizations or an apnoea, -two behaviours that require a cortical control of ventilation when executed during wakefulness. Most participants (86%) were able to signal lucidity in at least one nap. In 50% of the lucid naps, we found a clear congruence between the dream report (e.g., diving under water) and the observed respiratory behaviour (e.g., central apnoea) and, in several cases, a preparatory breath before the respiratory behaviour. This suggests that the cortico-subcortical networks involved in voluntary respiratory movements are preserved during REM sleep and that breathing irregularities during this stage have a cortical/subcortical origin that reflects dream content.

  19. The spectrum of REM sleep-related episodes in children with type 1 narcolepsy.

    PubMed

    Antelmi, Elena; Pizza, Fabio; Vandi, Stefano; Neccia, Giulia; Ferri, Raffaele; Bruni, Oliviero; Filardi, Marco; Cantalupo, Gaetano; Liguori, Rocco; Plazzi, Giuseppe

    2017-06-01

    Type 1 narcolepsy is a central hypersomnia due to the loss of hypocretin-producing neurons and characterized by cataplexy, excessive daytime sleepiness, sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. In children, close to the disease onset, type 1 narcolepsy has peculiar clinical features with severe cataplexy and a complex admixture of movement disorders occurring while awake. Motor dyscontrol during sleep has never been systematically investigated. Suspecting that abnormal motor control might affect also sleep, we systematically analysed motor events recorded by means of video polysomnography in 40 children with type 1 narcolepsy (20 females; mean age 11.8 ± 2.6 years) and compared these data with those recorded in 22 age- and sex-matched healthy controls. Motor events were classified as elementary movements, if brief and non-purposeful and complex behaviours, if simulating purposeful behaviours. Complex behaviours occurring during REM sleep were further classified as 'classically-defined' and 'pantomime-like' REM sleep behaviour disorder episodes, based on their duration and on their pattern (i.e. brief and vivid-energetic in the first case, longer and with subcontinuous gesturing mimicking daily life activity in the second case). Elementary movements emerging either from non-REM or REM sleep were present in both groups, even if those emerging from REM sleep were more numerous in the group of patients. Conversely, complex behaviours could be detected only in children with type 1 narcolepsy and were observed in 13 patients, with six having 'classically-defined' REM sleep behaviour disorder episodes and seven having 'pantomime-like' REM sleep behaviour disorder episodes. Complex behaviours during REM sleep tended to recur in a stereotyped fashion for several times during the night, up to be almost continuous. Patients displaying a more severe motor dyscontrol during REM sleep had also more severe motor disorder during daytime (i

  20. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    PubMed

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. © 2016 Associated Professional Sleep Societies, LLC.

  1. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during REM sleep

    PubMed Central

    Vanini, Giancarlo; Wathen, Bradley L.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REMNeo) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (−42%) and REMNeo (−63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared to NREM sleep, GABA levels decreased significantly during REM sleep (−27%) and REMNeo (−52%). Comparisons of REM sleep and REMNeo revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep. PMID:21325533

  2. REM Sleep Behavior Disorder and Narcoleptic Features in Anti–Ma2-associated Encephalitis

    PubMed Central

    Compta, Yaroslau; Iranzo, Alex; Santamaría, Joan; Casamitjana, Roser; Graus, Francesc

    2007-01-01

    A 69-year-old man with anti-Ma2 paraneoplastic encephalitis presented with subacute onset of severe hypersomnia, memory loss, parkinsonism, and gaze palsy. A brain magnetic resonance imaging study showed bilateral damage in the dorsolateral midbrain, amygdala, and paramedian thalami. Videopolysomnography disclosed rapid eye movement (REM) sleep behavior disorder, and a Multiple Sleep Latency Test showed a mean sleep latency of 7 minutes and 4 sleep-onset REM periods. The level of hypocretin-1 in the cerebrospinal fluid was low (49 pg/mL). This observation illustrates that REM sleep behavior disorder and narcoleptic features are 2 REM-sleep abnormalities that (1) may share the same autoimmune-mediated origin affecting the brainstem, limbic, and diencephalic structures and (2) may occur in the setting of the paraneoplastic anti–Ma2-associated encephalitis. Citation: Compta Y; Iranzo A; Santamaría J et al. REM Sleep Behavior Disorder and Narcoleptic Features in Anti–Ma2-associated Encephalitis. SLEEP 2007;30(6):767-769. PMID:17580598

  3. Comparing Neural Correlates of REM Sleep in Posttraumatic Stress Disorder and Depression: A Neuroimaging Study

    PubMed Central

    Ebdlahad, Sommer; Nofzinger, Eric A.; James, Jeffrey A.; Buysse, Daniel J.; Price, Julie C.; Germain, Anne

    2013-01-01

    Rapid eye movement (REM) sleep disturbances predict poor clinical outcomes in posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). In MDD, REM sleep is characterized by activation of limbic and paralimbic brain regions compared to wakefulness. The neural correlates of PTSD during REM sleep remain scarcely explored, and comparisons of PTSD and MDD have not been conducted. The present study sought to compare brain activity patterns during wakefulness and REM sleep in 13 adults with PTSD and 12 adults with MDD using [18F]-fluoro-2-deoxy-D-glucose positron emission tomography (PET). PTSD was associated with greater increases in relative regional cerebral metabolic rate of glucose (rCMRglc) in limbic and paralimbic structures in REM sleep compared to wakefulness. Post-hoc comparisons indicated that MDD was associated with greater limbic and paralimbic rCMRglc during wakefulness but not REM sleep compared to PTSD. Our findings suggest that PTSD is associated with increased REM sleep limbic and paralimbic metabolism, whereas MDD is associated with wake and REM hypermetabolism in these areas. These observations suggest that PTSD and MDD disrupt REM sleep through different neurobiological processes. Optimal sleep treatments between the two disorders may differ: REM-specific therapy may be more effective in PTSD. PMID:24367137

  4. Frontal beta-theta network during REM sleep

    PubMed Central

    Vijayan, Sujith; Lepage, Kyle Q; Kopell, Nancy J; Cash, Sydney S

    2017-01-01

    We lack detailed knowledge about the spatio-temporal physiological signatures of REM sleep, especially in humans. By analyzing intracranial electrode data from humans, we demonstrate for the first time that there are prominent beta (15–35 Hz) and theta (4–8 Hz) oscillations in both the anterior cingulate cortex (ACC) and the DLPFC during REM sleep. We further show that these theta and beta activities in the ACC and the DLPFC, two relatively distant but reciprocally connected regions, are coherent. These findings suggest that, counter to current prevailing thought, the DLPFC is active during REM sleep and likely interacting with other areas. Since the DLPFC and the ACC are implicated in memory and emotional regulation, and the ACC has motor areas and is thought to be important for error detection, the dialogue between these two areas could play a role in the regulation of emotions and in procedural motor and emotional memory consolidation. DOI: http://dx.doi.org/10.7554/eLife.18894.001 PMID:28121613

  5. Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder.

    PubMed

    Valencia Garcia, Sara; Brischoux, Frédéric; Clément, Olivier; Libourel, Paul-Antoine; Arthaud, Sébastien; Lazarus, Michael; Luppi, Pierre-Hervé; Fort, Patrice

    2018-02-05

    Despite decades of research, there is a persistent debate regarding the localization of GABA/glycine neurons responsible for hyperpolarizing somatic motoneurons during paradoxical (or REM) sleep (PS), resulting in the loss of muscle tone during this sleep state. Combining complementary neuroanatomical approaches in rats, we first show that these inhibitory neurons are localized within the ventromedial medulla (vmM) rather than within the spinal cord. We then demonstrate their functional role in PS expression through local injections of adeno-associated virus carrying specific short-hairpin RNA in order to chronically impair inhibitory neurotransmission from vmM. After such selective genetic inactivation, rats display PS without atonia associated with abnormal and violent motor activity, concomitant with a small reduction of daily PS quantity. These symptoms closely mimic human REM sleep behavior disorder (RBD), a prodromal parasomnia of synucleinopathies. Our findings demonstrate the crucial role of GABA/glycine inhibitory vmM neurons in muscle atonia during PS and highlight a candidate brain region that can be susceptible to α-synuclein-dependent degeneration in RBD patients.

  6. Slow waves, sharp waves, ripples, and REM in sleeping dragons.

    PubMed

    Shein-Idelson, Mark; Ondracek, Janie M; Liaw, Hua-Peng; Reiter, Sam; Laurent, Gilles

    2016-04-29

    Sleep has been described in animals ranging from worms to humans. Yet the electrophysiological characteristics of brain sleep, such as slow-wave (SW) and rapid eye movement (REM) activities, are thought to be restricted to mammals and birds. Recording from the brain of a lizard, the Australian dragon Pogona vitticeps, we identified SW and REM sleep patterns, thus pushing back the probable evolution of these dynamics at least to the emergence of amniotes. The SW and REM sleep patterns that we observed in lizards oscillated continuously for 6 to 10 hours with a period of ~80 seconds. The networks controlling SW-REM antagonism in amniotes may thus originate from a common, ancient oscillator circuit. Lizard SW dynamics closely resemble those observed in rodent hippocampal CA1, yet they originate from a brain area, the dorsal ventricular ridge, that has no obvious hodological similarity with the mammalian hippocampus. Copyright © 2016, American Association for the Advancement of Science.

  7. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    PubMed Central

    Dugovic, Christine; Shelton, Jonathan E.; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  8. Insufficient non-REM sleep intensity in narcolepsy-cataplexy.

    PubMed

    Khatami, Ramin; Landolt, Hans-Peter; Achermann, Peter; Rétey, Julia V; Werth, Esther; Mathis, Johannes; Bassetti, Claudio L

    2007-08-01

    To compare electroencephalogram (EEG) dynamics during nocturnal sleep in patients with narcolepsy-cataplexy and healthy controls. Fragmented nocturnal sleep is a prominent feature and contributes to excessive daytime sleepiness in narcolepsy-cataplexy. Only 3 studies have addressed changes in homeostatic sleep regulation as a possible mechanism underlying nocturnal sleep fragmentation in narcolepsy-cataplexy. Baseline sleep of 11 drug-naive patients with narcolepsy-cataplexy (19-37 years) and 11 matched controls (18-41 years) was polysomnographically recorded. The EEG was subjected to spectral analysis. None, baseline condition. All patients with narcolepsy-cataplexy but no control subjects showed a sleep-onset rapid eye movement (REM) episode. Non-REM (NREM)-REM sleep cycles were longer in patients with narcolepsy-cataplexy than in controls (P = 0.04). Mean slow-wave activity declined in both groups across the first 3 NREM sleep episodes (P<0.001). The rate of decline, however, appeared to be steeper in patients with narcolepsy-cataplexy (time constant: narcolepsy-cataplexy 51.1 +/- 23.8 minutes [mean +/- SEM], 95% confidence interval [CI]: 33.4-108.8 minutes) than in controls (169.4 +/- 81.5 minutes, 95% CI: 110.9-357.6 minutes) as concluded from nonoverlapping 95% confidence interval of the time constants. The steeper decline of SWA in narcolepsy-cataplexy compared to controls was related to an impaired build-up of slow-wave activity in the second cycle. Sleep in the second cycle was interrupted in patients with narcolepsy-cataplexy, when compared with controls, by an increased number (P = 0.01) and longer duration (P = 0.01) of short wake episodes. Insufficient NREM sleep intensity is associated with nonconsolidated nocturnal sleep in narcolepsy-cataplexy. The inability to consolidate sleep manifests itself when NREM sleep intensity has decayed below a certain level and is reflected in an altered time course of slow-wave activity across NREM sleep episodes.

  9. Colonic Oxidative and Mitochondrial Function in Parkinson's Disease and Idiopathic REM Sleep Behavior Disorder.

    PubMed

    Morén, C; González-Casacuberta, Í; Navarro-Otano, J; Juárez-Flores, D; Vilas, D; Garrabou, G; Milisenda, J C; Pont-Sunyer, C; Catalán-García, M; Guitart-Mampel, M; Tobías, E; Cardellach, F; Valldeoriola, F; Iranzo, A; Tolosa, E

    2017-01-01

    To determine potential mitochondrial and oxidative alterations in colon biopsies from idiopathic REM sleep behavior disorder (iRBD) and Parkinson's disease (PD) subjects. Colonic biopsies from 7 iRBD subjects, 9 subjects with clinically diagnosed PD, and 9 healthy controls were homogenized in 5% w/v mannitol. Citrate synthase (CS) and complex I (CI) were analyzed spectrophotometrically. Oxidative damage was assessed either by lipid peroxidation, through malondialdehyde and hydroxyalkenal content by spectrophotometry, or through antioxidant enzyme levels of superoxide dismutase-2 (SOD2), glutathione peroxidase-1 (Gpx1), and catalase (CAT) by western blot. The presence of mitochondrial DNA (mtDNA) deletions was assessed by long PCR and electrophoresis. Nonsignificant trends to CI decrease in both iRBD (45.69 ± 18.15; 23% decrease) and PD patients (37.57 ± 12.41; 37% decrease) were found compared to controls (59.51 ± 12.52, p : NS). Lipid peroxidation was maintained among groups (iRBD: 27.46 ± 3.04, PD: 37.2 ± 3.92, and controls: 31.71 ± 3.94; p : NS). Antioxidant enzymes SOD2 (iRBD: 2.30 ± 0.92, PD: 1.48 ± 0.39, and controls: 1.09 ± 0.318) and Gpx1 (iRBD 0.29 ± 0.12, PD: 0.56 ± 0.33, and controls: 0.38 ± 0.16) did not show significant differences between groups. CAT was only detected in 2 controls and 1 iRBD subject. One iRBD patient presented a single mtDNA deletion.

  10. Venlafaxine-induced REM sleep behavioral disorder presenting as two fractures.

    PubMed

    Ryan Williams, R; Sandigo, Gustavo

    2017-10-01

    Rapid eye movement (REM) sleep behavioral disorder is characterized by the absence of muscular atonia during REM sleep. In this disorder, patients can violently act out their dreams, placing them at risk for traumatic fractures during these episodes. REM sleep behavioral disorder (RBD) can be a sign of future neurodegenerative disease and has also been found to be a side effect of certain psychiatric medications. We present a case of venlafaxine-induced RBD in a 55 year old female who presented with a 13 year history of intermittent parasomnia and dream enactment in addition to a recent history of two fractures requiring intervention.

  11. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation.

    PubMed

    Alzoubi, Karem H; Rababa'h, Abeer M; Owaisi, Amani; Khabour, Omar F

    2017-05-01

    Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (P<0.05), whereas L-carnitine treatment protected against this effect. Furthermore, L-carnitine normalized chronic REM-sleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Motivation and affect in REM sleep and the mentation reporting process.

    PubMed

    Smith, Mark R; Antrobus, John S; Gordon, Evelyn; Tucker, Matthew A; Hirota, Yasutaka; Wamsley, Erin J; Ross, Lars; Doan, Tieu; Chaklader, Annie; Emery, Rebecca N

    2004-09-01

    Although the emotional and motivational characteristics of dreaming have figured prominently in folk and psychoanalytic conceptions of dream production, emotions have rarely been systematically studied, and motivation, never. Because emotions during sleep lack the somatic components of waking emotions, and they change as the sleeper awakens, their properties are difficult to assess. Recent evidence of limbic system activation during REM sleep suggests a basis in brain architecture for the interaction of motivational and cognitive properties in dreaming. Motivational and emotional content in REM and NREM laboratory mentation reports from 25 participants were compared. Motivational and emotional content was significantly greater in REM than NREM sleep, even after controlling for the greater word count of REM reports.

  13. Loss of Gnas imprinting differentially affects REM/NREM sleep and cognition in mice.

    PubMed

    Lassi, Glenda; Ball, Simon T; Maggi, Silvia; Colonna, Giovanni; Nieus, Thierry; Cero, Cheryl; Bartolomucci, Alessandro; Peters, Jo; Tucci, Valter

    2012-01-01

    It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM-linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM-dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes.

  14. Quantitative assessment of isolated rapid eye movement (REM) sleep without atonia without clinical REM sleep behavior disorder: clinical and research implications.

    PubMed

    Sasai-Sakuma, Taeko; Frauscher, Birgit; Mitterling, Thomas; Ehrmann, Laura; Gabelia, David; Brandauer, Elisabeth; Inoue, Yuichi; Poewe, Werner; Högl, Birgit

    2014-09-01

    Rapid eye movement (REM) sleep without atonia (RWA) is observed in some patients without a clinical history of REM sleep behavior disorder (RBD). It remains unknown whether these patients meet the refined quantitative electromyographic (EMG) criteria supporting a clinical RBD diagnosis. We quantitatively evaluated EMG activity and investigated its overnight distribution in patients with isolated qualitative RWA. Fifty participants with an incidental polysomnographic finding of RWA (isolated qualitative RWA) were included. Tonic, phasic, and 'any' EMG activity during REM sleep on PSG were quantified retrospectively. Referring to the quantitative cut-off values for a polysomnographic diagnosis of RBD, 7/50 (14%) and 6/50 (12%) of the patients showed phasic and 'any' EMG activity in the mentalis muscle above the respective cut-off values. No patient was above the cut-off value for tonic EMG activity or phasic EMG activity in the anterior tibialis muscles. Patients with RWA above the cut-off value showed higher amounts of RWA during later REM sleep periods. This is the first study showing that some subjects with incidental RWA meet the refined quantitative EMG criteria for a diagnosis of RBD. Future longitudinal studies must investigate whether this subgroup with isolated qualitative RWA is at an increased risk of developing fully expressed RBD and/or neurodegenerative disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Myotonic dystrophy type 1, daytime sleepiness and REM sleep dysregulation.

    PubMed

    Dauvilliers, Yves A; Laberge, Luc

    2012-12-01

    Myotonic dystrophy type 1 (DM1), or Steinert's disease, is the most common adult-onset form of muscular dystrophy. DM1 also constitutes the neuromuscular condition with the most significant sleep disorders including excessive daytime sleepiness (EDS), central and obstructive sleep apneas, restless legs syndrome (RLS), periodic leg movements in wake (PLMW) and periodic leg movements in sleep (PLMS) as well as nocturnal and diurnal rapid eye movement (REM) sleep dysregulation. EDS is the most frequent non-muscular complaint in DM1, being present in about 70-80% of patients. Different phenotypes of sleep-related problems may mimic several sleep disorders, including idiopathic hypersomnia, narcolepsy without cataplexy, sleep apnea syndrome, and periodic leg movement disorder. Subjective and objective daytime sleepiness may be associated with the degree of muscular impairment. However, available evidence suggests that DM1-related EDS is primarily caused by a central dysfunction of sleep regulation rather than by sleep fragmentation, sleep-related respiratory events or periodic leg movements. EDS also tends to persist despite successful treatment of sleep-disordered breathing in DM1 patients. As EDS clearly impacts on physical and social functioning of DM1 patients, studies are needed to identify the best appropriate tools to identify hypersomnia, and clarify the indications for polysomnography (PSG) and multiple sleep latency test (MSLT) in DM1. In addition, further structured trials of assisted nocturnal ventilation and randomized trials of central nervous system (CNS) stimulant drugs in large samples of DM1 patients are required to optimally treat patients affected by this progressive, incurable condition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Selective REM-sleep deprivation does not diminish emotional memory consolidation in young healthy subjects.

    PubMed

    Morgenthaler, Jarste; Wiesner, Christian D; Hinze, Karoline; Abels, Lena C; Prehn-Kristensen, Alexander; Göder, Robert

    2014-01-01

    Sleep enhances memory consolidation and it has been hypothesized that rapid eye movement (REM) sleep in particular facilitates the consolidation of emotional memory. The aim of this study was to investigate this hypothesis using selective REM-sleep deprivation. We used a recognition memory task in which participants were shown negative and neutral pictures. Participants (N=29 healthy medical students) were separated into two groups (undisturbed sleep and selective REM-sleep deprived). Both groups also worked on the memory task in a wake condition. Recognition accuracy was significantly better for negative than for neutral stimuli and better after the sleep than the wake condition. There was, however, no difference in the recognition accuracy (neutral and emotional) between the groups. In summary, our data suggest that REM-sleep deprivation was successful and that the resulting reduction of REM-sleep had no influence on memory consolidation whatsoever.

  17. Sleep-related declarative memory consolidation and verbal replay during sleep talking in patients with REM sleep behavior disorder.

    PubMed

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Dodet, Pauline; Herlin, Bastien; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2013-01-01

    To determine if sleep talkers with REM sleep behavior disorder (RBD) would utter during REM sleep sentences learned before sleep, and to evaluate their verbal memory consolidation during sleep. Eighteen patients with RBD and 10 controls performed two verbal memory tasks (16 words from the Free and Cued Selective Reminding Test and a 220-263 word long modified Story Recall Test) in the evening, followed by nocturnal video-polysomnography and morning recall (night-time consolidation). In 9 patients with RBD, daytime consolidation (morning learning/recall, evening recall) was also evaluated with the modified Story Recall Test in a cross-over order. Two RBD patients with dementia were studied separately. Sleep talking was recorded using video-polysomnography, and the utterances were compared to the studied texts by two external judges. Sleep-related verbal memory consolidation was maintained in patients with RBD (+24±36% words) as in controls (+9±18%, p=0.3). The two demented patients with RBD also exhibited excellent nighttime consolidation. The post-sleep performance was unrelated to the sleep measures (including continuity, stages, fragmentation and apnea-hypopnea index). Daytime consolidation (-9±19%) was worse than night-time consolidation (+29±45%, p=0.03) in the subgroup of 9 patients with RBD. Eleven patients with RBD spoke during REM sleep and pronounced a median of 20 words, which represented 0.0003% of sleep with spoken language. A single patient uttered a sentence that was judged to be semantically (but not literally) related to the text learned before sleep. Verbal declarative memory normally consolidates during sleep in patients with RBD. The incorporation of learned material within REM sleep-associated sleep talking in one patient (unbeknownst to himself) at the semantic level suggests a replay at a highly cognitive creative level.

  18. Sleep-Related Declarative Memory Consolidation and Verbal Replay during Sleep Talking in Patients with REM Sleep Behavior Disorder

    PubMed Central

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Dodet, Pauline; Herlin, Bastien; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2013-01-01

    Objective To determine if sleep talkers with REM sleep behavior disorder (RBD) would utter during REM sleep sentences learned before sleep, and to evaluate their verbal memory consolidation during sleep. Methods Eighteen patients with RBD and 10 controls performed two verbal memory tasks (16 words from the Free and Cued Selective Reminding Test and a 220-263 word long modified Story Recall Test) in the evening, followed by nocturnal video-polysomnography and morning recall (night-time consolidation). In 9 patients with RBD, daytime consolidation (morning learning/recall, evening recall) was also evaluated with the modified Story Recall Test in a cross-over order. Two RBD patients with dementia were studied separately. Sleep talking was recorded using video-polysomnography, and the utterances were compared to the studied texts by two external judges. Results Sleep-related verbal memory consolidation was maintained in patients with RBD (+24±36% words) as in controls (+9±18%, p=0.3). The two demented patients with RBD also exhibited excellent nighttime consolidation. The post-sleep performance was unrelated to the sleep measures (including continuity, stages, fragmentation and apnea-hypopnea index). Daytime consolidation (-9±19%) was worse than night-time consolidation (+29±45%, p=0.03) in the subgroup of 9 patients with RBD. Eleven patients with RBD spoke during REM sleep and pronounced a median of 20 words, which represented 0.0003% of sleep with spoken language. A single patient uttered a sentence that was judged to be semantically (but not literally) related to the text learned before sleep. Conclusion Verbal declarative memory normally consolidates during sleep in patients with RBD. The incorporation of learned material within REM sleep-associated sleep talking in one patient (unbeknownst to himself) at the semantic level suggests a replay at a highly cognitive creative level. PMID:24349492

  19. REM sleep behavior disorder and narcoleptic features in anti-Ma2-associated encephalitis.

    PubMed

    Compta, Yaroslau; Iranzo, Alex; Santamaría, Joan; Casamitjana, Roser; Graus, Francesc

    2007-06-01

    A 69-year-old man with anti-Ma2 paraneoplastic encephalitis presented with subacute onset of severe hypersomnia, memory loss, parkinsonism, and gaze palsy. A brain magnetic resonance imaging study showed bilateral damage in the dorsolateral midbrain, amygdala, and paramedian thalami. Videopolysomnography disclosed rapid eye movement (REM) sleep behavior disorder, and a Multiple Sleep Latency Test showed a mean sleep latency of 7 minutes and 4 sleep-onset REM periods. The level of hypocretin-1 in the cerebrospinal fluid was low (49 pg/mL). This observation illustrates that REM sleep behavior disorder and narcoleptic features are 2 REM-sleep abnormalities that (1) may share the same autoimmune-mediated origin affecting the brainstem, limbic, and diencephalic structures and (2) may occur in the setting of the paraneoplastic anti-Ma2-associated encephalitis.

  20. Auditory Inhibition of Rapid Eye Movements and Dream Recall from REM Sleep

    PubMed Central

    Stuart, Katrina; Conduit, Russell

    2009-01-01

    Study Objectives: There is debate in dream research as to whether ponto-geniculo-occipital (PGO) waves or cortical arousal during sleep underlie the biological mechanisms of dreaming. This study comprised 2 experiments. As eye movements (EMs) are currently considered the best noninvasive indicator of PGO burst activity in humans, the aim of the first experiment was to investigate the effect of low-intensity repeated auditory stimulation on EMs (and inferred PGO burst activity) during REM sleep. It was predicted that such auditory stimuli during REM sleep would have a suppressive effect on EMs. The aim of the second experiment was to examine the effects of this auditory stimulation on subsequent dream reporting on awakening. Design: Repeated measures design with counterbalanced order of experimental and control conditions across participants. Setting: Sleep laboratory based polysomnography (PSG) Participants: Experiment 1: 5 males and 10 females aged 18-35 years (M = 20.8, SD = 5.4). Experiment 2: 7 males and 13 females aged 18-35 years (M = 23.3, SD = 5.5). Interventions: Below-waking threshold tone presentations during REM sleep compared to control REM sleep conditions without tone presentations. Measurements and Results: PSG records were manually scored for sleep stages, EEG arousals, and EMs. Auditory stimulation during REM sleep was related to: (a) an increase in EEG arousal, (b) a decrease in the amplitude and frequency of EMs, and (c) a decrease in the frequency of visual imagery reports on awakening. Conclusions: The results of this study provide phenomenological support for PGO-based theories of dream reporting on awakening from sleep in humans. Citation: Stuart K; Conduit R. Auditory inhibition of rapid eye movements and dream recall from REM sleep. SLEEP 2009;32(3):399–408. PMID:19294960

  1. Orexin and Epilepsy: Potential Role of REM Sleep.

    PubMed

    Ng, Marcus C

    2017-03-01

    Interest in orexin receptor antagonism as a novel mechanism of action against seizures and epilepsy has increased in recent years. Loss of orexinergic activity is associated with rapid eye movement (REM) sleep onset, and REM sleep is generally protective against seizures. This paper discusses the dynamic modulation of seizure threshold by orexin through a postulated "orexi-cortical" axis in which the specific type of orexinergic activity exquisitely regulates sleep-wake states to modify ascending subcortical influences on cortical synchronization with profound subsequent consequences on seizure threshold. This paper also explores the current state of research into experimental orexinergic modulation of seizure threshold and suggests possible future research directions to fully understand the promise and peril of orexinergic manipulation in seizures and epilepsy. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study

    PubMed Central

    Rosales-Lagarde, Alejandra; Armony, Jorge L.; del Río-Portilla, Yolanda; Trejo-Martínez, David; Conde, Ruben; Corsi-Cabrera, Maria

    2012-01-01

    Converging evidence from animal and human studies suggest that rapid eye movement (REM) sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation (REM-D) on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM-D, by awakening them at each REM sleep onset, or non-rapid eye movement sleep interruptions (NREM-I) as control for potential non-specific effects of awakenings and lack of sleep. In a within-subject design, a visual emotional reactivity task was performed in the scanner before and 24 h after sleep manipulation. Behaviorally, emotional reactivity was enhanced relative to baseline (BL) in the REM deprived group only. In terms of fMRI signal, there was, as expected, an overall decrease in activity in the NREM-I group when subjects performed the task the second time, particularly in regions involved in emotional processing, such as occipital and temporal areas, as well as in the ventrolateral prefrontal cortex, involved in top-down emotion regulation. In contrast, activity in these areas remained the same level or even increased in the REM-D group, compared to their BL level. Taken together, these results suggest that lack of REM sleep in humans is associated with enhanced emotional reactivity, both at behavioral and neural levels, and thus highlight the specific role of REM sleep in regulating the neural substrates for emotional responsiveness. PMID:22719723

  3. The Time Course of the Probability of Transition Into and Out of REM Sleep

    PubMed Central

    Bassi, Alejandro; Vivaldi, Ennio A.; Ocampo-Garcés, Adrián

    2009-01-01

    Study Objectives: A model of rapid eye movement (REM) sleep expression is proposed that assumes underlying regulatory mechanisms operating as inhomogenous Poisson processes, the overt results of which are the transitions into and out of REM sleep. Design: Based on spontaneously occurring REM sleep episodes (“Episode”) and intervals without REM sleep (“Interval”), 3 variables are defined and evaluated over discrete 15-second epochs using a nonlinear logistic regression method: “Propensity” is the instantaneous rate of into-REM transition occurrence throughout an Interval, “Volatility” is the instantaneous rate of out-of-REM transition occurrence throughout an Episode, and “Opportunity” is the probability of being in non-REM (NREM) sleep at a given time throughout an Interval, a requisite for transition. Setting: 12:12 light:dark cycle, isolated boxes. Participants: Sixteen male Sprague-Dawley rats Interventions: None. Spontaneous sleep cycles. Measurements and Results: The highest levels of volatility and propensity occur, respectively, at the very beginning of Episodes and Intervals. The new condition stabilizes rapidly, and variables reach nadirs at minute 1.25 and 2.50, respectively. Afterward, volatility increases markedly, reaching values close to the initial level. Propensity increases moderately, the increment being stronger through NREM sleep bouts occurring at the end of long Intervals. Short-term homeostasis is evidenced by longer REM sleep episodes lowering propensity in the following Interval. Conclusions: The stabilization after transitions into Episodes or Intervals and the destabilization after remaining for some time in either condition may be described as resulting from continuous processes building up during Episodes and Intervals. These processes underlie the overt occurrence of transitions. Citation: Bassi A; Vivaldi EA; Ocampo-Garcées A. The time course of the probability of transition into and out of REM sleep. SLEEP 2009

  4. The Evolution of REM Sleep Behavior Disorder in Early Parkinson Disease

    PubMed Central

    Sixel-Döring, Friederike; Zimmermann, Johannes; Wegener, Andrea; Mollenhauer, Brit; Trenkwalder, Claudia

    2016-01-01

    Study Objectives: To investigate the development of REM sleep behavior disorder (RBD) and REM sleep behavioral events (RBE) not yet fulfilling diagnostic criteria for RBD as markers for neurodegeneration in a cohort of Parkinson disease (PD) patients between their de novo baseline assessment and two-year follow-up in comparison to healthy controls (HC). Methods: Clinically confirmed PD patients and HC with video-supported polysomnography (vPSG) data at baseline were re-investigated after two years. Diagnostic scoring for RBE and RBD was performed in both groups and related to baseline findings. Results: One hundred thirteen PD patients and 102 healthy controls (HC) were included in the study. Within two years, the overall occurrence of behaviors during REM sleep in PD patients increased from 50% to 63% (P = 0.02). RBD increased from 25% to 43% (P < 0.001). Eleven of 29 (38%) RBE positive PD patients and 10/56 (18%) patients with normal REM sleep at baseline converted to RBD. In HC, the occurrence of any REM behavior increased from 17% to 20% (n.s.). RBD increased from 2% to 4% (n.s.). One of 15 (7%) RBE positive HC and 1/85 (1%) HC with normal REM at baseline converted to RBD. Conclusions: RBD increased significantly in PD patients from the de novo state to two-year follow-up. We propose RBE being named “prodromal RBD” as it may follow a continuous evolution in PD possibly similar to the spreading of Lewy bodies in PD patients. RBD itself was shown as a robust and stable marker of early PD. Citation: Sixel-Döring F, Zimmermann J, Wegener A, Mollenhauer B, Trenkwalder C. The evolution of REM sleep behavior disorder in early Parkinson disease. SLEEP 2016;39(9):1737–1742. PMID:27306265

  5. No effect of odor-induced memory reactivation during REM sleep on declarative memory stability

    PubMed Central

    Cordi, Maren J.; Diekelmann, Susanne; Born, Jan; Rasch, Björn

    2014-01-01

    Memory reactivations in hippocampal brain areas are critically involved in memory consolidation processes during sleep. In particular, specific firing patterns of hippocampal place cells observed during learning are replayed during subsequent sleep and rest in rodents. In humans, experimentally inducing hippocampal memory reactivations during slow-wave sleep (but not during wakefulness) benefits consolidation and immediately stabilizes declarative memories against future interference. Importantly, spontaneous hippocampal replay activity can also be observed during rapid eye movement (REM) sleep and some authors have suggested that replay during REM sleep is related to processes of memory consolidation. However, the functional role of reactivations during REM sleep for memory stability is still unclear. Here, we reactivated memories during REM sleep and examined its consequences for the stability of declarative memories. After 3 h of early, slow-wave sleep (SWS) rich sleep, 16 healthy young adults learned a 2-D object location task in the presence of a contextual odor. During subsequent REM sleep, participants were either re-exposed to the odor or to an odorless vehicle, in a counterbalanced within subject design. Reactivation was followed by an interference learning task to probe memory stability after awakening. We show that odor-induced memory reactivation during REM sleep does not stabilize memories against future interference. We propose that the beneficial effect of reactivation during sleep on memory stability might be critically linked to processes characterizing SWS including, e.g., slow oscillatory activity, sleep spindles, or low cholinergic tone, which are required for a successful redistribution of memories from medial temporal lobe regions to neocortical long-term stores. PMID:25225474

  6. The Developmental Decrease in REM Sleep: The Role of Transmitters and Electrical Coupling

    PubMed Central

    Garcia-Rill, Edgar; Charlesworth, Amanda; Heister, David; Ye, Meijun; Hayar, Abdallah

    2008-01-01

    Study Objectives: This mini-review considers certain factors related to the developmental decrease in rapid eye movement (REM) sleep, which occurs in favor of additional waking time, and its relationship to developmental factors that may influence its potential role in brain development. Design: Specifically, we discuss some of the theories proposed for the occurrence of REM sleep and agree with the classic notion that REM sleep is, at the least, a mechanism that may play a role in the maturation of thalamocortical pathways. The developmental decrease in REM sleep occurs gradually from birth until close to puberty in the human, and in other mammals it is brief and coincides with eye and ear opening and the beginning of massive exogenous activation. Therefore, the purported role for REM sleep may change to involve a number of other functions with age. Measurements and Results: We describe recent findings showing that morphologic and physiologic properties as well as cholinergic, gamma amino-butyric acid, kainic acid, n-methyl-d-aspartic acid, noradrenergic, and serotonergic synaptic inputs to mesopontine cholinergic neurons, as well as the degree of electrical coupling between mostly noncholinergic mesopontine neurons and levels of the neuronal gap-junction protein connexin 36, change dramatically during this critical period in development. A novel mechanism for sleep-wake control based on well-known transmitter interactions, as well as electrical coupling, is described. Conclusion: We hypothesize that a dysregulation of this process could result in life-long disturbances in arousal and REM sleep drive, leading to hypervigilance or hypovigilance such as that observed in a number of disorders that have a mostly postpubertal age of onset. Citation: Garcia-Rill E; Charlesworth A; Heister D; Ye Y; Hayar A. The developmental decrease in REM sleep: the role of transmitters and electrical coupling. SLEEP 2008;31(5):673–690. PMID:18517037

  7. Prolonged enhancement of REM sleep produced by carbachol microinjection into the amygdala.

    PubMed

    Calvo, J M; Simón-Arceo, K; Fernández-Mas, R

    1996-01-31

    The effect on sleep organization of carbachol microinjected into different amygdaloid nuclei was analysed in 12 cats. Single carbachol doses of 8 micrograms in 0.50 microliter saline were delivered unilaterally or bilaterally into the central, basal, lateral or basolateral amygdaloid nucleus. Carbachol administration into the central nucleus induced a prolonged (5 days) enhancement of both REM sleep and its preceeding slow wave sleep episodes with PGO waves (sommeil phasique a ondes lentes, SPHOL), which was more pronounced following bilateral than unilateral carbachol administration. However, neither SPHOL nor REM sleep changes were produced by administration of carbachol into the other amygdaloid nuclei. We conclude that cholinergic activation of the central amygdaloid nucleus produces a long-term facilitation of REM sleep occurrence.

  8. The Evolution of REM Sleep Behavior Disorder in Early Parkinson Disease.

    PubMed

    Sixel-Döring, Friederike; Zimmermann, Johannes; Wegener, Andrea; Mollenhauer, Brit; Trenkwalder, Claudia

    2016-09-01

    To investigate the development of REM sleep behavior disorder (RBD) and REM sleep behavioral events (RBE) not yet fulfilling diagnostic criteria for RBD as markers for neurodegeneration in a cohort of Parkinson disease (PD) patients between their de novo baseline assessment and two-year follow-up in comparison to healthy controls (HC). Clinically confirmed PD patients and HC with video-supported polysomnography (vPSG) data at baseline were re-investigated after two years. Diagnostic scoring for RBE and RBD was performed in both groups and related to baseline findings. One hundred thirteen PD patients and 102 healthy controls (HC) were included in the study. Within two years, the overall occurrence of behaviors during REM sleep in PD patients increased from 50% to 63% (P = 0.02). RBD increased from 25% to 43% (P < 0.001). Eleven of 29 (38%) RBE positive PD patients and 10/56 (18%) patients with normal REM sleep at baseline converted to RBD. In HC, the occurrence of any REM behavior increased from 17% to 20% (n.s.). RBD increased from 2% to 4% (n.s.). One of 15 (7%) RBE positive HC and 1/85 (1%) HC with normal REM at baseline converted to RBD. RBD increased significantly in PD patients from the de novo state to two-year follow-up. We propose RBE being named "prodromal RBD" as it may follow a continuous evolution in PD possibly similar to the spreading of Lewy bodies in PD patients. RBD itself was shown as a robust and stable marker of early PD. © 2016 Associated Professional Sleep Societies, LLC.

  9. Quantitative electroencephalography during rapid eye movement (REM) and non-REM sleep in combat-exposed veterans with and without post-traumatic stress disorder.

    PubMed

    Cohen, Daniel J; Begley, Amy; Alman, Jennie J; Cashmere, David J; Pietrone, Regina N; Seres, Robert J; Germain, Anne

    2013-02-01

    Sleep disturbances are a hallmark feature of post-traumatic stress disorder (PTSD), and associated with poor clinical outcomes. Few studies have examined sleep quantitative electroencephalography (qEEG), a technique able to detect subtle differences that polysomnography does not capture. We hypothesized that greater high-frequency qEEG would reflect 'hyperarousal' in combat veterans with PTSD (n = 16) compared to veterans without PTSD (n = 13). EEG power in traditional EEG frequency bands was computed for artifact-free sleep epochs across an entire night. Correlations were performed between qEEG and ratings of PTSD symptoms and combat exposure. The groups did not differ significantly in whole-night qEEG measures for either rapid eye movement (REM) or non-REM (NREM) sleep. Non-significant medium effect sizes suggest less REM beta (opposite to our hypothesis), less REM and NREM sigma and more NREM gamma in combat veterans with PTSD. Positive correlations were found between combat exposure and NREM beta (PTSD group only), and REM and NREM sigma (non-PTSD group only). Results did not support global hyperarousal in PTSD as indexed by increased beta qEEG activity. The correlation of sigma activity with combat exposure in those without PTSD and the non-significant trend towards less sigma activity during both REM and NREM sleep in combat veterans with PTSD suggests that differential information processing during sleep may characterize combat-exposed military veterans with and without PTSD. © 2012 European Sleep Research Society.

  10. Identification of Causal Genes, Networks, and Transcriptional Regulators of REM Sleep and Wake

    PubMed Central

    Millstein, Joshua; Winrow, Christopher J.; Kasarskis, Andrew; Owens, Joseph R.; Zhou, Lili; Summa, Keith C.; Fitzpatrick, Karrie; Zhang, Bin; Vitaterna, Martha H.; Schadt, Eric E.; Renger, John J.; Turek, Fred W.

    2011-01-01

    Study Objective: Sleep-wake traits are well-known to be under substantial genetic control, but the specific genes and gene networks underlying primary sleep-wake traits have largely eluded identification using conventional approaches, especially in mammals. Thus, the aim of this study was to use systems genetics and statistical approaches to uncover the genetic networks underlying 2 primary sleep traits in the mouse: 24-h duration of REM sleep and wake. Design: Genome-wide RNA expression data from 3 tissues (anterior cortex, hypothalamus, thalamus/midbrain) were used in conjunction with high-density genotyping to identify candidate causal genes and networks mediating the effects of 2 QTL regulating the 24-h duration of REM sleep and one regulating the 24-h duration of wake. Setting: Basic sleep research laboratory. Patients or Participants: Male [C57BL/6J × (BALB/cByJ × C57BL/6J*) F1] N2 mice (n = 283). Interventions: None. Measurements and Results: The genetic variation of a mouse N2 mapping cross was leveraged against sleep-state phenotypic variation as well as quantitative gene expression measurement in key brain regions using integrative genomics approaches to uncover multiple causal sleep-state regulatory genes, including several surprising novel candidates, which interact as components of networks that modulate REM sleep and wake. In particular, it was discovered that a core network module, consisting of 20 genes, involved in the regulation of REM sleep duration is conserved across the cortex, hypothalamus, and thalamus. A novel application of a formal causal inference test was also used to identify those genes directly regulating sleep via control of expression. Conclusion: Systems genetics approaches reveal novel candidate genes, complex networks and specific transcriptional regulators of REM sleep and wake duration in mammals. Citation: Millstein J; Winrow CJ; Kasarskis A; Owens JR; Zhou L; Summa KC; Fitzpatrick K; Zhang B; Vitaterna MH; Schadt EE

  11. Atypical Headbanging Presentation of Idiopathic Sleep Related Rhythmic Movement Disorder: Three Cases with Video-Polysomnographic Documentation

    PubMed Central

    Yeh, Shih-Bin; Schenck, Carlos H.

    2012-01-01

    Study Objectives: To describe three cases of sleep related, idiopathic rhythmic movement disorder (RMD) with atypical headbanging, consisting of head punching and head slapping. Methods: Three consecutive patients (2 males [11 and 13 years old) and one female [22 years old]) presented with atypical headbanging of 6 years, 7 years, and 17 years duration. In 2 cases, typical rhythmic headbanging (with use of the head) shifted after 3-4 years to atypical headbanging, with frontal head punching that was quasi-rhythmic. In one case, atypical headbanging (head-slapping) was the initial and only RMD. There was no injury from the headbanging. Prenatal, perinatal, developmental, behavioral-psychological, medical-neurological, and family histories were negative. Clinical evaluations and nocturnal video-polysomnography with seizure montage were performed on all patients. Results: Atypical headbanging was documented in all 3 cases; episodes always emerged late in the sleep cycle: from N2 sleep in 11 episodes, from REM sleep in 4 episodes, and from N1 sleep in 1 episode. Epileptiform activity was not detected. Clonazepam therapy was substantially effective in 1 case but not effective in 2 cases. Conclusions: These 3 cases of idiopathic atypical headbanging expand the literature on this RMD variant, as to our knowledge only one previously documented case has been reported. Citation: Yeh SB; Schenck CH. Atypical headbanging presentation of idiopathic sleep related rhythmic movement disorder: three cases with video-polysomnographic documentation. J Clin Sleep Med 2012;8(4):403-411. PMID:22893771

  12. Why REM sleep? Clues beyond the laboratory in a more challenging world.

    PubMed

    Horne, Jim

    2013-02-01

    REM sleep (REM) seems more likely to prepare for ensuing wakefulness rather than provides recovery from prior wakefulness, as happens with 'deeper' nonREM. Many of REM's characteristics are 'wake-like' (unlike nonREM), including several common to feeding. These, with recent findings outside sleep, provide perspectives on REM beyond those from the laboratory. REM can interchange with a wakefulness involving motor output, indicating that REM's atonia is integral to its function. Wakefulness for 'wild' mammals largely comprises exploration; a complex opportunistic behaviour mostly for foraging, involving: curiosity, minimising risks, (emotional) coping, navigation, when (including circadian timing) to investigate new destinations; all linked to 'purposeful, goal directed movement'. REM reflects these adaptive behaviours (including epigenesis), masked in laboratories having constrained, safe, unchanging, unchallenging, featureless, exploration-free environments with ad lib food. Similarly masked may be REM's functions for today's humans living safe, routine lives, with easy food accessibility. In these respects animal and human REM studies are not sufficiently 'ecological'. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Video analysis of motor events in REM sleep behavior disorder.

    PubMed

    Frauscher, Birgit; Gschliesser, Viola; Brandauer, Elisabeth; Ulmer, Hanno; Peralta, Cecilia M; Müller, Jörg; Poewe, Werner; Högl, Birgit

    2007-07-30

    In REM sleep behavior disorder (RBD), several studies focused on electromyographic characterization of motor activity, whereas video analysis has remained more general. The aim of this study was to undertake a detailed and systematic video analysis. Nine polysomnographic records from 5 Parkinson patients with RBD were analyzed and compared with sex- and age-matched controls. Each motor event in the video during REM sleep was classified according to duration, type of movement, and topographical distribution. In RBD, a mean of 54 +/- 23.2 events/10 minutes of REM sleep (total 1392) were identified and visually analyzed. Seventy-five percent of all motor events lasted <2 seconds. Of these events, 1,155 (83.0%) were classified as elementary, 188 (13.5%) as complex behaviors, 50 (3.6%) as violent, and 146 (10.5%) as vocalizations. In the control group, 3.6 +/- 2.3 events/10 minutes (total 264) of predominantly elementary simple character (n = 240, 90.9%) were identified. Number and types of motor events differed significantly between patients and controls (P < 0.05). This study shows a very high number and great variety of motor events during REM sleep in symptomatic RBD. However, most motor events are minor, and violent episodes represent only a small fraction. Copyright 2007 Movement Disorder Society

  14. Non-REM sleep EEG power distribution in fatigue and sleepiness.

    PubMed

    Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Linkowski, Paul; Le Bon, Olivier

    2014-04-01

    The aim of this study is to contribute to the sleep-related differentiation between daytime fatigue and sleepiness. 135 subjects presenting with sleep apnea-hypopnea syndrome (SAHS, n=58) or chronic fatigue syndrome (CFS, n=52) with respective sleepiness or fatigue complaints and a control group (n=25) underwent polysomnography and psychometric assessments for fatigue, sleepiness, affective symptoms and perceived sleep quality. Sleep EEG spectral analysis for ultra slow, delta, theta, alpha, sigma and beta power bands was performed on frontal, central and occipital derivations. Patient groups presented with impaired subjective sleep quality and higher affective symptom intensity. CFS patients presented with highest fatigue and SAHS patients with highest sleepiness levels. All groups showed similar total sleep time. Subject groups mainly differed in sleep efficiency, wake after sleep onset, duration of light sleep (N1, N2) and slow wave sleep, as well as in sleep fragmentation and respiratory disturbance. Relative non-REM sleep power spectra distributions suggest a pattern of power exchange in higher frequency bands at the expense of central ultra slow power in CFS patients during all non-REM stages. In SAHS patients, however, we found an opposite pattern at occipital sites during N1 and N2. Slow wave activity presents as a crossroad of fatigue and sleepiness with, however, different spectral power band distributions during non-REM sleep. The homeostatic function of sleep might be compromised in CFS patients and could explain why, in contrast to sleepiness, fatigue does not resolve with sleep in these patients. The present findings thus contribute to the differentiation of both phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. REM Sleep Enhancement of Probabilistic Classification Learning is Sensitive to Subsequent Interference

    PubMed Central

    Barsky, Murray M.; Tucker, Matthew A.; Stickgold, Robert

    2015-01-01

    During wakefulness the brain creates meaningful relationships between disparate stimuli in ways that escape conscious awareness. Processes active during sleep can strengthen these relationships, leading to more adaptive use of those stimuli when encountered during subsequent wake. Performance on the weather prediction task (WPT), a well-studied measure of implicit probabilistic learning, has been shown to improve significantly following a night of sleep, with stronger initial learning predicting more nocturnal REM sleep. We investigated this relationship further, studying the effect on WPT performance of a daytime nap containing REM sleep. We also added an interference condition after the nap/wake period as an additional probe of memory strength. Our results show that a nap significantly boosts WPT performance, and that this improvement is correlated with the amount of REM sleep obtained during the nap. When interference training is introduced following the nap, however, this REM-sleep benefit vanishes. In contrast, following an equal period of wake, performance is both unchanged from training and unaffected by interference training. Thus, while the true probabilistic relationships between WPT stimuli are strengthened by sleep, these changes are selectively susceptible to the destructive effects of retroactive interference, at least in the short term. PMID:25769506

  16. Chemogenetic inhibition of the medial prefrontal cortex reverses the effects of REM sleep loss on sucrose consumption

    PubMed Central

    McEown, Kristopher; Takata, Yohko; Cherasse, Yoan; Nagata, Nanae; Aritake, Kosuke; Lazarus, Michael

    2016-01-01

    Rapid eye movement (REM) sleep loss is associated with increased consumption of weight-promoting foods. The prefrontal cortex (PFC) is thought to mediate reward anticipation. However, the precise role of the PFC in mediating reward responses to highly palatable foods (HPF) after REM sleep deprivation is unclear. We selectively reduced REM sleep in mice over a 25–48 hr period and chemogenetically inhibited the medial PFC (mPFC) by using an altered glutamate-gated and ivermectin-gated chloride channel that facilitated neuronal inhibition through hyperpolarizing infected neurons. HPF consumption was measured while the mPFC was inactivated and REM sleep loss was induced. We found that REM sleep loss increased HPF consumption compared to control animals. However, mPFC inactivation reversed the effect of REM sleep loss on sucrose consumption without affecting fat consumption. Our findings provide, for the first time, a causal link between REM sleep, mPFC function and HPF consumption. DOI: http://dx.doi.org/10.7554/eLife.20269.001 PMID:27919319

  17. Impact of REM sleep on distortions of self-concept, mood and memory in depressed/anxious participants

    PubMed Central

    McNamara, Patrick; Auerbach, Sanford; Johnson, Patricia; Harris, Erica; Doros, Gheorghe

    2009-01-01

    Introduction: We tested the hypothesis that REM sleep contributes to core features of cognitive dysfunction of anxious depression including negative self-appraisals, biased memory processing and unpleasant dream content. Methods: After a habituation night in a sleep lab, a convenience sample of 35 healthy college students and 20 depressed/anxious students were awakened 10 minutes into a REM sleep episode and then 10 minutes into a NREM sleep episode. Awakenings were counterbalanced to control circadian effects. After each awakening participants reported a dream and then completed memory recall, mood and self-appraisal tasks. Results: Self-appraisals of depressed/anxious participants were significantly less positive and significantly more negative after awakenings from REM sleep vs NREM sleep. Appraisal of the REM sleep dream self was negative for depressed/anxious subjects only. Recall of negative memories was significantly more frequent after REM vs NREM sleep awakenings for both depress/anxious and healthy participants. REM sleep dreams were associated with greater frequencies of negative emotion, greater aggression and victimization rates than dreams in NREM sleep for depressed/anxious participants. Limitations: Depressed/anxious participants were classified as such on the basis of mood scales rather than clinical interview. All participants were drawn from a volunteer college student population and thus our results may not be applicable to some elderly clinical populations. Conclusions: REM appears to facilitate cognitive distortions of anxious depression. PMID:19631989

  18. Impact of REM sleep on distortions of self-concept, mood and memory in depressed/anxious participants.

    PubMed

    McNamara, Patrick; Auerbach, Sanford; Johnson, Patricia; Harris, Erica; Doros, Gheorghe

    2010-05-01

    We tested the hypothesis that REM sleep contributes to core features of cognitive dysfunction of anxious depression including negative self-appraisals, biased memory processing and unpleasant dream content. After a habituation night in a sleep lab, a convenience sample of 35 healthy college students and 20 depressed/anxious students were awakened 10 min into a REM sleep episode and then 10 min into a NREM sleep episode. Awakenings were counterbalanced to control circadian effects. After each awakening participants reported a dream and then completed memory recall, mood and self-appraisal tasks. Self-appraisals of depressed/anxious participants were significantly less positive and significantly more negative after awakenings from REM sleep vs NREM sleep. Appraisal of the REM sleep dream self was negative for depressed/anxious subjects only. Recall of negative memories was significantly more frequent after REM vs NREM sleep awakenings for both depress/anxious and healthy participants. REM sleep dreams were associated with greater frequencies of negative emotion, greater aggression and victimization rates than dreams in NREM sleep for depressed/anxious participants. Depressed/anxious participants were classified as such on the basis of mood scales rather than clinical interview. All participants were drawn from a volunteer college student population and thus our results may not be applicable to some elderly clinical populations. REM appears to facilitate cognitive distortions of anxious depression. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. The Clinical Phenotype of Idiopathic Rapid Eye Movement Sleep Behavior Disorder at Presentation: A Study in 203 Consecutive Patients

    PubMed Central

    Fernández-Arcos, Ana; Iranzo, Alex; Serradell, Mónica; Gaig, Carles; Santamaria, Joan

    2016-01-01

    Objective: To describe the clinical phenotype of idiopathic rapid eye movement (REM) sleep behavior disorder (IRBD) at presentation in a sleep center. Methods: Clinical history review of 203 consecutive patients with IRBD identified between 1990 and 2014. IRBD was diagnosed by clinical history plus video-polysomnographic demonstration of REM sleep with increased electromyographic activity linked to abnormal behaviors. Results: Patients were 80% men with median age at IRBD diagnosis of 68 y (range, 50–85 y). In addition to the already known clinical picture of IRBD, other important features were apparent: 44% of the patients were not aware of their dream-enactment behaviors and 70% reported good sleep quality. In most of these cases bed partners were essential to convince patients to seek medical help. In 11% IRBD was elicited only after specific questioning when patients consulted for other reasons. Seven percent did not recall unpleasant dreams. Leaving the bed occurred occasionally in 24% of subjects in whom dementia with Lewy bodies often developed eventually. For the correct diagnosis of IRBD, video-polysomnography had to be repeated in 16% because of insufficient REM sleep or electromyographic artifacts from coexistent apneas. Some subjects with comorbid obstructive sleep apnea reported partial improvement of RBD symptoms following continuous positive airway pressure therapy. Lack of therapy with clonazepam resulted in an increased risk of sleep related injuries. Synucleinopathy was frequently diagnosed, even in patients with mild severity or uncommon IRBD presentations (e.g., patients who reported sleeping well, onset triggered by a life event, nocturnal ambulation) indicating that the development of a neurodegenerative disease is independent of the clinical presentation of IRBD. Conclusions: We report the largest IRBD cohort observed in a single center to date and highlight frequent features that were not reported or not sufficiently emphasized in previous

  20. The effect of selective REM-sleep deprivation on the consolidation and affective evaluation of emotional memories.

    PubMed

    Wiesner, Christian D; Pulst, Julika; Krause, Fanny; Elsner, Marike; Baving, Lioba; Pedersen, Anya; Prehn-Kristensen, Alexander; Göder, Robert

    2015-07-01

    Emotion boosts the consolidation of events in the declarative memory system. Rapid eye movement (REM) sleep is believed to foster the memory consolidation of emotional events. On the other hand, REM sleep is assumed to reduce the emotional tone of the memory. Here, we investigated the effect of selective REM-sleep deprivation, SWS deprivation, or wake on the affective evaluation and consolidation of emotional and neutral pictures. Prior to an 9-h retention interval, sixty-two healthy participants (23.5 ± 2.5 years, 32 female, 30 male) learned and rated their affect to 80 neutral and 80 emotionally negative pictures. Despite rigorous deprivation of REM sleep or SWS, the residual sleep fostered the consolidation of neutral and negative pictures. Furthermore, emotional arousal helped to memorize the pictures. The better consolidation of negative pictures compared to neutral ones was most pronounced in the SWS-deprived group where a normal amount of REM sleep was present. This emotional memory bias correlated with REM sleep only in the SWS-deprived group. Furthermore, emotional arousal to the pictures decreased over time, but neither sleep nor wake had any differential effect. Neither the comparison of the affective ratings (arousal, valence) during encoding and recognition, nor the affective ratings of the recognized targets and rejected distractors supported the hypothesis that REM sleep dampens the emotional reaction to remembered stimuli. The data suggest that REM sleep fosters the consolidation of emotional memories but has no effect on the affective evaluation of the remembered contents. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Why does serotonergic activity drastically decrease during REM sleep?

    PubMed

    Sato, Kohji

    2013-10-01

    Here, I postulate two hypotheses that can explain the missing link between sleep and the serotonergic system in terms of spine homeostasis and memory consolidation. As dendritic spines contain many kinds of serotonin receptors, and the activation of serotonin receptors generally increases the number of spines in the cortex and hippocampus, I postulate that serotonin neurons are down-regulated during sleep to decrease spine number, which consequently maintains the total spine number at a constant level. Furthermore, since synaptic consolidation during REM sleep needs long-term potentiation (LTP), and serotonin is reported to inhibit LTP in the cortex, I postulate that serotonergic activity must drastically decrease during REM sleep to induce LTP and do memory consolidation. Until now, why serotonergic neurons show these dramatic changes in the sleep-wake cycle remains unexplained; however, making these hypotheses, I can confer physiological meanings on these dramatic changes of serotonergic neurons in terms of spine homeostasis and memory consolidation. Copyright © 2013. Published by Elsevier Ltd.

  2. The Homeostatic Regulation of REM Sleep: A role for Localized Expression of Brain-Derived Neurotrophic Factor in the Brainstem

    PubMed Central

    Datta, Subimal; Knapp, Clifford M.; Koul-Tiwari, Richa; Barnes, Abigail

    2015-01-01

    Homeostatic regulation of REM sleep plays a key role in neural plasticity and deficits in this process are implicated in the development of many neuropsychiatric disorders. Little is known, however, about the molecular mechanisms that underlie this homeostatic regulation process. This study examined the hypothesis that, during selective REM sleep deprivation (RSD), increased brain-derived neurotrophic factor (BDNF) expression in REM sleep regulating areas is critical for the development of homeostatic drive for REM sleep, as measured by an increase in the number of REM sleep transitions. Rats were assigned to RSD, non-sleep deprived (BSL), or total sleep deprivation (TSD) groups. Physiological recordings were obtained from cortical, hippocampal, and pontine EEG electrodes over a 6-hour period, in which sleep deprivation occurred during the first 3 hours. In the RSD, but not the other conditions, homeostatic drive for REM sleep increased progressively. BDNF protein expression was significantly greater in the pedunculopontine tegmentum (PPT) and subcoeruleus nucleus (SubCD) in the RSD as compared to the TSD and BSL groups, areas that regulate REM sleep, but not in the medial preoptic area, which regulates non-REM sleep. There was a significant positive correlation between RSD-induced increases in number of REM sleep episodes and increased BDNF expression in the PPT and SubCD. These increases positively correlated with levels of homeostatic drive for REM sleep. These results, for the first time, suggest that selective RSD-induced increased expression of BDNF in the PPT and SubCD are determinant factors in the development of the homeostatic drive for REM sleep. PMID:26146031

  3. Knockdown of orexin type 2 receptor in the lateral pontomesencephalic tegmentum of rats increases REM sleep

    PubMed Central

    Chen, Lichao; McKenna, James T.; Bolortuya, Yunren; Brown, Ritchie E.

    2012-01-01

    Dysfunction of the orexin/hypocretin neurotransmitter system causes the sleep disorder narcolepsy, characterized by intrusion of rapid-eye-movement (REM) sleep-like events into normal wakefulness. The sites where orexins act to suppress REM sleep are incompletely understood. Previous studies suggested that the lateral pontomesencephalic tegmentum (lPMT) contains an important REM sleep inhibitory area, and proposed that orexins inhibit REM sleep via orexin type 2 receptors (OxR2) in this region. However, this hypothesis has heretofore not been tested. We thus performed bilateral injection of small interfering RNAs (siRNAs) targeting Ox2R into the lPMT on two consecutive days. This led to a ~30 % increase of time spent in REM sleep in both the dark and light periods for the first two days after injection, with a return to baseline over the next two post-injection days. This increase was mainly due to more longer (>120 s) REM episodes. Cataplexy-like episodes were not observed. The percentage of time spent in wakefulness and NREM sleep, as well as the power spectral profile of NREM and REM sleep, were unaffected. Control animals injected with scrambled siRNA had no sleep changes post-injection. Quantification of the knockdown revealed that unilateral microinjection of siRNAs targeting OxR2 into the lPMT induced a ~40% reduction of OxR2 mRNA two days following the injections when compared to the contralateral side receiving control (scrambled) siRNA. Orexin type 1 receptor (OxR1) mRNA level was unaffected. Our results indicate that removal of OxR2 neurotransmission in the lPMT enhances REM sleep by increasing the duration of REM episodes. PMID:23282008

  4. Antidepressants and REM sleep behavior disorder: isolated side effect or neurodegenerative signal?

    PubMed

    Postuma, Ronald B; Gagnon, Jean-Francois; Tuineaig, Maria; Bertrand, Josie-Anne; Latreille, Veronique; Desjardins, Catherine; Montplaisir, Jacques Y

    2013-11-01

    Antidepressants, among the most commonly prescribed medications, trigger symptoms of REM sleep behavior disorder (RBD) in up to 6% of users. Idiopathic RBD is a very strong prodromal marker of Parkinson disease and other synuclein-mediated neurodegenerative syndromes. It is therefore critically important to understand whether antidepressant-associated RBD is an independent pharmacologic syndrome or a sign of possible prodromal neurodegeneration. Prospective cohort study. Tertiary sleep disorders center. 100 patients with idiopathic RBD, all with diagnosis confirmed on polysomnography, stratified to baseline antidepressant use, with 45 matched controls. Of 100 patients, 27 were taking antidepressants. Compared to matched controls, RBD patients taking antidepressants demonstrated significant abnormalities of 12/14 neurodegenerative markers tested, including olfaction (P = 0.007), color vision (P = 0.004), Unified Parkinson Disease Rating Scale II and III (P < 0.001 and 0.007), timed up-and-go (P = 0.003), alternate tap test (P = 0.002), Purdue Pegboard (P = 0.007), systolic blood pressure drop (P = 0.029), erectile dysfunction (P = 0.002), constipation (P = 0.003), depression indices (P < 0.001), and prevalence of mild cognitive impairment (13% vs. 60%, P < 0.001). All these abnormalities were indistinguishable in severity from RBD patients not taking antidepressants. However, on prospective follow-up, RBD patients taking antidepressants had a lower risk of developing neurodegenerative disease than those without antidepressant use (5-year risk = 22% vs. 59%, RR = 0.22, 95%CI = 0.06, 0.74). Although patients with antidepressant-associated RBD have a lower risk of neurodegeneration than patients with "purely-idiopathic" RBD, markers of prodromal neurodegeneration are still clearly present. Development of RBD with antidepressants can be an early signal of an underlying neurodegenerative disease.

  5. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep.

    PubMed

    Poe, G R; Nitz, D A; McNaughton, B L; Barnes, C A

    2000-02-07

    The idea that sleep could serve a cognitive function has remained popular since Freud stated that dreams were "not nonsense" but a time to sort out experiences [S. Freud, Letter to Wilhelm Fliess, May 1897, in The Origins of Psychoanalysis - Personal Letters of Sigmund Freud, M. Bonaparte, A. Freud, E. Kris (Eds.), Translated by E. Mosbacher, J. Strachey, Basic Books and Imago Publishing, 1954]. Rapid eye movement (REM) sleep, which is associated with dream reports, is now known to be is important for acquisition of some tasks [A. Karni, D. Tanne, B.S. Rubenstein, J.J.M. Askenasy, D. Sagi, Dependence on REM sleep of overnight improvement of a perceptual skill, Science 265 (1994) 679-682; C. Smith, Sleep states and learning: a review of the animal literature, Biobehav. Rev. 9 (1985) 157-168]; although why this is so remains obscure. It has been proposed that memories may be consolidated during REM sleep or that forgetting of unnecessary material occurs in this state [F. Crick, G. Mitchison, The function of dream sleep, Nature 304 (1983) 111-114; D. Marr, Simple memory: a theory for archicortex, Philos. Trans. R. Soc. B. 262 (1971) 23-81]. We studied the firing of multiple single neurons in the hippocampus, a structure that is important for episodic memory, during familiar and novel experiences and in subsequent REM sleep. Cells active in familiar places during waking exhibited a reversal of firing phase relative to local theta oscillations in REM sleep. Because firing-phase can influence whether synapses are strengthened or weakened [C. Holscher, R. Anwyl, M.J. Rowan, Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo, J. Neurosci. 15 (1977) 6470-6477; P.T. Huerta, J.E. Lisman, Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro, Neuron 15 (1995) 1053-1063; C. Pavlides, Y

  6. Comparison of Polysomnography and Multiple Sleep Latency Test Findings in Subjects with Narcolepsy and İdiopathic Hypersomnia.

    PubMed

    Erdem, Murat; Bolu, Abdullah; Ünlü, A Gazi; Alper, Mustafa; Yetkin, Sinan

    2013-09-01

    Both narcolepsy and idiopathic hypersomnia are the main causes of excessive daytime sleepiness. In this study, we aimed to compare polysomnography (PSG) and multiple sleep latency test (MSLT) findings in narcolepsy and idiopathic hypersomnia patients. The files of patients with narcolepsy and hypersomnia who were admitted between 1995 and 2009 were reviewed. We evaluated data from 94 patients with narcolepsy with cataplexy, 49 with narcolepsy without cataplexy and 140 patients with idiopathic hypersomnia. Sleep latency and REM latency were longer in idiopathic hypersomnia group than in narcolepsy with and without cataplexy group. Mean sleep latency in MSLT was the shortest in narcolepsy with cataplexy group. There was no difference in sleep efficiency, percentage of sleep stage and number of awakenings in PSG between three groups. The findings of the study indicated that narcolepsy patients differ from idiopathic hypersomnia patients in terms of sleep latency and REM latency in PSG.

  7. Pareidolias in REM Sleep Behavior Disorder: A Possible Predictive Marker of Lewy Body Diseases?

    PubMed

    Sasai-Sakuma, Taeko; Nishio, Yoshiyuki; Yokoi, Kayoko; Mori, Etsuro; Inoue, Yuichi

    2017-02-01

    To investigate conditions and clinical significance of pareidolias in patients with idiopathic rapid eyemovent (REM) sleep behavior disorder (iRBD). This cross-sectional study examined 202 patients with iRBD (66.8 ± 8.0 yr, 58 female) and 46 healthy control subjects (64.7 ± 5.8 years, 14 females). They underwent the Pareidolia test, a newly developed instrument for evoking pareidolias, video polysomnography, olfactory tests, and Addenbrooke's cognitive examination-revised. Results show that 53.5% of iRBD patients exhibited one or more pareidolic responses: The rate was higher than control subjects showed (21.7%). The pictures evoking pareidolic responses were more numerous for iRBD patients than for control subjects (1.2 ± 1.8 vs. 0.4 ± 0.8, p < .001). Subgroup analyses revealed that iRBD patients with pareidolic responses had higher amounts of REM sleep without atonia (RWA), with lower sleep efficiency, lower cognitive function, and older age than subjects without pareidolic responses. Results of multivariate analyses show the number of pareidolic responses as a factor associated with decreased cognitive function in iRBD patients with better predictive accuracy. Morbidity length and severity of iRBD, olfactory function, and the amount of RWA were not factors associated with better predictive accuracy. Half or more of the iRBD patients showed pareidolic responses. The responses were proven to be associated more intimately with their cognitive decline than clinical or physiological variables related to RBD. Pareidolias in iRBD are useful as a predictive marker of future development of Lewy body diseases. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  8. The effects of acetazolamide on arterial pressure variability during REM sleep in the rat.

    PubMed

    Sone, M; Sei, H; Morita, Y; Ogura, T; Sone, S

    1998-01-01

    During rapid eye movement (REM) sleep, the arterial pressure (AP) undergoes large fluctuations in the rat, cat, and other mammals, including humans, and it has been suggested that this effect originates in the forebrain. In addition, acetazolamide (ACTZ), a carbonic anhydrase inhibitor, is known to be effective in the treatment of central sleep apnea or epilepsy. The aim of the present study was to analyze the effects of ACTZ on EEG theta rhythm and AP variability during REM sleep in rats. Treatment consisted of intraperitoneal injection of 5 mg of ACTZ in 0.5 mL of saline (n = 6) or 0.5 mL of vehicle alone (n = 6). We then recorded and analyzed the mean AP (MAP) variations during different sleep phases, using a telemetric system. Our results show: 1) Significant decreases in the coefficient of variation of MAP, in the very-low frequency (0.025 - 0.225 Hz) component of the power spectral density of the AP and in theta frequency in the electroencephalogram, were seen in the ACTZ-treated group during REM sleep compared with controls, whereas no significant difference was found between the two groups in non-REM sleep. There was no significant difference in sleep duration, average MAP, and heart rate between the groups. Our data suggest that ACTZ may act as a stabilizing factor preventing AP fluctuations during REM sleep.

  9. The homeostatic regulation of REM sleep: A role for localized expression of brain-derived neurotrophic factor in the brainstem.

    PubMed

    Datta, Subimal; Knapp, Clifford M; Koul-Tiwari, Richa; Barnes, Abigail

    2015-10-01

    Homeostatic regulation of REM sleep plays a key role in neural plasticity and deficits in this process are implicated in the development of many neuropsychiatric disorders. Little is known, however, about the molecular mechanisms that underlie this homeostatic regulation process. This study examined the hypothesis that, during selective REM sleep deprivation (RSD), increased brain-derived neurotrophic factor (BDNF) expression in REM sleep regulating areas is critical for the development of homeostatic drive for REM sleep, as measured by an increase in the number of REM sleep transitions. Rats were assigned to RSD, non-sleep deprived (BSL), or total sleep deprivation (TSD) groups. Physiological recordings were obtained from cortical, hippocampal, and pontine EEG electrodes over a 6h period, in which sleep deprivation occurred during the first 3h. In the RSD, but not the other conditions, homeostatic drive for REM sleep increased progressively. BDNF protein expression was significantly greater in the pedunculopontine tegmentum (PPT) and subcoeruleus nucleus (SubCD) in the RSD as compared to the TSD and BSL groups, areas that regulate REM sleep, but not in the medial preoptic area, which regulates non-REM sleep. There was a significant positive correlation between RSD-induced increases in number of REM sleep episodes and increased BDNF expression in the PPT and SubCD. These increases positively correlated with levels of homeostatic drive for REM sleep. These results, for the first time, suggest that selective RSD-induced increased expression of BDNF in the PPT and SubCD are determinant factors in the development of the homeostatic drive for REM sleep. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Functional role of diverse changes in sympathetic nerve activity in regulating arterial pressure during REM sleep.

    PubMed

    Yoshimoto, Misa; Yoshida, Ikue; Miki, Kenju

    2011-08-01

    This study aimed to investigate whether REM sleep evoked diverse changes in sympathetic outflows and, if so, to elucidate why REM sleep evokes diverse changes in sympathetic outflows. Male Wistar rats were chronically implanted with electrodes to measure renal (RSNA) and lumbar sympathetic nerve activity (LSNA), electroencephalogram, electromyogram, and electrocardiogram, and catheters to measure systemic arterial and central venous pressure; these parameters were measured simultaneously and continuously during the sleep-awake cycle in the same rat. REM sleep resulted in a step reduction in RNSA by 36.1% ± 2.7% (P < 0.05), while LSNA increased in a step manner by 15.3% ± 2% (P < 0.05) relative to the NREM level. Systemic arterial pressure increased gradually (P < 0.05), while heart rate decreased in a step manner (P < 0.05) during REM sleep. In contrast to REM sleep, RSNA, LSNA, systemic arterial pressure, and heart rate increased in a unidirectional manner associated with increases in physical activity levels in the order from NREM sleep, quiet awake, moving, and grooming state. Thus, the relationship between RSNA vs. LSNA and systemic arterial pressure vs. heart rate observed during REM sleep was dissociated compared with that obtained during the other behavioral states. It is suggested that the diverse changes in sympathetic outflows during REM sleep may be needed to increase systemic arterial pressure by balancing vascular resistance between muscles and vegetative organs without depending on the heart.

  11. Test-Retest Reliability of the Multiple Sleep Latency Test in Narcolepsy without Cataplexy and Idiopathic Hypersomnia

    PubMed Central

    Trotti, Lynn Marie; Staab, Beth A.; Rye, David B.

    2013-01-01

    Study Objectives: Differentiation of narcolepsy without cataplexy from idiopathic hypersomnia relies entirely upon the multiple sleep latency test (MSLT). However, the test-retest reliability for these central nervous system hypersomnias has never been determined. Methods: Patients with narcolepsy without cataplexy, idiopathic hypersomnia, and physiologic hypersomnia who underwent two diagnostic multiple sleep latency tests were identified retrospectively. Correlations between the mean sleep latencies on the two studies were evaluated, and we probed for demographic and clinical features associated with reproducibility versus change in diagnosis. Results: Thirty-six patients (58% women, mean age 34 years) were included. Inter -test interval was 4.2 ± 3.8 years (range 2.5 months to 16.9 years). Mean sleep latencies on the first and second tests were 5.5 (± 3.7 SD) and 7.3 (± 3.9) minutes, respectively, with no significant correlation (r = 0.17, p = 0.31). A change in diagnosis occurred in 53% of patients, and was accounted for by a difference in the mean sleep latency (N = 15, 42%) or the number of sleep onset REM periods (N = 11, 31%). The only feature predictive of a diagnosis change was a history of hypnagogic or hypnopompic hallucinations. Conclusions: The multiple sleep latency test demonstrates poor test-retest reliability in a clinical population of patients with central nervous system hypersomnia evaluated in a tertiary referral center. Alternative diagnostic tools are needed. Citation: Trotti LM; Staab BA; Rye DB. Test- retest reliability of the multiple sleep latency test in narcolepsy without cataplexy and idiopathic hypersomnia. J Clin Sleep Med 2013;9(8):789-795. PMID:23946709

  12. The hypocretins (orexins) mediate the “phasic” components of REM sleep: A new hypothesis

    PubMed Central

    Torterolo, Pablo; Chase, Michael H.

    2014-01-01

    In 1998, a group of phenotypically distinct neurons were discovered in the postero-lateral hypothalamus which contained the neuropeptides hypocretin 1 and hypocretin 2 (also called orexin A and orexin B), which are excitatory neuromodulators. Hypocretinergic neurons project throughout the central nervous system and have been involved in the generation and maintenance of wakefulness. The sleep disorder narcolepsy, characterized by hypersomnia and cataplexy, is produced by degeneration of these neurons. The hypocretinergic neurons are active during wakefulness in conjunction with the presence of motor activity that occurs during survival-related behaviors. These neurons decrease their firing rate during non-REM sleep; however there is still controversy upon the activity and role of these neurons during REM sleep. Hence, in the present report we conducted a critical review of the literature of the hypocretinergic system during REM sleep, and hypothesize a possible role of this system in the generation of REM sleep. PMID:26483897

  13. A restricted parabrachial pontine region is active during non-REM sleep

    PubMed Central

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H.

    2011-01-01

    The principal site that generates both REM sleep and wakefulness is located in the mesopontine reticular formation, whereas non-REM sleep (NREM) is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase or GABA. During NREM, only a few Fos immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral peribrachial region (CLPB). The number of the Fos+ neurons in the CLPB during NREM was significantly greater (67.9 ± 10.9, P < 0.0001) compared to QW (8.0 ± 6.7), AW (5.2 ± 4.2) or REM-carbachol (8.0 ± 4.7). In addition, there was a positive correlation (R = 0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of

  14. The role of REM sleep in the processing of emotional memories: evidence from behavior and event-related potentials.

    PubMed

    Groch, S; Wilhelm, I; Diekelmann, S; Born, J

    2013-01-01

    Emotional memories are vividly remembered for the long-term. Rapid eye movement (REM) sleep has been repeatedly proposed to support the superior retention of emotional memories. However, its exact contribution and, specifically, whether its effect is mainly on the consolidation of the contents or the processing of the affective component of emotional memories is not clear. Here, we investigated the effects of sleep rich in slow wave sleep (SWS) or REM sleep on the consolidation of emotional pictures and the accompanying changes in affective tone, using event-related potentials (ERPs) together with subjective ratings of valence and arousal. Sixteen healthy, young men learned 50 negative and 50 neutral pictures before 3-h retention sleep intervals that were filled with either SWS-rich early or REM sleep-rich late nocturnal sleep. In accordance with our hypothesis, recognition was better for emotional pictures than neutral pictures after REM compared to SWS-rich sleep. This emotional enhancement after REM-rich sleep expressed itself in an increased late positive potential of the ERP over the frontal cortex 300-500 ms after stimulus onset for correctly classified old emotional pictures compared with new emotional and neutral pictures. Valence and arousal ratings of emotional pictures were not differentially affected by REM or SWS-rich sleep after learning. Our results corroborate that REM sleep contributes to the consolidation of emotional contents in memory, but suggest that the affective tone is preserved rather than reduced by the processing of emotional memories during REM sleep. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Daytime REM sleep affects emotional experience but not decision choices in moral dilemmas.

    PubMed

    Cellini, Nicola; Lotto, Lorella; Pletti, Carolina; Sarlo, Michela

    2017-09-11

    Moral decision-making depends on the interaction between automatic emotional responses and rational cognitive control. A natural emotional regulator state seems to be sleep, in particular rapid eye movement (REM) sleep. We tested the impact of daytime sleep, either with or without REM, on moral decision. Sixty participants were presented with 12 sacrificial (6 Footbridge- and 6 Trolley-type) and 8 everyday-type moral dilemmas at 9 AM and at 5 PM. In sacrificial dilemmas, participants had to decide whether or not to kill one person to save more people (utilitarian choice), and to judge how morally acceptable the proposed choice was. In everyday-type dilemmas, participants had to decide whether to endorse moral violations involving dishonest behavior. At 12 PM, 40 participants took a 120-min nap (17 with REM and 23 with NREM only) while 20 participants remained awake. Mixed-model analysis revealed that participants judged the utilitarian choice as less morally acceptable in the afternoon, irrespective of sleep. We also observed a negative association between theta activity during REM and increased self-rated unpleasantness during moral decisions. Nevertheless, moral decision did not change across the day and between groups. These results suggest that although both time and REM sleep may affect the evaluation of a moral situation, these factors did not ultimately impact the individual moral choices.

  16. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia

    PubMed Central

    Pace, Marta; Adamantidis, Antoine; Facchin, Laura; Bassetti, Claudio

    2017-01-01

    Study Objectives Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. Methods Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. Results A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. Conclusions Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke. PMID:28061506

  17. Test-retest reliability of the multiple sleep latency test in narcolepsy without cataplexy and idiopathic hypersomnia.

    PubMed

    Trotti, Lynn Marie; Staab, Beth A; Rye, David B

    2013-08-15

    Differentiation of narcolepsy without cataplexy from idiopathic hypersomnia relies entirely upon the multiple sleep latency test (MSLT). However, the test-retest reliability for these central nervous system hypersomnias has never been determined. Patients with narcolepsy without cataplexy, idiopathic hypersomnia, and physiologic hypersomnia who underwent two diagnostic multiple sleep latency tests were identified retrospectively. Correlations between the mean sleep latencies on the two studies were evaluated, and we probed for demographic and clinical features associated with reproducibility versus change in diagnosis. Thirty-six patients (58% women, mean age 34 years) were included. Inter -test interval was 4.2 ± 3.8 years (range 2.5 months to 16.9 years). Mean sleep latencies on the first and second tests were 5.5 (± 3.7 SD) and 7.3 (± 3.9) minutes, respectively, with no significant correlation (r = 0.17, p = 0.31). A change in diagnosis occurred in 53% of patients, and was accounted for by a difference in the mean sleep latency (N = 15, 42%) or the number of sleep onset REM periods (N = 11, 31%). The only feature predictive of a diagnosis change was a history of hypnagogic or hypnopompic hallucinations. The multiple sleep latency test demonstrates poor test-retest reliability in a clinical population of patients with central nervous system hypersomnia evaluated in a tertiary referral center. Alternative diagnostic tools are needed.

  18. REM sleep latency and neurocognitive dysfunction in schizophrenia

    PubMed Central

    Das, Mrinmay; Das, Ruchika; Khastgir, Udayan; Goswami, Utpal

    2005-01-01

    Background: Cognitive deficits—the hallmark of schizophrenic deterioration—still remain elusive as far as their pathophysiology is concerned. Various neurotransmitter systems have been implicated to explain these deficits. Abnormalities in cholinergic neurotransmission in the brain are one of the postulations; acetylcholine has also been postulated to regulate rapid eye movement (REM) sleep, especially REM latency. Thus, REM latency in patients with schizophrenia might provide a non-invasive window to look into the cholinergic functions of the brain. Aim: To study REM sleep measures and neurocognitive function in schizophrenia, and the changes occurring in these parameters following pharmacological treatment. Methods: Thirty subjects (15 with schizophrenia and 15 normal non-relative controls) were evaluated in this study. Most patients with schizophrenia had prominent negative symptoms and deficits in the performance in neurocognitive tests battery. They were treated with antipsychotics for a variable period of time and post-treatment evaluation was done using the same battery of neurocognitive tests and polysomnography. Patients were either drug-naïve or kept drug-free for at least two weeks both at baseline as well as at the post-treatment stage. Results: A positive correlation between the severity of negative symptoms and neurocognitive deficits (especially on the Wisconsin Card Sorting), and a negative correlation between these two parameters and REM latency was observed. Conclusion: It can be hypothesized that the acetylcholine deficit model of dementia cannot be applied to schizophrenic dementia, rather a hypercholinergic state results. This state warrants anticholinergic medication as a treatment option for negative symptoms of schizophrenia. PMID:20814454

  19. Atypical headbanging presentation of idiopathic sleep related rhythmic movement disorder: three cases with video-polysomnographic documentation.

    PubMed

    Yeh, Shih-Bin; Schenck, Carlos H

    2012-08-15

    To describe three cases of sleep related, idiopathic rhythmic movement disorder (RMD) with atypical headbanging, consisting of head punching and head slapping. Three consecutive patients (2 males [11 and 13 years old) and one female [22 years old]) presented with atypical headbanging of 6 years, 7 years, and 17 years duration. In 2 cases, typical rhythmic headbanging (with use of the head) shifted after 3-4 years to atypical headbanging, with frontal head punching that was quasi-rhythmic. In one case, atypical headbanging (head-slapping) was the initial and only RMD. There was no injury from the headbanging. Prenatal, perinatal, developmental, behavioral-psychological, medical-neurological, and family histories were negative. Clinical evaluations and nocturnal video-polysomnography with seizure montage were performed on all patients. Atypical headbanging was documented in all 3 cases; episodes always emerged late in the sleep cycle: from N2 sleep in 11 episodes, from REM sleep in 4 episodes, and from N1 sleep in 1 episode. Epileptiform activity was not detected. Clonazepam therapy was substantially effective in 1 case but not effective in 2 cases. These 3 cases of idiopathic atypical headbanging expand the literature on this RMD variant, as to our knowledge only one previously documented case has been reported.

  20. REM Sleep Behaviour Disorder in Older Individuals: Epidemiology, Pathophysiology, and Management

    PubMed Central

    Trotti, Lynn Marie

    2010-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a sleep disorder that predominantly affects older adults, in which patients appear to be enacting their dreams while in REM sleep. The behaviors are typically violent, in association with violent dream content, so serious harm can be done to the patient or the bed-partner. The estimated prevalence in adults is 0.4–0.5%, but the frequency is much higher in certain neurodegenerative diseases, especially Parkinson's disease, Dementia with Lewy bodies, and multiple systems atrophy. RBD can occur in the absence of diagnosed neurologic diseases (the “idiopathic” form), although patients with this form of RBD may have subtle neurologic abnormalities and often ultimately develop a neurodegenerative disorder. Animal models and cases of RBD developing after brainstem lesions (pontine tegmentum, medulla) have led to the understanding that RBD is caused by a lack of normal REM muscle atonia and a lack of normal suppression of locomotor generators during REM. Clonazepam is used as first-line therapy for RBD and melatonin for second-line therapy, although evidence for both of these interventions comes from uncontrolled case series. Because the risk of injury to the patient or the bed-partner is high, interventions to improve the safety of the sleep environment are also often necessary. This review describes the epidemiology, pathophysiology, and treatment of RBD. PMID:20524706

  1. REM sleep and emotional face memory in typically-developing children and children with autism.

    PubMed

    Tessier, Sophie; Lambert, Andréane; Scherzer, Peter; Jemel, Boutheina; Godbout, Roger

    2015-09-01

    Relationship between REM sleep and memory was assessed in 13 neurotypical and 13 children with Autistic Spectrum Disorder (ASD). A neutral/positive/negative face recognition task was administered the evening before (learning and immediate recognition) and the morning after (delayed recognition) sleep. The number of rapid eye movements (REMs), beta and theta EEG activity over the visual areas were measured during REM sleep. Compared to neurotypical children, children with ASD showed more theta activity and longer reaction time (RT) for correct responses in delayed recognition of neutral faces. Both groups showed a positive correlation between sleep and performance but different patterns emerged: in neurotypical children, accuracy for recalling neutral faces and overall RT improvement overnight was correlated with EEG activity and REMs; in children with ASD, overnight RT improvement for positive and negative faces correlated with theta and beta activity, respectively. These results suggest that neurotypical and children with ASD use different sleep-related brain networks to process faces. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Sleep and Arousal Mechanisms in Experimental Epilepsy: Epileptic Components of NREM and Antiepileptic Components of REM Sleep

    ERIC Educational Resources Information Center

    Shouse, M. N.; Scordato, J. C.; Farber, P. R.

    2004-01-01

    Neural generators related to different sleep components have different effects on seizure discharge. These sleep-related systems can provoke seizure discharge propagation during nonrapid eye movement (NREM) sleep and can suppress propagation during REM sleep. Experimental manipulations of discrete physiological components were conducted in feline…

  3. Insomnia-perchance a dream? Results from a NREM/REM sleep awakening study in good sleepers and patients with insomnia.

    PubMed

    Feige, Bernd; Nanovska, Svetoslava; Baglioni, Chiara; Bier, Benedict; Cabrera, Laura; Diemers, Sarah; Quellmalz, Maximilian; Siegel, Markus; Xeni, Ireni; Szentkiralyi, Andras; Doerr, John-Peter; Riemann, Dieter

    2018-05-01

    Insomnia disorder (ID) is a frequent sleep disorder coupled with increased risks for somatic and mental illness. Although subjective complaints are severe, polysomnography (PSG) parameters show only modest differences between groups. Rapid eye movement (REM) sleep as the most aroused sleep state may be especially vulnerable to be perceived as wake. To directly assess possible differences, we determined auditory waking thresholds and sleep perception in patients with ID and healthy control participants (good sleeper controls [GSC]) in N2 and REM sleep. In case-control study, 27 patients with ID and 27 age- and gender-matched controls were included. Four consecutive nights were assessed in the sleep laboratory, with nights 3 and 4 each containing three awakenings either from stable N2 or REM sleep. Awakening thresholds in patients with ID did not differ from GSC, but decreased over the course of the night. Patients with ID indicated significantly more frequently than GSC having been awake when woken from REM sleep but not from N2 and were less sure when indicating they had been asleep. Additionally, participants with ID rated their REM sleep mentation as more emotionally negative compared with GSC. This study presents direct evidence that the subjective experience of insomnia might be specifically coupled to the REM sleep state. Assuming chronic hyperarousal as a central pathophysiologically relevant pathway for insomnia, this might become especially evident during REM sleep, thus reflecting a hybrid sleep state in insomnia being coupled with altered sleep perception.

  4. Incorporation of recent waking-life experiences in dreams correlates with frontal theta activity in REM sleep.

    PubMed

    Eichenlaub, Jean-Baptiste; van Rijn, Elaine; Gareth Gaskell, M; Lewis, Penelope A; Maby, Emmanuel; Malinowski, Josie; Walker, Matthew P; Boy, Frederic; Blagrove, Mark

    2018-06-04

    Rapid Eye Movement (REM) sleep and its main oscillatory feature, frontal theta, have been related to the processing of recent emotional memories. As memories constitute much of the source material for our dreams, we explored the link between REM frontal theta and the memory sources of dreaming, so as to elucidate the brain activities behind the formation of dream content. Twenty participants were woken for dream reports in REM and Slow Wave Sleep (SWS) while monitored using electroencephalography. Eighteen participants reported at least one REM dream and 14 at least one SWS dream, and they, and independent judges, subsequently compared their dream reports with log records of their previous daily experiences. The number of references to recent waking-life experiences in REM dreams was positively correlated with frontal theta activity in the REM sleep period. No such correlation was observed for older memories, nor for SWS dreams. The emotional intensity of recent waking-life experiences incorporated into dreams was higher than the emotional intensity of experiences that were not incorporated. These results suggest that the formation of wakefulness-related dream content is associated with REM theta activity, and accords with theories that dreaming reflects emotional memory processing taking place in REM sleep.

  5. Spatial and reversal learning in the Morris water maze are largely resistant to six hours of REM sleep deprivation following training

    PubMed Central

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation–associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items. PMID:21677190

  6. Faster REM sleep EEG and worse restedness in older insomniacs with HLA DQB1*0602

    PubMed Central

    Zeitzer, Jamie Marc; Fisicaro, Ryan Anthony; Grove, Megan Elizabeth; Mignot, Emmanuel; Yesavage, Jerome Albert; Friedman, Leah

    2011-01-01

    HLA DQB1*0602 is found in most individuals with hypocretin-deficient narcolepsy, a disorder characterized by a severe disruption of sleep and wake. Population studies indicate that DQB1*0602 may also be associated with normal phenotypic variation of rapid eye movement (REM) sleep. Disruption of REM sleep has been linked to specific symptoms of insomnia. We here examine the relationship of sleep and DQB1*0602 in older individuals (n=46) with primary insomnia, using objective (polysomnography, wrist actigraphy) and subjective (logs, scales) measures. DQB1*0602 positivity was similarly distributed in the older individuals with insomnia (24%) as in the general population (25%). Most sleep variables were statistically indistinguishable between DQB1*0602 positive and negative subjects except that those with the allele reported that they were significantly less well rested than those without it. When sleep efficiencies were lower than 70%, DQB1*0602 positive subjects reported being less well rested at the same sleep efficiency than those without the allele. Examination of EEG during REM sleep also revealed that DQB1*0602 positive subjects had EEG shifted towards faster frequencies compared with negative subjects. Thus, DQB1*0602 positivity is associated with both a shift in EEG power spectrum to faster frequencies during REM sleep and a diminution of restedness given the same sleep quantity. PMID:21292329

  7. First rapid eye movement sleep periods and sleep-onset rapid eye movement periods in sleep-stage sequencing of hypersomnias.

    PubMed

    Drakatos, Panagis; Kosky, Christopher A; Higgins, Sean E; Muza, Rexford T; Williams, Adrian J; Leschziner, Guy D

    2013-09-01

    Discrimination between narcolepsy, idiopathic hypersomnia, and behavior-induced inadequate sleep syndrome (BIISS) is based on clinical features and on specific nocturnal polysomnography (NPSG) and multiple sleep latency test (MSLT) results. However, previous studies have cast doubt on the specificity and sensitivity of these diagnostic tools. Eleven variables of the NPSG were analyzed in 101 patients who were retrospectively diagnosed with narcolepsy with cataplexy (N+C) (n=24), narcolepsy without cataplexy (N-C) (n=38), idiopathic hypersomnia with long sleep period (IHL) (n=21), and BIISS (n=18). Fifteen out of 24 N+C and 8 out of 38 N-C entered the first rapid eye movement (REM) sleep period (FREMP) from sleep stage 1 (N1) or wake (W), though this sleep-stage sequence did not arise in the other patient groups. FREMP stage sequence was a function of REM sleep latency (REML) for both N+C and N-C groups. FREMP stage sequence was not associated with mean sleep latency (MSL) in N+C but was associated in N-C, which implies heterogeneity within the N-C group. REML also was a useful discriminator. Depending on the cutoff period, REML had a sensitivity and specificity of up to 85.5% and 97.4%, respectively. The FREMP stage sequence may be a useful tool in the diagnosis of narcolepsy, particularly in conjunction with sleep-stage sequence analysis of sleep-onset REM periods (SOREMPs) in the MSLT; it also may provide a helpful intermediate phenotype in the clarification of heterogeneity in the N-C diagnostic group. However, larger prospective studies are necessary to confirm these findings. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Subliminal gait initiation deficits in REM sleep behavior disorder: a harbinger of freezing of gait?

    PubMed Central

    Alibiglou, L.; Videnovic, A.; Planetta, P.J.; Vaillancourt, D.E.; MacKinnon, C.D.

    2016-01-01

    Background Muscle activity during REM sleep is markedly increased in people with REM sleep behavior disorder (RBD) and people with Parkinson’s disease (PD) who have freezing of gait. This study examined if individuals with RBD, who do not have a diagnosis of PD, show abnormalities in gait initiation that resemble the impairments observed in PD and whether there is a relationship between these deficits and the level of REM sleep without atonia. Methods Gait initiation and polysomnography studies were conducted in four groups of 10 subjects each: RBD, PD with and without freezing of gait and control subjects. Results Significant reductions were seen in the posterior shift of the center of pressure during the propulsive phase of gait initiation in the RBD and PD with freezing of gait groups compared with controls and PD non-freezers. These reductions negatively correlated with the amount of REM sleep without atonia. The duration of the initial dorsiflexor muscle burst during gait initiation was significantly reduced in both PD groups and the RBD cohort. Conclusions These results provide evidence that people with RBD, prior to a diagnosis of a degenerative neurologic disorder, show alterations in the coupling of posture and gait similar to those seen in PD. The correlation between increased REM sleep without atonia and deficits in forward propulsion during the push-off phase of gait initiation suggests that abnormities in the regulation of muscle tone during REM sleep may be related to the pathogenesis of freezing of gait. PMID:27250871

  9. Melatonin Effects in REM Sleep Behavior Disorder Associated with Obstructive Sleep Apnea Syndrome: A Case Series.

    PubMed

    Schaefer, Carolin; Kunz, Dieter; Bes, Frederik

    2017-01-01

    REM sleep behavior disorder (RBD), with its main clinical symptoms of nightmares with dream-enacting behavior, is considered as a possible precursor of neurodegenerative disease. Obstructive Sleep Apnea Syndrome (OSAS) is known to be capable of provoking RBD-like symptoms by apneic event related arousals. The two sleep related pathologies must coincide in a relevant number of individuals because of overlapping prevalence in similar age groups. Until now RBD symptoms coexisting with OSAS are rarely described in scientific literature and in fact considered as OSAS mimicking RBD. We report four cases with a severe clinical RBD syndrome which were polysomnographically also diagnosed with concomitant OSAS (AHI range: 10.1 -53.2/h). Treatment with 2 mg prolonged release melatonin led to a relevant clinical improvement of RBD symptoms in all patients, so far untreated for the sleep related breathing disorder. Measure of REM sleep without atonia (RSWA) in polysomnography showed values ranging from 5.1 to 20.4% determined with the Montplaisir method. Surprisingly, RSWA values in PSG with melatonin were high, probably because of the still untreated OSAS. We presume that in patients with RBD and OSAS both pathologies contribute in varying degrees to the emergence of RBD symptoms by a destabilization of REM sleep. We suggest by consequence to consider a therapeutic strategy including the treatment of both disorders for an optimal therapeutic response. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Linalool Ameliorates Memory Loss and Behavioral Impairment Induced by REM-Sleep Deprivation through the Serotonergic Pathway.

    PubMed

    Lee, Bo Kyung; Jung, An Na; Jung, Yi-Sook

    2018-07-01

    Rapid eye movement (REM) sleep has an essential role in the process of learning and memory in the hippocampus. It has been reported that linalool, a major component of Lavandula angustifolia , has antioxidant, anti-inflammatory, and neuroprotective effects, along with other effects. However, the effect of linalool on the cognitive impairment and behavioral alterations that are induced by REM-sleep deprivation has not yet been elucidated. Several studies have reported that REM-sleep deprivation-induced memory deficits provide a well-known model of behavioral alterations. In the present study, we examined whether linalool elicited an anti-stress effect, reversing the behavioral alterations observed following REM-sleep deprivation in mice. Furthermore, we investigated the underlying mechanism of the effect of linalool. Spatial memory and learning memory were assessed through Y maze and passive avoidance tests, respectively, and the forced swimming test was used to evaluate anti-stress activity. The mechanisms through which linalool improves memory loss and behavioral alterations in sleep-deprived mice appeared to be through an increase in the serotonin levels. Linalool significantly ameliorated the spatial and learning memory deficits, and stress activity observed in sleep-deprived animals. Moreover, linalool led to serotonin release, and cortisol level reduction. Our findings suggest that linalool has beneficial effects on the memory loss and behavioral alterations induced by REM-sleep deprivation through the regulation of serotonin levels.

  11. Replay of conditioned stimuli during late REM and stage N2 sleep influences affective tone rather than emotional memory strength.

    PubMed

    Rihm, Julia S; Rasch, Björn

    2015-07-01

    Emotional memories are reprocessed during sleep, and it is widely assumed that this reprocessing occurs mainly during rapid eye movement (REM) sleep. In support for this notion, vivid emotional dreams occur mainly during REM sleep, and several studies have reported emotional memory enhancement to be associated with REM sleep or REM sleep-related parameters. However, it is still unknown whether reactivation of emotional memories during REM sleep strengthens emotional memories. Here, we tested whether re-presentation of emotionally learned stimuli during REM sleep enhances emotional memory. In a split-night design, participants underwent Pavlovian conditioning after the first half of the night. Neutral sounds served as conditioned stimuli (CS) and were either paired with a negative odor (CS+) or an odorless vehicle (CS-). During sound replay in subsequent late REM or N2 sleep, half of the CS+ and half of the CS- were presented again. In contrast to our hypothesis, replay during sleep did not affect emotional memory as measured by the differentiation between CS+ and CS- in expectancy, arousal and valence ratings. However, replay unspecifically decreased subjective arousal ratings of both emotional and neutral sounds and increased positive valence ratings also for both CS+ and CS- sounds, respectively. These effects were slightly more pronounced for replay during REM sleep. Our results suggest that re-exposure to previously conditioned stimuli during late sleep does not affect emotional memory strength, but rather influences the affective tone of both emotional and neutral memories. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The Memory Function of Noradrenergic Activity in Non-REM Sleep

    ERIC Educational Resources Information Center

    Gais, Steffen; Rasch, Bjorn; Dahmen, Johannes C.; Sara, Susan; Born, Jan

    2011-01-01

    There is a long-standing assumption that low noradrenergic activity during sleep reflects mainly the low arousal during this brain state. Nevertheless, recent research has demonstrated that the locus coeruleus, which is the main source of cortical noradrenaline, displays discrete periods of intense firing during non-REM sleep, without any signs of…

  13. REM sleep modulation by perifornical orexinergic inputs to the pedunculo-pontine tegmental neurons in rats.

    PubMed

    Khanday, M A; Mallick, B N

    2015-11-12

    Rapid eye movement sleep (REMS) is regulated by the interaction of the REM-ON and REM-OFF neurons located in the pedunculo-pontine-tegmentum (PPT) and the locus coeruleus (LC), respectively. Many other brain areas, particularly those controlling non-REMS (NREMS) and waking, modulate REMS by modulating these REMS-related neurons. Perifornical (PeF) orexin (Ox)-ergic neurons are reported to increase waking and reduce NREMS as well as REMS; dysfunction of the PeF neurons are related to REMS loss-associated disorders. Hence, we were interested in understanding the neural mechanism of PeF-induced REMS modulation. As a first step we have recently reported that PeF Ox-ergic neurons modulate REMS by influencing the LC neurons (site for REM-OFF neurons). Thereafter, in this in vivo study we have explored the role of PeF inputs on the PPT neurons (site for REM-ON neurons) for the regulation of REMS. Chronic male rats were surgically prepared with implanted bilateral cannulae in PeF and PPT and electrodes for recording sleep-waking patterns. After post-surgical recovery sleep-waking-REMS were recorded when bilateral PeF neurons were stimulated by glutamate and simultaneously bilateral PPT neurons were infused with either saline or orexin receptor1 (OX1R) antagonist. It was observed that PeF stimulation increased waking and decreased NREMS as well as REMS, which were prevented by OX1R antagonist into the PPT. We conclude that the PeF stimulation-induced reduction in REMS was likely to be due to inhibition of REM-ON neurons in the PPT. As waking and NREMS are inversely related, subject to confirmation, the reduction in NREMS could be due to increased waking or vice versa. Based on our findings from this and earlier studies we have proposed a model showing connections between PeF- and PPT-neurons for REMS regulation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. In-Home Sleep Recordings in Military Veterans With Posttraumatic Stress Disorder Reveal Less REM and Deep Sleep <1 Hz.

    PubMed

    Onton, Julie A; Matthews, Scott C; Kang, Dae Y; Coleman, Todd P

    2018-01-01

    Veterans with posttraumatic stress disorder (PTSD) often report suboptimal sleep quality, often described as lack of restfulness for unknown reasons. These experiences are sometimes difficult to objectively quantify in sleep lab assessments. Here, we used a streamlined sleep assessment tool to record in-home 2-channel electroencephalogram (EEG) with concurrent collection of electrodermal activity (EDA) and acceleration. Data from a single forehead channel were transformed into a whole-night spectrogram, and sleep stages were classified using a fully automated algorithm. For this study, 71 control subjects and 60 military-related PTSD subjects were analyzed for percentage of time spent in Light, Hi Deep (1-3 Hz), Lo Deep (<1 Hz), and rapid eye movement (REM) sleep stages, as well as sleep efficiency and fragmentation. The results showed a significant tendency for PTSD sleepers to spend a smaller percentage of the night in REM ( p < 0.0001) and Lo Deep ( p = 0.001) sleep, while spending a larger percentage of the night in Hi Deep ( p < 0.0001) sleep. The percentage of combined Hi+Lo Deep sleep did not differ between groups. All sleepers usually showed EDA peaks during Lo, but not Hi, Deep sleep; however, PTSD sleepers were more likely to lack EDA peaks altogether, which usually coincided with a lack of Lo Deep sleep. Linear regressions with all subjects showed that a decreased percentage of REM sleep in PTSD sleepers was accounted for by age, prazosin, SSRIs and SNRIs ( p < 0.02), while decreased Lo Deep and increased Hi Deep in the PTSD group could not be accounted for by any factor in this study ( p < 0.005). Linear regression models with only the PTSD group showed that decreased REM correlated with self-reported depression, as measured with the Depression, Anxiety, and Stress Scales (DASS; p < 0.00001). DASS anxiety was associated with increased REM time ( p < 0.0001). This study shows altered sleep patterns in sleepers with PTSD that can be partially accounted

  15. In-Home Sleep Recordings in Military Veterans With Posttraumatic Stress Disorder Reveal Less REM and Deep Sleep <1 Hz

    PubMed Central

    Onton, Julie A.; Matthews, Scott C.; Kang, Dae Y.; Coleman, Todd P.

    2018-01-01

    Veterans with posttraumatic stress disorder (PTSD) often report suboptimal sleep quality, often described as lack of restfulness for unknown reasons. These experiences are sometimes difficult to objectively quantify in sleep lab assessments. Here, we used a streamlined sleep assessment tool to record in-home 2-channel electroencephalogram (EEG) with concurrent collection of electrodermal activity (EDA) and acceleration. Data from a single forehead channel were transformed into a whole-night spectrogram, and sleep stages were classified using a fully automated algorithm. For this study, 71 control subjects and 60 military-related PTSD subjects were analyzed for percentage of time spent in Light, Hi Deep (1–3 Hz), Lo Deep (<1 Hz), and rapid eye movement (REM) sleep stages, as well as sleep efficiency and fragmentation. The results showed a significant tendency for PTSD sleepers to spend a smaller percentage of the night in REM (p < 0.0001) and Lo Deep (p = 0.001) sleep, while spending a larger percentage of the night in Hi Deep (p < 0.0001) sleep. The percentage of combined Hi+Lo Deep sleep did not differ between groups. All sleepers usually showed EDA peaks during Lo, but not Hi, Deep sleep; however, PTSD sleepers were more likely to lack EDA peaks altogether, which usually coincided with a lack of Lo Deep sleep. Linear regressions with all subjects showed that a decreased percentage of REM sleep in PTSD sleepers was accounted for by age, prazosin, SSRIs and SNRIs (p < 0.02), while decreased Lo Deep and increased Hi Deep in the PTSD group could not be accounted for by any factor in this study (p < 0.005). Linear regression models with only the PTSD group showed that decreased REM correlated with self-reported depression, as measured with the Depression, Anxiety, and Stress Scales (DASS; p < 0.00001). DASS anxiety was associated with increased REM time (p < 0.0001). This study shows altered sleep patterns in sleepers with PTSD that can be partially accounted for by

  16. Effects of Rotigotine on REM Sleep Behavior Disorder in Parkinson Disease

    PubMed Central

    Wang, Yan; Yang, Yuechang; Wu, Huijuan; Lan, Danmei; Chen, Ying; Zhao, Zhongxin

    2016-01-01

    Study Objectives: REM sleep behavior disorder (RBD) is a common manifestation of Parkinson disease (PD). In this study, we assessed the effects of rotigotine transdermal patch on RBD features in patients with PD. Methods: In this prospective open-label study, eleven PD patients with untreated RBD were administered rotigotine patches for up to seven months to ameliorate their parkinsonism. The severities of their RBD symptoms before and after rotigotine therapy were evaluated through patient and bed partner interviews, a validated evaluation scale (REM sleep behavior disorder questionnaire-Hong Kong, RBDQ-HK), and blinded assessments based on video-polysomnographic (VPSG) measure. Results: Rotigotine improved parkinsonism and subjective sleep quality in PD patients with RBD. The RBDQ-HK total score, especially the Factor 2 score, was decreased, which demonstrated that the subjective severity of RBD symptoms was improved after rotigotine treatment, especially the frequency and severity of abnormal RBD-related motor behaviors. The VPSG analyses showed that the total sleep time (TST) and stage 1% were increased and that the PLMS index was decreased. However, no differences in the RBD-related sleep measures were observed. Conclusions: The improved RBD symptoms and VPSG measures of PD patients in this study (TST, stage 1%, and PLMS index) suggest that, in PD, rotigotine may partially improve RBD-related symptoms. Rotigotine should be considered to be an optional drug for the treatment of RBD symptoms in PD. Citation: Wang Y, Yang Y, Wu H, Lan D, Chen Y, Zhao Z. Effects of rotigotine on REM sleep behavior disorder in Parkinson disease. J Clin Sleep Med 2016;12(10):1403–1409. PMID:27568909

  17. A study on fear memory retrieval and REM sleep in maternal separation and isolation stressed rats.

    PubMed

    Sampath, Dayalan; Sabitha, K R; Hegde, Preethi; Jayakrishnan, H R; Kutty, Bindu M; Chattarji, Sumantra; Rangarajan, Govindan; Laxmi, T R

    2014-10-15

    As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6h daily/3d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus-amygdala-cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. HLA typing does not predict REM sleep behaviour disorder and hallucinations in Parkinson's disease.

    PubMed

    Onofrj, Marco; Luciano, Anna Lisa; Iacono, Diego; Thomas, Astrid; Stocchi, Fabrizio; Papola, Franco; Adorno, Domenico; Di Mascio, Rocco

    2003-03-01

    HLA-DR2 haplotype and DQ1 DNA alleles, characterizing 90 to 100% of all narcoleptic patients, were found to be equally distributed in 20 Parkinson's disease (PD) patients with early hallucinations, rapid eye movement (REM) sleep-related behaviour disturbances (RBD), and sleep onset in REM (SOREM), and in 20 PD patients without hallucinations, despite 10 to 15 years of treatment, and no RBD or SOREM.

  19. [Configuration of the dream in REM sleep].

    PubMed

    Leonhard, K

    1985-02-01

    Dreams during REM sleep have a characteristic form. They are, so to speak, "chain dreams, in which the scenes follow consecutively and, although distinctly separate from each other, are welded into a coherent dream by the primary integrating thoughts underlying the dream. The contents of the different scenes are difficult to reconcile with the integrating thought behind the dream because they are not stimulated by the thought alone but, in a certain way, also by past experiences. The author describes a dream which apparently filled the REM phase from beginning to end. It has been possible to explain the background of the integrating thought and the origins of the different scenes. The peculiar character of such dreams should find more attention in scientific research.

  20. The Clinical Phenotype of Idiopathic Rapid Eye Movement Sleep Behavior Disorder at Presentation: A Study in 203 Consecutive Patients.

    PubMed

    Fernández-Arcos, Ana; Iranzo, Alex; Serradell, Mónica; Gaig, Carles; Santamaria, Joan

    2016-01-01

    To describe the clinical phenotype of idiopathic rapid eye movement (REM) sleep behavior disorder (IRBD) at presentation in a sleep center. Clinical history review of 203 consecutive patients with IRBD identified between 1990 and 2014. IRBD was diagnosed by clinical history plus video-polysomnographic demonstration of REM sleep with increased electromyographic activity linked to abnormal behaviors. Patients were 80% men with median age at IRBD diagnosis of 68 y (range, 50-85 y). In addition to the already known clinical picture of IRBD, other important features were apparent: 44% of the patients were not aware of their dream-enactment behaviors and 70% reported good sleep quality. In most of these cases bed partners were essential to convince patients to seek medical help. In 11% IRBD was elicited only after specific questioning when patients consulted for other reasons. Seven percent did not recall unpleasant dreams. Leaving the bed occurred occasionally in 24% of subjects in whom dementia with Lewy bodies often developed eventually. For the correct diagnosis of IRBD, video-polysomnography had to be repeated in 16% because of insufficient REM sleep or electromyographic artifacts from coexistent apneas. Some subjects with comorbid obstructive sleep apnea reported partial improvement of RBD symptoms following continuous positive airway pressure therapy. Lack of therapy with clonazepam resulted in an increased risk of sleep related injuries. Synucleinopathy was frequently diagnosed, even in patients with mild severity or uncommon IRBD presentations (e.g., patients who reported sleeping well, onset triggered by a life event, nocturnal ambulation) indicating that the development of a neurodegenerative disease is independent of the clinical presentation of IRBD. We report the largest IRBD cohort observed in a single center to date and highlight frequent features that were not reported or not sufficiently emphasized in previous publications. Physicians should be aware of

  1. Hallucinations and REM sleep behaviour disorder in Parkinson's disease: dream imagery intrusions and other hypotheses.

    PubMed

    Manni, Raffaele; Terzaghi, Michele; Ratti, Pietro-Luca; Repetto, Alessandra; Zangaglia, Roberta; Pacchetti, Claudio

    2011-12-01

    REM sleep behaviour disorder (RBD) is a REM sleep-related parasomnia which may be considered a "dissociated state of wakefulness and sleep", given that conflicting elements of REM sleep (dreaming) and of wakefulness (sustained muscle tone and movements) coexist during the episodes, leading to motor and behavioural manifestations reminiscent of an enacted dream. RBD has been reported in association with α-synucleinopathies: around a third of patients with Parkinson's disease (PD) have full-blown RBD. Recent data indicate that PD patients with RBD are more prone to hallucinations than PD patients without this parasomnia. However it is still not clear why RBD in PD is associated with an increased prevalence of VHs. Data exist which suggest that visual hallucinations in PD may be the result of untimely intrusions of REM visual imagery into wakefulness. RBD, which is characterised by a REM sleep dissociation pattern, might be a condition that particularly favours such intrusions. However, other hypotheses may be advanced. In fact, deficits in attentional, executive, visuoperceptual and visuospatial abilities have been documented in RBD and found to occur far more frequently in PD with RBD than in PD without RBD. Neuropsychological deficits involving visual perception and attentional processes are thought to play an important role in the pathophysiology of VHs. On this basis, RBD in PD could be viewed as a contributory risk factor for VHs. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Selective Coupling between Theta Phase and Neocortical Fast Gamma Oscillations during REM-Sleep in Mice

    PubMed Central

    Scheffzük, Claudia; Kukushka, Valeriy I.; Vyssotski, Alexei L.; Draguhn, Andreas

    2011-01-01

    Background The mammalian brain expresses a wide range of state-dependent network oscillations which vary in frequency and spatial extension. Such rhythms can entrain multiple neurons into coherent patterns of activity, consistent with a role in behaviour, cognition and memory formation. Recent evidence suggests that locally generated fast network oscillations can be systematically aligned to long-range slow oscillations. It is likely that such cross-frequency coupling supports specific tasks including behavioural choice and working memory. Principal Findings We analyzed temporal coupling between high-frequency oscillations and EEG theta activity (4–12 Hz) in recordings from mouse parietal neocortex. Theta was exclusively present during active wakefulness and REM-sleep. Fast oscillations occurred in two separate frequency bands: gamma (40–100 Hz) and fast gamma (120–160 Hz). Theta, gamma and fast gamma were more prominent during active wakefulness as compared to REM-sleep. Coupling between theta and the two types of fast oscillations, however, was more pronounced during REM-sleep. This state-dependent cross-frequency coupling was particularly strong for theta-fast gamma interaction which increased 9-fold during REM as compared to active wakefulness. Theta-gamma coupling increased only by 1.5-fold. Significance State-dependent cross-frequency-coupling provides a new functional characteristic of REM-sleep and establishes a unique property of neocortical fast gamma oscillations. Interactions between defined patterns of slow and fast network oscillations may serve selective functions in sleep-dependent information processing. PMID:22163023

  3. Cold exposure impairs dark-pulse capacity to induce REM sleep in the albino rat.

    PubMed

    Baracchi, Francesca; Zamboni, Giovanni; Cerri, Matteo; Del Sindaco, Elide; Dentico, Daniela; Jones, Christine Ann; Luppi, Marco; Perez, Emanuele; Amici, Roberto

    2008-06-01

    In the albino rat, a REM sleep (REMS) onset can be induced with a high probability and a short latency when the light is suddenly turned off (dark pulse, DP) during non-REM sleep (NREMS). The aim of this study was to investigate to what extent DP delivery could overcome the integrative thermoregulatory mechanisms that depress REMS occurrence during exposure to low ambient temperature (Ta). To this aim, the efficiency of a non-rhythmical repetitive DP (3 min each) delivery during the first 6-h light period of a 12 h:12 h light-dark cycle in inducing REMS was studied in the rat, through the analysis of electroencephalogram, electrocardiogram, hypothalamic temperature and motor activity at different Tas. The results showed that DP delivery triggers a transition from NREMS to REMS comparable to that which occurs spontaneously. However, the efficiency of DP delivery in inducing REMS was reduced during cold exposure to an extent comparable with that observed in spontaneous REMS occurrence. Such impairment was associated with low Delta activity and high sympathetic tone when DPs were delivered. Repetitive DP administration increased REMS amount during the delivery period and a subsequent negative REMS rebound was observed. In conclusion, DP delivery did not overcome the integrative thermoregulatory mechanisms that depress REMS in the cold. These results underline the crucial physiological meaning of the mutual exclusion of thermoregulatory activation and REMS occurrence, and support the hypothesis that the suspension of the central control of body temperature is a prerequisite for REMS occurrence.

  4. Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep

    PubMed Central

    Datta, Subimal; O'Malley, Matthew W .

    2013-01-01

    Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372

  5. Altered Sleep Stage Transitions of REM Sleep: A Novel and Stable Biomarker of Narcolepsy

    PubMed Central

    Liu, Yaping; Zhang, Jihui; Lam, Venny; Ho, Crover Kwok Wah; Zhou, Junying; Li, Shirley Xin; Lam, Siu Ping; Yu, Mandy Wai Man; Tang, Xiangdong; Wing, Yun-Kwok

    2015-01-01

    Objectives: To determine the diagnostic values, longitudinal stability, and HLA association of the sleep stage transitions in narcolepsy. Methods: To compare the baseline differences in the sleep stage transition to REM sleep among 35 patients with type 1 narcolepsy, 39 patients with type 2 narcolepsy, 26 unaffected relatives, and 159 non-narcoleptic sleep patient controls, followed by a reassessment at a mean duration of 37.4 months. Results: The highest prevalence of altered transition from stage non-N2/N3 to stage R in multiple sleep latency test (MSLT) and nocturnal polysomnography (NPSG) was found in patients with type 1 narcolepsy (92.0% and 57.1%), followed by patients with type 2 narcolepsy (69.4% and 12.8%), unaffected relatives (46.2% and 0%), and controls (39.3% and 1.3%). Individual sleep variables had varied sensitivity and specificity in diagnosing narcolepsy. By incorporating a combination of sleep variables, the decision tree analysis improved the sensitivity to 94.3% and 82.1% and enhanced specificity to 82.4% and 83% for the diagnosis of type 1 and type 2 narcolepsy, respectively. There was a significant association of DBQ1*0602 with the altered sleep stage transition (OR = 16.0, 95% CI: 1.7–149.8, p = 0.015). The persistence of the altered sleep stage transition in both MSLT and NPSG was high for both type 1 (90.5% and 64.7%) and type 2 narcolepsy (92.3% and 100%), respectively. Conclusions: Altered sleep stage transition is a significant and stable marker of narcolepsy, which suggests a vulnerable wake-sleep dysregulation trait in narcolepsy. Altered sleep stage transition has a significant diagnostic value in the differential diagnosis of hypersomnias, especially when combined with other diagnostic sleep variables in decision tree analysis. Citation: Liu Y, Zhang J, Lam V, Ho CK, Zhou J, Li SX, Lam SP, Yu MW, Tang X, Wing YK. Altered sleep stage transitions of REM sleep: a novel and stable biomarker of narcolepsy. J Clin Sleep Med 2015

  6. Perifornical orexinergic neurons modulate REM sleep by influencing locus coeruleus neurons in rats.

    PubMed

    Choudhary, R C; Khanday, M A; Mitra, A; Mallick, B N

    2014-10-24

    Activation of the orexin (OX)-ergic neurons in the perifornical (PeF) area has been reported to induce waking and reduce rapid eye movement sleep (REMS). The activities of OX-ergic neurons are maximum during active waking and they progressively reduce during non-REMS (NREMS) and REMS. Apparently, the locus coeruleus (LC) neurons also behave in a comparable manner as that of the OX-ergic neurons particularly in relation to waking and REMS. Further, as PeF OX-ergic neurons send dense projections to LC, we argued that the former could drive the LC neurons to modulate waking and REMS. Studies in freely moving normally behaving animals where simultaneously neuro-chemo-anatomo-physio-behavioral information could be deciphered would significantly strengthen our understanding on the regulation of REMS. Therefore, in this study in freely behaving chronically prepared rats we stimulated the PeF neurons without or with simultaneous blocking of specific subtypes of OX-ergic receptors in the LC while electrophysiological recording characterizing sleep-waking was continued. Single dose of glutamate stimulation as well as sustained mild electrical stimulation of PeF (both bilateral) significantly increased waking and reduced REMS as compared to baseline. Simultaneous application of OX-receptor1 (OX1R) antagonist bilaterally into the LC prevented PeF stimulation-induced REMS suppression. Also, the effect of electrical stimulation of the PeF was long lasting as compared to that of the glutamate stimulation. Further, sustained electrical stimulation significantly decreased both REMS duration as well as REMS frequency, while glutamate stimulation decreased REMS duration only. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Acute and subchronic administration of anandamide or oleamide increases REM sleep in rats.

    PubMed

    Herrera-Solís, Andrea; Vásquez, Khalil Guzmán; Prospéro-García, Oscar

    2010-03-01

    Anandamide and oleamide, induce sleep when administered acutely, via the CB1 receptor. Their subchronic administration must be tested to demonstrate the absence of tolerance to this effect, and that the sudden withdrawal of these endocannabinoids (eCBs) does not affect sleep negatively. The sleep-waking cycle of rats was evaluated for 24h, under the effect of an acute or subchronic administration of eCBs, and during sudden eCBs withdrawal. AM251, a CB1 receptor antagonist (CB1Ra) was utilized to block eCBs effects. Our results indicated that both acute and subchronic administration of eCBs increase REMS. During eCBs withdrawal, rats lack the expression of an abstinence-like syndrome. AM251 was efficacious to prevent REMS increase caused by both acute and subchronic administration of these eCBs, suggesting that this effect is mediated by the CB1 receptor. Our data further support a role of the eCBs in REMS regulation. (c) 2009 Elsevier Inc. All rights reserved.

  8. Night-to-Night Variability of Muscle Tone, Movements, and Vocalizations in Patients with REM Sleep Behavior Disorder

    PubMed Central

    Cygan, Fanny; Oudiette, Delphine; Leclair-Visonneau, Laurène; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2010-01-01

    Objectives: The video-polysomnographic criteria of REM sleep behavior disorder (RBD) have not been well described. We evaluated the between-night reproducibility of phasic and tonic enhanced muscle activity during REM sleep as well as the associated behaviors and vocalizations of the patients. Methods: Fifteen patients with clinical RBD underwent two consecutive video-polysomnographies. The amount of excessive phasic and tonic chin muscle activity during REM sleep was measured in 15 patients in 3-sec mini-epochs. The time spent with motor (minor, major, complex, and scenic) or vocal (sounds, mumblings, and comprehensible speeches) events was measured in 7 patients during REM sleep. Results: There was a good between-night agreement for tonic (Spearman rho = 0.55, p = 0.03; Kendall tau = 0.48, p = 0.01) but not for phasic (rho = 0.47, p = 0.1; tau = 0.31, p = 0.1) excessive chin muscle activity. On the video and audio recordings, the minor RBD behaviors tended to occur more frequently during the second night than the first, whereas the patients spoke longer during the first than the second night. Conclusion: The excessive tonic activity during REM sleep is a reliable marker of RBD. It could represent the extent of dysfunction in the permissive atonia systems. In contrast, the more variable phasic activity and motor/vocal events could be more dependent on dream content (executive systems). Citation: Cygan F; Oudiette D; Leclair-Visonneau L; Leu-Semenescu S; Arnulf I. Night-to-night variability of muscle tone, movements, and vocalizations in patients with REM sleep behavior disorder. J Clin Sleep Med 2010;6(6):551-555. PMID:21206543

  9. GABAergic regulation of REM sleep in reticularis pontis oralis and caudalis in rats.

    PubMed

    Sanford, Larry D; Tang, Xiangdong; Xiao, Jihua; Ross, Richard J; Morrison, Adrian R

    2003-08-01

    The nucleus reticularis pontis oralis (RPO) and nucleus reticularis pontis caudalis (RPC) are implicated in the generation of rapid eye movement sleep (REM). Work in cats has indicated that GABA in RPO plays a role in the regulation of REM. We assessed REM after local microinjections into RPO and RPC of the gamma-aminobutyric acid-A (GABA(A)) agonist, muscimol (MUS), and the GABA(A) antagonist, bicuculline (BIC). Rats (90-day-old male Sprague-Dawley) were implanted with electrodes for recording electroencephalographs (EEG) and electromyographs (EMG). Guide cannulae were aimed into RPO (n = 9) and RPC (n = 8) for microinjecting MUS (200, 1,000.0 microM) and BIC (0.056, 0.333, 1.0, 1,000.0, and 10,000.0 microM). Animals received bilateral microinjections of saline, MUS, and BIC (0.2 microl microinjected at 0.1 microl/min) into each region followed by 6-h sleep recordings. In RPO, MUS (1,000.0 microM) suppressed REM and BIC (1,000.0 microM) enhanced REM. In RPC, MUS (200, 1,000.0 microM) suppressed REM, but BIC (1,000.0 microM and less) did not significantly affect REM. Higher concentrations of BIC (10,000.0 microM) injected into RPO (n = 9) and RPC (n = 4) produced wakefulness and escape behavior. The results indicate that GABA in RPO/RPC is involved in the regulation of REM and suggest site-specific differences in this regulation.

  10. A Role for REM Sleep in Recalibrating the Sensitivity of the Human Brain to Specific Emotions

    PubMed Central

    Gujar, Ninad; McDonald, Steven Andrew; Nishida, Masaki

    2011-01-01

    Although the impact of sleep on cognitive function is increasingly well established, the role of sleep in modulating affective brain processes remains largely uncharacterized. Using a face recognition task, here we demonstrate an amplified reactivity to anger and fear emotions across the day, without sleep. However, an intervening nap blocked and even reversed this negative emotional reactivity to anger and fear while conversely enhancing ratings of positive (happy) expressions. Most interestingly, only those subjects who obtained rapid eye movement (REM) sleep displayed this remodulation of affective reactivity for the latter 2 emotion categories. Together, these results suggest that the evaluation of specific human emotions is not static across a daytime waking interval, showing a progressive reactivity toward threat-related negative expressions. However, an episode of sleep can reverse this predisposition, with REM sleep depotentiating negative reactivity toward fearful expressions while concomitantly facilitating recognition and ratings of reward-relevant positive expressions. These findings support the view that sleep, and specifically REM neurophysiology, may represent an important factor governing the optimal homeostasis of emotional brain regulation. PMID:20421251

  11. Spatial and Reversal Learning in the Morris Water Maze Are Largely Resistant to Six Hours of REM Sleep Deprivation Following Training

    ERIC Educational Resources Information Center

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair…

  12. Successful treatment with levothyroxine for idiopathic hypersomnia patients with subclinical hypothyroidism.

    PubMed

    Shinno, Hideto; Inami, Yasushi; Inagaki, Takuji; Kawamukai, Tetsuya; Utani, Etsuko; Nakamura, Yu; Horiguchi, Jun

    2009-01-01

    Our objective was to discuss the effect of levothyroxine on excessive daytime sleepiness (EDS) and a prolonged nocturnal sleep at patients with idiopathic hypersomnia who presented with subclinical hypothyroidism. We present two patients with hypersomnia who complained of EDS and a prolonged nocturnal sleep time. Sleep architecture and subjective daytime sleepiness were estimated by polysomnography (PSG) and Epworth Sleepiness Scale (ESS), respectively. Diagnoses were made using the International Classification of Sleep Disorders, 2nd Edition criteria for idiopathic hypersomnia with long sleep time. PSG demonstrated a short sleep latency, a prolonged total sleep time and normal proportions of all non-rapid eye movement (REM) and REM sleep stages. Nocturnal PSG excluded other causes of EDS. No medical, neurological and mental disorders were present. Their laboratory data indicated mildly elevated thyrotropin, despite free thyroxine (T4) and triiodothyronine (T3) estimates within their reference ranges, which is a characteristic of latent hypothyroidism. Levothyroxine (25 microg/day) was administrated orally. After treatment with levothyroxine for 8 weeks, the mean daily sleep times decreased. EDS was also improved, and a significant decrease in the ESS score was observed. Levothyroxine was effective for their hypersomnia and well tolerated. It should be noted that hypersomnia may be associated with subclinical hypothyroidism, although few abnormalities in physical and neurological examinations are present.

  13. A new view of “dream enactment” in REM sleep behavior disorder

    PubMed Central

    Blumberg, Mark S.; Plumeau, Alan M.

    2015-01-01

    SUMMARY REM sleep behavior disorder (RBD) is a disorder in which patients exhibit increased muscle tone and exaggerated myoclonic twitching during REM sleep. In addition, violent movements of the limbs, and complex behaviors that can sometimes appear to involve the enactment of dreams, are associated with RBD. These behaviors are widely thought to result from a dysfunction involving atonia-producing neural circuitry in the brainstem, thereby unmasking cortically generated dreams. Here we scrutinize the assumptions that led to this interpretation of RBD. In particular, we challenge the assumption that motor cortex produces twitches during REM sleep, thus calling into question the related assumption that motor cortex is primarily responsible for all of the pathological movements of RBD. Moreover, motor cortex is not even necessary to produce complex behavior; for example, stimulation of some brainstem structures can produce defensive and aggressive behaviors in rats and monkeys that are striking similar to those reported in human patients with RBD. Accordingly, we suggest an interpretation of RBD that focuses increased attention on the brainstem as a source of the pathological movements and that considers sensory feedback from moving limbs as an important influence on the content of dream mentation. PMID:26802823

  14. Cholinergic Oculomotor Nucleus Activity Is Induced by REM Sleep Deprivation Negatively Impacting on Cognition.

    PubMed

    Santos, Patrícia Dos; Targa, Adriano D S; Noseda, Ana Carolina D; Rodrigues, Lais S; Fagotti, Juliane; Lima, Marcelo M S

    2017-09-01

    Several efforts have been made to understand the involvement of rapid eye movement (REM) sleep for cognitive processes. Consolidation or retention of recognition memories is severely disrupted by REM sleep deprivation (REMSD). In this regard, pedunculopontine tegmental nucleus (PPT) and other brainstem nuclei, such as pontine nucleus (Pn) and oculomotor nucleus (OCM), appear to be candidates to take part in this REM sleep circuitry with potential involvement in cognition. Therefore, the objective of this study was to investigate a possible association between the performance of Wistar rats in a declarative memory and PPT, Pn, and OCM activities after different periods of REMSD. We examined c-Fos and choline acetyltransferase (ChaT) expressions as indicators of neuronal activity as well as a familiarity-based memory test. The animals were distributed in groups: control, REMSD, and sleep rebound (REB). At the end of the different REMSD (24, 48, 72, and 96 h) and REB (24 h) time points, the rats were immediately tested in the object recognition test and then the brains were collected. Results indicated that OCM neurons presented an increased activity, due to ChaT-labeling associated with REMSD that negatively correlated (r = -0.32) with the cognitive performance. This suggests the existence of a cholinergic compensatory mechanism within the OCM during REMSD. We also showed that 24 h of REMSD impacted similarly in memory, compared to longer periods of REMSD. These data extend the notion that REM sleep is influenced by areas other than PPT, i.e., Pn and OCM, which could be key players in both sleep processes and cognition.

  15. Short-Term Total Sleep-Deprivation Impairs Contextual Fear Memory, and Contextual Fear-Conditioning Reduces REM Sleep in Moderately Anxious Swiss Mice

    PubMed Central

    Qureshi, Munazah F.; Jha, Sushil K.

    2017-01-01

    The conditioning tasks have been widely used to model fear and anxiety and to study their association with sleep. Many reports suggest that sleep plays a vital role in the consolidation of fear memory. Studies have also demonstrated that fear-conditioning influences sleep differently in mice strains having a low or high anxiety level. It is, therefore, necessary to know, how sleep influences fear-conditioning and how fear-conditioning induces changes in sleep architecture in moderate anxious strains. We have used Swiss mice, a moderate anxious strain, to study the effects of: (i) sleep deprivation on contextual fear conditioned memory, and also (ii) contextual fear conditioning on sleep architecture. Animals were divided into three groups: (a) non-sleep deprived (NSD); (b) stress control (SC); and (c) sleep-deprived (SD) groups. The SD animals were SD for 5 h soon after training. We found that the NSD and SC animals showed 60.57% and 58.12% freezing on the testing day, while SD animals showed significantly less freezing (17.13% only; p < 0.001) on the testing day. Further, we observed that contextual fear-conditioning did not alter the total amount of wakefulness and non-rapid eye movement (NREM) sleep. REM sleep, however, significantly decreased in NSD and SC animals on the training and testing days. Interestingly, REM sleep did not decrease in the SD animals on the testing day. Our results suggest that short-term sleep deprivation impairs fear memory in moderate anxious mice. It also suggests that NREM sleep, but not REM sleep, may have an obligatory role in memory consolidation. PMID:29238297

  16. The sleeping brain in Parkinson's disease: A focus on REM sleep behaviour disorder and related parasomnias for practicing neurologists.

    PubMed

    Bhidayasiri, Roongroj; Sringean, Jirada; Rattanachaisit, Watchara; Truong, Daniel D

    2017-03-15

    Sleep disorders are identified as common non-motor symptoms of Parkinson's disease (PD) and recently this recognition has been expanded to include parasomnias, encompassing not only REM sleep behaviour disorder (RBD), but also other non-REM forms. RBD, a prototypical parasomnia in PD, exists even in the prodromal stage of the disease, and is characterized by the presence of dream enactment behaviours occurring alongside a loss of normal skeletal muscle atonia during REM sleep. In contrast, non-REM parasomnias are more frequently observed in the late stage PD. However, the development of these disorders often overlaps and it is not uncommon for PD patients to meet the criteria for more than one type of parasomnias, thus making a clinical distinction challenging for practicing neurologists who are not sleep specialists. Indeed, clinical recognition of the predominant form of parasomnia does not just depend on video-polysomnography, but also on an individual physician's clinical acumen in delineating pertinent clinical history to determine the most likely diagnosis and proceed accordingly. In this review article, we highlight the various forms of parasomnias that have been reported in PD, including, but not limited to, RBD, with a focus on clinical symptomatology and implications for clinical practice. In addition, we review the differences in PD-related parasomnias compared to those seen in general populations. With advances in sleep research and better technology for ambulatory home monitoring, it is likely that many unanswered questions on PD-related parasomnias will soon be resolved resulting in better management of this nocturnal challenge in PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Affect Intensity and Phasic REM Sleep in Depressed Men before and after Treatment with Cognitive-Behavioral Therapy.

    ERIC Educational Resources Information Center

    Nofzinger, Eric A.; And Others

    1994-01-01

    Explored relationship between daytime affect and REM (rapid eye movement) sleep in 45 depressed men before and after treatment with cognitive-behavioral therapy and in control group of 43 healthy subjects. For depressed subjects only, intensity of daytime affect correlated significantly and positively with phasic REM sleep measures at pre- and…

  18. Quantitative EEG during REM and NREM sleep in combat-exposed veterans with and without Posttraumatic Stress Disorder

    PubMed Central

    Cohen, Daniel J.; Begley, Amy; Alman, Jennie J.; Cashmere, J. David; Pietrone, Regina N.; Seres, Robert J.; Germain, Anne

    2012-01-01

    Summary Sleep disturbances are a hallmark feature of posttraumatic stress disorder (PTSD), and associated with poor clinical outcomes. Few studies have examined sleep quantitative electroencephalography (qEEG), a technique able to detect subtle differences polysomnography does not capture. We hypothesized greater high-frequency qEEG would reflect “hyperarousal” in in combat veterans with PTSD (n=16) compared to veterans without PTSD (n=13). EEG power in traditional EEG frequency bands was computed for artifact-free sleep epochs across an entire night. Correlations were performed between qEEG and ratings of PTSD symptoms and combat exposure. The groups did not differ significantly in whole night qEEG measures for either REM or NREM. Non-significant medium effect sizes suggest less REM beta (opposite to our hypothesis), less REM and NREM sigma, and more NREM gamma in combat veterans with PTSD. Positive correlations were found between combat exposure and NREM beta (PTSD group only), and REM and NREM sigma (non-PTSD group only). Results did not support global hyperarousal in PTSD as indexed by increased beta qEEG activity. The correlation of sigma activity with combat exposure in those without PTSD, and the non-significant trend towards less sigma activity during both REM and NREM sleep in combat veterans with PTSD suggests that differential information processing during sleep may characterize combat-exposed military veterans with and without PTSD. PMID:22845675

  19. Night-to-night variability of muscle tone, movements, and vocalizations in patients with REM sleep behavior disorder.

    PubMed

    Cygan, Fanny; Oudiette, Delphine; Leclair-Visonneau, Laurène; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2010-12-15

    The video-polysomnographic criteria of REM sleep behavior disorder (RBD) have not been well described. We evaluated the between-night reproducibility of phasic and tonic enhanced muscle activity during REM sleep as well as the associated behaviors and vocalizations of the patients. Fifteen patients with clinical RBD underwent two consecutive video-polysomnographies. The amount of excessive phasic and tonic chin muscle activity during REM sleep was measured in 15 patients in 3-sec mini-epochs. The time spent with motor (minor, major, complex, and scenic) or vocal (sounds, mumblings, and comprehensible speeches) events was measured in 7 patients during REM sleep. There was a good between-night agreement for tonic (Spearman rho = 0.55, p = 0.03; Kendall tau = 0.48, p = 0.01) but not for phasic (rho = 0.47, p = 0.1; tau = 0.31, p = 0.1) excessive chin muscle activity. On the video and audio recordings, the minor RBD behaviors tended to occur more frequently during the second night than the first, whereas the patients spoke longer during the first than the second night. The excessive tonic activity during REM sleep is a reliable marker of RBD. It could represent the extent of dysfunction in the permissive atonia systems. In contrast, the more variable phasic activity and motor/vocal events could be more dependent on dream content (executive systems).

  20. REM sleep behavior disorder in Parkinson's disease and dementia with Lewy bodies.

    PubMed

    Boeve, Bradley F; Silber, Michael H; Ferman, Tanis J

    2004-09-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia manifested by vivid, often frightening dreams associated with simple or complex motor behavior during REM sleep. Patients appear to "act out their dreams," in which the exhibited behaviors mirror the content of the dreams. Management of RBD involves counseling about safety measures in the sleep environment; in those at risk for injury, clonazepam and/or melatonin is usually effective. In this article, the authors present a detailed review of the clinical and polysomnographic features, differential diagnosis, diagnostic criteria, management strategies, and pathophysiologic mechanisms of RBD. They then review the literature and their institutional experience of RBD associated with neurodegenerative disease, particularly Parkinson's disease and dementia with Lewy bodies. The evolving data suggests that RBD may have clinical diagnostic and pathophysiologic significance in isolation and when associated with neurodegenerative disease.

  1. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    PubMed Central

    Urbano, Francisco J.; D’Onofrio, Stasia M.; Luster, Brennon R.; Beck, Paige B.; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS. PMID:25368599

  2. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep.

    PubMed

    Urbano, Francisco J; D'Onofrio, Stasia M; Luster, Brennon R; Beck, Paige B; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS.

  3. A relationship between REM sleep measures and the duration of posttraumatic stress disorder in a young adult urban minority population.

    PubMed

    Mellman, Thomas A; Kobayashi, Ihori; Lavela, Joseph; Wilson, Bryonna; Hall Brown, Tyish S

    2014-08-01

    To determine relationships of polysomnographic (PSG) measures with posttraumatic stress disorder (PTSD) in a young adult, urban African American population. Cross-sectional, clinical and laboratory evaluation. Community recruitment, evaluation in the clinical research unit of an urban University hospital. Participants (n = 145) were Black, 59.3% female, with a mean age of 23.1 y (SD = 4.8). One hundred twenty-one participants (83.4%) met criteria for trauma exposure, the most common being nonsexual violence. Thirty-nine participants (26.9%) met full (n = 19) or subthreshold criteria (n = 20) for current PTSD, 41 (28.3%) had met lifetime PTSD criteria and were recovered, and 65 (45%) were negative for PTSD. Evaluations included the Clinician Administered PTSD Scale (CAPS) and 2 consecutive nights of overnight PSG. Analysis of variance did not reveal differences in measures of sleep duration and maintenance, percentage of sleep stages, and the latency to and duration of uninterrupted segments of rapid eye movement (REM) sleep by study group. There were significant relationships between the duration of PTSD and REM sleep percentage (r = 0.53, P = 0.001), REM segment length (r = 0.43, P = 0.006), and REM sleep latency (r = -0.34, P < 0.03) among those with current PTSD that persisted when removing cases with, or controlling for, depression. The findings are consistent with observations in the literature of fragmented and reduced REM sleep with posttraumatic stress disorder (PTSD) relatively proximate to trauma exposure and nondisrupted or increased REM sleep with chronic PTSD. Mellman TA, Kobayashi I, Lavela J, Wilson B, Hall Brown TS. A relationship between REM sleep measures and the duration of posttraumatic stress disorder in a young adult urban minority population.

  4. Periodic Limb Movements During Sleep Mimicking REM Sleep Behavior Disorder: A New Form of Periodic Limb Movement Disorder.

    PubMed

    Gaig, Carles; Iranzo, Alex; Pujol, Montserrat; Perez, Hernando; Santamaria, Joan

    2017-03-01

    To describe a group of patients referred because of abnormal sleep behaviors that were suggestive of rapid eye movement (REM) sleep behavior disorder (RBD) in whom video-polysomnography ruled out RBD and showed the reported behaviors associated with vigorous periodic limb movements during sleep (PLMS). Clinical history and video-polysomnography review of patients identified during routine visits in a sleep center. Patients were 15 men and 2 women with a median age of 66 (range: 48-77) years. Reported sleep behaviors were kicking (n = 17), punching (n = 16), gesticulating (n = 8), falling out of bed (n = 5), assaulting the bed partner (n = 2), talking (n = 15), and shouting (n = 10). Behaviors resulted in injuries in 3 bed partners and 1 patient. Twelve (70.6%) patients were not aware of displaying abnormal sleep behaviors that were only noticed by their bed partners. Ten (58.8%) patients recalled unpleasant dreams such as being attacked or chased. Video-polysomnography showed (1) frequent and vigorous stereotyped PLMS involving the lower limbs, upper limbs, and trunk (median PLMS index 61.2; median PLMS index in NREM sleep 61.9; during REM sleep only 8 patients had PLMS and their median PLMS index in REM sleep was 39.5); (2) abnormal behaviors (e.g., punching, groaning) during some of the arousals that immediately followed PLMS in NREM sleep; and (3) ruled out RBD and other sleep disorders such as obstructive sleep apnea. Dopaminergic agents were prescribed in 14 out of the 17 patients and resulted in improvement of abnormal sleep behaviors and unpleasant dreams in all of them. After dopaminergic treatment, follow-up video-polysomnography in 7 patients showed a decrease in the median PLMS index from baseline (108.9 vs. 19.2, p = .002) and absence of abnormal behaviors during the arousals. Abnormal sleep behaviors and unpleasant dreams simulating RBD symptomatology may occur in patients with severe PLMS. In these cases, video-polysomnography ruled out RBD and

  5. [Physiopathology of idiopathic hypersomnia. Current studies and new orientations].

    PubMed

    Billiard, M; Rondouin, G; Espa, F; Dauvilliers, Y; Besset, A

    2001-11-01

    In 1976 Bedrich Roth coined the term "idiopathic hypersomnia" and described two forms of the disease, one monosymptomatic, manifested only by excessive daytime sleepiness, and one polysymptomatic, characterized by excessive daytime sleepiness, nocturnal sleep of abnormally long duration and signs of "sleep drunkenness" on awakening. In comparison with that of narcolepsy, the pathophysiology of idiopathic hypersomnia remains poorly known. There are two main reasons for that: the absence of clinical and polysomnographic criteria pathognomonic or at least characteristic of the condition, as the cataplexies and the sleep onset REM periods of narcolepsy, and also the absence of a natural animal model comparable with the canine model of narcolepsy. The first investigations have stressed the frequent familial pattern of idiopathic hypersomnia. Later on biochemical assays have been performed in the CSF with results in favour of a dysfunction of noradrenergic systems. In the light of the two process model of sleep regulation in which sleep propensity is determined by a homeostatic process S and a circadian process C and of the later three-process model of regulation in which sleepiness/alertness are simulated by the combined action of a homeostatic process, a circadian process and sleep inertia, we suggest that idiopathic hypersomnia is not a pathological entity in itself, but rather the consequence of chronic sleep deprivation in very long sleepers.

  6. Disinhibition of perifornical hypothalamic neurones activates noradrenergic neurones and blocks pontine carbachol-induced REM sleep-like episodes in rats

    PubMed Central

    Lu, Jackie W; Fenik, Victor B; Branconi, Jennifer L; Mann, Graziella L; Rukhadze, Irma; Kubin, Leszek

    2007-01-01

    Studies in behaving animals suggest that neurones located in the perifornical (PF) region of the posterior hypothalamus promote wakefulness and suppress sleep. Among such cells are those that synthesize the excitatory peptides, orexins (ORX). Lack of ORX, or their receptors, is associated with narcolepsy/cataplexy, a disorder characterized by an increased pressure for rapid eye movement (REM) sleep. We used anaesthetized rats in which pontine microinjections of a cholinergic agonist, carbachol, can repeatedly elicit REM sleep-like episodes to test whether activation of PF cells induced by antagonism of endogenous, GABAA receptor-mediated, inhibition suppresses the ability of the brainstem to generate REM sleep-like state. Microinjections of the GABAA receptor antagonist, bicuculline (20 nl, 1 mm), into the PF region elicited cortical and hippocampal activation, increased the respiratory rate and hypoglossal nerve activity, induced c-fos expression in ORX and other PF neurones, and increased c-fos expression in pontine A7 and other noradrenergic neurones. The ability of pontine carbachol to elicit any cortical, hippocampal or brainstem component of the REM sleep-like response was abolished during the period of bicuculline-induced activation. The activating and REM sleep-suppressing effect of PF bicuculline was not attenuated by systemic administration of the ORX type 1 receptor antagonist, SB334867. Thus, activation of PF neurones that are endogenously inhibited by GABAA receptors is sufficient to turn off the brainstem REM sleep-generating network; the effect is, at least in part, due to activation of pontine noradrenergic neurones, but is not mediated by ORX type 1 receptors. A malfunction of the pathway that originates in GABAA receptor-expressing PF neurones may cause narcolepsy/cataplexy. PMID:17495048

  7. Disappearance of "phantom limb" and amputated arm usage during dreaming in REM sleep behaviour disorder.

    PubMed

    Vetrugno, Roberto; Arnulf, Isabelle; Montagna, Pasquale

    2009-01-01

    Limb amputation is followed, in approximately 90% of patients, by "phantom limb" sensations during wakefulness. When amputated patients dream, however, the phantom limb may be present all the time, part of the time, intermittently or not at all. Such dreaming experiences in amputees have usually been obtained only retrospectively in the morning and, moreover, dreaming is normally associated with muscular atonia so the motor counterpart of the phantom limb experience cannot be observed directly. REM sleep behaviour disorder (RBD), in which muscle atonia is absent during REM sleep and patients act out their dreams, allows a more direct analysis of the "phantom limb" phenomena and their modifications during sleep.

  8. Effects of Rotigotine on REM Sleep Behavior Disorder in Parkinson Disease.

    PubMed

    Wang, Yan; Yang, Yuechang; Wu, Huijuan; Lan, Danmei; Chen, Ying; Zhao, Zhongxin

    2016-10-15

    REM sleep behavior disorder (RBD) is a common manifestation of Parkinson disease (PD). In this study, we assessed the effects of rotigotine transdermal patch on RBD features in patients with PD. In this prospective open-label study, eleven PD patients with untreated RBD were administered rotigotine patches for up to seven months to ameliorate their parkinsonism. The severities of their RBD symptoms before and after rotigotine therapy were evaluated through patient and bed partner interviews, a validated evaluation scale (REM sleep behavior disorder questionnaire-Hong Kong, RBDQ-HK), and blinded assessments based on video-polysomnographic (VPSG) measure. Rotigotine improved parkinsonism and subjective sleep quality in PD patients with RBD. The RBDQ-HK total score, especially the Factor 2 score, was decreased, which demonstrated that the subjective severity of RBD symptoms was improved after rotigotine treatment, especially the frequency and severity of abnormal RBD-related motor behaviors. The VPSG analyses showed that the total sleep time (TST) and stage 1% were increased and that the PLMS index was decreased. However, no differences in the RBD-related sleep measures were observed. The improved RBD symptoms and VPSG measures of PD patients in this study (TST, stage 1%, and PLMS index) suggest that, in PD, rotigotine may partially improve RBD-related symptoms. Rotigotine should be considered to be an optional drug for the treatment of RBD symptoms in PD. © 2016 American Academy of Sleep Medicine

  9. Trauma Associated Sleep Disorder: A Proposed Parasomnia Encompassing Disruptive Nocturnal Behaviors, Nightmares, and REM without Atonia in Trauma Survivors

    PubMed Central

    Mysliwiec, Vincent; O'Reilly, Brian; Polchinski, Jason; Kwon, Herbert P.; Germain, Anne; Roth, Bernard J.

    2014-01-01

    Study Objectives: To characterize the clinical, polysomnographic and treatment responses of patients with disruptive nocturnal behaviors (DNB) and nightmares following traumatic experiences. Methods: A case series of four young male, active duty U.S. Army Soldiers who presented with DNB and trauma related nightmares. Patients underwent a clinical evaluation in a sleep medicine clinic, attended overnight polysomnogram (PSG) and received treatment. We report pertinent clinical and PSG findings from our patients and review prior literature on sleep disturbances in trauma survivors. Results: DNB ranged from vocalizations, somnambulism to combative behaviors that injured bed partners. Nightmares were replays of the patient's traumatic experiences. All patients had REM without atonia during polysomnography; one patient had DNB and a nightmare captured during REM sleep. Prazosin improved DNB and nightmares in all patients. Conclusions: We propose Trauma associated Sleep Disorder (TSD) as a unique sleep disorder encompassing the clinical features, PSG findings, and treatment responses of patients with DNB, nightmares, and REM without atonia after trauma. Citation: Mysliwiec V, O'Reilly B, Polchinski J, Kwon HP, Germain A, Roth BJ. Trauma associated sleep disorder: a proposed parasomnia encompassing disruptive nocturnal behaviors, nightmares, and REM without atonia in trauma survivors. J Clin Sleep Med 2014;10(10):1143-1148. PMID:25317096

  10. REM sleep enhancement and behavioral cataplexy following orexin (hypocretin)-II receptor antisense perfusion in the pontine reticular formation.

    PubMed

    Thakkar, M M; Ramesh, V; Cape, E G; Winston, S; Strecker, R E; McCarley, R W

    1999-01-01

    Orexin (hypocretin)-containing neurons of the hypothalamus project to brainstem sites that are involved in the neural control of REM sleep, including the locus coeruleus, the dorsal raphe nucleus, the cholinergic zone of the mesopontine tegmentum, and the pontine reticular formation (PRF). Orexin knockout mice exhibit narcolepsy/cataplexy, and a mutant and defective gene for the orexin type II receptor is present in dogs with an inherited form of narcolepsy/cataplexy. However, the physiological systems mediating these effects have not been described. We reasoned that, since the effector neurons for the majority of REM sleep signs, including muscle atonia, were located in the PRF, this region was likely implicated in the production of these orexin-related abnormalities. To test this possibility, we used microdialysis perfusion of orexin type II receptor antisense in the PRF of rats. Ten to 24 hours after antisense perfusion, REM sleep increased two- to three-fold during both the light period (quiescent phase) and the dark period (active phase), and infrared video showed episodes of behavioral cataplexy. Moreover, preliminary data indicated no REM-related effects following perfusion with nonsense DNA, or when perfusion sites were outside the PRF. More work is needed to provide precise localization of the most effective site of orexin-induced inhibition of REM sleep phenomena.

  11. Neural Correlates of Dream Lucidity Obtained from Contrasting Lucid versus Non-Lucid REM Sleep: A Combined EEG/fMRI Case Study

    PubMed Central

    Dresler, Martin; Wehrle, Renate; Spoormaker, Victor I.; Koch, Stefan P.; Holsboer, Florian; Steiger, Axel; Obrig, Hellmuth; Sämann, Philipp G.; Czisch, Michael

    2012-01-01

    Study Objectives: To investigate the neural correlates of lucid dreaming. Design: Parallel EEG/fMRI recordings of night sleep. Setting: Sleep laboratory and fMRI facilities. Participants: Four experienced lucid dreamers. Interventions: N/A. Measurements and Results: Out of 4 participants, one subject had 2 episodes of verified lucid REM sleep of sufficient length to be analyzed by fMRI. During lucid dreaming the bilateral precuneus, cuneus, parietal lobules, and prefrontal and occipito-temporal cortices activated strongly as compared with non-lucid REM sleep. Conclusions: In line with recent EEG data, lucid dreaming was associated with a reactivation of areas which are normally deactivated during REM sleep. This pattern of activity can explain the recovery of reflective cognitive capabilities that are the hallmark of lucid dreaming. Citation: Dresler M; Wehrle R; Spoormaker VI; Koch SP; Holsboer F; Steiger A; Obrig H; Sämann PG; Czisch M. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study. SLEEP 2012;35(7):1017–1020. PMID:22754049

  12. Up-regulated neuronal COX-2 expression after cortical spreading depression is involved in non-REM sleep induction in rats.

    PubMed

    Cui, Yilong; Kataoka, Yosky; Inui, Takashi; Mochizuki, Takatoshi; Onoe, Hirotaka; Matsumura, Kiyoshi; Urade, Yoshihiro; Yamada, Hisao; Watanabe, Yasuyoshi

    2008-03-01

    Cortical spreading depression is an excitatory wave of depolarization spreading throughout cerebral cortex at a rate of 2-5 mm/min and has been implicated in various neurological disorders, such as epilepsy, migraine aura, and trauma. Although sleepiness or sleep is often induced by these neurological disorders, the cellular and molecular mechanism has remained unclear. To investigate whether and how the sleep-wake behavior is altered by such aberrant brain activity, we induced cortical spreading depression in freely moving rats, monitoring REM and non-REM (NREM) sleep and sleep-associated changes in cyclooxygenase (COX)-2 and prostaglandins (PGs). In such a model for aberrant neuronal excitation in the cerebral cortex, the amount of NREM sleep, but not of REM sleep, increased subsequently for several hours, with an up-regulated expression of COX-2 in cortical neurons and considerable production of PGs. A specific inhibitor of COX-2 completely arrested the increase in NREM sleep. These results indicate that up-regulated neuronal COX-2 would be involved in aberrant brain excitation-induced NREM sleep via production of PGs. (c) 2007 Wiley-Liss, Inc.

  13. Cellular and Molecular Mechanisms of REM Sleep Homeostatic Drive: A Plausible Component for Behavioral Plasticity

    PubMed Central

    Datta, Subimal; Oliver, Michael D.

    2017-01-01

    Homeostatic regulation of REM sleep drive, as measured by an increase in the number of REM sleep transitions, plays a key role in neuronal and behavioral plasticity (i.e., learning and memory). Deficits in REM sleep homeostatic drive (RSHD) are implicated in the development of many neuropsychiatric disorders. Yet, the cellular and molecular mechanisms underlying this RSHD remain to be incomplete. To further our understanding of this mechanism, the current study was performed on freely moving rats to test a hypothesis that a positive interaction between extracellular-signal-regulated kinase 1 and 2 (ERK1/2) activity and brain-derived neurotrophic factor (BDNF) signaling in the pedunculopontine tegmentum (PPT) is a causal factor for the development of RSHD. Behavioral results of this study demonstrated that a short period (<90 min) of selective REM sleep restriction (RSR) exhibited a strong RSHD. Molecular analyses revealed that this increased RSHD increased phosphorylation and activation of ERK1/2 and BDNF expression in the PPT. Additionally, pharmacological results demonstrated that the application of the ERK1/2 activation inhibitor U0126 into the PPT prevented RSHD and suppressed BDNF expression in the PPT. These results, for the first time, suggest that the positive interaction between ERK1/2 and BDNF in the PPT is a casual factor for the development of RSHD. These findings provide a novel direction in understanding how RSHD-associated specific molecular changes can facilitate neuronal plasticity and memory processing. PMID:28959190

  14. Observations on Sleep-Disordered Breathing in Idiopathic Parkinson’s Disease

    PubMed Central

    Valko, Philipp O.; Hauser, Sabrina; Sommerauer, Michael; Werth, Esther; Baumann, Christian R.

    2014-01-01

    Background This study has two main goals: 1.) to determine the potential influence of dopaminergic drugs on sleep-disordered breathing (SDB) in Parkinson’s disease (PD) and 2.) to elucidate whether NREM and REM sleep differentially impact SDB severity in PD. Methods Retrospective clinical and polysomnographic study of 119 consecutive PD patients and comparison with age-, sex- and apnea-hypopnea-index-matched controls. Results SDB was diagnosed in 57 PD patients (48%). Apnea-hypopnea index was significantly higher in PD patients with central SDB predominance (n = 7; 39.3±16.7/h) than obstructive SDB predominance (n = 50; 20.9±16.8/h; p = 0.003). All PD patients with central SDB predominance appeared to be treated with both levodopa and dopamine agonists, whereas only 56% of those with obstructive SDB predominance were on this combined treatment (p = 0.03). In the whole PD group with SDB (n = 57), we observed a significant decrease of apnea-hypopnea index from NREM to REM sleep (p = 0.02), while controls revealed the opposite tendency. However, only the PD subgroup with SDB and treatment with dopamine agonists showed this phenomenon, while those without dopamine agonists had a similar NREM/REM pattern as controls. Conclusions Our findings suggest an ambiguous impact of dopamine agonists on SDB. Medication with dopamine agonists seems to enhance the risk of central SDB predominance. Loss of normal muscle atonia may be responsible for decreased SDB severity during REM sleep in PD patients with dopamine agonists. PMID:24968233

  15. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study.

    PubMed

    Dresler, Martin; Wehrle, Renate; Spoormaker, Victor I; Koch, Stefan P; Holsboer, Florian; Steiger, Axel; Obrig, Hellmuth; Sämann, Philipp G; Czisch, Michael

    2012-07-01

    To investigate the neural correlates of lucid dreaming. Parallel EEG/fMRI recordings of night sleep. Sleep laboratory and fMRI facilities. Four experienced lucid dreamers. N/A. Out of 4 participants, one subject had 2 episodes of verified lucid REM sleep of sufficient length to be analyzed by fMRI. During lucid dreaming the bilateral precuneus, cuneus, parietal lobules, and prefrontal and occipito-temporal cortices activated strongly as compared with non-lucid REM sleep. In line with recent EEG data, lucid dreaming was associated with a reactivation of areas which are normally deactivated during REM sleep. This pattern of activity can explain the recovery of reflective cognitive capabilities that are the hallmark of lucid dreaming.

  16. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    NASA Technical Reports Server (NTRS)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  17. REM-related sleep-disordered breathing is associated with depressive symptoms in men but not in women.

    PubMed

    Lee, Sang-Ahm; Paek, Joon-Hyun; Han, Su-Hyun

    2016-09-01

    The purposes of the present study are to determine the prevalence and demographic features of rapid eye movement (REM)-related sleep-disordered breathing (SDB) in Korean adults with newly diagnosed obstructive sleep apnea (OSA) and determine if REM-related SDB is associated with depressive symptoms and health-related quality of life (HRQoL) in OSA patients. In this cross-sectional study, we evaluated 1281 OSA adults who were consecutively recruited. REM-related SDB was defined as an overall apnea-hypopnea index (AHI) ≥5, an AHINREM <15, and AHIREM to AHINREM ratio of >2. The Epworth Sleepiness Scale (ESS), Beck Depression Inventory (BDI), and Medical Outcomes Study Short-Form Health survey (SF-36) were used to evaluate all patients. Multiple regression analyses were performed to determine the associations between REM-related SDB and clinical outcomes. The prevalence of REM-related SDB was 18 % in this study. REM-related SDB was more commonly observed in patients with mild or moderate OSA (p < 0.001) and women (p < 0.001). The linear regression analysis showed that the presence of REM-related SDB was significantly associated with higher BDI scores, but only in men. AHIREM was positively associated with the BDI scores, but only in men with REM-related SDB. There were no differences in ESS and SF-36 scores between patients with and without REM-related SDB. Patients with REM-related SDB account for 18 % of Korean OSA adults. REM-related SDB was associated with depressive symptoms, but only in men. AHIREM is positively related to the degree of depressive symptoms in men with REM-related SDB.

  18. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson's disease.

    PubMed

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C; Mackay, Clare E; Hu, Michele T M

    2016-08-01

    SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep

  19. Effects of age on recovery of body weight following REM sleep deprivation of rats.

    PubMed

    Koban, Michael; Stewart, Craig V

    2006-01-30

    Chronically enforced rapid eye (paradoxical) movement sleep deprivation (REM-SD) of rats leads to a host of pathologies, of which hyperphagia and loss of body weight are among the most readily observed. In recent years, the etiology of many REM-SD-associated pathologies have been elucidated, but one unexplored area is whether age affects outcomes. In this study, male Sprague-Dawley rats at 2, 6, and 12 months of age were REM sleep-deprived with the platform (flowerpot) method for 10-12 days. Two-month-old rats resided on 7-cm platforms, while 10-cm platforms were used for 6- and 12-month-old rats; rats on 15-cm platforms served as tank controls (TCs). Daily changes in food consumption (g/kg(0.67)) and body weight (g) during baseline, REM-SD or TCs, and post-experiment recovery in home cages were determined. Compared to TCs, REM-SD resulted in higher food intake and decreases in body weight. When returned to home cages, food intake rapidly declined to baseline levels. Of primary interest was that rates of body weight gain during recovery differed between the age groups. Two-month-old rats rapidly restored body weight to pre-REM-SD mass within 5 days; 6-month-old rats were extrapolated by linear regression to have taken about 10 days, and for 12-month-old rats, the estimate was about 35 days. The observation that restoration of body weight following its loss during REM-SD may be age-dependent is in general agreement with the literature on aging effects on how mammals respond to stress.

  20. A prominent role for amygdaloid complexes in the Variability in Heart Rate (VHR) during Rapid Eye Movement (REM) sleep relative to wakefulness.

    PubMed

    Desseilles, Martin; Vu, Thanh Dang; Laureys, Steven; Peigneux, Philippe; Degueldre, Christian; Phillips, Christophe; Maquet, Pierre

    2006-09-01

    Rapid eye movement sleep (REMS) is associated with intense neuronal activity, rapid eye movements, muscular atonia and dreaming. Another important feature in REMS is the instability in autonomic, especially in cardiovascular regulation. The neural mechanisms underpinning the variability in heart rate (VHR) during REMS are not known in detail, especially in humans. During wakefulness, the right insula has frequently been reported as involved in cardiovascular regulation but this might not be the case during REMS. We aimed at characterizing the neural correlates of VHR during REMS as compared to wakefulness and to slow wave sleep (SWS), the other main component of human sleep, in normal young adults, based on the statistical analysis of a set of H(2)(15)O positron emission tomography (PET) sleep data acquired during SWS, REMS and wakefulness. The results showed that VHR correlated more tightly during REMS than during wakefulness with the rCBF in the right amygdaloid complex. Moreover, we assessed whether functional relationships between amygdala and any brain area changed depending the state of vigilance. Only the activity within in the insula was found to covary with the amygdala, significantly more tightly during wakefulness than during REMS in relation to the VHR. The functional connectivity between the amygdala and the insular cortex, two brain areas involved in cardiovascular regulation, differs significantly in REMS as compared to wakefulness. This suggests a functional reorganization of central cardiovascular regulation during REMS.

  1. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder.

    PubMed

    Ehrminger, Mickael; Latimier, Alice; Pyatigorskaya, Nadya; Garcia-Lorenzo, Daniel; Leu-Semenescu, Smaranda; Vidailhet, Marie; Lehericy, Stéphane; Arnulf, Isabelle

    2016-04-01

    Idiopathic rapid eye movement sleep behaviour disorder is characterized by nocturnal violence, increased muscle tone during rapid eye movement sleep and the lack of any other neurological disease. However, idiopathic rapid eye movement sleep behaviour disorder can precede parkinsonism and dementia by several years. Using 3 T magnetic resonance imaging and neuromelanin-sensitive sequences, we previously found that the signal intensity was reduced in the locus coeruleus/subcoeruleus area of patients with Parkinson's disease and rapid eye movement sleep behaviour disorder. Here, we studied the integrity of the locus coeruleus/subcoeruleus complex with neuromelanin-sensitive imaging in 21 patients with idiopathic rapid eye movement sleep behaviour disorder and compared the results with those from 21 age- and gender-matched healthy volunteers. All subjects underwent a clinical examination, motor, cognitive, autonomous, psychological, olfactory and colour vision tests, and rapid eye movement sleep characterization using video-polysomnography and 3 T magnetic resonance imaging. The patients more frequently had preclinical markers of alpha-synucleinopathies, including constipation, olfactory deficits, orthostatic hypotension, and subtle motor impairment. Using neuromelanin-sensitive imaging, reduced signal intensity was identified in the locus coeruleus/subcoeruleus complex of the patients with idiopathic rapid eye movement sleep behaviour. The mean sensitivity of the visual analyses of the signal performed by neuroradiologists who were blind to the clinical diagnoses was 82.5%, and the specificity was 81% for the identification of idiopathic rapid eye movement sleep behaviour. The results confirm that this complex is affected in idiopathic rapid eye movement sleep behaviour (to the same degree as it is affected in Parkinson's disease). Neuromelanin-sensitive imaging provides an early marker of non-dopaminergic alpha-synucleinopathy that can be detected on an individual

  2. Lucid dreaming verified by volitional communication during REM sleep.

    PubMed

    La Berge, S P; Nagel, L E; Dement, W C; Zarcone, V P

    1981-06-01

    The occurrence of lucid dreaming (dreaming while being conscious that one is dreaming) has been verified for 5 selected subjects who signaled that they knew they were dreaming while continuing to dream during unequivocal REM sleep. The signals consisted of particular dream actions having observable concomitants and were performed in accordance with pre-sleep agreement. The ability of proficient lucid dreamers to signal in this manner makes possible a new approach to dream research--such subjects, while lucid, could carry out diverse dream experiments marking the exact time of particular dream events, allowing derivation of of precise psychophysiological correlations and methodical testing of hypotheses.

  3. Restricting Time in Bed in Early Adolescence Reduces Both NREM and REM Sleep but Does Not Increase Slow Wave EEG

    PubMed Central

    Campbell, Ian G.; Kraus, Amanda M.; Burright, Christopher S.; Feinberg, Irwin

    2016-01-01

    Study Objectives: School night total sleep time decreases across adolescence (9–18 years) by 10 min/year. This decline is comprised entirely of a selective decrease in NREM sleep; REM sleep actually increases slightly. Decreasing sleep duration across adolescence is often attributed to insufficient time in bed. Here we tested whether sleep restriction in early adolescence produces the same sleep stage changes observed on school nights across adolescence. Methods: All-night sleep EEG was recorded in 76 children ranging in age from 9.9 to 14.0 years. Each participant kept 3 different sleep schedules that consisted of 3 nights of 8.5 h in bed followed by 4 nights of either 7, 8.5, or 10 h in bed. Sleep stage durations and NREM delta EEG activity were compared across the 3 time in bed conditions. Results: Shortening time in bed from 10 to 7 hours reduced sleep duration by approximately 2 hours, roughly equal to the decrease in sleep duration we recorded longitudinally across adolescence. However, sleep restriction significantly reduced both NREM (by 83 min) and REM (by 47 min) sleep. Sleep restriction did not affect NREM delta EEG activity. Conclusions: Our findings suggest that the selective NREM reduction and the small increase in REM we observed longitudinally across 9–18 years are not produced by sleep restriction. We hypothesize that the selective NREM decline reflects adolescent brain maturation (synaptic elimination) that reduces the need for the restorative processes of NREM sleep. Citation: Campbell IG, Kraus AM, Burright CS, Feinberg I. Restricting time in bed in early adolescence reduces both NREM and REM sleep but does not increase slow wave EEG. SLEEP 2016;39(9):1663–1670. PMID:27397569

  4. Functional Anatomy of Non-REM Sleep

    PubMed Central

    de Andrés, Isabel; Garzón, Miguel; Reinoso-Suárez, Fernando

    2011-01-01

    The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3–4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior. An overview of the brain structures involved in NREM generation shows that the thalamus and the cerebral cortex are absolutely necessary for the most significant bioelectric and behavioral events of NREM to be expressed; other structures like the basal forebrain, anterior hypothalamus, cerebellum, caudal brain stem, spinal cord and peripheral nerves contribute to NREM regulation and modulation. In NREM stage 2, sustained hyperpolarized membrane potential levels resulting from interaction between thalamic reticular and projection neurons gives rise to spindle oscillations in the membrane potential; the initiation and termination of individual spindle sequences depends on corticothalamic activities. Cortical and thalamic mechanisms are also involved in the generation of EEG delta SWA that appears in deep stage 3–4 (N3) NREM; the cortex has classically been considered to be the structure that generates this activity, but delta oscillations can also be generated in thalamocortical neurons. NREM is probably necessary to normalize synapses to a sustainable basal condition that can ensure cellular homeostasis. Sleep homeostasis depends not only on the duration of prior wakefulness but also on its intensity, and sleep need increases when wakefulness is associated with learning. NREM seems to ensure cell homeostasis by reducing the number of synaptic connections to a basic level; based on simple energy demands, cerebral energy economizing during NREM sleep is one of the prevalent hypotheses to explain NREM homeostasis

  5. Trauma associated sleep disorder: a proposed parasomnia encompassing disruptive nocturnal behaviors, nightmares, and REM without atonia in trauma survivors.

    PubMed

    Mysliwiec, Vincent; O'Reilly, Brian; Polchinski, Jason; Kwon, Herbert P; Germain, Anne; Roth, Bernard J

    2014-10-15

    To characterize the clinical, polysomnographic and treatment responses of patients with disruptive nocturnal behaviors (DNB) and nightmares following traumatic experiences. A case series of four young male, active duty U.S. Army Soldiers who presented with DNB and trauma related nightmares. Patients underwent a clinical evaluation in a sleep medicine clinic, attended overnight polysomnogram (PSG) and received treatment. We report pertinent clinical and PSG findings from our patients and review prior literature on sleep disturbances in trauma survivors. DNB ranged from vocalizations, somnambulism to combative behaviors that injured bed partners. Nightmares were replays of the patient's traumatic experiences. All patients had REM without atonia during polysomnography; one patient had DNB and a nightmare captured during REM sleep. Prazosin improved DNB and nightmares in all patients. We propose Trauma associated Sleep Disorder (TSD) as a unique sleep disorder encompassing the clinical features, PSG findings, and treatment responses of patients with DNB, nightmares, and REM without atonia after trauma.

  6. Daytime Ayahuasca administration modulates REM and slow-wave sleep in healthy volunteers.

    PubMed

    Barbanoj, Manel J; Riba, Jordi; Clos, S; Giménez, S; Grasa, E; Romero, S

    2008-02-01

    Ayahuasca is a traditional South American psychoactive beverage and the central sacrament of Brazilian-based religious groups, with followers in Europe and the United States. The tea contains the psychedelic indole N,N-dimethyltryptamine (DMT) and beta-carboline alkaloids with monoamine oxidase-inhibiting properties that render DMT orally active. DMT interacts with serotonergic neurotransmission acting as a partial agonist at 5-HT(1A) and 5-HT(2A/2C) receptor sites. Given the role played by serotonin in the regulation of the sleep/wake cycle, we investigated the effects of daytime ayahuasca consumption in sleep parameters. Subjective sleep quality, polysomnography (PSG), and spectral analysis were assessed in a group of 22 healthy male volunteers after the administration of a placebo, an ayahuasca dose equivalent to 1 mg DMT kg(-1) body weight, and 20 mg d-amphetamine, a proaminergic drug, as a positive control. Results show that ayahuasca did not induce any subjectively perceived deterioration of sleep quality or PSG-measured disruptions of sleep initiation or maintenance, in contrast with d-amphetamine, which delayed sleep initiation, disrupted sleep maintenance, induced a predominance of 'light' vs 'deep' sleep and significantly impaired subjective sleep quality. PSG analysis also showed that similarly to d-amphetamine, ayahuasca inhibits rapid eye movement (REM) sleep, decreasing its duration, both in absolute values and as a percentage of total sleep time, and shows a trend increase in its onset latency. Spectral analysis showed that d-amphetamine and ayahuasca increased power in the high frequency range, mainly during stage 2. Remarkably, whereas slow-wave sleep (SWS) power in the first night cycle, an indicator of sleep pressure, was decreased by d-amphetamine, ayahuasca enhanced power in this frequency band. Results show that daytime serotonergic psychedelic drug administration leads to measurable changes in PSG and sleep power spectrum and suggest an

  7. Comparison of clinical characteristics among narcolepsy with and without cataplexy and idiopathic hypersomnia without long sleep time, focusing on HLA-DRB1( *)1501/DQB1( *)0602 finding.

    PubMed

    Sasai, Taeko; Inoue, Yuichi; Komada, Yoko; Sugiura, Tatsuki; Matsushima, Eisuke

    2009-10-01

    Clinical characteristics of narcolepsy without cataplexy (NA w/o CA) and its relation to positivity of HLA-DRB1( *)1501/DQB1( *)0602 remain unclarified. We investigated clinical features of NA w/o CA, particularly addressing HLA-DRB1( *)1501/DQB1( *)0602. Comparisons of the Epworth Sleepiness Scale (ESS), multiple sleep latency test (MSLT) variables, rapid eye movement (REM)-related symptoms, and treatment response to psychostimulant medication were made for four patient groups (narcolepsy with cataplexy; NA-CA, NA w/o CA HLA-positive, NA w/o CA HLA-negative, and idiopathic hypersomnia without long sleep time; IHS w/o LST). Mean sleep latency was significantly shorter and the rate of reduction of ESS after medication was lower in both NA-CA and NA w/o CA HLA-positive groups than those in the IHS w/o LST group. Among the three narcoleptic groups, the NA w/o CA HLA-negative group showed the lowest REM latency and the highest reduction rate of ESS after treatment. Neither these subjective and objective sleepiness measures nor the treatment response measure was significantly different between this group and the IHS w/o LST group. In NA w/o CA, HLA-positivity might affect hypersomnia severity and REM propensity. The NA w/o CA HLA-negative group and the IHS w/o LST group exhibit equivalent hypersomnia severity.

  8. Restricting Time in Bed in Early Adolescence Reduces Both NREM and REM Sleep but Does Not Increase Slow Wave EEG.

    PubMed

    Campbell, Ian G; Kraus, Amanda M; Burright, Christopher S; Feinberg, Irwin

    2016-09-01

    School night total sleep time decreases across adolescence (9-18 years) by 10 min/year. This decline is comprised entirely of a selective decrease in NREM sleep; REM sleep actually increases slightly. Decreasing sleep duration across adolescence is often attributed to insufficient time in bed. Here we tested whether sleep restriction in early adolescence produces the same sleep stage changes observed on school nights across adolescence. All-night sleep EEG was recorded in 76 children ranging in age from 9.9 to 14.0 years. Each participant kept 3 different sleep schedules that consisted of 3 nights of 8.5 h in bed followed by 4 nights of either 7, 8.5, or 10 h in bed. Sleep stage durations and NREM delta EEG activity were compared across the 3 time in bed conditions. Shortening time in bed from 10 to 7 hours reduced sleep duration by approximately 2 hours, roughly equal to the decrease in sleep duration we recorded longitudinally across adolescence. However, sleep restriction significantly reduced both NREM (by 83 min) and REM (by 47 min) sleep. Sleep restriction did not affect NREM delta EEG activity. Our findings suggest that the selective NREM reduction and the small increase in REM we observed longitudinally across 9-18 years are not produced by sleep restriction. We hypothesize that the selective NREM decline reflects adolescent brain maturation (synaptic elimination) that reduces the need for the restorative processes of NREM sleep. © 2016 Associated Professional Sleep Societies, LLC.

  9. The role of omega-3 on modulation of cognitive deficiency induced by REM sleep deprivation in rats.

    PubMed

    Nasehi, Mohammad; Nezhad, Seyed Moslem Mousavi; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2018-06-02

    Prolonged sleep deprivation causes cognitive deficits. In rats, for instance, sleep deprivation weakens spatial learning and long-term potentiation (LTP). We examined the effects of omega-3 on cognitive deficiency induced by REM sleep deprivation (RSD). For this purpose, we used a fear conditioning paradigm, forced swim test (FST) apparatus, and hot plate test. Intravenously omega-3 injection was performed during 3 consecutive days. Rats trained in the fear conditioning apparatus after 24 hours. During conditioning, animals were received foot shocks, either alone or paired with a sound. Sleep deprivation paradigm was carried out in which REM sleep was completely prevented and non-REM sleep was intensely declined for 24 hours. Then, context-dependent retention, anxiety behaviors, and hot plate tests were done. Auditory-dependent retention, anxiety behaviors, and FST were carried out 24 hours later. 24 hours of RSD impaired cognitive function, however intravenously administration of omega-3 improved (0.25, 0.5 and 1 mg/kg) context- or auditory-dependent memory, induced anxiolytic (1 mg/kg), antidepressant (1.25 mg/kg), and anti-nociceptive (0.25 mg/kg) effects. The results revealed that RSD interferes with the neural systems underlying cognitive functions and supports the involvement of omega-3 in the modulation of cognitive functions. Copyright © 2018. Published by Elsevier B.V.

  10. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease

    PubMed Central

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A.; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C.; Mackay, Clare E.

    2016-01-01

    Abstract See Postuma (doi:10.1093/aww131) for a scientific commentary on this article. Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson’s disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson’s disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson’s disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson’s disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson’s disease and 10 control subjects received 123I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye

  11. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: Roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine.

    PubMed

    Jiang, Jiaye; Gan, Zhongyuan; Li, Yuan; Zhao, Wenqi; Li, Hanqing; Zheng, Jian-Pu; Ke, Yan

    2017-01-01

    Sleep loss can induce or aggravate the development of cardiovascular and cerebrovascular diseases. However, the molecular mechanism underlying this phenomenon is poorly understood. The present study was designed to investigate the effects of REM sleep deprivation on blood pressure in rats and the underlying mechanisms of these effects. After Sprague-Dawley rats were subjected to REM sleep deprivation for 5 days, their blood pressures and endothelial function were measured. In addition, one group of rats was given continuous access to L-arginine supplementation (2% in distilled water) for the 5 days before and the 5 days of REM sleep deprivation to reverse sleep deprivation-induced pathological changes. The results showed that REM sleep deprivation decreased body weight, increased blood pressure, and impaired endothelial function of the aortas in middle-aged rats but not young rats. Moreover, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) concentrations as well as endothelial NO synthase (eNOS) phosphorylation in the aorta were decreased by REM sleep deprivation. Supplementation with L-arginine could protect against REM sleep deprivation-induced hypertension, endothelial dysfunction, and damage to the eNOS/NO/cGMP signaling pathway. The results of the present study suggested that REM sleep deprivation caused endothelial dysfunction and hypertension in middle-aged rats via the eNOS/NO/cGMP pathway and that these pathological changes could be inhibited via L-arginine supplementation. The present study provides a new strategy to inhibit the signaling pathways involved in insomnia-induced or insomnia-enhanced cardiovascular diseases.

  12. Exposure to dim artificial light at night increases REM sleep and awakenings in humans.

    PubMed

    Cho, Chul-Hyun; Lee, Heon-Jeong; Yoon, Ho-Kyoung; Kang, Seung-Gul; Bok, Ki-Nam; Jung, Ki-Young; Kim, Leen; Lee, Eun-Il

    2016-01-01

    Exposure to artificial light at night (ALAN) has become increasing common, especially in developed countries. We investigated the effect of dALAN exposure during sleep in healthy young male subjects. A total of 30 healthy young male volunteers from 21 to 29 years old were recruited for the study. They were randomly divided into two groups depending on light intensity (Group A: 5 lux and Group B: 10 lux). After a quality control process, 23 healthy subjects were included in the study (Group A: 11 subjects, Group B: 12 subjects). Subjects underwent an NPSG session with no light (Night 1) followed by an NPSG session randomly assigned to two different dim light conditions (5 or 10 lux, dom λ: 501.4 nm) for a whole night (Night 2). We found significant sleep structural differences between Nights 1 and 2, but no difference between Groups A and B. Exposure to dALAN during sleep was significantly associated with increased wake time after sleep onset (WASO; F = 7.273, p = 0.014), increased Stage N1 (F = 4.524, p = 0.045), decreased Stage N2 (F = 9.49, p = 0.006), increased Stage R (F = 6.698, p = 0.017) and non-significantly decreased REM density (F = 4.102, p = 0.056). We found that dALAN during sleep affects sleep structure. Exposure to dALAN during sleep increases the frequency of arousals, amount of shallow sleep and amount of REM sleep. This suggests adverse effects of dALAN during sleep on sleep quality and suggests the need to avoid exposure to dALAN during sleep.

  13. Laughing as a manifestation of rapid eye movement sleep behavior disorder.

    PubMed

    Siclari, F; Wienecke, M; Poryazova, R; Bassetti, C L; Baumann, C R

    2011-06-01

    Among the range of sleep-related behavior displayed by patients with rapid eye movement (REM) sleep behavior disorder (RBD), aggressive acts are particularly common, while pleasant behaviors have rarely been reported. We aimed at identifying the frequency and characteristics of patients who displayed laughing as a pleasant, nonviolent manifestation of RBD. We reviewed 67 consecutive polysomnographic recordings of patients with RBD, obtained in our sleep laboratory between July 2004 and July 2009. We identified 14 patients (21% of our RBD patients with degenerative parkinsonism: 10 males, mean age 63 ± 11 years) who repeatedly laughed during REM sleep. Ten patients had idiopathic Parkinson's disease, 3 suffered from multisystem atrophy and 1 patient was diagnosed with dementia with Lewy bodies. Other RBD-associated behaviors included smiling, crying, aggressive behavior, screaming, and somniloquia. Nine of the 14 patients were depressed during daytime. Laughing belongs to the spectrum of behavioral manifestations of RBD. Many of our patients with RBD-associated laughter were depressed, suggesting a dissociation between emotional expression during daytime and REM sleep. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Ibogaine Acute Administration in Rats Promotes Wakefulness, Long-Lasting REM Sleep Suppression, and a Distinctive Motor Profile

    PubMed Central

    González, Joaquín; Prieto, José P.; Rodríguez, Paola; Cavelli, Matías; Benedetto, Luciana; Mondino, Alejandra; Pazos, Mariana; Seoane, Gustavo; Carrera, Ignacio; Scorza, Cecilia; Torterolo, Pablo

    2018-01-01

    Ibogaine is a potent psychedelic alkaloid that has been the focus of intense research because of its intriguing anti-addictive properties. According to anecdotic reports, ibogaine has been originally classified as an oneirogenic psychedelic; i.e., induces a dream-like cognitive activity while awake. However, the effects of ibogaine administration on wakefulness (W) and sleep have not been thoroughly assessed. The main aim of our study was to characterize the acute effects of ibogaine administration on W and sleep. For this purpose, polysomnographic recordings on chronically prepared rats were performed in the light phase during 6 h. Animals were treated with ibogaine (20 and 40 mg/kg) or vehicle, immediately before the beginning of the recordings. Furthermore, in order to evaluate associated motor behaviors during the W period, a different group of animals was tested for 2 h after ibogaine treatment on an open field with video-tracking software. Compared to control, animals treated with ibogaine showed an increase in time spent in W. This effect was accompanied by a decrease in slow wave sleep (SWS) and rapid-eye movements (REM) sleep time. REM sleep latency was significantly increased in animals treated with the higher ibogaine dose. While the effects on W and SWS were observed during the first 2 h of recordings, the decrement in REM sleep time was observed throughout the recording time. Accordingly, ibogaine treatment with the lower dose promoted an increase on locomotion, while tremor and flat body posture were observed only with the higher dose in a time-dependent manner. In contrast, head shake response, a behavior which has been associated in rats with the 5HT2A receptor activation by hallucinogens, was not modified. We conclude that ibogaine promotes a waking state that is accompanied by a robust and long-lasting REM sleep suppression. In addition, it produces a dose-dependent unusual motor profile along with other serotonin-related behaviors. Since ibogaine

  15. A Classification method for eye movements direction during REM sleep trained on wake electro-oculographic recordings.

    PubMed

    Betta, M; Laurino, M; Gemignani, A; Landi, A; Menicucci, D

    2015-01-01

    Rapid eye movements (REMs) are a peculiar and intriguing aspect of REM sleep, even if their physiological function still remains unclear. During this work, a new automatic tool was developed, aimed at a complete description of REMs activity during the night, both in terms of their timing of occurrence that in term of their directional properties. A classification stage of each singular movement detected during the night according to its main direction, was in fact added to our procedure of REMs detection and ocular artifact removal. A supervised classifier was constructed, using as training and validation set EOG data recorded during voluntary saccades of five healthy volunteers. Different classification methods were tested and compared. The further information about REMs directional characteristic provided by the procedure would represent a valuable tool for a deeper investigation into REMs physiological origin and functional meaning.

  16. [Trazodone in REM sleep behavior disorder].

    PubMed

    Chica-Urzola, Heydy Luz

    2015-01-01

    This case concerns an elderly man with a REM sleep behavior disorder, who was initially offered a pharmacological treatment with clonazepam, recommended by other articles, but with poor adherence due to its adverse reactions and persistence of symptoms. He was then offered a treatment with Trazodone was offered, achieving a complete remission of symptoms, with no reported side effects. It is clear that Trazodone has no known indication for this type of disorder; nevertheless, it was considered in this case because of its pharmacological profile, obtaining satisfactory results. Further research is needed in order to document thoroughly the mechanisms of action, efficacy and utility of this molecule in cases such as the one presented. Copyright © 2015 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  17. Specificity of Direct Transition from Wake to REM Sleep in Orexin/ataxin-3 Transgenic Narcoleptic Mice

    PubMed Central

    Fujiki, Nobuhiro; Cheng, Timothy; Yoshino, Fuyumi; Nishino, Seiji

    2009-01-01

    To create operational criteria for polygraphic assessments of direct transitions from wake to REM sleep (DREM), as a murine analog of human cataplexy, we have analyzed DREM episodes in congenic lines of orexin/ataxin-3 transgenic [TG] mice and wild-type littermates. The sleep stage of each 10-second epoch was visually scored using our standard criteria. Specificity of DREM for narcoleptic TG mice and sensitivity to detect DREM was evaluated using different DREM criteria. We found that DREM transitions by 10-second epoch scoring are not specific for narcoleptic TG mice and also occur in WT mice during light period. These wake-to-REM transitions in WT mice (also seen in TG mice during light period) were characteristically different from DREM transitions in TG mice during dark period; they tended to occur as brief bouts of wakefulness interrupting extended episodes of REM sleep, suggesting that these transitions do not represent abnormal manifestations of REM sleep. We therefore defined the DREM transitions by requiring a minimum number of preceding wake epochs. Requiring no fewer than four consecutive epochs of wakefulness produced the best combination of specificity (95.9%) and sensitivity (66.0%). By definition, DREM in dark-period is 100% specific to narcolepsy and was 95.9% specific overall. In addition, we found that desipramine, a trycyclic anticataplectic, potently reduces DREM, while two wake-promoting compounds have moderate (d-amphetamine) and no (modafinil) effect on DREM; the effects mirror the anticataplectic effects of these compounds reported in canine and human narcolepsy. Our definition of DREM in murine narcolepsy may provide good electrophysiological measure for cataplexy-equivalent episodes. PMID:19416673

  18. Perchance to dream? Primordial motor activity patterns in vertebrates from fish to mammals: their prenatal origin, postnatal persistence during sleep, and pathological reemergence during REM sleep behavior disorder.

    PubMed

    Corner, Michael A; Schenck, Carlos H

    2015-12-01

    An overview is presented of the literature dealing with sleep-like motility and concomitant neuronal activity patterns throughout the life cycle in vertebrates, ectothermic as well as endothermic. Spontaneous, periodically modulated, neurogenic bursts of non-purposive movements are a universal feature of larval and prenatal behavior, which in endothermic animals (i.e. birds and mammals) continue to occur periodically throughout life. Since the entire body musculature is involved in ever-shifting combinations, it is proposed that these spontaneously active periods be designated as 'rapid-BODY-movement' (RBM) sleep. The term 'rapid-EYE-movement (REM) sleep', characterized by attenuated muscle contractions and reduced tonus, can then be reserved for sleep at later stages of development. Mature stages of development in which sustained muscle atonia is combined with 'paradoxical arousal' of cortical neuronal firing patterns indisputably represent the evolutionarily most recent aspect of REM sleep, but more research with ectothermic vertebrates, such as fish, amphibians and reptiles, is needed before it can be concluded (as many prematurely have) that RBM is absent in these species. Evidence suggests a link between RBM sleep in early development and the clinical condition known as 'REM sleep behavior disorder (RBD)', which is characterized by the resurgence of periodic bouts of quasi-fetal motility that closely resemble RBM sleep. Early developmental neuromotor risk factors for RBD in humans also point to a relationship between RBM sleep and RBD.

  19. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder.

    PubMed

    Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan

    2016-01-01

    Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Differential Effects of a Dual Orexin Receptor Antagonist (SB-649868) and Zolpidem on Sleep Initiation and Consolidation, SWS, REM Sleep, and EEG Power Spectra in a Model of Situational Insomnia

    PubMed Central

    Bettica, Paolo; Squassante, Lisa; Groeger, John A; Gennery, Brian; Winsky-Sommerer, Raphaelle; Dijk, Derk-Jan

    2012-01-01

    Orexins have a role in sleep regulation, and orexin receptor antagonists are under development for the treatment of insomnia. We conducted a randomised, double-blind, placebo-controlled, four-period crossover study to investigate the effect of single doses of the dual orexin receptor antagonist SB-649868 (10 or 30 mg) and a positive control zolpidem (10 mg), an allosteric modulator of GABAA receptors. Objective and subjective sleep parameters and next-day performance were assessed in 51 healthy male volunteers in a traffic noise model of situational insomnia. Compared with placebo, SB-649868 10 and 30 mg increased total sleep time (TST) by 17 and 31 min (p<0.001), whereas after zolpidem TST was increased by 11.0 min (p=0.012). Wake after sleep onset was reduced significantly by 14.7 min for the SB–6489698 30 mg dose (p<0.001). Latency to persistent sleep was significantly reduced after both doses of SB–6489698 (p=0.003), but not after zolpidem. Slow wave sleep (SWS) and electroencephalogram (EEG) power spectra in non-REM sleep were not affected by either dose of SB-640868, whereas SWS (p< 0.001) and low delta activity (<=1.0 Hz) were increased, and 2.25–11.0 Hz activity decreased after zolpidem. REM sleep duration was increased after SB-649868 30 mg (p=0.002) and reduced after zolpidem (p=0.049). Latency to REM sleep was reduced by 20.1 (p=0.034) and 34.0 min (p<0.001) after 10 and 30 mg of SB-649868. Sleep-onset REM episodes were observed. SB-649868 was well tolerated. This dual orexin receptor antagonist exerts hypnotic activity, with effects on sleep structure and the EEG that are different from those of zolpidem. PMID:22237311

  1. Sleep apnea, daytime somnolence, and idiopathic dizziness--a novel association.

    PubMed

    Sowerby, Leigh J; Rotenberg, Brian; Brine, Meggan; George, Charles F P; Parnes, Lorne S

    2010-06-01

    To determine if an association exists between sleep apnea, daytime somnolence, and chronic idiopathic dizziness. Case-control study of new patients presenting to a tertiary neuro-otologic practice. A total of 46 subjects with idiopathic dizziness (ID), 20 positive controls with dizziness (benign paroxysmal positional vertigo [BPV]), and 69 negative controls with hearing loss (HL) but no dizziness were enrolled. Participants who were patients diagnosed with the above conditions and who met all other inclusion criteria completed a sleep questionnaire and had a complete physical exam and investigations to establish or exclude a neuro-otologic diagnosis. They were subsequently evaluated for risk of symptomatic sleep disturbance based on the Epworth Sleepiness Scale (ESS), the Berlin Questionnaire, and the Multivariable Apnea Risk Index (MAP). Statistical analysis was carried out using SPSS (SPSS Inc., Chicago, IL). There was no significant demographic difference among the groups in terms of age, sex, body mass index, neck size, alcohol consumption, or smoking. Using a cutoff of both 10 and 12 on the ESS, the ID were more likely to have significant daytime somnolence than the HL group, with a likelihood ratio (LR) of 7.8 for the ESS 12 score (P = .021) and 7.1 for the ESS 10 score (P = .029). Using the MAP score, a statistically significant difference between the ID group and both the BPV group (LR 3.99, P = .046) and the HL group (LR 5.46, P = .019) was found. This study suggests that a previously undescribed link between idiopathic dizziness, daytime somnolence, and sleep apnea might exist. Prospective investigation is warranted to determine whether treatment of any sleep issues resolves symptoms of idiopathic dizziness.

  2. Differential suppression of upper airway motor activity during carbachol-induced, REM sleep-like atonia.

    PubMed

    Fenik, V; Davies, R O; Pack, A I; Kubin, L

    1998-10-01

    Microinjections of carbachol into the pontine tegmentum of decerebrate cats have been used to study the mechanisms underlying the suppression of postural and respiratory motoneuronal activity during the resulting rapid eye movement (REM) sleep-like atonia. During REM sleep, distinct respiratory muscles are differentially affected; e.g., the activity of the diaphragm shows little suppression, whereas the activity of some upper airway muscles is quite strong. To determine the pattern of the carbachol-induced changes in the activity of different groups of upper airway motoneurons, we simultaneously recorded the efferent activity of the recurrent laryngeal nerve (RL), pharyngeal branch of the vagus nerve (Phar), and genioglossal branch of the hypoglossal (XII) and phrenic (Phr) nerves in 12 decerebrate, paralyzed, vagotomized, and artificially ventilated cats. Pontine carbachol caused a stereotyped suppression of the spontaneous activity that was significantly larger in Phar expiratory (to 8.3% of control) and XII inspiratory motoneurons (to 15%) than in Phr inspiratory (to 87%), RL inspiratory (to 79%), or RL expiratory motoneurons (to 72%). The suppression in upper airway motor output was significantly greater than the depression caused by a level of hypocapnia that reduced Phr activity as much as carbachol. We conclude that pontine carbachol evokes a stereotyped pattern of suppression of upper airway motor activity. Because carbachol evokes a state having many neurophysiological characteristics similar to those of REM sleep, it is likely that pontine cholinoceptive neurons have similar effects on the activity of upper airway motoneurons during both states.

  3. Altered Sleep Stage Transitions of REM Sleep: A Novel and Stable Biomarker of Narcolepsy.

    PubMed

    Liu, Yaping; Zhang, Jihui; Lam, Venny; Ho, Crover Kwok Wah; Zhou, Junying; Li, Shirley Xin; Lam, Siu Ping; Yu, Mandy Wai Man; Tang, Xiangdong; Wing, Yun-Kwok

    2015-08-15

    To determine the diagnostic values, longitudinal stability, and HLA association of the sleep stage transitions in narcolepsy. To compare the baseline differences in the sleep stage transition to REM sleep among 35 patients with type 1 narcolepsy, 39 patients with type 2 narcolepsy, 26 unaffected relatives, and 159 non-narcoleptic sleep patient controls, followed by a reassessment at a mean duration of 37.4 months. The highest prevalence of altered transition from stage non-N2/N3 to stage R in multiple sleep latency test (MSLT) and nocturnal polysomnography (NPSG) was found in patients with type 1 narcolepsy (92.0% and 57.1%), followed by patients with type 2 narcolepsy (69.4% and 12.8%), unaffected relatives (46.2% and 0%), and controls (39.3% and 1.3%). Individual sleep variables had varied sensitivity and specificity in diagnosing narcolepsy. By incorporating a combination of sleep variables, the decision tree analysis improved the sensitivity to 94.3% and 82.1% and enhanced specificity to 82.4% and 83% for the diagnosis of type 1 and type 2 narcolepsy, respectively. There was a significant association of DBQ1*0602 with the altered sleep stage transition (OR = 16.0, 95% CI: 1.7-149.8, p = 0.015). The persistence of the altered sleep stage transition in both MSLT and NPSG was high for both type 1 (90.5% and 64.7%) and type 2 narcolepsy (92.3% and 100%), respectively. Altered sleep stage transition is a significant and stable marker of narcolepsy, which suggests a vulnerable wake-sleep dysregulation trait in narcolepsy. Altered sleep stage transition has a significant diagnostic value in the differential diagnosis of hypersomnias, especially when combined with other diagnostic sleep variables in decision tree analysis. © 2015 American Academy of Sleep Medicine.

  4. Diagnosis of narcolepsy and idiopathic hypersomnia. An update based on the International classification of sleep disorders, 2nd edition.

    PubMed

    Billiard, Michel

    2007-10-01

    Defining the precise nosological limits of narcolepsy and idiopathic hypersomnia is an ongoing process dating back to the first description of the two conditions. The most recent step forward has been done within the preparation of the second edition of the "International classification of sleep disorders" published in June 2005. Appointed by Dr Emmanuel Mignot, the Task Force on "Hypersomnias of central origin, not due to a circadian rhythm sleep disorder, sleep related breathing disorder, or other causes of disturbed nocturnal sleep" thoroughly revisited the nosology of narcolepsy and of idiopathic hypersomnia. Narcolepsy is now distinguished into three different entities, narcolepsy with cataplexy, narcolepsy without cataplexy and narcolepsy due to medical condition, and idiopathic hypersomnia into two entities, idiopathic hypersomnia with long sleep time and idiopathic hypersomnia without long sleep time. Nevertheless there are still a number of pending issues. What are the limits of narcolepsy without cataplexy? Is there a continuum in the pathophysiology of narcolepsy with and without cataplexy? Should sporadic and familial forms of narcolepsy with cataplexy appear as subgroups in the classification? Are idiopathic hypersomnia with long sleep time and idiopathic hypersomnia without long sleep time, two forms of the same condition or two different conditions? Is there a pathophysiological relationship between narcolepsy without cataplexy and idiopathic hypersomnia without long sleep time?

  5. Hippocampal perfusion predicts impending neurodegeneration in REM sleep behavior disorder.

    PubMed

    Dang-Vu, Thien Thanh; Gagnon, Jean-François; Vendette, Mélanie; Soucy, Jean-Paul; Postuma, Ronald B; Montplaisir, Jacques

    2012-12-11

    Patients with idiopathic REM sleep behavior disorder (IRBD) are at risk for developing Parkinson disease (PD) and dementia with Lewy bodies (DLB). We aimed to identify functional brain imaging patterns predicting the emergence of PD and DLB in patients with IRBD, using SPECT with (99m)Tc-ethylene cysteinate dimer (ECD). Twenty patients with IRBD were scanned at baseline during wakefulness using (99m)Tc-ECD SPECT. After a follow-up of 3 years on average, patients were divided into 2 groups according to whether or not they developed defined neurodegenerative disease (PD, DLB). SPECT data analysis comparing regional cerebral blood flow (rCBF) between groups assessed whether specific brain perfusion patterns were associated with subsequent clinical evolution. Regression analysis between rCBF and clinical markers of neurodegeneration (motor, color vision, olfaction) looked for neural structures involved in this process. Of the 20 patients with IRBD recruited for this study, 10 converted to PD or DLB during the follow-up. rCBF at baseline was increased in the hippocampus of patients who would later convert compared with those who would not (p < 0.05 corrected). Hippocampal perfusion was correlated with motor and color vision scores across all IRBD patients. (99m)Tc-ECD SPECT identifies patients with IRBD at risk for conversion to other neurodegenerative disorders such as PD or DLB; disease progression in IRBD is predicted by abnormal perfusion in the hippocampus at baseline. Perfusion within this structure is correlated with clinical markers of neurodegeneration, further suggesting its involvement in the development of presumed synucleinopathies.

  6. Quality of life in patients with an idiopathic rapid eye movement sleep behaviour disorder in Korea.

    PubMed

    Kim, Keun Tae; Motamedi, Gholam K; Cho, Yong Won

    2017-08-01

    There have been few quality of life studies in patients with idiopathic rapid eye movement sleep behaviour disorder. We compared the quality of life in idiopathic rapid eye movement sleep behaviour disorder patients to healthy controls, patients with hypertension, type 2 diabetes mellitus without complication and idiopathic restless legs syndrome. Sixty patients with idiopathic rapid eye movement sleep behaviour disorder (24 female; mean age: 61.43 ± 8.99) were enrolled retrospectively. The diagnosis was established based on sleep history, overnight polysomnography, neurological examination and Mini-Mental State Examination to exclude secondary rapid eye movement sleep behavior disorder. All subjects completed questionnaires, including the Short Form 36-item Health Survey for quality of life. The total quality of life score in idiopathic rapid eye movement sleep behaviour disorder (70.63 ± 20.83) was lower than in the healthy control group (83.38 ± 7.96) but higher than in the hypertension (60.55 ± 24.82), diabetes mellitus (62.42 ± 19.37) and restless legs syndrome (61.77 ± 19.25) groups. The total score of idiopathic rapid eye movement sleep behaviour disorder patients had a negative correlation with the Pittsburg Sleep Quality Index (r = -0.498, P < 0.001), Insomnia Severity Index (r = -0.645, P < 0.001) and the Beck Depression Inventory-2 (r = -0.694, P < 0.001). Multiple regression showed a negative correlation between the Short Form 36-item Health Survey score and the Insomnia Severity Index (β = -1.100, P = 0.001) and Beck Depression Inventory-2 (β = -1.038, P < 0.001). idiopathic rapid eye movement sleep behaviour disorder had a significant negative impact on quality of life, although this effect was less than that of other chronic disorders. This negative effect might be related to a depressive mood associated with the disease. © 2016 European Sleep Research Society.

  7. Restless legs syndrome, rapid eye movement sleep behavior disorder, and hypersomnia in patients with two parkin mutations.

    PubMed

    Limousin, Nadège; Konofal, Eric; Karroum, Elias; Lohmann, Ebba; Theodorou, Ioannis; Dürr, Alexandra; Arnulf, Isabelle

    2009-10-15

    Parkin gene mutations cause a juvenile parkinsonism. Patients with these mutations may commonly exhibit REM sleep behaviour disorders, but other sleep problems (insomnia, sleepiness, restless legs syndrome) have not been studied. The aim of this study was to evaluate the sleep-wake phenotype in patients with two parkin mutations, compared with patients with idiopathic Parkinson's disease (iPD). Sleep interview and overnight video-polysomnography, followed by multiple sleep latency tests, were assessed in 11 consecutive patients with two parkin mutations (aged 35-60 years, from seven families) and 11 sex-matched patients with iPD (aged 51-65 years). Sleep complaints in the parkin group included insomnia (73% patients versus 45% in the iPD group), restless legs syndrome (45%, versus none in the iPD group, P = 0.04), and daytime sleepiness (45%, versus 54% in the iPD group). Of the parkin patients, 45% had REM sleep without atonia, but only 9% had a definite REM sleep behavior disorder. All sleep measures were similar in the parkin and iPD groups. Two parkin siblings had a central hypersomnia, characterized by mean daytime sleep latencies of 3 min, no sleep onset REM periods, and normal nighttime sleep. Although the patients with two parkin mutations were young, their sleep phenotype paralleled the clinical and polygraphic sleep recording abnormalities reported in iPD, except that restless legs syndrome was more prevalent and secondary narcolepsy was absent.

  8. Wheel running improves REM sleep and attenuates stress-induced flattening of diurnal rhythms in F344 rats.

    PubMed

    Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika

    2016-05-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.

  9. Wheel Running Improves REM Sleep and Attenuates Stress-induced Flattening of Diurnal Rhythms in F344 Rats

    PubMed Central

    Thompson, Robert S.; Roller, Rachel; Greenwood, Benjamin N.; Fleshner, Monika

    2016-01-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12hr light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise. PMID:27124542

  10. A Change of Possible Neurological and Psychological Significance Within the First Week of Neonate Life: Sleeping REM Rate.

    ERIC Educational Resources Information Center

    Minard, James; And Others

    The percentage of rapid eye movement (REM) during sleep is substantially greater in neonates (infants in first month after birth) than in other children or adults. It was hypothesized that REM rate may decline as rates of many response sequences do when repeatedly elicited. Electrical recordings of eye movements were obtained from a 3-day-old male…

  11. Neural net classification of REM sleep based on spectral measures as compared to nonlinear measures.

    PubMed

    Grözinger, M; Fell, J; Röschke, J

    2001-11-01

    In various studies the implementation of nonlinear and nonconventional measures has significantly improved EEG (electroencephalogram) analyses as compared to using conventional parameters alone. A neural network algorithm well approved in our laboratory for the automatic recognition of rapid eye movement (REM) sleep was investigated in this regard. Originally based on a broad range of spectral power inputs, we additionally supplied the nonlinear measures of the largest Lyapunov exponent and correlation dimension as well as the nonconventional stochastic measures of spectral entropy and entropy of amplitudes. No improvement in the detection of REM sleep could be achieved by the inclusion of the new measures. The accuracy of the classification was significantly worse, however, when supplied with these variables alone. In view of results demonstrating the efficiency of nonconventional measures in EEG analysis, the benefit appears to depend on the nature of the problem.

  12. Conditions associated with REM sleep behaviour disorder: Description of a hospital series.

    PubMed

    Abenza Abildúa, M J; Miralles Martinez, A; Arpa Gutiérrez, F J; Lores Gutiérrez, V; Algarra Lucas, C; Jimeno Montero, C; Sánchez García, B; Mata Álvarez-Santullano, M; Borrue Fernández, C; Cordero Martín, G; Gutiérrez Cueto, G; Torrecillas Narváez, M D; Thuissard Vasallo, I; Gómez Aceña, A

    2017-02-16

    REM sleep behaviour disorder (RBD) is characterised by violent behaviours (screaming, kicking, vivid dreams) during REM sleep. It has a prevalence of 1% to 2% of the general population and is especially frequent in men and the population older than 60. In the last decade, RBD has been suggested to be a prodrome of neurodegenerative disease. We analysed associated neurological diseases and responses to drug treatment in 33 patients with RBD treated in the multidisciplinary sleep disorders unit at Hospital Infanta Sofía. We conducted an observational descriptive retrospective analysis of patients diagnosed with RBD and treated in our multidisciplinary sleep disorders unit between October 2012 and December 2015. We recorded age, sex, associated diseases, and treatments administered to these patients. A total of 365 patients were attended at our unit, including 33 with RBD: 13 women (40%) and 20 men (60%). Mean age was 62.72 years. An associated disorder was identified in 48%, with the most common being mild cognitive impairment (69%). The percentage of patients with RBD and an associated disorder among patients older than 60 was 68%. Eighty-two percent of the patients required treatment. The most commonly used drug was clonazepam (76%), followed by melatonin (9%), gabapentin (6%), and trazodone (3%). In our series, 48% of the patients had an associated disorder. The likelihood of detecting an associated disorder increases with patients' age. The vast majority of patients required drug treatment due to symptom severity; the most frequently administered drug was clonazepam (76%). Copyright © 2017 The Author(s). Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Reduced upper obstructions in N3 and increased lower obstructions in REM sleep stage detected with manometry.

    PubMed

    Wirth, Markus; Schramm, Juliane; Bautz, Maximilian; Hofauer, Benedikt; Edenharter, Günther; Ott, Armin; Heiser, Clemens

    2018-01-01

    In obstructive sleep apnea (OSA), airway obstruction occurs at different anatomic levels. The frequency and location of obstructions play a crucial role in the planning of surgical treatment. The aim of this study was to evaluate the pharyngeal obstruction levels in different sleep stages with manometry in OSA patients. In addition, the manometry results were compared with drug-induced sleep endoscopy (DISE). Forty-one patients with OSA received manometry measurements during one night of sleep. All patients were simultaneously evaluated with polysomnography. The frequency of obstructions in different sleep stages was assessed. Twenty patients were additionally studied with DISE. Obstruction levels detected with manometry were compared with DISE. The frequency of upper and to a lesser extent lower obstructions decreased in sleep stage N3. In rapid eye movement (REM) sleep, lower obstructions increased. The overall proportion of upper and lower obstructions detected with manometry corresponded with DISE in 13 of 20 cases. A significant change in the obstruction levels was detected with manometry in N3 and REM sleep. The reduction of both upper and to a lesser extent lower obstructions in N3 suggests more stable airways in slow-wave sleep. Relevant lower obstructions were not detected in DISE compared to manometry in 5 out of 20 examinations. This could be a potential reason for treatment failure of site-specific surgical OSA treatment when only performing DISE preoperatively. Therefore, manometry could be a useful complementary tool in the preoperative evaluation for OSA.

  14. Sleep architecture and sleep-related mentation in securely and insecurely attached people

    PubMed Central

    McNamara, Patrick; Pace-Schott, Edward F.; Johnson, Patricia; Harris, Erica; Auerbach, Sanford

    2011-01-01

    Based on REM sleep’s brain activation patterns and its participation in consolidation of emotional memories, we tested the hypothesis that measures of REM sleep architecture and REM sleep-related mentation would be associated with attachment orientation. After a habituation night in a sleep lab, a convenience sample of 64 healthy volunteers were awakened 10 minutes into a REM sleep episode and 10 minutes into a control NREM sleep episode in counterbalanced order, then asked to report a dream and to rate themselves and a significant other on a list of trait adjectives. Relative to participants classified as having secure attachment orientations, participants classified as anxious took less time to enter REM sleep and had a higher frequency of REM dreams with aggression and self-denigrating themes. There were no significant differences across attachment groups in other measures of sleep architecture or in post REM-sleep awakening ratings on PANAS subscales reflecting mood and alertness. Selected aspects of REM sleep architecture and mentation appeared to be associated with attachment orientation. We suggest that REM sleep plays a role in processing experiences and emotions related to attachment, and that certain features of sleep and dreaming reflect attachment orientations. PMID:21390907

  15. [Sleep talking].

    PubMed

    Challamel, M J

    2001-11-01

    Sleep talking is very common in the general population. Its prevalence remains stable from childhood through adulthood. Sleep talking is often associated with other parasomnias: sleep walking, sleep terrors or REM sleep behavior disorders. It may arise from either REM or non REM sleep, when associated with REM sleep it is more comprehensible and often associated with clear sentences and recall of sleep mentation. Sleep talking is a benign entity and does not require any treatment; however an exceptional organic cause or psychopathology should be suspected if the onset is late (after 25 years); if the mental content is too violent or too emotional.

  16. Visual Hallucinations and Pontine Demyelination in a Child: Possible REM Dissociation?

    PubMed Central

    Vita, Maria Gabriella; Batocchi, Anna Paola; Dittoni, Serena; Losurdo, Anna; Cianfoni, Alessandro; Stefanini, Maria Chiara; Vollono, Catello; Marca, Giacomo Della; Mariotti, Paolo

    2008-01-01

    An 11 year-old-boy acutely developed complex visual and acoustic hallucinations. Hallucinations, consisting of visions of a threatening, evil character of the Harry Potter saga, persisted for 3 days. Neurological and psychiatric examinations were normal. Ictal EEG was negative. MRI documented 3 small areas of hyperintense signal in the brainstem, along the paramedian and lateral portions of pontine tegmentum, one of which showed post-contrast enhancement. These lesions were likely of inflammatory origin, and treatment with immunoglobulins was started. Polysomnography was normal, multiple sleep latency test showed a mean sleep latency of 8 minutes, with one sleep-onset REM period. The pontine tegmentum is responsible for REM sleep regulation, and contains definite “REM-on” and “REM-off” regions. The anatomical distribution of the lesions permits us to hypothesize that hallucinations in this boy were consequent to a transient impairment of REM sleep inhibitory mechanisms, with the appearance of dream-like hallucinations during wake. Citation: Vita MG; Batocchi AP; Dittoni S; Losurdo A; Cianfoni A; Stefanini MC; Vollono C; Della Marca G; Mariotti P. Visual hallucinations and pontine demyelination in a child: possible REM dissociation? J Clin Sleep Med 2008;4(6):588–590. PMID:19110890

  17. Disrupted nighttime sleep in narcolepsy.

    PubMed

    Roth, Thomas; Dauvilliers, Yves; Mignot, Emmanuel; Montplaisir, Jacques; Paul, Josh; Swick, Todd; Zee, Phyllis

    2013-09-15

    Characterize disrupted nighttime sleep (DNS) in narcolepsy, an important symptom of narcolepsy. A panel of international narcolepsy experts was convened in 2011 to build a consensus characterization of DNS in patients with narcolepsy. A literature search of the Medline (1965 to date), Medline In-Process (latest weeks), Embase (1974 to date), Embase Alert (latest 8 weeks), and Biosis (1965 to date) databases was conducted using the following search terms: narcolepsy and disrupted nighttime sleep, disturbed nighttime sleep, fragmented sleep, consolidated sleep, sleep disruption, and narcolepsy questionnaire. The purpose of the literature search was to identify publications characterizing the nighttime sleep of patients with narcolepsy. The panel reviewed the literature. Nocturnal sleep can also be disturbed by REM sleep abnormalities such as vivid dreaming and REM sleep behavior disorder; however, these were not reviewed in the current paper, as we were evaluating for idiopathic sleep disturbances. The literature reviewed provide a consistent characterization of nighttime sleep in patients with narcolepsy as fragmented, with reports of frequent, brief nightly awakenings with difficulties returning to sleep and associated reports of poor sleep quality. Polysomnographic studies consistently report frequent awakenings/arousals after sleep onset, more stage 1 (S1) sleep, and more frequent shifts to S1 sleep or wake from deeper stages of sleep. The consensus of the International Experts' Panel on Narcolepsy was that DNS can be distressing for patients with narcolepsy and that treatment of DNS warrants consideration. Clinicians involved in the management of patients with narcolepsy should investigate patients' quality of nighttime sleep, give weight and consideration to patient reports of nighttime sleep experience, and consider DNS a target for treatment.

  18. Cerebral correlates of delta waves during non-REM sleep revisited.

    PubMed

    Dang-Vu, Thien Thanh; Desseilles, Martin; Laureys, Steven; Degueldre, Christian; Perrin, Fabien; Phillips, Christophe; Maquet, Pierre; Peigneux, Philippe

    2005-10-15

    We aimed at characterizing the neural correlates of delta activity during Non Rapid Eye Movement (NREM) sleep in non-sleep-deprived normal young adults, based on the statistical analysis of a positron emission tomography (PET) sleep data set. One hundred fifteen PET scans were obtained using H(2)(15)O under continuous polygraphic monitoring during stages 2-4 of NREM sleep. Correlations between regional cerebral blood flow (rCBF) and delta power (1.5-4 Hz) spectral density were analyzed using statistical parametric mapping (SPM2). Delta power values obtained at central scalp locations negatively correlated during NREM sleep with rCBF in the ventromedial prefrontal cortex, the basal forebrain, the striatum, the anterior insula, and the precuneus. These regions embrace the set of brain areas in which rCBF decreases during slow wave sleep (SWS) as compared to Rapid Eye Movement (REM) sleep and wakefulness (Maquet, P., Degueldre, C., Delfiore, G., Aerts, J., Peters, J.M., Luxen, A., Franck, G., 1997. Functional neuroanatomy of human slow wave sleep. J. Neurosci. 17, 2807-S2812), supporting the notion that delta activity is a valuable prominent feature of NREM sleep. A strong association was observed between rCBF in the ventromedial prefrontal regions and delta power, in agreement with electrophysiological studies. In contrast to the results of a previous PET study investigating the brain correlates of delta activity (Hofle, N., Paus, T., Reutens, D., Fiset, P., Gotman, J., Evans, A.C., Jones, B.E., 1997. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J. Neurosci. 17, 4800-4808), in which waking scans were mixed with NREM sleep scans, no correlation was found with thalamus activity. This latter result stresses the importance of an extra-thalamic delta rhythm among the synchronous NREM sleep oscillations. Consequently, this rCBF distribution might preferentially reflect a particular modulation of the

  19. Visual hallucinations and pontine demyelination in a child: possible REM dissociation?

    PubMed

    Vita, Maria Gabriella; Batocchi, Anna Paola; Dittoni, Serena; Losurdo, Anna; Cianfoni, Alessandro; Stefanini, Maria Chiara; Vollono, Catello; Della Marca, Giacomo; Mariotti, Paolo

    2008-12-15

    An 11 year-old-boy acutely developed complex visual and acoustic hallucinations. Hallucinations, consisting of visions of a threatening, evil character of the Harry Potter saga, persisted for 3 days. Neurological and psychiatric examinations were normal. Ictal EEG was negative. MRI documented 3 small areas of hyperintense signal in the brainstem, along the paramedian and lateral portions of pontine tegmentum, one of which showed post-contrast enhancement. These lesions were likely of inflammatory origin, and treatment with immunoglobulins was started. Polysomnography was normal, multiple sleep latency test showed a mean sleep latency of 8 minutes, with one sleep-onset REM period. The pontine tegmentum is responsible for REM sleep regulation, and contains definite "REM-on" and "REM-off" regions. The anatomical distribution of the lesions permits us to hypothesize that hallucinations in this boy were consequent to a transient impairment of REM sleep inhibitory mechanisms, with the appearance of dream-like hallucinations during wake.

  20. 2-AG into the lateral hypothalamus increases REM sleep and cFos expression in melanin concentrating hormone neurons in rats.

    PubMed

    Pérez-Morales, Marcel; De La Herrán-Arita, Alberto K; Méndez-Díaz, Mónica; Ruiz-Contreras, Alejandra E; Drucker-Colín, René; Prospéro-García, Oscar

    2013-07-01

    Orexins/hypocretins (OX) and melanin-concentrating hormone (MCH) neurons located in the lateral hypothalamus seem to modulate different stages of the sleep-wake cycle. OX are necessary for wakefulness and MCH appears to regulate rapid eye movement sleep (REMS). Likewise, endocannabinoids, the endogenous ligands for cannabinoid receptors 1 and 2 (CB1R, CB2R), also modulate REMS in rats. Moreover, it has been shown that the activation of the CB1R in the lateral hypothalamus of rats excites MCH neurons while inhibiting OX neurons in in vitro preparations. Hence, we assessed the effects of 2-arachidonoylglicerol (2-AG, an endocannabinoid) in the lateral hypothalamus on the sleep-wake cycle of rats. We also utilized the CB1R inverse agonist AM251 to further support the involvement of this receptor, and we performed double immunofluorescence experiments to detect c-Fos, as a marker of neural activation, in OX and in MCH neurons to determine which neurons were activated. Our results indicate that 2-AG increases REMS through CB1R activation, and increases c-Fos expression in MCH neurons. These results suggest that endocannabinoid activation of the CB1R in the lateral hypothalamus, which activates MCH neurons, is one mechanism by which REMS is triggered. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  2. Assessing the dream-lag effect for REM and NREM stage 2 dreams.

    PubMed

    Blagrove, Mark; Fouquet, Nathalie C; Henley-Einion, Josephine A; Pace-Schott, Edward F; Davies, Anna C; Neuschaffer, Jennifer L; Turnbull, Oliver H

    2011-01-01

    This study investigates evidence, from dream reports, for memory consolidation during sleep. It is well-known that events and memories from waking life can be incorporated into dreams. These incorporations can be a literal replication of what occurred in waking life, or, more often, they can be partial or indirect. Two types of temporal relationship have been found to characterize the time of occurrence of a daytime event and the reappearance or incorporation of its features in a dream. These temporal relationships are referred to as the day-residue or immediate incorporation effect, where there is the reappearance of features from events occurring on the immediately preceding day, and the dream-lag effect, where there is the reappearance of features from events occurring 5-7 days prior to the dream. Previous work on the dream-lag effect has used spontaneous home recalled dream reports, which can be from Rapid Eye Movement Sleep (REM) and from non-Rapid Eye Movement Sleep (NREM). This study addresses whether the dream-lag effect occurs only for REM sleep dreams, or for both REM and NREM stage 2 (N2) dreams. 20 participants kept a daily diary for over a week before sleeping in the sleep laboratory for 2 nights. REM and N2 dreams collected in the laboratory were transcribed and each participant rated the level of correspondence between every dream report and every diary record. The dream-lag effect was found for REM but not N2 dreams. Further analysis indicated that this result was not due to N2 dream reports being shorter, in terms of number of words, than the REM dream reports. These results provide evidence for a 7-day sleep-dependent non-linear memory consolidation process that is specific to REM sleep, and accord with proposals for the importance of REM sleep to emotional memory consolidation.

  3. Assessing the Dream-Lag Effect for REM and NREM Stage 2 Dreams

    PubMed Central

    Blagrove, Mark; Fouquet, Nathalie C.; Henley-Einion, Josephine A.; Pace-Schott, Edward F.; Davies, Anna C.; Neuschaffer, Jennifer L.; Turnbull, Oliver H.

    2011-01-01

    This study investigates evidence, from dream reports, for memory consolidation during sleep. It is well-known that events and memories from waking life can be incorporated into dreams. These incorporations can be a literal replication of what occurred in waking life, or, more often, they can be partial or indirect. Two types of temporal relationship have been found to characterize the time of occurrence of a daytime event and the reappearance or incorporation of its features in a dream. These temporal relationships are referred to as the day-residue or immediate incorporation effect, where there is the reappearance of features from events occurring on the immediately preceding day, and the dream-lag effect, where there is the reappearance of features from events occurring 5–7 days prior to the dream. Previous work on the dream-lag effect has used spontaneous home recalled dream reports, which can be from Rapid Eye Movement Sleep (REM) and from non-Rapid Eye Movement Sleep (NREM). This study addresses whether the dream-lag effect occurs only for REM sleep dreams, or for both REM and NREM stage 2 (N2) dreams. 20 participants kept a daily diary for over a week before sleeping in the sleep laboratory for 2 nights. REM and N2 dreams collected in the laboratory were transcribed and each participant rated the level of correspondence between every dream report and every diary record. The dream-lag effect was found for REM but not N2 dreams. Further analysis indicated that this result was not due to N2 dream reports being shorter, in terms of number of words, than the REM dream reports. These results provide evidence for a 7-day sleep-dependent non-linear memory consolidation process that is specific to REM sleep, and accord with proposals for the importance of REM sleep to emotional memory consolidation. PMID:22046336

  4. Idiopathic Hypersomnia with and without Long Sleep Time: A Controlled Series of 75 Patients

    PubMed Central

    Vernet, Cyrille; Arnulf, Isabelle

    2009-01-01

    Objective: To characterize the clinical, psychological, and sleep pattern of idiopathic hypersomnia with and without long sleep time, and provide normative values for 24-hour polysomnography. Setting: University Hospital Design: Controlled, prospective cohort Participants: 75 consecutive patients (aged 34 ± 12 y) with idiopathic hypersomnia and 30 healthy matched controls. Intervention: Patients and controls underwent during 48 hours a face-to face interview, questionnaires, human leukocyte antigen genotype, a night polysomnography and multiple sleep latency test (MSLT), followed by 24-h ad libitum sleep monitoring. Results: Hypersomniacs had more fatigue, higher anxiety and depression scores, and more frequent hypnagogic hallucinations (24%), sleep paralysis (28%), sleep drunkenness (36%), and unrefreshing naps (46%) than controls. They were more frequently evening types. DQB1*0602 genotype was similarly found in hypersomniacs (24.2%) and controls (19.2%). Hypersomniacs had more frequent slow wave sleep after 06:00 than controls. During 24-h polysomnography, the 95% confidence interval for total sleep time was 493–558 min in controls, versus 672–718 min in hypersomniacs. There were 40 hypersomniacs with and 35 hypersomniacs without long ( > 600 min) sleep time. The hypersomniacs with long sleep time were younger (29 ± 10 vs 40 ± 13 y, P = 0.0002), slimmer (body mass index: 26 ± 5 vs 23 ± 4 kg/m2; P = 0.005), and had lower Horne-Ostberg scores and higher sleep efficiencies than those without long sleep time. MSLT latencies were normal ( > 8 min) in 71% hypersomniacs with long sleep time. Conclusions: Hypersomnia, especially with long sleep time, is frequently associated with evening chronotype and young age. It is inadequately diagnosed using MSLT. Citation: Vernet C; Arnulf I. Idiopathic Hypersomnia with and without Long Sleep Time: A Controlled Series of 75 Patients. SLEEP 2009;32(6):753-759. PMID:19544751

  5. Disrupted Nighttime Sleep in Narcolepsy

    PubMed Central

    Roth, Thomas; Dauvilliers, Yves; Mignot, Emmanuel; Montplaisir, Jacques; Paul, Josh; Swick, Todd; Zee, Phyllis

    2013-01-01

    Study Objectives: Characterize disrupted nighttime sleep (DNS) in narcolepsy, an important symptom of narcolepsy. Methods: A panel of international narcolepsy experts was convened in 2011 to build a consensus characterization of DNS in patients with narcolepsy. A literature search of the Medline (1965 to date), Medline In-Process (latest weeks), Embase (1974 to date), Embase Alert (latest 8 weeks), and Biosis (1965 to date) databases was conducted using the following search terms: narcolepsy and disrupted nighttime sleep, disturbed nighttime sleep, fragmented sleep, consolidated sleep, sleep disruption, and narcolepsy questionnaire. The purpose of the literature search was to identify publications characterizing the nighttime sleep of patients with narcolepsy. The panel reviewed the literature. Nocturnal sleep can also be disturbed by REM sleep abnormalities such as vivid dreaming and REM sleep behavior disorder; however, these were not reviewed in the current paper, as we were evaluating for idiopathic sleep disturbances. Results: The literature reviewed provide a consistent characterization of nighttime sleep in patients with narcolepsy as fragmented, with reports of frequent, brief nightly awakenings with difficulties returning to sleep and associated reports of poor sleep quality. Polysomnographic studies consistently report frequent awakenings/arousals after sleep onset, more stage 1 (S1) sleep, and more frequent shifts to S1 sleep or wake from deeper stages of sleep. The consensus of the International Experts' Panel on Narcolepsy was that DNS can be distressing for patients with narcolepsy and that treatment of DNS warrants consideration. Conclusions: Clinicians involved in the management of patients with narcolepsy should investigate patients' quality of nighttime sleep, give weight and consideration to patient reports of nighttime sleep experience, and consider DNS a target for treatment. Citation: Roth T; Dauvilliers Y; Mignot E; Montplaisir J; Paul J

  6. Sleep alterations in mammals: did aquatic conditions inhibit rapid eye movement sleep?

    PubMed

    Madan, Vibha; Jha, Sushil K

    2012-12-01

    Sleep has been studied widely in mammals and to some extent in other vertebrates. Higher vertebrates such as birds and mammals have evolved an inimitable rapid eye movement (REM) sleep state. During REM sleep, postural muscles become atonic and the temperature regulating machinery remains suspended. Although REM sleep is present in almost all the terrestrial mammals, the aquatic mammals have either radically reduced or completely eliminated REM sleep. Further, we found a significant negative correlation between REM sleep and the adaptation of the organism to live on land or in water. The amount of REM sleep is highest in terrestrial mammals, significantly reduced in semi-aquatic mammals and completely absent or negligible in aquatic mammals. The aquatic mammals are obligate swimmers and have to surface at regular intervals for air. Also, these animals live in thermally challenging environments, where the conductive heat loss is approximately ~90 times greater than air. Therefore, they have to be moving most of the time. As an adaptation, they have evolved unihemispheric sleep, during which they can rove as well as rest. A condition that immobilizes muscle activity and suspends the thermoregulatory machinery, as happens during REM sleep, is not suitable for these animals. It is possible that, in accord with Darwin's theory, aquatic mammals might have abolished REM sleep with time. In this review, we discuss the possibility of the intrinsic role of aquatic conditions in the elimination of REM sleep in the aquatic mammals.

  7. Effects of chronic REM sleep restriction on D1 receptor and related signal pathways in rat prefrontal cortex.

    PubMed

    Han, Yan; Wen, Xiaosa; Rong, Fei; Chen, Xinmin; Ouyang, Ruying; Wu, Shuai; Nian, Hua; Ma, Wenling

    2015-01-01

    The prefrontal cortex (PFC) mediates cognitive function that is sensitive to disruption by sleep loss, and molecular mechanisms regulating neural dysfunction induced by chronic sleep restriction (CSR), particularly in the PFC, have yet to be completely understood. The aim of the present study was to investigate the effect of chronic REM sleep restriction (REM-CSR) on the D1 receptor (D1R) and key molecules in D1R' signal pathways in PFC. We employed the modified multiple platform method to create the REM-CSR rat model. The ultrastructure of PFC was observed by electron microscopy. HPLC was performed to measure the DA level in PFC. The expressions of genes and proteins of related molecules were assayed by real-time PCR and Western blot, respectively. The general state and morphology of PFC in rats were changed by CSR, and DA level and the expression of D1R in PFC were markedly decreased (P < 0.01, P < 0.05); the expression of phosphor-PKAcα was significantly lowered in CSR rats (P < 0.05). The present results suggested that the alteration of neuropathology and D1R expression in PFC may be associated with CSR induced cognitive dysfunction, and the PKA pathway of D1R may play an important role in the impairment of advanced neural function.

  8. Effects of Chronic REM Sleep Restriction on D1 Receptor and Related Signal Pathways in Rat Prefrontal Cortex

    PubMed Central

    Han, Yan; Wen, Xiaosa; Rong, Fei; Chen, Xinmin; Ouyang, Ruying; Wu, Shuai; Nian, Hua; Ma, Wenling

    2015-01-01

    The prefrontal cortex (PFC) mediates cognitive function that is sensitive to disruption by sleep loss, and molecular mechanisms regulating neural dysfunction induced by chronic sleep restriction (CSR), particularly in the PFC, have yet to be completely understood. The aim of the present study was to investigate the effect of chronic REM sleep restriction (REM-CSR) on the D1 receptor (D1R) and key molecules in D1R' signal pathways in PFC. We employed the modified multiple platform method to create the REM-CSR rat model. The ultrastructure of PFC was observed by electron microscopy. HPLC was performed to measure the DA level in PFC. The expressions of genes and proteins of related molecules were assayed by real-time PCR and Western blot, respectively. The general state and morphology of PFC in rats were changed by CSR, and DA level and the expression of D1R in PFC were markedly decreased (P < 0.01, P < 0.05); the expression of phosphor-PKAcα was significantly lowered in CSR rats (P < 0.05). The present results suggested that the alteration of neuropathology and D1R expression in PFC may be associated with CSR induced cognitive dysfunction, and the PKA pathway of D1R may play an important role in the impairment of advanced neural function. PMID:25793215

  9. REM Restriction Persistently Alters Strategy Used to Solve a Spatial Task

    ERIC Educational Resources Information Center

    Bjorness, Theresa E.; Tysor, Michael K.; Poe, Gina R.; Riley, Brett T.

    2005-01-01

    We tested the hypothesis that rapid eye movement (REM) sleep is important for complex associative learning by restricting rats from entering REM sleep for 4 h either immediately after training on an eight-box spatial task (0-4 REMr) or 4 h following training (4-8 REMr). Both groups of REM-restricted rats eventually reached the same overall…

  10. Sleep in the Cape Mole Rat: A Short-Sleeping Subterranean Rodent.

    PubMed

    Kruger, Jean-Leigh; Gravett, Nadine; Bhagwandin, Adhil; Bennett, Nigel C; Archer, Elizabeth K; Manger, Paul R

    2016-01-01

    The Cape mole rat Georychus capensis is a solitary subterranean rodent found in the western and southern Cape of South Africa. This approximately 200-gram bathyergid rodent shows a nocturnal circadian rhythm, but sleep in this species is yet to be investigated. Using telemetric recordings of the electroencephalogram (EEG) and electromyogram (EMG) in conjunction with video recordings, we were able to show that the Cape mole rat, like all other rodents, has sleep periods composed of both rapid eye movement (REM) and slow-wave (non-REM) sleep. These mole rats spent on average 15.4 h awake, 7.1 h in non-REM sleep and 1.5 h in REM sleep each day. Cape mole rats sleep substantially less than other similarly sized terrestrial rodents but have a similar percentage of total sleep time occupied by REM sleep. In addition, the duration of both non-REM and REM sleep episodes was markedly shorter in the Cape mole rat than has been observed in terrestrial rodents. Interestingly, these features (total sleep time and episode duration) are similar to those observed in another subterranean bathyergid mole rat, i.e. Fukomys mechowii. Thus, there appears to be a bathyergid type of sleep amongst the rodents that may be related to their environment and the effect of this on their circadian rhythm. Investigating further species of bathyergid mole rats may fully define the emerging picture of sleep in these subterranean African rodents. © 2016 S. Karger AG, Basel.

  11. Adenosine and sleep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanik, G.M. Jr.

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% andmore » 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.« less

  12. Heightened sexual interest and sleep disturbance

    NASA Technical Reports Server (NTRS)

    Zarcone, V.; De La Pena, A.; Dement, W. C.

    1974-01-01

    The study demonstrates a behavioral effect of selective sleep disturbance in normal human subjects. Ten male subjects were selectively REM-deprived for two nights by awakening them at the onset of REM sleep. In addition, there were baseline and non-REM awakening conditions. Heightened sexual interest was defined by the number of film frames (using a Mackworth camera) in which subjects fixated on parts of the female figure in photographs. The largest mean difference in sexual interest was found between baseline and REM-deprivation. Both the non-REM awakenings and REM-sleep deprivation enhanced sexual interest. The failure to demonstrate a significant difference between REM-deprivation and non-REM awakenings may be due to the fact that subjects were REM-sleep-deprived in both conditions. It is suggested that REM-sleep loss may lead to increased selective attention and preoccupation with any cues which are usually interesting.

  13. Melanin-Concentrating Hormone: A New Sleep Factor?

    PubMed Central

    Torterolo, Pablo; Lagos, Patricia; Monti, Jaime M.

    2011-01-01

    Neurons containing the neuropeptide melanin-concentrating hormone (MCH) are mainly located in the lateral hypothalamus and the incerto-hypothalamic area, and have widespread projections throughout the brain. While the biological functions of this neuropeptide are exerted in humans through two metabotropic receptors, the MCHR1 and MCHR2, only the MCHR1 is present in rodents. Recently, it has been shown that the MCHergic system is involved in the control of sleep. We can summarize the experimental findings as follows: (1) The areas related to the control of sleep and wakefulness have a high density of MCHergic fibers and receptors. (2) MCHergic neurons are active during sleep, especially during rapid eye movement (REM) sleep. (3) MCH knockout mice have less REM sleep, notably under conditions of negative energy balance. Animals with genetically inactivated MCHR1 also exhibit altered vigilance state architecture and sleep homeostasis. (4) Systemically administered MCHR1 antagonists reduce sleep. (5) Intraventricular microinjection of MCH increases both slow wave sleep (SWS) and REM sleep; however, the increment in REM sleep is more pronounced. (6) Microinjection of MCH into the dorsal raphe nucleus increases REM sleep time. REM seep is inhibited by immunoneutralization of MCH within this nucleus. (7) Microinjection of MCH in the nucleus pontis oralis of the cat enhances REM sleep time and reduces REM sleep latency. All these data strongly suggest that MCH has a potent role in the promotion of sleep. Although both SWS and REM sleep are facilitated by MCH, REM sleep seems to be more sensitive to MCH modulation. PMID:21516258

  14. Narcolepsy with and without cataplexy, idiopathic hypersomnia with and without long sleep time: a cluster analysis.

    PubMed

    Šonka, Karel; Šusta, Marek; Billiard, Michel

    2015-02-01

    The successive editions of the International Classification of Sleep Disorders (ICSD) reflect the evolution of the concepts of various sleep disorders. This is particularly the case for central disorders of hypersomnolence, with continuous changes in terminology and divisions of narcolepsy, idiopathic hypersomnia, and recurrent hypersomnia. According to the ICSD 2nd Edition (ICSD-2), narcolepsy with cataplexy (NwithC), narcolepsy without cataplexy (Nw/oC), idiopathic hypersomnia with long sleep time (IHwithLST), and idiopathic hypersomnia without long sleep time (IHw/oLST) are four, well-defined hypersomnias of central origin. However, in the absence of biological markers, doubts have been raised as to the relevance of a division of idiopathic hypersomnia into two forms, and it is not yet clear whether Nw/oC and IHw/oLST are two distinct entities. With this in mind, it was decided to empirically review the ICSD-2 classification by using a hierarchical cluster analysis to see whether this division has some relevance, even though the terms "with long sleep time" and "without long sleep time" are inappropriate. The cluster analysis differentiated three main clusters: Cluster 1, "combined monosymptomatic hypersomnia/narcolepsy type 2" (people initially diagnosed with IHw/oLST and Nw/oC); Cluster 2 "polysymptomatic hypersomnia" (people initially diagnosed with IHwithLST); and Cluster 3, narcolepsy type 1 (people initially diagnosed with NwithC). Cluster analysis confirmed that narcolepsy type 1 and polysymptomatic hypersomnia are independent sleep disorders. People who were initially diagnosed with Nw/oC and IHw/oLST formed a single cluster, referred to as "combined monosymptomatic hypersomnia/narcolepsy type 2." Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sleep-wake patterns, non-rapid eye movement, and rapid eye movement sleep cycles in teenage narcolepsy.

    PubMed

    Xu, Xing; Wu, Huijuan; Zhuang, Jianhua; Chen, Kun; Huang, Bei; Zhao, Zhengqing; Zhao, Zhongxin

    2017-05-01

    To further characterize sleep disorders associated with narcolepsy, we assessed the sleep-wake patterns, rapid eye movement (REM), and non-REM (NREM) sleep cycles in Chinese teenagers with narcolepsy. A total of 14 Chinese type 1 narcoleptic patients (13.4 ± 2.6 years of age) and 14 healthy age- and sex-matched control subjects (13.6 ± 1.8 years of age) were recruited. Ambulatory 24-h polysomnography was recorded for two days, with test subjects adapting to the instruments on day one and the study data collection performed on day two. Compared with the controls, the narcoleptic patients showed a 1.5-fold increase in total sleep time over 24 h, characterized by enhanced slow-wave sleep and REM sleep. Frequent sleep-wake transitions were identified in nocturnal sleep with all sleep stages switching to wakefulness, with more awakenings and time spent in wakefulness after sleep onset. Despite eight cases of narcolepsy with sleep onset REM periods at night, the mean duration of NREM-REM sleep cycle episode and the ratio of REM/NREM sleep between patients and controls were not significantly different. Our study identified hypersomnia in teenage narcolepsy despite excessive daytime sleepiness. Sleep fragmentation extended to all sleep stages, indicating impaired sleep-wake cycles and instability of sleep stages. The limited effects on NREM-REM sleep cycles suggest the relative conservation of ultradian regulation of sleep. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Sleep Disorders as a Risk to Language Learning and Use.

    PubMed

    McGregor, Karla K; Alper, Rebecca M

    2015-05-01

    Are people with sleep disorders at higher risk for language learning deficits than healthy sleepers? Scoping Review. PubMed, Google Scholar, Trip Database, ClinicalTrials.gov. sleep disorders AND language AND learning; sleep disorders language learning -deprivation -epilepsy; sleep disorders AND verbal learning. 36. Children and adults with sleep disorders were at a higher risk for language problems than healthy sleepers. The language problems typically co-occurred with problems of attention and executive function (in children and adults), behavior (in children), and visual-spatial processing (in adults). Effects were typically small. Language problems seldom rose to a level of clinical concern but there were exceptions involving phonological deficits in children with sleep-disordered breathing and verbal memory deficits among adults with sleep-disordered breathing or idiopathic REM sleep behavior disorder. Case history interviews should include questions about limited sleep, poor-quality sleep, snoring, and excessive daytime sleepiness. Medical referrals for clients with suspected sleep disorders are prudent.

  17. Chimpanzee sleep stages.

    NASA Technical Reports Server (NTRS)

    Freemon, F. R.; Mcnew, J. J.; Adey, W. R.

    1971-01-01

    The electroencephalogram and electro-oculogram of two unrestrained juvenile chimpanzees was monitored for 7 consecutive nights using telemetry methods. Of the sleeping time, 23% was spent in the rapid eye movement of REM type of sleep, whereas 8, 4, 15, and 10% were spent in non-REM stages 1 through 4, respectively. Seven to nine periods of REM sleep occurred per night. The average time from the beginning of one REM period to the beginning of the next was approximately 85 min.

  18. The role of sleep and sleep deprivation in consolidating fear memories.

    PubMed

    Menz, M M; Rihm, J S; Salari, N; Born, J; Kalisch, R; Pape, H C; Marshall, L; Büchel, C

    2013-07-15

    Sleep, in particular REM sleep, has been shown to improve the consolidation of emotional memories. Here, we investigated the role of sleep and sleep deprivation on the consolidation of fear memories and underlying neuronal mechanisms. We employed a Pavlovian fear conditioning paradigm either followed by a night of polysomnographically monitored sleep, or wakefulness in forty healthy participants. Recall of learned fear was better after sleep, as indicated by stronger explicitly perceived anxiety and autonomous nervous responses. These effects were positively correlated with the preceding time spent in REM sleep and paralleled by activation of the basolateral amygdala. These findings suggest REM sleep-associated consolidation of fear memory in the human amygdala. In view of the critical participation of fear learning mechanisms in the etiology of anxiety and post-traumatic stress disorder, deprivation of REM sleep after exposure to distressing events is an interesting target for further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The inappropriate occurrence of rapid eye movement sleep in narcolepsy is not due to a defect in homeostatic regulation of rapid eye movement sleep.

    PubMed

    Roman, Alexis; Meftah, Soraya; Arthaud, Sébastien; Luppi, Pierre-Hervé; Peyron, Christelle

    2018-06-01

    Narcolepsy type 1 is a disabling disorder with four primary symptoms: excessive-daytime-sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis. The later three symptoms together with a short rapid eye movement (REM) sleep latency have suggested impairment in REM sleep homeostatic regulation with an enhanced propensity for (i.e. tendency to enter) REM sleep. To test this hypothesis, we challenged REM sleep homeostatic regulation in a recognized model of narcolepsy, the orexin knock-out (Orex-KO) mice and their wild-type (WT) littermates. We first performed 48 hr of REM sleep deprivation using the classic small-platforms-over-water method. We found that narcoleptic mice are similarly REM sleep deprived to WT mice. Although they had shorter sleep latency, Orex-KO mice recovered similarly to WT during the following 10 hr of recovery. Interestingly, Orex-KO mice also had cataplexy episodes immediately after REM sleep deprivation, anticipating REM sleep rebound, at a time of day when cataplexy does not occur in baseline condition. We then evaluated REM sleep propensity using our new automated method of deprivation that performs a specific and efficient REM sleep deprivation. We showed that REM sleep propensity is similar during light phase in Orex-KO and WT mice. However, during the dark phase, REM sleep propensity was not suppressed in Orex-KO mice when hypocretin/orexin neuropeptides are normally released. Altogether our data suggest that in addition to the well-known wake-promoting role of hypocretin/orexin, these neuropeptides would also suppress REM sleep. Therefore, hypocretin/orexin deficiency would facilitate the occurrence of REM sleep at any time of day in an opportunistic manner as seen in human narcolepsy.

  20. Effects of three hypnotics on the sleep-wakefulness cycle in sleep-disturbed rats.

    PubMed

    Shinomiya, Kazuaki; Shigemoto, Yuki; Omichi, Junji; Utsu, Yoshiaki; Mio, Mitsunobu; Kamei, Chiaki

    2004-04-01

    New sleep disturbance model in rats is useful for estimating the characteristics of some hypnotics. The present study was undertaken to investigate the utility of a sleep disturbance model by placing rats on a grid suspended over water using three kinds of hypnotics, that is, short-acting benzodiazepine (triazolam), intermediate-acting benzodiazepine (flunitrazepam) and long-acting barbiturate (phenobarbital). Electrodes for measurement of EEG and EMG were implanted into the frontal cortex and the dorsal neck muscle of rats. EEG and EMG were recorded with an electroencephalogram. SleepSign ver.2.0 was used for EEG and EMG analysis. Total times of wakefulness, non-REM and REM sleep were measured from 0900 to 1500 hours. In rats placed on the grid suspended over water up to 1 cm under the grid surface, not only triazolam but also flunitrazepam and phenobarbital caused a shortening of sleep latency. Both flunitrazepam and phenobarbital were effective in increasing of total non-REM sleep time in rats placed on sawdust or the grid, and the effects of both drugs in rats placed on the grid were larger than those in rats placed on sawdust. Measurement of the hourly non-REM sleep time was useful for investigating the peak time and duration of effect of the three hypnotics. Phenobarbital showed a decrease in total REM sleep time in rats placed on the grid, although both triazolam and flunitrazepam were without effect. The present insomnia model can be used as a sleep disturbance model for testing not only the sleep-inducing effects but also the sleep-maintaining effects including non-REM sleep and REM sleep of hypnotics.

  1. REM sleep-like episodes of motoneuronal depression and respiratory rate increase are triggered by pontine carbachol microinjections in in situ perfused rat brainstem preparation.

    PubMed

    Brandes, Ivo F; Stettner, Georg M; Mörschel, Michael; Kubin, Leszek; Dutschmann, Mathias

    2011-05-01

    Hypoglossal nerve activity (HNA) controls the position and movements of the tongue. In persons with compromised upper airway anatomy, sleep-related hypotonia of the tongue and other pharyngeal muscles causes increased upper airway resistance, or total upper airway obstructions, thus disrupting both sleep and breathing. Hypoglossal nerve activity reaches its nadir, and obstructive episodes are longest and most severe, during rapid eye movement stage of sleep (REMS). Microinjections of a cholinergic agonist, carbachol, into the pons have been used in vivo to investigate the mechanisms of respiratory control during REMS. Here, we recorded inspiratory-modulated phrenic nerve activity and HNA and microinjected carbachol (25-50 nl, 10 mm) into the pons in an in situ perfused working heart-brainstem rat preparation (WHBP), an ex vivo model previously validated for studies of the chemical and reflex control of breathing. Carbachol microinjections were made into 40 sites in 33 juvenile rat preparations and, at 24 sites, they triggered depression of HNA with increased respiratory rate and little change of phrenic nerve activity, a pattern akin to that during natural REMS in vivo. The REMS-like episodes started 151 ± 73 s (SD) following microinjections, lasted 20.3 ± 4.5 min, were elicited most effectively from the dorsal part of the rostral nucleus pontis oralis, and were prevented by perfusion of the preparation with atropine. The WHBP offers a novel model with which to investigate cellular and neurochemical mechanisms of REMS-related upper airway hypotonia in situ without anaesthesia and with full control over the cellular environment.

  2. REM sleep-like episodes of motoneuronal depression and respiratory rate increase are triggered by pontine carbachol microinjections in in situ perfused rat brainstem preparation

    PubMed Central

    Brandes, Ivo F.; Stettner, Georg M.; Mörschel, Michael; Kubin, Leszek; Dutschmann, Mathias

    2015-01-01

    Hypoglossal nerve activity (HNA) controls the position and movements of the tongue. In persons with compromised upper airway anatomy, sleep-related hypotonia of the tongue and other pharyngeal muscles causes increased upper airway resistance, or total upper airway obstructions, thus disrupting both sleep and breathing. Hypoglossal nerve activity reaches its nadir, and obstructive episodes are longest and most severe, during rapid eye movement stage of sleep (REMS). Microinjections of a cholinergic agonist, carbachol, into the pons have been used in vivo to investigate the mechanisms of respiratory control during REMS. Here, we recorded inspiratory-modulated phrenic nerve activity and HNA and microinjected carbachol (25–50 nl, 10 mm) into the pons in an in situ perfused working heart–brainstem rat preparation (WHBP), an ex vivo model previously validated for studies of the chemical and reflex control of breathing. Carbachol microinjections were made into 40 sites in 33 juvenile rat preparations and, at 24 sites, they triggered depression of HNA with increased respiratory rate and little change of phrenic nerve activity, a pattern akin to that during natural REMS in vivo. The REMS-like episodes started 151±73 s (SD) following microinjections, lasted 20.3±4.5 min, were elicited most effectively from the dorsal part of the rostral nucleus pontis oralis, and were prevented by perfusion of the preparation with atropine. The WHBP offers a novel model with which to investigate cellular and neurochemical mechanisms of REMS-related upper airway hypotonia in situ without anaesthesia and with full control over the cellular environment. PMID:21335420

  3. Idiopathic hypersomnia with and without long sleep time: a controlled series of 75 patients.

    PubMed

    Vernet, Cyrille; Arnulf, Isabelle

    2009-06-01

    To characterize the clinical, psychological, and sleep pattern of idiopathic hypersomnia with and without long sleep time, and provide normative values for 24-hour polysomnography. University Hospital. Controlled, prospective cohort. 75 consecutive patients (aged 34 +/- 12 y) with idiopathic hypersomnia and 30 healthy matched controls. Patients and controls underwent during 48 hours a face-to-face interview, questionnaires, human leukocyte antigen genotype, a night polysomnography and multiple sleep latency test (MSLT), followed by 24-h ad libitum sleep monitoring. Hypersomniacs had more fatigue, higher anxiety and depression scores, and more frequent hypnagogic hallucinations (24%), sleep paralysis (28%), sleep drunkenness (36%), and unrefreshing naps (46%) than controls. They were more frequently evening types. DQB1*0602 genotype was similarly found in hypersomniacs (24.2%) and controls (19.2%). Hypersomniacs had more frequent slow wave sleep after 06:00 than controls. During 24-h polysomnography, the 95% confidence interval for total sleep time was 493-558 min in controls, versus 672-718 min in hypersomniacs. There were 40 hypersomniacs with and 35 hypersomniacs without long ( > 600 min) sleep time. The hypersomniacs with long sleep time were younger (29 +/- 10 vs 40 +/- 13 y, P = 0.0002), slimmer (body mass index: 26 +/- 5 vs 23 +/- 4 kg/m2; P = 0.005), and had lower Horne-Ostberg scores and higher sleep efficiencies than those without long sleep time. MSLT latencies were normal (> 8 min) in 71% hypersomniacs with long sleep time. Hypersomnia, especially with long sleep time, is frequently associated with evening chronotype and young age. It is inadequately diagnosed using MSLT.

  4. Rapid eye movements during sleep in mice: High trait-like stability qualifies rapid eye movement density for characterization of phenotypic variation in sleep patterns of rodents

    PubMed Central

    2011-01-01

    Background In humans, rapid eye movements (REM) density during REM sleep plays a prominent role in psychiatric diseases. Especially in depression, an increased REM density is a vulnerability marker for depression. In clinical practice and research measurement of REM density is highly standardized. In basic animal research, almost no tools are available to obtain and systematically evaluate eye movement data, although, this would create increased comparability between human and animal sleep studies. Methods We obtained standardized electroencephalographic (EEG), electromyographic (EMG) and electrooculographic (EOG) signals from freely behaving mice. EOG electrodes were bilaterally and chronically implanted with placement of the electrodes directly between the musculus rectus superior and musculus rectus lateralis. After recovery, EEG, EMG and EOG signals were obtained for four days. Subsequent to the implantation process, we developed and validated an Eye Movement scoring in Mice Algorithm (EMMA) to detect REM as singularities of the EOG signal, based on wavelet methodology. Results The distribution of wakefulness, non-REM (NREM) sleep and rapid eye movement (REM) sleep was typical of nocturnal rodents with small amounts of wakefulness and large amounts of NREM sleep during the light period and reversed proportions during the dark period. REM sleep was distributed correspondingly. REM density was significantly higher during REM sleep than NREM sleep. REM bursts were detected more often at the end of the dark period than the beginning of the light period. During REM sleep REM density showed an ultradian course, and during NREM sleep REM density peaked at the beginning of the dark period. Concerning individual eye movements, REM duration was longer and amplitude was lower during REM sleep than NREM sleep. The majority of single REM and REM bursts were associated with micro-arousals during NREM sleep, but not during REM sleep. Conclusions Sleep-stage specific

  5. Ventilatory control sensitivity in patients with obstructive sleep apnea is sleep stage dependent.

    PubMed

    Landry, Shane A; Andara, Christopher; Terrill, Philip I; Joosten, Simon A; Leong, Paul; Mann, Dwayne L; Sands, Scott A; Hamilton, Garun S; Edwards, Bradley A

    2018-05-01

    The severity of obstructive sleep apnea (OSA) is known to vary according to sleep stage; however, the pathophysiology responsible for this robust observation is incompletely understood. The objective of the present work was to examine how ventilatory control system sensitivity (i.e. loop gain) varies during sleep in patients with OSA. Loop gain was estimated using signals collected from standard diagnostic polysomnographic recordings performed in 44 patients with OSA. Loop gain measurements associated with nonrapid eye movement (NREM) stage 2 (N2), stage 3 (N3), and REM sleep were calculated and compared. The sleep period was also split into three equal duration tertiles to investigate how loop gain changes over the course of sleep. Loop gain was significantly lower (i.e. ventilatory control more stable) in REM (Mean ± SEM: 0.51 ± 0.04) compared with N2 sleep (0.63 ± 0.04; p = 0.001). Differences in loop gain between REM and N3 (p = 0.095), and N2 and N3 (p = 0.247) sleep were not significant. Furthermore, N2 loop gain was significantly lower in the first third (0.57 ± 0.03) of the sleep period compared with later second (0.64 ± 0.03, p = 0.012) and third (0.64 ± 0.03, p = 0.015) tertiles. REM loop gain also tended to increase across the night; however, this trend was not statistically significant [F(2, 12) = 3.49, p = 0.09]. These data suggest that loop gain varies between REM and NREM sleep and modestly increases over the course of sleep. Lower loop gain in REM is unlikely to contribute to the worsened OSA severity typically observed in REM sleep, but may explain the reduced propensity for central sleep apnea in this sleep stage.

  6. Obstructive sleep apnea alters sleep stage transition dynamics.

    PubMed

    Bianchi, Matt T; Cash, Sydney S; Mietus, Joseph; Peng, Chung-Kang; Thomas, Robert

    2010-06-28

    Enhanced characterization of sleep architecture, compared with routine polysomnographic metrics such as stage percentages and sleep efficiency, may improve the predictive phenotyping of fragmented sleep. One approach involves using stage transition analysis to characterize sleep continuity. We analyzed hypnograms from Sleep Heart Health Study (SHHS) participants using the following stage designations: wake after sleep onset (WASO), non-rapid eye movement (NREM) sleep, and REM sleep. We show that individual patient hypnograms contain insufficient number of bouts to adequately describe the transition kinetics, necessitating pooling of data. We compared a control group of individuals free of medications, obstructive sleep apnea (OSA), medical co-morbidities, or sleepiness (n = 374) with mild (n = 496) or severe OSA (n = 338). WASO, REM sleep, and NREM sleep bout durations exhibited multi-exponential temporal dynamics. The presence of OSA accelerated the "decay" rate of NREM and REM sleep bouts, resulting in instability manifesting as shorter bouts and increased number of stage transitions. For WASO bouts, previously attributed to a power law process, a multi-exponential decay described the data well. Simulations demonstrated that a multi-exponential process can mimic a power law distribution. OSA alters sleep architecture dynamics by decreasing the temporal stability of NREM and REM sleep bouts. Multi-exponential fitting is superior to routine mono-exponential fitting, and may thus provide improved predictive metrics of sleep continuity. However, because a single night of sleep contains insufficient transitions to characterize these dynamics, extended monitoring of sleep, probably at home, would be necessary for individualized clinical application.

  7. Idiopathic hypersomnia.

    PubMed

    Billiard, Michel; Sonka, Karel

    2016-10-01

    Idiopathic hypersomnia continues to evolve from the concept of "sleep drunkenness" introduced by Bedrich Roth in Prague in 1956 and the description of idiopathic hypersomnia with two forms, polysymptomatic and monosymptomatic, by the same Bedrich Roth in 1976. The diagnostic criteria of idiopathic hypersomnia have varied with the successive revisions of the International classifications of sleep disorders, including the recent 3rd edition. No epidemiological studies have been conducted so far. Disease onset occurs most often during adolescence or young adulthood. A familial background is often present but rigorous studies are still lacking. The key manifestation is hypersomnolence. It is often accompanied by sleep of long duration and debilitating sleep inertia. Polysomnography (PSG) followed by a multiple sleep latency test (MSLT) is mandatory, as well as a 24 h PSG or a 2-wk actigraphy in association with a sleep log to ensure a total 24-h sleep time longer than or equal to 66O minutes, when the mean sleep latency on the MSLT is longer than 8 min. Yet, MSLT is neither sensitive nor specific and the polysomnographic diagnostic criteria require continuous readjustment and biologic markers are still lacking. Idiopathic hypersomnia is most often a chronic condition though spontaneous remission may occur. The condition is disabling, sometimes even more so than narcolepsy type 1 or 2. Based on neurochemical, genetic and immunological analyses as well as on exploration of the homeostatic and circadian processes of sleep, various pathophysiological hypotheses have been proposed. Differential diagnosis involves a number of diseases and it is not yet clear whether idiopathic hypersomnia and narcolepsy type 2 are not the same condition. Until now, the treatment of idiopathic hypersomnia has mirrored that of the sleepiness of narcolepsy type 1 or 2. The first randomized, double-blind, placebo-controlled trials of modafinil have just been published, as well as a double

  8. Slow Wave Sleep and Long Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Whitmire, Alexandra; Orr, Martin; Arias, Diana; Rueger, Melanie; Johnston, Smith; Leveton, Lauren

    2012-01-01

    While ground research has clearly shown that preserving adequate quantities of sleep is essential for optimal health and performance, changes in the progression, order and /or duration of specific stages of sleep is also associated with deleterious outcomes. As seen in Figure 1, in healthy individuals, REM and Non-REM sleep alternate cyclically, with stages of Non-REM sleep structured chronologically. In the early parts of the night, for instance, Non-REM stages 3 and 4 (Slow Wave Sleep, or SWS) last longer while REM sleep spans shorter; as night progresses, the length of SWS is reduced as REM sleep lengthens. This process allows for SWS to establish precedence , with increases in SWS seen when recovering from sleep deprivation. SWS is indeed regarded as the most restorative portion of sleep. During SWS, physiological activities such as hormone secretion, muscle recovery, and immune responses are underway, while neurological processes required for long term learning and memory consolidation, also occur. The structure and duration of specific sleep stages may vary independent of total sleep duration, and changes in the structure and duration have been shown to be associated with deleterious outcomes. Individuals with narcolepsy enter sleep through REM as opposed to stage 1 of NREM. Disrupting slow wave sleep for several consecutive nights without reducing total sleep duration or sleep efficiency is associated with decreased pain threshold, increased discomfort, fatigue, and the inflammatory flare response in skin. Depression has been shown to be associated with a reduction of slow wave sleep and increased REM sleep. Given research that shows deleterious outcomes are associated with changes in sleep structure, it is essential to characterize and mitigate not only total sleep duration, but also changes in sleep stages.

  9. Respiratory cycle-related electroencephalographic changes during sleep in healthy children and in children with sleep disordered breathing.

    PubMed

    Immanuel, Sarah A; Pamula, Yvonne; Kohler, Mark; Martin, James; Kennedy, Declan; Saint, David A; Baumert, Mathias

    2014-08-01

    To investigate respiratory cycle-related electroencephalographic changes (RCREC) in healthy children and in children with sleep disordered breathing (SDB) during scored event-free (SEF) breathing periods of sleep. Interventional case-control repeated measurements design. Paediatric sleep laboratory in a hospital setting. Forty children with SDB and 40 healthy, age- and sex-matched children. Adenotonsillectomy in children with SDB and no intervention in controls. Overnight polysomnography; electroencephalography (EEG) power variations within SEF respiratory cycles in the overall and frequency band-specific EEG within stage 2 nonrapid eye movement (NREM) sleep, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Within both groups there was a decrease in EEG power during inspiration compared to expiration across all sleep stages. Compared to controls, RCREC in children with SDB in the overall EEG were significantly higher during REM and frequency band specific RCRECs were higher in the theta band of stage 2 and REM sleep, alpha band of SWS and REM sleep, and sigma band of REM sleep. This between-group difference was not significant postadenotonsillectomy. The presence of nonrandom respiratory cycle-related electroencephalographic changes (RCREC) in both healthy children and in children with sleep disordered breathing (SDB) during NREM and REM sleep has been demonstrated. The RCREC values were higher in children with SDB, predominantly in REM sleep and this difference reduced after adenotonsillectomy. Immanuel SA, Pamula Y, Kohler M, Martin J, Kennedy D, Saint DA, Baumert M. Respiratory cycle-related electroencephalographic changes during sleep in healthy children and in children with sleep disordered breathing.

  10. Sleep stage dynamics in neocortex and hippocampus.

    PubMed

    Durán, Ernesto; Oyanedel, Carlos N; Niethard, Niels; Inostroza, Marion; Born, Jan

    2018-06-01

    Mammalian sleep comprises the stages of slow-wave sleep (SWS) and rapid eye movement (REM) sleep. Additionally, a transition state is often discriminated which in rodents is termed intermediate stage (IS). Although these sleep stages are thought of as unitary phenomena affecting the whole brain in a congruent fashion, recent findings have suggested that sleep stages can also appear locally restricted to specific networks and regions. Here, we compared in rats sleep stages and their transitions between neocortex and hippocampus. We simultaneously recorded the electroencephalogram (EEG) from skull electrodes over frontal and parietal cortex and the local field potential (LFP) from the medial prefrontal cortex and dorsal hippocampus. Results indicate a high congruence in the occurrence of sleep and SWS (>96.5%) at the different recording sites. Congruence was lower for REM sleep (>87%) and lowest for IS (<36.5%). Incongruences occurring at sleep stage transitions were most pronounced for REM sleep which in 36.6 per cent of all epochs started earlier in hippocampal LFP recordings than in the other recordings, with an average interval of 17.2 ± 1.1 s between REM onset in the hippocampal LFP and the parietal EEG (p < 0.001). Earlier REM onset in the hippocampus was paralleled by a decrease in muscle tone, another hallmark of REM sleep. These findings indicate a region-specific regulation of REM sleep which has clear implications not only for our understanding of the organization of sleep, but possibly also for the functions, e.g. in memory formation, that have been associated with REM sleep.

  11. Noradrenaline from Locus Coeruleus Neurons Acts on Pedunculo-Pontine Neurons to Prevent REM Sleep and Induces Its Loss-Associated Effects in Rats.

    PubMed

    Khanday, Mudasir Ahmad; Somarajan, Bindu I; Mehta, Rachna; Mallick, Birendra Nath

    2016-01-01

    Normally, rapid eye movement sleep (REMS) does not appear during waking or non-REMS. Isolated, independent studies showed that elevated noradrenaline (NA) levels inhibit REMS and induce REMS loss-associated cytomolecular, cytomorphological, psychosomatic changes and associated symptoms. However, the source of NA and its target in the brain for REMS regulation and function in health and diseases remained to be confirmed in vivo . Using tyrosine hydroxylase (TH)-siRNA and virus-coated TH-shRNA in normal freely moving rats, we downregulated NA synthesis in locus coeruleus (LC) REM-OFF neurons in vivo . These TH-downregulated rats showed increased REMS, which was prevented by infusing NA into the pedunculo-pontine tegmentum (PPT), the site of REM-ON neurons, normal REMS returned after recovery. Moreover, unlike normal or control-siRNA- or shRNA-injected rats, upon REMS deprivation (REMSD) TH-downregulated rat brains did not show elevated Na-K ATPase (molecular changes) expression and activity. To the best of our knowledge, these are the first in vivo findings in an animal model confirming that NA from the LC REM-OFF neurons (1) acts on the PPT REM-ON neurons to prevent appearance of REMS, and (2) are responsible for inducing REMSD-associated molecular changes and symptoms. These observations clearly show neuro-physio-chemical mechanism of why normally REMS does not appear during waking. Also, that LC neurons are the primary source of NA, which in turn causes some, if not many, REMSD-associated symptoms and behavioral changes. The findings are proof-of-principle for the first time and hold potential to be exploited for confirmation toward treating REMS disorder and amelioration of REMS loss-associated symptoms in patients.

  12. Evidence that non-dreamers do dream: a REM sleep behaviour disorder model.

    PubMed

    Herlin, Bastien; Leu-Semenescu, Smaranda; Chaumereuil, Charlotte; Arnulf, Isabelle

    2015-12-01

    To determine whether non-dreamers do not produce dreams or do not recall them, subjects were identified with no dream recall with dreamlike behaviours during rapid eye movement sleep behaviour disorder, which is typically characterised by dream-enacting behaviours congruent with sleep mentation. All consecutive patients with idiopathic rapid eye movement sleep behaviour disorder or rapid eye movement sleep behaviour disorder associated with Parkinson's disease who underwent a video-polysomnography were interviewed regarding the presence or absence of dream recall, retrospectively or upon spontaneous arousals. The patients with no dream recall for at least 10 years, and never-ever recallers were compared with dream recallers with rapid eye movement sleep behaviour disorder regarding their clinical, cognitive and sleep features. Of the 289 patients with rapid eye movement sleep behaviour disorder, eight (2.8%) patients had no dream recall, including four (1.4%) patients who had never ever recalled dreams, and four patients who had no dream recall for 10-56 years. All non-recallers exhibited, daily or almost nightly, several complex, scenic and dreamlike behaviours and speeches, which were also observed during rapid eye movement sleep on video-polysomnography (arguing, fighting and speaking). They did not recall a dream following sudden awakenings from rapid eye movement sleep. These eight non-recallers with rapid eye movement sleep behaviour disorder did not differ in terms of cognition, clinical, treatment or sleep measures from the 17 dreamers with rapid eye movement sleep behaviour disorder matched for age, sex and disease. The scenic dreamlike behaviours reported and observed during rapid eye movement sleep in the rare non-recallers with rapid eye movement sleep behaviour disorder (even in the never-ever recallers) provide strong evidence that non-recallers produce dreams, but do not recall them. Rapid eye movement sleep behaviour disorder provides a new model to

  13. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages.

    PubMed

    Ng, Marcus; Pavlova, Milena

    2013-01-01

    Since the formal characterization of sleep stages, there have been reports that seizures may preferentially occur in certain phases of sleep. Through ascending cholinergic connections from the brainstem, rapid eye movement (REM) sleep is physiologically characterized by low voltage fast activity on the electroencephalogram, REMs, and muscle atonia. Multiple independent studies confirm that, in REM sleep, there is a strikingly low proportion of seizures (~1% or less). We review a total of 42 distinct conventional and intracranial studies in the literature which comprised a net of 1458 patients. Indexed to duration, we found that REM sleep was the most protective stage of sleep against focal seizures, generalized seizures, focal interictal discharges, and two particular epilepsy syndromes. REM sleep had an additional protective effect compared to wakefulness with an average 7.83 times fewer focal seizures, 3.25 times fewer generalized seizures, and 1.11 times fewer focal interictal discharges. In further studies REM sleep has also demonstrated utility in localizing epileptogenic foci with potential translation into postsurgical seizure freedom. Based on emerging connectivity data in sleep, we hypothesize that the influence of REM sleep on seizures is due to a desynchronized EEG pattern which reflects important connectivity differences unique to this sleep stage.

  14. Sleep and memory. I: The influence of different sleep stages on memory.

    PubMed

    Rotenberg, V S

    1992-01-01

    A new approach to the sleep stages role in memory is discussed in the context of the two opposite patterns of behavior-search activity and renunciation of search. Search activity is activity designed to change the situation (or the subjects attitudes to it) in the absence of a definite forecast of the results of such activity, but with the constant consideration of these results at all stages of activity. Search activity increases general adaptability and body resistance while renunciation of search decreases adaptability and requires REM sleep for its compensation. Unprepared learning, which is often accompanied by failures on the first steps of learning, is suggested to produce renunciation of search, which decreases learning ability, suppress retention, and increase REM sleep requirement. A prolonged REM sleep deprivation before training causes learned helplessness and disturbs the learning process, while short REM sleep deprivation cause the "rebound" of the compensatory search activity that interferes with passive avoidance. REM sleep deprivation performed after a training session can increase distress caused by a training procedure, with the subsequent negative outcome on retention.

  15. Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease.

    PubMed

    Christensen, Julie A E; Zoetmulder, Marielle; Koch, Henriette; Frandsen, Rune; Arvastson, Lars; Christensen, Søren R; Jennum, Poul; Sorensen, Helge B D

    2014-09-30

    Manual scoring of sleep relies on identifying certain characteristics in polysomnograph (PSG) signals. However, these characteristics are disrupted in patients with neurodegenerative diseases. This study evaluates sleep using a topic modeling and unsupervised learning approach to identify sleep topics directly from electroencephalography (EEG) and electrooculography (EOG). PSG data from control subjects were used to develop an EOG and an EEG topic model. The models were applied to PSG data from 23 control subjects, 25 patients with periodic leg movements (PLMs), 31 patients with idiopathic REM sleep behavior disorder (iRBD) and 36 patients with Parkinson's disease (PD). The data were divided into training and validation datasets and features reflecting EEG and EOG characteristics based on topics were computed. The most discriminative feature subset for separating iRBD/PD and PLM/controls was estimated using a Lasso-regularized regression model. The features with highest discriminability were the number and stability of EEG topics linked to REM and N3, respectively. Validation of the model indicated a sensitivity of 91.4% and a specificity of 68.8% when classifying iRBD/PD patients. The topics showed visual accordance with the manually scored sleep stages, and the features revealed sleep characteristics containing information indicative of neurodegeneration. This study suggests that the amount of N3 and the ability to maintain NREM and REM sleep have potential as early PD biomarkers. Data-driven analysis of sleep may contribute to the evaluation of neurodegenerative patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Narcolepsy with Long Sleep Time: A Specific Entity?

    PubMed Central

    Vernet, Cyrille; Arnulf, Isabelle

    2009-01-01

    Background: The classical narcolepsy patient reports intense feelings of sleepiness (with/out cataplexy), normal or disrupted nighttime sleep, and takes short and restorative naps. However, with long-term monitoring, we identified some narcoleptics resembling patients with idiopathic hypersomnia. Objective: To isolate and describe a new subtype of narcolepsy with long sleep time). Setting: University Hospital Design: Controlled, prospective cohort Participants: Out of 160 narcoleptics newly diagnosed within the past 3 years, 29 (18%) had a long sleep time (more than 11 h/24 h). We compared narcoleptics with (n = 23) and without (n = 29) long sleep time to 25 hypersomniacs with long sleep time and 20 healthy subjects. Intervention: Patients and controls underwent face-to face interviews, questionnaires, human leukocyte antigen (HLA) genotype, an overnight polysomnography, multiple sleep latency tests, and 24-h ad libitum sleep monitoring. Results: Narcoleptics with long sleep time had a similar disease course and similar frequencies of cataplexy, sleep paralysis, hallucinations, multiple sleep onset in REM periods, short mean sleep latencies, and HLA DQB1*0602 positivity as narcoleptics with normal sleep time did. However, they had longer sleep time during 24 h, and higher sleep efficiency, lower Epworth Sleepiness Scale scores, and reported their naps were more often unrefreshing. Only 3/23 had core narcolepsy (HLA and cataplexy positive). Conclusions: The subgroup of narcoleptics with a long sleep time comprises 18% of narcoleptics. Their symptoms combine the disabilities of both narcolepsy (severe sleepiness) and idiopathic hypersomnia (long sleep time and unrefreshing naps). Thus, they may constitute a group with multiple arousal system dysfunctions. Citation: Vernet C; Arnulf I. Narcolepsy with long sleep time: a specific entity? SLEEP 2009;32(9):1229-1235. PMID:19750928

  17. Respiratory Cycle-Related Electroencephalographic Changes during Sleep in Healthy Children and in Children with Sleep Disordered Breathing

    PubMed Central

    Immanuel, Sarah A.; Pamula, Yvonne; Kohler, Mark; Martin, James; Kennedy, Declan; Saint, David A.; Baumert, Mathias

    2014-01-01

    Study Objective: To investigate respiratory cycle-related electroencephalographic changes (RCREC) in healthy children and in children with sleep disordered breathing (SDB) during scored event-free (SEF) breathing periods of sleep. Design: Interventional case-control repeated measurements design. Setting: Paediatric sleep laboratory in a hospital setting. Participants: Forty children with SDB and 40 healthy, age- and sex-matched children. Interventions: Adenotonsillectomy in children with SDB and no intervention in controls. Measurements and Results: Overnight polysomnography; electroencephalography (EEG) power variations within SEF respiratory cycles in the overall and frequency band-specific EEG within stage 2 nonrapid eye movement (NREM) sleep, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Within both groups there was a decrease in EEG power during inspiration compared to expiration across all sleep stages. Compared to controls, RCREC in children with SDB in the overall EEG were significantly higher during REM and frequency band specific RCRECs were higher in the theta band of stage 2 and REM sleep, alpha band of SWS and REM sleep, and sigma band of REM sleep. This between-group difference was not significant postadenotonsillectomy. Conclusion: The presence of nonrandom respiratory cycle-related electroencephalographic changes (RCREC) in both healthy children and in children with sleep disordered breathing (SDB) during NREM and REM sleep has been demonstrated. The RCREC values were higher in children with SDB, predominantly in REM sleep and this difference reduced after adenotonsillectomy. Citation: Immanuel SA, Pamula Y, Kohler M, Martin J, Kennedy D, Saint DA, Baumert M. Respiratory cycle-related electroencephalographic changes during sleep in healthy children and in children with sleep disordered breathing. SLEEP 2014;37(8):1353-1361. PMID:25083016

  18. Cordance derived from REM sleep EEG as a biomarker for treatment response in depression--a naturalistic study after antidepressant medication.

    PubMed

    Adamczyk, Marek; Gazea, Mary; Wollweber, Bastian; Holsboer, Florian; Dresler, Martin; Steiger, Axel; Pawlowski, Marcel

    2015-04-01

    To evaluate whether prefrontal cordance in theta frequency band derived from REM sleep EEG after the first week of antidepressant medication could characterize the treatment response after 4 weeks of therapy in depressed patients. 20 in-patients (15 females, 5 males) with a depressive episode and 20 healthy matched controls were recruited into 4-week, open label, case-control study. Patients were treated with various antidepressants. No significant differences in age (responders (mean ± SD): 45 ± 22) years; non-responders: 49 ± 12 years), medication or Hamilton Depression Rating Scale (HAM-D) score (responders: 23.8 ± 4.5; non-responders 24.5 ± 7.6) at inclusion into the study were found between responders and non-responders. Response to treatment was defined as a ≥50% reduction of HAM-D score at the end of four weeks of active medication. Sleep EEG of patients was recorded after the first and the fourth week of medication. Cordance was computed for prefrontal EEG channels in theta frequency band during tonic REM sleep. The group of 8 responders had significantly higher prefrontal theta cordance in relation to the group of 12 non-responders after the first week of antidepressant medication. This finding was significant also when controlling for age, gender and number of previous depressive episodes (F1,15 = 6.025, P = .027). Furthermore, prefrontal cordance of all patients showed significant positive correlation (r = 0.52; P = .019) with the improvement of HAM-D score between the inclusion week and fourth week of medication. The results suggest that prefrontal cordance derived from REM sleep EEG could provide a biomarker for the response to antidepressant treatment in depressed patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Perspectives on the rapid eye movement sleep switch in rapid eye movement sleep behavior disorder.

    PubMed

    Ramaligam, Vetrivelan; Chen, Michael C; Saper, Clifford B; Lu, Jun

    2013-08-01

    Rapid eye movement (REM) sleep in mammals is associated with wakelike cortical and hippocampal activation and concurrent postural muscle atonia. Research during the past 5 decades has revealed the details of the neural circuitry regulating REM sleep and muscle atonia during this state. REM-active glutamatergic neurons in the sublaterodorsal nucleus (SLD) of the dorsal pons are critical for generation for REM sleep atonia. Descending projections from SLD glutamatergic neurons activate inhibitory premotor neurons in the ventromedial medulla (VMM) and in the spinal cord to antagonize the glutamatergic supraspinal inputs on the motor neurons during REM sleep. REM sleep behavior disorder (RBD) consists of simple behaviors (i.e., twitching, jerking) and complex behaviors (i.e., defensive behavior, talking). Animal research has lead to the hypothesis that complex behaviors in RBD are due to SLD pathology, while simple behaviors of RBD may be due to less severe SLD pathology or dysfunction of the VMM, ventral pons, or spinal cord. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Sleep respiratory parameters in children with idiopathic epilepsy: A cross-sectional study.

    PubMed

    Gogou, Maria; Haidopoulou, Katerina; Eboriadou, Maria; Pavlidou, Efterpi; Hatzistylianou, Maria; Pavlou, Evaggelos

    2016-10-01

    The aim of this study is to explore and compare through polysomnography respiratory sleep parameters between children with idiopathic epilepsy and healthy children. Our cross-sectional study included 40 children with idiopathic epilepsy and 27 healthy children, who underwent overnight polysomnography. Data about sleep respiratory parameters were obtained and statistically analyzed. The level of statistical significance was set at 0.05. The prevalence of Obstructive Sleep Apnea Syndrome was significantly higher in the epilepsy group (35% vs 7.4%, p<0.01). Moreover, the odds ratio of an obstructive apnea index ≥1 in the epilepsy group was 10.6 (95% Confidence Intervals: 3.08-37.08) in comparison to the control group. The mean value of the obstructive apnea-hypopnea index was significantly higher in children with epilepsy compared to healthy children (2.46±1.22 vs 1.21±0.83, p=0.027). The mean values of central apnea index and desaturation index were comparable between these two groups. Longest apnea duration was significantly higher in the group of poor seizure control. All other sleep respiratory variables did not differ significantly between children with poor and good seizure control and between children with generalized and focal epilepsy. Children with epilepsy seem to present more prominent sleep breathing instability in comparison to healthy children, which mainly includes a predisposition to obstructive respiratory events. More studies are needed to investigate the relationship between sleep apneas and seizure control. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Noradrenaline from Locus Coeruleus Neurons Acts on Pedunculo-Pontine Neurons to Prevent REM Sleep and Induces Its Loss-Associated Effects in Rats

    PubMed Central

    Khanday, Mudasir Ahmad; Somarajan, Bindu I.; Mehta, Rachna

    2016-01-01

    Normally, rapid eye movement sleep (REMS) does not appear during waking or non-REMS. Isolated, independent studies showed that elevated noradrenaline (NA) levels inhibit REMS and induce REMS loss-associated cytomolecular, cytomorphological, psychosomatic changes and associated symptoms. However, the source of NA and its target in the brain for REMS regulation and function in health and diseases remained to be confirmed in vivo. Using tyrosine hydroxylase (TH)-siRNA and virus-coated TH-shRNA in normal freely moving rats, we downregulated NA synthesis in locus coeruleus (LC) REM-OFF neurons in vivo. These TH-downregulated rats showed increased REMS, which was prevented by infusing NA into the pedunculo-pontine tegmentum (PPT), the site of REM-ON neurons, normal REMS returned after recovery. Moreover, unlike normal or control-siRNA- or shRNA-injected rats, upon REMS deprivation (REMSD) TH-downregulated rat brains did not show elevated Na-K ATPase (molecular changes) expression and activity. To the best of our knowledge, these are the first in vivo findings in an animal model confirming that NA from the LC REM-OFF neurons (1) acts on the PPT REM-ON neurons to prevent appearance of REMS, and (2) are responsible for inducing REMSD-associated molecular changes and symptoms. These observations clearly show neuro-physio-chemical mechanism of why normally REMS does not appear during waking. Also, that LC neurons are the primary source of NA, which in turn causes some, if not many, REMSD-associated symptoms and behavioral changes. The findings are proof-of-principle for the first time and hold potential to be exploited for confirmation toward treating REMS disorder and amelioration of REMS loss-associated symptoms in patients. PMID:27957531

  2. Different sleep onset criteria at the multiple sleep latency test (MSLT): an additional marker to differentiate central nervous system (CNS) hypersomnias.

    PubMed

    Pizza, Fabio; Vandi, Stefano; Detto, Stefania; Poli, Francesca; Franceschini, Christian; Montagna, Pasquale; Plazzi, Giuseppe

    2011-03-01

    Excessive daytime sleepiness (EDS) has different correlates in non-rapid eye movement (NREM) [idiopathic hypersomnia (IH) without long sleep time] and REM sleep [narcolepsy without cataplexy (NwoC) and narcolepsy with cataplexy (NC)]-related hypersomnias of central origin. We analysed sleep onset characteristics at the multiple sleep latency test (MSLT) applying simultaneously two sleep onset criteria in 44 NC, seven NwoC and 16 IH consecutive patients referred for subjective EDS complaint. Sleep latency (SL) at MSLT was assessed both as the time elapsed to the occurrence of a single epoch of sleep Stage 1 NREM (SL) and of unequivocal sleep [three sleep Stage 1 NREM epochs or any other sleep stage epoch, sustained SL (SusSL)]. Idiopathic hypersomnia patients showed significantly (P<0.0001) longer SusSL than SL (7.7±2.5 versus 5.6±1.3 min, respectively) compared to NwoC (5.8±2.5 versus 5.3±2.2 min) and NC patients (4.1±3 versus 3.9±3 min). A mean difference threshold between SusSL and SL ≥27 s reached a diagnostic value to discriminate IH versus NC and NwoC sufferers (sensitivity 88%; specificity 82%). Moreover, NC patients showed better subjective sleepiness perception than NwoC and IH cases in the comparison between naps with or without sleep occurrence. Simultaneous application of the two widely used sleep onset criteria differentiates IH further from NC and NwoC patients: IH fluctuate through a wake-Stage 1 NREM sleep state before the onset of sustained sleep, while NC and NwoC shift abruptly into a sustained sleep. The combination of SusSL and SL determination at MSLT should be tested as an additional objective differential criterion for EDS disorders. © 2010 European Sleep Research Society.

  3. Daily Sleep Patterns, Sleep Quality, and Sleep Hygiene Among Parent–Child Dyads of Young Children Newly Diagnosed With Juvenile Idiopathic Arthritis and Typically Developing Children

    PubMed Central

    Chen, Maida Lynn; Cain, Kevin C.; Ringold, Sarah; Wallace, Carol A.; Ward, Teresa M.

    2016-01-01

    Objectives Describe daily sleep patterns, sleep quality, and sleep hygiene in 2–5-year-old children newly diagnosed with juvenile idiopathic arthritis (JIA) and their parents in comparison with typically developing (TD) children and parents. Methods Participants (13 JIA, 16 TD parent–child dyads) wore actigraphs for 10 days. Parents completed sleep diaries and sleep hygiene survey. Results Children with JIA had significantly less total sleep time, lower sleep efficiency (SE), and longer naps than TD children. Parents of children with JIA had significantly earlier bedtimes, more wake after sleep onset (WASO) and lower SE than TD parents. Parent–child SE and WASO were interrelated in JIA dyads. Sleep hygiene practices were inconsistent in both groups of children. Conclusions Inadequate amounts of sleep and poor sleep quality were common in parent–child dyads. Early interventions to improve sleep duration and promote sleep hygiene practices may alleviate future sleep problems and improve parent and child well-being. PMID:26994855

  4. A proposed mathematical model for sleep patterning.

    PubMed

    Lawder, R E

    1984-01-01

    The simple model of a ramp, intersecting a triangular waveform, yields results which conform with seven generalized observations of sleep patterning; including the progressive lengthening of 'rapid-eye-movement' (REM) sleep periods within near-constant REM/nonREM cycle periods. Predicted values of REM sleep time, and of Stage 3/4 nonREM sleep time, can be computed using the observed values of other parameters. The distributions of the actual REM and Stage 3/4 times relative to the predicted values were closer to normal than the distributions relative to simple 'best line' fits. It was found that sleep onset tends to occur at a particular moment in the individual subject's '90-min cycle' (the use of a solar time-scale masks this effect), which could account for a subject with a naturally short sleep/wake cycle synchronizing to a 24-h rhythm. A combined 'sleep control system' model offers quantitative simulation of the sleep patterning of endogenous depressives and, with a different perturbation, qualitative simulation of the symptoms of narcolepsy.

  5. Decrease in REM latency and changes in sleep quality parallel serotonergic damage and recovery after MDMA: a longitudinal study over 180 days.

    PubMed

    Kirilly, Eszter; Molnar, Eszter; Balogh, Brigitta; Kantor, Sandor; Hansson, Stefan R; Palkovits, Miklos; Bagdy, Gyorgy

    2008-09-01

    The recreational drug ecstasy [3,4-methylenedioxymethamphetamine (MDMA)], has been found to selectively damage brain serotonin neurons in experimental animals, and probably in human MDMA users, but detailed morphometric analyses and parallel functional measures during damage and recovery are missing. Since there is evidence that serotonin regulates sleep, we have compared serotonergic markers parallel with detailed analysis of sleep patterns at three time-points within 180 d after a single dose of 15 mg/kg MDMA in male Dark Agouti rats. At 7 d and 21 d after MDMA treatment, significant(30-40%), widespread reductions in serotonin transporter (5-HTT) density were detected in the cerebral cortex, hippocampus, most parts of the hypothalamus, and some of the brainstem nuclei. With the exception of the hippocampus, general recovery was observed in the brain 180 d after treatment. Transient increases followed by decreases were detected in 5-HTT mRNA expression of dorsal and median raphe nuclei at 7 d and 21 d after the treatment. Significant reductions in rapid eye movement (REM) sleep latency, increases in delta power spectra in non-rapid eye movement sleep and increased fragmentation of sleep were also detected, but all these alterations disappeared by the 180th day. The present data provide evidence for long-term, albeit, except for the hippocampus, transient changes in the terminal and cellular regions of the serotonergic system after this drug. Reduced REM latency and increased sleep fragmentation are the most characteristic alterations of sleep consistently described in depression using EEG sleep polygraphy.

  6. Apnea-induced rapid eye movement sleep disruption impairs human spatial navigational memory.

    PubMed

    Varga, Andrew W; Kishi, Akifumi; Mantua, Janna; Lim, Jason; Koushyk, Viachaslau; Leibert, David P; Osorio, Ricardo S; Rapoport, David M; Ayappa, Indu

    2014-10-29

    Hippocampal electrophysiology and behavioral evidence support a role for sleep in spatial navigational memory, but the role of particular sleep stages is less clear. Although rodent models suggest the importance of rapid eye movement (REM) sleep in spatial navigational memory, a similar role for REM sleep has never been examined in humans. We recruited subjects with severe obstructive sleep apnea (OSA) who were well treated and adherent with continuous positive airway pressure (CPAP). Restricting CPAP withdrawal to REM through real-time monitoring of the polysomnogram provides a novel way of addressing the role of REM sleep in spatial navigational memory with a physiologically relevant stimulus. Individuals spent two different nights in the laboratory, during which subjects performed timed trials before and after sleep on one of two unique 3D spatial mazes. One night of sleep was normally consolidated with use of therapeutic CPAP throughout, whereas on the other night, CPAP was reduced only in REM sleep, allowing REM OSA to recur. REM disruption via this method caused REM sleep reduction and significantly fragmented any remaining REM sleep without affecting total sleep time, sleep efficiency, or slow-wave sleep. We observed improvements in maze performance after a night of normal sleep that were significantly attenuated after a night of REM disruption without changes in psychomotor vigilance. Furthermore, the improvement in maze completion time significantly positively correlated with the mean REM run duration across both sleep conditions. In conclusion, we demonstrate a novel role for REM sleep in human memory formation and highlight a significant cognitive consequence of OSA. Copyright © 2014 the authors 0270-6474/14/3414571-07$15.00/0.

  7. Distinct associations between energy balance and the sleep characteristics slow wave sleep and rapid eye movement sleep.

    PubMed

    Rutters, F; Gonnissen, H K; Hursel, R; Lemmens, S G; Martens, E A; Westerterp-Plantenga, M S

    2012-10-01

    Epidemiologically, an inverse relationship between body mass index (BMI) and sleep duration is observed. Intra-individual variance in the amount of slow wave sleep (SWS) or rapid eye movement (REM) sleep has been related to variance of metabolic and endocrine parameters, which are risk factors for the disturbance of energy balance (EB). To investigate inter-individual relationships between EB (EB= energy intake-energy expenditure∣, MJ/24 h), SWS or REM sleep, and relevant parameters in normal-weight men during two 48 h stays in the controlled environment of a respiration chamber. A total of 16 men (age 23±3.7 years, BMI 23.9±1.9 kg m(-2)) stayed in the respiration chamber twice for 48 h to assure EB. Electroencephalography was used to monitor sleep (2330-0730 hrs). Hunger and fullness were scored by visual analog scales; mood was determined by State Trait Anxiety Index-state and food reward by liking and wanting. Baseline blood and salivary samples were collected before breakfast. Subjects were fed in EB, except for the last dinner, when energy intake was ad libitum. The subjects slept on average 441.8±49 min per night, and showed high within-subject reliability for the amount of SWS and REM sleep. Linear regression analyses showed that EB was inversely related to the amount of SWS (r=-0.43, P<0.03), and positively related to the amount of REM sleep (r=0.40, P<0.05). Relevant parameters such as hunger, reward, stress and orexigenic hormone concentrations were related to overeating, as well as to the amount of SWS and REM sleep, however, after inclusion of these parameters in a multiple regression, the amount of SWS and REM sleep did not add to the explained variance of EB, which suggests that due to their individual associations, these EB parameters are mediator variables. A positive EB due to overeating, was explained by a smaller amount of SWS and higher amount of REM sleep, mediated by hunger, fullness, State Trait Anxiety Index-state scores, glucose

  8. CSF Histamine Contents in Narcolepsy, Idiopathic Hypersomnia and Obstructive Sleep Apnea Syndrome

    PubMed Central

    Kanbayashi, Takashi; Kodama, Tohru; Kondo, Hideaki; Satoh, Shinsuke; Inoue, Yuichi; Chiba, Shigeru; Shimizu, Tetsuo; Nishino, Seiji

    2009-01-01

    Study Objective: To (1) replicate our prior result of low cerebrospinal fluid (CSF) histamine levels in human narcolepsy in a different sample population and to (2) evaluate if histamine contents are altered in other types of hypersomnia with and without hypocretin deficiency. Design: Cross sectional studies. Setting and Patients: Sixty-seven narcolepsy subjects, 26 idiopathic hypersomnia (IHS) subjects, 16 obstructive sleep apnea syndrome (OSAS) subjects, and 73 neurological controls were included. All patients were Japanese. Diagnoses were made according to ICSD-2. Results: We found significant reductions in CSF histamine levels in hypocretin deficient narcolepsy with cataplexy (mean ± SEM; 176.0 ± 25.8 pg/mL), hypocretin non-deficient narcolepsy with cataplexy (97.8 ± 38.4 pg/mL), hypocretin non-deficient narcolepsy without cataplexy (113.6 ± 16.4 pg/mL), and idiopathic hypersomnia (161.0 ± 29.3 pg/mL); the levels in OSAS (259.3 ± 46.6 pg/mL) did not statistically differ from those in the controls (333.8 ± 22.0 pg/mL). Low CSF histamine levels were mostly observed in non-medicated patients; significant reductions in histamine levels were evident in non-medicated patients with hypocretin deficient narcolepsy with cataplexy (112.1 ± 16.3 pg/mL) and idiopathic hypersomnia (143.3 ± 28.8 pg/mL), while the levels in the medicated patients were in the normal range. Conclusion: The study confirmed reduced CSF histamine levels in hypocretin-deficient narcolepsy with cataplexy. Similar degrees of reduction were also observed in hypocretin non-deficient narcolepsy and in idiopathic hypersomnia, while those in OSAS (non central nervous system hypersomnia) were not altered. The decrease in histamine in these subjects were more specifically observed in non-medicated subjects, suggesting CSF histamine is a biomarker reflecting the degree of hypersomnia of central origin. Citation: Kanbayashi T; Kodama T; Kondo H; Satoh S; Inoue Y; Chiba S; Shimizu T; Nishino S. CSF

  9. Sleep disorders in spinocerebellar ataxia type 2 patients.

    PubMed

    Velázquez-Pérez, Luis; Voss, Ursula; Rodríguez-Labrada, Roberto; Auburger, Georg; Canales Ochoa, Nalia; Sánchez Cruz, Gilberto; Galicia Polo, Lourdes; Haro Valencia, Reyes; Aguilera Rodríguez, Raúl; Medrano Montero, Jacqueline; Laffita Mesa, Jose M; Tuin, Inka

    2011-01-01

    Sleep disturbances are common features in spinocerebellar ataxias (SCAs). Nevertheless, sleep data on SCA2 come from scarce studies including few patients, limiting the evaluation of the prevalence and determinants of sleep disorders. To assess the frequency and possible determinants of sleep disorders in the large and homogeneous SCA2 Cuban population. Thirty-two SCA2 patients and their age- and sex-matched controls were studied by video-polysomnography and sleep interviews. The most striking video-polysomnography features were rapid eye movement (REM) sleep pathology and periodic leg movements (PLMs). REM sleep abnormalities included a consistent reduction of the REM sleep percentage and REM density as well as an increase in REM sleep without atonia (RWA). REM sleep and REM density decreases were closely related to the increase in ataxia scores, whereas the RWA percentage was influenced by the cytosine-adenine-guanine (CAG) repeats. PLMs were observed in 37.5% of cases. The PLM index showed a significant association with the ataxia score and disease duration but not with CAG repeats. REM sleep pathology and PLMs are closely related to SCA2 severity, suggesting their usefulness as disease progression markers. The RWA percentage is influenced by the CAG repeats and might thus be a sensitive parameter for reflecting polyglutamine toxicity. Finally, as PLMs are sensible to drug treatment, they represents a new therapeutic target for the symptomatic treatment of SCA2. Copyright © 2011 S. Karger AG, Basel.

  10. Increased Sympathetic and Decreased Parasympathetic Cardiac Tone in Patients with Sleep Related Alveolar Hypoventilation

    PubMed Central

    Palma, Jose-Alberto; Urrestarazu, Elena; Lopez-Azcarate, Jon; Alegre, Manuel; Fernandez, Secundino; Artieda, Julio; Iriarte, Jorge

    2013-01-01

    Objective: To assess autonomic function by heart rate variability (HRV) during sleep in patients with sleep related alveolar hypoventilation (SRAH) and to compare it with that of patients with obstructive sleep apnea (OSA) and control patients. Design: Cross-sectional study. Setting: Sleep Unit, University Hospital of University of Navarra. Patients: Fifteen idiopathic and obesity related-SRAH patients were studied. For each patient with SRAH, a patient with OSA, matched in age, sex, body mass index (BMI), minimal oxygen saturation (SatO2), and mean SatO2 was selected. Control patients were also matched in age, sex, and BMI with patients with OSA and those with SRAH, and in apnea/hypopnea index (AHI) with patients with SRAH. Interventions: N/A. Measurements and Results: Time- and frequency-domain HRV measures (R-R, standard deviation of normal-to-normal RR interval [SDNN], very low frequency [VLF], low frequency [LF], high frequency [HF], LF/HF ratio) were calculated across all sleep stages as well as during wakefulness just before and after sleep during a 1-night polysomnography. In patients with SRAH and OSA, LF was increased during rapid eye movement (REM) when compared with control patients, whereas HF was decreased during REM and N1-N2 sleep stages. The LF/HF ratio was equally increased in patients with SRAH and OSA during REM and N1-N2. Correlation analysis showed that LF and HF values during REM sleep were correlated with minimal SatO2 and mean SatO2. Conclusions: Patients with SRAH exhibited an abnormal cardiac tone during sleep. This fact appears to be related to the severity of nocturnal oxygen desaturation. Moreover, there were no differences between OSA and SRAH, supporting the hypothesis that autonomic changes in OSA are primarily related to a reduced nocturnal oxygen saturation, rather than a consequence of other factors such as nocturnal respiratory events. Citation: Palma JA; Urrestarazu E; Lopez-Azcarate J; Alegre M; Fernandez S; Artieda J; Iriarte

  11. Is there a common motor dysregulation in sleepwalking and REM sleep behaviour disorder?

    PubMed

    Haridi, Mehdi; Weyn Banningh, Sebastian; Clé, Marion; Leu-Semenescu, Smaranda; Vidailhet, Marie; Arnulf, Isabelle

    2017-10-01

    This study sought to determine if there is any overlap between the two major non-rapid eye movement and rapid eye movement parasomnias, i.e. sleepwalking/sleep terrors and rapid eye movement sleep behaviour disorder. We assessed adult patients with sleepwalking/sleep terrors using rapid eye movement sleep behaviour disorder screening questionnaires and determined if they had enhanced muscle tone during rapid eye movement sleep. Conversely, we assessed rapid eye movement sleep behaviour disorder patients using the Paris Arousal Disorders Severity Scale and determined if they had more N3 awakenings. The 251 participants included 64 patients with rapid eye movement sleep behaviour disorder (29 with idiopathic rapid eye movement sleep behaviour disorder and 35 with rapid eye movement sleep behaviour disorder associated with Parkinson's disease), 62 patients with sleepwalking/sleep terrors, 66 old healthy controls (age-matched with the rapid eye movement sleep behaviour disorder group) and 59 young healthy controls (age-matched with the sleepwalking/sleep terrors group). They completed the rapid eye movement sleep behaviour disorder screening questionnaire, rapid eye movement sleep behaviour disorder single question and Paris Arousal Disorders Severity Scale. In addition, all the participants underwent a video-polysomnography. The sleepwalking/sleep terrors patients scored positive on rapid eye movement sleep behaviour disorder scales and had a higher percentage of 'any' phasic rapid eye movement sleep without atonia when compared with controls; however, these patients did not have higher tonic rapid eye movement sleep without atonia or complex behaviours during rapid eye movement sleep. Patients with rapid eye movement sleep behaviour disorder had moderately elevated scores on the Paris Arousal Disorders Severity Scale but did not exhibit more N3 arousals (suggestive of non-rapid eye movement parasomnia) than the control group. These results indicate that dream

  12. Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains.

    PubMed

    Kostyalik, Diána; Vas, Szilvia; Kátai, Zita; Kitka, Tamás; Gyertyán, István; Bagdy, Gyorgy; Tóthfalusi, László

    2014-11-19

    Shortened rapid eye movement (REM) sleep latency and increased REM sleep amount are presumed biological markers of depression. These sleep alterations are also observable in several animal models of depression as well as during the rebound sleep after selective REM sleep deprivation (RD). Furthermore, REM sleep fragmentation is typically associated with stress procedures and anxiety. The selective serotonin reuptake inhibitor (SSRI) antidepressants reduce REM sleep time and increase REM latency after acute dosing in normal condition and even during REM rebound following RD. However, their therapeutic outcome evolves only after weeks of treatment, and the effects of chronic treatment in REM-deprived animals have not been studied yet. Chronic escitalopram- (10 mg/kg/day, osmotic minipump for 24 days) or vehicle-treated rats were subjected to a 3-day-long RD on day 21 using the flower pot procedure or kept in home cage. On day 24, fronto-parietal electroencephalogram, electromyogram and motility were recorded in the first 2 h of the passive phase. The observed sleep patterns were characterized applying standard sleep metrics, by modelling the transitions between sleep phases using Markov chains and by spectral analysis. Based on Markov chain analysis, chronic escitalopram treatment attenuated the REM sleep fragmentation [accelerated transition rates between REM and non-REM (NREM) stages, decreased REM sleep residence time between two transitions] during the rebound sleep. Additionally, the antidepressant avoided the frequent awakenings during the first 30 min of recovery period. The spectral analysis showed that the SSRI prevented the RD-caused elevation in theta (5-9 Hz) power during slow-wave sleep. Conversely, based on the aggregate sleep metrics, escitalopram had only moderate effects and it did not significantly attenuate the REM rebound after RD. In conclusion, chronic SSRI treatment is capable of reducing several effects on sleep which might be the consequence

  13. Multiple sleep latency measures in narcolepsy and behaviourally induced insufficient sleep syndrome.

    PubMed

    Marti, Isabelle; Valko, Philipp O; Khatami, Ramin; Bassetti, Claudio L; Baumann, Christian R

    2009-12-01

    Short mean latencies to the first epoch of non-rapid eye movement sleep stage 1 (NREM1) and the presence of >or= 2 sleep onset REM (SOREM) periods on multiple sleep latency test (MSLT) occur in both narcolepsy-cataplexy (NC) and behaviourally induced insufficient sleep syndrome (BIISS). It is not known whether specific MSLT findings help differentiate the two disorders. We analyzed MSLT data including sleep latencies to and between different sleep stages of 60 age-, gender- and body mass index (BMI)-matched subjects (hypocretin-deficient NC, actigraphy-confirmed BIISS, healthy controls: each 20). Mean latency (in minutes) to NREM1 sleep was significantly shorter in NC (1.8+/-1.5) than in BIISS (4.7+/-2.1, p<0.001) and controls (11.4+/-3.3, p<0.001). Mean latency to NREM2 sleep was similar in NC (8.6+/-4.7) and BIISS (8.1+/-2.7, p=0.64); latency to either NREM2 or rapid eye movement (REM) sleep (i.e., the sum of the sleep latency to NREM1 and the duration of the first NREM1 sleep sequence), however, was shorter in NC (4.4+/-2.9) than in BIISS (7.9+/-3.5, p<0.001). Referring to all naps with SOREM periods, the sequence NREM1-REM-NREM2 was more common (71%) in NC than in BIISS (15%, p<0.001), reflecting the shorter latency from NREM1 to NREM2 in BIISS (3.7+/-2.5) than in NC (6.1+/-5.9, p<0.001). Our findings show that both sleepiness (as measured by NREM1 sleep latency) and REM sleep propensity are higher in NC than in BIISS. Furthermore, our finding of frequent REM sleep prior to NREM2 sleep in NC is in line with the recent assumption of an insufficient NREM sleep intensity in NC. Together with detailed clinical interviews, sleep logs, actigraphy, and nocturnal polysomnography, mean sleep latencies to NREM1 REM-NREM2 may be the best MSLT measures to discriminate NC from BIISS.

  14. Sleep-Related Electrophysiology and Behavior of Tinamous (Eudromia elegans): Tinamous Do Not Sleep Like Ostriches.

    PubMed

    Tisdale, Ryan K; Vyssotski, Alexei L; Lesku, John A; Rattenborg, Niels C

    2017-01-01

    The functions of slow wave sleep (SWS) and rapid eye movement (REM) sleep, distinct sleep substates present in both mammals and birds, remain unresolved. One approach to gaining insight into their function is to trace the evolution of these states through examining sleep in as many taxonomic groups as possible. The mammalian and avian clades are each composed of two extant groups, i.e., the monotremes (echidna and platypus) and therian (marsupial and eutherian [or placental]) mammals, and Palaeognaths (cassowaries, emus, kiwi, ostriches, rheas, and tinamous) and Neognaths (all other birds) among birds. Previous electrophysiological studies of monotremes and ostriches have identified a unique "mixed" sleep state combining features of SWS and REM sleep unlike the well-delineated sleep states observed in all therian mammals and Neognath birds. In the platypus this state is characterized by periods of REM sleep-related myoclonic twitching, relaxed skeletal musculature, and rapid eye movements, occurring in conjunction with SWS-related slow waves in the forebrain electroencephalogram (EEG). A similar mixed state was also observed in ostriches; although in addition to occurring during periods with EEG slow waves, reduced muscle tone and rapid eye movements also occurred in conjunction with EEG activation, a pattern typical of REM sleep in Neognath birds. Collectively, these studies suggested that REM sleep occurring exclusively as an integrated state with forebrain activation might have evolved independently in the therian and Neognath lineages. To test this hypothesis, we examined sleep in the elegant crested tinamou (Eudromia elegans), a small Palaeognath bird that more closely resembles Neognath birds in size and their ability to fly. A 24-h period was scored for sleep state based on electrophysiology and behavior. Unlike ostriches, but like all of the Neognath birds examined, all indicators of REM sleep usually occurred in conjunction with forebrain activation in

  15. What Does the Sleeping Brain Say? Syntax and Semantics of Sleep Talking in Healthy Subjects and in Parasomnia Patients.

    PubMed

    Arnulf, Isabelle; Uguccioni, Ginevra; Gay, Frederick; Baldayrou, Etienne; Golmard, Jean-Louis; Gayraud, Frederique; Devevey, Alain

    2017-11-01

    Speech is a complex function in humans, but the linguistic characteristics of sleep talking are unknown. We analyzed sleep-associated speech in adults, mostly (92%) during parasomnias. The utterances recorded during night-time video-polysomnography were analyzed for number of words, propositions and speech episodes, frequency, gaps and pauses (denoting turn-taking in the conversation), lemmatization, verbosity, negative/imperative/interrogative tone, first/second person, politeness, and abuse. Two hundred thirty-two subjects (aged 49.5 ± 20 years old; 41% women; 129 with rapid eye movement [REM] sleep behavior disorder and 87 with sleepwalking/sleep terrors, 15 healthy subjects, and 1 patient with sleep apnea speaking in non-REM sleep) uttered 883 speech episodes, containing 59% nonverbal utterance (mumbles, shouts, whispers, and laughs) and 3349 understandable words. The most frequent word was "No": negations represented 21.4% of clauses (more in non-REM sleep). Interrogations were found in 26% of speech episodes (more in non-REM sleep), and subordinate clauses were found in 12.9% of speech episodes. As many as 9.7% of clauses contained profanities (more in non-REM sleep). Verbal abuse lasted longer in REM sleep and was mostly directed toward insulting or condemning someone, whereas swearing predominated in non-REM sleep. Men sleep-talked more than women and used a higher proportion of profanities. Apparent turn-taking in the conversation respected the usual language gaps. Sleep talking parallels awake talking for syntax, semantics, and turn-taking in conversation, suggesting that the sleeping brain can function at a high level. Language during sleep is mostly a familiar, tensed conversation with inaudible others, suggestive of conflicts. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society]. All rights reserved. For permissions, please email: journals.permissions@oup.com

  16. Sleep-laughing--hypnogely.

    PubMed

    Trajanovic, Nikola N; Shapiro, Colin M; Milovanovic, Srdjan

    2013-07-01

    To explain relatively common phenomenon of laughing during sleep and help to better define criteria for differentiating between physiological and pathological sleep-laughing. Observational study of patients who underwent a sleep assessment in a referential tertiary health facility. A total of ten patients exhibited sleep laughing, nine of whom had episodes associated with rapid eye movement (REM) sleep. Also, in one of the patients sleep-laughing was one of the symptoms of REM sleep Behaviour Disorder, and in another patient sleep-laughing was associated with NREM sleep arousal parasomnia. The collected data and review of literature suggests that hypnogely in majority of the cases presents as a benign physiological phenomenon related to dreaming and REM sleep. Typically, these dreams are odd, bizarre or even unfunny for a person when awake. Nevertheless, they bring a sense of mirth and a genuine behavioural response. In a minority of cases, sleep-laughing appears to be a symptom of neurological disorders affecting the central nervous system. In these patients the behavioural substrate differs when compared to physiological laughing, and the sense of mirth is usually absent.

  17. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miletich, R.S.

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period,more » phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.« less

  18. Morning rapid eye movement sleep naps facilitate broad access to emotional semantic networks.

    PubMed

    Carr, Michelle; Nielsen, Tore

    2015-03-01

    The goal of the study was to assess semantic priming to emotion and nonemotion cue words using a novel measure of associational breadth for participants who either took rapid eye movement (REM) or nonrapid eye movement (NREM) naps or who remained awake; assess relation of priming to REM sleep consolidation and REM sleep inertia effects. The associational breadth task was applied in both a priming condition, where cue-words were signaled to be memorized prior to sleep (primed), and a nonpriming condition, where cue words were not memorized (nonprimed). Cue words were either emotional (positive, negative) or nonemotional. Participants were randomly assigned to either an awake (WAKE) or a sleep condition, which was subsequently split into NREM or REM groups depending on stage at awakening. Hospital-based sleep laboratory. Fifty-eight healthy participants (22 male) ages 18 to 35 y (Mage = 23.3 ± 4.08 y). The REM group scored higher than the NREM or WAKE groups on primed, but not nonprimed emotional cue words; the effect was stronger for positive than for negative cue words. However, REM time and percent correlated negatively with degree of emotional priming. Priming occurred for REM awakenings but not for NREM awakenings, even when the latter sleep episodes contained some REM sleep. Associational breadth may be selectively consolidated during REM sleep for stimuli that have been tagged as important for future memory retrieval. That priming decreased with REM time and was higher only for REM sleep awakenings is consistent with two explanatory REM sleep processes: REM sleep consolidation serving emotional downregulation and REM sleep inertia. © 2015 Associated Professional Sleep Societies, LLC.

  19. CONTROL OF SLEEP AND WAKEFULNESS

    PubMed Central

    Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.

    2013-01-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426

  20. Effect of oxcarbazepine on sleep architecture.

    PubMed

    Ayala-Guerrero, Fructuoso; Mexicano, Graciela; González, Valentín; Hernandez, Mario

    2009-07-01

    The most common side effects following administration of antiepileptic drugs involve alterations in sleep architecture and varying degrees of daytime sleepiness. Oxcarbazepine is a drug that is approved as monotherapy for the treatment of partial seizures and generalized tonic-clonic seizures. However, there is no information about its effects on sleep pattern organization; therefore, the objective of this work was to analyze such effects. Animals (Wistar rats) exhibited three different behavioral and electrophysiological states of vigilance: wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. Oral treatment with oxcarbazepine (100 mg/kg) produced an increment in total sleep time throughout the recording period. This increment involved both SWS and REM sleep. Mean duration of the REM sleep phase was not affected. In contrast, the frequency of this sleep phase increased significantly across the 10-hour period. REM sleep latency shortened significantly. Results obtained in this work indicate that oxcarbazepine's acute effects point to hypnotic properties.

  1. REM Sleep Behavior Disorder and Cognitive Impairment in Parkinson's Disease.

    PubMed

    Jozwiak, Natalia; Postuma, Ronald B; Montplaisir, Jacques; Latreille, Véronique; Panisset, Michel; Chouinard, Sylvain; Bourgouin, Pierre-Alexandre; Gagnon, Jean-François

    2017-08-01

    REM sleep behavior disorder (RBD) is a parasomnia affecting 33% to 46% of patients with Parkinson's disease (PD). The existence of a unique and specific impaired cognitive profile in PD patients with RBD is still controversial. We extensively assessed cognitive functions to identify whether RBD is associated with more severe cognitive deficits in nondemented patients with PD. One hundred sixty-two participants, including 53 PD patients with RBD, 40 PD patients without RBD, and 69 healthy subjects, underwent polysomnography, a neurological assessment and an extensive neuropsychological exam to assess attention, executive functions, episodic learning and memory, visuospatial abilities, and language. PD patients with RBD had poorer and clinically impaired performance in several cognitive tests compared to PD patients without RBD and healthy subjects. These two latter groups were similar on all cognitive measures. Mild cognitive impairment (MCI) diagnosis frequency was almost threefold higher in PD patients with RBD compared to PD patients without RBD (66% vs. 23%, p < .001). Moreover, subjective cognitive decline was reported in 89% of PD patients with RBD compared to 58% of PD patients without RBD (p = .024). RBD in PD is associated with a more impaired cognitive profile and higher MCI diagnosis frequency, suggesting more severe and widespread neurodegeneration. This patient subgroup and their caregivers should receive targeted medical attention to better detect and monitor impairment and to enable the development of management interventions for cognitive decline and its consequences. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. Association between REM sleep behaviour disorder and impulse control disorder in patients with Parkinson's disease.

    PubMed

    Bellosta Diago, E; Lopez Del Val, L J; Santos Lasaosa, S; López Garcia, E; Viloria Alebesque, A

    2017-10-01

    The relationship between impulse control disorder (ICD) and REM sleep behaviour disorder (RBD) has not yet been clarified, and the literature reports contradictory results. Our purpose is to analyse the association between these 2 disorders and their presence in patients under dopaminergic treatment. A total of 73 patients diagnosed with Parkinson's disease and treated with a single dopamine agonist were included in the study after undergoing clinical assessment and completing the single-question screen for REM sleep behaviour disorder and the short version of the questionnaire for impulsive-compulsive behaviours in Parkinson's disease. Mean age was 68.88 ± 7.758 years. Twenty-six patients (35.6%) were classified as probable-RBD. This group showed a significant association with ICD (P=.001) and had a higher prevalence of non-tremor akinetic rigid syndrome and longer duration of treatment with levodopa and dopamine agonists than the group without probable-RBD. We found a significant correlation between the use of oral dopamine agonists and ICD. Likewise, patients treated with oral dopamine agonists demonstrated a greater tendency toward presenting probable-RBD than patients taking dopamine agonists by other routes; the difference was non-significant. The present study confirms the association between RBD and a higher risk of developing symptoms of ICD in Parkinson's disease. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Neuropeptide glutamic acid-isoleucine (NEI)-induced paradoxical sleep in rats.

    PubMed

    Fujimoto, Moe; Fukuda, Satoru; Sakamoto, Hidetoshi; Takata, Junko; Sawamura, Shigehito

    2017-01-01

    Neuropeptideglutamic acid-isoleucine (NEI) as well as melanin concentrating hormone (MCH) is cleaved from the 165 amino acid protein, prepro-melanin concentrating hormone (prepro-MCH). Among many physiological roles of MCH, we demonstrated that intracerebroventricular (icv) injection of MCH induced increases in REM sleep episodes as well as in non REM sleep episodes. However, there are no studies on the effect of NEI on the sleep-wake cycle. As for the sites of action of MCH for induction of REM sleep, the ventrolateral periaqueductal gray (vlPAG) has been reported to be one of its site of action. Although MCH neurons contain NEI, GABA, MCH, and other neuropeptides, we do not know which transmitter(s) might induce REM sleep by acting on the vlPAG. Thus, we first examined the effect of icv injection of NEI on the sleep-wake cycle, and investigated how microinjection of either NEI, MCH, or GABA into the vlPAG affected REM sleep in rats. Icv injection of NEI (0.61μg/5μl: n=7) significantly increased the time spent in REM episodes compared to control (saline: 5μl; n=6). Microinjection of either NEI (61ng/0.2μl: n=7), MCH (100ng/0.2μl: n=6) or GABA (250mM/0.2μl: n=7) into the vlPAG significantly increased the time spent in REM episodes and the AUC. Precise hourly analysis of REM sleep also revealed that after those microinjections, NEI and MCH increased REM episodes at the latter phase, compared to GABA which increased REM episodes at the earlier phase. This result suggests that NEI and MCH may induce sustained REM sleep, while GABA may initiate REM sleep. In conclusion, our findings demonstrate that NEI, a cleaved peptide from the same precursor, prepro-MCH, as MCH, induce REM sleep at least in part through acting on the vlPAG. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Dynamics of Sleep Stage Transitions in Health and Disease

    NASA Astrophysics Data System (ADS)

    Kishi, Akifumi; Struzik, Zbigniew R.; Natelson, Benjamin H.; Togo, Fumiharu; Yamamoto, Yoshiharu

    2007-07-01

    Sleep dynamics emerges from complex interactions between neuronal populations in many brain regions. Annotated sleep stages from electroencephalography (EEG) recordings could potentially provide a non-invasive way to obtain valuable insights into the mechanisms of these interactions, and ultimately into the very nature of sleep regulation. However, to date, sleep stage analysis has been restricted, only very recently expanding the scope of the traditional descriptive statistics to more dynamical concepts of the duration of and transitions between vigilance states and temporal evaluation of transition probabilities among different stages. Physiological and/or pathological implications of the dynamics of sleep stage transitions have, to date, not been investigated. Here, we study detailed duration and transition statistics among sleep stages in healthy humans and patients with chronic fatigue syndrome, known to be associated with disturbed sleep. We find that the durations of waking and non-REM sleep, in particular deep sleep (Stages III and IV), during the nighttime, follow a power-law probability distribution function, while REM sleep durations follow an exponential function, suggestive of complex underlying mechanisms governing the onset of light sleep. We also find a substantial number of REM to non-REM transitions in humans, while this transition is reported to be virtually non-existent in rats. Interestingly, the probability of this REM to non-REM transition is significantly lower in the patients than in controls, resulting in a significantly greater REM to awake, together with Stage I to awake, transition probability. This might potentially account for the reported poor sleep quality in the patients because the normal continuation of sleep after either the lightest or REM sleep is disrupted. We conclude that the dynamical transition analysis of sleep stages is useful for elucidating yet-to-be-determined human sleep regulation mechanisms with a

  5. Auditory Responses and Stimulus-Specific Adaptation in Rat Auditory Cortex are Preserved Across NREM and REM Sleep

    PubMed Central

    Nir, Yuval; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Banks, Matthew I.; Tononi, Giulio

    2015-01-01

    Sleep entails a disconnection from the external environment. By and large, sensory stimuli do not trigger behavioral responses and are not consciously perceived as they usually are in wakefulness. Traditionally, sleep disconnection was ascribed to a thalamic “gate,” which would prevent signal propagation along ascending sensory pathways to primary cortical areas. Here, we compared single-unit and LFP responses in core auditory cortex as freely moving rats spontaneously switched between wakefulness and sleep states. Despite robust differences in baseline neuronal activity, both the selectivity and the magnitude of auditory-evoked responses were comparable across wakefulness, Nonrapid eye movement (NREM) and rapid eye movement (REM) sleep (pairwise differences <8% between states). The processing of deviant tones was also compared in sleep and wakefulness using an oddball paradigm. Robust stimulus-specific adaptation (SSA) was observed following the onset of repetitive tones, and the strength of SSA effects (13–20%) was comparable across vigilance states. Thus, responses in core auditory cortex are preserved across sleep states, suggesting that evoked activity in primary sensory cortices is driven by external physical stimuli with little modulation by vigilance state. We suggest that sensory disconnection during sleep occurs at a stage later than primary sensory areas. PMID:24323498

  6. Best Practice Guide for the Treatment of REM Sleep Behavior Disorder (RBD)

    PubMed Central

    Aurora, R. Nisha; Zak, Rochelle S.; Maganti, Rama K.; Auerbach, Sanford H.; Casey, Kenneth R.; Chowdhuri, Susmita; Karippot, Anoop; Ramar, Kannan; Kristo, David A.; Morgenthaler, Timothy I.

    2010-01-01

    Summary of Recommendations: Modifying the sleep environment is recommended for the treatment of patients with RBD who have sleep-related injury. Level A Clonazepam is suggested for the treatment of RBD but should be used with caution in patients with dementia, gait disorders, or concomitant OSA. Its use should be monitored carefully over time as RBD appears to be a precursor to neurodegenerative disorders with dementia in some patients. Level B Clonazepam is suggested to decrease the occurrence of sleep-related injury caused by RBD in patients for whom pharmacologic therapy is deemed necessary. It should be used in caution in patients with dementia, gait disorders, or concomitant OSA, and its use should be monitored carefully over time. Level B Melatonin is suggested for the treatment of RBD with the advantage that there are few side effects. Level B Pramipexole may be considered to treat RBD, but efficacy studies have shown contradictory results. There is little evidence to support the use of paroxetine or L-DOPA to treat RBD, and some studies have suggested that these drugs may actually induce or exacerbate RBD. There are limited data regarding the efficacy of acetylcholinesterase inhibitors, but they may be considered to treat RBD in patients with a concomitant synucleinopathy. Level C The following medications may be considered for treatment of RBD, but evidence is very limited with only a few subjects having been studied for each medication: zopiclone, benzodiazepines other than clonazepam, Yi-Gan San, desipramine, clozapine, carbamazepine, and sodium oxybate. Level C Citation: Aurora RN; Zak RS; Maganti RK; Auerbach SH; Casey KR; Chowdhuri S; Karippot A; Ramar K; Kristo DA; Morgenthaler TI. Best practice guide for the treatment of REM sleep behavior disorder (RBD). J Clin Sleep Med 2010;6(1):85-95. PMID:20191945

  7. Effect of sleep stage on breathing in children with central hypoventilation.

    PubMed

    Huang, Jingtao; Colrain, Ian M; Panitch, Howard B; Tapia, Ignacio E; Schwartz, Michael S; Samuel, John; Pepe, Michelle; Bandla, Preetam; Bradford, Ruth; Mosse, Yael P; Maris, John M; Marcus, Carole L

    2008-07-01

    The early literature suggests that hypoventilation in infants with congenital central hypoventilation syndrome (CHS) is less severe during rapid eye movement (REM) than during non-REM (NREM) sleep. However, this supposition has not been rigorously tested, and subjects older than infancy have not been studied. Given the differences in anatomy, physiology, and REM sleep distribution between infants and older children, and the reduced number of limb movements during REM sleep, we hypothesized that older subjects with CHS would have more severe hypoventilation during REM than NREM sleep. Nine subjects with CHS, aged (mean +/- SD) 13 +/- 7 yr, were studied. Spontaneous ventilation was evaluated by briefly disconnecting the ventilator under controlled circumstances. Arousal was common, occurring in 46% of REM vs. 38% of NREM trials [not significant (NS)]. Central apnea occurred during 31% of REM and 54% of NREM trials (NS). Although minute ventilation declined precipitously during both REM and NREM trials, hypoventilation was less severe during REM (drop in minute ventilation of 65 +/- 23%) than NREM (drop of 87 +/- 16%, P = 0.036). Despite large changes in gas exchange during trials, there was no significant change in heart rate during either REM or NREM sleep. We conclude that older patients with CHS frequently have arousal and central apnea, in addition to hypoventilation, when breathing spontaneously during sleep. The hypoventilation in CHS is more severe during NREM than REM sleep. We speculate that this may be due to increased excitatory inputs to the respiratory system during REM sleep.

  8. Cognitive Neuroscience of Sleep

    PubMed Central

    Poe, Gina R.; Walsh, Christine M.; Bjorness, Theresa E.

    2014-01-01

    Mechanism is at the heart of understanding, and this chapter addresses underlying brain mechanisms and pathways of cognition and the impact of sleep on these processes, especially those serving learning and memory. This chapter reviews the current understanding of the relationship between sleep/waking states and cognition from the perspective afforded by basic neurophysiological investigations. The extensive overlap between sleep mechanisms and the neurophysiology of learning and memory processes provide a foundation for theories of a functional link between the sleep and learning systems. Each of the sleep states, with its attendant alterations in neurophysiology, is associated with facilitation of important functional learning and memory processes. For rapid eye movement (REM) sleep, salient features such as PGO waves, theta synchrony, increased acetylcholine, reduced levels of monoamines and, within the neuron, increased transcription of plasticity-related genes, cumulatively allow for freely occurring bidirectional plasticity (long-term potentiation (LTP) and its reversal, depotentiation). Thus, REM sleep provides a novel neural environment in which the synaptic remodeling essential to learning and cognition can occur, at least within the hippocampal complex. During nonREM sleep Stage 2 spindles, the cessation and subsequent strong bursting of noradrenergic cells and coincident reactivation of hippocampal and cortical targets would also increase synaptic plasticity, allowing targeted bidirectional plasticity in the neocortex as well. In delta nonREM sleep, orderly neuronal reactivation events in phase with slow wave delta activity, together with high protein synthesis levels, would facilitate the events that convert early LTP to long lasting LTP. Conversely, delta sleep does not activate immediate early genes associated with de novo LTP. This nonREM sleep-unique genetic environment combined with low acetylcholine levels may serve to reduce the strength of

  9. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep.

    PubMed

    Vanini, Giancarlo; Wathen, Bradley L; Lydic, Ralph; Baghdoyan, Helen A

    2011-02-16

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REM(Neo)) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (-42%) and REM(Neo) (-63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared with NREM sleep, GABA levels decreased significantly during REM sleep (-27%) and REM(Neo) (-52%). Comparisons of REM sleep and REM(Neo) revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep.

  10. [The first film presentation of REM sleep behavior disorder precedes its scientific debut by 35 years].

    PubMed

    Janković, Slavko M; Sokić, Dragoslav V; Vojvodić, Nikola M; Ristić, Aleksandar J

    2006-01-01

    The perplexing and tantalizing disease of rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by peculiar, potentially dangerous behavior during REM sleep. It was described both in animals and humans. RBD in mammals was first described by Jouvet and Delorme in 1965, based on an experimental model induced by lesion in pontine region of cats. In 1972, Passouant et al. described sleep with eye movements and persistent tonic muscle activity induced by tricyclic antidepressant medication, and Tachibana et al., in 1975, the preservation of muscle tone during REM sleep in the acute psychosis induced by alcohol and meprobamate abuse. wever, the first formal description of RBD in humans as new parasomnia was made by Schenck et al in 1986. Subsequently, in 1990, the International Classification of Sleep Disorders definitely recognized RBD as new parasomnia. To our knowledge, arts and literature do not mention RBD. Except for the quotation, made by Schenck et al [n 2002, of Don Quixote de la Mancha whose behavior in sleep strongly suggested that Miguel de Servantes actually described RBD, no other artistic work has portrayed this disorder. Only recently we become aware of the cinematic presentation of RBD which by decades precedes the first scientific description. The first presentation of RBD on film was made prior to the era of advanced electroencephalography and polysomnography, and even before the discovery of REM sleep by Aserinsky and Kleitman in 1953. The artistic and intuitive presentation of RBD was produced in Technicolor in a famous film "Cinderella" created by Walt Disney in 1950, some 35 years prior to its original publication in the journal "Sleep". Since there is an earlier version of the film initially produced in 1920, presumably containing this similar scene, we can only speculate that the first cinematic presentation of RBD might precede its scientific debut by 65 years. In a scene in a barn, clumsy and goofy dog Bruno is, as dogs

  11. Rapid eye movement sleep behavior disorder.

    PubMed

    Gugger, James J; Wagner, Mary L

    2007-11-01

    To describe the clinical features of rapid eye movement (REM) sleep behavior disorder (RBD), evaluate treatment options, and discuss management of patients with comorbid diseases. A MEDLINE search (1977-April 2007) using the terms REM sleep behavior disorder, narcolepsy, parkinsonian disorders, levodopa, dopamine agonists, clonazepam, benzodiazepines, and melatonin was used to retrieve relevant articles. The reference sections of all articles and texts were scanned for additional literature. All articles published in English were evaluated. There were no specific criteria for inclusion of articles in this review. RBD is characterized by enactment of dream content resulting from the loss of normal skeletal muscle atonia during REM sleep. RBD occurs mainly in geriatric patients and in patients with neurodegenerative diseases, especially parkinsonian diseases. The presence of idiopathic RBD may be a sign of an underlying parkinsonian syndrome. Development of RBD may be one of the first manifestations of Parkinson's disease or other parkinsonian syndromes. An acute form of RBD can be drug-induced or occur on drug withdrawal. The potential for injury to the patient and his or her bed partner is as high as 96%. Controlled trials are unavailable for most agents used in the treatment of RBD, although clonazepam is an effective first-line agent and can provide rapid and complete symptom remission based on evidence from 3 large case series. Patients who cannot tolerate clonazepam or who have a suboptimal response may benefit from melatonin alone or as an adjunct. Both drugs are generally well tolerated when taken at bedtime. Management of patients with RBD becomes complicated due to the high incidence of neurologic comorbidity. Clonazepam is the treatment of choice for patients with RBD. The drug is efficacious and has a low incidence of adverse effects. Melatonin is a viable second-line or adjunctive treatment.

  12. REM-Enriched Naps Are Associated with Memory Consolidation for Sad Stories and Enhance Mood-Related Reactivity.

    PubMed

    Gilson, Médhi; Deliens, Gaétane; Leproult, Rachel; Bodart, Alice; Nonclercq, Antoine; Ercek, Rudy; Peigneux, Philippe

    2015-12-29

    Emerging evidence suggests that emotion and affect modulate the relation between sleep and cognition. In the present study, we investigated the role of rapid-eye movement (REM) sleep in mood regulation and memory consolidation for sad stories. In a counterbalanced design, participants (n = 24) listened to either a neutral or a sad story during two sessions, spaced one week apart. After listening to the story, half of the participants had a short (45 min) morning nap. The other half had a long (90 min) morning nap, richer in REM and N2 sleep. Story recall, mood evolution and changes in emotional response to the re-exposure to the story were assessed after the nap. Although recall performance was similar for sad and neutral stories irrespective of nap duration, sleep measures were correlated with recall performance in the sad story condition only. After the long nap, REM sleep density positively correlated with retrieval performance, while re-exposure to the sad story led to diminished mood and increased skin conductance levels. Our results suggest that REM sleep may not only be associated with the consolidation of intrinsically sad material, but also enhances mood reactivity, at least on the short term.

  13. REM Theta Activity Enhances Inhibitory Control in Typically Developing Children but not Children with ADHD Symptoms

    PubMed Central

    Cremone, Amanda; Lugo-Candelas, Claudia I.; Harvey, Elizabeth A.; McDermott, Jennifer M.; Spencer, Rebecca M. C.

    2017-01-01

    Sleep disturbances impair cognitive functioning in typically developing populations. Children with attention-deficit/hyperactivity disorder (ADHD), a disorder characterized by impaired inhibitory control and attention, commonly experience sleep disturbances. Whether inhibitory impairments are related to sleep deficits in children with ADHD is unknown. Children with ADHD (n = 18; Mage = 6.70 years) and typically developing controls (n = 15; Mage = 6.73 years) completed a Go/No-Go task to measure inhibitory control and sustained attention before and after polysomnography-monitored overnight sleep. Inhibitory control and sustained attention were improved following overnight sleep in typically developing children. Moreover, morning inhibitory control was positively correlated with rapid eye movement (REM) theta activity in this group. Although REM theta activity was greater in children with ADHD compared to typically developing children, it was functionally insignificant. Neither inhibitory control nor sustained attention were improved following overnight sleep in children with ADHD symptoms, and neither of these behaviors was associated with REM theta activity in this group. Taken together, these results indicate that elevated REM theta activity may be functionally related to ADHD symptomology, possibly reflecting delayed cortical maturation. PMID:28246970

  14. Slow eye movements distribution during nocturnal sleep.

    PubMed

    Pizza, Fabio; Fabbri, Margherita; Magosso, Elisa; Ursino, Mauro; Provini, Federica; Ferri, Raffaele; Montagna, Pasquale

    2011-08-01

    To assess the distribution across nocturnal sleep of slow eye movements (SEMs). We evaluated SEMs distribution in the different sleep stages, and across sleep cycles in nocturnal recordings of 10 healthy women. Sleep was scored according to standard criteria, and the percentage of time occupied by the SEMs was automatically detected. SEMs were differently represented during sleep stages with the following order: wakefulness after sleep onset (WASO): 61%, NREM sleep stage 1: 54%, REM sleep: 43%, NREM sleep stage 2: 21%, NREM sleep stage 3: 7%, and NREM sleep stage 4: 3% (p<0.0001). There was no difference between phasic and tonic REM sleep. SEMs progressively decreased across the NREM sleep cycles (38%, 15%, 13% during NREM sleep stage 2 in the first three sleep cycles, p=0.006), whereas no significant difference was found for REM, NREM sleep stage 1, slow-wave sleep and WASO. Our findings confirm that SEMs are a phenomenon typical of the sleep onset period, but are also found in REM sleep. The nocturnal evolution of SEMs during NREM sleep stage 2 parallels the homeostatic process underlying slow-wave sleep. SEMs are a marker of sleepiness and, potentially, of sleep homeostasis. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Sleep architecture and sleep apnea in patients with Cushing's disease.

    PubMed

    Shipley, J E; Schteingart, D E; Tandon, R; Starkman, M N

    1992-12-01

    Patients with Cushing's syndrome (CS) frequently have sleep complaints. We evaluated sleep polysomnographically in 22 patients, including 17 with pituitary-ACTH-dependent Cushing's disease (CD) and five with CS from an adrenal tumor. Data were compared to healthy controls of comparable age. Seven patients (32%) demonstrated at least mild sleep apnea (> or = 9.4 events/hour), and four of 22 (18%) had > or = 17.5 events/hour. The apneic CD and CS patients had a trend for a greater complaint of excessive daytime sleepiness. Both apneic and nonapneic groups had considerable snoring and obesity. The electroencephalographic (EEG) sleep of nonapneic patients was compared to that of normal subjects. Nonapneic CD patients differed strikingly from healthy volunteers in sleep continuity and architecture, demonstrating lighter, fragmented sleep. Rapid eye movement (REM) sleep in CD patients bore many similarities to the sleep of patients with major depression, with REM latency being significantly shortened and REM density significantly increased. Continued examination of EEG sleep in CD patients may shed light on similarities in pathophysiology between CD and major depression, disorders which are characterized by both a dysfunction of the hypothalamic-pituitary-adrenal axis and alterations in mood.

  16. Neuroimaging Insights into the Pathophysiology of Sleep Disorders

    PubMed Central

    Desseilles, Martin; Dang-Vu, Thanh; Schabus, Manuel; Sterpenich, Virginie; Maquet, Pierre; Schwartz, Sophie

    2008-01-01

    Neuroimaging methods can be used to investigate whether sleep disorders are associated with specific changes in brain structure or regional activity. However, it is still unclear how these new data might improve our understanding of the pathophysiology underlying adult sleep disorders. Here we review functional brain imaging findings in major intrinsic sleep disorders (i.e., idiopathic insomnia, narcolepsy, and obstructive sleep apnea) and in abnormal motor behavior during sleep (i.e., periodic limb movement disorder and REM sleep behavior disorder). The studies reviewed include neuroanatomical assessments (voxel-based morphometry, magnetic resonance spectroscopy), metabolic/functional investigations (positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging), and ligand marker measurements. Based on the current state of the research, we suggest that brain imaging is a useful approach to assess the structural and functional correlates of sleep impairments as well as better understand the cerebral consequences of various therapeutic approaches. Modern neuroimaging techniques therefore provide a valuable tool to gain insight into possible pathophysiological mechanisms of sleep disorders in adult humans. Citation: Desseilles M; Dang-Vu TD; Schabus M; Sterpenich V; Maquet P; Schwartz S. Neuroimaging insights into the pathophysiology of sleep disorders. SLEEP 2008;31(6):777–794. PMID:18548822

  17. Estradiol and Progesterone Modulate Spontaneous Sleep Patterns and Recovery from Sleep Deprivation in Ovariectomized Rats

    PubMed Central

    Deurveilher, Samüel; Rusak, Benjamin; Semba, Kazue

    2009-01-01

    Study Objectives: Women undergo hormonal changes both naturally during their lives and as a result of sex hormone treatments. The objective of this study was to gain more knowledge about how these hormones affect sleep and responses to sleep loss. Design: Rats were ovariectomized and implanted subcutaneously with Silastic capsules containing oil vehicle, 17β-estradiol and/or progesterone. After 2 weeks, sleep/wake states were recorded during a 24-h baseline period, 6 h of total sleep deprivation induced by gentle handling during the light phase, and an 18-h recovery period. Measurements and Results: At baseline and particularly in the dark phase, ovariectomized rats treated with estradiol or estradiol plus progesterone spent more time awake at the expense of non-rapid eye movement sleep (NREMS) and/or REMS, whereas those given progesterone alone spent less time in REMS than ovariectomized rats receiving no hormones. Following sleep deprivation, all rats showed rebound increases in NREMS and REMS, but the relative increase in REMS was larger in females receiving hormones, especially high estradiol. In contrast, the normal increase in NREMS EEG delta power (an index of NREMS intensity) during recovery was attenuated by all hormone treatments. Conclusions: Estradiol promotes arousal in the active phase in sleep-satiated rats, but after sleep loss, both estradiol and progesterone selectively facilitate REMS rebound while reducing NREMS intensity. These results indicate that effects of ovarian hormones on recovery sleep differ from those on spontaneous sleep. The hormonal modulation of recovery sleep architecture may affect recovery of sleep related functions after sleep loss. Citation: Deurveilher S; Rusak B; Semba K. Estradiol and progesterone modulate spontaneous sleep patterns and recovery from sleep deprivation in ovariectomized rats. SLEEP 2009;32(7):865-877. PMID:19639749

  18. Effects of aniracetam on impaired sleep patterns in stroke-prone spontaneously hypertensive rats.

    PubMed

    Kimura, M; Okano, S; Inoué, S

    2000-06-01

    The aim of the present study was to determine the pattern of sleep disturbances and the effects on sleep of aniracetam, a cognitive enhancer, in stroke-prone spontaneously hypertensive rats (SHRSP). Compared with normotensive control rats, SHRSP exhibited an impaired sleep pattern characterized by suppressed diurnal rapid eye movement (REM) sleep and excessive nocturnal non-REM sleep. At a dose of 30 mg/kg per day p.o., aniracetam increased REM sleep in the light period after administration for 5 consecutive days. Consequently, suppressed REM sleep in SHRSP was restored by repeated treatment with aniracetam. Aniracetam could be useful in improving REM sleep impairment associated with vascular dementia.

  19. Allergic rhinitis affects the duration of rapid eye movement sleep in children with sleep-disordered breathing without sleep apnea.

    PubMed

    Di Francesco, Renata C; Alvarez, Jessica

    2016-05-01

    Our goals were to assess whether allergic rhinitis (AR) is an aggravating factor that affects the severity of sleep apnea in children with tonsils/adenoid hypertrophy (T&A) and to compare polysomnographic data from children with and without AR. This prospective study included 135 children (age range, 3 to 14 years) with sleep-disordered breathing (SDB) resulting from T&A. Children with lung, neurological, or craniofacial problems; septal deviations; previous pharyngeal surgeries; or orthodontic treatments were excluded. All children underwent a clinical evaluation, nasopharyngoscopy or lateral X-ray imaging, sleep study, and hypersensitivity skin-prick test. The mean patient age was 6.44 ± 2.55 years (83 males). AR was present in 42.2% of the children; 40% presented with sleep apnea; and 17.04% had sleep apnea and AR. The percentage of time spent in the rapid eye movement (REM) sleep stage was lower among children with AR without sleep apnea (p = 0.028); however, the percentage of REM sleep was not significantly different among children with apnea (p = 0.2922). No difference in the apnea-hypopnea index (AHI) was observed between the children with (AHI = 2.79 events/hour) and without AR (3.75 events/hour, p = 0.4427). A multivariate analysis showed that nasal congestion was an important factor that can affect the duration of the REM sleep stage. AR affects REM sleep in children with SDB without sleep apnea, and AR is not an aggravating factor regarding the severity of AHI. © 2016 ARS-AAOA, LLC.

  20. Sleep Talking (Somniloquy)

    MedlinePlus

    ... Overview & Facts Symptoms & Risk Factors Diagnosis & Treatment Sleep Terrors Overview & Facts Symptoms & Risk Factors Diagnosis & Treatment Sleep ... radius: Email Print Parasomnias Confusional Arousals Sleepwalking Sleep Terrors Sleep Eating Disorder REM Sleep Behavior Disorder Sleep ...

  1. Sleep disturbances in the critically ill patients: role of delirium and sedative agents.

    PubMed

    Trompeo, A C; Vidi, Y; Locane, M D; Braghiroli, A; Mascia, L; Bosma, K; Ranieri, V M

    2011-06-01

    Impairment of sleep quality and quantity has been described in critically ill patients. Delirium, an organ dysfunction that affects outcome of the critically ill patients, is characterized by an acute onset of impaired cognitive function, visual hallucinations, delusions, and illusions. These symptoms resemble the hypnagogic hallucinations and wakeful dreams seen in patients with neurological degenerative disorders and suffering of disorders of rapid eye movement (REM) sleep. We assessed the characteristics of sleep disruption in a cohort of surgical critically ill patients examining the hypothesis that severe impairments of rapid eyes movement (REM) sleep are associated to delirium. Surgical patients admitted to the intensive care units of the San G. Battista Hospital (University of Turin) were enrolled. Once weaning was initiated, sleep was recorded for one night utilizing standard polysomnography. Clinical status, laboratory data on admission, co-morbidities and duration of mechanical ventilation were recorded. Patients were a priori classified as having a "severe REM reduction" or "REM reduction" if REM was higher or lower than 6% of the total sleep time (TST), respectively. Occurrence of delirium during intensive care unit (ICU) stay was identified by CAM-ICU twice a day. Multivariate forward stepwise logistic regression analysis was performed with sleep ("severe REM reduction" vs. "REM reduction") as the a priori dependent factor. REM sleep amounted to 44 (16-72) minutes [11 (8-55) % of the TST] in 14 patients ("REM reduction") and to 2.5 (0-36) minutes [1 (0-6) % of the TST] in the remaining 15 patients ("severe REM reduction") (P = 0.0004). SAPS II on admission was higher in " severely REM deprived" then in "REM deprived" patients. Delirium was present in 11 patients (73.3%) of the patients with "severe REM reduction" and lasted for a median of 3 (0-11) days before sleep assessment, while only one patient having "REM reduction" developed delirium that

  2. FOS EXPRESSION IN PONTOMEDULLARY CATECHOLAMINERGIC CELLS FOLLOWING REM SLEEP-LIKE EPISODES ELICITED BY PONTINE CARBACHOL IN URETHANE-ANESTHETIZED RATS

    PubMed Central

    RUKHADZE, Irma; FENIK, Victor B.; BRANCONI, Jennifer L.; KUBIN, Leszek

    2008-01-01

    Pontine noradrenergic neurons of the locus coeruleus (LC) and sub-coeruleus (SubC) region cease firing during rapid eye movement sleep (REMS). This plays a permissive role in the generation of REMS and may contribute to state-dependent modulation of transmission in the central nervous system. Whether all pontomedullary catecholaminergic neurons, including those in the A1/C1, A2/C2 and A7 groups, have REMS-related suppression of activity has not been tested. We used Fos protein expression as an indirect marker of the level of neuronal activity and linear regression analysis to determine whether pontomedullary cells identified by tyrosine hydroxylase (TH) immunohistochemistry have reduced Fos expression following REMS-like state induced by pontine microinjections of a cholinergic agonist, carbachol in urethane-anesthetized rats. The percentage of Fos-positive TH cells was negatively correlated with the cumulative duration of REMS-like episodes induced during 140 min prior to brain harvesting in the A7 and rostral A5 groups bilaterally (p<0.01 for both), and in SubC neurons on the side opposite to carbachol injection (p<0.05). Dorsal medullary A2/C2 neurons did not exhibit such correlation, but their Fos expression (and that in A7, rostral A5 and SubC neurons) was positively correlated with the duration of the interval between the last REMS-like episode and the time of sacrifice (p<0.05). In contrast, neither of these correlations was significant for A1/C1 or caudal A5 neurons. These findings suggest that, similar to the prototypic LC neurons, neurons of the A7, rostral A5 and A2/C2 groups have reduced or abolished activity during REMS, whereas A1/C1 and caudal A5 neurons do not have this feature. The reduced during REMS activity in A2/C2, A5 and A7 neurons, and the associated decrements in norepinephrine release, may cause state-dependent modulation of transmission in brain somato- and viscerosensory, somatomotor, and cardiorespiratory pathways. PMID:18155849

  3. Critical role of CA1 muscarinic receptors on memory acquisition deficit induced by total (TSD) and REM sleep deprivation (RSD).

    PubMed

    Javad-Moosavi, Bibi-Zahra; Vaezi, Gholamhassan; Nasehi, Mohammad; Haeri-Rouhani, Seyed-Ali; Zarrindast, Mohammad-Reza

    2017-10-03

    Despite different theories regarding sleep physiological function, an overall census indicates that sleep is useful for neural plasticity which eventually strengthens cognition and brain performance. Different studies show that sleep deprivation (SD) leads to impaired learning and hippocampus dependent memory. According to some studies, cholinergic system plays an important role in sleep (particularly REM sleep), learning, memory, and its retrieval. So this study has been designed to investigate the effect of CA1 Cholinergic Muscarinic Receptors on memory acquisition deficit induced by total sleep deprivation (TSD) and REM sleep deprivation (RSD). A modified water box (locomotor activity may be provide a limiting factor in this method of SD) or multiple platforms were used for induction of TSD or RSD, respectively. Inhibitory passive avoidance apparatus has been used to determine the effects of SD and its changes by physostigmine (as cholinesterase inhibitor) or scopolamine (muscarinic receptor antagonist) on memory formation. Because locomotor activity and pain perception induce critical roles in passive avoidance memory formation, we also measured these factors by open field and hot-plate instruments, respectively. The results showed that TSD and RSD for 24 hours impaired memory formation but they did not alter locomotor activity. TSD also induced analgesia effect, but RSD did not alter it. Intra-CA1 injection of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) did not alter memory acquisition in the sham-TSD or sham-RSD, by themselves. Moreover, intra-CA1 injection of sub-threshold dose of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) could restore the memory acquisition deficit induced by RSD, while scopolamine could restore TSD-induced amnesia. Both drugs reversed analgesia induced by TSD. None of previous interventions altered locomotor activity. According to this study, CA1 cholinergic muscarinic receptors play an important role in

  4. The emotional brain and sleep: an intimate relationship.

    PubMed

    Vandekerckhove, Marie; Cluydts, Raymond

    2010-08-01

    Research findings confirm our own experiences in life where daytime events and especially emotionally stressful events have an impact on sleep quality and well-being. Obviously, daytime emotional stress may have a differentiated effect on sleep by influencing sleep physiology and dream patterns, dream content and the emotion within a dream, although its exact role is still unclear. Other effects that have been found are the exaggerated startle response, decreased dream recall and elevated awakening thresholds from rapid eye movement (REM)-sleep, increased or decreased latency to REM-sleep, increased REM-density, REM-sleep duration and the occurrence of arousals in sleep as a marker of sleep disruption. However, not only do daytime events affect sleep, also the quality and amount of sleep influences the way we react to these events and may be an important determinant in general well-being. Sleep seems restorative in daily functioning, whereas deprivation of sleep makes us more sensitive to emotional and stressful stimuli and events in particular. The way sleep impacts next day mood/emotion is thought to be affected particularly via REM-sleep, where we observe a hyperlimbic and hypoactive dorsolateral prefrontal functioning in combination with a normal functioning of the medial prefrontal cortex, probably adaptive in coping with the continuous stream of emotional events we experience. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Retinal nerve fiber layer thinning: a window into rapid eye movement sleep behavior disorders in Parkinson's disease.

    PubMed

    Yang, Zi-Jiao; Wei, Jing; Mao, Cheng-Jie; Zhang, Jin-Ru; Chen, Jing; Ji, Xiao-Yan; Liu, Jun-Yi; Shen, Yun; Xiong, Kang-Ping; Huang, Jun-Ying; Yang, Ya-Ping; Liu, Chun-Feng

    2016-12-01

    Retinal nerve fiber layer (RNFL) thinning occurs in Parkinson's disease (PD) and other neurodegenerative diseases. Idiopathic RBD (iRBD) is a well-established prodromal hallmark of synucleinopathies and occurs secondary to many neurodegenerative diseases, including PD. The aim of this study is to determine whether or not retinal structures are altered with the onset of rapid eye movement (REM) sleep behavior disorders (RBD). In all, a total of 63 patients with PD, 14 patients with idiopathic RBD, and 26 sex- and age-matched healthy controls were enrolled and underwent optical coherence tomography measurements (HD-OCT (Zeiss) ) for the average and every quadrant of RNFL thickness. The REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ) was used to classify PD patients with clinically probable RBD (PD + pRBD) or without probable RBD (PD - pRBD). Patients with iRBD were identified by polysomnography. For patients with RBD (idiopathic or secondary to PD), we found a significant decrease in RNFL thickness compared with groups without RBD (PD - pRBD and healthy controls) (all p < 0.05). Average RNFL thickness in patients with iRBD is significantly thinner than in healthy controls (p < 0.05). In PD, the average RNFL thickness was dramatically thinner in the PD + pRBD group than the PD - pRBD group (p < 0.005). Compared with healthy controls, RNFL thickness was slightly thinner in the drug-naive PD group but not the PD group with drug treatment. Multiple linear regression analysis showed that RBDSQ score was negatively associated with average and inferior RNFL variation in PD (all p < 0.005). The findings show that RNFL was slightly but significantly thinner in idiopathic RBD. In PD, RNFL thickness may vary depending on the presence of RBD.

  6. Idiopathic Hypersomnia: A Study of 77 Cases

    PubMed Central

    Anderson, Kirstie N.; Pilsworth, Samantha; Sharples, Linda D.; Smith, Ian E.; Shneerson, John M.

    2007-01-01

    Study Objectives: To review the clinical and polysomnographic characteristics of idiopathic hypersomnia as well as the long-term response to treatment. Setting: The Respiratory Support and Sleep Centre at Papworth Hospital, Cambridge, UK. Patients and Design: A large database of more than 6000 patients with sleep disorders was reviewed. A retrospective study of the clinical and polysomnographic characteristics of 77 patients with idiopathic hypersomnia was performed. Comparison with a similar group of patients with narcolepsy was performed. The response to drug treatment was assessed in 61 patients over a mean follow-up of 3.8 years. Measurements and Results: Idiopathic hypersomnia was 60% as prevalent as narcolepsy. Comparison with a similar group of patients with narcolepsy showed that those with idiopathic hypersomnia were more likely to have prolonged unrefreshing daytime naps, a positive family history, increased slow-wave sleep, and a longer sleep latency on the Multiple Sleep Latency Test. The results of the Multiple Sleep Latency Test were not helpful in predicting disease severity or treatment response. The clinical features were heterogeneous and of variable severity. The majority of patients with idiopathic hypersomnia had symptoms that remained stable over many years, but 11% had spontaneous remission, which was never seen in narcolepsy. Two thirds of patients with idiopathic hypersomnolence had a sustained improvement in daytime somnolence with medication, although a third needed high doses or combinations of drugs. Conclusions: Idiopathic hypersomnolence has characteristic clinical and polysomnographic features but the prolonged latency on the Multiple Sleep Latency Test raises doubt about the validity of this test within the current diagnostic criteria. The disease often responds well to treatment and a substantial minority of patients appear to spontaneously improve. Citation: Anderson KN; Pilsworth S; Sharples LD; Smith IE; Shneerson JM. Idiopathic

  7. How Memory Replay in Sleep Boosts Creative Problem-Solving.

    PubMed

    Lewis, Penelope A; Knoblich, Günther; Poe, Gina

    2018-06-01

    Creative thought relies on the reorganisation of existing knowledge. Sleep is known to be important for creative thinking, but there is a debate about which sleep stage is most relevant, and why. We address this issue by proposing that rapid eye movement sleep, or 'REM', and non-REM sleep facilitate creativity in different ways. Memory replay mechanisms in non-REM can abstract rules from corpuses of learned information, while replay in REM may promote novel associations. We propose that the iterative interleaving of REM and non-REM across a night boosts the formation of complex knowledge frameworks, and allows these frameworks to be restructured, thus facilitating creative thought. We outline a hypothetical computational model which will allow explicit testing of these hypotheses. Copyright © 2018. Published by Elsevier Ltd.

  8. Autism and sleep disorders.

    PubMed

    Devnani, Preeti A; Hegde, Anaita U

    2015-01-01

    "Autism Spectrum Disorders" (ASDs) are neurodevelopment disorders and are characterized by persistent impairments in reciprocal social interaction and communication. Sleep problems in ASD, are a prominent feature that have an impact on social interaction, day to day life, academic achievement, and have been correlated with increased maternal stress and parental sleep disruption. Polysomnography studies of ASD children showed most of their abnormalities related to rapid eye movement (REM) sleep which included decreased quantity, increased undifferentiated sleep, immature organization of eye movements into discrete bursts, decreased time in bed, total sleep time, REM sleep latency, and increased proportion of stage 1 sleep. Implementation of nonpharmacotherapeutic measures such as bedtime routines and sleep-wise approach is the mainstay of behavioral management. Treatment strategies along with limited regulated pharmacotherapy can help improve the quality of life in ASD children and have a beneficial impact on the family. PubMed search was performed for English language articles from January 1995 to January 2015. Following key words: Autism spectrum disorder, sleep disorders and autism, REM sleep and autism, cognitive behavioral therapy, sleep-wise approach, melatonin and ASD were used. Only articles reporting primary data relevant to the above questions were included.

  9. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep.

    PubMed

    Montgomery, Sean M; Sirota, Anton; Buzsáki, György

    2008-06-25

    Rapid eye movement (REM) sleep has been considered a paradoxical state because, despite the high behavioral threshold to arousing perturbations, gross physiological patterns in the forebrain resemble those of waking states. To understand how intrahippocampal networks interact during REM sleep, we used 96 site silicon probes to record from different hippocampal subregions and compared the patterns of activity during waking exploration and REM sleep. Dentate/CA3 theta and gamma synchrony was significantly higher during REM sleep compared with active waking. In contrast, gamma power in CA1 and CA3-CA1 gamma coherence showed significant decreases in REM sleep. Changes in unit firing rhythmicity and unit-field coherence specified the local generation of these patterns. Although these patterns of hippocampal network coordination characterized the more common tonic periods of REM sleep (approximately 95% of total REM), we also detected large phasic bursts of local field potential power in the dentate molecular layer that were accompanied by transient increases in the firing of dentate and CA1 neurons. In contrast to tonic REM periods, phasic REM epochs were characterized by higher theta and gamma synchrony among the dentate, CA3, and CA1 regions. These data suggest enhanced dentate processing, but limited CA3-CA1 coordination during tonic REM sleep. In contrast, phasic bursts of activity during REM sleep may provide windows of opportunity to synchronize the hippocampal trisynaptic loop and increase output to cortical targets. We hypothesize that tonic REM sleep may support off-line mnemonic processing, whereas phasic bursts of activity during REM may promote memory consolidation.

  10. Forward-genetics analysis of sleep in randomly mutagenized mice.

    PubMed

    Funato, Hiromasa; Miyoshi, Chika; Fujiyama, Tomoyuki; Kanda, Takeshi; Sato, Makito; Wang, Zhiqiang; Ma, Jing; Nakane, Shin; Tomita, Jun; Ikkyu, Aya; Kakizaki, Miyo; Hotta-Hirashima, Noriko; Kanno, Satomi; Komiya, Haruna; Asano, Fuyuki; Honda, Takato; Kim, Staci J; Harano, Kanako; Muramoto, Hiroki; Yonezawa, Toshiya; Mizuno, Seiya; Miyazaki, Shinichi; Connor, Linzi; Kumar, Vivek; Miura, Ikuo; Suzuki, Tomohiro; Watanabe, Atsushi; Abe, Manabu; Sugiyama, Fumihiro; Takahashi, Satoru; Sakimura, Kenji; Hayashi, Yu; Liu, Qinghua; Kume, Kazuhiko; Wakana, Shigeharu; Takahashi, Joseph S; Yanagisawa, Masashi

    2016-11-17

    Sleep is conserved from invertebrates to vertebrates, and is tightly regulated in a homeostatic manner. The molecular and cellular mechanisms that determine the amount of rapid eye movement sleep (REMS) and non-REMS (NREMS) remain unknown. Here we identify two dominant mutations that affect sleep and wakefulness by using an electroencephalogram/electromyogram-based screen of randomly mutagenized mice. A splicing mutation in the Sik3 protein kinase gene causes a profound decrease in total wake time, owing to an increase in inherent sleep need. Sleep deprivation affects phosphorylation of regulatory sites on the kinase, suggesting a role for SIK3 in the homeostatic regulation of sleep amount. Sik3 orthologues also regulate sleep in fruitflies and roundworms. A missense, gain-of-function mutation in the sodium leak channel NALCN reduces the total amount and episode duration of REMS, apparently by increasing the excitability of REMS-inhibiting neurons. Our results substantiate the use of a forward-genetics approach for studying sleep behaviours in mice, and demonstrate the role of SIK3 and NALCN in regulating the amount of NREMS and REMS, respectively.

  11. SNCA 3'UTR genetic variants in patients with Parkinson's disease and REM sleep behavior disorder.

    PubMed

    Toffoli, M; Dreussi, E; Cecchin, E; Valente, M; Sanvilli, N; Montico, M; Gagno, S; Garziera, M; Polano, M; Savarese, M; Calandra-Buonaura, G; Placidi, F; Terzaghi, M; Toffoli, G; Gigli, G L

    2017-07-01

    REM sleep behavior disorder (RBD) is an early marker of Parkinson's disease (PD); however, it is still unclear which patients with RBD will eventually develop PD. Single nucleotide polymorphisms (SNPs) in the 3'untranslated region (3'UTR) of alpha-synuclein (SNCA) have been associated with PD, but at present, no data is available about RBD. The 3'UTR hosts regulatory regions involved in gene expression control, such as microRNA binding sites. The aim of this study was to determine RBD specific genetic features associated to an increased risk of progression to PD, by sequencing of the SNCA-3'UTR in patients with "idiopathic" RBD (iRBD) and in patients with PD. We recruited 113 consecutive patients with a diagnosis of iRBD (56 patients) or PD (with or without RBD, 57 patients). Sequencing of SNCA-3'UTR was performed on genomic DNA extracted from peripheral blood samples. Bioinformatic analyses were carried out to predict the potential effect of the identified genetic variants on microRNA binding. We found three SNCA-3'UTR SNPs (rs356165, rs3857053, rs1045722) to be more frequent in PD patients than in iRBD patients (p = 0.014, 0.008, and 0.008, respectively). Four new or previously reported but not annotated specific genetic variants (KP876057, KP876056, NM_000345.3:c*860T>A, NM_000345.3:c*2320A>T) have been observed in the RBD population. The in silico approach highlighted that these variants could affect microRNA-mediated gene expression control. Our data show specific SNPs in the SNCA-3'UTR that may bear a risk for RBD to be associated with PD. Moreover, new genetic variants were identified in patients with iRBD.

  12. How does dementia with Lewy bodies start? prodromal cognitive changes in REM sleep behavior disorder.

    PubMed

    Génier Marchand, Daphné; Postuma, Ronald B; Escudier, Frédérique; De Roy, Jessie; Pelletier, Amélie; Montplaisir, Jacques; Gagnon, Jean-François

    2018-04-17

    We describe the progression of cognitive decline and identify the predictive values of cognitive tests in three groups of REM sleep behavior disorder (RBD) patients classified at their last follow-up as having Parkinson's disease (PD), dementia with Lewy bodies (DLB), or still-idiopathic. Patients (n = 109) underwent polysomnographic, neurological, and neuropsychological assessments. We used linear mixed-model analyses to compare the progression of cognitive test performance between the three groups over a 3-year prodromal period, and performed linear regressions for a 6-year prodromal period. We compared the proportions of patients with clinically impaired performance (z scores < -1.5). DLB patients were pair-matched according to age, sex, and education to healthy controls (2:1 ratio), and receiver operating characteristic curves were performed to identify the psychometric properties of cognitive tests to predict dementia. At follow-up, 38 patients (35%) developed a neurodegenerative disorder: 20 had PD and 18 DLB. Cognitive performance changes over time were strongly associated with later development of dementia. Clear deficits in attention and executive functions were observed 6 years before diagnosis. Verbal episodic learning and memory deficits started later, deviating from normal approximately 5 to 6 years and becoming clinically impaired at 1 to 2 years before diagnosis. Visuospatial abilities progressed variably, with inconsistent prodromal latencies. The Trail Making Test (part B), Verbal Fluency (semantic), and Rey Auditory-Verbal Learning Test (total, immediate, and delayed recalls) were the best predictors for dementia (area under the curve = 0.90-0.97). Prodromal DLB is detectible up to 6 years before onset. For clinical utility, the Trail Making Test (part B) best detects early prodromal dementia stages, whereas Verbal Fluency (semantic) and verbal episodic learning tests are best for monitoring changes over time. Ann Neurol 2018. © 2018

  13. Rapid Eye Movement Sleep in Relation to Overweight in Children and Adolescents

    PubMed Central

    Liu, Xianchen; Forbes, Erika E.; Ryan, Neal D.; Rofey, Dana; Hannon, Tamara S.; Dahl, Ronald E.

    2009-01-01

    Context Short sleep duration is associated with obesity, but few studies have examined the relationship between obesity and specific physiological stages of sleep. Objective To examine specific sleep stages, including rapid eye movement (REM) sleep and stages 1 through 4 of non-REM sleep, in relation to overweight in children and adolescents. Design, Setting, and Participants A total of 335 children and adolescents (55.2% male; aged 7-17 years) underwent 3 consecutive nights of standard polysomnography and weight and height assessments as part of a study on the development of internalizing disorders (depression and anxiety). Main Outcome Measures Body mass index (calculated as weight in kilograms divided by height in meters squared) z score and weight status (normal, at risk for overweight, overweight) according to the body mass index percentile for age and sex. Results The body mass index z score was significantly related to total sleep time (β=-0.174), sleep efficiency (β=-0.027), and REM density (β=-0.256). Compared with normal-weight children, overweight children slept about 22 minutes less and had lower sleep efficiency, shorter REM sleep, lower REM activity and density, and longer latency to the first REM period. After adjustment for demographics, pubertal status, and psychiatric diagnosis, 1 hour less of total sleep was associated with approximately 2-fold increased odds of overweight (odds ratio=1.85), 1 hour less of REM sleep was associated with about 3-fold increased odds (odds ratio=2.91), and REM density and activity below the median increased the odds of overweight by 2-fold (odds ratio=2.18) and 3-fold (odds ratio=3.32), respectively. Conclusions Our results confirm previous epidemiological observations that short sleep time is associated with overweight in children and adolescents. A core aspect of the association between short sleep duration and overweight may be attributed to reduced REM sleep. Further studies are needed to investigate possible

  14. REM desensitization as a new therapeutic method for post-traumatic stress disorder: a randomized controlled trial.

    PubMed

    Ahmadi, Khodabakhsh; Hazrati, Majid; Ahmadizadeh, Mohammadjavad; Noohi, Sima

    2015-04-01

    to evaluate potential efficacy of a new therapeutic approach in posttraumatic stress disorder in comparison with eye movement desensitization and reprocessing (EMDR), a standard treatment approach and controls. the study was designed using a randomized controlled trial methodology. Participants were recruited from military servicemen aged between 25 to 50 years who were admitting hospitals of Bushehr, Iran, with the final diagnosis of PTSD. Finally 33 male patients were devided into three subgroups: G1: EMDR; G2: REM Desensitization; and group 3: controls who received no therapy. Mississippi Scale for Posttraumatic Stress Disorder, Pittsburgh Sleep Quality Index (PSQI) and a 37 item death anxiety questionnaire were used for measures. multiple comparisons showed that intrusive thoughts were significantly more likely to improve with REM Desensitization versus EMDR (P=0.03), while depression was more responsive to EMDR (p=0.03). Among the Pittsburgh scale for the quality of sleep items, sleep quality (p=0.02), sleep duration (p=0.001), and total sleep quality score (p=0.002) were significantly more likely to improve in the REM Desensitization group. Change in the absolute death anxiety scores was not different between subgroups excepting EMDR versus control group (p=0.05). REM, desensitization, the new therapeutic approach to PTSD is a highly effective strategy, even more than EMDR, the standard treatment, in most of the evaluated subjects, with special emphasis on sleep symptoms, and also in the management of intrusive thoughts. Depression is the only factor in which, REM Desensitization was significantly less likely to represent a superior therapeutic effect than EMDR.

  15. Inhibitory and excitatory amino acid neurotransmitters are utilized by the projection from the dorsal deep mesencephalic nucleus to the sublaterodorsal nucleus REM sleep induction zone

    PubMed Central

    Liang, Chang-Lin; Nguyen, Tin Quang; Marks, Gerald A.

    2014-01-01

    The sublaterodorsal nucleus (SLD) in the pons of the rat is a locus supporting short-latency induction of a REM sleep-like state following local application of a GABAA receptor antagonist or kainate, glutamate receptor agonist. One putatively relevant source of these neurotransmitters is from the region of the deep mesencephalic nucleus (DpMe) just ventrolateral to the periaquiductal gray, termed the dorsal DpMe (dDpMe). Here, the amino acid neurotransmitter innervation of SLD from dDpMe was studied utilizing anterograde tract-tracing with biotinylated dextranamine (BDA) and fluorescence immunohistochemistry visualized with laser scanning confocal microscopy. Both markers for inhibitory and excitatory amino acid neurotransmitters were found in varicose axon fibers in SLD originating from dDpMe. Vesicular glutamate transporter2 (VGLUT2) represented the largest number of anterogradely labeled varicosities followed by vesicular GABA transporter (VGAT). Numerous VGAT and VGLUT2 labeled varicosities were observed apposed to dDpMe-labeled axon fibers indicating both excitatory and inhibitory presynaptic, local modulation within the SLD. Some double-labeled BDA/VGAT varicosities were seen apposed to small somata labeled for glutamate consistent with being presynaptic to the phenotype of REM sleep-active SLD neurons. Results found support the current theoretical framework of the interaction of dDpMe and SLD in control of REM sleep, while also indicating operation of mechanisms with a greater level of complexity. PMID:24751569

  16. Polysomnography (Sleep Study)

    MedlinePlus

    ... it's done Polysomnography monitors your sleep stages and cycles to identify if or when your sleep patterns ... You normally go through four to six sleep cycles a night, cycling between NREM and REM sleep ...

  17. Sleep characteristics in the quail Coturnix coturnix.

    PubMed

    Mexicano, Graciela; Montoya-Loaiza, Bibiana; Ayala-Guerrero, Fructuoso

    2014-04-22

    As mammals, birds exhibit two sleep phases, slow wave sleep (SWS) and REM (Rapid Eye Movement) sleep characterized by presenting different electrophysiological patterns of brain activity. During SWS a high amplitude slow wave pattern in brain activity is observed. This activity is substituted by a low amplitude fast frequency pattern during REM sleep. Common quail (Coturnix coturnix) is an animal model that has provided information related to different physiological mechanisms present in man. There are reports related to its electrophysiological brain activity, however the sleep characteristics that have been described are not. The objectives of this study is describing the sleep characteristics throughout the nychthemeral cycle of the common quail and consider this bird species as an avian model to analyze the regulatory mechanisms of sleep. Experiments were carried out in implanted exemplars of C. coturnix. Under general anesthesia induced by ether inhalation, stainless steel electrodes were placed to register brain activity from the anterior and posterior areas during 24 continuous hours throughout the sleep-wake cycle. Ocular and motor activities were visually monitored. Quail showed four electrophysiologically and behaviorally different states of vigilance: wakefulness (53.28%), drowsiness (14.27%), slow wave sleep (30.47%) and REM sleep (1.98%). The animals presented 202 REM sleep episodes throughout the nychthemeral cycle. Sleep distribution was polyphasic; however sleep amount was significantly greater during the period corresponding to the night. The number of nocturnal REM sleep episodes was significantly greater than that of diurnal one. The quail C. coturnix shows a polyphasic distribution of sleep; however the amount of this state of vigilance is significantly greater during the nocturnal period. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Prevalence and Clinical Correlates of a Short Onset REM Period (SOREMP) during Routine PSG

    PubMed Central

    Cairns, Alyssa; Bogan, Richard

    2015-01-01

    Study Objectives: The objectives of this study were to quantify the (1) sensitivity and specificity of nocturnal PSG SOREMP (REM latency ≤ 15 min) for narcolepsy in those being evaluated for hypersomnolence and (2) prevalence and predictors of SOREMP during baseline PSG for patients being evaluated for various sleep disorders. Design: This was a retrospective analysis of a large repository of de-identified PSG and MSLT test results from 2007 to 2013. Setting and Patients: Patient records were retrieved from a repository of studies completed at a variety of sleep laboratories across the USA. Included in the analyses were 79,651 general sleep clinic patients (without an MSLT; 48% male; 72% Caucasian) and an additional 3,059 patients (31.3% male; 72% Caucasian) being evaluated for hypersomnolence (with a consecutive MSLT). Interventions: NA. Measurements and Results: For patients being evaluated for hypersomnolence, the prevalence of PSG SOREMP increased in a dose-response fashion with the number of REM onsets that occurred on a consecutive MSLT (0.5% for no MSLT SOREMPs to > 33.0% for those with 5 MSLT SOREMPs). Overall, having a PSG SOREMP was highly specific (99.5%; 95% CI: 99.1–99.7%) but not sensitive (6.7%; 95% CI: 4.7–9.2%) for narcolepsy. The prevalence of PSG SOREMP for patients in the general sleep clinic sample (i.e., not being evaluated by a consecutive MSLT) was 0.8% and was much higher in those that work night/swing shift. In adjusted models, African American race contributed to the most variance in PSG SOREMP. Conclusions: A short onset rapid eye movement (REM) latency occurs rarely in general sleep clinic samples (< 1.0%), but is highly specific for the diagnosis of narcolepsy. Although rare, the prevalence of the phenomenon is much higher than the estimated prevalence of narcolepsy and may provide a critical opportunity for practitioners to identify narcolepsy in sleep clinic patients. These data also suggest that the utility of polysomnography

  19. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder.

    PubMed

    Wu, Ping; Yu, Huan; Peng, Shichun; Dauvilliers, Yves; Wang, Jian; Ge, Jingjie; Zhang, Huiwei; Eidelberg, David; Ma, Yilong; Zuo, Chuantao

    2014-12-01

    Rapid eye movement sleep behaviour disorder has been evaluated using Parkinson's disease-related metabolic network. It is unknown whether this disorder is itself associated with a unique metabolic network. 18F-fluorodeoxyglucose positron emission tomography was performed in 21 patients (age 65.0±5.6 years) with idiopathic rapid eye movement sleep behaviour disorder and 21 age/gender-matched healthy control subjects (age 62.5±7.5 years) to identify a disease-related pattern and examine its evolution in 21 hemi-parkinsonian patients (age 62.6±5.0 years) and 16 moderate parkinsonian patients (age 56.9±12.2 years). We identified a rapid eye movement sleep behaviour disorder-related metabolic network characterized by increased activity in pons, thalamus, medial frontal and sensorimotor areas, hippocampus, supramarginal and inferior temporal gyri, and posterior cerebellum, with decreased activity in occipital and superior temporal regions. Compared to the healthy control subjects, network expressions were elevated (P<0.0001) in the patients with this disorder and in the parkinsonian cohorts but decreased with disease progression. Parkinson's disease-related network activity was also elevated (P<0.0001) in the patients with rapid eye movement sleep behaviour disorder but lower than in the hemi-parkinsonian cohort. Abnormal metabolic networks may provide markers of idiopathic rapid eye movement sleep behaviour disorder to identify those at higher risk to develop neurodegenerative parkinsonism. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Distribution of MCH-containing fibers in the feline brainstem: Relevance for REM sleep regulation.

    PubMed

    Costa, Alicia; Castro-Zaballa, Santiago; Lagos, Patricia; Chase, Michael H; Torterolo, Pablo

    2018-06-01

    Neurons that utilize melanin-concentrating hormone (MCH) as a neuromodulator are localized in the postero-lateral hypothalamus and incerto-hypothalamic area. These neurons project diffusely throughout the central nervous system and have been implicated in critical physiological processes, such as sleep. Unlike rodents, in the order carnivora as well as in humans, MCH exerts its biological functions through two receptors: MCHR-1 and MCHR-2. Hence, the cat is an optimal animal to model MCHergic functions in humans. In the present study, we examined the distribution of MCH-positive fibers in the brainstem of the cat. MCHergic axons with distinctive varicosities and boutons were heterogeneously distributed, exhibiting different densities in distinct regions of the brainstem. High density of MCHergic fibers was found in the dorsal raphe nucleus, the laterodorsal tegmental nucleus, the periaqueductal gray, the pendunculopontine tegmental nucleus, the locus coeruleus and the prepositus hypoglossi. Because these areas are involved in the control of REM sleep, the present anatomical data support the role of this neuropeptidergic system in the control of this behavioral state. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Effect of levothyroxine on prolonged nocturnal sleep time and excessive daytime somnolence in patients with idiopathic hypersomnia.

    PubMed

    Shinno, Hideto; Ishikawa, Ichiro; Yamanaka, Mami; Usui, Ai; Danjo, Sonoko; Inami, Yasushi; Horiguchi, Jun; Nakamura, Yu

    2011-06-01

    This study aims to examine the effect of levothyroxine, a thyroid hormone, on a prolonged nocturnal sleep and excessive daytime somnolence (EDS) in patients with idiopathic hypersomnia. In a prospective, open-label study, nine patients were enrolled. All subjects met criteria for idiopathic hypersomnia with long sleep time defined by the International Classification of Sleep Disorders, 2nd edition (ICSD-2). Subjects with sleep apnea syndrome, obesity or hypothyroidism were excluded. Sleep architecture and subjective daytime somnolence were estimated by polysomnography (PSG) and Epworth Sleepiness Scale (ESS), respectively. After baseline examinations, levothyroxine (25μg/day) was orally administered every day. Mean total sleep time, ESS score at baseline were compared with those after treatment (2, 4 and 8 weeks). Mean age of participants was 23.8±13.7 years old. At baseline, mean total sleep time (hours) and ESS score were 12.9±0.3 and 17.8±1.4, respectively. Mean total sleep times after treatment were 9.1±0.7 and 8.5±1.0h at 4 and 8 treatment weeks, respectively. Mean ESS scores were 8.8±2.3 and 7.4±2.8 at 4 and 8 treatment weeks, respectively. One patient dropped out at the 2nd week due to poor effect. No adverse effects were noted. After treatment with levothyroxine for over 4 weeks, prolonged sleep time and EDS were improved. Levothyroxine was effective for hypersomnia and well tolerated. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The Role of Mesopontine NGF in Sleep and Wakefulness

    PubMed Central

    Ramos, Oscar V.; Torterolo, Pablo; Lim, Vincent; Chase, Michael H.; Sampogna, Sharon; Yamuy, Jack

    2011-01-01

    The microinjection of nerve growth factor (NGF) into the cat pontine tegmentum rapidly induces rapid eye movement (REM) sleep. To determine if NGF is involved in naturally-occurring REM sleep, we examined whether it is present in mesopontine cholinergic structures that promote the initiation of REM sleep, and whether the blockade of NGF production in these structures suppresses REM sleep. We found that cholinergic neurons in the cat dorsolateral mesopontine tegmentum exhibited NGF-like immunoreactivity. In addition, the microinjection of an oligodeoxyribonucleotide (OD) directed against cat NGF mRNA into this region resulted in a reduction in the time spent in REM sleep in conjunction with an increase in the time spent in wakefulness. Sleep and wakefulness returned to baseline conditions 2 to 5 days after antisense OD administration. The preceding antisense OD-induced effects occurred in conjunction with the suppression of NGF-like immunoreactivity within the site of antisense OD injection. These data support the hypothesis that NGF is involved in the modulation of naturally-occurring sleep and wakefulness. PMID:21840513

  3. Sleep, Memory & Brain Rhythms.

    PubMed

    Watson, Brendon O; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called "sharp-wave ripple" seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep-REM and non-REM, the latter of which has an abundance of ripple electrical activity-might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function.

  4. Automatic sleep classification using a data-driven topic model reveals latent sleep states.

    PubMed

    Koch, Henriette; Christensen, Julie A E; Frandsen, Rune; Zoetmulder, Marielle; Arvastson, Lars; Christensen, Soren R; Jennum, Poul; Sorensen, Helge B D

    2014-09-30

    The golden standard for sleep classification uses manual scoring of polysomnography despite points of criticism such as oversimplification, low inter-rater reliability and the standard being designed on young and healthy subjects. To meet the criticism and reveal the latent sleep states, this study developed a general and automatic sleep classifier using a data-driven approach. Spectral EEG and EOG measures and eye correlation in 1s windows were calculated and each sleep epoch was expressed as a mixture of probabilities of latent sleep states by using the topic model Latent Dirichlet Allocation. Model application was tested on control subjects and patients with periodic leg movements (PLM) representing a non-neurodegenerative group, and patients with idiopathic REM sleep behavior disorder (iRBD) and Parkinson's Disease (PD) representing a neurodegenerative group. The model was optimized using 50 subjects and validated on 76 subjects. The optimized sleep model used six topics, and the topic probabilities changed smoothly during transitions. According to the manual scorings, the model scored an overall subject-specific accuracy of 68.3 ± 7.44 (% μ ± σ) and group specific accuracies of 69.0 ± 4.62 (control), 70.1 ± 5.10 (PLM), 67.2 ± 8.30 (iRBD) and 67.7 ± 9.07 (PD). Statistics of the latent sleep state content showed accordances to the sleep stages defined in the golden standard. However, this study indicates that sleep contains six diverse latent sleep states and that state transitions are continuous processes. The model is generally applicable and may contribute to the research in neurodegenerative diseases and sleep disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Sleep-Dependent Oscillatory Synchronization: A Role in Fear Memory Consolidation.

    PubMed

    Totty, Michael S; Chesney, Logan A; Geist, Phillip A; Datta, Subimal

    2017-01-01

    Sleep plays an important role in memory consolidation through the facilitation of neuronal plasticity; however, how sleep accomplishes this remains to be completely understood. It has previously been demonstrated that neural oscillations are an intrinsic mechanism by which the brain precisely controls neural ensembles. Inter-regional synchronization of these oscillations is also known to facilitate long-range communication and long-term potentiation (LTP). In the present study, we investigated how the characteristic rhythms found in local field potentials (LFPs) during non-REM and REM sleep play a role in emotional memory consolidation. Chronically implanted bipolar electrodes in the lateral amygdala (LA), dorsal and ventral hippocampus (DH, VH), and the infra-limbic (IL), and pre-limbic (PL) prefrontal cortex were used to record LFPs across sleep-wake activity following each day of a Pavlovian cued fear conditioning paradigm. This resulted in three principle findings: (1) theta rhythms during REM sleep are highly synchronized between regions; (2) the extent of inter-regional synchronization during REM and non-REM sleep is altered by FC and EX; (3) the mean phase difference of synchronization between the LA and VH during REM sleep predicts changes in freezing after cued fear extinction. These results both oppose a currently proposed model of sleep-dependent memory consolidation and provide a novel finding which suggests that the role of REM sleep theta rhythms in memory consolidation may rely more on the relative phase-shift between neural oscillations, rather than the extent of phase synchronization.

  6. Mental time travel to the future might be reduced in sleep.

    PubMed

    Speth, Jana; Schloerscheidt, Astrid M; Speth, Clemens

    2017-02-01

    We present a quantitative study of mental time travel to the future in sleep. Three independent, blind judges analysed a total of 563 physiology-monitored mentation reports from sleep onset, REM sleep, non-REM sleep, and waking. The linguistic tool for the mentation report analysis is based on established grammatical and cognitive-semantic theories and has been validated in previous studies. Our data indicate that REM and non-REM sleep must be characterized by a reduction in mental time travel to the future, which would support earlier physiological evidence at the level of brain function. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep

    PubMed Central

    Chen, Michael C.

    2016-01-01

    Abstract Rapid eye movement (REM) sleep is a recurring part of the sleep–wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre‐motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep‐related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy. PMID:27060683

  8. Reverberation, Storage, and Postsynaptic Propagation of Memories during Sleep

    ERIC Educational Resources Information Center

    Ribeiro, Sidarta; Nicolelis, Miguel A. L.

    2004-01-01

    In mammals and birds, long episodes of nondreaming sleep ("slow-wave" sleep, SW) are followed by short episodes of dreaming sleep ("rapid-eye-movement" sleep, REM). Both SW and REM sleep have been shown to be important for the consolidation of newly acquired memories, but the underlying mechanisms remain elusive. Here we review…

  9. Idiopathic hypersomnia: a study of 77 cases.

    PubMed

    Anderson, Kirstie N; Pilsworth, Samantha; Sharples, Linda D; Smith, Ian E; Shneerson, John M

    2007-10-01

    To review the clinical and polysomnographic characteristics of idiopathic hypersomnia as well as the long-term response to treatment. The Respiratory Support and Sleep Centre at Papworth Hospital, Cambridge, UK. A large database of more than 6000 patients with sleep disorders was reviewed. A retrospective study of the clinical and polysomnographic characteristics of 77 patients with idiopathic hypersomnia was performed. Comparison with a similar group of patients with narcolepsy was performed. The response to drug treatment was assessed in 61 patients over a mean follow-up of 3.8 years. Idiopathic hypersomnia was 60% as prevalent as narcolepsy. Comparison with a similar group of patients with narcolepsy showed that those with idiopathic hypersomnia were more likely to have prolonged unrefreshing daytime naps, a positive family history, increased slow-wave sleep, and a longer sleep latency on the Multiple Sleep Latency Test. The results of the Multiple Sleep Latency Test were not helpful in predicting disease severity or treatment response. The clinical features were heterogeneous and of variable severity. The majority of patients with idiopathic hypersomnia had symptoms that remained stable over many years, but 11% had spontaneous remission, which was never seen in narcolepsy. Two thirds of patients with idiopathic hypersomnolence had a sustained improvement in daytime somnolence with medication, although a third needed high doses or combinations of drugs. Idiopathic hypersomnolence has characteristic clinical and polysomnographic features but the prolonged latency on the Multiple Sleep Latency Test raises doubt about the validity of this test within the current diagnostic criteria. The disease often responds well to treatment and a substantial minority of patients appear to spontaneously improve.

  10. Memory Performance After Arousal from Different Sleep Stages

    ERIC Educational Resources Information Center

    Stones, M. J.

    1977-01-01

    Learning material was presented to independent groups of subjects either after arousal from non-Rapid Eye Movement (non-REM) sleep, after arousal from REM sleep, or under conditions of no prior sleep. Measures of immediate and subsequent free recall were taken. (Editor)

  11. Cerebral blood flow in normal and abnormal sleep and dreaming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, J.S.; Ishikawa, Y.; Hata, T.

    Measurements of regional or local cerebral blood flow (CBF) by the xenon-133 inhalation method and stable xenon computerized tomography CBF (CTCBF) method were made during relaxed wakefulness and different stages of REM and non-REM sleep in normal age-matched volunteers, narcoleptics, and sleep apneics. In the awake state, CBF values were reduced in both narcoleptics and sleep apneics in the brainstem and cerebellar regions. During sleep onset, whether REM or stage I-II, CBF values were paradoxically increased in narcoleptics but decreased severely in sleep apneics, while in normal volunteers they became diffusely but more moderately decreased. In REM sleep and dreamingmore » CBF values greatly increased, particularly in right temporo-parietal regions in subjects experiencing both visual and auditory dreaming.« less

  12. Sleep disorders in Parkinson's disease: a narrative review of the literature.

    PubMed

    Raggi, Alberto; Bella, Rita; Pennisi, Giovanni; Neri, Walter; Ferri, Raffaele

    2013-01-01

    Parkinson's disease (PD) is classically considered to be a motor system affliction; however, also non-motor alterations, including sleep disorders, are important features of the disease. The aim of this review is to provide data on sleep disturbances in PD in the following grouping: difficulty initiating sleep, frequent night-time awakening and sleep fragmentation, nocturia, restless legs syndrome/periodic limb movements, sleep breathing disorders, drug induced symptoms, parasomnias associated with rapid eye movements (REM) sleep, sleep attacks, reduced sleep efficiency and excessive daytime sleepiness. Research has characterized some of these disturbances as typical examples of dissociated states of wakefulness and sleep that are admixtures or incomplete declarations of wakefulness, REM sleep, and non-REM (NREM) sleep. Moreover, sleep disorders may precede the typical motor system impairment of PD and their ability to predict disease has important implications for development of neuroprotective treatment; in particular, REM sleep behavior disorder may herald any other clinical manifestation of PD by more than 10 years.

  13. Impaired extinction of fear conditioning after REM deprivation is magnified by rearing in an enriched environment.

    PubMed

    Hunter, Amy Silvestri

    2015-07-01

    Evidence from both human and animal studies indicates that rapid eye movement sleep (REM) is essential for the acquisition and retention of information, particularly of an emotional nature. Learning and memory can also be impacted by manipulation of housing condition such as exposure to an enriched environment (EE). This study investigated the effects of REM deprivation and EE, both separately and combined, on the extinction of conditioned fear in rats. Consistent with prior studies, conditioning was enhanced in EE-reared rats and extinction was impaired in REM deprived rats. In addition, rats exposed to both REM deprivation and EE showed the greatest impairment in extinction, with effects persisting through the first two days of extinction training. This study is the first to explore the combination of REM deprivation and EE and suggests that manipulations that alter sleep, particularly REM, can have persisting deleterious effects on emotional memory processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dissociating the contributions of slow-wave sleep and rapid eye movement sleep to emotional item and source memory.

    PubMed

    Groch, S; Zinke, K; Wilhelm, I; Born, J

    2015-07-01

    Sleep benefits the consolidation of emotional memories, and this influence is commonly attributed to the rapid eye movement (REM) stage of sleep. However, the contributions of sleep stages to memory for an emotional episode may differ for the event per se (i.e., item memory), and the context in which it occurred (source memory). Here, we examined the effects of slow wave sleep (SWS) and REM sleep on the consolidation of emotionally negative and neutral item (picture recognition) and source memory (recall of picture-location and picture-frame color association) in humans. In Study 1, the participants (n=18) learned 48 negative and 48 neutral pictures which were presented at specific locations and preceded by colored frames that had to be associated with the picture. In a within-subject design, learning was either followed by a 3-h early-night SWS-rich or by a late-night REM sleep-rich retention interval, then retrieval was tested. Only after REM-rich sleep, and not after SWS-rich sleep, was there a significant emotional enhancement, i.e., a significantly superior retention of emotional over neutral pictures. On the other hand, after SWS-rich sleep the retention of picture-frame color associations was better than after REM-rich sleep. However, this benefit was observed only for neutral pictures; and it was completely absent for the emotional pictures. To examine whether this absent benefit reflected a suppressive effect of emotionality on associations of minor task relevance, in Study 2 we manipulated the relevance of the picture-frame color association by combining it with information about monetary reward, following otherwise comparable procedures. Here, rewarded picture-frame color associations were equally well retained over SWS-rich early sleep no matter if the frames were associated with emotional or neutral pictures. Results are consistent with the view that REM sleep favors the emotional enhancement of item memory whereas SWS appears to contribute primarily

  15. Sleep, Memory & Brain Rhythms

    PubMed Central

    Watson, Brendon O.; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called “sharp-wave ripple” seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep–REM and non-REM, the latter of which has an abundance of ripple electrical activity–might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function. PMID:26097242

  16. The effect of transdermal nicotine patches on sleep and dreams.

    PubMed

    Page, F; Coleman, G; Conduit, R

    2006-07-30

    This study was undertaken to determine the effect of 24-h transdermal nicotine patches on sleep and dream mentation in 15 smokers aged 20 to 33. Utilising a repeated measures design, it was found that more time awake and more ASDA micro-arousals occurred while wearing the nicotine patch compared to placebo. Also, the percentage of REM sleep decreased, but REM latency and the proportion of time spent in NREM sleep stages did not change significantly. Dream reports containing visual imagery, visual imagery ratings and the number of visualizable nouns were significantly greater from REM compared to Stage 2 awakenings, regardless of patch condition. However, a general interaction effect was observed. Stage 2 dream variables remained equivalent across nicotine and placebo conditions. Within REM sleep, more dream reports containing visual imagery occurred while wearing the nicotine patch, and these were rated as more vivid. The greater frequency of visual imagery reports and higher imagery ratings specifically from REM sleep suggests that previously reported dreaming side effects from 24-h nicotine patches may be specific to REM sleep. Combined with previous animal studies showing that transdermally delivered nicotine blocks PGO activity in REM sleep, the current results do no appear consistent with PGO-based hypotheses of dreaming, such as the Activation-Synthesis (AS) or Activation, Input and Modulation (AIM) models.

  17. Tumor Necrosis Factor Antagonism Normalizes Rapid Eye Movement Sleep in Alcohol Dependence

    PubMed Central

    Irwin, Michael R.; Olmstead, Richard; Valladares, Edwin M.; Breen, Elizabeth Crabb; Ehlers, Cindy L.

    2009-01-01

    Background In alcohol dependence, markers of inflammation are associated with increases in rapid eye movement (REM) sleep, which is thought to be a prognostic indicator of alcohol relapse. This study was undertaken to test whether blockade of biologically active tumor necrosis factor-α (TNF-α) normalizes REM sleep in alcohol-dependent adults. Methods In a randomized, placebo-controlled, double-blind, crossover trial, 18 abstinent alcohol-dependent male adults received a single dose of etanercept (25 mg) versus placebo in a counterbalanced order. Polysomnographic sleep was measured at baseline and for 3 nights after the acute dose of etanercept or placebo. Results Compared with placebo, administration of etanercept produced significant decreases in the amount and percentage of REM sleep. Decreases in REM sleep were robust and approached low levels typically found in age-comparable control subjects. Individual differences in biologically active drug as indexed by circulating levels of soluble tumor necrosis factor receptor II negatively correlated with the percentage of REM sleep. Conclusions Pharmacologic neutralization of TNF-α activity is associated with significant reductions in REM sleep in abstinent alcohol-dependent patients. These data suggest that circulating levels of TNF-α may have a physiologic role in the regulation of REM sleep in humans. PMID:19185287

  18. Circadian rhythms and sleep have additive effects on respiration in the rat

    PubMed Central

    Stephenson, Richard; Liao, Kiong Sen; Hamrahi, Hedieh; Horner, Richard L

    2001-01-01

    We tested two hypotheses: that respiration and metabolism are subject to circadian modulation in wakefulness, non-rapid-eye-movement (NREM) sleep and rapid-eye-movement (REM) sleep; and that the effects of sleep on breathing vary as a function of time of day.Electroencephalogram (EEG), neck electromyogram (EMG) and abdominal body temperature (Tb) were measured by telemetry in six male Sprague-Dawley rats. The EEG and EMG were used to identify sleep-wake states. Ventilation (V̇I) and metabolic rate (V̇CO2) were measured by plethysmography. Recordings were made over 24 h (12:12 h light:dark) when rats were in established states of wakefulness, NREM sleep and REM sleep.Statistically significant circadian rhythms were observed in V̇I and V̇CO2 in each of the wakefulness, NREM sleep and REM sleep states. Amplitudes and phases of the circadian rhythms were similar across sleep-wake states.The circadian rhythm in V̇I was mediated by a circadian rhythm in respiratory frequency (fR). Tidal volume (VT) was unaffected by time of day in all three sleep-wake states.The 24 h mean V̇I was significantly greater during wakefulness (363.5 ± 18.5 ml min−1) than during NREM sleep (284.8 ± 11.1 ml min−1) and REM sleep (276.1 ± 13.9 ml min−1). V̇CO2 and VT each significantly decreased from wakefulness to NREM sleep to REM sleep. fR was significantly lower in NREM sleep than in wakefulness and REM sleep.These data confirm that ventilation and metabolism exhibit circadian rhythms during wakefulness, and NREM and REM sleep, and refute the hypothesis that state-related effects on breathing vary as a function of time of day. We conclude that the effects of circadian rhythms and sleep-wake state on respiration and metabolic rate are additive in the rat. PMID:11579171

  19. Sleep and morningness-eveningness in the 'middle' years of life (20-59 y)

    NASA Technical Reports Server (NTRS)

    Carrier, J.; Monk, T. H.; Buysse, D. J.; Kupfer, D. J.

    1997-01-01

    The following four issues were assessed in a group of 110 adults between the age of 20 and 59y: (1) the effect of age (regarded as a continuous variable) on polysomnographic sleep characteristics, habitual sleep-diary patterns, and subjective sleep quality; (2) the effects of age on morningness-eveningness; (3) the effects of morningness-eveningness on sleep, after controlling for the effects of age; and (4) the role of morningness-eveningness as a mediator of the age and sleep relationship. Increasing age was related to earlier habitual waketime, earlier bedtime, less time in bed and better mood and alertness at waketime. In the laboratory, increasing age was associated with less time asleep, increased number of awakenings, decreased sleep efficiency, lower percentages of slow-wave sleep (SWS) and rapid eye movement (REM) sleep, higher percentages of Stage 1 and 2, shorter REM latency and reduced REM activity and density. Increasing age was also associated with higher morningness scores. After controlling for the effects of age, morningness was associated with earlier waketime, earlier bedtime, less time in bed, better alertness at waketime, less time spent asleep, more wake in the last 2 h of sleep, decreased REM activity, less stage REM (min and percentage), more Stage 1 (min and percentage) and fewer minutes of Stage 2. For one set of variables (night time in bed, waketime, total sleep time, wake in the last 2 h of sleep and minutes of REM and REM activity), morningness-eveningness accounted for about half of the relationship between age and sleep. For another set of variables (bedtime, alertness at waketime, percentages of REM and Stage 1), morningness-eveningness accounted for the entire relationship between age and sleep. In conclusion, age and morningness were both important predictors of the habitual sleep patterns and polysomnographic sleep characteristics of people in the middle years of life (20-59 y).

  20. Sleep stages, memory and learning.

    PubMed Central

    Dotto, L

    1996-01-01

    Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance. Images p1194-a PMID:8612256

  1. Sleepiness in sleepwalking and sleep terrors: a higher sleep pressure?

    PubMed

    Carrillo-Solano, Marisol; Leu-Semenescu, Smaranda; Golmard, Jean-Louis; Groos, Elisabeth; Arnulf, Isabelle

    2016-10-01

    To identify the determinants of excessive daytime sleepiness in adults with sleepwalking or sleep terrors (SW/ST). We collected the charts of all consecutive adult patients admitted from 2012 to 2014 for SW/ST. They had completed the Paris Arousal Disorders Severity Scale and the Epworth Sleepiness Scale, and had undergone one (n = 34) or two consecutive (n = 124) nocturnal videopolysomnographies. The demographic, clinical, and sleep determinants of excessive daytime sleepiness (defined as an Epworth Sleepiness Scale score of greater than 10) were analyzed. Almost half (46.8%) of the 158 adult patients with SW/ST reported excessive daytime sleepiness. They had shorter sleep onset latencies (in night 1 and night 2), shorter REM sleep latencies, longer total sleep time, and higher REM sleep percentages in night 2, but no greater clinical severity of the parasomnia than patients without sleepiness. The level of sleepiness correlated with the same measures (sleep onset latency on both nights, REM sleep onset latency, and total sleep time in night 2), plus the latency to N3. In the regression model, higher sleepiness was determined by shorter sleep onset latency on night 1, lower number of awakenings in N3 on night 1, and higher total sleep time on night 2. Daytime sleepiness in patients with SW/ST is not the consequence of disturbed sleep but is associated with a specific polygraphic phenotype (rapid sleep onset, long sleep time, lower numbers of awakenings on N3) that is suggestive of a higher sleep pressure that may contribute to incomplete arousal from N3. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia.

    PubMed

    Zhang, Hao; Wheat, Heather; Wang, Peter; Jiang, Sha; Baghdoyan, Helen A; Neubig, Richard R; Shi, X Y; Lydic, Ralph

    2016-02-01

    This study tested the hypothesis that Regulators of G protein Signaling (RGS) proteins contribute to the regulation of wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep, and to sleep disruption caused by volatile anesthetics. The three groups used in this study included wild-type (WT; n = 7) mice and knock-in mice that were heterozygous (+/GS; n = 7) or homozygous (GS/GS; n = 7) for an RGS-insensitive allele that causes prolonged Gαi2 signaling. Mice were implanted with electrodes for recording sleep and conditioned for 1 week or more to sleep in the laboratory. Using within and between groups designs, 24-h recordings of wakefulness, NREM sleep, and REM sleep were compared across three interventions: (1) baseline (control) and after 3 h of being anesthetized with (2) isoflurane or (3) sevoflurane. Baseline recordings during the light phase revealed that relative to WT mice, homozygous RGS-insensitive (GS/GS) mice exhibit significantly increased wakefulness and decreased NREM and REM sleep. During the dark phase, these state-specific differences remained significant but reversed direction of change. After cessation of isoflurane and sevoflurane anesthesia there was a long-lasting and significant disruption of sleep and wakefulness. The durations of average episodes of wakefulness, NREM sleep, and REM sleep were significantly altered as a function of genotype and isoflurane and sevoflurane anesthesia. RGS proteins and Gαi2 play a significant role in regulating states of wakefulness, NREM sleep, and REM sleep. Genotype-specific differences demonstrate that RGS proteins modulate sleep disruption caused by isoflurane and sevoflurane anesthesia. The results also support the conclusion that isoflurane and sevoflurane anesthesia do not satisfy the homeostatic drive for sleep. © 2016 Associated Professional Sleep Societies, LLC.

  3. Sleep as a New Target for Improving Outcomes in Idiopathic Pulmonary Fibrosis.

    PubMed

    Mermigkis, Charalampos; Bouloukaki, Izolde; Schiza, Sophia E

    2017-12-01

    Idiopathic pulmonary fibrosis (IPF) is the most common type of interstitial pneumonia but remains a disease with a poor outcome. Two drugs, pirfenidone and nintedanib, have shown promising results at stalling disease progression; however, the interplay of sleep disruption or sleep disorders overall and in relation to medication effectiveness remains understudied. In the past, there was limited interest in the role of sleep in patients with IPF. Treating physicians tended to address only the daily disabling symptoms while disregarding the possible significant role of sleep alterations or coexisting sleep disorders. During the past few years, there has been more research related to sleep disturbances in patients with IPF and their possible role in sleep and overall life quality, disease progression, and outcome. In summary, sleep in patients with IPF is significantly impaired, with alterations in sleep architecture, changes in sleep breathing pattern, and decreases in oxygen saturation mainly during vulnerable rapid eye movement sleep. There also is evidence that OSA has an increased prevalence in these patients, playing an important role in the already worse sleep quality related to the disease itself. The focus of this review is not only to present current data related to sleep in patients with IPF but also to point out that therapy for sleep problems and OSA is likely to improve sleep and life quality as well as disease outcome. The main priority remains to increase awareness among treating physicians about early diagnosis of OSA in patients with IPF and to emphasize the need for intense future research, especially on the role of intermittent hypoxia superimposed on chronic hypoxia during sleep in patients with IPF. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  4. Multifractal Analysis of Human Heartbeat in Sleep

    NASA Astrophysics Data System (ADS)

    Ding, Liang-Jing; Peng, Hu; Cai, Shi-Min; Zhou, Pei-Ling

    2007-07-01

    We study the dynamical properties of heart rate variability (HRV) in sleep by analysing the scaling behaviour with the multifractal detrended fluctuation analysis method. It is well known that heart rate is regulated by the interaction of two branches of the autonomic nervous system: the parasympathetic and sympathetic nervous systems. By investigating the multifractal properties of light, deep, rapid-eye-movement (REM) sleep and wake stages, we firstly find an increasing multifractal behaviour during REM sleep which may be caused by augmented sympathetic activities relative to non-REM sleep. In addition, the investigation of long-range correlations of HRV in sleep with second order detrended fluctuation analysis presents irregular phenomena. These findings may be helpful to understand the underlying regulating mechanism of heart rate by autonomic nervous system during wake-sleep transitions.

  5. Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD.

    PubMed

    Vanderheyden, William M; George, Sophie A; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R

    2015-08-01

    Sleep abnormalities, such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of posttraumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stressor exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops. SPS resulted in acute increases in REM sleep and transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. Reductions in theta (4-10 Hz) and sigma (10-15 Hz) band power during transition to REM sleep also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure.

  6. Sleep stage 2: an electroencephalographic, autonomic, and hormonal duality.

    PubMed

    Brandenberger, Gabrielle; Ehrhart, Jean; Buchheit, Martin

    2005-12-01

    It is generally thought that the electroencephalogram of sleep stage 2 is not uniform, depending on whether sleep stage 2 evolves toward slow-wave sleep (SWS) or toward rapid eye movement (REM) sleep. We provide here further evidence of the duality of sleep stage 2 on the basis of its autonomic and hormonal background. Fourteen healthy men (aged 21-29 years) underwent 1 experimental night. Sleep and cardiac recordings were taken from 11:00 PM to 7:00 AM. Blood was sampled continuously over 10-minute periods. Autonomic activity, as inferred from heart rate variability analysis and hormone profiles, were examined with regard to the normalized hypnograms. We found a dual activity of the autonomic nervous system during sleep stage 2, with a progressive decrease in heart rate variability sympathetic indexes during the transition toward SWS contrasting with high and rather stable levels during sleep stage 2 that evolve toward REM sleep. Also, different profiles were observed in 2 major hormone systems, the activating adrenocorticotropic system and the renin-angiotensin system. Cortisol, in its active period of circadian secretion, was stable during sleep stage 2 preceding SWS and increased significantly when sleep stage 2 preceded REM sleep. For plasma renin activity, sleep stage 2 played a transitional role, initiating increasing levels that peaked during SWS and decreasing levels that reached a nadir during REM sleep. These results indicate an autonomic and hormonal duality of sleep stage 2 that is characterized by a "quiet" period preparing SWS and an "active" period preceding REM sleep. These differences may confer a fundamental role on this sleep stage in ultradian sleep regulation.

  7. Neural Circuitry of Wakefulness and Sleep.

    PubMed

    Scammell, Thomas E; Arrigoni, Elda; Lipton, Jonathan O

    2017-02-22

    Sleep remains one of the most mysterious yet ubiquitous animal behaviors. We review current perspectives on the neural systems that regulate sleep/wake states in mammals and the circadian mechanisms that control their timing. We also outline key models for the regulation of rapid eye movement (REM) sleep and non-REM sleep, how mutual inhibition between specific pathways gives rise to these distinct states, and how dysfunction in these circuits can give rise to sleep disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Regulation of the phases of the sleep-wakefulness cycle with histamine].

    PubMed

    Diez-Garcia, A; Garzon, M

    2017-03-16

    Distributed neural networks in the brain sustain generation of wakefulness and two sleep states: non-REM sleep and REM sleep. These three behavioral states are jointly ingrained in a rhythmic sequence that constitutes the sleep-wakefulness cycle. This paper reviews and updates knowledge about the involvement of the histaminergic system in sleep-wakefulness cycle organization. Histaminergic neurons are exclusively located in the hypothalamic tuberomammillary nucleus, but are the source of a widespread projection system to many brain regions. Histamine neurons are active during waking, especially with high attention need, and remain silent in both non-REM and REM sleep. There have been described four metabotropic histamine receptors, of which H1R, H2R and H3R are present in the nervous system. H1R and H2R are mainly postsynaptic heteroreceptors, whereas H3R is thought to be mostly a presynaptic auto- and hetero-receptor. Histaminergic neurons are excited by hypocretinergic neurons and most of the arousing hypocretin effects are thought to depend on histaminergic actions. Interactions among histaminergic axons and cholinergic nuclei within forebrain and brainstem are particularly important for cortical activation. In contrast, histaminergic tuberomammillary neurons, similarly to other aminergic neurons in locus coeruleus or dorsal raphe nucleus, are inhibited by non-REM sleep-promoting neurons of the preoptic region. Further inhibitory actions on histamine neurons come from adenosine release on tuberomammillary region. Finally, histaminergic neurons inhibit REM-on hypothalamic neurons containing melanine-concentrating hormone, thus supporting a permissive role of tuberomammillary nucleus in REM sleep. Actually, knockout mice for histidine decarboxylase, the enzyme synthetizing histamine, show a significant REM sleep increase.

  9. Sleep architecture and the risk of incident dementia in the community.

    PubMed

    Pase, Matthew P; Himali, Jayandra J; Grima, Natalie A; Beiser, Alexa S; Satizabal, Claudia L; Aparicio, Hugo J; Thomas, Robert J; Gottlieb, Daniel J; Auerbach, Sandford H; Seshadri, Sudha

    2017-09-19

    Sleep disturbance is common in dementia, although it is unclear whether differences in sleep architecture precede dementia onset. We examined the associations between sleep architecture and the prospective risk of incident dementia in the community-based Framingham Heart Study (FHS). Our sample comprised a subset of 321 FHS Offspring participants who participated in the Sleep Heart Health Study between 1995 and 1998 and who were aged over 60 years at the time of sleep assessment (mean age 67 ± 5 years, 50% male). Stages of sleep were quantified using home-based polysomnography. Participants were followed for a maximum of 19 years for incident dementia (mean follow-up 12 ± 5 years). We observed 32 cases of incident dementia; 24 were consistent with Alzheimer disease dementia. After adjustments for age and sex, lower REM sleep percentage and longer REM sleep latency were both associated with a higher risk of incident dementia. Each percentage reduction in REM sleep was associated with approximately a 9% increase in the risk of incident dementia (hazard ratio 0.91; 95% confidence interval 0.86, 0.97). The magnitude of association between REM sleep percentage and dementia was similar following adjustments for multiple covariates including vascular risk factors, depressive symptoms, and medication use, following exclusions for persons with mild cognitive impairment at baseline and following exclusions for early converters to dementia. Stages of non-REM sleep were not associated with dementia risk. Despite contemporary interest in slow-wave sleep and dementia pathology, our findings implicate REM sleep mechanisms as predictors of clinical dementia. © 2017 American Academy of Neurology.

  10. Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics

    PubMed Central

    Pick, Jeremy; Chen, Yihan; Moore, Jason T.; Sun, Yi; Wyner, Abraham J.; Friedman, Eliot B.; Kelz, Max B.

    2011-01-01

    Background General anesthesia has been likened to a state in which anesthetized subjects are locked out of access to both rapid eye movement (REM) sleep and wakefulness. Were this true for all anesthetics, one might expect a significant REM rebound following anesthetic exposure. However, for the intravenous anesthetic propofol, studies demonstrate that no sleep debt accrues. Moreover, pre-existing sleep debts dissipate during propofol anesthesia. To determine whether these effects are specific to propofol or are typical of volatile anesthetics we tested the hypothesis that REM sleep debt would accrue in rodents anesthetized with volatile anesthetics. Methods Electroencephalographic and electromyographic electrodes were implanted in 10 mice. After 9–11 days of recovery and habituation to a 12h:12h light:dark cycle, baseline states of wakefulness, non-rapid eye movement sleep, and REM sleep were recorded in mice exposed to 6 hours of an oxygen control and on separate days to 6 hours of isoflurane, sevoflurane, or halothane in oxygen. All exposures were conducted at the onset of light. Results Mice in all three anesthetized groups exhibited a significant doubling of REM sleep during the first six-hours of the dark phase of the circadian schedule while only mice exposed to halothane displayed a significant increase in non-rapid eye movement sleep that peaked at 152% of baseline. Conclusion REM sleep rebound following exposure to volatile anesthetics suggests that these volatile anesthetics do not fully substitute for natural sleep. This result contrasts with the published actions of propofol for which no REM sleep rebound occurred. PMID:21934405

  11. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep.

    PubMed

    Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in

  12. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep

    PubMed Central

    Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics

  13. Time delay between cardiac and brain activity during sleep transitions

    NASA Astrophysics Data System (ADS)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  14. Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans

    PubMed Central

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8–12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25–45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies. PMID:21340034

  15. Sleep Alterations Following Exposure to Stress Predict Fear-Associated Memory Impairments in a Rodent Model of PTSD

    PubMed Central

    Vanderheyden, William M.; George, Sophie A.; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R.

    2015-01-01

    Sleep abnormalities such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of post-traumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating these sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stress exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops in rats. SPS resulted in acutely increased REM sleep, transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. We also report reductions in theta (4–10 Hz) and sigma (10–15 Hz) band power during transition to REM sleep which also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  16. Utility of Sleep Stage Transitions in Assessing Sleep Continuity

    PubMed Central

    Laffan, Alison; Caffo, Brian; Swihart, Bruce J.; Punjabi, Naresh M.

    2010-01-01

    Study Objectives: Sleep continuity is commonly assessed with polysomnographic measures such as sleep efficiency, sleep stage percentages, and the arousal index. The aim of this study was to examine whether the transition rate between different sleep stages could be used as an index of sleep continuity to predict self-reported sleep quality independent of other commonly used metrics. Design and Setting: Analysis of the Sleep Heart Health Study polysomnographic data. Participants: A community cohort. Measurements and Results: Sleep recordings on 5,684 participants were deemed to be of sufficient quality to allow visual scoring of NREM and REM sleep. For each participant, we tabulated the frequency of transitions between wake, NREM sleep, and REM sleep. An overall transition rate was determined as the number of all transitions per hour sleep. Stage-specific transition rates between wake, NREM sleep, and REM sleep were also determined. A 5-point Likert scale was used to assess the subjective experience of restless and light sleep the morning after the sleep study. Multivariable regression models showed that a high overall sleep stage transition rate was associated with restless and light sleep independent of several covariates including total sleep time, percentages of sleep stages, wake time after sleep onset, and the arousal index. Compared to the lowest quartile of the overall transition rate (< 7.76 events/h), the odds ratios for restless sleep were 1.27, 1.42, and 1.38, for the second (7.77–10.10 events/h), third (10.11–13.34 events/h), and fourth (≥ 13.35 events/h) quartiles, respectively. Analysis of stage-specific transition rates showed that transitions between wake and NREM sleep were also independently associated with restless and light sleep. Conclusions: Assessing overall and stage-specific transition rates provides a complementary approach for assessing sleep continuity. Incorporating such measures, along with conventional metrics, could yield

  17. Sleep Studies of Adults with Severe or Profound Mental Retardation and Epilepsy.

    ERIC Educational Resources Information Center

    Espie, Colin A.; Paul, Audrey; McFie, Joyce; Amos, Pat; Hamilton, David; McColl, John H.; And Others

    1998-01-01

    A study of the sleep patterns of 28 people with severe or profound mental retardation and epilepsy found atypical sleep stages with significant depletion of REM sleep and a predominance of indiscriminate non-REM sleep. Sleep diaries completed by caregivers reveal lengthy sleep periods, especially among those with profound mental retardation.…

  18. Gastrointestinal Dysfunctions as a Risk Factor for Sleep Disorders in Children with Idiopathic Autism Spectrum Disorder: A Retrospective Cohort Study

    ERIC Educational Resources Information Center

    McCue, Lena M.; Flick, Louise H.; Twyman, Kimberly A.; Xian, Hong

    2017-01-01

    Sleep disorders often co-occur with autism spectrum disorder. They further exacerbate autism spectrum disorder symptoms and interfere with children's and parental quality of life. This study examines whether gastrointestinal dysfunctions increase the odds of having sleep disorders in 610 children with idiopathic autism spectrum disorder, aged 2-18…

  19. Flurbiprofen in rapid eye movement sleep deprivation induced hyperalgesia.

    PubMed

    Gürel, Elif Ezgi; Ural, Keremcan; Öztürk, Gülnur; Öztürk, Levent

    2014-04-10

    Rapid eye movement (REM) sleep deprivation induces hyperalgesia in healthy rats. Here, we evaluated the effects of flurbiprofen, an anti-inflammatory and neuroprotective agent, on the increased thermal responses observed in REM sleep deprived rats. Forty female rats were divided into four groups following 96-hour REM sleep deprivation: intraperitoneal injections of placebo, and flurbiprofen 5 mg/kg, 15 mg/kg and 40 mg/kg were made in CONT (n=10), FBP5, FBP15 and FBP40 groups respectively. Pain threshold measurements were performed three times at baseline (0.hour), at the end of REM sleep deprivation (96.hour) and at 1 h after injections (97.hour) by hot plate and tail-flick tests. REM sleep deprivation induced a significant decrease in pain thresholds of all rats (hotplate: 0.hour vs 96.hour, 9.75±2.85 vs 5.10±2.02, p<0.001; tail flick: 0.hour vs 96.hour, 11.92±4.62 vs 7.92±5.15, p<0.001). Flurbiprofen in 15 mg/kg and 40 mg/kg doses significantly improved pain tolerance measured by tail flick test (tail flick in FBP15 and FBP40 groups: 96.hour vs 97.hour, 7.01±4.97 vs 8.34±3.61 and 5.06±1.57 vs 7.04±2.49, p<0.05 for both). 96 h of REM sleep deprivation resulted in reduced pain thresholds in both hot plate and tail flick tests. Flurbiprofen was used for the first time in a rat model of REM sleep deprivation, and it provided anti-nociceptive effects in 15 mg/kg and 40 mg/kg doses. Flurbiprofen may have the potential for treatment of painful syndromes accompanying insomnia or sleep loss. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Developmental Changes in Ultradian Sleep Cycles across Early Childhood.

    PubMed

    Lopp, Sean; Navidi, William; Achermann, Peter; LeBourgeois, Monique; Diniz Behn, Cecilia

    2017-02-01

    Nocturnal human sleep is composed of cycles between rapid eye movement (REM) sleep and non-REM (NREM) sleep. In adults, the structure of ultradian cycles between NREM and REM sleep is well characterized; however, less is known about the developmental trajectories of ultradian sleep cycles across early childhood. Cross-sectional studies indicate that the rapid ultradian cycling of active-quiet sleep in infancy shifts to a more adult-like pattern of NREM-REM sleep cycling by the school-age years, yet longitudinal studies elucidating the details of this transition are scarce. To address this gap, we examined ultradian cycling during nocturnal sleep following 13 h of prior wakefulness in 8 healthy children at 3 longitudinal points: 2Y (2.5-3.0 years of age), 3Y (3.5-4.0 years of age), and 5Y (5.5-6.0 years of age). We found that the length of ultradian cycles increased with age as a result of increased NREM sleep episode duration. In addition, we observed a significant decrease in the number of NREM sleep episodes as well as a nonsignificant trend for a decrease in the number of cycles with increasing age. Together, these findings suggest a concurrent change in which cycle duration increases and the number of cycles decreases across development. We also found that, consistent with data from adolescents and adults, the duration of NREM sleep episodes decreased with time since lights-off whereas the duration of REM sleep episodes increased over this time period. These results indicate the presence of circadian modulation of nocturnal sleep in preschool children. In addition to characterizing changes in ultradian cycling in healthy children ages 2 to 5 years, this work describes a developmental model that may provide insights into the emergence of normal adult REM sleep regulatory circuitry as well as potential trajectories of dysregulated ultradian cycles such as those associated with affective disorders.

  1. Prevalence of the HLA-DQB1*0602 allele in narcolepsy and idiopathic hypersomnia patients seen at a sleep disorders outpatient unit in São Paulo.

    PubMed

    Coelho, Fernando Morgadinho Santos; Pradella-Hallinan, Márcia; Predazzoli Neto, Mario; Bittencourt, Lia Rita Azeredo; Tufik, Sérgio

    2009-03-01

    Narcolepsy (with and without cataplexy) and idiopathic hypersomnia, are disorders with common features but with different HLA-DQB1*0602 allele prevalence. The present study describes the prevalence of HLA-DQB1*0602 allele in narcoleptics with and without cataplexy and in patients with idiopathic hypersomnia. Subjects comprised 68 patients who were diagnosed for narcolepsy or idiopathic hypersomnia and 23 healthy controls according to the International Classification of Sleep Disorders-2. Subjects comprised 43 patients with narcolepsy and cataplexy, 11 patients with narcolepsy but without cataplexy, 14 patients with idiopathic hypersomnia and 23 healthy controls. Genotyping of HLA-DQB1*0602 allele was performed for all subjects. The prevalence of the HLA-DQB1*0602 allele was increased in idiopathic hypersomnia and in narcoleptic patients with and without cataplexy when compared to healthy subjects (p = 0.04; p = 0.03 and p < 0.0001, respectively). This finding is in accordance with those of previous studies. The gold standard exam of narcolepsy with cataplexy is Hypocretin-1 dosage, but in patients without cataplexy and idiopathic hypersomnia, there are no specific diagnostic lab findings. The presence of the HLA-DQB1* 0602 allele may be important for the differential diagnosis of situations that resemble those sleep disorders such as secondary changes in sleep structure due to drugs' consumption.

  2. Circadian Gene Variants Influence Sleep and the Sleep Electroencephalogram in Humans

    PubMed Central

    Chang, Anne-Marie; Bjonnes, Andrew; Aeschbach, Daniel; Buxton, Orfeu M.; Gooley, Joshua J.; Anderson, Clare; Van Reen, Eliza; Cain, Sean W.; Czeisler, Charles A.; Duffy, Jeanne F.; Lockley, Steven W.; Shea, Steven; Scheer, Frank A.J.L.; Saxena, Richa

    2017-01-01

    The sleep electroencephalogram is highly heritable in humans and yet little is known about the genetic basis of inter-individual differences in sleep architecture. The aim of this study was to identify associations between candidate circadian gene variants and the polysomnogram, recorded under highly controlled laboratory conditions during a baseline, overnight, 8-h sleep opportunity. A candidate gene approach was employed to analyze single nucleotide polymorphisms from five circadian-related genes in a two-phase analysis of 84 healthy young adults (28 F; 23.21 ± 2.97 years) of European ancestry. A common variant in Period2 (PER2) was associated with 20 minutes less slow wave sleep (SWS) in carriers of the minor allele than in non-carriers, representing a 22% difference in SWS duration. Moreover, spectral analysis in a subset of samples (n=37), showed the same PER2 polymorphism was associated with reduced EEG power density in the low delta range (0.25–1.0 Hz) during non-REM sleep and lower slow-wave activity (0.75–4.5 Hz) in the early part of the sleep episode. These results indicate the involvement of PER2 in the homeostatic process of sleep. Additionally, a rare variant in Melatonin Receptor 1B was associated with longer REM sleep latency, with minor allele carriers exhibiting an average of 65 minutes (87%) longer latency from sleep onset to REM sleep, compared to non-carriers. These findings suggest that circadian-related genes may modulate sleep architecture and the sleep EEG, including specific parameters previously implicated in the homeostatic regulation of sleep. PMID:27089043

  3. Detection of the Sleep Stages Throughout Non-Obtrusive Measures of Inter-Beat Fluctuations and Motion: Night and Day Sleep of Female Shift Workers

    NASA Astrophysics Data System (ADS)

    Mendez, Martin O.; Palacios-Hernandez, Elvia R.; Alba, Alfonso; Kortelainen, Juha M.; Tenhunen, Mirja L.; Bianchi, Anna M.

    Automatic sleep staging based on inter-beat fluctuations and motion signals recorded through a pressure bed sensor during sleep is presented. The analysis of the sleep was based on the three major divisions of the sleep time: Wake, non-rapid eye movement (nREM) and rapid eye movement (REM) sleep stages. Twelve sleep recordings, from six females working alternate shift, with their respective annotations were used in the study. Six recordings were acquired during the night and six during the day after a night shift. A Time-Variant Autoregressive Model was used to extract features from inter-beat fluctuations which later were fed to a Support Vector Machine classifier. Accuracy, Kappa index, and percentage in wake, REM and nREM were used as performance measures. Comparison between the automatic sleep staging detection and the standard clinical annotations, shows mean values of 87% for accuracy 0.58 for kappa index, and mean errors of 5% for sleep stages. The performance measures were similar for night and day sleep recordings. In this sample of recordings, the results suggest that inter-beat fluctuations and motions acquired in non-obtrusive way carried valuable information related to the sleep macrostructure and could be used to support to the experts in extensive evaluation and monitoring of sleep.

  4. Longitudinal sleep EEG trajectories indicate complex patterns of adolescent brain maturation.

    PubMed

    Feinberg, Irwin; Campbell, Ian G

    2013-02-15

    New longitudinal sleep data spanning ages 6-10 yr are presented and combined with previous data to analyze maturational trajectories of delta and theta EEG across ages 6-18 yr in non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM delta power (DP) increased from age 6 to age 8 yr and then declined. Its highest rate of decline occurred between ages 12 and 16.5 yr. We attribute the delta EEG trajectories to changes in synaptic density. Whatever their neuronal underpinnings, these age curves can guide research into the molecular-genetic mechanisms that underlie adolescent brain development. The DP trajectories in NREM and REM sleep differed strikingly. DP in REM did not initially increase but declined steadily from age 6 to age 16 yr. We hypothesize that the DP decline in REM reflects maturation of the same brain arousal systems that eliminate delta waves in waking EEG. Whereas the DP age curves differed in NREM and REM sleep, theta age curves were similar in both, roughly paralleling the age trajectory of REM DP. The different maturational curves for NREM delta and theta indicate that they serve different brain functions despite having similar within-sleep dynamics and responses to sleep loss. Period-amplitude analysis of NREM and REM delta waveforms revealed that the age trends in DP were driven more by changes in wave amplitude rather than incidence. These data further document the powerful and complex link between sleep and brain maturation. Understanding this relationship would shed light on both brain development and the function of sleep.

  5. Association between sleep stages and hunger scores in 36 children.

    PubMed

    Arun, R; Pina, P; Rubin, D; Erichsen, D

    2016-10-01

    Childhood obesity is a growing health challenge. Recent studies show that children with late bedtime and late awakening are more obese independent of total sleep time. In adolescents and adults, a delayed sleep phase has been associated with higher caloric intake. Furthermore, an adult study showed a positive correlation between REM sleep and energy balance. This relationship has not been demonstrated in children. However, it may be important as a delayed sleep phase would increase the proportion of REM sleep. This study investigated the relationship between hunger score and sleep physiology in a paediatric population. Thirty-six patients referred for a polysomnogram for suspected obstructive sleep apnoea were enrolled in the study. Sleep stages were recorded as part of the polysomnogram. Hunger scores were obtained using a visual analogue scale. Mean age was 9.6 ± 3.5 years. Mean hunger scores were 2.07 ± 2.78. Hunger scores were positively correlated with percentage of total rapid eye movement (REM) sleep (r = 0.438, P < 0.01) and REM sleep duration in minutes (r = 0.471, P < 0.05). Percentage slow wave sleep (SWS) was negatively correlated with hunger score (r = -0.360, P < 0.05). There were no correlations between age, sex, body mass index percentiles, apnoea-hypopnoea index, total sleep time, sleep efficiency, sleep onset latency, stage 2 sleep duration and hunger scores. These findings suggest that delayed bedtime, which increases the proportion of REM sleep and decreases the proportion of SWS, results in higher hunger levels in children. © 2015 World Obesity.

  6. Human amygdala activation during rapid eye movements of rapid eye movement sleep: an intracranial study.

    PubMed

    Corsi-Cabrera, María; Velasco, Francisco; Del Río-Portilla, Yolanda; Armony, Jorge L; Trejo-Martínez, David; Guevara, Miguel A; Velasco, Ana L

    2016-10-01

    The amygdaloid complex plays a crucial role in processing emotional signals and in the formation of emotional memories. Neuroimaging studies have shown human amygdala activation during rapid eye movement sleep (REM). Stereotactically implanted electrodes for presurgical evaluation in epileptic patients provide a unique opportunity to directly record amygdala activity. The present study analysed amygdala activity associated with REM sleep eye movements on the millisecond scale. We propose that phasic activation associated with rapid eye movements may provide the amygdala with endogenous excitation during REM sleep. Standard polysomnography and stereo-electroencephalograph (SEEG) were recorded simultaneously during spontaneous sleep in the left amygdala of four patients. Time-frequency analysis and absolute power of gamma activity were obtained for 250 ms time windows preceding and following eye movement onset in REM sleep, and in spontaneous waking eye movements in the dark. Absolute power of the 44-48 Hz band increased significantly during the 250 ms time window after REM sleep rapid eye movements onset, but not during waking eye movements. Transient activation of the amygdala provides physiological support for the proposed participation of the amygdala in emotional expression, in the emotional content of dreams and for the reactivation and consolidation of emotional memories during REM sleep, as well as for next-day emotional regulation, and its possible role in the bidirectional interaction between REM sleep and such sleep disorders as nightmares, anxiety and post-traumatic sleep disorder. These results provide unique, direct evidence of increased activation of the human amygdala time-locked to REM sleep rapid eye movements. © 2016 European Sleep Research Society.

  7. A dopamine receptor d2-type agonist attenuates the ability of stress to alter sleep in mice.

    PubMed

    Jefferson, F; Ehlen, J C; Williams, N S; Montemarano, J J; Paul, K N

    2014-11-01

    Although sleep disruptions that accompany stress reduce quality of life and deteriorate health, the mechanisms through which stress alters sleep remain obscure. Psychological stress can alter sleep in a variety of ways, but it has been shown to be particularly influential on rapid eye movement (REM) sleep. Prolactin (PRL), a sexually dimorphic, stress-sensitive hormone whose basal levels are higher in females, has somnogenic effects on REM sleep. In the current study, we examined the relationship between PRL secretion and REM sleep after restraint stress to determine whether: 1) the ability of stress to increase REM sleep is PRL-dependent, and 2) fluctuating PRL levels underlie sex differences in sleep responses to stress. Because dopamine D2 receptors in the pituitary gland are the primary regulator of PRL secretion, D2 receptor agonist, 1-[(6-allylergolin-8β-yl)-carbonyl]-1-[3-(dimethylamino) propyl]-3-ethylurea (cabergoline), was used to attenuate PRL levels in mice before 1 hour of restraint stress. Mice were implanted with electroencephalographic/electromyographic recording electrodes and received an ip injection of either 0.3-mg/kg cabergoline or vehicle before a control procedure of 1 hour of sleep deprivation by gentle handling during the light phase. Six days after the control procedure, mice received cabergoline or vehicle 15 minutes before 1 hour of restraint stress. Cabergoline blocked the ability of restraint stress to increase REM sleep amount in males but did not alter REM sleep amount after stress in females even though it reduced basal REM sleep amount in female controls. These data provide evidence that the ability for restraint stress to increase REM sleep is dependent on PRL and that sex differences in REM sleep amount may be driven by PRL.

  8. Effects of Optogenetic inhibition of BLA on Sleep Brief Optogenetic Inhibition of the Basolateral Amygdala in Mice Alters Effects of Stressful Experiences on Rapid Eye Movement Sleep.

    PubMed

    Machida, Mayumi; Wellman, Laurie L; Fitzpatrick Bs, Mairen E; Hallum Bs, Olga; Sutton Bs, Amy M; Lonart, György; Sanford, Larry D

    2017-04-01

    Stressful events can directly produce significant alterations in subsequent sleep, in particular rapid eye movement sleep (REM); however, the neural mechanisms underlying the process are not fully known. Here, we investigated the role of the basolateral nuclei of the amygdala (BLA) in regulating the effects of stressful experience on sleep. We used optogenetics to briefly inhibit glutamatergic cells in BLA during the presentation of inescapable footshock (IS) and assessed effects on sleep, the acute stress response, and fear memory. c-Fos expression was also assessed in the amygdala and the medial prefrontal cortex (mPFC), both regions involved in coping with stress, and in brain stem regions implicated in the regulation of REM. Compared to control mice, peri-shock inhibition of BLA attenuated an immediate reduction in REM after IS and produced a significant overall increase in REM. Moreover, upon exposure to the shock context alone, mice receiving peri-shock inhibition of BLA during training showed increased REM without altered freezing (an index of fear memory) or stress-induced hyperthermia (an index of acute stress response). Inhibition of BLA during REM under freely sleeping conditions enhanced REM only when body temperature was high, suggesting the effect was influenced by stress. Peri-shock inhibition of BLA also led to elevated c-Fos expression in the central nucleus of the amygdala and mPFC and differentially altered c-Fos activity in the selected brain stem regions. Glutamatergic cells in BLA can modulate the effects of stress on REM and can mediate effects of fear memory on sleep that can be independent of behavioral fear. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Sleep disturbances as the hallmark of PTSD: where are we now?

    PubMed

    Germain, Anne

    2013-04-01

    The hypothesis that rapid eye movement (REM) sleep disturbances are the hallmark of posttraumatic stress disorder (PTSD), proposed by Ross and colleagues in 1989, has stimulated a wealth of clinical, preclinical, and animal studies on the role of sleep in the pathophysiology of PTSD. The present review revisits this influential hypothesis in light of clinical and experimental findings that have since accumulated. Polysomnographic studies conducted in adults with PTSD have yielded mixed findings regarding REM sleep disturbances, and they generally suggest modest and nonspecific sleep disruptions. Prospective and treatment studies have provided more robust evidence for the relationship between sleep disturbances and psychiatric outcomes and symptoms. Experimental animal and human studies that have probed the relationship between REM sleep and fear responses, as well as studies focused more broadly on sleep-dependent affective and memory processes, also provide strong support for the hypothesis that sleep plays an important role in PTSD-relevant processes. Overall, the literature suggests that disturbed REM or non-REM sleep can contribute to maladaptive stress and trauma responses and may constitute a modifiable risk factor for poor psychiatric outcomes. Clinicians need to consider that the chronic sleep disruption associated with nightmares may affect the efficacy of first-line PTSD treatments, but targeted sleep treatments may accelerate recovery from PTSD. The field is ripe for prospective and longitudinal studies in high-risk groups to clarify how changes in sleep physiology and neurobiology contribute to increased risk of poor psychiatric outcomes.

  10. Role of sleep for encoding of emotional memory.

    PubMed

    Kaida, Kosuke; Niki, Kazuhisa; Born, Jan

    2015-05-01

    Total sleep deprivation (TSD) has been consistently found to impair encoding of information during ensuing wakefulness, probably through suppressing NonREM (non-rapid eye movement) sleep. However, a possible contribution of missing REM sleep to this encoding impairment after TSD has so far not been systematically examined in humans, although such contribution might be suspected in particular for emotional information. Here, in two separate experiments in young healthy men, we compared effects of TSD and of selective REM sleep deprivation (REMD), relative to respective control conditions of undisturbed sleep, on the subsequent encoding of neutral and emotional pictures. The pictures were presented in conjunction with colored frames to also assess related source memory. REMD was achieved by tones presented contingently upon initial signs of REM sleep. Encoding capabilities were examined in the evening (18:00h) after the experimental nights, by a picture recognition test right after encoding. TSD significantly decreased both the rate of correctly recognized pictures and of recalled frames associated with the pictures. The TSD effect was robust and translated into an impaired long term memory formation, as it was likewise observed on a second recognition testing one week after the encoding phase. Contrary to our expectation, REMD did not affect encoding in general, or particularly of emotional pictures. Also, REMD did not affect valence ratings of the encoded pictures. However, like TSD, REMD distinctly impaired vigilance at the time of encoding. Altogether, these findings indicate an importance of NonREM rather than REM sleep for the encoding of information that is independent of the emotionality of the materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Visibility graph analysis of very short-term heart rate variability during sleep

    NASA Astrophysics Data System (ADS)

    Hou, F. Z.; Li, F. W.; Wang, J.; Yan, F. R.

    2016-09-01

    Based on a visibility-graph algorithm, complex networks were constructed from very short-term heart rate variability (HRV) during different sleep stages. Network measurements progressively changed from rapid eye movement (REM) sleep to light sleep and then deep sleep, exhibiting promising ability for sleep assessment. Abnormal activation of the cardiovascular controls with enhanced 'small-world' couplings and altered fractal organization during REM sleep indicates that REM could be a potential risk factor for adverse cardiovascular event, especially in males, older individuals, and people who are overweight. Additionally, an apparent influence of gender, aging, and obesity on sleep was demonstrated in healthy adults, which may be helpful for establishing expected sleep-HRV patterns in different populations.

  12. Can sleep deprivation studies explain why human adults sleep?

    PubMed

    Brown, Lee K

    2012-11-01

    This review will concentrate on the consequences of sleep deprivation in adult humans. These findings form a paradigm that serves to demonstrate many of the critical functions of the sleep states. The drive to obtain food, water, and sleep constitutes important vegetative appetites throughout the animal kingdom. Unlike nutrition and hydration, the reasons for sleep have largely remained speculative. When adult humans are nonspecifically sleep-deprived, systemic effects may include defects in cognition, vigilance, emotional stability, risk-taking, and, possibly, moral reasoning. Appetite (for foodstuffs) increases and glucose intolerance may ensue. Procedural, declarative, and emotional memory are affected. Widespread alterations of immune function and inflammatory regulators can be observed, and functional MRI reveals profound changes in regional cerebral activity related to attention and memory. Selective deprivation of rapid eye movement (REM) sleep, on the contrary, appears to be more activating and to have lesser effects on immunity and inflammation. The findings support a critical need for sleep due to the widespread effects on the adult human that result from nonselective sleep deprivation. The effects of selective REM deprivation appear to be different and possibly less profound, and the functions of this sleep state remain enigmatic.

  13. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation.

    PubMed

    Lee, Michael L; Katsuyama, Ângela M; Duge, Leanne S; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J; de la Iglesia, Horacio O

    2016-11-01

    Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. © 2016 Associated Professional Sleep Societies, LLC.

  14. The dream-lag effect: Selective processing of personally significant events during Rapid Eye Movement sleep, but not during Slow Wave Sleep.

    PubMed

    van Rijn, E; Eichenlaub, J-B; Lewis, P A; Walker, M P; Gaskell, M G; Malinowski, J E; Blagrove, M

    2015-07-01

    Incorporation of details from waking life events into Rapid Eye Movement (REM) sleep dreams has been found to be highest on the night after, and then 5-7 nights after events (termed, respectively, the day-residue and dream-lag effects). In experiment 1, 44 participants kept a daily log for 10 days, reporting major daily activities (MDAs), personally significant events (PSEs), and major concerns (MCs). Dream reports were collected from REM and Slow Wave Sleep (SWS) in the laboratory, or from REM sleep at home. The dream-lag effect was found for the incorporation of PSEs into REM dreams collected at home, but not for MDAs or MCs. No dream-lag effect was found for SWS dreams, or for REM dreams collected in the lab after SWS awakenings earlier in the night. In experiment 2, the 44 participants recorded reports of their spontaneously recalled home dreams over the 10 nights following the instrumental awakenings night, which thus acted as a controlled stimulus with two salience levels, high (sleep lab) and low (home awakenings). The dream-lag effect was found for the incorporation into home dreams of references to the experience of being in the sleep laboratory, but only for participants who had reported concerns beforehand about being in the sleep laboratory. The delayed incorporation of events from daily life into dreams has been proposed to reflect REM sleep-dependent memory consolidation. However, an alternative emotion processing or emotional impact of events account, distinct from memory consolidation, is supported by the finding that SWS dreams do not evidence the dream-lag effect. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Complexity of heart rate fluctuations in near-term sheep and human fetuses during sleep.

    PubMed

    Frank, Birgit; Frasch, Martin G; Schneider, Uwe; Roedel, Marcus; Schwab, Matthias; Hoyer, Dirk

    2006-10-01

    We investigated how the complexity of fetal heart rate fluctuations (fHRF) is related to the sleep states in sheep and human fetuses. The complexity as a function of time scale for fetal heart rate data for 7 sheep and 27 human fetuses was estimated in rapid eye movement (REM) and non-REM sleep by means of permutation entropy and the associated Kullback-Leibler entropy. We found that in humans, fHRF complexity is higher in non-REM than REM sleep, whereas in sheep this relationship is reversed. To show this relation, choice of the appropriate time scale is crucial. In sheep fetuses, we found differences in the complexity of fHRF between REM and non-REM sleep only for larger time scales (above 2.5 s), whereas in human fetuses the complexity was clearly different between REM and non-REM sleep over the whole range of time scales. This may be due to inherent time scales of complexity, which reflect species-specific functions of the autonomic nervous system. Such differences have to be considered when animal data are translated to the human situation.

  16. Ethnic differences in electroencephalographic sleep patterns in adolescents

    PubMed Central

    Rao, Uma; Hammen, Constance L.; Poland, Russell E.

    2009-01-01

    The purpose of the study was to evaluate ethnic differences in polysomnography measures in adolescents. Ninety-six volunteers from four ethnic groups (13 African-American, 18 Asian-American, 19 Mexican-American, and 46 Non-Hispanic White) were recruited. The subjects were in good physical and psychological health, and were asymptomatic with respect to sleep/wake complaints or sleep disorders. Polysomnography measures were collected on three consecutive nights. African-Americans manifested lower sleep efficiency, spent proportionately more time in stage 2 sleep, and had less stage 4 sleep compared to the other ethnic groups. In contrast to this, Mexican-Americans had more rapid eye movement (REM) sleep than their counterparts. The observed sleep patterns in the different ethnic groups persisted after controlling for specific demographic, clinical and psychosocial variables that are known to influence sleep measures. Gender had a differential effect on sleep patterns in the various ethnic groups. For instance, differences in non-REM sleep were more evident in African-American males, whereas increased REM sleep was most notable in Mexican-American females. At present, the clinical implications of the observed cross-ethnic differences in sleep physiology among adolescents are not clear. In previous studies, reduced sleep efficiency and stage 4 sleep, as well as increased REM sleep, were associated with psychopathology. It is not known whether the traditionally described sleep profiles, based largely on Non-Hispanic White populations, will generalize to other racial or ethnic groups. In addition to a systematic investigation of this issue, future research should attempt to identify the underlying causes for cross-ethnic variations in sleep physiology. PMID:19960099

  17. Monitoring sleep depth: analysis of bispectral index (BIS) based on polysomnographic recordings and sleep deprivation.

    PubMed

    Giménez, Sandra; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miguel Ángel; Pujol, Anna; Baxarias, Pilar; Antonijoan, Rosa Maria

    2017-02-01

    The assessment and management of sleep are increasingly recommended in the clinical practice. Polysomnography (PSG) is considered the gold standard test to monitor sleep objectively, but some practical and technical constraints exist due to environmental and patient considerations. Bispectral index (BIS) monitoring is commonly used in clinical practice for guiding anesthetic administration and provides an index based on relationships between EEG components. Due to similarities in EEG synchronization between anesthesia and sleep, several studies have assessed BIS as a sleep monitor with contradictory results. The aim of this study was to evaluate objectively both the feasibility and reliability of BIS for sleep monitoring through a robust methodology, which included full PSG recordings at a baseline situation and after 40 h of sleep deprivation. Results confirmed that the BIS index was highly correlated with the hypnogram (0.89 ± 0.02), showing a progressive decrease as sleep deepened, and an increase during REM sleep (awake: 91.77 ± 8.42; stage N1: 83.95 ± 11.05; stage N2: 71.71 ± 11.99; stage N3: 42.41 ± 9.14; REM: 80.11 ± 8.73). Mean and median BIS values were lower in the post-deprivation night than in the baseline night, showing statistical differences for the slow wave sleep (baseline: 42.41 ± 9.14 vs. post-deprivation: 39.49 ± 10.27; p = 0.02). BIS scores were able to discriminate properly between deep (N3) and light (N1, N2) sleep. BIS values during REM overlapped those of other sleep stages, although EMG activity provided by the BIS monitor could help to identify REM sleep if needed. In conclusion, BIS monitors could provide a useful measure of sleep depth in especially particular situations such as intensive care units, and they could be used as an alternative for sleep monitoring in order to reduce PSG-derived costs and to increase capacity in ambulatory care.

  18. What Are Some Myths About Sleep?

    MedlinePlus

    ... is REM sleep? What is the effect of sleep deprivation? What are sleep myths? What are sleep disorders? ... as it becomes larger. In addition, long-term sleep deprivation contributes to several conditions involving health, safety, and ...

  19. Endogenous excitatory drive to the respiratory system in rapid eye movement sleep in cats.

    PubMed

    Orem, J; Lovering, A T; Dunin-Barkowski, W; Vidruk, E H

    2000-09-01

    A putative endogenous excitatory drive to the respiratory system in rapid eye movement (REM) sleep may explain many characteristics of breathing in that state, e.g. its irregularity and variable ventilatory responses to chemical stimuli. This drive is hypothetical, and determinations of its existence and character are complicated by control of the respiratory system by the oscillator and its feedback mechanisms. In the present study, endogenous drive was studied during apnoea caused by mechanical hyperventilation. We reasoned that if there was a REM-dependent drive to the respiratory system, then respiratory activity should emerge out of the background apnoea as a manifestation of the drive. Diaphragmatic muscle or medullary respiratory neuronal activity was studied in five intact, unanaesthetized adult cats who were either mechanically hyperventilated or breathed spontaneously in more than 100 REM sleep periods. Diaphragmatic activity emerged out of a background apnoea caused by mechanical hyperventilation an average of 34 s after the onset of REM sleep. Emergent activity occurred in 60 % of 10 s epochs in REM sleep and the amount of activity per unit time averaged approximately 40 % of eupnoeic activity. The activity occurred in episodes and was poorly related to pontogeniculo-occipital waves. At low CO2 levels, this activity was non-rhythmic. At higher CO2 levels (less than 0.5 % below eupnoeic end-tidal percentage CO2 levels in non-REM (NREM) sleep), activity became rhythmic. Medullary respiratory neurons were recorded in one of the five animals. Nineteen of twenty-seven medullary respiratory neurons were excited in REM sleep during apnoea. Excited neurons included inspiratory, expiratory and phase-spanning neurons. Excitation began about 43 s after the onset of REM sleep. Activity increased from an average of 6 impulses s-1 in NREM sleep to 15.5 impulses s-1 in REM sleep. Neuronal activity was non-rhythmic at low CO2 levels and became rhythmic when levels were

  20. The effects of various protein synthesis inhibitors on the sleep-wake cycle of rats.

    PubMed

    Rojas-Ramírez, J A; Aguilar-Jiménez, E; Posadas-Andrews, A; Bernal-Pedraza, J G; Drucker-Colín, R R

    1977-07-18

    The present investigation sought to determine the effects of Anisomycin (A), Chloramphenicol (ChA), Vincristine (V), and Penicilline G on the sleep-wake cycle of rats. It was found that both high and low doses of anisomycin decreased rapid eye movement (REM) sleep, while only high doses of ChA and V produced such a decrease. Slow wave sleep (SWS) was unaffected by these drugs. Penicilline G, on the other hand, had no effect on the sleep-wake cycle. It was further shown that the reduction of REM sleep was the result of a decrease in the number of REM periods rather than in the duration of each individual period. These results suggest that protein synthesis may participate in the mechanisms that trigger REM sleep.

  1. A preliminary study of sleep ontogenesis in the ferret (Mustela putorius furo).

    PubMed

    Thurber, Allison; Jha, Sushil K; Coleman, Tammi; Frank, Marcos G

    2008-05-16

    We investigated sleep ontogenesis in the ferret-a placental mammal that is highly altricial compared to other mammalian species. Because altriciality is linked with elevated rapid-eye-movement (REM) sleep amounts during infancy, it was expected that ferret kits would display very high levels of this state. Longitudinal polysomnographic measurements were made from 8 ferret kits from approximately eye-opening (postnatal day [P]30)-P50 using an experimental routine that minimized the effects of maternal separation. These data were compared to values from 8 adult ferrets (>3 months of age) and 6 neonatal cats (mean age: P31.7). We find that the polygraphic features of REM and non-REM (NREM) sleep are present by at least P30. Over the next 2 weeks, REM sleep amounts slightly declined while wakefulness and NREM sleep amounts increased. However, a comparison to published values from developing cats and rats showed that the ferret did not exhibit a disproportionate amount of REM sleep at similar postnatal ages or relative to a common developmental milestone (eye-opening).

  2. Polysomnographic measures of sleep in cocaine dependence and alcohol dependence: Implications for age‐related loss of slow wave, stage 3 sleep

    PubMed Central

    Bjurstrom, Martin F.; Olmstead, Richard

    2016-01-01

    Abstract Background and aims Sleep disturbance is a prominent complaint in cocaine and alcohol dependence. This controlled study evaluated differences of polysomnographic (PSG) sleep in cocaine‐ and alcohol‐dependent subjects, and examined whether substance dependence interacts with age to alter slow wave sleep and rapid eye movement (REM) sleep. Design Cross‐sectional comparison. Setting Los Angeles and San Diego, CA, USA. Participants Abstinent cocaine‐dependent subjects (n = 32), abstinent alcohol‐dependent subjects (n = 73) and controls (n = 108); mean age 40.3 years recruited 2005–12. Measurements PSG measures of sleep continuity and sleep architecture primary outcomes of Stage 3 sleep and REM sleep. Covariates included age, ethnicity, education, smoking, body mass index and depressive symptoms. Findings Compared with controls, both groups of substance dependent subjects showed loss of Stage 3 sleep (P < 0.001). A substance dependence × age interaction was found in which both cocaine‐ and alcohol‐dependent groups showed loss of Stage 3 sleep at an earlier age than controls (P < 0.05 for all), and cocaine‐dependent subjects showed loss of Stage 3 sleep at an earlier age than alcoholics (P < 0.05). Compared with controls, REM sleep was increased in both substance‐dependent groups (P < 0.001), and cocaine and alcohol dependence were associated with earlier age‐related increase in REM sleep (P < 0.05 for all). Conclusions Cocaine and alcohol dependence appear to be associated with marked disturbances of sleep architecture, including increased rapid eye movement sleep and accelerated age‐related loss of slow wave, Stage 3 sleep. PMID:26749502

  3. What Is REM Sleep

    MedlinePlus

    ... YouTube follow us on Flickr follow us on Instagram Español NICHD Theme Browse AZTopics Browse A-Z ... Publications Sitemap Español facebook twitter pinterest youtube flickr Instagram NEWSROOM NICHD News Videos OUTREACH Safe to Sleep® ...

  4. Representation of the Self in REM and NREM Dreams

    PubMed Central

    McNamara, Patrick; McLaren, Deirdre; Durso, Kate

    2008-01-01

    The authors hypothesized that representations of the Self (or the dreamer) in dreams would change systematically, from a prereflective form of Self to more complex forms, as a function of both age and sleep state (REM vs. non-REM). These hypotheses were partially confirmed. While the authors found that all the self-concept-related dream content indexes derived from the Hall/Van de Castle dream content scoring system did not differ significantly between the dreams of children and adults, adult Selves were more likely to engage in “successful” social interactions. The Self never acted as aggressor in NREM dream states and was almost always the befriender in friendly interactions in NREM dreams. Conversely, the REM-related dream Self preferred aggressive encounters. Our results suggests that while prereflective forms of Self are the norm in children’s dreams, two highly complex forms of Self emerge in REM and NREM dreams. PMID:19169371

  5. [Sleep psychiatry].

    PubMed

    Chiba, Shigeru

    2013-01-01

    Sleep disorders are serious issues in modern society. There has been marked scientific interest in sleep for a century, with the discoveries of the electrical activity of the brain (EEG), sleep-wake system, rapid eye movement (REM) sleep, and circadian rhythm system. Additionally, the advent of video-polysomnography in clinical research has revealed some of the consequences of disrupted sleep and sleep deprivation in psychiatric disorders. Decades of clinical research have demonstrated that sleep disorders are intimately tied to not only physical disease (e. g., lifestyle-related disease) but psychiatric illness. According to The International Classification of Sleep Disorders (2005), sleep disorders are classified into 8 major categories: 1) insomnia, 2) sleep-related breathing disorders, 3) hypersomnias of central origin, 4) circadian rhythm sleep disorders, 5) parasomnias, 6) sleep-related movement disorders, 7) isolated symptoms, and 8) other sleep disorders. Several sleep disorders, including obstructive sleep apnea syndrome, restless legs syndrome, periodic limb movement disorder, sleepwalking, REM sleep behavior disorder, and narcolepsy, may be comorbid or possibly mimic numerous psychiatric disorders, and can even occur due to psychiatric pharmacotherapy. Moreover, sleep disorders may exacerbate underlying psychiatric disorders when left untreated. Therefore, psychiatrists should pay attention to the intimate relationship between sleep disorders and psychiatric symptoms. Sleep psychiatry is an academic field focusing on interrelations between sleep medicine and psychiatry. This mini-review summarizes recent findings in sleep psychiatry. Future research on the bidirectional relation between sleep disturbance and psychiatric symptoms will shed light on the pathophysiological view of psychiatric disorders and sleep disorders.

  6. Do birds sleep in flight?

    NASA Astrophysics Data System (ADS)

    Rattenborg, Niels C.

    2006-09-01

    The following review examines the evidence for sleep in flying birds. The daily need to sleep in most animals has led to the common belief that birds, such as the common swift ( Apus apus), which spend the night on the wing, sleep in flight. The electroencephalogram (EEG) recordings required to detect sleep in flight have not been performed, however, rendering the evidence for sleep in flight circumstantial. The neurophysiology of sleep and flight suggests that some types of sleep might be compatible with flight. As in mammals, birds exhibit two types of sleep, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep. Whereas, SWS can occur in one or both brain hemispheres at a time, REM sleep only occurs bihemispherically. During unihemispheric SWS, the eye connected to the awake hemisphere remains open, a state that may allow birds to visually navigate during sleep in flight. Bihemispheric SWS may also be possible during flight when constant visual monitoring of the environment is unnecessary. Nevertheless, the reduction in muscle tone that usually accompanies REM sleep makes it unlikely that birds enter this state in flight. Upon landing, birds may need to recover the components of sleep that are incompatible with flight. Periods of undisturbed postflight recovery sleep may be essential for maintaining adaptive brain function during wakefulness. The recent miniaturization of EEG recording devices now makes it possible to measure brain activity in flight. Determining if and how birds sleep in flight will contribute to our understanding of a largely unexplored aspect of avian behavior and may also provide insight into the function of sleep.

  7. Sleep Disturbances as a Risk Factor for Stroke

    PubMed Central

    Koo, Dae Lim; Nam, Hyunwoo; Thomas, Robert J.; Yun, Chang-Ho

    2018-01-01

    Sleep, a vital process of human being, is carefully orchestrated by the brain and consists of cyclic transitions between rapid eye movement (REM) and non-REM (NREM) sleep. Autonomic tranquility during NREM sleep is characterized by vagal dominance and stable breathing, providing an opportunity for the cardiovascular-neural axis to restore homeostasis, in response to use, distress or fatigue inflicted during wakefulness. Abrupt irregular swings in sympathovagal balance during REM sleep act as phasic loads on the resting cardiovascular system. Any causes of sleep curtailment or fragmentation such as sleep restriction, sleep apnea, insomnia, periodic limb movements during sleep, and shift work, not only impair cardiovascular restoration but also impose a stress on the cardiovascular system. Sleep disturbances have been reported to play a role in the development of stroke and other cardiovascular disorders. This review aims to provide updated information on the role of abnormal sleep in the development of stroke, to discuss the implications of recent research findings, and to help both stroke clinicians and researchers understand the importance of identification and management of sleep pathology for stroke prevention and care. PMID:29402071

  8. Disturbed EEG sleep, paranoid cognition and somatic symptoms identify veterans with post-traumatic stress disorder

    PubMed Central

    Rothman, Lorne; Kleinman, Robert; Rhind, Shawn G.; Richardson, J. Donald

    2016-01-01

    Background Chronic post-traumatic stress disorder (PTSD) behavioural symptoms and medically unexplainable somatic symptoms are reported to occur following the stressful experience of military combatants in war zones. Aims To determine the contribution of disordered EEG sleep physiology in those military combatants who have unexplainable physical symptoms and PTSD behavioural difficulties following war-zone exposure. Method This case-controlled study compared 59 veterans with chronic sleep disturbance with 39 veterans with DSM-IV and clinician-administered PTSD Scale diagnosed PTSD who were unresponsive to pharmacological and psychological treatments. All had standardised EEG polysomnography, computerised sleep EEG cyclical alternating pattern (CAP) as a measure of sleep stability, self-ratings of combat exposure, paranoid cognition and hostility subscales of Symptom Checklist-90, Beck Depression Inventory and the Wahler Physical Symptom Inventory. Statistical group comparisons employed linear models, logistic regression and chi-square automatic interaction detection (CHAID)-like decision trees. Results Veterans with PTSD were more likely than those without PTSD to show disturbances in non-rapid eye movement (REM) and REM sleep including delayed sleep onset, less efficient EEG sleep, less stage 4 (deep) non-REM sleep, reduced REM and delayed onset to REM. There were no group differences in the prevalence of obstructive sleep apnoeas/hypopnoeas and periodic leg movements, but sleep-disturbed, non-PTSD military had more EEG CAP sleep instability. Rank order determinants for the diagnosis of PTSD comprise paranoid thinking, onset to REM sleep, combat history and somatic symptoms. Decision-tree analysis showed that a specific military event (combat), delayed onset to REM sleep, paranoid thinking and medically unexplainable somatic pain and fatigue characterise chronic PTSD. More PTSD veterans reported domestic and social misbehaviour. Conclusions Military combat

  9. Developmental Changes in Ultradian Sleep Cycles across Early Childhood: Preliminary Insights

    PubMed Central

    Lopp, Sean; Navidi, William; Achermann, Peter; LeBourgeois, Monique; Diniz Behn, Cecilia

    2017-01-01

    Nocturnal human sleep is composed of cycles between rapid eye movement (REM) sleep and non-REM (NREM) sleep. In adults, the structure of ultradian cycles between NREM and REM sleep is well characterized; however, less is known about the developmental trajectories of ultradian sleep cycles across early childhood. Cross-sectional studies indicate that the rapid ultradian cycling of active-quiet sleep in infancy shifts to a more adult-like pattern of NREM-REM sleep cycling by the school-age years, yet longitudinal studies elucidating the details of this transition are scarce. To address this gap, we examined ultradian cycling during nocturnal sleep following 13 h of prior wakefulness in 8 healthy children at 3 longitudinal points: 2Y (2.5-3.0 years of age), 3Y (3.5-4.0 years of age), and 5Y (5.5-6.0 years of age). We found that the length of ultradian cycles increased with age as a result of increased NREM sleep episode duration. In addition, we observed a significant decrease in the number of NREM sleep episodes as well as a nonsignificant trend for a decrease in the number of cycles with increasing age. Together, these findings suggest a concurrent change in which cycle duration increases and the number of cycles decreases across development. We also found that, consistent with data from adolescents and adults, the duration of NREM sleep episodes decreased with time since lights-off whereas the duration of REM sleep episodes increased over this time period. These results indicate the presence of circadian modulation of nocturnal sleep in preschool children. In addition to characterizing changes in ultradian cycling in healthy children ages 2 to 5 years, this work describes a developmental model that may provide insights into the emergence of normal adult REM sleep regulatory circuitry as well as potential trajectories of dysregulated ultradian cycles such as those associated with affective disorders. PMID:28088873

  10. Do Circadian Preferences Influence the Sleep Patterns of Night Shift Drivers?

    PubMed Central

    Narciso, Fernanda V.; Esteves, Andrea M.; Oliveira e Silva, Luciana; Bittencourt, Lia R.A.; Silva, Rogerio S.; Pires, Maria Laura N.; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    Objective The objective of this study was to analyze the effect of individual circadian preferences of drivers with fixed night work schedules on sleep patterns. Subjects and Methods A total of 123 professional drivers, 32 indifferent preference drivers and 91 morning preference drivers of an intermunicipality and interstate bus transportation company were evaluated. All drivers underwent polysomnographic recordings after their shifts. Furthermore, they filled out a questionnaire that contained sociodemographic and health questions. The Horne and Östberg questionnaire was used to assess the subjects' morningness-eveningness preference. Results The mean age was 42.54 ± 6.98 years and 82 (66.66%) of the drivers had worked for ≥15 years. A significant effect on rapid eye movement (REM) was observed in the morning preference drivers. They showed an increased sleep latency and an REM sleep percentage of 5% of the total REM time. This reveals a significant effect on sleep architecture associated with work time. Conclusion The drivers reported that morning preference had a significant effect on their sleep pattern indicating less REM sleep and longer REM sleep latency in the morning preference group. Thus, it is important to evaluate interactions between individual aspects of health and other parameters, such as sleep quality and work organizational factors, to promote night shift workers' health and well-being. PMID:23988815

  11. Do circadian preferences influence the sleep patterns of night shift drivers?

    PubMed

    Narciso, Fernanda V; Esteves, Andrea M; Oliveira e Silva, Luciana; Bittencourt, Lia R A; Silva, Rogerio S; Pires, Maria Laura N; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    The objective of this study was to analyze the effect of individual circadian preferences of drivers with fixed night work schedules on sleep patterns. A total of 123 professional drivers, 32 indifferent preference drivers and 91 morning preference drivers of an intermunicipality and interstate bus transportation company were evaluated. All drivers underwent polysomnographic recordings after their shifts. Furthermore, they filled out a questionnaire that contained sociodemographic and health questions. The Horne and Östberg questionnaire was used to assess the subjects' morningness-eveningness preference. The mean age was 42.54 ± 6.98 years and 82 (66.66%) of the drivers had worked for ≥15 years. A significant effect on rapid eye movement (REM) was observed in the morning preference drivers. They showed an increased sleep latency and an REM sleep percentage of 5% of the total REM time. This reveals a significant effect on sleep architecture associated with work time. The drivers reported that morning preference had a significant effect on their sleep pattern indicating less REM sleep and longer REM sleep latency in the morning preference group. Thus, it is important to evaluate interactions between individual aspects of health and other parameters, such as sleep quality and work organizational factors, to promote night shift workers' health and well-being. © 2013 S. Karger AG, Basel.

  12. Two preliminary studies on sleep and psychotherapy.

    PubMed

    Karle, W; Hopper, M; Corriere, R; Hart, J; Switzer, A

    1977-09-01

    Two preliminary studies were conducted to assess the effects of an intensive outpatient psychotherapy, Feeling Therapy, on sleep. This therapy was chosen because of its demonstrated ability to affect its patients' dreams. In the first study a newly entering female patient was recorded across the first three weeks of intensive daily therapy. In contrast to two control subjects recorded across a similar time period, she demonstrated low REM times and short REM latencies on the average, and considerably greater variability in nearly every parameter. In the second study, two patients were recorded across three days (the middle of which was the day of a therapy session) first when new in therapy and then again after two and one-half years of therapy. It was found that when new in therapy both subjects spent nights of significantly altered sleep the day of the therapy session. One subject showed no REM sleep whatsoever while the other showed a 10 min REM latency and low REM time. The significance of these findings and the direction of future research is discussed.

  13. Interhemispheric differences of the correlation dimension in a human sleep electroencephalogram.

    PubMed

    Kobayashi, Toshio; Madokoro, Shigeki; Misaki, Kiwamu; Murayama, Jyunichi; Nakagawa, Hiroki; Wada, Yuji

    2002-06-01

    The interhemispheric differences of the correlation dimension (D2) in the sleep electroencephalogram (EEG) of eight healthy right-handed students was investigated. During slow wave sleep (SWS) the D2 of the central EEG and the temporal left hemisphere (LH) EEG were significantly higher than those in the right hemisphere (RH) EEG; but during rapid eye movement (REM) sleep, the D2 of the central EEG and the occipital RH EEG were significantly higher. The D2 of EEG in the left temporal site during REM sleep were significantly higher than in the right during the first and third sleep cycles, but these were significantly lower during the fourth and fifth sleep cycles. During REM sleep, temporal brain activity may shift from the LH to the RH as morning approaches.

  14. Hypnotic activities of chamomile and passiflora extracts in sleep-disturbed rats.

    PubMed

    Shinomiya, Kazuaki; Inoue, Toshio; Utsu, Yoshiaki; Tokunaga, Shin; Masuoka, Takayoshi; Ohmori, Asae; Kamei, Chiaki

    2005-05-01

    In the present study, we investigated hypnotic activities of chamomile and passiflora extracts using sleep-disturbed model rats. A significant decrease in sleep latency was observed with chamomile extract at a dose of 300 mg/kg, while passiflora extract showed no effects on sleep latency even at a dose of 3000 mg/kg. No significant effects were observed with both herbal extracts on total times of wakefulness, non-rapid eye movement (non-REM) sleep and REM sleep. Flumazenil, a benzodiazepine receptor antagonist, at a dose of 3 mg/kg showed a significant antagonistic effect on the shortening in sleep latency induced by chamomile extract. No significant effects were observed with chamomile and passiflora extracts on delta activity during non-REM sleep. In conclusion, chamomile extract is a herb having benzodiazepine-like hypnotic activity.

  15. Network-dependent modulation of brain activity during sleep.

    PubMed

    Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki

    2014-09-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A comparison of idiopathic hypersomnia and narcolepsy-cataplexy using self report measures and sleep diary data.

    PubMed Central

    Bruck, D; Parkes, J D

    1996-01-01

    Eighteen patients with idiopathic hypersomnia (IH) were compared with 50 patients with the narcoleptic syndrome of cataplexy and daytime sleepiness (NLS) using self report questionnaires and a diary of sleep/wake patterns. The IH group reported more consolidated nocturnal sleep, a lower propensity to nap, greater refreshment after naps, and a greater improvement in excessive daytime sleepiness since onset than the NLS group. In IH, the onset of excessive daytime sleepiness was predominantly associated with familial inheritance or a viral illness. Two variable--number of reported awakenings during nocturnal sleep and the reported change in sleepiness since onset--provided maximum discrimination between the IH and NLS groups. Confusional arousals, extended naps or nocturnal sleep, autonomic nervous system dysfunction, low ratings of medication effectiveness, or side effects of medication were not associated differentially with either IH or NLS. PMID:8778267

  17. Differential effect of an anticholinergic antidepressant on sleep-dependent memory consolidation.

    PubMed

    Goerke, Monique; Cohrs, Stefan; Rodenbeck, Andrea; Kunz, Dieter

    2014-05-01

    Rapid eye movement (REM) sleep is considered critical to the consolidation of procedural memory - the memory of skills and habits. Many antidepressants strongly suppress REM sleep, however, and procedural memory consolidation has been shown to be impaired in depressed patients on antidepressant therapy. As a result, it is important to determine whether antidepressive therapy can lead to amnestic impairment. We thus investigated the effects of the anticholinergic antidepressant amitriptyline on sleep-dependent memory consolidation. Double-blind, placebo-controlled, randomized, parallel-group study. Sleep laboratory. Twenty-five healthy men (mean age: 26.8 ± 5.6 y). 75 mg amitriptyline versus placebo. To test memory consolidation, a visual discrimination task, a finger-tapping task, the Rey-Osterrieth Complex Figure Test, and the Rey Auditory-Verbal Learning Test were performed. Sleep was measured using polysomnography. Our findings show that amitriptyline profoundly suppressed REM sleep and impaired perceptual skill learning, but not motor skill or declarative learning. Our study is the first to demonstrate that an antidepressant can affect procedural memory consolidation in healthy subjects. Moreover, considering the results of a recent study, in which selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors were shown not to impair procedural memory consolidation, our findings suggest that procedural memory consolidation is not facilitated by the characteristics of REM sleep captured by visual sleep scoring, but rather by the high cholinergic tone associated with REM sleep. Our study contributes to the understanding of potentially undesirable behavioral effects of amitriptyline.

  18. One night of sleep is insufficient to achieve sleep-to-forget emotional decontextualisation processes.

    PubMed

    Deliens, Gaétane; Peigneux, Philippe

    2014-01-01

    Neutral memories unbind from their emotional acquisition context when sleep is allowed the night after learning and testing takes place after two additional nights of sleep. However, mood-dependent memory (MDM) effects are not abolished after a restricted sleep episode mostly featuring non rapid-eye-movement (NREM) or rapid-eye-movement (REM) sleep. Here, we tested whether (1) one night of sleep featuring several NREM-REM sleep cycles is sufficient to suppress MDM effects and (2) a neutral mood is a sufficiently contrasting state to induce MDM effects, i.e. interfere with the recall of information learned in happy or sad states. Results disclosed MDM effects both in the post-learning sleep and wake conditions, with better recall in congruent than incongruent emotional contexts. Our findings suggest that the emotional unbinding needs several consecutive nights of sleep to be complete, and that even subtle mood changes are sufficient to produce MDM effects.

  19. Sleep staging with movement-related signals.

    PubMed

    Jansen, B H; Shankar, K

    1993-05-01

    Body movement related signals (i.e., activity due to postural changes and the ballistocardiac effort) were recorded from six normal volunteers using the static-charge-sensitive bed (SCSB). Visual sleep staging was performed on the basis of simultaneously recorded EEG, EMG and EOG signals. A statistical classification technique was used to determine if reliable sleep staging could be performed using only the SCSB signal. A classification rate of between 52% and 75% was obtained for sleep staging in the five conventional sleep stages and the awake state. These rates improved from 78% to 89% for classification between awake, REM and non-REM sleep and from 86% to 98% for awake versus asleep classification.

  20. Differential localization of carbachol- and bicuculline-sensitive pontine sites for eliciting REM sleep-like effects in anesthetized rats.

    PubMed

    Fenik, Victor B; Kubin, Leszek

    2009-03-01

    Carbachol, a cholinergic agonist, and GABA(A) receptor antagonists injected into the pontine dorsomedial reticular formation can trigger rapid eye movement (REM) sleep-like state. Data suggest that GABAergic and cholinergic effects interact to produce this effect but the sites where this occurs have not been delineated. In urethane-anesthetized rats, in which carbachol effectively elicits REM sleep-like episodes (REMSLE), we tested the ability of 10 nL microinjections of carbachol (10 mm) and bicuculline (0.5 or 2 mm) to elicit REMSLE at 47 sites located within the dorsal pontine reticular formation at the levels -8.00 to -10.80 from bregma (B) (Paxinos and Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego, 1997). At rostral levels, most carbachol and some bicuculline injections elicited REMSLE with latencies that gradually decreased from 242 to 12 s for carbachol and from 908 to 38 s for bicuculline for more caudal injection sites. As the latencies decreased, the durations of bicuculline-elicited REMSLE increased from 104 s to over 38 min, and the effect was dose dependent, whereas the duration of carbachol-elicited REMSLE changed little (104-354 s). Plots of REMSLE latency versus the antero-posterior coordinates revealed that both drugs were maximally effective near B-8.80. At levels caudal to B-8.80, carbachol was effective at few sites, whereas bicuculline-elicited REMSLE to at least B-9.30 level. Thus, the bicuculline-sensitive sites extended further caudally than those for carbachol and antagonism of GABA(A) receptors both triggered REMSLE and controlled their duration, whereas carbachol effects on REMSLE duration were small or limited by its concurrent REMSLE-opposing actions.

  1. [Sleep paroxysmal events in children in video/polysomnography].

    PubMed

    Zajac, Anna; Skowronek-Bała, Barbara; Wesołowska, Ewa; Kaciński, Marek

    2010-01-01

    It is estimated that about 25% of children have sleep disorders, from short problems with falling asleep to severe including primary sleep disorders. Majority of these problems are transitory and self-limiting and usually are not recognized by first care physicians and need education. Analysis of sleep structure at the developmental age and of sleep disorders associated with different sleep phases on the basis of video/polysomnography results. Literature review and illustration of fundamental problems associated with sleep physiology and pathology, with special attention to paroxysmal disorders. Additionally 4 cases from our own experience were presented with neurophysiological and clinical aspects. Discussion on REM and NREM sleep, its phases and alternating share according to child's age was conducted. Sleep disorders were in accordance with their international classification. Parasomnias, occupying most of the space, were divided in two groups: primary and secondary. Among primary parasomnias disorders associated with falling asleep (sleep myoclonus, hypnagogic hallucinations, sleep paralysis, rhythmic movement disorder, restless legs syndrome) are important. Another disorders are parasomians associated with light NREM sleep (bruxism, periodic limb movement disorder) and with deeper NREM sleep (confusional arousals, somnabulism, night terrors), with REM sleep (nightmares, REM sleep behavior disorder) and associated with NREM and REM sleep (catathrenia, sleep enuresis, sleep talking). Obstructive sleep apnea syndrome and epileptic seizures occurring during sleep also play an important role. Frontal lobe epilepsy and Panayiotopoulos syndrome should be considered in the first place in such cases. Our 4 cases document these diagnostic difficulties, requiring video/polysomnography examination 2 of them illustrate frontal lobe epilepsy and single ones myoclonic epilepsy graphy in children is a difficult technique and requires special device, local and trained

  2. Sleep-Wake Cycle and Daytime Sleepiness in the Myotonic Dystrophies

    PubMed Central

    Romigi, A.; Albanese, M.; Liguori, C.; Placidi, F.; Marciani, M. G.; Massa, R.

    2013-01-01

    Myotonic dystrophy is the most common type of muscular dystrophy in adults and is characterized by progressive myopathy, myotonia, and multiorgan involvement. Two genetically distinct entities have been identified, myotonic dystrophy type 1 (DM1 or Steinert's Disease) and myotonic dystrophy type 2 (DM2). Myotonic dystrophies are strongly associated with sleep dysfunction. Sleep disturbances in DM1 are common and include sleep-disordered breathing (SDB), periodic limb movements (PLMS), central hypersomnia, and REM sleep dysregulation (high REM density and narcoleptic-like phenotype). Interestingly, drowsiness in DM1 seems to be due to a central dysfunction of sleep-wake regulation more than SDB. To date, little is known regarding the occurrence of sleep disorders in DM2. SDB (obstructive and central apnoea), REM sleep without atonia, and restless legs syndrome have been described. Further polysomnographic, controlled studies are strongly needed, particularly in DM2, in order to clarify the role of sleep disorders in the myotonic dystrophies. PMID:26316996

  3. French consensus. Idiopathic hypersomnia: Investigations and follow-up.

    PubMed

    Leu-Semenescu, S; Quera-Salva, M-A; Dauvilliers, Y

    Idiopathic hypersomnia is a rare, central hypersomnia, recently identified and to date of unknown physiopathology. It is characterised by a more or less permanent, excessive daytime sleepiness, associated with long and unrefreshing naps. Night-time sleep is of good quality, excessive in quantity, associated with sleep inertia in the subtype previously described as "with long sleep time". Diagnosis of idiopathic hypersomnia is complex due to the absence of a quantifiable biomarker, the heterogeneous symptoms, which overlap with the clinical picture of type 2 narcolepsy, and its variable evolution over time. Detailed evaluation enables other frequent causes of somnolence, such as depression or sleep deprivation, to be eliminated. Polysomnography and multiple sleep latency tests (MSLT) are essential to rule out other sleep pathologies and to objectify excessive daytime sleepiness. Sometimes the MSLT do not show excessive sleepiness, hence a continued sleep recording of at least 24hours is necessary to show prolonged sleep (>11h/24h). In this article, we propose recommendations for the work-up to be carried out during diagnosis and follow-up for patients suffering from idiopathic hypersomnia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Diagnostic value of sleep stage dissociation as visualized on a 2-dimensional sleep state space in human narcolepsy.

    PubMed

    Olsen, Anders Vinther; Stephansen, Jens; Leary, Eileen; Peppard, Paul E; Sheungshul, Hong; Jennum, Poul Jørgen; Sorensen, Helge; Mignot, Emmanuel

    2017-04-15

    Type 1 narcolepsy (NT1) is characterized by symptoms believed to represent Rapid Eye Movement (REM) sleep stage dissociations, occurrences where features of wake and REM sleep are intermingled, resulting in a mixed state. We hypothesized that sleep stage dissociations can be objectively detected through the analysis of nocturnal Polysomnography (PSG) data, and that those affecting REM sleep can be used as a diagnostic feature for narcolepsy. A Linear Discriminant Analysis (LDA) model using 38 features extracted from EOG, EMG and EEG was used in control subjects to select features differentiating wake, stage N1, N2, N3 and REM sleep. Sleep stage differentiation was next represented in a 2D projection. Features characteristic of sleep stage differences were estimated from the residual sleep stage probability in the 2D space. Using this model we evaluated PSG data from NT1 and non-narcoleptic subjects. An LDA classifier was used to determine the best separation plane. This method replicates the specificity/sensitivity from the training set to the validation set better than many other methods. Eight prominent features could differentiate narcolepsy and controls in the validation dataset. Using a composite measure and a specificity cut off 95% in the training dataset, sensitivity was 43%. Specificity/sensitivity was 94%/38% in the validation set. Using hypersomnia subjects, specificity/sensitivity was 84%/15%. Analyzing treated narcoleptics the specificity/sensitivity was 94%/10%. Sleep stage dissociation can be used for the diagnosis of narcolepsy. However the use of some medications and presence of undiagnosed hypersomnolence patients impacts the result. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of different sleep deprivation protocols on sleep perception in healthy volunteers.

    PubMed

    Goulart, Leonardo I; Pinto, Luciano R; Perlis, Michael L; Martins, Raquel; Caboclo, Luis Otavio; Tufik, Sergio; Andersen, Monica L

    2014-10-01

    To investigate whether different protocols of sleep deprivation modify sleep perception. The effects of total sleep deprivation (TD) and selective rapid eye movement (REM) sleep deprivation (RD) on sleep perception were analyzed in normal volunteers. Thirty-one healthy males with normal sleep were randomized to one of three conditions: (i) normal uninterrupted sleep; (ii) four nights of RD; or (iii) two nights of TD. Morning perception of total sleep time was evaluated for each condition. Sleep perception was estimated using total sleep time (in hours) as perceived by the volunteer divided by the total sleep time (in hours) measured by polysomnography (PSG). The final value of this calculation was defined as the perception index (PI). There were no significant differences among the three groups of volunteers in the total sleep time measured by PSG or in the perception of total sleep time at baseline condition. Volunteers submitted to RD exhibited lower sleep PI scores as compared with controls during the sleep deprivation period (P <0.05). Both RD and TD groups showed PI similar to controls during the recovery period. Selective REM sleep deprivation reduced the ability of healthy young volunteers to perceive their total sleep time when compared with time measured by PSG. The data reinforce the influence of sleep deprivation on sleep perception. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Characterizing Sleep Structure Using the Hypnogram

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian; Bandeen-Roche, Karen; Punjabi, Naresh M.

    2008-01-01

    Objectives: Research on the effects of sleep-disordered breathing (SDB) on sleep structure has traditionally been based on composite sleep-stage summaries. The primary objective of this investigation was to demonstrate the utility of log-linear and multistate analysis of the sleep hypnogram in evaluating differences in nocturnal sleep structure in subjects with and without SDB. Methods: A community-based sample of middle-aged and older adults with and without SDB matched on age, sex, race, and body mass index was identified from the Sleep Heart Health Study. Sleep was assessed with home polysomnography and categorized into rapid eye movement (REM) and non-REM (NREM) sleep. Log-linear and multistate survival analysis models were used to quantify the frequency and hazard rates of transitioning, respectively, between wakefulness, NREM sleep, and REM sleep. Results: Whereas composite sleep-stage summaries were similar between the two groups, subjects with SDB had higher frequencies and hazard rates for transitioning between the three states. Specifically, log-linear models showed that subjects with SDB had more wake-to-NREM sleep and NREM sleep-to-wake transitions, compared with subjects without SDB. Multistate survival models revealed that subjects with SDB transitioned more quickly from wake-to-NREM sleep and NREM sleep-to-wake than did subjects without SDB. Conclusions: The description of sleep continuity with log-linear and multistate analysis of the sleep hypnogram suggests that such methods can identify differences in sleep structure that are not evident with conventional sleep-stage summaries. Detailed characterization of nocturnal sleep evolution with event history methods provides additional means for testing hypotheses on how specific conditions impact sleep continuity and whether sleep disruption is associated with adverse health outcomes. Citation: Swihart BJ; Caffo B; Bandeen-Roche K; Punjabi NM. Characterizing sleep structure using the hypnogram. J Clin

  7. Altered Regional Cerebral Blood Flow in Idiopathic Hypersomnia.

    PubMed

    Boucetta, Soufiane; Montplaisir, Jacques; Zadra, Antonio; Lachapelle, Francis; Soucy, Jean-Paul; Gravel, Paul; Dang-Vu, Thien Thanh

    2017-10-01

    Idiopathic hypersomnia is characterized by excessive daytime sleepiness, despite normal or long sleep time. Its pathophysiological mechanisms remain unclear. This pilot study aims at characterizing the neural correlates of idiopathic hypersomnia using single photon emission computed tomography. Thirteen participants with idiopathic hypersomnia and 16 healthy controls were scanned during resting wakefulness using a high-resolution single photon emission computed tomography scanner with 99mTc-ethyl cysteinate dimer to assess cerebral blood flow. The main analysis compared regional cerebral blood flow distribution between the two groups. Exploratory correlations between regional cerebral blood flow and clinical characteristics evaluated the functional correlates of those brain perfusion patterns. Significance was set at p < .05 after correction for multiple comparisons. Participants with idiopathic hypersomnia showed regional cerebral blood flow decreases in medial prefrontal cortex and posterior cingulate cortex and putamen, as well as increases in amygdala and temporo-occipital cortices. Lower regional cerebral blood flow in the medial prefrontal cortex was associated with higher daytime sleepiness. These preliminary findings suggest that idiopathic hypersomnia is characterized by functional alterations in brain areas involved in the modulation of vigilance states, which may contribute to the daytime symptoms of this condition. The distribution of regional cerebral blood flow changes was reminiscent of the patterns associated with normal non-rapid-eye-movement sleep, suggesting the possible presence of incomplete sleep-wake transitions. These abnormalities were strikingly distinct from those induced by acute sleep deprivation, suggesting that the patterns seen here might reflect a trait associated with idiopathic hypersomnia rather than a non-specific state of sleepiness. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep

  8. Noninvasive Dissection of Mouse Sleep Using a Piezoelectric Motion Sensor

    PubMed Central

    Yaghouby, Farid; Donohue, Kevin D.; O’Hara, Bruce F.; Sunderam, Sridhar

    2015-01-01

    Background Changes in autonomic control cause regular breathing during NREM sleep to fluctuate during REM. Piezoelectric cage-floor sensors have been used to successfully discriminate sleep and wake states in mice based on signal features related to respiration and other movements. This study presents a classifier for noninvasively classifying REM and NREM using a piezoelectric sensor. New Method Vigilance state was scored manually in 4-second epochs for 24-hour EEG/EMG recordings in twenty mice. An unsupervised classifier clustered piezoelectric signal features quantifying movement and respiration into three states: one active; and two inactive with regular and irregular breathing respectively. These states were hypothesized to correspond to Wake, NREM, and REM respectively. States predicted by the classifier were compared against manual EEG/EMG scores to test this hypothesis. Results Using only piezoelectric signal features, an unsupervised classifier distinguished Wake with high (89% sensitivity, 96% specificity) and REM with moderate (73% sensitivity, 75% specificity) accuracy, but NREM with poor sensitivity (51%) and high specificity (96%). The classifier sometimes confused light NREM sleep—characterized by irregular breathing and moderate delta EEG power—with REM. A supervised classifier improved sensitivities to 90, 81, and 67% and all specificities to over 90% for Wake, NREM, and REM respectively. Comparison with Existing Methods Unlike most actigraphic techniques, which only differentiate sleep from wake, the proposed piezoelectric method further dissects sleep based on breathing regularity into states strongly correlated with REM and NREM. Conclusions This approach could facilitate large-sample screening for genes influencing different sleep traits, besides drug studies or other manipulations. PMID:26582569

  9. Differences in sleep architecture between left and right temporal lobe epilepsy.

    PubMed

    Nakamura, Miki; Jin, Kazutaka; Kato, Kazuhiro; Itabashi, Hisashi; Iwasaki, Masaki; Kakisaka, Yosuke; Nakasato, Nobukazu

    2017-01-01

    To investigate whether seizure lateralization affects sleep macrostructure in patients with left and right temporal lobe epilepsy (TLE), as rapid eye movement (REM) sleep is shorter in patients with right hemispheric cerebral infarction than with left. We retrospectively analyzed data from 16 patients with TLE (6 men and 10 women aged 34.9 ± 11.4 years) who underwent polysomnography as well as long-term video electroencephalography. Ten patients were diagnosed with left TLE and six patients with right TLE. Sleep stages and respiratory events were scored based on the American Academy of Sleep Medicine criteria. Sleep and respiratory parameters were compared between the patient groups. Percentage of REM stage sleep was significantly (p < 0.05) lower in patients with left TLE (median 8.8 %, interquartile range 5.5-13.8 %) than in patients with right TLE (median 17.0 %, interquartile range 14.1-18.3 %). The other parameters showed no significant differences. Shorter REM sleep in patients with left TLE sharply contrasts with the previous report of shorter REM sleep in patients with right cerebral infarction. Laterality of the irritative epileptic focus versus destructive lesion may have different effects on the sleep macrostructures.

  10. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation

    PubMed Central

    Lee, Michael L.; Katsuyama, Ângela M.; Duge, Leanne S.; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J.; de la Iglesia, Horacio O.

    2016-01-01

    Study Objectives: Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. Methods: We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. Results: When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Conclusions: Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. Citation: Lee ML, Katsuyama AM, Duge LS, Sriram C, Krushelnytskyy M, Kim JJ, de la Iglesia HO. Fragmentation of rapid eye movement

  11. Proton Pump Inhibition Increases Rapid Eye Movement Sleep in the Rat

    PubMed Central

    Jha, Sushil K.

    2014-01-01

    Increased bodily CO2 concentration alters cellular pH as well as sleep. The proton pump, which plays an important role in the homeostatic regulation of cellular pH, therefore, may modulate sleep. We investigated the effects of the proton pump inhibitor “lansoprazole” on sleep-wakefulness. Male Wistar rats were surgically prepared for chronic polysomnographic recordings. Two different doses of lansoprazole (low: 1 mg/kg; high: 10 mg/kg) were injected intraperitoneally in the same animal (n = 7) and sleep-wakefulness was recorded for 6 hrs. The changes in sleep-wakefulness were compared statistically. Percent REM sleep amount in the vehicle and lansoprazole low dose groups was 9.26 ± 1.03 and 9.09 ± 0.54, respectively, which increased significantly in the lansoprazole high dose group by 31.75% (from vehicle) and 34.21% (from low dose). Also, REM sleep episode numbers significantly increased in lansoprazole high dose group. Further, the sodium-hydrogen exchanger blocker “amiloride” (10 mg/kg; i.p.) (n = 5) did not alter sleep-wake architecture. Our results suggest that the proton pump plays an important role in REM sleep modulation and supports our view that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep. PMID:24701564

  12. Sleep in vertebrate and invertebrate animals, and insights into the function and evolution of sleep.

    PubMed

    Miyazaki, Shinichi; Liu, Chih-Yao; Hayashi, Yu

    2017-05-01

    Many mammalian species, including humans, spend a substantial fraction of their life sleeping. Sleep deprivation in rats ultimately leads to death, indicating the essential role of sleep. Exactly why sleep is so essential, however, remains largely unknown. From an evolutionary point of view, almost all animal species that have been investigated exhibit sleep or sleep-like states, suggesting that sleep may benefit survival. In certain mammalian and avian species, sleep can be further divided into at least two stages, rapid eye movement (REM) sleep and non-REM sleep. In addition to a widely conserved role for sleep, these individual sleep stages may have roles unique to these animals. The recent use of state-of-the-art techniques, including optogenetics and chemogenetics, has greatly broadened our understanding of the neural mechanisms of sleep regulation, allowing us to address the function of sleep. Studies focusing on non-mammalian animals species have also provided novel insights into the evolution of sleep. This review provides a comprehensive overview regarding the current knowledge of the function and evolution of sleep. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  13. Strain differences in the influence of open field exposure on sleep in mice.

    PubMed

    Tang, Xiangdong; Xiao, Jihua; Liu, Xianling; Sanford, Larry D

    2004-09-23

    The open field (OF) is thought to induce anxiety in rodents. It also allows an opportunity for exploration in a novel environment. Less activity in the OF is thought to indicate greater anxiety whereas more activity may reflect greater exploration, and possibly greater exploratory learning. Anxiety and learning have poorly understood relationships to sleep. In order to determine how anxiety and exploration in the OF could influence sleep, we recorded sleep in mouse strains (C57BL/6J (B6), BALB/cJ (C), DBA/2J (D2), and CB6F1/J (CB6)) with different levels of anxiety and exploration after 30 min in an OF. In all strains, OF exposure induced immediate decreases in rapid eye movement sleep (REM) followed by longer latency increases in REM. The time course and amount of REM decreases and increases varied among strains. Compared to less anxious B6, D2 and CB6 mice, C mice had greater and longer lasting immediate decreases in REM. C mice also displayed longer periods of decreases REM and a smaller, longer latency increase in REM. OF exploratory activity was positively correlated to percentage of REM increases from 6 to 10h after OF exposure. The results suggest that the anxiogenic component of the OF produced an immediate decrease in REM that was greater in more "anxious" mice. In contrast, exploration in the OF was associated with increased REM, with the increase greater in less anxious mice. The results are discussed with respect to the potential influences of anxiety and learning on sleep.

  14. Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep

    PubMed Central

    Brandon, Mark P.; Bogaard, Andrew; Andrews, Chris M.; Hasselmo, Michael E.

    2011-01-01

    During slow-wave sleep and REM sleep, hippocampal place cells in the rat show replay of sequences previously observed during waking. We tested the hypothesis from computational modelling that the temporal structure of REM sleep replay could arise from an interplay of place cells with head direction cells in the postsubiculum. Physiological single-unit recording was performed simultaneously from five or more head direction or place by head direction cells in the postsubiculum during running on a circular track allowing sampling of a full range of head directions, and during sleep periods before and after running on the circular track. Data analysis compared the spiking activity during individual REM periods with waking as in previous analysis procedures for REM sleep. We also used a new procedure comparing groups of similar runs during waking with REM sleep periods. There was no consistent evidence for a statistically significant correlation of the temporal structure of spiking during REM sleep with spiking during waking running periods. Thus, the spiking activity of head direction cells during REM sleep does not show replay of head direction cell activity occurring during a previous waking period of running on the task. In addition, we compared the spiking of postsubiculum neurons during hippocampal sharp wave ripple events. We show that head direction cells are not activated during sharp wave ripples, while neurons responsive to place in the postsubiculum show reliable spiking at ripple events. PMID:21509854

  15. Idiopathic hypersomnia: a report of three adolescent-onset cases in a two-generation family.

    PubMed

    Janácková, Sona; Motte, Jacques; Bakchine, Serge; Sforza, Emilia

    2011-04-01

    Idiopathic hypersomnia is an uncommon sleep disorder characterized by prolonged sleep time and excessive daytime sleepiness without cataplexy. This study concerned a case of familial occurrence. The proband expressed an idiopathic hypersomnia with long sleep time at the age of 12 years. Clinical interview and ad libitum polysomnographic study did not reveal any symptoms of narcolepsy or other sleep disorders. Family history revealed that a 20-year-old sister had experienced symptoms of hypersomnia from the age of 16 and their mother had been diagnosed with idiopathic hypersomnia previously. The diagnosis of idiopathic hypersomnia with long sleep time was confirmed in the sister by clinical interview and ad libitum polysomnography. Human leukocyte antigen (HLA) did not reveal the DQB1-0602 phenotype in the proband and relatives. This report confirms the hypothesis of a genetic predisposition in idiopathic hypersomnia.

  16. Dietary Prebiotics and Bioactive Milk Fractions Improve NREM Sleep, Enhance REM Sleep Rebound and Attenuate the Stress-Induced Decrease in Diurnal Temperature and Gut Microbial Alpha Diversity

    PubMed Central

    Thompson, Robert S.; Roller, Rachel; Mika, Agnieszka; Greenwood, Benjamin N.; Knight, Rob; Chichlowski, Maciej; Berg, Brian M.; Fleshner, Monika

    2017-01-01

    Severe, repeated or chronic stress produces negative health outcomes including disruptions of the sleep/wake cycle and gut microbial dysbiosis. Diets rich in prebiotics and glycoproteins impact the gut microbiota and may increase gut microbial species that reduce the impact of stress. This experiment tested the hypothesis that consumption of dietary prebiotics, lactoferrin (Lf) and milk fat globule membrane (MFGM) will reduce the negative physiological impacts of stress. Male F344 rats, postnatal day (PND) 24, received a diet with prebiotics, Lf and MFGM (test) or a calorically matched control diet. Fecal samples were collected on PND 35/70/91 for 16S rRNA sequencing to examine microbial composition and, in a subset of rats; Lactobacillus rhamnosus was measured using selective culture. On PND 59, biotelemetry devices were implanted to record sleep/wake electroencephalographic (EEG). Rats were exposed to an acute stressor (100, 1.5 mA, tail shocks) on PND 87 and recordings continued until PND 94. Test diet, compared to control diet, increased fecal Lactobacillus rhamnosus colony forming units (CFU), facilitated non-rapid eye movement (NREM) sleep consolidation (PND 71/72) and enhanced rapid eye movement (REM) sleep rebound after stressor exposure (PND 87). Rats fed control diet had stress-induced reductions in alpha diversity and diurnal amplitude of temperature, which were attenuated by the test diet (PND 91). Stepwise multiple regression analysis revealed a significant linear relationship between early-life Deferribacteres (PND 35) and longer NREM sleep episodes (PND 71/72). A diet containing prebiotics, Lf and MFGM enhanced sleep quality, which was related to changes in gut bacteria and modulated the impact of stress on sleep, diurnal rhythms and the gut microbiota. PMID:28119579

  17. Quantifying Infra-slow Dynamics of Spectral Power and Heart Rate in Sleeping Mice.

    PubMed

    Fernandez, Laura M J; Lecci, Sandro; Cardis, Romain; Vantomme, Gil; Béard, Elidie; Lüthi, Anita

    2017-08-02

    Three vigilance states dominate mammalian life: wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. As more neural correlates of behavior are identified in freely moving animals, this three-fold subdivision becomes too simplistic. During wakefulness, ensembles of global and local cortical activities, together with peripheral parameters such as pupillary diameter and sympathovagal balance, define various degrees of arousal. It remains unclear the extent to which sleep also forms a continuum of brain states-within which the degree of resilience to sensory stimuli and arousability, and perhaps other sleep functions, vary gradually-and how peripheral physiological states co-vary. Research advancing the methods to monitor multiple parameters during sleep, as well as attributing to constellations of these functional attributes, is central to refining our understanding of sleep as a multifunctional process during which many beneficial effects must be executed. Identifying novel parameters characterizing sleep states will open opportunities for novel diagnostic avenues in sleep disorders. We present a procedure to describe dynamic variations of mouse non-REM sleep states via the combined monitoring and analysis of electroencephalogram (EEG)/electrocorticogram (ECoG), electromyogram (EMG), and electrocardiogram (ECG) signals using standard polysomnographic recording techniques. Using this approach, we found that mouse non-REM sleep is organized into cycles of coordinated neural and cardiac oscillations that generate successive 25-s intervals of high and low fragility to external stimuli. Therefore, central and autonomic nervous systems are coordinated to form behaviorally distinct sleep states during consolidated non-REM sleep. We present surgical manipulations for polysomnographic (i.e., EEG/EMG combined with ECG) monitoring to track these cycles in the freely sleeping mouse, the analysis to quantify their dynamics, and the acoustic stimulation protocols to

  18. SLEEP AND MENTAL DISORDERS: A META-ANALYSIS OF POLYSOMNOGRAPHIC RESEARCH

    PubMed Central

    Baglioni, Chiara; Nanovska, Svetoslava; Regen, Wolfram; Spiegelhalder, Kai; Feige, Bernd; Nissen, Christoph; Reynolds, Charles F.; Riemann, Dieter

    2016-01-01

    Investigating sleep in mental disorders has the potential to reveal both disorder-specific and transdiagnostic psychophysiological mechanisms. This meta-analysis aimed at determining the polysomnographic (PSG) characteristics of several mental disorders. Relevant studies were searched through standard strategies. Controlled PSG studies evaluating sleep in affective, anxiety, eating, pervasive developmental, borderline and antisocial personality disorders, ADHD, and schizophrenia were included. PSG variables of sleep continuity, depth, and architecture, as well as rapid-eye movement (REM) sleep were considered. Calculations were performed with the “Comprehensive Meta-Analysis” and “R” softwares. Using random effects modeling, for each disorder and each variable, a separate meta-analysis was conducted if at least 3 studies were available for calculation of effect sizes as standardized means (Hedges’g). Sources of variability, i.e., sex, age, and mental disorders comorbidity, were evaluated in subgroup analyses. Sleep alterations were evidenced in all disorders, with the exception of ADHD and seasonal affective disorders. Sleep continuity problems were observed in most mental disorders. Sleep depth and REM pressure alterations were associated with affective, anxiety, autism and schizophrenia disorders. Comorbidity was associated with enhanced REM sleep pressure and more inhibition of sleep depth. No sleep parameter was exclusively altered in one condition; however, no two conditions shared the same PSG profile. Sleep continuity disturbances imply a transdiagnostic imbalance in the arousal system likely representing a basic dimension of mental health. Sleep depth and REM variables might play a key role in psychiatric comorbidity processes. Constellations of sleep alterations may define distinct disorders better than alterations in one single variable. PMID:27416139

  19. Electronic Sleep Stage Classifiers: A Survey and VLSI Design Methodology.

    PubMed

    Kassiri, Hossein; Chemparathy, Aditi; Salam, M Tariqus; Boyce, Richard; Adamantidis, Antoine; Genov, Roman

    2017-02-01

    First, existing sleep stage classifier sensors and algorithms are reviewed and compared in terms of classification accuracy, level of automation, implementation complexity, invasiveness, and targeted application. Next, the implementation of a miniature microsystem for low-latency automatic sleep stage classification in rodents is presented. The classification algorithm uses one EMG (electromyogram) and two EEG (electroencephalogram) signals as inputs in order to detect REM (rapid eye movement) sleep, and is optimized for low complexity and low power consumption. It is implemented in an on-board low-power FPGA connected to a multi-channel neural recording IC, to achieve low-latency (order of 1 ms or less) classification. Off-line experimental results using pre-recorded signals from nine mice show REM detection sensitivity and specificity of 81.69% and 93.86%, respectively, with the maximum latency of 39 [Formula: see text]. The device is designed to be used in a non-disruptive closed-loop REM sleep suppression microsystem, for future studies of the effects of REM sleep deprivation on memory consolidation.

  20. Input Source and Strength Influences Overall Firing Phase of Model Hippocampal CA1 Pyramidal Cells During Theta: Relevance to REM Sleep Reactivation and Memory Consolidation

    PubMed Central

    Booth, Victoria; Poe, Gina R.

    2005-01-01

    In simulation studies using a realistic model CA1 pyramidal cell, we accounted for the shift in mean firing phase from theta cycle peaks to theta cycle troughs during REM sleep reactivation of hippocampal CA1 place cells over several days of growing familiarization with an environment (Poe et al., 2000). Changes in the theta drive between proximal and distal dendritic regions of the cell modulated the theta phase of firing when stimuli were presented at proximal and distal dendritic locations. Stimuli at proximal dendritic sites (proximal to 100 μm from the soma) invoked firing with a significant phase preference at the depolarizing theta peaks, while distal stimuli (> 290 μm from the soma) invoked firing at hyperpolarizing theta troughs. The location-related phase preference depended on active dendritic conductances, a sufficient electrotonic separation between input sites and theta-induced subthreshold membrane potential oscillations in the cell. The simulation results predict that the shift in mean theta phase during REM sleep cellular reactivation could occur through potentiation of distal dendritic (temporo-ammonic) synapses and depotentiation of proximal dendritic (Schaffer collateral) synapses over the course of familiarization. PMID:16411243

  1. Obstructive sleep apnea related to rapid-eye-movement or non-rapid-eye-movement sleep: comparison of demographic, anthropometric, and polysomnographic features

    PubMed Central

    Sunnetcioglu, Aysel; Sertogullarından, Bunyamin; Ozbay, Bulent; Gunbatar, Hulya; Ekin, Selami

    2016-01-01

    Objective : To determine whether there are significant differences between rapid-eye-movement (REM)-related obstructive sleep apnea (OSA) and non-REM (NREM)-related OSA, in terms of the demographic, anthropometric, and polysomnographic characteristics of the subjects. Methods : This was a retrospective study of 110 patients (75 males) with either REM-related OSA (n = 58) or NREM-related OSA (n = 52). To define REM-related and NREM-related OSA, we used a previously established criterion, based on the apnea-hypopnea index (AHI): AHI-REM/AHI-NREM ratio > 2 and ≤ 2, respectively. Results : The mean age of the patients with REM-related OSA was 49.5 ± 11.9 years, whereas that of the patients with NREM-related OSA was 49.2 ± 12.6 years. The overall mean AHI (all sleep stages combined) was significantly higher in the NREM-related OSA group than in the REM-related OSA group (38.6 ± 28.2 vs. 14.8 ± 9.2; p < 0.05). The mean AHI in the supine position (s-AHI) was also significantly higher in the NREM-related OSA group than in the REM-related OSA group (49.0 ± 34.3 vs. 18.8 ± 14.9; p < 0.0001). In the NREM-related OSA group, the s-AHI was higher among the men. In both groups, oxygen desaturation was more severe among the women. We found that REM-related OSA was more common among the patients with mild-to-moderate OSA, whereas NREM-related OSA was more common among those with severe OSA. Conclusions : We found that the severity of NREM-related OSA was associated mainly with s-AHI. Our findings suggest that the s-AHI has a more significant effect on the severity of OSA than does the AHI-REM. When interpreting OSA severity and choosing among treatment modalities, physicians should take into consideration the sleep stage and the sleep posture. PMID:26982041

  2. Quantitative EEG of Rapid-Eye-Movement Sleep: A Marker of Amnestic Mild Cognitive Impairment.

    PubMed

    Brayet, Pauline; Petit, Dominique; Frauscher, Birgit; Gagnon, Jean-François; Gosselin, Nadia; Gagnon, Katia; Rouleau, Isabelle; Montplaisir, Jacques

    2016-04-01

    The basal forebrain cholinergic system, which is impaired in early Alzheimer's disease, is more crucial for the activation of rapid-eye-movement (REM) sleep electroencephalogram (EEG) than it is for wakefulness. Quantitative EEG from REM sleep might thus provide an earlier and more accurate marker of the development of Alzheimer's disease in subjects with mild cognitive impairment (MCI) subjects than that from wakefulness. To assess the superiority of the REM sleep EEG as a screening tool for preclinical Alzheimer's disease, 22 subjects with amnestic MCI (a-MCI; 63.9±7.7 years), 10 subjects with nonamnestic MCI (na-MCI; 64.1±4.5 years) and 32 controls (63.7±6.6 years) participated in the study. Spectral analyses of the waking EEG and REM sleep EEG were performed and the [(delta+theta)/(alpha+beta)] ratio was used to assess between-group differences in EEG slowing. The a-MCI subgroup showed EEG slowing in frontal lateral regions compared to both na-MCI and control groups. This EEG slowing was present in wakefulness (compared to controls) but was much more prominent in REM sleep. Moreover, the comparison between amnestic and nonamnestic subjects was found significant only for the REM sleep EEG. There was no difference in EEG power ratio between na-MCI and controls for any of the 7 cortical regions studied. These findings demonstrate the superiority of the REM sleep EEG in the discrimination between a-MCI and both na-MCI and control subjects. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  3. Sleep monitoring - The second manned Skylab mission

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Shumate, W. H.; Booher, C. R.; Salamy, J. G.

    1976-01-01

    Sleep patterns were monitored in one subject aboard each of the manned Skylab missions. In all three subjects stage 3 sleep increased during the flight and consistently decreased postflight. Stage REM was elevated, and REM latency decreased in the late postflight period. The number of awakenings remained the same or decreased during flight. No changes were observed which could be expected to adversely affect performance capability.

  4. The Relative Contributions of the Homeostatic and Circadian Processes to Sleep Regulation under Conditions of Severe Sleep Restriction

    PubMed Central

    Paech, Gemma M.; Ferguson, Sally A.; Sargent, Charli; Kennaway, David J.; Roach, Gregory D.

    2012-01-01

    Study Objectives: To investigate the relative contributions of the homeostatic and circadian processes on sleep regulation under conditions of severe sleep restriction. Design: The 13-day laboratory based study consisted of 3 × 24-h baseline days (8 h sleep opportunity, 16 h wake) followed by 7 × 28-h forced desynchrony days (4.7 h sleep opportunity, 23.3 h wake). Setting: The study was conducted in a time isolation unit at the Centre for Sleep Research, University of South Australia. Participants: Fourteen healthy, nonsmoking males, aged 21.8 ± 3.8 (mean ± SD) years participated in the study. Interventions: N/A Measurements: Sleep was measured using standard polysomnography. Core body temperature (CBT) was recorded continuously using a rectal thermistor. Each epoch of sleep was assigned a circadian phase based on the CBT data (6 × 60-degree bins) and an elapsed time into sleep episode (2 × 140-min intervals). Results: The percentage of SWS decreased with elapsed time into the sleep episode. However, no change in the percentage of REM sleep was observed with sleep progression. Whilst there was a circadian modulation of REM sleep, the amplitude of the circadian variation was smaller than expected. Sleep efficiency remained high throughout the sleep episode and across all circadian phases. Conclusions: Previous forced desynchrony studies have demonstrated a strong circadian influence on sleep, in the absence of sleep restriction. The current study suggests that in the presence of high homeostatic pressure, the circadian modulation of sleep, in particular sleep efficiency and to a lesser extent, REM sleep, are reduced. Citation: Paech GM; Ferguson SA; Sargent C; Kennaway DJ; Roach GD. The relative contributions of the homeostatic and circadian processes to sleep regulation under conditions of severe sleep restriction. SLEEP 2012;35(7):941-948. PMID:22754040

  5. Modulation of group II metabotropic glutamate receptor (mGlu2) elicits common changes in rat and mice sleep-wake architecture.

    PubMed

    Ahnaou, Abdellah; Dautzenberg, Frank M; Geys, Helena; Imogai, Hassan; Gibelin, Antoine; Moechars, Dieder; Steckler, Thomas; Drinkenburg, Wilhelmus H I M

    2009-01-28

    Compiling pharmacological evidence implicates metabotropic glutamate mGlu(2) receptors in the regulation of emotional states and suggests positive modulators as a novel therapeutic approach of Anxiety/Depression and Schizophrenia. Here, we investigated subcutaneous effects of the metabotropic glutamate mGlu(2/3) agonist (LY354740) on sleep-wake architecture in rat. To confirm the specific effects on rapid eye movement (REM) sleep were mediated via metabotropic glutamate mGlu(2) receptors, we characterized the sleep-wake cycles in metabotropic glutamate mGlu(2) receptor deficient mice (mGlu(2)R(-/-)) and their arousal response to LY354740. We furthermore examined effects on sleep behavior in rats of the positive allosteric modulator, biphenyl-indanone A (BINA) alone and in combination with LY354740 at sub-effective doses. LY354740 (1, 3 and 10 mg/kg) dose-dependently suppressed REM sleep and prolonged its onset latency. Metabotropic glutamate mGlu(2)R(-/-) and their wild type (WT) littermates exhibited similar spontaneous sleep-wake phenotype, while LY354740 (10 mg/kg) significantly affected REM sleep variables in WT but not in the mutant. In rats, BINA (1, 3, 10, 20, 40 mg/kg) dose-dependently suppressed REM sleep, lengthened its onset latency and slightly enhanced passive waking. Additionally, combined treatment elicited a synergistic action on REM sleep variables. Our findings show common changes of REM sleep variables following modulation of metabotropic glutamate mGlu(2) receptor and support an active role of this receptor in the regulation of REM sleep. The synergistic action of BINA on LY354740's effects on sleep pattern implies that positive modulators would tune the endogenous glutamate tone suggesting potential benefit in the treatment of psychiatric disorders, in which REM sleep overdrive is manifested.

  6. Altered sleep and affect in the neurotensin receptor 1 knockout mouse.

    PubMed

    Fitzpatrick, Karrie; Winrow, Christopher J; Gotter, Anthony L; Millstein, Joshua; Arbuzova, Janna; Brunner, Joseph; Kasarskis, Andrew; Vitaterna, Martha H; Renger, John J; Turek, Fred W

    2012-07-01

    Sleep and mood disorders have long been understood to have strong genetic components, and there is considerable comorbidity of sleep abnormalities and mood disorders, suggesting the involvement of common genetic pathways. Here, we examine a candidate gene implicated in the regulation of both sleep and affective behavior using a knockout mouse model. Previously, we identified a quantitative trait locus (QTL) for REM sleep amount, REM sleep bout number, and wake amount in a genetically segregating population of mice. Here, we show that traits mapping to this QTL correlated with an expression QTL for neurotensin receptor 1 (Ntsr1), a receptor for neurotensin, a ligand known to be involved in several psychiatric disorders. We examined sleep as well as behaviors indicative of anxiety and depression in the NTSR1 knockout mouse. NTSR1 knockouts had a lower percentage of sleep time spent in REM sleep in the dark phase and a larger diurnal variation in REM sleep duration than wild types under baseline conditions. Following sleep deprivation, NTSR1 knockouts exhibited more wake and less NREM rebound sleep. NTSR1 knockouts also showed increased anxious and despair behaviors. Here we illustrate a link between expression of the Ntsr1 gene and sleep traits previously associated with a particular QTL. We also demonstrate a relationship between Ntsr1 and anxiety and despair behaviors. Given the considerable evidence that anxiety and depression are closely linked with abnormalities in sleep, the data presented here provide further evidence that neurotensin and Ntsr1 may be a component of a pathway involved in both sleep and mood disorders.

  7. Differential localization of carbachol- and bicuculline-sensitive pontine sites for eliciting REM sleep-like effects in anesthetized rats

    PubMed Central

    FENIK, VICTOR B.; KUBIN, LESZEK

    2017-01-01

    SUMMARY Carbachol, a cholinergic agonist, and GABAA receptor antagonists injected into the pontine dorsomedial reticular formation can trigger rapid eye movement (REM) sleep-like state. Data suggest that GABAergic and cholinergic effects interact to produce this effect but the sites where this occurs have not been delineated. In urethane-anesthetized rats, in which carbachol effectively elicits REM sleep-like episodes (REMSLE), we tested the ability of 10 nL microinjections of carbachol (10 mM) and bicuculline (0.5 or 2 mM) to elicit REMSLE at 47 sites located within the dorsal pontine reticular formation at the levels −8.00 to −10.80 from bregma (B) (Paxinos and Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego, 1997). At rostral levels, most carbachol and some bicuculline injections elicited REMSLE with latencies that gradually decreased from 242 to 12 s for carbachol and from 908 to 38 s for bicuculline for more caudal injection sites. As the latencies decreased, the durations of bicuculline-elicited REMSLE increased from 104 s to over 38 min, and the effect was dose dependent, whereas the duration of carbachol-elicited REMSLE changed little (104– 354 s). Plots of REMSLE latency versus the antero-posterior coordinates revealed that both drugs were maximally effective near B-8.80. At levels caudal to B-8.80, carbachol was effective at few sites, whereas bicuculline-elicited REMSLE to at least B-9.30 level. Thus, the bicuculline-sensitive sites extended further caudally than those for carbachol and antagonism of GABAA receptors both triggered REMSLE and controlled their duration, whereas carbachol effects on REMSLE duration were small or limited by its concurrent REMSLE-opposing actions. PMID:19021854

  8. Temporal Organization of the Sleep-Wake Cycle under Food Entrainment in the Rat

    PubMed Central

    Castro-Faúndez, Javiera; Díaz, Javier; Ocampo-Garcés, Adrián

    2016-01-01

    Study Objectives: To analyze the temporal organization of the sleep-wake cycle under food entrainment in the rat. Methods: Eighteen male Sprague-Dawley rats were chronically implanted for polysomnographic recording. During the baseline (BL) protocol, rats were recorded under a 12:12 light-dark (LD) schedule in individual isolation chambers with food and water ad libitum. Food entrainment was performed by means of a 4-h food restriction (FR) protocol starting at photic zeitgeber time 5. Eight animals underwent a 3-h phase advance of the FR protocol (A-FR). We compared the mean curves and acrophases of wakefulness, NREM sleep, and REM sleep under photic and food entrainment and after a phase advance in scheduled food delivery. We further evaluated the dynamics of REM sleep homeostasis and the NREM sleep EEG delta wave profile. Results: A prominent food-anticipatory arousal interval was observed after nine or more days of FR, characterized by increased wakefulness and suppression of REM sleep propensity and dampening of NREM sleep EEG delta activity. REM sleep exhibited a robust nocturnal phase preference under FR that was not explained by a nocturnal REM sleep rebound. The mean curve of sleep-wake states and NREM sleep EEG delta activity remained phase-locked to the timing of meals during the A-FR protocol. Conclusions: Our results support the hypothesis that under food entrainment, the sleep-wake cycle is coupled to a food-entrainable oscillator (FEO). Our findings suggest an unexpected interaction between FEO output and NREM sleep EEG delta activity generators. Citation: Castro-Faúndez J, Díaz J, Ocampo-Garcés A. Temporal organization of the sleep-wake cycle under food entrainment in the rat. SLEEP 2016;39(7):1451–1465. PMID:27091526

  9. In Search of a Good Night's Sleep.

    PubMed

    Leahy, Laura G

    2017-10-01

    A good night's sleep is essential to overall physical, cognitive, and emotional well-being. Sleep deprivation, whether general or related to time changes (e.g., daylight saving time), contributes to decreased cognition, impaired memory, poor coordination, mood fluctuations, increased risk of heart disease and diabetes, and weight gain, among others. The sleep cycle is defined by five stages and two distinct parts-rapid eye movement (REM) and non-REM sleep-that work to promote not only the quantity of sleep but also the quality of sleep, which impacts overall health. Each stage of sleep is influenced by various neurochemical actions among the brain regions. The neurochemistry and neuropath-ways related to the sleep/wake cycle as well as the mechanisms of action of sleep-inducing and wake-promoting medications are explored. [Journal of Psychosocial Nursing and Mental Health Services, 55(10), 19-26.]. Copyright 2017, SLACK Incorporated.

  10. Electrocardiogram-Based Sleep Spectrogram Measures of Sleep Stability and Glucose Disposal in Sleep Disordered Breathing

    PubMed Central

    Pogach, Melanie S.; Punjabi, Naresh M.; Thomas, Neil; Thomas, Robert J.

    2012-01-01

    Study Objectives: Sleep disordered breathing (SDB) is independently associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Experimental sleep fragmentation has been shown to impair insulin sensitivity. Conventional electroencephalogram (EEG)-based sleep-quality measures have been inconsistently associated with indices of glucose metabolism. This analysis explored associations between glucose metabolism and an EEG-independent measure of sleep quality, the sleep spectrogram, which maps coupled oscillations of heart-rate variability and electrocardiogram (ECG)-derived respiration. The method allows improved characterization of the quality of stage 2 non-rapid eye movement (NREM) sleep. Design: Cross-sectional study. Setting: N/A. Participants: Nondiabetic subjects with and without SDB (n = 118) underwent the frequently sampled intravenous glucose tolerance test (FSIVGTT) and a full-montage polysomnogram. The sleep spectrogram was generated from ECG collected during polysomnography. Interventions: N/A. Measurements and Results: Standard polysomnographic stages (stages 1, 2, 3+4, and rapid eye movement [REM]) were not associated with the disposition index (DI) derived from the FSIVGTT. In contrast, spectrographic high-frequency coupling (a marker of stable or “effective” sleep) duration was associated with increased, and very-low-frequency coupling (a marker of wake/REM/transitions) associated with reduced DI. This relationship was noted after adjusting for age, sex, body mass index, slow wave sleep, total sleep time, stage 1, the arousal index, and the apnea-hypopnea index. Conclusions: ECG-derived sleep-spectrogram measures of sleep quality are associated with alterations in glucose-insulin homeostasis. This alternate mode of estimating sleep quality could improve our understanding of sleep and sleep-breathing effects on glucose metabolism. Citation: Pogach MS; Punjabi NM; Thomas N; Thomas RJ. Electrocardiogram-based sleep

  11. Nightmares affect the experience of sleep quality but not sleep architecture: an ambulatory polysomnographic study.

    PubMed

    Paul, Franc; Schredl, Michael; Alpers, Georg W

    2015-01-01

    Nightmares and bad dreams are common in people with emotional disturbances. For example, nightmares are a core symptom in posttraumatic stress disorder and about 50% of borderline personality disorder patients suffer from frequent nightmares. Independent of mental disorders, nightmares are often associated with sleep problems such as prolonged sleep latencies, poorer sleep quality, and daytime sleepiness. It has not been well documented whether this is reflected in objectively quantifiable physiological indices of sleep quality. Questionnaires regarding subjective sleep quality and ambulatory polysomnographic recordings of objective sleep parameters were collected during three consecutive nights in 17 individuals with frequent nightmares (NM) and 17 healthy control participants (HC). NM participants reported worse sleep quality, more waking problems and more severe insomnia compared to HC group. However, sleep measures obtained by ambulatory polysomnographic recordings revealed no group differences in (a) overall sleep architecture, (b) sleep cycle duration as well as REM density and REM duration in each cycle and (c) sleep architecture when only nights with nightmares were analyzed. Our findings support the observation that nightmares result in significant impairment which is independent from disturbed sleep architecture. Thus, these specific problems require specific attention and appropriate treatment.

  12. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters

    PubMed Central

    Rempe, Michael J; Clegern, William C; Wisor, Jonathan P

    2015-01-01

    Introduction Rodent sleep research uses electroencephalography (EEG) and electromyography (EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, typically sampled at >100 Hz, are segmented arbitrarily into epochs of equal duration (usually 2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye-movement sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the burden associated with state and thereby facilitate the use of shorter epoch durations. Methods We developed a semiautomated state-scoring procedure that uses a combination of principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as lactate concentration. Results More than 89% of epochs scored as wake or SWS by the human were scored as the same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of epochs scored as REMS by the human were also scored as REMS by the machine. However, of epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were detected equally effectively with the automated method or the manual scoring method. Error associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity and cerebral lactate either did not differ significantly when state scoring was done with automated versus visual scoring, or was reduced with automated state

  13. Sleep and mental disorders: A meta-analysis of polysomnographic research.

    PubMed

    Baglioni, Chiara; Nanovska, Svetoslava; Regen, Wolfram; Spiegelhalder, Kai; Feige, Bernd; Nissen, Christoph; Reynolds, Charles F; Riemann, Dieter

    2016-09-01

    Investigating sleep in mental disorders has the potential to reveal both disorder-specific and transdiagnostic psychophysiological mechanisms. This meta-analysis aimed at determining the polysomnographic (PSG) characteristics of several mental disorders. Relevant studies were searched through standard strategies. Controlled PSG studies evaluating sleep in affective, anxiety, eating, pervasive developmental, borderline and antisocial personality disorders, attention-deficit-hyperactivity disorder (ADHD), and schizophrenia were included. PSG variables of sleep continuity, depth, and architecture, as well as rapid-eye movement (REM) sleep were considered. Calculations were performed with the "Comprehensive Meta-Analysis" and "R" software. Using random effects modeling, for each disorder and each variable, a separate meta-analysis was conducted if at least 3 studies were available for calculation of effect sizes as standardized means (Hedges' g). Sources of variability, that is, sex, age, and mental disorders comorbidity, were evaluated in subgroup analyses. Sleep alterations were evidenced in all disorders, with the exception of ADHD and seasonal affective disorders. Sleep continuity problems were observed in most mental disorders. Sleep depth and REM pressure alterations were associated with affective, anxiety, autism and schizophrenia disorders. Comorbidity was associated with enhanced REM sleep pressure and more inhibition of sleep depth. No sleep parameter was exclusively altered in 1 condition; however, no 2 conditions shared the same PSG profile. Sleep continuity disturbances imply a transdiagnostic imbalance in the arousal system likely representing a basic dimension of mental health. Sleep depth and REM variables might play a key role in psychiatric comorbidity processes. Constellations of sleep alterations may define distinct disorders better than alterations in 1 single variable. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Sleep to implement an intention.

    PubMed

    Diekelmann, Susanne; Wilhelm, Ines; Wagner, Ullrich; Born, Jan

    2013-01-01

    Sleep supports the consolidation of new memories. However, this effect has mainly been shown for memories of past events. Here we investigated the role of sleep for the implementation of intentions for the future. Subjects were instructed on a plan that had to be executed after a delay of 2 days. After plan instruction, subjects were either allowed to sleep or stayed awake for one night (Exp. 1) or had a 3-h sleep period either during the early night (SWS-rich sleep) or late night (REM-rich sleep; Exp. 2). In both experiments, retesting took place 2 days later after one recovery night. Sleep laboratory. A total of 56 healthy young adults participated in the study. N/A. All of the subjects who were allowed to sleep after plan instruction executed the intention 2 days later, whereas only 61% of wake subjects did so (P = 0.004; Exp. 1). Also after early SWS-rich sleep all of the subjects remembered to execute the intention, but only 55% did so after late REM-rich sleep (P = 0.015; Exp. 2). Sleep, especially SWS, plays an important role for the successful implementation of delayed intentions.

  15. Predeployment Sleep Duration and Insomnia Symptoms as Risk Factors for New-Onset Mental Health Disorders Following Military Deployment

    DTIC Science & Technology

    2013-01-01

    avoidance symptoms, 2 hyperarousal symptoms, and 1 intrusion symptom were endorsed at “moderate” or higher levels.27,29 Since the sleep item from the...processes related to specific sleep stages. REM sleep mechanisms are one potential candidate, given that REM fragmentation has been proposed in the...Psychiatry 2002;159:855-7. 41. Mellman TA, Bustamante V, Fins AI, Pigeon WR, Nolan B. Rem sleep and the early development of posttraumatic stress

  16. Low Activity Microstates During Sleep.

    PubMed

    Miyawaki, Hiroyuki; Billeh, Yazan N; Diba, Kamran

    2017-06-01

    To better understand the distinct activity patterns of the brain during sleep, we observed and investigated periods of diminished oscillatory and population spiking activity lasting for seconds during non-rapid eye movement (non-REM) sleep, which we call "LOW" activity sleep. We analyzed spiking and local field potential (LFP) activity of hippocampal CA1 region alongside neocortical electroencephalogram (EEG) and electromyogram (EMG) in 19 sessions from four male Long-Evans rats (260-360 g) during natural wake/sleep across the 24-hr cycle as well as data from other brain regions obtained from http://crcns.org.1,2. LOW states lasted longer than OFF/DOWN states and were distinguished by a subset of "LOW-active" cells. LOW activity sleep was preceded and followed by increased sharp-wave ripple activity. We also observed decreased slow-wave activity and sleep spindles in the hippocampal LFP and neocortical EEG upon LOW onset, with a partial rebound immediately after LOW. LOW states demonstrated activity patterns consistent with sleep but frequently transitioned into microarousals and showed EMG and LFP differences from small-amplitude irregular activity during quiet waking. Their likelihood decreased within individual non-REM epochs yet increased over the course of sleep. By analyzing data from the entorhinal cortex of rats,1 as well as the hippocampus, the medial prefrontal cortex, the postsubiculum, and the anterior thalamus of mice,2 obtained from http://crcns.org, we confirmed that LOW states corresponded to markedly diminished activity simultaneously in all of these regions. We propose that LOW states are an important microstate within non-REM sleep that provide respite from high-activity sleep and may serve a restorative function. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  17. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy.

    PubMed

    Torterolo, Pablo; Castro-Zaballa, Santiago; Cavelli, Matías; Chase, Michael H; Falconi, Atilio

    2016-02-01

    Higher cognitive functions require the integration and coordination of large populations of neurons in cortical and subcortical regions. Oscillations in the gamma band (30-45 Hz) of the electroencephalogram (EEG) have been involved in these cognitive functions. In previous studies, we analysed the extent of functional connectivity between cortical areas employing the 'mean squared coherence' analysis of the EEG gamma band. We demonstrated that gamma coherence is maximal during alert wakefulness and is almost absent during rapid eye movement (REM) sleep. The nucleus pontis oralis (NPO) is critical for REM sleep generation. The NPO is considered to exert executive control over the initiation and maintenance of REM sleep. In the cat, depending on the previous state of the animal, a single microinjection of carbachol (a cholinergic agonist) into the NPO can produce either REM sleep [REM sleep induced by carbachol (REMc)] or a waking state with muscle atonia, i.e. cataplexy [cataplexy induced by carbachol (CA)]. In the present study, in cats that were implanted with electrodes in different cortical areas to record polysomnographic activity, we compared the degree of gamma (30-45 Hz) coherence during REMc, CA and naturally-occurring behavioural states. Gamma coherence was maximal during CA and alert wakefulness. In contrast, gamma coherence was almost absent during REMc as in naturally-occurring REM sleep. We conclude that, in spite of the presence of somatic muscle paralysis, there are remarkable differences in cortical activity between REMc and CA, which confirm that EEG gamma (≈40 Hz) coherence is a trait that differentiates wakefulness from REM sleep. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Multiscale entropy analysis of electroencephalography during sleep in patients with Parkinson disease.

    PubMed

    Chung, Chen-Chih; Kang, Jiunn-Horng; Yuan, Rey-Yue; Wu, Dean; Chen, Chih-Chung; Chi, Nai-Fang; Chen, Po-Chih; Hu, Chaur-Jong

    2013-07-01

    Sleep disorders are frequently seen in patients with Parkinson disease (PD), including rapid eye movement (REM) behavior disorder and periodic limb movement disorder. However, knowledge about changes in non-REM sleep in patients with PD is limited. This study explored the characteristics of electroencephalography (EEG) during sleep in patients with PD and non-PD controls. We further conducted multiscale entropy (MSE) analysis to evaluate and compare the complexity of sleep EEG for the 2 groups. There were 9 patients with PD (Hoehn-Yahr stage 1 or 2) and 11 non-PD controls. All participants underwent standard whole-night polysomnography (PSG), which included 23 channels, 6 of which were for EEG. The raw data of the EEG were extracted and subjected to MSE analysis. Patients with PD had a longer sleep onset time and a higher spontaneous EEG arousal index. Sleep stage-specific increased MSE was observed in patients with PD during non-REM sleep. The difference was more marked and significant at higher time scale factors (TSFs). In conclusion, increased biosignal complexity, as revealed by MSE analysis, was found in patients with PD during non-REM sleep at high TSFs. This finding might reflect a compensatory mechanism for early defects in neuronal network control machinery in PD.

  19. The role of sleep in changing our minds: A psychologist's discussion of papers on memory reactivation and consolidation in sleep

    PubMed Central

    Cartwright, Rosalind D.

    2004-01-01

    The group of papers on memory reactivation and consolidation during sleep included in this volume represents cutting edge work in both animals and humans. They support that the two types of sleep serve different necessary functions. The role of slow wave sleep (SWS) is reactivation of the hippocampal-neocortical circuits activated during a waking learning period, while REM sleep is responsible for the consolidation of this new learning into long-term memory. These studies provide further insights into mechanisms involved in brain plasticity. Robeiro has demonstrated the upregulation of an immediate-early gene (IEG zif 268) to waking levels, which occurs only in REM and only in connection with new learning. McNaughton and his group have identified electrical indicators that the hippocampus and neocortex are talking to each other by testing the coactivation of hippocampal sharp wave bursts in SWS and shifts from down to up states of activation in the neocortex. In human studies Smith's group reports work on individual differences such as intelligence and presleep alcohol that affect postsleep performance, and Stickgold and collaborators report that a short nap will improve performance if it contains REM sleep. Payne and Nadel suggest that the recall benefit associated with REM sleep may be due to its association with increased cortisol levels. These papers are important not only in their individual contributions but also in revitalizing the work coordinating waking and sleep. This promises to further the understanding of how our unique capacity to learn from experience and modify our behavior takes place. PMID:15576882

  20. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He

    2016-02-01

    The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. © 2015 International Society for Neurochemistry.

  1. A novel NREM and REM parasomnia with sleep breathing disorder associated with antibodies against IgLON5: a case series, pathological features, and characterization of the antigen

    PubMed Central

    Sabater, Lidia; Gaig, Carles; Gelpi, Ellen; Bataller, Luis; Lewerenz, Jan; Torres-Vega, Estefanía; Contreras, Angeles; Giometto, Bruno; Compta, Yaroslau; Embid, Cristina; Vilaseca, Isabel; Iranzo, Alex; Santamaría, Joan; Dalmau, Josep; Graus, Francesc

    2014-01-01

    Summary Background Autoimmunity may be involved in sleep and neurodegenerative disorders. We aimed to describe a neurological syndrome with prominent sleep dysfunction and antibodies to a previously unknown neuronal antigen. Methods In this observational study, clinical and video-polysomnography (V- PSG) investigations identified a novel sleep disorder in three patients referred to the Sleep Unit of Hospital Clinic University of Barcelona for abnormal sleep behaviors and obstructive sleep apnea(OSA). They had antibodies against a neuronal surface antigen also present in five additional patients referred to our laboratory for antibody studies. These five patients had been evaluated with PSG and in two, the study was done or reviewed in our Sleep Unit. Two patients underwent postmortem brain examination. Immunoprecipitation and mass spectrometry were used to characterize the antigen and to develop a diagnostic test. Serum or CSF from 285 patients with neurodegenerative, sleep, or autoimmune disorders served as controls. Findings All eight patients (five women; range: 52–76 years, median 59) had abnormal sleep movements and behaviors and OSA confirmed by PSG. Six patients had a chronic evolution (range 2–12 years, median 5.5); in four the sleep disorder was the initial and most prominent feature, and in two it was preceded by gait instability, and followed by dysarthria, dysphagia, ataxia, or chorea. Two patients had a rapid evolution with disequilibrium, dysarthria, dysphagia, and central hypoventilation, and died two and six months after symptom onset. In 5/5 patients, the V-PSG reviewed in our Unit disclosed OSA, stridor, and abnormal sleep architecture with undifferentiated NREM sleep or poorly structured stage N2 with simple movements and finalistic behaviors, normalization of NREM sleep by the end of the night, and REM sleep behavior disorder. Four/4 patients carried the HLA-DRB1*1001 and HLA-DQB1*0501 alleles. All patients had antibodies (mainly IgG4

  2. Sleep stage distribution in persons with mild traumatic brain injury: a polysomnographic study according to American Academy of Sleep Medicine standards.

    PubMed

    Mollayeva, Tatyana; Colantonio, Angela; Cassidy, J David; Vernich, Lee; Moineddin, Rahim; Shapiro, Colin M

    2017-06-01

    Sleep stage disruption in persons with mild traumatic brain injury (mTBI) has received little research attention. We examined deviations in sleep stage distribution in persons with mTBI relative to population age- and sex-specific normative data and the relationships between such deviations and brain injury-related, medical/psychiatric, and extrinsic factors. We conducted a cross-sectional polysomnographic investigation in 40 participants diagnosed with mTBI (mean age 47.54 ± 11.30 years; 56% males). At the time of investigation, participants underwent comprehensive clinical and neuroimaging examinations and one full-night polysomnographic study. We used the 2012 American Academy of Sleep Medicine recommendations for recording, scoring, and summarizing sleep stages. We compared participants' sleep stage data with normative data stratified by age and sex to yield z-scores for deviations from available population norms and then employed stepwise multiple regression analyses to determine the factors associated with the identified significant deviations. In patients with mTBI, the mean duration of nocturnal wakefulness was higher and consolidated sleep stage N2 and REM were lower than normal (p < 0.0001, p = 0.018, and p = 0.010, respectively). In multivariate regression analysis, several covariates accounted for the variance in the relative changes in sleep stage duration. No sex differences were observed in the mean proportion of non-REM or REM sleep. We observed longer relative nocturnal wakefulness and shorter relative N2 and REM sleep in patients with mTBI, and these outcomes were associated with potentially modifiable variables. Addressing disruptions in sleep architecture in patients with mTBI could improve their health status. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nocturnal Sleep Dynamics Identify Narcolepsy Type 1.

    PubMed

    Pizza, Fabio; Vandi, Stefano; Iloti, Martina; Franceschini, Christian; Liguori, Rocco; Mignot, Emmanuel; Plazzi, Giuseppe

    2015-08-01

    To evaluate the reliability of nocturnal sleep dynamics in the differential diagnosis of central disorders of hypersomnolence. Cross-sectional. Sleep laboratory. One hundred seventy-five patients with hypocretin-deficient narcolepsy type 1 (NT1, n = 79), narcolepsy type 2 (NT2, n = 22), idiopathic hypersomnia (IH, n = 22), and "subjective" hypersomnolence (sHS, n = 52). None. Polysomnographic (PSG) work-up included 48 h of continuous PSG recording. From nocturnal PSG conventional sleep macrostructure, occurrence of sleep onset rapid eye movement period (SOREMP), sleep stages distribution, and sleep stage transitions were calculated. Patient groups were compared, and receiver operating characteristic (ROC) curve analysis was used to test the diagnostic utility of nocturnal PSG data to identify NT1. Sleep macrostructure was substantially stable in the 2 nights of each diagnostic group. NT1 and NT2 patients had lower latency to rapid eye movement (REM) sleep, and NT1 patients showed the highest number of awakenings, sleep stage transitions, and more time spent in N1 sleep, as well as most SOREMPs at daytime PSG and at multiple sleep latency test (MSLT) than all other groups. ROC curve analysis showed that nocturnal SOREMP (area under the curve of 0.724 ± 0.041, P < 0.0001), percent of total sleep time spent in N1 (0.896 ± 0.023, P < 0.0001), and the wakefulness-sleep transition index (0.796 ± 0.034, P < 0.0001) had a good sensitivity and specificity profile to identify NT1 sleep, especially when used in combination (0.903 ± 0.023, P < 0.0001), similarly to SOREMP number at continuous daytime PSG (0.899 ± 0.026, P < 0.0001) and at MSLT (0.956 ± 0.015, P < 0.0001). Sleep macrostructure (i.e. SOREMP, N1 timing) including stage transitions reliably identifies hypocretin-deficient narcolepsy type 1 among central disorders of hypersomnolence. © 2015 Associated Professional Sleep Societies, LLC.

  4. A differentiating empirical linguistic analysis of dreamer activity in reports of EEG-controlled REM-dreams and hypnagogic hallucinations.

    PubMed

    Speth, Jana; Frenzel, Clemens; Voss, Ursula

    2013-09-01

    We present Activity Analysis as a new method for the quantification of subjective reports of altered states of consciousness with regard to the indicated level of simulated motor activity. Empirical linguistic activity analysis was conducted with dream reports conceived immediately after EEG-controlled periods of hypnagogic hallucinations and REM-sleep in the sleep laboratory. Reports of REM-dreams exhibited a significantly higher level of simulated physical dreamer activity, while hypnagogic hallucinations appear to be experienced mostly from the point of passive observer. This study lays the groundwork for clinical research on the level of simulated activity in pathologically altered states of subjective experience, for example in the REM-dreams of clinically depressed patients, or in intrusions and dreams of patients diagnosed with PTSD. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Preserved cardiac autonomic dynamics during sleep in subjects with spinal cord injuries.

    PubMed

    Tobaldini, Eleonora; Proserpio, Paola; Sambusida, Katrina; Lanza, Andrea; Redaelli, Tiziana; Frigerio, Pamela; Fratticci, Lara; Rosa, Silvia; Casali, Karina R; Somers, Virend K; Nobili, Lino; Montano, Nicola

    2015-06-01

    Spinal cord injuries (SCI) are associated with altered cardiovascular autonomic control (CAC). Sleep is characterized by modifications of autonomic control across sleep stages; however, no data are available in SCI subjects on CAC during sleep. We aim to assess cardiac autonomic modulation during sleep in subjects with SCI. 27 participants with a neurological and radiological diagnosis of cervical (Cerv, n = 12, ie, tetraplegic) and thoracic SCI (Thor, n = 15, ie, paraplegic) and healthy subjects (Controls) were enrolled. Overnight polysomnographic (PSG) recordings were obtained in all participants. Electrocardiography and respiration were extracted from PSG, divided into sleep stages [wakefulness (W), non-REM sleep (NREM) and REM] for assessment of CAC, using symbolic analysis (SA) and corrected conditional entropy (CCE). SA identified indices of sympathetic and parasympathetic modulation and CCE evaluated the degree of complexity of the heart period time series. SA revealed a reduction of sympathetic and predominant parasympathetic control during NREM compared to W and REM in SCI patients, independent of the level of the lesion, similar to the Controls. In all three groups, complexity of autonomic regulation was higher in NREM compared to W and REM. In subjects with SCI, cardiac autonomic control changed across sleep stages, with a reduction of sympathetic and an increase of parasympathetic modulation during NREM compared to W and REM, and a parallel increase of complexity during NREM, which was similar to the Controls. Cardiac autonomic dynamics during sleep are maintained in SCI, independent of the level of the lesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome.

    PubMed

    Kanbayashi, Takashi; Kodama, Tohru; Kondo, Hideaki; Satoh, Shinsuke; Inoue, Yuichi; Chiba, Shigeru; Shimizu, Tetsuo; Nishino, Seiji

    2009-02-01

    To (1) replicate our prior result of low cerebrospinal fluid (CSF) histamine levels in human narcolepsy in a different sample population and to (2) evaluate if histamine contents are altered in other types of hypersomnia with and without hypocretin deficiency. Cross sectional studies. Sixty-seven narcolepsy subjects, 26 idiopathic hypersomnia (IHS) subjects, 16 obstructive sleep apnea syndrome (OSAS) subjects, and 73 neurological controls were included. All patients were Japanese. Diagnoses were made according to ICSD-2. We found significant reductions in CSF histamine levels in hypocretin deficient narcolepsy with cataplexy (mean +/- SEM; 176.0 +/- 25.8 pg/mL), hypocretin non-deficient narcolepsy with cataplexy (97.8 +/- 38.4 pg/mL), hypocretin non-deficient narcolepsy without cataplexy (113.6 +/- 16.4 pg/mL), and idiopathic hypersomnia (161.0 +/- 29.3 pg/ mL); the levels in OSAS (259.3 +/- 46.6 pg/mL) did not statistically differ from those in the controls (333.8 +/- 22.0 pg/mL). Low CSF histamine levels were mostly observed in non-medicated patients; significant reductions in histamine levels were evident in non-medicated patients with hypocretin deficient narcolepsy with cataplexy (112.1 +/- 16.3 pg/ mL) and idiopathic hypersomnia (143.3 +/- 28.8 pg/mL), while the levels in the medicated patients were in the normal range. The study confirmed reduced CSF histamine levels in hypocretin-deficient narcolepsy with cataplexy. Similar degrees of reduction were also observed in hypocretin non-deficient narcolepsy and in idiopathic hypersomnia, while those in OSAS (non central nervous system hypersomnia) were not altered. The decrease in histamine in these subjects were more specifically observed in non-medicated subjects, suggesting CSF histamine is a biomarker reflecting the degree of hypersomnia of central origin.

  7. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory.

    PubMed

    Guo, Lengqiu; Guo, Zhuangli; Luo, Xiaoqing; Liang, Rui; Yang, Shui; Ren, Haigang; Wang, Guanghui; Zhen, Xuechu

    2016-12-02

    Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. I know how you felt last night, or do I? Self- and external ratings of emotions in REM sleep dreams.

    PubMed

    Sikka, Pilleriin; Valli, Katja; Virta, Tiina; Revonsuo, Antti

    2014-04-01

    We investigated whether inconsistencies in previous studies regarding emotional experiences in dreams derive from whether dream emotions are self-rated or externally evaluated. Seventeen subjects were monitored with polysomnography in the sleep laboratory and awakened from every rapid eye movement (REM) sleep stage 5 min after the onset of the stage. Upon awakening, participants gave an oral dream report and rated their dream emotions using the modified Differential Emotions Scale, whereas external judges rated the participants' emotions expressed in the dream reports, using the same scale. The two approaches produced diverging results. Self-ratings, as compared to external ratings, resulted in greater estimates of (a) emotional dreams; (b) positively valenced dreams; (c) positive and negative emotions per dream; and (d) various discrete emotions represented in dreams. The results suggest that this is mostly due to the underrepresentation of positive emotions in dream reports. Possible reasons for this discrepancy are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The sleep architecture of Saudi Arabian patients with Kleine-Levin syndrome

    PubMed Central

    Al Shareef, Saad M.; Almeneessier, Aljohara S.; Hammad, Omeima; Smith, Richard M.; BaHammam, Ahmed S.

    2018-01-01

    Objectives: To establish baseline sleep architecture during an acute attack of Kleine-Levin syndrome (KLS) in a cohort of Saudi Arabian KLS patients and compare these characteristics with other published cohorts. Methods: This was a retrospective cohort study of the polysomnographic characteristics of 10 typical symptomatic Saudi Arabian KLS patients attending the University Sleep Disorders Center, King Saud University, Riyadh, Saudi Arabia between 2002 and 2015. Data were captured by nocturnal polysomnography during an acute attack of hypersomnia and compared with other published cohorts identified via a systematic literature search. Results: Self-reported time asleep during episodes (11.1±6.7 hours) and recorded total sleep time (TST) (322.5±108.7 minutes) were generally shorter than other published cohorts. Sleep efficiency was poor at 75.0%±25.1%, with low relative amounts of rapid eye movement (REM) sleep (16.5±5.9% of TST) and deep non-REM sleep (stage N3; 10.5±6.0% of TST) and high relative amounts of non-REM sleep (stage N1; 7.0±4.3% of TST). The sleep architecture of Saudi Arabian KLS patients was similar to other published cohorts. Conclusions: Sleep architecture of our cohort was relatively normal and broadly similar to other published studies, the main features being low sleep efficiency and low relative amounts of REM and stage N3 sleep. Time-course polysomnography studies with functional imaging may be useful to further establish the exact pathophysiology of this disease. PMID:29332107

  10. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice.

    PubMed

    Roundtree, Harrison M; Simeone, Timothy A; Johnson, Chaz; Matthews, Stephanie A; Samson, Kaeli K; Simeone, Kristina A

    2016-02-01

    Comorbid sleep disorders occur in approximately one-third of people with epilepsy. Seizures and sleep disorders have an interdependent relationship where the occurrence of one can exacerbate the other. Orexin, a wake-promoting neuropeptide, is associated with sleep disorder symptoms. Here, we tested the hypothesis that orexin dysregulation plays a role in the comorbid sleep disorder symptoms in the Kcna1-null mouse model of temporal lobe epilepsy. Rest-activity was assessed using infrared beam actigraphy. Sleep architecture and seizures were assessed using continuous video-electroencephalography-electromyography recordings in Kcna1-null mice treated with vehicle or the dual orexin receptor antagonist, almorexant (100 mg/kg, intraperitoneally). Orexin levels in the lateral hypothalamus/perifornical region (LH/P) and hypothalamic pathology were assessed with immunohistochemistry and oxygen polarography. Kcna1-null mice have increased latency to rapid eye movement (REM) sleep onset, sleep fragmentation, and number of wake epochs. The numbers of REM and non-REM (NREM) sleep epochs are significantly reduced in Kcna1-null mice. Severe seizures propagate to the wake-promoting LH/P where injury is apparent (indicated by astrogliosis, blood-brain barrier permeability, and impaired mitochondrial function). The number of orexin-positive neurons is increased in the LH/P compared to wild-type LH/P. Treatment with a dual orexin receptor antagonist significantly increases the number and duration of NREM sleep epochs and reduces the latency to REM sleep onset. Further, almorexant treatment reduces the incidence of severe seizures and overall seizure burden. Interestingly, we report a significant positive correlation between latency to REM onset and seizure burden in Kcna1-null mice. Dual orexin receptor antagonists may be an effective sleeping aid in epilepsy, and warrants further study on their somnogenic and ant-seizure effects in other epilepsy models. © 2016 Associated

  11. Altered Sleep and Affect in the Neurotensin Receptor 1 Knockout Mouse

    PubMed Central

    Fitzpatrick, Karrie; Winrow, Christopher J.; Gotter, Anthony L.; Millstein, Joshua; Arbuzova, Janna; Brunner, Joseph; Kasarskis, Andrew; Vitaterna, Martha H.; Renger, John J.; Turek, Fred W.

    2012-01-01

    Study Objective: Sleep and mood disorders have long been understood to have strong genetic components, and there is considerable comorbidity of sleep abnormalities and mood disorders, suggesting the involvement of common genetic pathways. Here, we examine a candidate gene implicated in the regulation of both sleep and affective behavior using a knockout mouse model. Design: Previously, we identified a quantitative trait locus (QTL) for REM sleep amount, REM sleep bout number, and wake amount in a genetically segregating population of mice. Here, we show that traits mapping to this QTL correlated with an expression QTL for neurotensin receptor 1 (Ntsr1), a receptor for neurotensin, a ligand known to be involved in several psychiatric disorders. We examined sleep as well as behaviors indicative of anxiety and depression in the NTSR1 knockout mouse. Measurements and Results: NTSR1 knockouts had a lower percentage of sleep time spent in REM sleep in the dark phase and a larger diurnal variation in REM sleep duration than wild types under baseline conditions. Following sleep deprivation, NTSR1 knockouts exhibited more wake and less NREM rebound sleep. NTSR1 knockouts also showed increased anxious and despair behaviors. Conclusions: Here we illustrate a link between expression of the Ntsr1 gene and sleep traits previously associated with a particular QTL. We also demonstrate a relationship between Ntsr1 and anxiety and despair behaviors. Given the considerable evidence that anxiety and depression are closely linked with abnormalities in sleep, the data presented here provide further evidence that neurotensin and Ntsr1 may be a component of a pathway involved in both sleep and mood disorders. Citation: Fitzpatrick K; Winrow CJ; Gotter AL; Millstein J; Arbuzova J; Brunner J; Kasarskis A; Vitaterna MH; Renger JJ; Turek FW. Altered sleep and affect in the neurotensin receptor 1 knockout mouse. SLEEP 2012;35(7):949-956. PMID:22754041

  12. Diurnal Emotional States Impact the Sleep Course

    PubMed Central

    Delannoy, Julien; Mandai, Osamu; Honoré, Jacques; Kobayashi, Toshinori; Sequeira, Henrique

    2015-01-01

    Background Diurnal emotional experiences seem to affect several characteristics of sleep architecture. However, this influence remains unclear, especially for positive emotions. In addition, electrodermal activity (EDA), a sympathetic robust indicator of emotional arousal, differs depending on the sleep stage. The present research has a double aim: to identify the specific effects of pre-sleep emotional states on the architecture of the subsequent sleep period; to relate such states to the sympathetic activation during the same sleep period. Methods Twelve healthy volunteers (20.1 ± 1.0 yo.) participated in the experiment and each one slept 9 nights at the laboratory, divided into 3 sessions, one per week. Each session was organized over three nights. A reference night, allowing baseline pre-sleep and sleep recordings, preceded an experimental night before which participants watched a negative, neutral, or positive movie. The third and last night was devoted to analyzing the potential recovery or persistence of emotional effects induced before the experimental night. Standard polysomnography and EDA were recorded during all the nights. Results Firstly, we found that experimental pre-sleep emotional induction increased the Rapid Eye Movement (REM) sleep rate following both negative and positive movies. While this increase was spread over the whole night for positive induction, it was limited to the second half of the sleep period for negative induction. Secondly, the valence of the pre-sleep movie also impacted the sympathetic activation during Non-REM stage 3 sleep, which increased after negative induction and decreased after positive induction. Conclusion Pre-sleep controlled emotional states impacted the subsequent REM sleep rate and modulated the sympathetic activity during the sleep period. The outcomes of this study offer interesting perspectives related to the effect of diurnal emotional influences on sleep regulation and open new avenues for potential

  13. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increasemore » in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.« less

  14. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system.

    PubMed

    Marks, G A; Sachs, O W; Birabil, C G

    2008-09-22

    The brainstem reticular formation is an area important to the control of rapid eye movement (REM) sleep. The antagonist of GABA-type A (GABA(A)) receptors, bicuculline methiodide (BMI), injected into the rat nucleus pontis oralis (PnO) of the reticular formation resulted in a long-lasting increase in REM sleep. Thus, one factor controlling REM sleep appears to be the number of functional GABA(A) receptors in the PnO. The long-lasting effect produced by BMI may result from secondary influences on other neurotransmitter systems known to have long-lasting effects. To study this question, rats were surgically prepared for chronic sleep recording and additionally implanted with guide cannulas aimed at sites in the PnO. Multiple, 60 nl, unilateral injections were made either singly or in combination. GABA(A) receptor antagonists, BMI and gabazine (GBZ), produced dose-dependent increases in REM sleep with GBZ being approximately 35 times more potent than BMI. GBZ and the cholinergic agonist, carbachol, produced very similar results, both increasing REM sleep for about 8 h, mainly through increased period frequency, with little reduction in REM latency. Pre-injection of the muscarinic antagonist, atropine, completely blocked the REM sleep-increase by GBZ. GABAergic control of REM sleep in the PnO requires the cholinergic system and may be acting through presynaptic modulation of acetylcholine release.

  15. Orexin OX2 Receptor Antagonists as Sleep Aids.

    PubMed

    Jacobson, Laura H; Chen, Sui; Mir, Sanjida; Hoyer, Daniel

    The discovery of the orexin system represents the single major progress in the sleep field of the last three to four decades. The two orexin peptides and their two receptors play a major role in arousal and sleep/wake cycles. Defects in the orexin system lead to narcolepsy with cataplexy in humans and dogs and can be experimentally reproduced in rodents. At least six orexin receptor antagonists have reached Phase II or Phase III clinical trials in insomnia, five of which are dual orexin receptor antagonists (DORAs) that target both OX 1 and OX 2 receptors (OX 2 Rs). All clinically tested DORAs induce and maintain sleep: suvorexant, recently registered in the USA and Japan for insomnia, represents the first hypnotic principle that acts in a completely different manner from the current standard medications. It is clear, however, that in the clinic, all DORAs promote sleep primarily by increasing rapid eye movement (REM) and are almost devoid of effects on slow-wave (SWS) sleep. At present, there is no consensus on whether the sole promotion of REM sleep has a negative impact in patients suffering from insomnia. However, sleep onset REM (SOREM), which has been documented with DORAs, is clearly an undesirable effect, especially for narcoleptic patients and also in fragile populations (e.g. elderly patients) where REM-associated loss of muscle tone may promote an elevated risk of falls. Debate thus remains as to the ideal orexin agent to achieve a balanced increase in REM and non-rapid eye movement (NREM) sleep. Here, we review the evidence that an OX 2 R antagonist should be at least equivalent, or perhaps superior, to a DORA for the treatment of insomnia. An OX 2 R antagonist may produce more balanced sleep than a DORA. Rodent sleep experiments show that the OX 2 R is the primary target of orexin receptor antagonists in sleep modulation. Furthermore, an OX 2 R antagonist should, in theory, have a lower narcoleptic/cataplexic potential. In the clinic, the situation

  16. Neural Markers of Responsiveness to the Environment in Human Sleep.

    PubMed

    Andrillon, Thomas; Poulsen, Andreas Trier; Hansen, Lars Kai; Léger, Damien; Kouider, Sid

    2016-06-15

    Sleep is characterized by a loss of behavioral responsiveness. However, recent research has shown that the sleeping brain is not completely disconnected from its environment. How neural activity constrains the ability to process sensory information while asleep is yet unclear. Here, we instructed human volunteers to classify words with lateralized hand responses while falling asleep. Using an electroencephalographic (EEG) marker of motor preparation, we show how responsiveness is modulated across sleep. These modulations are tracked using classic event-related potential analyses complemented by Lempel-Ziv complexity (LZc), a measure shown to track arousal in sleep and anesthesia. Neural activity related to the semantic content of stimuli was conserved in light non-rapid eye movement (NREM) sleep. However, these processes were suppressed in deep NREM sleep and, importantly, also in REM sleep, despite the recovery of wake-like neural activity in the latter. In NREM sleep, sensory activations were counterbalanced by evoked down states, which, when present, blocked further processing of external information. In addition, responsiveness markers correlated positively with baseline complexity, which could be related to modulation in sleep depth. In REM sleep, however, this relationship was reversed. We therefore propose that, in REM sleep, endogenously generated processes compete with the processing of external input. Sleep can thus be seen as a self-regulated process in which external information can be processed in lighter stages but suppressed in deeper stages. Last, our results suggest drastically different gating mechanisms in NREM and REM sleep. Previous research has tempered the notion that sleepers are isolated from their environment. Here, we pushed this idea forward and examined, across all sleep stages, the brain's ability to flexibly process sensory information, up to the decision level. We extracted an EEG marker of motor preparation to determine the

  17. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p < 0.05) differences in oscillation power between LS and REM were observed. However, the period of VLF oscillations around 8 mHz increased in REM sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  18. Psychosocial correlates of sleep quality and architecture in women with metastatic breast cancer.

    PubMed

    Aldridge-Gerry, Arianna; Zeitzer, Jamie M; Palesh, Oxana G; Jo, Booil; Nouriani, Bita; Neri, Eric; Spiegel, David

    2013-11-01

    Sleep disturbance is prevalent among women with metastatic breast cancer (MBC). Our study examined the relationship of depression and marital status to sleep assessed over three nights of polysomnography (PSG). Women with MBC (N=103) were recruited; they were predominately white (88.2%) and 57.8±7.7 years of age. Linear regression analyses assessed relationships among depression, marital status, and sleep parameters. Women with MBC who reported more depressive symptoms had lighter sleep (e.g., stage 1 sleep; P<.05), less slow-wave sleep (SWS) (P<.05), and less rapid eye movement (REM) sleep (P<.05). Single women had less total sleep time (TST) (P<.01), more wake after sleep onset (WASO) (P<.05), worse sleep efficiency (SE) (P<.05), lighter sleep (e.g., stage 1; P<.05), and less REM sleep (P<.05) than married women. Significant interactions indicated that depressed and single women had worse sleep quality than partnered women or those who were not depressed. Women with MBC and greater symptoms of depression had increased light sleep and reduced SWS and REM sleep, and single women had worse sleep quality and greater light sleep than married counterparts. Marriage was related to improved sleep for women with more depressive symptoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Not only … but also: REM sleep creates and NREM Stage 2 instantiates landmark junctions in cortical memory networks.

    PubMed

    Llewellyn, Sue; Hobson, J Allan

    2015-07-01

    This article argues both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep contribute to overnight episodic memory processes but their roles differ. Episodic memory may have evolved from memory for spatial navigation in animals and humans. Equally, mnemonic navigation in world and mental space may rely on fundamentally equivalent processes. Consequently, the basic spatial network characteristics of pathways which meet at omnidirectional nodes or junctions may be conserved in episodic brain networks. A pathway is formally identified with the unidirectional, sequential phases of an episodic memory. In contrast, the function of omnidirectional junctions is not well understood. In evolutionary terms, both animals and early humans undertook tours to a series of landmark junctions, to take advantage of resources (food, water and shelter), whilst trying to avoid predators. Such tours required memory for emotionally significant landmark resource-place-danger associations and the spatial relationships amongst these landmarks. In consequence, these tours may have driven the evolution of both spatial and episodic memory. The environment is dynamic. Resource-place associations are liable to shift and new resource-rich landmarks may be discovered, these changes may require re-wiring in neural networks. To realise these changes, REM may perform an associative, emotional encoding function between memory networks, engendering an omnidirectional landmark junction which is instantiated in the cortex during NREM Stage 2. In sum, REM may preplay associated elements of past episodes (rather than replay individual episodes), to engender an unconscious representation which can be used by the animal on approach to a landmark junction in wake. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep

    PubMed Central

    Lecci, Sandro; Fernandez, Laura M. J.; Weber, Frederik D.; Cardis, Romain; Chatton, Jean-Yves; Born, Jan; Lüthi, Anita

    2017-01-01

    Rodents sleep in bouts lasting minutes; humans sleep for hours. What are the universal needs served by sleep given such variability? In sleeping mice and humans, through monitoring neural and cardiac activity (combined with assessment of arousability and overnight memory consolidation, respectively), we find a previously unrecognized hallmark of sleep that balances two fundamental yet opposing needs: to maintain sensory reactivity to the environment while promoting recovery and memory consolidation. Coordinated 0.02-Hz oscillations of the sleep spindle band, hippocampal ripple activity, and heart rate sequentially divide non–rapid eye movement (non-REM) sleep into offline phases and phases of high susceptibility to external stimulation. A noise stimulus chosen such that sleeping mice woke up or slept through at comparable rates revealed that offline periods correspond to raising, whereas fragility periods correspond to declining portions of the 0.02-Hz oscillation in spindle activity. Oscillations were present throughout non-REM sleep in mice, yet confined to light non-REM sleep (stage 2) in humans. In both species, the 0.02-Hz oscillation predominated over posterior cortex. The strength of the 0.02-Hz oscillation predicted superior memory recall after sleep in a declarative memory task in humans. These oscillations point to a conserved function of mammalian non-REM sleep that cycles between environmental alertness and internal memory processing in 20- to 25-s intervals. Perturbed 0.02-Hz oscillations may cause memory impairment and ill-timed arousals in sleep disorders. PMID:28246641