Science.gov

Sample records for idiopathic rem sleep

  1. Quantitative EMG criteria for diagnosing idiopathic REM sleep behavior disorder.

    PubMed

    Lee, Sang-Ahm; Kim, Cheon Sik; Cho, Cheon Uoong; Kim, Bomi; Lee, Gha-Hyun

    2015-05-01

    The purpose of this study is to determine the diagnostic cutoff for the proportion of rapid eye movement (REM) sleep with tonic and phasic activities of the submentalis muscle activity that can be used to diagnose REM sleep behavior disorder (RBD). Seventeen patients clinically diagnosed as idiopathic RBD and 15 age- and gender-matched controls were studied. Surface electromyography was recorded from the submentalis muscle, and two sleep technologists manually identified epochs with tonic and phasic activities during REM sleep. Receiver operating characteristic (ROC) curves were constructed to find the optimal cutoff values for diagnosing RBD using the proportion of REM sleep with tonic and phasic activities of the submentalis muscle. Cohen's kappa coefficient was calculated to evaluate interrater reliability. The cutoff value with the optimal sensitivity and specificity was 6.5% for the proportion of REM sleep with tonic activity (sensitivity, 94.1%; specificity, 93.3%; area under the ROC curve, 0.976) and 9.5% for the proportion of REM sleep with phasic activity (sensitivity, 94.1%; specificity, 93.3%; area under the ROC curve, 0.992). The cutoff value required to achieve a specificity of 100% was 8.9% for tonic activity and 11.1% for phasic activity. Cohen's kappa coefficient between two scorers was 0.96 (95% confidence interval, 0.95-0.97) and 0.95 (95% confidence interval, 0.94-0.95) for tonic and phasic activities, respectively (both p < 0.001). Identifying periods of tonic and phasic activities of the submentalis muscle during REM sleep is useful to discriminate patients with idiopathic RBD from controls.

  2. Sleepiness in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    PubMed Central

    Arnulf, Isabelle; Neutel, Dulce; Herlin, Bastien; Golmard, Jean-Louis; Leu-Semenescu, Smaranda; Cochen de Cock, Valérie; Vidailhet, Marie

    2015-01-01

    Objective: To determine whether patients with idiopathic and symptomatic RBD were sleepier than controls, and if sleepiness in idiopathic RBD predicted earlier conversion to Parkinson disease. Methods: The Epworth Sleepiness Scale (ESS) and its determinants were compared at the time of a video-polysomnography for an RBD diagnosis in patients with idiopathic RBD, in patients with Parkinson disease, and in controls. Whether sleepiness at time of RBD diagnosis predicted an earlier conversion to neurodegenerative diseases was retrospectively analyzed in the followed-up patients. Results: The 75 patients with idiopathic RBD were sleepier (ESS: 7.8 ± 4.6) at the time of RBD diagnosis than 74 age- and sex-matched controls (ESS: 5.0 ± 3.6, P < 0.0001). They reached the levels of 114 patients with Parkinson disease (ESS: 8.7 ± 4.8), whether they had (n = 78) or did not have (n = 36) concomitant RBD. The severity of sleepiness in idiopathic RBD correlated with younger age, but not with sleep measures. Among the 69 patients with idiopathic RBD who were followed up for a median 3 years (1–15 years), 16 (23.2%) developed parkinsonism (n = 6), dementia (n = 6), dementia plus parkinsonism (n = 2), and multiple system atrophy (n = 2). An ESS greater than 8 at time of RBD diagnosis predicted a shorter time to phenoconversion to parkinsonism and dementia, from RBD onset, and from RBD diagnosis (when adjusted for age and time between RBD onset and diagnosis). Conclusions: Sleepiness is associated with idiopathic REM sleep behavior disorder and predicts more rapid conversion to parkinsonism and dementia, suggesting it is an early marker of neuronal loss in brainstem arousal systems. Citation: Arnulf I, Neutel D, Herlin B, Golmard JL, Leu-Semenescu S, Cochen de Cock V, Vidailhet M. Sleepiness in idiopathic REM sleep behavior disorder and Parkinson disease. SLEEP 2015;38(10):1529–1535. PMID:26085299

  3. Cardiac Autonomic Regulation During Sleep in Idiopathic REM Sleep Behavior Disorder

    PubMed Central

    Lanfranchi, Paola A.; Fradette, Lorraine; Gagnon, Jean-François; Colombo, Roberto; Montplaisir, Jacques

    2007-01-01

    Objective: To assess cardiac autonomic and respiratory changes from stage 2 non-rapid eye movement sleep (NREM) to rapid eye movement (REM) sleep in subjects with idiopathic REM sleep behavior disorder (RBD) and controls. We tested the hypothesis that REM-related cardiorespiratory activation is altered in subjects with RBD. Design: Retrospective case-control study. Setting: University hospital-based sleep research laboratory. Patients: Ten subjects with idiopathic RBD (2 women, mean age 63.4 ± 6.2 years) and 10 sex- and age-matched controls (mean age 63.9 ± 6.3 years). Intervention: One-night polysomnography was used to assess R-R variability during NREM and REM sleep. Measurements and Results: Spectral analysis of R-R interval and respiration were performed. Mean R-R interval, low-frequency (LF) and high-frequency (HF) components in both absolute and normalized units (LFnu and HFnu), and the LF/HF ratio were obtained from 5-minute electrocardiogram segments selected during NREM and REM sleep under stable conditions (stable breathing pattern, no microarousals or leg movements). Respiratory frequency was also assessed. Values obtained were then averaged for each stage and analyzed by 2 × 2 analysis of variance with group (RBD subjects and controls) as factor and state (NREM and REM) as repeated measures. RR interval, HF, and HFnu components decreased from NREM to REM in controls but did not change in RBD subjects (Interaction P < 0.05). LFnu (interaction P < 0. 001), LF/HF (interaction P < 0. 001), and respiratory frequency (interaction P < 0. 05) increased from NREM to REM sleep in controls but remained stable in RBD subjects. Conclusion: REM-related cardiac and respiratory responses are absent in subjects with idiopathic RBD. Citation: Lanfranchi PA; Fradette L; Gagnon JF; Colombo R; Montplaisir J. Cardiac autonomic regulation during sleep in idiopathic REM sleep behavior disorder. SLEEP 2007;30(8):1019–1025. PMID:17702272

  4. Sleepiness in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease.

    PubMed

    Arnulf, Isabelle; Neutel, Dulce; Herlin, Bastien; Golmard, Jean-Louis; Leu-Semenescu, Smaranda; Cochen de Cock, Valérie; Vidailhet, Marie

    2015-10-01

    To determine whether patients with idiopathic and symptomatic RBD were sleepier than controls, and if sleepiness in idiopathic RBD predicted earlier conversion to Parkinson disease. The Epworth Sleepiness Scale (ESS) and its determinants were compared at the time of a video-polysomnography for an RBD diagnosis in patients with idiopathic RBD, in patients with Parkinson disease, and in controls. Whether sleepiness at time of RBD diagnosis predicted an earlier conversion to neurodegenerative diseases was retrospectively analyzed in the followed-up patients. The 75 patients with idiopathic RBD were sleepier (ESS: 7.8 ± 4.6) at the time of RBD diagnosis than 74 age- and sex-matched controls (ESS: 5.0 ± 3.6, P < 0.0001). They reached the levels of 114 patients with Parkinson disease (ESS: 8.7 ± 4.8), whether they had (n = 78) or did not have (n = 36) concomitant RBD. The severity of sleepiness in idiopathic RBD correlated with younger age, but not with sleep measures. Among the 69 patients with idiopathic RBD who were followed up for a median 3 years (1-15 years), 16 (23.2%) developed parkinsonism (n = 6), dementia (n = 6), dementia plus parkinsonism (n = 2), and multiple system atrophy (n = 2). An ESS greater than 8 at time of RBD diagnosis predicted a shorter time to phenoconversion to parkinsonism and dementia, from RBD onset, and from RBD diagnosis (when adjusted for age and time between RBD onset and diagnosis). Sleepiness is associated with idiopathic REM sleep behavior disorder and predicts more rapid conversion to parkinsonism and dementia, suggesting it is an early marker of neuronal loss in brainstem arousal systems. © 2015 Associated Professional Sleep Societies, LLC.

  5. Diagnostic REM sleep muscle activity thresholds in patients with idiopathic REM sleep behavior disorder with and without obstructive sleep apnea.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Sandness, David J; Duwell, Ethan J; Timm, Paul C; Boeve, Bradley F; Silber, Michael H

    2017-05-01

    We aimed to determine whether visual and automated rapid eye movement (REM) sleep without atonia (RSWA) methods could accurately diagnose patients with idiopathic REM sleep behavior disorder (iRBD) and comorbid obstructive sleep apnea (OSA). In iRBD patients (n = 15) and matched controls (n = 30) with and without OSA, we visually analyzed RSWA phasic burst durations, phasic, tonic, and "any" muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and automated REM atonia index (RAI). Group RSWA metrics were analyzed with regression models. Receiver operating characteristic (ROC) curves were used to determine the best diagnostic cutoff thresholds for REM sleep behavior disorder (RBD). Both split-night and full-night polysomnographic studies were analyzed. All mean RSWA phasic burst durations and muscle activities were higher in iRBD patients than in controls (p <0.01). Muscle activity (phasic, "any") cutoffs for 3-s mini-epoch scorings were as follows: submentalis (SM) (15.8%, 19.5%), anterior tibialis (AT) (29.7%, 29.7%), and combined SM/AT (39.5%, 39.5%). The tonic muscle activity cutoff was 0.70% and RAI (SM) cutoff 0.86. The phasic muscle burst duration cutoffs were 0.66 s for SM and 0.71 s for AT. Combining phasic burst durations with RSWA muscle activity improved the sensitivity and specificity of iRBD diagnosis. This study provides evidence for quantitative RSWA diagnostic thresholds applicable in iRBD patients with OSA. Our findings in this study were very similar to those seen in patients with Parkinson's disease-REM sleep behavior disorder (PD-RBD), consistent with a common mechanism and presumed underlying etiology of synucleinopathy in both groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Parkinson risk in idiopathic REM sleep behavior disorder

    PubMed Central

    Postuma, Ronald B.; Gagnon, Jean-Francois; Bertrand, Josie-Anne; Génier Marchand, Daphné

    2015-01-01

    Objective: To precisely delineate clinical risk factors for conversion from idiopathic REM sleep behavior disorder (RBD) to Parkinson disease, dementia with Lewy bodies, and multiple system atrophy, in order to enable practical planning and stratification of neuroprotective trials against neurodegenerative synucleinopathy. Methods: In a 10-year prospective cohort, we tested prodromal Parkinson disease markers in 89 patients with idiopathic RBD. With Kaplan-Meier analysis, we calculated risk of neurodegenerative synucleinopathy, and using Cox proportional hazards, tested the ability of prodromal markers to identify patients at higher disease risk. By combining predictive markers, we then designed stratification strategies to optimally select patients for definitive neuroprotective trials. Results: The risk of defined neurodegenerative synucleinopathy was high: 30% developed disease at 3 years, rising to 66% at 7.5 years. Advanced age (hazard ratio [HR] = 1.07), olfactory loss (HR = 2.8), abnormal color vision (HR = 3.1), subtle motor dysfunction (HR = 3.9), and nonuse of antidepressants (HR = 3.5) identified higher risk of disease conversion. However, mild cognitive impairment (HR = 1.8), depression (HR = 0.63), Parkinson personality, treatment with clonazepam (HR = 1.3) or melatonin (HR = 0.55), autonomic markers, and sex (HR = 1.37) did not clearly predict clinical neurodegeneration. Stratification with prodromal markers increased risk of neurodegenerative disease conversion by 200%, and combining markers allowed sample size reduction in neuroprotective trials by >40%. With a moderately effective agent (HR = 0.5), trials with fewer than 80 subjects per group can demonstrate definitive reductions in neurodegenerative disease. Conclusions: Using stratification with simply assessed markers, it is now not only possible, but practical to include patients with RBD in neuroprotective trials against Parkinson disease, multiple system atrophy, and dementia with Lewy bodies

  7. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    PubMed Central

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi; Korbo, Lise; Friberg, Lars; Jennum, Poul

    2016-01-01

    Study Objectives: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown that patients with idiopathic RBD (iRBD) have an increased risk of developing an α-synucleinopathy in later life. Although abundant studies have shown that degeneration of the nigrostriatal dopaminergic system is associated with daytime motor function in Parkinson disease, only few studies have investigated the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. Methods: 10 iRBD patients, 10 PD patients with PD, 10 PD patients without RBD, and 10 healthy controls were included and assessed with (123)I-N-omega-fluoropropyl-2-beta-carboxymethoxy-3beta-(4-iodophenyl) nortropane ((123)I-FP-CIT) Single-photon emission computed tomography (SPECT) scanning (123I-FP-CIT SPECT), neurological examination, and polysomnography. Results: iRBD patients and PD patients with RBD had increased EMG-activity compared to healthy controls. 123I-FP-CIT uptake in the putamen-region was highest in controls, followed by iRBD patients, and lowest in PD patients. In iRBD patients, EMG-activity in the mentalis muscle was correlated to 123I-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. Conclusions: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD. Citation: Zoetmulder M, Nikolic M, Biernat H, Korbo L, Friberg L, Jennum P. Increased motor activity during rem sleep is linked with dopamine function in idiopathic REM sleep behavior

  8. Non-rapid eye movement sleep characteristics in idiopathic REM sleep behavior disorder.

    PubMed

    Latreille, Véronique; Carrier, Julie; Montplaisir, Jacques; Lafortune, Marjolaine; Gagnon, Jean-François

    2011-11-15

    This study investigated slow waves (SW; >75μV and <4Hz) characteristics in patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). Thirty patients with iRBD and 30 age- and sex-matched healthy subjects underwent one polysomnographic (PSG) nocturnal sleep recording. SW automatic detection was performed on F3, C3, P3, and O1 leads and SW characteristics were derived (SW density, amplitude, frequency, slope, and duration of negative and positive phases). We also compared iRBD patients and control subjects on PSG variables and delta (0.25-4.0Hz) spectral power. No between-group differences were found on PSG variables, delta spectral power, or SW characteristics. Results show no SW abnormalities in iRBD patients compared to healthy participants, which suggests similar level of synchronization of thalamo-cortical neurons during N-REM sleep.

  9. Sleep stability and transitions in patients with idiopathic REM sleep behavior disorder and patients with Parkinson's disease.

    PubMed

    Christensen, Julie Anja Engelhard; Jennum, Poul; Koch, Henriette; Frandsen, Rune; Zoetmulder, Marielle; Arvastson, Lars; Christensen, Søren Rahn; Sorensen, Helge Bjarrup Dissing

    2016-01-01

    Patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) are at high risk of developing Parkinson's disease (PD). As wake/sleep-regulation is thought to involve neurons located in the brainstem and hypothalamic areas, we hypothesize that the neurodegeneration in iRBD/PD is likely to affect wake/sleep and REM/non-REM (NREM) sleep transitions. We determined the frequency of wake/sleep and REM/NREM sleep transitions and the stability of wake (W), REM and NREM sleep as measured by polysomnography (PSG) in 27 patients with PD, 23 patients with iRBD, 25 patients with periodic leg movement disorder (PLMD) and 23 controls. Measures were computed based on manual scorings and data-driven labeled sleep staging. Patients with PD showed significantly lower REM stability than controls and patients with PLMD. Patients with iRBD had significantly lower REM stability compared with controls. Patients with PD and RBD showed significantly lower NREM stability and significantly more REM/NREM transitions than controls. We conclude that W, NREM and REM stability and transitions are progressively affected in iRBD and PD, probably reflecting the successive involvement of brain stem areas from early on in the disease. Sleep stability and transitions determined by a data-driven approach could support the evaluation of iRBD and PD patients. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Idiopathic REM Sleep Behavior Disorder: A Report on Two Cases with Contrasting Features

    PubMed Central

    Gupta, Sriniwas; Raju, M. S. V. K.; Pawar, Alka

    2015-01-01

    REM sleep behavior disorder (RBD) is a rare parasomnia in which persons exhibit uncharacteristic violent behavior, while dreaming. Secondary RBD occurs due to some neurological conditions, psychoactive substance or psychotropic drug use. There are no case reports on idiopathic RBD in India. We report here two cases to underscore the importance of identifying the disease as behavior associated with RBD may be quite serious in nature and might lead to catastrophic consequences. PMID:26664088

  11. Alexithymia Associated with Nightmare Distress in Idiopathic REM Sleep Behavior Disorder

    PubMed Central

    Godin, Isabelle; Montplaisir, Jaques; Gagnon, Jean-François; Nielsen, Tore

    2013-01-01

    Study Objectives: Idiopathic REM sleep behavior disorder (iRBD) is characterized by atypical REM sleep motor activity, vivid dreams and nightmares, and dream-enacting behaviors that can result in injuries to the patient and bed partner. It is also a known predictor of Parkinson disease (PD). Alexithymia has been associated with disturbances in sleep and dreaming (e.g., nightmares) and is a non-motor symptom of PD. We assessed alexithymia and disturbed dreaming in iRBD patients with the aim of determining if these two factors are elevated and interrelated among this population. Design: Questionnaire study of clinically diagnosed patients. Setting: Clinical sleep disorders center. Patients or participants: Thirty-two iRBD patients and 30 healthy age- and sex-matched control participants. Measurements and Results: Participants completed the 20-item Toronto Alexithymia Scale (TAS-20), the Dream Questionnaire, and the Beck Depression Inventory. iRBD patients obtained higher TAS-20 total scores (62.16 ± 13.90) than did controls (52.84 ± 7.62; F1,59 = 10.44, P < 0.01), even when controlling for depressive symptoms, and more frequently attained the suggested cutoff for alexithymia than did controls (P < 0.01). iRBD patients obtained higher scores on the Difficulty Identifying Feelings alexithymia subscale. For both iRBD and control groups, the Difficulty Indentifying Feelings subscale correlated positively with the Nightmare Distress scale of the Dream Questionnaire. Conclusions: Elevated alexithymia scores among idiopathic rapid eye movement sleep behavior disorder patients, and especially a difficulty in identifying feelings, parallels evidence of dysautonomia in this population. The higher incidence of distressing nightmares and the association of nightmares with alexithymia further extend similar findings for both clinical and non-clinical samples and suggest that an affect regulation disturbance may be common to the two sets of symptoms. Citation: Godin I

  12. Midbrain hyperechogenicity in idiopathic REM sleep behavior disorder.

    PubMed

    Stockner, Heike; Iranzo, Alex; Seppi, Klaus; Serradell, Mónica; Gschliesser, Viola; Sojer, Martin; Valldeoriola, Francesc; Molinuevo, José L; Frauscher, Birgit; Schmidauer, Christof; Santamaria, Joan; Högl, Birgit; Tolosa, Eduardo; Poewe, Werner

    2009-10-15

    Recent studies have reported an increased risk to develop Parkinson's disease (PD) in patients with idiopathic RBD (iRBD). Midbrain hyperechogenicity is a common transcranial sonography (TCS) finding in PD and has been suggested as a PD risk-marker in nonparkinsonian subjects. The objective of this study is to assess midbrain echogenicity by TCS in patients with iRBD and compare the findings with the healthy controls. TCS was performed in 55 iRBD patients and in 165 age and sex-matched controls. The area of echogenicity in the SN region in the iRBD group was significantly increased compared with the control group (P < 0.001). About 19 (37.3%) of patients with iRBD were found to have SN hyperechogenicity when compared with 16 (10.7%) of the controls (P < 0.001). This is the first case-control study assessing midbrain echogenicity in a large iRBD cohort compared to age- and sex-matched healthy individuals. The finding of an increased prevalence of hyperechogenicity in a subgroup of individuals with a priori increased risk for PD supports the potential role of hyperechogenicity as a risk marker for PD. The prospective follow-up of this iRBD cohort is needed to establish if those with midbrain hyperechogenicity will go on to develop clinically defined PD or not.

  13. How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder.

    PubMed

    Postuma, R B; Lang, A E; Gagnon, J F; Pelletier, A; Montplaisir, J Y

    2012-06-01

    Parkinsonism, as a gradually progressive disorder, has a prodromal interval during which neurodegeneration has begun but cardinal manifestations have not fully developed. A systematic direct assessment of this interval has never been performed. Since patients with idiopathic REM sleep behaviour disorder are at very high risk of parkinsonism, they provide a unique opportunity to observe directly the development of parkinsonism. Patients with idiopathic REM sleep behaviour disorder in an ongoing cohort study were evaluated annually with several quantitative motor measures, including the Unified Parkinson's Disease Rating Scale, Purdue Pegboard, alternate-tap test and timed up-and-go. Patients who developed parkinsonism were identified from this cohort and matched according to age to normal controls. Their results on motor testing from the preceding years were plotted, and then assessed with regression analysis, to determine when markers first deviated from normal values. Sensitivity and specificity of quantitative motor markers for diagnosing prodromal parkinsonism were assessed. Of 78 patients, 20 developed parkinsonism. On regression analysis, the Unified Parkinson's Disease Rating Scale first intersected normal values at an estimated 4.5 years before diagnosis. Voice and face akinesia intersected earliest (estimated prodromal interval = 9.8 years), followed by rigidity (4.4 years), gait abnormalities (4.4 years) and limb bradykinesia (4.2 years). Quantitative motor tests intersected normal values at longer prodromal intervals than subjective examination (Purdue Pegboard = 8.6 years, alternate-tap = 8.2, timed up-and-go = 6.3). Using Purdue Pegboard and the alternate-tap test, parkinsonism could be detected with 71-82% sensitivity and specificity 3 years before diagnosis, whereas a Unified Parkinson's Disease Rating Scale score >4 identified prodromal parkinsonism with 88% sensitivity and 94% specificity 2 years before diagnosis. Removal of action

  14. Alexithymia associated with nightmare distress in idiopathic REM sleep behavior disorder.

    PubMed

    Godin, Isabelle; Montplaisir, Jaques; Gagnon, Jean-François; Nielsen, Tore

    2013-12-01

    Idiopathic REM sleep behavior disorder (iRBD) is characterized by atypical REM sleep motor activity, vivid dreams and nightmares, and dream-enacting behaviors that can result in injuries to the patient and bed partner. It is also a known predictor of Parkinson disease (PD). Alexithymia has been associated with disturbances in sleep and dreaming (e.g., nightmares) and is a non-motor symptom of PD. We assessed alexithymia and disturbed dreaming in iRBD patients with the aim of determining if these two factors are elevated and interrelated among this population. Questionnaire study of clinically diagnosed patients. Clinical sleep disorders center. Thirty-two iRBD patients and 30 healthy age- and sex-matched control participants. Participants completed the 20-item Toronto Alexithymia Scale (TAS-20), the Dream Questionnaire, and the Beck Depression Inventory. iRBD patients obtained higher TAS-20 total scores (62.16 ± 13.90) than did controls (52.84 ± 7.62; F 1,59 = 10.44, P < 0.01), even when controlling for depressive symptoms, and more frequently attained the suggested cutoff for alexithymia than did controls (P < 0.01). iRBD patients obtained higher scores on the Difficulty Identifying Feelings alexithymia subscale. For both iRBD and control groups, the Difficulty Indentifying Feelings subscale correlated positively with the Nightmare Distress scale of the Dream Questionnaire. Elevated alexithymia scores among idiopathic rapid eye movement sleep behavior disorder patients, and especially a difficulty in identifying feelings, parallels evidence of dysautonomia in this population. The higher incidence of distressing nightmares and the association of nightmares with alexithymia further extend similar findings for both clinical and non-clinical samples and suggest that an affect regulation disturbance may be common to the two sets of symptoms.

  15. Characterization of REM sleep without atonia in patients with narcolepsy and idiopathic hypersomnia using AASM scoring manual criteria.

    PubMed

    DelRosso, Lourdes M; Chesson, Andrew L; Hoque, Romy

    2013-07-15

    The AASM Manual for the Scoring of Sleep and Associated Events (Manual) has provided standardized definitions for tonic and phasic REM sleep without atonia (RSWA). This study used Manual criteria to characterize REM sleep in patients with narcolepsy and idiopathic hypersomnia (IH). A retrospective review of PSG data from ICSD-2 defined patients with narcolepsy or IH, performed by two board certified sleep medicine physicians. Data compiled included REM sleep epochs and the presence in REM sleep of epochs scored as sustained muscle activity (tonic), and excessive transient muscle activity (phasic) as defined by Manual criteria. PSG data from 8 narcolepsy patients (mean age: 27.5 years; age range: 11-55) showed mean ± standard deviation values for: total REM sleep epochs 205 ± 46.1; RSWA/ phasic epochs 56.1 ± 25.4; and RSWA/tonic epochs 15.0 ± 10.7. PSG data from 8 IH patients (mean age: 33.1 years; age range: 20-57) showed mean ± standard deviation values of total REM sleep epochs 163.8 ± 67.9; RSWA/phasic epochs 6.2 ± 3.5; and RSWA/tonic epochs 0.2 ± 0.4. Comparison revealed intergroup differences in phasic REM sleep (p < 0.01) and tonic REM sleep (p < 0.01) were significantly increased in narcoleptics compared to IH. Our retrospective analysis showed that RSWA phasic activity and RSWA tonic activity are significantly increased in patients meeting ICSD-2 criteria for narcolepsy compared to patients meeting ICSD-2 criteria for IH. This robust difference, with further validation, could be useful as electrophysiological criteria differentiating the two disorders and understanding the physiological differences.

  16. REM sleep Behaviour Disorder.

    PubMed

    Ferini-Strambi, Luigi; Rinaldi, Fabrizio; Giora, Enrico; Marelli, Sara; Galbiati, Andrea

    2016-01-01

    Rapid Eye Movement (REM) sleep Behaviour Disorder (RBD) is a REM sleep parasomnia characterized by loss of the muscle atonia that typically occurs during REM sleep, therefore allowing patients to act out their dreams. RBD manifests itself clinically as a violent behaviour occurring during the night, and is detected at the polysomnography by phasic and/or tonic muscle activity on the electromyography channel. In absence of neurological signs or central nervous system lesions, RBD is defined as idiopathic. Nevertheless, in a large number of cases the development of neurodegenerative diseases in RBD patients has been described, with the duration of the follow-up representing a fundamental aspect. A growing number of clinical, neurophysiologic and neuropsychological studies aimed to detect early markers of neurodegenerative dysfunction in RBD patients. Anyway, the evidence of impaired cortical activity, subtle neurocognitive dysfunction, olfactory and autonomic impairment and neuroimaging brain changes in RBD patients is challenging the concept of an idiopathic form of RBD, supporting the idea of RBD as an early manifestation of a more complex neurodegenerative process.

  17. Cognitive study on Chinese patients with idiopathic REM sleep behavior disorder.

    PubMed

    Li, Xudong; Zhou, Zhi; Jia, Shuhong; Hou, Chunlei; Zheng, Wenjing; Rong, Pei; Jiao, Jinsong

    2016-07-15

    We investigated cognitive abnormalities using standard tests in Chinese patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) compared with those in normal controls. Twenty-three patients with iRBD and 23 normal controls were included in this study. All of the participants underwent one night of video-polysomnography (PSG) monitoring to certify REM sleep without atonia or abnormal behaviors. The cognitive assessments were administered and scored according to a standard procedure, including global cognitive screening and attention/processing speed, executive function, memory, language, and visuospatial ability testing. Patients with iRBD had similar scores of the Mini Mental State Examination (MMSE) but lower Montreal Cognitive Assessment (MoCA) scores compared with controls (p>0.05, p=0.013). The iRBD patients performed poorly on verbal memory tests, which included immediate recall (p<0.001), delayed recall (p<0.001), and false recognitions (p=0.002) of the Rey Auditory Verbal Learning Test (RAVLT). The visual memory and visuospatial abilities were also impaired in iRBD patients, as reflected by the copy (p=0.005) and immediate (p=0.004) and delayed (p=0.003) recall of the Rey-Osterrieth complex figure, although no difference was found after Bonferroni correction. The duration of RBD was 6.98±8.10years. After controlling for age, the duration of RBD was only correlated with the Trail Making Test B (r=0.613, p=0.045) and block design (r=-0.667, p=0.025). Impaired verbal memory was observed in iRBD patients who identified as Chinese. MoCA could detect cognitive abnormalities and serve as a screening scale. The present study further confirmed cognitive deficits in iRBD as an early clinical marker in the prodromal stage of synucleinopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Neurodegenerative Disorder Risk in Idiopathic REM Sleep Behavior Disorder: Study in 174 Patients

    PubMed Central

    Iranzo, Alex; Fernández-Arcos, Ana; Tolosa, Eduard; Serradell, Mónica; Molinuevo, José Luis; Valldeoriola, Francesc; Gelpi, Ellen; Vilaseca, Isabel; Sánchez-Valle, Raquel; Lladó, Albert; Gaig, Carles; Santamaría, Joan

    2014-01-01

    Objective To estimate the risk for developing a defined neurodegenerative syndrome in a large cohort of idiopathic REM sleep behavior disorder (IRBD) patients with long follow-up. Methods Using the Kaplan-Meier method, we estimated the disease-free survival rate from defined neurodegenerative syndromes in all the consecutive IRBD patients diagnosed and followed-up in our tertiary referal sleep center between November 1991 and July 2013. Results The cohort comprises 174 patients with a median age at diagnosis of IRBD of 69 years and a median follow-up of four years. The risk of a defined neurodegenerative syndrome from the time of IRBD diagnosis was 33.1% at five years, 75.7% at ten years, and 90.9% at 14 years. The median conversion time was 7.5 years. Emerging diagnoses (37.4%) were dementia with Lewy bodies (DLB) in 29 subjects, Parkinson disease (PD) in 22, multiple system atrophy (MSA) in two, and mild cognitive impairment (MCI) in 12. In six cases, in whom postmortem was performed, neuropathological examination disclosed neuronal loss and widespread Lewy-type pathology in the brain in each case. Conclusions In a large IRBD cohort diagnosed in a tertiary referal sleep center, prolonged follow-up indicated that the majority of patients are eventually diagnosed with the synucleinopathies PD, DLB and less frequently MSA. IRBD represented the prodromal period of these conditions. Our findings in IRBD have important implications in clinical practice, in the investigation of the early pathological events occurring in the synucleinopathies, and for the design of interventions with potential disease-modifying agents. PMID:24587002

  19. Enteric nervous system α-synuclein immunoreactivity in idiopathic REM sleep behavior disorder

    PubMed Central

    Sprenger, Fabienne S.; Stefanova, Nadia; Gelpi, Ellen; Seppi, Klaus; Navarro-Otano, Judith; Offner, Felix; Vilas, Dolores; Valldeoriola, Francesc; Pont-Sunyer, Claustre; Aldecoa, Iban; Gaig, Carles; Gines, Angels; Cuatrecasas, Miriam; Högl, Birgit; Frauscher, Birgit; Iranzo, Alex; Wenning, Gregor K.; Vogel, Wolfgang; Tolosa, Eduardo

    2015-01-01

    Objective: To investigate the expression of α-synuclein in colonic biopsies of patients with idiopathic REM sleep behavior disorder (iRBD) and address if α-synuclein immunostaining of tissue obtained via colonic biopsies holds promise as a diagnostic biomarker for prodromal Parkinson disease (PD). Methods: Patients with iRBD, patients with PD, and healthy controls were prospectively recruited to undergo colonic biopsies for comparison of α-synuclein immunoreactivity patterns between the groups by using 2 different antibodies. Results: There was no difference in colonic mucosal and submucosal immunostaining between groups using the 15G7 α-synuclein antibody, which was found in almost all participants enrolled in this study. By contrast, immunostaining for serine 129-phosphorylated α-synuclein (pSyn) in submucosal nerve fibers or ganglia was found in none of 14 controls but was observed in 4 of 17 participants with iRBD and 1 out of 19 patients with PD. Conclusions: The present findings of pSyn immunostaining of colonic biopsies in a substantial proportion of iRBD participants raise the possibility that this tissue marker may be a suitable candidate to study further as a prodromal PD marker in at-risk cohorts. PMID:26475692

  20. Parkinson risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials.

    PubMed

    Postuma, Ronald B; Gagnon, Jean-Francois; Bertrand, Josie-Anne; Génier Marchand, Daphné; Montplaisir, Jacques Y

    2015-03-17

    To precisely delineate clinical risk factors for conversion from idiopathic REM sleep behavior disorder (RBD) to Parkinson disease, dementia with Lewy bodies, and multiple system atrophy, in order to enable practical planning and stratification of neuroprotective trials against neurodegenerative synucleinopathy. In a 10-year prospective cohort, we tested prodromal Parkinson disease markers in 89 patients with idiopathic RBD. With Kaplan-Meier analysis, we calculated risk of neurodegenerative synucleinopathy, and using Cox proportional hazards, tested the ability of prodromal markers to identify patients at higher disease risk. By combining predictive markers, we then designed stratification strategies to optimally select patients for definitive neuroprotective trials. The risk of defined neurodegenerative synucleinopathy was high: 30% developed disease at 3 years, rising to 66% at 7.5 years. Advanced age (hazard ratio [HR] = 1.07), olfactory loss (HR = 2.8), abnormal color vision (HR = 3.1), subtle motor dysfunction (HR = 3.9), and nonuse of antidepressants (HR = 3.5) identified higher risk of disease conversion. However, mild cognitive impairment (HR = 1.8), depression (HR = 0.63), Parkinson personality, treatment with clonazepam (HR = 1.3) or melatonin (HR = 0.55), autonomic markers, and sex (HR = 1.37) did not clearly predict clinical neurodegeneration. Stratification with prodromal markers increased risk of neurodegenerative disease conversion by 200%, and combining markers allowed sample size reduction in neuroprotective trials by >40%. With a moderately effective agent (HR = 0.5), trials with fewer than 80 subjects per group can demonstrate definitive reductions in neurodegenerative disease. Using stratification with simply assessed markers, it is now not only possible, but practical to include patients with RBD in neuroprotective trials against Parkinson disease, multiple system atrophy, and dementia with Lewy bodies. © 2015 American Academy of Neurology.

  1. Idiopathic REM sleep behaviour disorder in the development of Parkinson's disease.

    PubMed

    Boeve, Bradley F

    2013-05-01

    Parkinson's disease is a progressive neurodegenerative disorder associated with Lewy body disease pathology in central and peripheral nervous system structures. Although the cause of Parkinson's disease is not fully understood, clinicopathological analyses have led to the development of a staging system for Lewy body disease-associated pathological changes. This system posits a predictable topography of progression of Lewy body disease in the CNS, beginning in olfactory structures and the medulla, then progressing rostrally from the medulla to the pons, then to midbrain and substantia nigra, limbic structures, and neocortical structures. If this topography and temporal evolution of Lewy body disease does occur, other manifestations of the disease as a result of degeneration of olfactory and pontomedullary structures could theoretically begin many years before the development of prominent nigral degeneration and the associated parkinsonian features of Parkinson's disease. One such manifestation of prodromal Parkinson's disease is rapid eye movement (REM) sleep behaviour disorder, which is a parasomnia manifested by vivid dreams associated with dream enactment behaviour during REM sleep. Findings from animal and human studies have suggested that lesions or dysfunction in REM sleep and motor control circuitry in the pontomedullary structures cause REM sleep behaviour disorder phenomenology, and degeneration of these structures might explain the presence of REM sleep behaviour disorder years or decades before the onset of parkinsonism in people who develop Parkinson's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Validation of the Innsbruck REM sleep behavior disorder inventory.

    PubMed

    Frauscher, Birgit; Ehrmann, Laura; Zamarian, Laura; Auer, Florentine; Mitterling, Thomas; Gabelia, David; Brandauer, Elisabeth; Delazer, Margarete; Poewe, Werner; Högl, Birgit

    2012-11-01

    A diagnosis of definite REM sleep behavior disorder requires both a positive history for REM sleep behavior disorder and polysomnographic demonstration of REM sleep without atonia. To improve and facilitate screening for REM sleep behavior disorder, there is a need for simple clinical tools with sufficient sensitivity and specificity for the identification of subjects with probable REM sleep behavior disorder. We developed a short REM sleep behavior disorder screening questionnaire with 7 REM sleep behavior disorder- and 2 non-REM sleep behavior disorder-specific control items and performed a validation study in 70 REM sleep behavior disorder subjects and 140 sleep disorder controls. Response patterns to all 7 REM sleep behavior disorder-specific items differed between REM sleep behavior disorder and non-REM sleep behavior disorder patients (all P < 0.05), whereas the 2 non-REM sleep behavior disorder-specific control items did not differentiate between REM sleep behavior disorder and non-REM sleep behavior disorder (all P > .05). In 5 of the 7 REM sleep behavior disorder-specific items, AUC was greater than 0.700. These 5 items were included in the Innsbruck REM sleep behavior disorder inventory. In this questionnaire, a cutoff of 0.25 (number of positive symptoms divided by number of answered questions) had a sensitivity of 0.914 and a specificity of 0.857 for both idiopathic and Parkinson's-related REM sleep behavior disorder (AUC, 0.886). The Innsbruck REM sleep behavior disorder inventory is a promising, easy-to-use, short screening tool for REM sleep behavior disorder with excellent sensitivity and specificity for both idiopathic and Parkinson's-related REM sleep behavior disorder.

  3. Idiopathic REM Sleep Behavior Disorder in the development of Parkinson’s Disease

    PubMed Central

    Boeve, Bradley F.

    2016-01-01

    Summary Parkinson’s disease (PD) is a progressive neurodegenerative disorder associated with Lewy body disease (LBD) pathology in central and peripheral nervous system structures. While the etiology of PD is not fully understood, recent clinicopathologic analyses by Braak and colleagues have led to the development of a staging system of LBD pathology in the evolution of prototypical PD. This system posits a relatively predictable topography of progression of LBD pathology in the central nervous system, from olfactory structures and the medulla, which then progresses rostrally from the medulla to the pons, then midbrain/substantia nigra, then limbic, and then neocortical structures. If this topography and temporal evolution of LBD pathology indeed occur, one could hypothesize that other manifestations of LBD which reflect degeneration of olfactory and pontomedullary structures may begin many years prior to the development of prominent nigral degeneration and the associated parkinsonian features of classic PD. One such manifestation of prodromal PD is rapid eye movement (REM) sleep behavior disorder (RBD), which is a parasomnia manifested by vivid dreams associated with dream enactment behavior during REM sleep. Animal and human studies have implicated lesions or dysfunction in REM sleep and motor control circuitry in the pontomedullary structures cause RBD phenomenology, and degeneration of these structures could explain the presence of RBD years or decades prior to the onset of parkinsonism in those who develop PD. This review incorporates the rapidly growing literature on RBD and other prodromal features of PD as it pertains to the Braak staging system, and presents a framework from which many hypotheses can be (and already are being) tested. An important outcome of this framework will be to determine the natural history of RBD and associated features in the evolution to PD in the current era of no disease-modifying therapies – these natural history data will

  4. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson's disease.

    PubMed

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C; Mackay, Clare E; Hu, Michele T M

    2016-08-01

    SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep

  5. Loss of REM sleep features across nighttime in REM sleep behavior disorder.

    PubMed

    Arnaldi, Dario; Latimier, Alice; Leu-Semenescu, Smaranda; Vidailhet, Marie; Arnulf, Isabelle

    2016-01-01

    Melatonin is a chronobiotic treatment which also alleviates rapid eye movement (REM) sleep behavior disorder (RBD). Because the mechanisms of this benefit are unclear, we evaluated the clock-dependent REM sleep characteristics in patients with RBD, whether idiopathic (iRBD) or associated with Parkinson's Disease (PD), and we compared findings with PD patients without RBD and with healthy subjects. An overnight videopolysomnography was performed in ten iRBD patients, ten PD patients with RBD (PD + RBD+), ten PD patients without RBD (PD + RBD-), and ten controls. The rapid eye movement frequency per minute (REMs index), the tonic and phasic electromyographic (EMG) activity of the levator menti muscle, and the duration of each REM sleep episode were evaluated. A generalized linear model was applied in each group, with the REM sleep cycle (four ordinal levels) as the dependent variable, as a function of REMs index, REM sleep duration, and tonic and phasic EMG activity. From the first to the fourth sleep cycle, REM sleep duration progressively increased in controls only, REMs index increased in subjects without RBD but not in patients with RBD, whether idiopathic or associated with PD, whereas tonic and phasic EMG activity did not change. Patients with PD or iRBD lost the physiologic nocturnal increase in REM sleep duration, and patients with RBD (either with or without PD) lost the increase of REMs frequency across the night, suggesting an alteration in the circadian system in RBD. This supports the hypothesis of a direct effect of melatonin on RBD symptoms by its chronobiotic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Is the nonREM-REM sleep cycle reset by forced awakenings from REM sleep?

    PubMed

    Grözinger, Michael; Beersma, Domien G M; Fell, Jürgen; Röschke, Joachim

    2002-11-01

    In selective REM sleep deprivation (SRSD), the occurrence of stage REM is repeatedly interrupted by short awakenings. Typically, the interventions aggregate in clusters resembling the REM episodes in undisturbed sleep. This salient phenomenon can easily be explained if the nonREM-REM sleep process is continued during the periods of forced wakefulness. However, earlier studies have alternatively suggested that awakenings from sleep might rather discontinue and reset the ultradian process. Theoretically, the two explanations predict a different distribution of REM episode duration. We evaluated 117 SRSD treatment nights recorded from 14 depressive inpatients receiving low dosages of Trimipramine. The alarms were triggered by an automatic mechanism for the detection of REM sleep and had to be canceled by the subjects themselves. The REM episodes were determined as in undisturbed sleep-they had to include the remaining REM activity and were separated by 30 min without REM epochs. The frequency histogram of REM episodes declined exponentially with episode duration for each of the first four sleep cycles. The duration of nonREM intervals revealed bimodal distributions. These results were found consistent with the model assuming a reset of the ultradian cycle upon awakening. Whether REM or nonREM activity is resumed on return to sleep can be modeled by a random decision whereby the probability for REM sleep might depend on the momentary REM pressure.

  7. Motor-Behavioral Episodes in REM Sleep Behavior Disorder and Phasic Events During REM Sleep

    PubMed Central

    Manni, Raffaele; Terzaghi, Michele; Glorioso, Margaret

    2009-01-01

    Study Objectives: To investigate if sudden-onset motor-behavioral episodes in REM sleep behavior disorder (RBD) are associated with phasic events of REM sleep, and to explore the potential meaning of such an association. Design: Observational review analysis. Setting: Tertiary sleep center. Patients: Twelve individuals (11 males; mean age 67.6 ± 7.4 years) affected by idiopathic RBD, displaying a total of 978 motor-behavioral episodes during nocturnal in-laboratory video-PSG. Interventions: N/A Measurements and Results: The motor activity displayed was primitive in 69.1% and purposeful/semi-purposeful in 30.9% of the motor-behavioral episodes recorded. Sleeptalking was significantly more associated with purposeful/semi-purposeful motor activity than crying and/or incomprehensible muttering (71.0% versus 21.4%, P < 0.005). In 58.2% of the motor-behavioral episodes, phasic EEG-EOG events (rapid eye movements [REMs], α bursts, or sawtooth waves [STWs]) occurred simultaneously. Each variable (REMs, STWs, α bursts) was associated more with purposeful/semi-purposeful than with primitive movements (P < 0.05). Conclusions: Motor-behavioral episodes in RBD were significantly more likely to occur in association with phasic than with tonic periods of REM sleep. The presence of REMs, α bursts and STWs was found to be more frequent in more complex episodes. We hypothesize that motor-behavioral episodes in RBD are likely to occur when the brain, during REM sleep, is in a state of increased instability (presence of α bursts) and experiencing stronger stimulation of visual areas (REMs). Citation: Manni R; Terzaghi M; Glorioso M. Motor-behavioral episodes in REM sleep behavior disorder and phasic events during REM sleep. SLEEP 2009;32(2):241–245. PMID:19238811

  8. Diagnostic Value of Isolated Mentalis Versus Mentalis Plus Upper Limb Electromyography in Idiopathic REM Sleep Behavior Disorder Patients Eventually Developing a Neurodegenerative Syndrome.

    PubMed

    Fernández-Arcos, Ana; Iranzo, Alex; Serradell, Mónica; Gaig, Carles; Guaita, Marc; Salamero, Manel; Santamaria, Joan

    2017-04-01

    To compare two electromyographic (EMG) montages, isolated mentalis muscle versus mentalis in combination with upper limb muscles in the baseline diagnostic video-polysomnography (V-PSG) of patients with idiopathic REM sleep behaviors disorder (IRBD) who eventually were diagnosed with a clinically defined neurodegenerative syndrome. Forty-nine patients were included. At baseline, diagnosis of RBD was based on a typical history of dream enactment behaviors plus V-PSG showing REM sleep with qualitative increased EMG activity and/or abnormal behaviors. Quantification of EMG activity (tonic, phasic and "any") in the mentalis and upper limb muscles (biceps brachii-BB, n = 36 or flexor digitorum superficialis-FDS, n = 13) was performed manually and compared with published cut-offs. Nine (18.4%) patients had either tonic or phasic EMG below the cut-offs for the isolated mentalis and four of them (11.1 %) also had values below the cut-off for the mentalis combined with BB. All 13 patients recorded with the FDS were above the mentalis combined with FDS cut-off. For the diagnosis of IRBD, sensitivity of isolated mentalis was 81.6% and of the combination of mentalis plus upper limb muscles was 91.8% (p = .03). Audiovisual analysis showed abnormal REM sleep behaviors in all nine patients with values below the cut-offs. Quantification of EMG activity in the upper limbs combined with the mentalis increases the ability to diagnose IRBD when compared with the isolated measurement of the mentalis. Detection of typical abnormal behaviors during REM sleep with audiovisual analysis is essential for the diagnosis of IRBD in patients with EMG values below the published cut-offs.

  9. Breakdown in REM sleep circuitry underlies REM sleep behavior disorder.

    PubMed

    Peever, John; Luppi, Pierre-Hervé; Montplaisir, Jacques

    2014-05-01

    During rapid eye movement (REM) sleep, skeletal muscles are almost paralyzed. However, in REM sleep behavior disorder (RBD), which is a rare neurological condition, muscle atonia is lost, leaving afflicted individuals free to enact their dreams. Although this may sound innocuous, it is not, given that patients with RBD often injure themselves or their bed-partner. A major concern in RBD is that it precedes, in 80% of cases, development of synucleinopathies, such as Parkinson's disease (PD). This link suggests that neurodegenerative processes initially target the circuits controlling REM sleep. Clinical and basic neuroscience evidence indicates that RBD results from breakdown of the network underlying REM sleep atonia. This finding is important because it opens new avenues for treating RBD and understanding its link to neurodegenerative disorders.

  10. Does Postural Rigidity Decrease during REM Sleep without Atonia in Parkinson Disease?

    PubMed

    Arnaldi, Dario; Latimier, Alice; Leu-Semenescu, Smaranda; De Carli, Fabrizio; Vidailhet, Marie; Arnulf, Isabelle

    2016-06-15

    Rigidity is a muscle hypertonia typical of Parkinson disease (PD), whereas rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by abnormally increased muscle tone during REM sleep (REM sleep without atonia) and enacting dream behaviors. Because movements are not bradykinetic during RBD in patients with PD, we investigated whether the background, wake postural rigidity is attenuated during REM sleep without atonia, in absence of movement. The amplitude of levator menti (postural muscle) electromyographic activity during relaxed evening wakefulness (considered as reference) and sleep (N2, N3, atonic REM sleep, and quiet REM sleep without atonia) was measured in 20 patients with PD (with and without RBD), 10 patients with idiopathic RBD patients and 10 healthy subjects. The chin tone amplitude progressively decreased from wake to N2, N3, and atonic REM sleep in the four groups, but the highest amplitude was observed in PD patients with RBD during atonic REM sleep. Furthermore, chin muscle tone amplitude did not attenuate from wake to REM sleep without atonia in patients with both PD and RBD but dramatically attenuated (by 40% on average) in patients with idiopathic RBD. The high amplitude of chin muscle tone in PD with RBD (but not in idiopathic RBD) during REM sleep with and without atonia suggests that both PD-related hypertonia and RBD-related enhanced muscle tone coexist during REM sleep, together affecting chin muscle tone. Consequently, some rapid RBD movements likely start against a rigid postural tone. © 2016 American Academy of Sleep Medicine.

  11. Motor-behavioral episodes in REM sleep behavior disorder and phasic events during REM sleep.

    PubMed

    Manni, Raffaele; Terzaghi, Michele; Glorioso, Margaret

    2009-02-01

    To investigate if sudden-onset motor-behavioral episodes in REM sleep behavior disorder (RBD) are associated with phasic events of REM sleep, and to explore the potential meaning of such an association. Observational review analysis. Tertiary sleep center. Twelve individuals (11 males; mean age 67.6 +/- 7.4 years) affected by idiopathic RBD, displaying a total of 978 motor-behavioral episodes during nocturnal in-laboratory video-PSG. N/A. The motor activity displayed was primitive in 69.1% and purposeful/semi-purposeful in 30.9% of the motor-behavioral episodes recorded. Sleeptalking was significantly more associated with purposeful/semi-purposeful motor activity than crying and/or incomprehensible muttering (71.0% versus 21.4%, P<0.005). In 58.2% of the motor-behavioral episodes, phasic EEG-EOG events (rapid eye movements [REMs], alpha bursts, or sawtooth waves [STWs]) occurred simultaneously. Each variable (REMs, STWs, alpha bursts) was associated more with purposefullsemi-purposeful than with primitive movements (P<0.05). Motor-behavioral episodes in RBD were significantly more likely to occur in association with phasic than with tonic periods of REM sleep. The presence of REMs, alpha bursts and STWs was found to be more frequent in more complex episodes. We hypothesize that motor-behavioral episodes in RBD are likely to occur when the brain, during REM sleep, is in a state of increased instability (presence of alpha bursts) and experiencing stronger stimulation of visual areas (REMs).

  12. REM sleep phase preference in the crepuscular Octodon degus assessed by selective REM sleep deprivation.

    PubMed

    Ocampo-Garcés, Adrián; Hernández, Felipe; Palacios, Adrian G

    2013-08-01

    To determine rapid eye movement (REM) sleep phase preference in a crepuscular mammal (Octodon degus) by challenging the specific REM sleep homeostatic response during the diurnal and nocturnal anticrepuscular rest phases. We have investigated REM sleep rebound, recovery, and documented REM sleep propensity measures during and after diurnal and nocturnal selective REM sleep deprivations. Nine male wild-captured O. degus prepared for polysomnographic recordings. Animals were recorded during four consecutive baseline and two separate diurnal or nocturnal deprivation days, under a 12:12 light-dark schedule. Three-h selective REM sleep deprivations were performed, starting at midday (zeitgeber time 6) or midnight (zeitgeber time 18). Diurnal and nocturnal REM sleep deprivations provoked equivalent amounts of REM sleep debt, but a consistent REM sleep rebound was found only after nocturnal deprivation. The nocturnal rebound was characterized by a complete recovery of REM sleep associated with an augment in REM/total sleep time ratio and enhancement in REM sleep episode consolidation. Our results support the notion that the circadian system actively promotes REM sleep. We propose that the sleep-wake cycle of O. degus is modulated by a chorus of circadian oscillators with a bimodal crepuscular modulation of arousal and a unimodal promotion of nocturnal REM sleep

  13. Biperiden administration during REM sleep deprivation diminished the frequency of REM sleep attempts.

    PubMed

    Salin-Pascual, R J; Grandos-Fuentes, D; Galicia-Polo, L; Nieves, E; Roehrs, T A; Roth, T

    1992-06-01

    Sixteen subjects were assigned to a group using either placebo or biperiden, with eight subjects in each group. Both groups were studied for one acclimatization night, one baseline night, four nights of rapid eye movement (REM) sleep deprivation and two recovery nights. All the subjects received either placebo or 4 mg biperiden 1 hour before sleep during the four nights of REM sleep deprivation. During the baseline and the recovery nights both groups received placebo capsules. The results showed that REM sleep time during the REM sleep deprivation was reduced by 70-75% below the baseline night in both groups. The number of attempts to enter REM sleep was significantly reduced by biperiden as compared to placebo for each of the four REM sleep deprivation nights. Because the total sleep time in the biperiden group was reduced, the number of REM sleep attempts was corrected by the total sleep time. The adjusted number of REM sleep attempts was also significantly reduced in the biperiden group. REM sleep latency showed a reduction in the placebo group, whereas in the biperiden group REM sleep latency was unchanged throughout the deprivation nights. In the recovery night REM sleep time was increased in both groups, with no differences between the groups. The REM sleep latency showed a reduction in the first recovery night in both groups that persisted through the second recovery night. The above findings support the role of biperiden as a REM sleep suppressive drug.

  14. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease

    PubMed Central

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A.; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C.; Mackay, Clare E.

    2016-01-01

    See Postuma (doi:10.1093/aww131) for a scientific commentary on this article. Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson’s disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson’s disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson’s disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson’s disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson’s disease and 10 control subjects received 123I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement

  15. REM Sleep EEG Instability in REM Sleep Behavior Disorder and Clonazepam Effects.

    PubMed

    Ferri, Raffaele; Rundo, Francesco; Silvani, Alessandro; Zucconi, Marco; Bruni, Oliviero; Ferini-Strambi, Luigi; Plazzi, Giuseppe; Manconi, Mauro

    2017-08-01

    We aimed to analyze quantitatively rapid eye movement (REM) sleep electroencephalogram (EEG) in controls, drug-naïve idiopathic REM sleep behavior disorder patients (iRBD), and iRBD patients treated with clonazepam. Twenty-nine drug-naïve iRBD patients (mean age 68.2 years), 14 iRBD patients under chronic clonazepam therapy (mean age 66.3 years), and 21 controls (mean age 66.8 years) were recruited. Power spectra were obtained from sleep EEG (central derivation), using a 2-second sliding window, with 1-second steps. The power values of each REM sleep EEG spectral band (one every second) were normalized with respect to the average power value obtained during sleep stage 2 in the same individual. In drug-naïve patients, the normalized power values showed a less pronounced REM-related decrease of power in all bands with frequency <15 Hz than controls and an increase in the beta band, negatively correlated with muscle atonia; in patients treated with clonazepam there was a partial return of all bands <15 Hz toward the control values. The standard deviation values of the normalized power were higher for untreated patients in all EEG bands and were almost completely normalized in patients treated with clonazepam. The REM sleep EEG structure changes found in this study disclose subtle but significant alterations in the cortical electrophysiology of RBD that might represent the early expression of the supposed neurodegenerative processes already taking place at this stage of the disease and might be the target of better and effective future therapeutic strategies for this condition.

  16. Quantification of Electromyographic Activity During REM Sleep in Multiple Muscles in REM Sleep Behavior Disorder

    PubMed Central

    Frauscher, Birgit; Iranzo, Alex; Högl, Birgit; Casanova-Molla, Jordi; Salamero, Manel; Gschliesser, Viola; Tolosa, Eduardo; Poewe, Werner; Santamaria, Joan

    2008-01-01

    Study Objectives: The aim of our study was to determine which muscle or combination of muscles (either axial or limb muscles, lower or upper limb muscles, or proximal or distal limb muscles) provides the highest rates of rapid eye movement (REM) sleep phasic electromyographic (EMG) activity seen in patients with REM sleep behavior disorder (RBD). Setting: Two university hospital sleep disorders centers. Participants: Seventeen patients with idiopathic RBD (n = 8) and RBD secondary to Parkinson disease (n = 9). Interventions: Not applicable. Measurements and Results: Patients underwent polysomnography, including EMG recording of 13 different muscles. Phasic EMG activity in REM sleep was quantified for each muscle separately. A mean of 1459.6 ± 613.8 three-second REM sleep mini-epochs were scored per patient. Mean percentages of phasic EMG activity were mentalis (42 ± 19), flexor digitorum superficialis (29 ± 13), extensor digitorum brevis (23 ± 12), abductor pollicis brevis (22 ± 11), sternocleidomastoid (22 ± 12), deltoid (19 ± 11), biceps brachii (19 ± 11), gastrocnemius (18 ± 9), tibialis anterior (right, 17 ± 12; left, 16 ± 10), rectus femoris (left, 11 ± 6; right, 9 ± 6), and thoraco-lumbar paraspinal muscles (6 ± 5). The mentalis muscle provided significantly higher rates of excessive phasic EMG activity than all other muscles but only detected 55% of all the mini-epochs with phasic EMG activity. Simultaneous recording of the mentalis, flexor digitorum superficialis, and extensor digitorum brevis muscles detected 82% of all mini-epochs containing phasic EMG activity. This combination provided higher rates of EMG activity than any other 3-muscle combination. Excessive phasic EMG activity was more frequent in distal than in proximal muscles, both in upper and lower limbs. Conclusion: Simultaneous recording of the mentalis, flexor digitorum superficialis, and extensor digitorum brevis muscles provided the highest rates of REM sleep phasic EMG

  17. REM Sleep Phase Preference in the Crepuscular Octodon degus Assessed by Selective REM Sleep Deprivation

    PubMed Central

    Ocampo-Garcés, Adrián; Hernández, Felipe; Palacios, Adrian G.

    2013-01-01

    Study Objectives: To determine rapid eye movement (REM) sleep phase preference in a crepuscular mammal (Octodon degus) by challenging the specific REM sleep homeostatic response during the diurnal and nocturnal anticrepuscular rest phases. Design: We have investigated REM sleep rebound, recovery, and documented REM sleep propensity measures during and after diurnal and nocturnal selective REM sleep deprivations. Subjects: Nine male wild-captured O. degus prepared for polysomnographic recordings Interventions: Animals were recorded during four consecutive baseline and two separate diurnal or nocturnal deprivation days, under a 12:12 light-dark schedule. Three-h selective REM sleep deprivations were performed, starting at midday (zeitgeber time 6) or midnight (zeitgeber time 18). Measurements and Results: Diurnal and nocturnal REM sleep deprivations provoked equivalent amounts of REM sleep debt, but a consistent REM sleep rebound was found only after nocturnal deprivation. The nocturnal rebound was characterized by a complete recovery of REM sleep associated with an augment in REM/total sleep time ratio and enhancement in REM sleep episode consolidation. Conclusions: Our results support the notion that the circadian system actively promotes REM sleep. We propose that the sleep-wake cycle of O. degus is modulated by a chorus of circadian oscillators with a bimodal crepuscular modulation of arousal and a unimodal promotion of nocturnal REM sleep. Citation: Ocampo-Garcés A; Hernández F; Palacios AG. REM sleep phase preference in the crepuscular Octodon degus assessed by selective REM sleep deprivation. SLEEP 2013;36(8):1247-1256. PMID:23904685

  18. Does Postural Rigidity Decrease during REM Sleep without Atonia in Parkinson Disease?

    PubMed Central

    Arnaldi, Dario; Latimier, Alice; Leu-Semenescu, Smaranda; De Carli, Fabrizio; Vidailhet, Marie; Arnulf, Isabelle

    2016-01-01

    Study Objectives: Rigidity is a muscle hypertonia typical of Parkinson disease (PD), whereas rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by abnormally increased muscle tone during REM sleep (REM sleep without atonia) and enacting dream behaviors. Because movements are not bradykinetic during RBD in patients with PD, we investigated whether the background, wake postural rigidity is attenuated during REM sleep without atonia, in absence of movement. Methods: The amplitude of levator menti (postural muscle) electromyographic activity during relaxed evening wakefulness (considered as reference) and sleep (N2, N3, atonic REM sleep, and quiet REM sleep without atonia) was measured in 20 patients with PD (with and without RBD), 10 patients with idiopathic RBD patients and 10 healthy subjects. Results: The chin tone amplitude progressively decreased from wake to N2, N3, and atonic REM sleep in the four groups, but the highest amplitude was observed in PD patients with RBD during atonic REM sleep. Furthermore, chin muscle tone amplitude did not attenuate from wake to REM sleep without atonia in patients with both PD and RBD but dramatically attenuated (by 40% on average) in patients with idiopathic RBD. Conclusions: The high amplitude of chin muscle tone in PD with RBD (but not in idiopathic RBD) during REM sleep with and without atonia suggests that both PD-related hypertonia and RBD-related enhanced muscle tone coexist during REM sleep, together affecting chin muscle tone. Consequently, some rapid RBD movements likely start against a rigid postural tone. Citation: Arnaldi D, Latimier A, Leu-Semenescu S, De Carli F, Vidailhet M, Arnulf I. Does postural rigidity decrease during REM sleep without atonia in Parkinson disease? J Clin Sleep Med 2016;12(6):839–847. PMID:26857056

  19. REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants.

    PubMed

    McCarthy, Andrew; Wafford, Keith; Shanks, Elaine; Ligocki, Marcin; Edgar, Dale M; Dijk, Derk-Jan

    2016-09-01

    Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Antidepressants Increase REM Sleep Muscle Tone in Patients with and without REM Sleep Behavior Disorder.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Sandness, David J; Arndt, Katlyn; Erickson, Maia; Tabatabai, Grace; Boeve, Bradley F; Silber, Michael H

    2015-06-01

    REM sleep behavior disorder (RBD) is associated with antidepressant treatment, especially in younger patients; but quantitative REM sleep without atonia (RSWA) analyses of psychiatric RBD patients remain limited. We analyzed RSWA in adults receiving antidepressants, with and without RBD. We comparatively analyzed visual, manual, and automated RSWA between RBD and control groups. RSWA metrics were compared between groups, and regression was used to explore associations with clinical variables. Tertiary-care sleep center. Participants included traditional RBD without antidepressant treatment (n = 30, 15 Parkinson disease [PD-RBD] and 15 idiopathic); psychiatric RBD receiving antidepressants (n = 30); and adults without RBD, including antidepressant-treated psychiatric (n = 30), untreated psychiatric (n = 15), and OSA (n = 60) controls. N/A. RSWA was highest in traditional and psychiatric RBD, intermediate in treated psychiatric controls, and lowest in untreated psychiatric and OSA controls (P < 0.01). RSWA distribution and type also differed between antidepressant-treated patients having higher values in anterior tibialis, and PD-RBD with higher submentalis and tonic RSWA. Psychiatric RBD had significantly younger age at onset than traditional RBD patients (P < 0.01). Antidepressant treatment was associated with elevated REM sleep without atonia (RSWA) even without REM sleep behavior disorder (RBD), suggesting that antidepressants, not depression, promote RSWA. Differences in RSWA distribution and type were also seen, with higher anterior tibialis RSWA in antidepressant-treated patients and higher tonic RSWA in Parkinson disease-RBD patients, which could aid distinction between RBD subtypes. These findings suggest that antidepressants may mediate different RSWA mechanisms or, alternatively, that RSWA type and distribution evolve during progressive neurodegeneration. Further prospective RSWA analyses are necessary to clarify the relationships between antidepressant

  1. Combination of 'idiopathic' REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT.

    PubMed

    Stiasny-Kolster, K; Doerr, Y; Möller, J C; Höffken, H; Behr, T M; Oertel, W H; Mayer, G

    2005-01-01

    REM sleep behaviour disorder (RBD) and olfactory dysfunction are common and very early features of alpha-synucleinopathies, in particular Parkinson's disease. To investigate the hypothesis that these two clinical features in combination are an indicator of evolving alpha-synucleinopathy, olfactory function was assessed in RBD. We studied 30 patients (18 male, 12 female; mean age 48 +/- 14 years, range 19-78 years) with clinical (idiopathic, n = 6; symptomatic, n = 13, mostly associated with narcolepsy) or subclinical (n = 11, associated with narcolepsy) RBD according to standard criteria and 30 age- and gender-matched healthy control subjects using standardized 'Sniffin' Sticks'. RBD patients had a significantly higher olfactory threshold (P = 0.0001), lower discrimination score (P = 0.003), and lower identification score (P = 0.001). Compared with normative data, 97% of the RBD patients had a pathologically increased olfactory threshold, 63% an impaired odour discrimination score, and 63% a decreased identification score. On neurological examination, signs of parkinsonism were newly found in five patients with clinical RBD (not associated with narcolepsy), who usually had a long history of 'idiopathic' RBD. Four of the five patients fulfilled the UK Brain Bank criteria for the clinical diagnosis of Parkinson's disease. The underlying nigrostriatal degeneration of clinical Parkinson's disease was confirmed by I-123-FP-CIT SPECT in one patient and early nigrostriatal degeneration was identified by SPECT in a further two patients with 'idiopathic' clinical RBD out of 11 RBD patients who agreed to undergo SPECT studies. Our study shows that RBD patients have a profound impairment of olfactory function. Five patients with clinical RBD not associated with narcolepsy had clinical or imaging signs of nigrostriatal degeneration. This new clinical finding correlates with the neuropathological staging of Parkinson's disease (stages 1-3) as proposed by Braak. In stage 1, the

  2. Clinical Considerations of Obstructive Sleep Apnea with Little REM Sleep.

    PubMed

    Koo, Dae Lim; Nam, Hyunwoo

    2016-10-01

    Obstructive sleep apnea (OSA) is more severe during rapid eye movement (REM) sleep than during non-REM sleep. We aimed to determine the features of patients with OSA who experience little REM sleep. Patients with a chief complaint of sleep-disordered breathing were enrolled. All subjects underwent overnight polysomnography (PSG) and completed questionnaires on sleep quality. Patients were divided into the following three groups according to the proportion of REM sleep detected in overnight PSG: little REM sleep [REM sleep <20% of total sleep time (TST)], normal REM sleep (20-25% of TST), and excessive REM sleep (>25% of TST). Multiple logistic regression analyses were applied to the data. The success rate of continuous positive airway pressure (CPAP) titration was estimated in these groups. The age and body mass index of the patients were 47.9±15.9 years (mean±SD) and 25.2±4.1 kg/m², respectively. The 902 patients comprised 684 (76%) men and 218 (24%) women. The apnea-hypopnea index (AHI) in the little-REM-sleep group was 22.1±24.4 events/hour, which was significantly higher than those in the other two groups (p<0.05). Multiple logistic regression showed that a higher AHI (p<0.001; odds ratio, 1.512; 95% confidence interval, 1.020-1.812) was independently predictive of little REM sleep. The titration success rate was lower in the little-REM-sleep group than in the normal-REM-sleep group (p=0.038). The AHI is higher and the success rate of CPAP titration is lower in OSA patients with little REM sleep than those with normal REM sleep.

  3. Activation of wicket spikes by REM sleep.

    PubMed

    Serafini, A; Crespel, A; Velizarova, R; Gélisse, P

    2014-09-01

    Wicket spikes consist of monophasic arciform waveforms seen over the temporal regions, either bilaterally or independently over the two hemispheres. They should not be misinterpreted as epileptic abnormalities. They are usually found during light NREM sleep or drowsiness. In this study, we report an activation of wicket spikes by REM sleep. Two patients underwent 48-hour video-EEG. Their sleep macrostructure was analyzed. The presence of wicket spikes was correlated to each specific sleep stage. In one case, wicket spikes appeared exclusively during REM sleep. In another patient, although wicket spikes were present throughout all sleep stages, their frequency was much higher during REM sleep (64% during REM sleep, 22% during light NREM sleep, 14% during drowsiness). This study highlights that wicket spikes may be present exclusively during REM sleep and that this stage of sleep can activate them. This para-physiological rhythm, when first described, was linked to drowsiness and light NREM sleep. The persistence of wicket spikes during REM sleep has been only recently described and an increase in their frequency during this sleep stage has never been previously observed. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Women's vaginal responses during REM Sleep.

    PubMed

    Abel, G G; Murphy, W D; Becker, J V; Bitar, A

    1979-01-01

    Eight female subjects underwent vaginal photoplethysmographic recordings while asleep. Results demonstrated consistent findings of decreases in relative blood volume and increases in relative pulse pressure within the vagina during REM periods. Thes vascular changes indicate that females undergo phasic shifts in vascular blood flow in the vagina during REM sleep, similar to the phasic shifts of blood flow in the male's penis during REM sleep.

  5. Symposium: Normal and abnormal REM sleep regulation: REM sleep in depression-an overview.

    PubMed

    Berger; Riemann

    1993-12-01

    Abnormalities of REM sleep, i.e. shortening of REM latency, lengthening of the duration of the first REM period and heightening of REM density, which are frequently observed in patients with a major depressive disorder (MDD), have attracted considerable interest. Initial hopes that these aberrant patterns of sleep constitute specific markers for the primary/endogenous sub-type of depression have not been fulfilled. The specificity of REM sleep disinhibition for depression in comparison with other psychopathological groups is challenged as well. Demographic variables like age and sex exert strong influences on sleep physiology and must be controlled when searching for specific markers of depressed sleep. It is still an open question whether abnormalities of sleep are state- or trait-markers of depression. Beyond baseline studies, the cholinergic REM induction test (CRIT) indicated a heightened responsitivity of the REM sleep system to cholinergic challenge in depression compared with healthy controls and other psychopathological groups, with the exception of schizophrenia. A special role for REM sleep in depression is supported by the well-known REM sleep suppressing effect of most antidepressants. The antidepressant effect of selective REM deprivation by awakenings stresses the importance of mechanisms involved in REM sleep regulation for the understanding of the pathophysiology of depressive disorders. The positive effect of total sleep deprivation on depressive mood which can be reversed by daytime naps, furthermore emphasizes relationships between sleep and depression. Experimental evidence as described above instigated several theories like the REM deprivation hypothesis, the 2-process model and the reciprocal interaction model of nonREM-REM sleep regulation to explain the deviant sleep pattern of depression. The different models will be discussed with reference to empirical data gathered in the field.

  6. Selective REM sleep deprivation during daytime. II. Muscle atonia in non-REM sleep.

    PubMed

    Werth, Esther; Achermann, Peter; Borbély, Alexander A

    2002-08-01

    One of the hallmarks of rapid eye movement (REM) sleep is muscle atonia. Here we report extended epochs of muscle atonia in non-REM sleep (MAN). Their extent and time course was studied in a protocol that included a baseline night, a daytime sleep episode with or without selective REM sleep deprivation, and a recovery night. The distribution of the latency to the first occurrence of MAN was bimodal with a first mode shortly after sleep onset and a second mode 40 min later. Within a non-REM sleep episode, MAN showed a U-shaped distribution with the highest values before and after REM sleep. Whereas MAN was at a constant level over consecutive 2-h intervals of nighttime sleep, MAN showed high initial values when sleep began in the morning. Selective daytime REM sleep deprivation caused an initial enhancement of MAN during recovery sleep. It is concluded that episodes of MAN may represent an REM sleep equivalent and that it may be a marker of homeostatic and circadian REM sleep regulating processes. MAN episodes may contribute to the compensation of an REM sleep deficit.

  7. REM sleep behavior disorder: from dreams to neurodegeneration.

    PubMed

    Postuma, Ronald B; Gagnon, Jean-Francois; Montplaisir, Jacques Y

    2012-06-01

    REM sleep behavior disorder is a unique parasomnia characterized by dream enactment behavior during REM sleep. Unless triggered by pharmacologic agents such as antidepressants, it is generally related to damage of pontomedullary brainstem structures. Idiopathic REM sleep behavior disorder (RBD) is a well-established risk factor for neurodegenerative disease. Prospective studies have estimated that at least 40-65% of patients with idiopathic RBD will eventually develop a defined neurodegenerative phenotype, almost always a 'synucleinopathy' (Parkinson's disease, Lewy Body dementia or multiple system atrophy). In most cases, patients appear to develop a syndrome with overlapping features of both Parkinson's disease and Lewy body dementia. The interval between RBD onset and disease onset averages 10-15 years, suggesting a promisingly large window for intervention into preclinical disease stages. The ability of RBD to predict disease has major implications for design and development of neuroprotective therapy, and testing of other predictive markers of synuclein-mediated neurodegeneration. Recent studies in idiopathic RBD patients have demonstrated that olfaction, color vision, severity of REM atonia loss, transcranial ultrasound of the substantia nigra, and dopaminergic neuroimaging can predict development of neurodegenerative disease. Copyright © 2011. Published by Elsevier Inc.

  8. Postprandial ghrelin response is reduced in patients with Parkinson's disease and idiopathic REM sleep behaviour disorder: a peripheral biomarker for early Parkinson's disease?

    PubMed

    Unger, Marcus M; Möller, Jens C; Mankel, Katharina; Eggert, Karla M; Bohne, Katharina; Bodden, Maren; Stiasny-Kolster, Karin; Kann, Peter H; Mayer, Geert; Tebbe, Johannes J; Oertel, Wolfgang H

    2011-06-01

    Ghrelin, an orexigenic peptide, has multiple functions, which include promoting gastrointestinal motility and influencing higher brain functions. Experimental data suggest that ghrelin has neuroprotective potential in the MPTP mouse model of Parkinson's disease (PD). PD patients show delayed gastric emptying and other symptoms that may relate to disturbed excretion of ghrelin. No data are available on postprandial ghrelin response in patients with PD and idiopathic REM sleep behaviour disorder (iRBD)--a condition considered a putative preclinical stage of PD. We measured fasting and postprandial ghrelin serum concentrations in 20 healthy controls, 39 (including 19 drug-naïve) PD patients and 11 iRBD patients using a commercial radioimmunoassay for total ghrelin. For statistical analysis we employed ANCOVA and post-hoc testing with Bonferroni's method. Controls showed a decrease of mean fasting ghrelin serum concentrations in the early postprandial phase, followed by a recuperation starting 60 min after the test meal and reaching a maximum at 300 min. This recuperation was less pronounced in PD and iRBD; the slope of relative postprandial ghrelin recovery was different between the investigated groups (p = 0.007). Post-hoc testing showed a difference between controls and PD patients (p = 0.002) and between controls and iRBD patients (p = 0.037). The dynamic regulation of ghrelin in response to food intake is partially impaired in subjects at putative preclinical (iRBD) and clinical stages of PD. Reduced ghrelin excretion might increase the vulnerability of nigrostriatal dopaminergic neurons as suggested by animal studies. The impaired ghrelin excretion might qualify as a peripheral biomarker and be of diagnostic or therapeutic value.

  9. Retention over a Period of REM or non-REM Sleep.

    ERIC Educational Resources Information Center

    Tilley, Andrew J.

    1981-01-01

    Subjects, awaked, presented with a word list, and tested with arousal measures, were reawaked during REM or non-REM sleep and retested. Recall was facilitated by REM sleep. It was hypothesized that the high arousal level associated with REM sleep incidentally maintained the memory trace in a more retrievable form. (Author/SJL)

  10. Retention over a Period of REM or non-REM Sleep.

    ERIC Educational Resources Information Center

    Tilley, Andrew J.

    1981-01-01

    Subjects, awaked, presented with a word list, and tested with arousal measures, were reawaked during REM or non-REM sleep and retested. Recall was facilitated by REM sleep. It was hypothesized that the high arousal level associated with REM sleep incidentally maintained the memory trace in a more retrievable form. (Author/SJL)

  11. REM sleep behavior disorder: motor manifestations and pathophysiology.

    PubMed

    Arnulf, Isabelle

    2012-05-01

    Patients with REM sleep behavior disorder (RBD) enact violent dreams during REM sleep in the absence of normal muscle atonia. This disorder is highly frequent in patients with synucleinopathies (60%-100% of patients) and rare in patients with other neurodegenerative disorders. The disorder is detected by interview plus video and sleep monitoring. Abnormal movements expose the patients and bed partners to a high risk of injury and sleep disruption. The disorder is usually alleviated with melatonin and clonazepam. Limb movements are mainly minor, jerky, fast, pseudohallucinatory, and repeated, with a limp wrist during apparently grasping movements, although body jerks and complex violent (fights) and nonviolent culturally acquired behaviors are also observed. Notably, parkinsonism disappears during RBD-associated complex behaviors in patients with Parkinson's disease and with multiple system atrophy, suggesting that the upper motor stream bypasses the basal ganglia during REM sleep. Longitudinal studies show that idiopathic RBD predisposes patients to later develop Parkinson's disease, dementia with Lewy bodies, and, more rarely, multiple system atrophy, with a rate of conversion of 46% within 5 years. During this time window, patients concomitantly develop nonmotor signs (decreased olfaction and color vision, orthostatic hypotension, altered visuospatial abilities, increased harm avoidance) and have abnormal test results (decreased putamen dopamine uptake, slower EEG). Patients with idiopathic RBD have higher and faster risk for conversion to Parkinson's disease and dementia with Lewy bodies if abnormalities in dopamine transporter imaging, transcranial sonography, olfaction, and color vision are found at baseline. They constitute a highly specific target for testing neuroprotective agents.

  12. REM sleep behavior disorder and REM sleep without atonia as an early manifestation of degenerative neurological disease.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Boeve, Bradley F

    2012-04-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by repeated episodes of dream enactment behavior and REM sleep without atonia (RSWA) during polysomnography recording. RSWA is characterized by increased phasic or tonic muscle activity seen on polysomnographic electromyogram channels. RSWA is a requisite diagnostic feature of RBD, but may also be seen in patients without clinical symptoms or signs of dream enactment as an incidental finding in neurologically normal individuals, especially in patients receiving antidepressant therapy. RBD may be idiopathic or symptomatic. Patients with idiopathic RBD often later develop other neurological features including parkinsonism, orthostatic hypotension, anosmia, or cognitive impairment. RSWA without clinical symptoms as well as clinically overt RBD also often occurs concomitantly with the α-synucleinopathy family of neurodegenerative disorders, which includes idiopathic Parkinson disease, Lewy body dementia, and multiple system atrophy. This review article considers the epidemiology of RBD, clinical and polysomnographic diagnostic standards for both RBD and RSWA, previously reported associations of RSWA and RBD with neurodegenerative disorders and other potential causes, the pathophysiology of which brain structures and networks mediate dysregulation of REM sleep muscle atonia, and considerations for the effective and safe management of RBD.

  13. REM Sleep Behavior Disorder and REM Sleep Without Atonia as an Early Manifestation of Degenerative Neurological Disease

    PubMed Central

    McCarter, Stuart J.; St Louis, Erik K.

    2013-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by repeated episodes of dream enactment behavior and REM sleep without atonia (RSWA) during polysomnography recording. RSWA is characterized by increased phasic or tonic muscle activity seen on polysomnographic electromyogram channels. RSWA is a requisite diagnostic feature of RBD, but may also be seen in patients without clinical symptoms or signs of dream enactment as an incidental finding in neurologically normal individuals, especially in patients receiving antidepressant therapy. RBD may be idiopathic or symptomatic. Patients with idiopathic RBD often later develop other neurological features including parkinsonism, orthostatic hypotension, anosmia, or cognitive impairment. RSWA without clinical symptoms as well as clinically overt RBD also often occurs concomitantly with the α-synucleinopathy family of neurodegenerative disorders, which includes idiopathic Parkinson disease, Lewy body dementia, and multiple system atrophy. This review article considers the epidemiology of RBD, clinical and polysomnographic diagnostic standards for both RBD and RSWA, previously reported associations of RSWA and RBD with neurodegenerative disorders and other potential causes, the pathophysiology of which brain structures and networks mediate dysregulation of REM sleep muscle atonia, and considerations for the effective and safe management of RBD. PMID:22328094

  14. Differential responding to the beta movement after waking from REM and nonREM sleep.

    PubMed

    Lavie, P; Sutter, D

    1975-12-01

    Ten young adults were wakened from REM sleep and from nonREM sleep on two nonconsecutive nights and were tested to determine their upper and lower beta-movement thresholds. The ranges of the illusion were found to be significantly wider after waking from REM sleep than after waking from nonREM sleep or before sleep. The differential responding to the beta movement supports the experimental hypothesis that apparent motion may provide sensitive detectors of the operation during wakefulness of the Basic Rest-Activity Cycle, of which REM and nonREM sleep are opposite phases that carry over into wakefulness.

  15. NREM Sleep Stage Transitions Control Ultradian REM Sleep Rhythm

    PubMed Central

    Kishi, Akifumi; Yasuda, Hideaki; Matsumoto, Takahisa; Inami, Yasushi; Horiguchi, Jun; Tamaki, Masako; Struzik, Zbigniew R.; Yamamoto, Yoshiharu

    2011-01-01

    Study Objectives: The cyclic sequence of NREM and REM sleep, the so-called ultradian rhythm, is a highly characteristic feature of sleep. However, the mechanisms responsible for the ultradian REM sleep rhythm, particularly in humans, have not to date been fully elucidated. We hypothesize that a stage transition mechanism is involved in the determination of the ultradian REM sleep rhythm. Participants: Ten healthy young male volunteers (age: 22 ± 4 years, range 19–31 years) spent 3 nights in a sleep laboratory. The first was the adaptation night, and the second was the baseline night. On the third night, the subjects received risperidone (1 mg tablet), a central serotonergic and dopaminergic antagonist, 30 min before the polysomnography recording. Measurements and Results: We measured and investigated transition probabilities between waking, REM, and NREM sleep stages (N1, N2, and N3) within the REM-onset intervals, defined as the intervals between the onset of one REM period and the beginning of the next, altered by risperidone. We also calculated the transition intensity (i.e., instantaneous transition rate) and examined the temporal pattern of transitions within the altered REM-onset intervals. We found that when the REM-onset interval was prolonged by risperidone, the probability of transitions from N2 to N3 was significantly increased within the same prolonged interval, with a significant delay and/or recurrences of the peak intensity of transitions from N2 to N3. Conclusions: These results suggest that the mechanism governing NREM sleep stage transitions (from light to deep sleep) plays an important role in determining ultradian REM sleep rhythms. Citation: Kishi A; Yasuda H; Matsumoto T; Inami Y; Horiguchi J; Tamaki M; Struzik ZR; Yamamoto Y. NREM sleep stage transitions control ultradian REM sleep rhythm. SLEEP 2011;34(10):1423-1432. PMID:21966074

  16. Mechanisms of REM sleep in health and disease.

    PubMed

    Fraigne, Jimmy J; Grace, Kevin P; Horner, Richard L; Peever, John

    2014-11-01

    Our understanding of rapid eye movement (REM) sleep and how it is generated remains a topic of debate. Understanding REM sleep mechanisms is important because several sleep disorders result from disturbances in the neural circuits that control REM sleep and its characteristics. This review highlights recent work concerning how the central nervous system regulates REM sleep, and how the make up and breakdown of these REM sleep-generating circuits contribute to narcolepsy, REM sleep behaviour disorder and sleep apnea. A complex interaction between brainstem REM sleep core circuits and forebrain and hypothalamic structures is necessary to generate REM sleep. Cholinergic activation and GABAergic inhibition trigger the activation of subcoeruleus neurons, which form the core of the REM sleep circuit. Untimely activation of REM sleep circuits leads to cataplexy - involuntary muscle weakness or paralysis - a major symptom of narcolepsy. Degeneration of the REM circuit is associated with excessive muscle activation in REM sleep behaviour disorder. Inappropriate arousal from sleep during obstructive sleep apnea repeatedly disturbs the activity of sleep circuits, particularly the REM sleep circuit.

  17. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice.

    PubMed

    Hayashi, Yu; Kashiwagi, Mitsuaki; Yasuda, Kosuke; Ando, Reiko; Kanuka, Mika; Sakai, Kazuya; Itohara, Shigeyoshi

    2015-11-20

    Mammalian sleep comprises rapid eye movement (REM) sleep and non-REM (NREM) sleep. To functionally isolate from the complex mixture of neurons populating the brainstem pons those involved in switching between REM and NREM sleep, we chemogenetically manipulated neurons of a specific embryonic cell lineage in mice. We identified excitatory glutamatergic neurons that inhibit REM sleep and promote NREM sleep. These neurons shared a common developmental origin with neurons promoting wakefulness; both derived from a pool of proneural hindbrain cells expressing Atoh1 at embryonic day 10.5. We also identified inhibitory γ-aminobutyric acid-releasing neurons that act downstream to inhibit REM sleep. Artificial reduction or prolongation of REM sleep in turn affected slow-wave activity during subsequent NREM sleep, implicating REM sleep in the regulation of NREM sleep.

  18. REM Sleep Behavioral Events and Dreaming.

    PubMed

    Muntean, Maria-Lucia; Trenkwalder, Claudia; Walters, Arthur S; Mollenhauer, Brit; Sixel-Döring, Friederike

    2015-04-15

    To clarify whether motor behaviors and/ or vocalizations during REM sleep, which do not yet fulfill diagnostic criteria for REM sleep behavior disorder (RBD) and were defined as REM sleep behavioral events (RBEs), correspond to dream enactments. 13 subjects (10 patients with Parkinson disease [PD] and 3 healthy controls) originally identified with RBE in a prospective study (DeNoPa cohort) were reinvestigated 2 years later with 2 nights of video-supported polysomnography (vPSG). The first night was used for sleep parameter analysis. During the 2nd night, subjects were awakened and questioned for dream recall and dream content when purposeful motor behaviors and/or vocalizations became evident during REM sleep. REM sleep without atonia (RWA) was analyzed on chin EMG and the cutoff set at 18.2% as specific for RBD. At the time of this investigation 9 of 13 subjects with previous RBE were identified with RBD based upon clinical and EMG criteria. All recalled vivid dreams, and 7 subjects were able to describe dream content in detail. Four of 13 subjects with RBE showed RWA values below cutoff values for RBD. Three of these 4 subjects recalled having non-threatening dreams, and 2 (of these 3) were able to describe these dreams in detail. RBE with RWA below the RBD defining criteria correlate to dreaming in this selected cohort. There is evidence that RBEs are a precursor to RBD. © 2015 American Academy of Sleep Medicine.

  19. REM sleep rescues learning from interference.

    PubMed

    McDevitt, Elizabeth A; Duggan, Katherine A; Mednick, Sara C

    2015-07-01

    Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost.

  20. REM sleep rescues learning from interference

    PubMed Central

    McDevitt, Elizabeth A.; Duggan, Katherine A.; Mednick, Sara C.

    2015-01-01

    Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost. PMID:25498222

  1. Characteristics of REM Sleep Behavior Disorder in Childhood

    PubMed Central

    Lloyd, Robin; Tippmann-Peikert, Maja; Slocumb, Nancy; Kotagal, Suresh

    2012-01-01

    Study Objective: To describe our experience regarding the clinical and polysomnographic features of REM sleep behavior disorder (RBD) in childhood. Methods: This was a retrospective chart review of children and adolescents with RBD and REM sleep without atonia. Demographics, and clinical and polysomnographic information were tabulated. Our findings were compared with those in the existing literature. Results: The 15 subjects identified (13 RBD and 2 having REM sleep without atonia) had a mean age at diagnosis of 9.5 years (range 3-17 years); 11/15 (73%) were male. Nightmares were reported in 13/15 and excessive daytime sleepiness in 6/15. Two children had caused bodily harm to bedmate siblings. Comorbidities, which were multiple in some subjects, included anxiety (8/15), attention deficit disorder (10/15), nonspecific developmental delay (6/15), Smith-Magenis syndrome (1/15), pervasive developmental disorder (1/15), narcolepsy (1/15), idiopathic hypersomnia (1/15), and Moebius Syndrome (1/15). Abnormal MRI scans were seen in 5/8 evaluated subjects. Treatments consisted of clonazepam (10/15), melatonin (2/15), and discontinuation of a tricyclic agent (1/15), with a favorable response in 11 of 13. Two of 15 patients with REM sleep without atonia did not require pharmacotherapy. Conclusions: RBD in children may be associated with neurodevelopmental disabilities, narcolepsy, or medication use. It seems to be modestly responsive to benzodiazepines or melatonin. The etiology is distinct from that of common childhood arousal parasomnias and RBD in adults; congenital and neurodevelopmental disorders, medication effect, and narcolepsy coexisted in some, but none had an extrapyramidal neurodegenerative disorder. Citation: Lloyd R; Tippmann-Peikert M; Slocumb N; Kotagal S. Characteristics of REM sleep behavior disorder in childhood. J Clin Sleep Med 2012;8(2):127-131. PMID:22505856

  2. [The Function of REM Sleep: Implications from Transgenic Mouse Models].

    PubMed

    Kashiwagi, Mitsuaki; Hayashi, Yu

    2016-10-01

    Our sleep is composed of rapid eye movement (REM) sleep and non-REM (NREM) sleep. REM sleep is the major source of dreams, whereas synchronous cortical oscillations, called slow waves, are observed during NREM sleep. Both stages are unique to certain vertebrate species, and therefore, REM and NREM sleep are thought to be involved in higher-order brain functions. While several studies have revealed the importance of NREM sleep in growth hormone secretion, memory consolidation and brain metabolite clearance, the functions of REM sleep are currently almost totally unknown. REM sleep functions cannot be easily indicated from classical REM sleep deprivation experiments, where animals are forced to wake up whenever they enter REM sleep, because such experiments produce extreme stress due to the stimuli and because REM sleep is under strong homeostatic regulation. To overcome these issues, we developed a novel transgenic mouse model in which REM sleep can be manipulated. Using these mice, we found that REM sleep enhances slow wave activity during the subsequent NREM sleep. Slow wave activity is known to contribute to memory consolidation and synaptic plasticity. Thus, REM sleep might be involved in higher-order brain functions through its role in enhancing slow wave activity.

  3. REM Sleep Behavioral Events and Dreaming

    PubMed Central

    Muntean, Maria-Lucia; Trenkwalder, Claudia; Walters, Arthur S.; Mollenhauer, Brit; Sixel-Döring, Friederike

    2015-01-01

    Study Objectives: To clarify whether motor behaviors and/ or vocalizations during REM sleep, which do not yet fulfill diagnostic criteria for REM sleep behavior disorder (RBD) and were defined as REM sleep behavioral events (RBEs), correspond to dream enactments. Methods: 13 subjects (10 patients with Parkinson disease [PD] and 3 healthy controls) originally identified with RBE in a prospective study (DeNoPa cohort) were reinvestigated 2 years later with 2 nights of video-supported polysomnography (vPSG). The first night was used for sleep parameter analysis. During the 2nd night, subjects were awakened and questioned for dream recall and dream content when purposeful motor behaviors and/or vocalizations became evident during REM sleep. REM sleep without atonia (RWA) was analyzed on chin EMG and the cutoff set at 18.2% as specific for RBD. Results: At the time of this investigation 9 of 13 subjects with previous RBE were identified with RBD based upon clinical and EMG criteria. All recalled vivid dreams, and 7 subjects were able to describe dream content in detail. Four of 13 subjects with RBE showed RWA values below cutoff values for RBD. Three of these 4 subjects recalled having non-threatening dreams, and 2 (of these 3) were able to describe these dreams in detail. Conclusion: RBE with RWA below the RBD defining criteria correlate to dreaming in this selected cohort. There is evidence that RBEs are a precursor to RBD. Citation: Muntean ML, Trenkwalder C, Walters AS, Mollenhauer B, Sixel-Döring F. REM sleep behavioral events and dreaming. J Clin Sleep Med 2015;11(5):537–541. PMID:25665694

  4. NREM sleep stage transitions control ultradian REM sleep rhythm.

    PubMed

    Kishi, Akifumi; Yasuda, Hideaki; Matsumoto, Takahisa; Inami, Yasushi; Horiguchi, Jun; Tamaki, Masako; Struzik, Zbigniew R; Yamamoto, Yoshiharu

    2011-10-01

    The cyclic sequence of NREM and REM sleep, the so-called ultradian rhythm, is a highly characteristic feature of sleep. However, the mechanisms responsible for the ultradian REM sleep rhythm, particularly in humans, have not to date been fully elucidated. We hypothesize that a stage transition mechanism is involved in the determination of the ultradian REM sleep rhythm. Ten healthy young male volunteers (AGE: 22 ± 4 years, range 19-31 years) spent 3 nights in a sleep laboratory. The first was the adaptation night, and the second was the baseline night. On the third night, the subjects received risperidone (1 mg tablet), a central serotonergic and dopaminergic antagonist, 30 min before the polysomnography recording. We measured and investigated transition probabilities between waking, REM, and NREM sleep stages (N1, N2, and N3) within the REM-onset intervals, defined as the intervals between the onset of one REM period and the beginning of the next, altered by risperidone. We also calculated the transition intensity (i.e., instantaneous transition rate) and examined the temporal pattern of transitions within the altered REM-onset intervals. We found that when the REM-onset interval was prolonged by risperidone, the probability of transitions from N2 to N3 was significantly increased within the same prolonged interval, with a significant delay and/or recurrences of the peak intensity of transitions from N2 to N3. These results suggest that the mechanism governing NREM sleep stage transitions (from light to deep sleep) plays an important role in determining ultradian REM sleep rhythms.

  5. Normative EMG Values during REM Sleep for the Diagnosis of REM Sleep Behavior Disorder

    PubMed Central

    Frauscher, Birgit; Iranzo, Alex; Gaig, Carles; Gschliesser, Viola; Guaita, Marc; Raffelseder, Verena; Ehrmann, Laura; Sola, Nuria; Salamero, Manel; Tolosa, Eduardo; Poewe, Werner; Santamaria, Joan; Högl, Birgit

    2012-01-01

    Background: Correct diagnosis of rapid eye movement sleep behavior disorder (RBD) is important because it can be the first manifestation of a neurodegenerative disease, it may lead to serious injury, and it is a well-treatable disorder. We evaluated the electromyographic (EMG) activity in the Sleep Innsbruck Barcelona (SINBAR) montage (mentalis, flexor digitorum superficialis, extensor digitorum brevis) and other muscles to obtain normative values for the correct diagnosis of RBD for clinical practice. Setting: Two university hospital sleep disorder centers. Participants: Thirty RBD patients (15 idiopathic [iRBD], 15 with Parkinson disease [PD]) and 30 matched controls recruited from patients with effectively treated sleep related breathing disorders. Interventions: Not applicable. Methods and Results: Participants underwent video-polysomnography, including registration of 11 body muscles. Tonic, phasic, and “any” (any type of EMG activity, irrespective of whether it consisted of tonic, phasic or a combination of both) EMG activity was blindly quantified for each muscle. When choosing a specificity of 100%, the 3-sec miniepoch cutoff for a diagnosis of RBD was 18% for “any” EMG activity in the mentalis muscle (area under the curve [AUC] 0.990). Discriminative power was higher in upper limb (100% specificity, AUC 0.987–9.997) than in lower limb muscles (100% specificity, AUC 0.813–0.852). The combination of “any” EMG activity in the mentalis muscle with both phasic flexor digitorum superficialis muscles yielded a cutoff of 32% (AUC 0.998) for patients with iRBD and with PD-RBD. Conclusion: For the diagnosis of iRBD and RBD associated with PD, we recommend a polysomnographic montage quantifying “any” (any type of EMG activity, irrespective of whether it consisted of tonic, phasic or a combination of both) EMG activity in the mentalis muscle and phasic EMG activity in the right and left flexor digitorum superficialis muscles in the upper limbs with

  6. REM sleep behavior disorder: Updated review of the core features, the REM sleep behavior disorder-neurodegenerative disease association, evolving concepts, controversies, and future directions.

    PubMed

    Boeve, Bradley F

    2010-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia manifested by vivid, often frightening dreams associated with simple or complex motor behavior during REM sleep. The polysomnographic features of RBD include increased electromyographic tone +/- dream enactment behavior during REM sleep. Management with counseling and pharmacologic measures is usually straightforward and effective. In this review, the terminology, clinical and polysomnographic features, demographic and epidemiologic features, diagnostic criteria, differential diagnosis, and management strategies are discussed. Recent data on the suspected pathophysiologic mechanisms of RBD are also reviewed. The literature and our institutional experience on RBD are next discussed, with an emphasis on the RBD-neurodegenerative disease association and particularly the RBD-synucleinopathy association. Several issues relating to evolving concepts, controversies, and future directions are then reviewed, with an emphasis on idiopathic RBD representing an early feature of a neurodegenerative disease and particularly an evolving synucleinopathy. Planning for future therapies that impact patients with idiopathic RBD is reviewed in detail.

  7. REM sleep behavior disorder in patients with guadeloupean parkinsonism, a tauopathy.

    PubMed

    De Cock, Valérie Cochen; Lannuzel, Annie; Verhaeghe, Stéphane; Roze, Emmanuel; Ruberg, Merle; Derenne, Jean Philippe; Willer, Jean Claude; Vidailhet, Marie; Arnulf, Isabelle

    2007-08-01

    To describe sleep characteristics and rapid eye movement (REM) sleep behavior disorder in patients with Guadeloupean atypical parkinsonism (Gd-PSP), a tauopathy resembling progressive supranuclear palsy that mainly affects the midbrain. It is possibly caused by the ingestion of sour sop (corossol), a tropical fruit containing acetogenins, which are mitochondrial poisons. Sleep interview, motor and cognitive tests, and overnight videopolysomnography. Thirty-six age-, sex-, disease-duration- and disability-matched patients with Gd-PSP (n = 9), progressive supranuclear palsy (a tauopathy, n = 9), Parkinson disease (a synucleinopathy, n = 9) and controls (n = 9). Tertiary-care academic hospital. REM sleep behavior disorder was found in 78% patients with Gd-PSP (43% of patients reported having this disorder several years before the onset of parkinsonism), 44% of patients with idiopathic Parkinson disease, 33% of patients with progressive supranuclear palsy, and no controls. The percentage of muscle activity during REM sleep was greater in patients with Gd-PSP than in controls (limb muscle activity, 8.3%+/-8.7% vs 0.1%+/- 0.2%; chin muscle activity, 24.3%+/- 23.7% vs 0.7%+/-2.0%) but similar to that of other patient groups. The latency and percentage of REM sleep were similar in patients with Gd-PSP, patients with Parkinson disease, and controls, whereas patients with progressive supranuclear palsy had delayed and shortened REM sleep. Although Gd-PSP is a tauopathy, most patients experience REM sleep behavior disorder. This suggests that the location of neuronal loss or dysfunction in the midbrain, rather than the protein comprising the histologic lesions (synuclein versus tau aggregation), is responsible for suppressing muscle atonia during REM sleep. Subjects with idiopathic REM sleep behavior disorder should avoid eating sour sop.

  8. Posttraining Increases in REM Sleep Intensity Implicate REM Sleep in Memory Processing and Provide a Biological Marker of Learning Potential

    ERIC Educational Resources Information Center

    Nader, Rebecca S.; Smith, Carlyle T.; Nixon, Margaret R.

    2004-01-01

    Posttraining rapid eye movement (REM) sleep has been reported to be important for efficient memory consolidation. The present results demonstrate increases in the intensity of REM sleep during the night of sleep following cognitive procedural/implicit task acquisition. These REM increases manifest as increases in total number of rapid eye…

  9. Posttraining Increases in REM Sleep Intensity Implicate REM Sleep in Memory Processing and Provide a Biological Marker of Learning Potential

    ERIC Educational Resources Information Center

    Nader, Rebecca S.; Smith, Carlyle T.; Nixon, Margaret R.

    2004-01-01

    Posttraining rapid eye movement (REM) sleep has been reported to be important for efficient memory consolidation. The present results demonstrate increases in the intensity of REM sleep during the night of sleep following cognitive procedural/implicit task acquisition. These REM increases manifest as increases in total number of rapid eye…

  10. Parkinsonian tremor loses its alternating aspect during non-REM sleep and is inhibited by REM sleep.

    PubMed Central

    Askenasy, J J; Yahr, M D

    1990-01-01

    Non-REM sleep transforms the waking alternating Parkinsonian tremor into subclinical repetitive muscle contractions whose amplitude and duration decrease as non-REM sleep progresses from stages I to IV. During REM sleep Parkinsonian tremor disappears while the isolated muscle events increase significantly. PMID:2246656

  11. Sleep and respiratory sleep disorders in idiopathic pulmonary fibrosis.

    PubMed

    Milioli, Giulia; Bosi, Marcello; Poletti, Venerino; Tomassetti, Sara; Grassi, Andrea; Riccardi, Silvia; Terzano, Mario Giovanni; Parrino, Liborio

    2016-04-01

    Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) characterized by inflammation and progressive scarring of the lung parenchyma. IPF profoundly affects the quality of life (QoL) and fatigue is a frequently disabling symptom. The cause of fatigue is not well understood but patients with IPF often report extremely poor sleep quality and sleep-related breathing disorders (SRBD) that correlate with QoL. IPF patients present alterations in sleep architecture, including decreased sleep efficiency, slow wave sleep and rapid eye movement (REM) sleep, and increased sleep fragmentation. Moreover, sleep related hypoventilation during the vulnerable REM sleep period and obstructive sleep apnea-hypopnea syndrome (OSAHS) are frequent, but remain usually underdiagnosed. These SRBD in IPF are associated with alterations of the sleep structure, reduction of QoL and increased risk of mortality. In the absence of an effective therapy for IPF, optimizing the QoL could become the primary therapeutic goal. In this perspective the diagnosis and treatment of SRBD could significantly improve the QoL of IPF patients.

  12. Increased REM density in narcolepsy-cataplexy and the polysymptomatic form of idiopathic hypersomnia.

    PubMed

    Vanková, J; Nevsímalová, S; Sonka, K; Spacková, N; Svejdová-Blazejová, K

    2001-09-15

    The present work is focused on REM sleep density in patients with primary hypersomnia in comparison with non-hypersomnia subjects. 28 unmedicated patients with narcolepsy-cataplexy (NC) and 10 unmedicated patients suffering from the polysymptomatic form of idiopathic hypersomnia (IH) and their age- and sex-matched controls were included in the study. The clinical diagnosis was confirmed by MSLT and nocturnal PSG, HLA typing was performed in a respective group of narcoleptic patients. Polygraphical recordings were visually scored with particular regard to the two most characteristic phasic features of REM sleep: the number of rapid eye movements (REMs) and chin muscle twitches (Tws) per minute. These events were evaluated according to recognized criteria; a closer look was taken at both their frequency and their distribution across all the nocturnal REM periods (REMPs). The following main differences between hypersomniac patients (of both groups examined) and healthy controls were found in terms of phasic activity: (I) REM density (expressed in REMs/min and Tws/min in each REM period) was significantly increased in the hypersomniac patients in comparison with the controls. (p>0.05).(II) The intra-night phasic activity distribution was found rising more conspicuously in the hypersomniacs than in the controls.

  13. Effect of frequent brief awakenings from nonREM sleep on the nonREM-REM sleep cycle.

    PubMed

    Endo, T; Roth, C; Landolt, H P; Werth, E; Aeschbach, D; Achermann, P; Borbély, A A

    1998-04-01

    In the framework of a selective sleep deprivation study, eight young men were repeatedly awakened during 3 nights from nonREM sleep (nonREMS). The mean number of awakenings per night was 27.4, 29.5 and 32.8. In order to avoid excessive suppression of slow wave sleep, no awakening occurred in the first nonREMS episode. Compared to baseline, cycle 2 was significantly prolonged in all 3 nights, and cycle 3 in night 3 only. However, after subtracting the waking intervals, the differences from baseline was eliminated. The results show that the mechanisms underlying sleep cycle control keep track of sleep time and disregard epochs of waking.

  14. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    PubMed

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients.

  15. Daytime REM Sleep in Parkinson’s Disease

    PubMed Central

    Bliwise, Donald L.; Trotti, Lynn Marie; Juncos, Jorge J.; Factor, Stewart A.; Freeman, Alan; Rye, David B.

    2012-01-01

    Background Previous studies have demonstrated both clinical and neurochemical similarities between Parkinson’s disease (PD) and narcolepsy. The intrusion of REM sleep into the daytime remains a cardinal feature of narcolepsy, but the importance of these intrusions in PD remains unclear. In this study we examined REM sleep during daytime Maintenance of Wakefulness Testing (MWT) in PD patients. Methods Patients spent 2 consecutive nights and days in the sleep laboratory. During the daytime, we employed a modified MWT procedure in which each daytime nap opportunity (4 per day) was extended to 40 minutes, regardless of whether the patient was able to sleep or how much the patient slept. We examined each nap opportunity for the presence of REM sleep and time to fall asleep. Results Eleven of 63 PD patients studied showed 2 or more REM episodes and 10 showed 1 REM episode on their daytime MWTs. Nocturnal sleep characteristics and sleep disorders were unrelated to the presence of daytime REM sleep, however, patients with daytime REM were significantly sleepier during the daytime than those patients without REM. Demographic and clinical variables, including Unified Parkinson’s Disease Rating Scale motor scores and levodopa dose equivalents, were unrelated to the presence of REM sleep. Conclusions A sizeable proportion of PD patients demonstrated REM sleep and daytime sleep tendency during daytime nap testing. These data confirm similarities in REM intrusions between narcolepsy and PD, perhaps suggesting parallel neurodegenerative conditions of hypocretin deficiency. PMID:22939103

  16. Control of REM sleep by ventral medulla GABAergic neurons.

    PubMed

    Weber, Franz; Chung, Shinjae; Beier, Kevin T; Xu, Min; Luo, Liqun; Dan, Yang

    2015-10-15

    Rapid eye movement (REM) sleep is a distinct brain state characterized by activated electroencephalogram and complete skeletal muscle paralysis, and is associated with vivid dreams. Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation, and the neural circuits in the pons have since been studied extensively. The medulla also contains neurons that are active during REM sleep, but whether they play a causal role in REM sleep generation remains unclear. Here we show that a GABAergic (γ-aminobutyric-acid-releasing) pathway originating from the ventral medulla powerfully promotes REM sleep in mice. Optogenetic activation of ventral medulla GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. Optrode recordings from channelrhodopsin-2-tagged ventral medulla GABAergic neurons showed that they were most active during REM sleep (REMmax), and during wakefulness they were preferentially active during eating and grooming. Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate ventral medulla neuron populations. Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, which are probably mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal grey. These results identify a key component of the pontomedullary network controlling REM sleep. The capability to induce REM sleep on command may offer a powerful tool for investigating its functions.

  17. REM sleep disorder following general anesthesia in rats.

    PubMed

    Lazic, Katarina; Petrovic, Jelena; Ciric, Jelena; Kalauzi, Aleksandar; Saponjic, Jasna

    2017-01-01

    Postoperative sleep disorders, particularly the REM sleep disorder, may have a significant deleterious impact on postoperative outcomes and may contribute to the genesis of certain delayed postoperative complications. We have followed the effect of distinct anesthesia regimens (ketamine/diazepam vs. pentobarbital) over 6days following the induction of a stable anesthetized state in adult male Wistar rats, chronically instrumented for sleep recording. In order to compare the effect of both anesthetics in the physiological controls vs. the rats with impaired pedunculopontine tegmental nucleus (PPT) cholinergic innervation, during the operative procedure for the implantation of EEG and EMG electrodes, the bilateral PPT lesion was conducted using ibotenic acid (IBO). We have followed in particular post-anesthesia REM sleep. Our results show the distinct EEG microstructure of the motor cortex during the different stable anesthetized states, and their distinct impact on post-anesthesia REM sleep. In contrast to pentobarbital anesthesia, the ketamine/diazepam anesthesia potentiated the long-lasting post-anesthesia REM statewith higher muscle tone (REM1) vs. REM state with atonia (REM2). Whereas both anesthesias prolonged the post-anesthesia REM sleep duration, the long-term prolongation of the REM1 state was demonstrated only after the ketamine/diazepam anesthesia, first due to the increased number of REM1 episodes, and then due to the prolonged REM1 episodes duration. On the other hand, whereas both anesthetic regimens abolished the prolonged post-anesthesia REM/REM1 sleep and the EEG microstructure disorder during REM sleep, only the pentobarbital abolished the increased NREM/REM/NREM transitions, caused by the PPT lesion. In addition, in the PPT lesioned rats, the ketamine/diazepam anesthesia decreased the Wake/NREM/Wake transitions while the pentobarbital anesthesia decreased the Wake/REM/Wake transitions. Our present study suggests pentobarbital anesthesia as being

  18. REM sleep dysregulation in depression: state of the art.

    PubMed

    Palagini, Laura; Baglioni, Chiara; Ciapparelli, Antonio; Gemignani, Angelo; Riemann, Dieter

    2013-10-01

    Disturbances of sleep are typical for most depressed patients and belong to the core symptoms of the disorder. Since the 1960s polysomnographic sleep research has demonstrated that besides disturbances of sleep continuity, depression is associated with altered sleep architecture, i.e., a decrease in slow wave sleep (SWS) production and disturbed rapid eye movement (REM) sleep regulation. Shortened REM latency (i.e., the interval between sleep onset and the occurrence of the first REM period), increased REM sleep duration and increased REM density (i.e., the frequency of rapid eye movements per REM period) have been considered as biological markers of depression which might predict relapse and recurrence. High risk studies including healthy relatives of patients with depression demonstrate that REM sleep alterations may precede the clinical expression of depression and may thus be useful in identifying subjects at high risk for the illness. Several models have been developed to explain REM sleep abnormalities in depression, like the cholinergic-aminergic imbalance model or chronobiologically inspired theories, which are reviewed in this overview. Moreover, REM sleep alterations have been recently considered not only as biological "scars" but as true endophenotypes of depression. This review discusses the genetic, neurochemical and neurobiological factors that have been implicated to play a role in the complex relationships between REM sleep and depression. We hypothesize on the one hand that REM sleep dysregulation in depression may be linked to a genetic predisposition/vulnerability to develop the illness; on the other hand it is conceivable that REM sleep disinhibition in itself is a part of a maladaptive stress reaction with increased allostatic load. We also discuss whether the REM sleep changes in depression may contribute themselves to the development of central symptoms of depression such as cognitive distortions including negative self-esteem and the

  19. Dreamless: the silent epidemic of REM sleep loss.

    PubMed

    Naiman, Rubin

    2017-08-15

    We are at least as dream deprived as we are sleep deprived. Many of the health concerns attributed to sleep loss result from a silent epidemic of REM sleep deprivation. REM/dream loss is an unrecognized public health hazard that silently wreaks havoc with our lives, contributing to illness, depression, and an erosion of consciousness. This paper compiles data about the causes and extent of REM/dream loss associated with commonly used medications, endemic substance use disorders, rampant sleep disorders, and behavioral and lifestyle factors. It examines the consequences of REM/dream loss and concludes with recommendations for restoring healthy REM/dreaming. © 2017 New York Academy of Sciences.

  20. Muscle Activity During Sleep in Human Subjects, Rats, and Mice: Towards Translational Models of REM Sleep Without Atonia.

    PubMed

    Silvani, Alessandro; Ferri, Raffaele; Lo Martire, Viviana; Bastianini, Stefano; Berteotti, Chiara; Salvadè, Agnese; Plazzi, Giuseppe; Zucconi, Marco; Ferini-Strambi, Luigi; Bassetti, Claudio L; Manconi, Mauro; Zoccoli, Giovanna

    2017-04-01

    Rapid-eye-movement (REM) sleep without atonia (RSWA) is a marker of REM sleep behavior disorder (RBD) and is common in narcolepsy. Available techniques for electromyogram (EMG) analysis are species-specific, limiting translational research on RSWA. We developed an automated technique based on distributions of normalized EMG values (DNE) to overcome this limitation. With DNE, we tested whether the control of neck and tibialis anterior (TA) muscles during sleep in wild-type rats and mice validly models the control of submentalis (chin) and TA muscles in healthy humans. We then applied DNE to REM sleep recordings of patients with idiopathic RBD and of mouse models of narcolepsy, testing for a common DNE signature of RSWA. Retrospective analysis of sleep recordings from 20 idiopathic RBD patients, 34 control subjects, 8 wild-type rats, 21 orexin-neuron deficient mice, 8 orexin knock-out mice, and 22 wild-type mice. Neck EMG of rats and mice and human chin EMG progressively decreased from wakefulness to non-REM sleep and REM sleep, whereas the effects of sleep on TA EMG differed between rats, mice, and humans. DNE discriminated idiopathic RBD patients from controls based on higher median values of normalized chin EMG during REM sleep. The same parameter, computed on neck muscle EMG, discriminated narcoleptic mice from wild-type mice. These results support the application of DNE in translational research on RSWA. Increased median values of normalized EMG of chin (humans) and neck (rats and mice) muscles may be a signature of RSWA in different species and pathological conditions.

  1. Intrinsic dreams are not produced without REM sleep mechanisms: evidence through elicitation of sleep onset REM periods.

    PubMed

    Takeuchi, T; Miyasita, A; Inugami, M; Yamamoto, Y

    2001-03-01

    The hypothesis that there is a strict relationship between dreams and a specific rapid eye movement (REM) sleep mechanism is controversial. Many researchers have recently denied this relationship, yet none of their studies have simultaneously controlled both sleep length and depth prior to non-REM (NREM) and REM sleep awakenings, due to the natural rigid order of the NREM--REM sleep cycle. The failure to control sleep length and depth prior to arousal has confounded interpretations of the REM-dreams relationship. We have hypothesised that different physiological mechanisms underlie dreaming during REM and NREM sleep, based on recent findings concerning the specificity of REM sleep for cognitive function. Using the Sleep Interruption Technique, we elicited sleep onset REM periods (SOREMP) from 13 normal subjects to collect SOREMP and sleep onset NREM (NREMP) dreams without the confounds described above. Regression analyses showed that SOREMP dream occurrences were significantly related to the amount of REM sleep, while NREMP dream occurrences were related to arousals from NREM sleep. Dream properties evaluated using the Dream Property Scale showed qualitative differences between SOREMP and NREMP dream reports. These results support our hypothesis and we have concluded that although 'dreaming' may occur during both REM and NREM periods as previous researchers have suggested, the dreams obtained from these distinct periods differ significantly in their quantitative and qualitative aspects and are likely to be produced by different mechanisms.

  2. Myotonic dystrophy type 1, daytime sleepiness and REM sleep dysregulation.

    PubMed

    Dauvilliers, Yves A; Laberge, Luc

    2012-12-01

    Myotonic dystrophy type 1 (DM1), or Steinert's disease, is the most common adult-onset form of muscular dystrophy. DM1 also constitutes the neuromuscular condition with the most significant sleep disorders including excessive daytime sleepiness (EDS), central and obstructive sleep apneas, restless legs syndrome (RLS), periodic leg movements in wake (PLMW) and periodic leg movements in sleep (PLMS) as well as nocturnal and diurnal rapid eye movement (REM) sleep dysregulation. EDS is the most frequent non-muscular complaint in DM1, being present in about 70-80% of patients. Different phenotypes of sleep-related problems may mimic several sleep disorders, including idiopathic hypersomnia, narcolepsy without cataplexy, sleep apnea syndrome, and periodic leg movement disorder. Subjective and objective daytime sleepiness may be associated with the degree of muscular impairment. However, available evidence suggests that DM1-related EDS is primarily caused by a central dysfunction of sleep regulation rather than by sleep fragmentation, sleep-related respiratory events or periodic leg movements. EDS also tends to persist despite successful treatment of sleep-disordered breathing in DM1 patients. As EDS clearly impacts on physical and social functioning of DM1 patients, studies are needed to identify the best appropriate tools to identify hypersomnia, and clarify the indications for polysomnography (PSG) and multiple sleep latency test (MSLT) in DM1. In addition, further structured trials of assisted nocturnal ventilation and randomized trials of central nervous system (CNS) stimulant drugs in large samples of DM1 patients are required to optimally treat patients affected by this progressive, incurable condition.

  3. Language learning efficiency, dreams and REM sleep.

    PubMed

    De Koninck, J; Christ, G; Hébert, G; Rinfret, N

    1990-06-01

    As a follow-up from a previous study, four subjects taking a 6-week French language immersion program maintained a dream diary starting 2 weeks before until 2 weeks after the course. They also slept in the laboratory during four series of nights: one before the course, two during the course and one after the course. Confirming previous observations, it was observed that those subjects who made significant progress in French learning, experienced French incorporations into dreams earlier and had more verbal communication in their dreams during the language training than those who made little progress. Combining these results with those of the earlier study revealed significant positive correlations between language learning efficiency and both increases in REM sleep percentages, and verbal communication in dreams, as well as a negative correlation with latency to the first French incorporation in dreams. These results support the notion that REM sleep and dreaming are related to waking cognitive processes.

  4. Increased voluntary alcohol drinking concurrent with REM-sleep deprivation.

    PubMed

    Aalto, J; Kiianmaa, K

    1984-01-01

    The alcohol intake of twenty adult Long-Evans male rats was recorded before, during and after rapid eye movement sleep (REM) deprivation produced with the flowerpot technique modified by using a cuff pedestal and an electrified grid floor instead of water. The alcohol intake reached a steady level of 2.8 g/kg/day in the 3 weeks before REM deprivation. During seven REM-sleep deprivation days the alcohol intake was significantly elevated, finally increasing to 3.7 g/kg/day. A rebound decrease in alcohol drinking was then observed during the "REM-rebound" phase immediately after the termination of REM-sleep deprivation. The results suggest a possible vicious circle of REM-sleep deprivation increasing alcohol drinking and alcohol intake causing REM-sleep deprivation.

  5. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia

    PubMed Central

    Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J.

    2015-01-01

    The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated. PMID:26678391

  6. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia.

    PubMed

    Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J

    2015-01-01

    The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated.

  7. Ischemic stroke selectively inhibits REM sleep of rats.

    PubMed

    Ahmed, Samreen; Meng, He; Liu, Tiecheng; Sutton, Blair C; Opp, Mark R; Borjigin, Jimo; Wang, Michael M

    2011-12-01

    Sleep disorders are important risk factors for stroke; conversely, stroke patients suffer from sleep disturbances including disruptions of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep and a decrease in total sleep. This study was performed to characterize the effect of stroke on sleep architecture of rats using continuous electroencephalography (EEG) and activity monitoring. Rats were implanted with transmitters which enabled continuous real time recording of EEG, electromyography (EMG), and locomotor activity. Baseline recordings were performed prior to induction of either transient middle cerebral artery (MCA) occlusion or sham surgery. Sleep recordings were obtained for 60 h after surgery to identify periods of wakefulness, NREM, and REM sleep before and after stroke. Spectral analysis was performed to assess the effects of stroke on state-dependent EEG. Finally, we quantified the time in wake, NREM, and REM sleep before and after stroke. Delta power, a measure of NREM sleep depth, was increased the day following stroke. At the same time, there was a significant shift in theta rhythms to a lower frequency during REM and wake periods. The awake EEG slowed after stroke over both hemispheres. The EEG of the ischemic hemisphere demonstrated diminished theta power specific to REM in excess of the slowing seen over the contralateral hemisphere. In contrast to rats exposed to sham surgery which had slightly increased total sleep, rats undergoing stroke experienced decreased total sleep. The decrease in total sleep after stroke was the result of dramatic reduction in the amount of REM sleep after ischemia. The suppression of REM after stroke was due to a decrease in the number of REM bouts; the length of the average REM bout did not change. We conclude that after stroke in this experimental model, REM sleep of rats is specifically and profoundly suppressed. Further experiments using this experimental model should be performed to investigate the

  8. FDG PET, dopamine transporter SPECT, and olfaction: Combining biomarkers in REM sleep behavior disorder.

    PubMed

    Meles, Sanne K; Vadasz, David; Renken, Remco J; Sittig-Wiegand, Elisabeth; Mayer, Geert; Depboylu, Candan; Reetz, Kathrin; Overeem, Sebastiaan; Pijpers, Angelique; Reesink, Fransje E; van Laar, Teus; Heinen, Lisette; Teune, Laura K; Höffken, Helmut; Luster, Marcus; Kesper, Karl; Adriaanse, Sofie M; Booij, Jan; Leenders, Klaus L; Oertel, Wolfgang H

    2017-07-22

    Idiopathic REM sleep behavior disorder is a prodromal stage of Parkinson's disease and dementia with Lewy bodies. Hyposmia, reduced dopamine transporter binding, and expression of the brain metabolic PD-related pattern were each associated with increased risk of conversion to PD. The objective of this study was to study the relationship between the PD-related pattern, dopamine transporter binding, and olfaction in idiopathic REM sleep behavior disorder. In this cross-sectional study, 21 idiopathic REM sleep behavior disorder subjects underwent (18) F-fluorodeoxyglucose PET, dopamine transporter imaging, and olfactory testing. For reference, we included (18) F-fluorodeoxyglucose PET data of 19 controls, 20 PD patients, and 22 patients with dementia with Lewy bodies. PD-related pattern expression z-scores were computed from all PET scans. PD-related pattern expression was higher in idiopathic REM sleep behavior disorder subjects compared with controls (P = 0.048), but lower compared with PD (P = 0.001) and dementia with Lewy bodies (P < 0.0001). PD-related pattern expression was higher in idiopathic REM sleep behavior disorder subjects with hyposmia and in subjects with an abnormal dopamine transporter scan (P < 0.05, uncorrected). PD-related pattern expression, dopamine transporter binding, and olfaction may provide complementary information for predicting phenoconversion. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

  9. REM sleep behavior disorder (RBD): Update on diagnosis and treatment.

    PubMed

    Högl, Birgit; Stefani, Ambra

    2017-01-01

    REM sleep behavior disorder (RBD) is parasomnia characterized by dream enactment and enabled by disruption of physiological muscle atonia during REM sleep. Over the past few years, diagnostic criteria and the methods used to confirm diagnosis have been updated. In this review article, the current knowledge regarding RBD diagnosis and treatment is presented. A selective literature search was carried out. Although several RBD screening questionnaires have been developed, diagnosis can only be definitely confirmed on the basis of polysomnography. New methods for scoring electromyography (EMG) activity during REM sleep have been proposed during recent years and cutoff values have been established. The latest cutoff values for scoring EMG activity during REM sleep are included in the International Classification of Sleep Disorders (ICSD). The cutoff of 27 % muscle activity during REM sleep suggested by the Sleep Innsbruck Barcelona (SINBAR) group was also included in the third edition of the ICSD. The best-researched treatments for RBD are clonazepam and melatonin.

  10. Obstructive Sleep Apnea during REM Sleep and Hypertension. Results of the Wisconsin Sleep Cohort

    PubMed Central

    Finn, Laurel A.; Hagen, Erika W.; Young, Terry; Hla, Khin Mae; Van Cauter, Eve; Peppard, Paul E.

    2014-01-01

    Rationale: Obstructive sleep apnea (OSA) is associated with hypertension. Objectives: We aimed to quantify the independent association of OSA during REM sleep with prevalent and incident hypertension. Methods: We included adults enrolled in the longitudinal community-based Wisconsin Sleep Cohort Study with at least 30 minutes of REM sleep obtained from overnight in-laboratory polysomnography. Studies were repeated at 4-year intervals to quantify OSA. Repeated measures logistic regression models were fitted to explore the association between REM sleep OSA and prevalent hypertension in the entire cohort (n = 4,385 sleep studies on 1,451 individuals) and additionally in a subset with ambulatory blood pressure data (n = 1,085 sleep studies on 742 individuals). Conditional logistic regression models were fitted to longitudinally explore the association between REM OSA and development of hypertension. All models controlled for OSA events during non-REM sleep, either by statistical adjustment or by stratification. Measurements and Main Results: Fully adjusted models demonstrated significant dose-relationships between REM apnea–hypopnea index (AHI) and prevalent hypertension. The higher relative odds of prevalent hypertension were most evident with REM AHI greater than or equal to 15. In individuals with non-REM AHI less than or equal to 5, a twofold increase in REM AHI was associated with 24% higher odds of hypertension (odds ratio, 1.24; 95% confidence interval, 1.08–1.41). Longitudinal analysis revealed a significant association between REM AHI categories and the development of hypertension (P trend = 0.017). Non-REM AHI was not a significant predictor of hypertension in any of the models. Conclusions: Our findings indicate that REM OSA is cross-sectionally and longitudinally associated with hypertension. This is clinically relevant because treatment of OSA is often limited to the first half of the sleep period leaving most of REM sleep untreated. PMID

  11. Obstructive sleep apnea during REM sleep and hypertension. results of the Wisconsin Sleep Cohort.

    PubMed

    Mokhlesi, Babak; Finn, Laurel A; Hagen, Erika W; Young, Terry; Hla, Khin Mae; Van Cauter, Eve; Peppard, Paul E

    2014-11-15

    Obstructive sleep apnea (OSA) is associated with hypertension. We aimed to quantify the independent association of OSA during REM sleep with prevalent and incident hypertension. We included adults enrolled in the longitudinal community-based Wisconsin Sleep Cohort Study with at least 30 minutes of REM sleep obtained from overnight in-laboratory polysomnography. Studies were repeated at 4-year intervals to quantify OSA. Repeated measures logistic regression models were fitted to explore the association between REM sleep OSA and prevalent hypertension in the entire cohort (n = 4,385 sleep studies on 1,451 individuals) and additionally in a subset with ambulatory blood pressure data (n = 1,085 sleep studies on 742 individuals). Conditional logistic regression models were fitted to longitudinally explore the association between REM OSA and development of hypertension. All models controlled for OSA events during non-REM sleep, either by statistical adjustment or by stratification. Fully adjusted models demonstrated significant dose-relationships between REM apnea-hypopnea index (AHI) and prevalent hypertension. The higher relative odds of prevalent hypertension were most evident with REM AHI greater than or equal to 15. In individuals with non-REM AHI less than or equal to 5, a twofold increase in REM AHI was associated with 24% higher odds of hypertension (odds ratio, 1.24; 95% confidence interval, 1.08-1.41). Longitudinal analysis revealed a significant association between REM AHI categories and the development of hypertension (P trend = 0.017). Non-REM AHI was not a significant predictor of hypertension in any of the models. Our findings indicate that REM OSA is cross-sectionally and longitudinally associated with hypertension. This is clinically relevant because treatment of OSA is often limited to the first half of the sleep period leaving most of REM sleep untreated.

  12. Control of REM Sleep by Ventral Medulla GABAergic Neurons

    PubMed Central

    Weber, Franz; Chung, Shinjae; Beier, Kevin T.; Luo, Liqun; Dan, Yang

    2015-01-01

    Rapid eye movement (REM) sleep is a distinct brain state characterized by activated electroencephalogram (EEG) and complete skeletal muscle paralysis, and it is associated with vivid dreams1-3. Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation2, and the neural circuits in the pons have since been studied extensively4-8. The medulla also contains neurons that are active during REM sleep9-13, but whether they play a causal role in REM sleep generation remains unclear. Here we show that a GABAergic pathway originating from the ventral medulla (vM) powerfully promotes REM sleep. Optogenetic activation of vM GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. Optrode recordings from channelrhodopsin 2 (ChR2)-tagged vM GABAergic neurons showed that they were most active during REM sleep (REM-max), and during wakefulness they were preferentially active during eating and grooming. Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate vM neuron populations. Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, which are likely mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal gray (vlPAG). These results identify a key component of the pontomedullary network controlling REM sleep. The capability to induce REM sleep on command may offer a powerful tool for investigating its functions. PMID:26444238

  13. Hypersomnolence and increased REM sleep with low cerebrospinal fluid hypocretin level in a patient after removal of craniopharyngioma.

    PubMed

    Tachibana, Naoko; Taniike, Masako; Okinaga, Takeshi; Ripley, Beth; Mignot, Emmanuel; Nishino, Seiji

    2005-11-01

    Here we report a hypersomnolent girl with extensive hypothalamic damage after removal of a craniopharyngioma. The presence of a short sleep latency, sleep onset REM periods during a multiple sleep latency test (MSLT) and negative HLA DQB1*0602 typing suggested a diagnosis of symptomatic narcolepsy. Low cerebrospinal fluid hypocretin-1 level indicated destruction of hypocretin-producing neurons in the hypothalamus. An increased amount of REM sleep and a lack of REM sleep cyclicity documented by all-night polysomnography were different findings from previous reports of hypocretin-deficient idiopathic symptomatic narcolepsy. A more global hypothalamic lesion demonstrated by brain magnetic resonance imaging (MRI) after surgery seemed to cause marked disinhibition of REM sleep as well as hypersomnolence in this patient.

  14. Physiological Mechanisms of Upper Airway Hypotonia during REM Sleep

    PubMed Central

    McSharry, David G.; Saboisky, Julian P.; DeYoung, Pam; Jordan, Amy S.; Trinder, John; Smales, Erik; Hess, Lauren; Chamberlin, Nancy L.; Malhotra, Atul

    2014-01-01

    Study Objectives: Rapid eye movement (REM)-induced hypotonia of the major upper airway dilating muscle (genioglossus) potentially contributes to the worsening of obstructive sleep apnea that occurs during this stage. No prior human single motor unit (SMU) study of genioglossus has examined this possibility to our knowledge. We hypothesized that genioglossus SMUs would reduce their activity during stable breathing in both tonic and phasic REM compared to stage N2 sleep. Further, we hypothesized that hypopneas occurring in REM would be associated with coincident reductions in genioglossus SMU activity. Design: The activity of genioglossus SMUs was studied in (1) neighboring epochs of stage N2, and tonic and phasic REM; and (2) during hypopneas occurring in REM. Setting: Sleep laboratory. Participants: 29 subjects (38 ± 13 y) (17 male). Intervention: Natural sleep, including REM sleep and REM hypopneas. Measurement and Results: Subjects slept overnight with genioglossus fine-wire intramuscular electrodes and full polysomnography. Forty-two SMUs firing during one or more of stage N2, tonic REM, or phasic REM were sorted. Twenty inspiratory phasic (IP), 17 inspiratory tonic (IT), and five expiratory tonic (ET) SMUs were characterized. Fewer units were active during phasic REM (23) compared to tonic REM (30) and stage N2 (33). During phasic REM sleep, genioglossus IP and IT SMUs discharged at slower rates and for shorter durations than during stage N2. For example, the SMU peak frequency during phasic REM 5.7 ± 6.6 Hz (mean ± standard deviation) was less than both tonic REM 12.3 ± 9.7 Hz and stage N2 16.1 ± 10.0 Hz (P < 0.001). The peak firing frequencies of IP/IT SMUs decreased from the last breath before to the first breath of a REM hypopnea (11.8 ± 10.9 Hz versus 5.7 ± 9.4 Hz; P = 0.001) Conclusion: Genioglossus single motor unit activity is significantly reduced in REM sleep, particularly phasic REM. Single motor unit activity decreases abruptly at the onset

  15. Auditory Verbal Experience and Agency in Waking, Sleep Onset, REM, and Non-REM Sleep.

    PubMed

    Speth, Jana; Harley, Trevor A; Speth, Clemens

    2017-04-01

    We present one of the first quantitative studies on auditory verbal experiences ("hearing voices") and auditory verbal agency (inner speech, and specifically "talking to (imaginary) voices or characters") in healthy participants across states of consciousness. Tools of quantitative linguistic analysis were used to measure participants' implicit knowledge of auditory verbal experiences (VE) and auditory verbal agencies (VA), displayed in mentation reports from four different states. Analysis was conducted on a total of 569 mentation reports from rapid eye movement (REM) sleep, non-REM sleep, sleep onset, and waking. Physiology was controlled with the nightcap sleep-wake mentation monitoring system. Sleep-onset hallucinations, traditionally at the focus of scientific attention on auditory verbal hallucinations, showed the lowest degree of VE and VA, whereas REM sleep showed the highest degrees. Degrees of different linguistic-pragmatic aspects of VE and VA likewise depend on the physiological states. The quantity and pragmatics of VE and VA are a function of the physiologically distinct state of consciousness in which they are conceived. Copyright © 2016 Cognitive Science Society, Inc.

  16. REM Sleep Theta Changes in Frequent Nightmare Recallers.

    PubMed

    Marquis, Louis-Philippe; Paquette, Tyna; Blanchette-Carrière, Cloé; Dumel, Gaëlle; Nielsen, Tore

    2017-09-01

    To replicate and expand upon past research by evaluating sleep and wake electroencephalographic spectral activity in samples of frequent nightmare (NM) recallers and healthy controls. Computation of spectral activity for sleep (non-REM and REM) and wake electroencephalogram recordings from 18 frequent NM recallers and 15 control participants. There was higher "slow-theta" (2-5 Hz) for NM recallers than for controls during wake, non-REM sleep and REM sleep. Differences were clearest for frontal and central derivations and for REM sleep cycles 2-4. There was also higher beta activity during NREM sleep for NM recallers. Findings partially replicate past research by demonstrating higher relative "slow-theta" (3-4Hz) for NM recallers than for controls. Findings are consistent with a neurocognitive model of nightmares that stipulates cross-state anomalies in emotion processing in NM-prone individuals.

  17. REM Sleep at its Core – Circuits, Neurotransmitters, and Pathophysiology

    PubMed Central

    Fraigne, Jimmy J.; Torontali, Zoltan A.; Snow, Matthew B.; Peever, John H.

    2015-01-01

    Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD. PMID:26074874

  18. REM Sleep at its Core - Circuits, Neurotransmitters, and Pathophysiology.

    PubMed

    Fraigne, Jimmy J; Torontali, Zoltan A; Snow, Matthew B; Peever, John H

    2015-01-01

    Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD.

  19. Arousal thresholds during human tonic and phasic REM sleep.

    PubMed

    Ermis, Ummehan; Krakow, Karsten; Voss, Ursula

    2010-09-01

    The goal of the present study was to investigate arousal thresholds (ATs) in tonic and phasic episodes of rapid eye movement (REM) sleep, and to compare the frequency spectrum of these sub-states of REM to non-REM (NREM) stages of sleep. We found the two REM stages to differ with regard to behavioural responses to external acoustic stimuli. The AT in tonic REM was indifferent from that in sleep stage 2, and ATs in phasic REM were similar to those in slow-wave sleep (stage 4). NREM and REM stages of similar behavioural thresholds were distinctly different with regard to their frequency pattern. These data provide further evidence that REM sleep should not be regarded a uniform state. Regarding electroencephalogram frequency spectra, we found that the two REM stages were more similar to each other than to NREM stages with similar responsivity. Ocular activity such as ponto-geniculo-occipital-like waves and microsaccades are discussed as likely modulators of behavioural responsiveness and cortical processing of auditory information in the two REM sub-states.

  20. Clinical implication of REM sleep behavior disorder in Parkinson's disease.

    PubMed

    Kim, Young Eun; Jeon, Beom S

    2014-01-01

    REM sleep behavior disorder (RBD) appears to have a predilection for some neurodegenerative disorders, especially synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy. The frequency of RBD in PD has been reported to variably range from 20 to 72%. RBD may precede or follow onset of parkinsonism. Idiopathic RBD may foreshadow neurodegenerative diseases, and RBD in patients with PD has several associated clinical factors although their causal or temporal relationships are not known. RBD may be associated with the development of hallucinations and dementia in PD. It has been reported that the male gender, old age, a non-tremor motor subtype, a more severe parkinsonism, fall, longer disease duration, autonomic dysfunction, and higher levodopa doses are factors associated with RBD in PD. This review will address the clinical implications of RBD as a preclinical marker of neurodegenerative diseases and PD phenotypes associated with RBD.

  1. Periodic Limb Movements during Sleep Mimicking REM Sleep Behavior Disorder.

    PubMed

    Gaig, Carles; Iranzo, Alex; Pujo, Montserrat; Perez, Hernando; Santamaria, Joan

    2016-11-28

    To describe a group of patients referredbecause of abnormal sleep behaviors that were suggestive ofREM sleep behavior disorder (RBD) in whom videopolysomnographyruled out RBD and showed the reportedbehaviors associated with vigorous periodic limb movementsduring sleep (PLMS). Clinical history and video-polysomnography reviewof patients identified during routine visits in a sleepcenter. Patients were fifteen men and two women with a median age of 66 (range 48-77) years. Reported sleep behaviors were kicking (n=17), punching (n=16), gesticulating (n=8), falling out of bed (n=5), assaulting the bed partner (n=2), talking (n=15) and shouting (n=10). Behaviors resulted in injuries in three bed partners and one patient. Twelve (70.6%) patients were not aware of displaying abnormal sleep behaviors that were only noticed by their bed partners. Ten (58.8%) patients recalled unpleasant dreams such as being attacked or chased. Video polysomnography showed 1) frequent and vigorous stereo typed PLMS involving the lower limbs, upper limbs and trunk (median PLMS index 61.2; median PLMS index in NREM sleep 61.9; during REM sleep only eight patients had PLMS and Gaig et al. -4- their median PLMS index in REM sleep was 39.5), 2) abnormal behaviors (e.g., punching, groaning) during some of the arousals that immediately followed PLMS in NREM sleep, and3) ruled out RBD and other sleep disorders such as obstructive sleep apnea. Dopaminergic agents were prescribed in fourteen out of the seventeen patients andresulted in improvement of abnormal sleep behaviors and unpleasant dreams in all of them. After dopaminergictreatment, follow-up video-polysomnography in seven patients showed a decrease in the median PLMS index from baseline (108.9 vs 19.2, p=0.002) and absence of abnormal behaviors during the arousals. Abnormal sleep behaviors and unpleasant dreams simulating RBD symptomatology may occur in patients with severe PLMS. In these cases, video-polysomnography rulesout RBD and identifies

  2. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur.

    PubMed

    Grace, Kevin P; Vanstone, Lindsay E; Horner, Richard L

    2014-10-22

    Initial theories of rapid eye movement (REM) sleep generation posited that induction of the state required activation of the pontine subceruleus (SubC) by cholinergic inputs. Although the capacity of cholinergic neurotransmission to contribute to REM sleep generation has been established, the role of cholinergic inputs in the generation of REM sleep is ultimately undetermined as the critical test of this hypothesis (local blockade of SubC acetylcholine receptors) has not been rigorously performed. We used bilateral microdialysis in freely behaving rats (n = 32), instrumented for electroencephalographic and electromyographic recording, to locally manipulate neurotransmission in the SubC with select drugs. As predicted, combined microperfusion of D-AP5 (glutamate receptor antagonist) and muscimol (GABAA receptor agonist) in the SubC virtually eliminated REM sleep. However, REM sleep was not reduced by scopolamine microperfusion in this same region, at a concentration capable of blocking the effects of cholinergic receptor stimulation. This result suggests that transmission of REM sleep drive to the SubC is acetylcholine-independent. Although SubC cholinergic inputs are not majorly involved in REM sleep generation, they may perform a minor function in the reinforcement of transitions into REM sleep, as evidenced by increases in non-REM-to-REM sleep transition duration and failure rate during cholinergic receptor blockade. Cholinergic receptor antagonism also attenuated the normal increase in hippocampal θ oscillations that characterize REM sleep. Using computational modeling, we show that our in vivo results are consistent with a mutually excitatory interaction between the SubC and cholinergic neurons where, importantly, cholinergic neuron activation is gated by SubC activity.

  3. REM sleep behavior disorder in the Korean elderly population: prevalence and clinical characteristics.

    PubMed

    Kang, Suk-Hoon; Yoon, In-Young; Lee, Sang Don; Han, Ji Won; Kim, Tae Hui; Kim, Ki Woong

    2013-08-01

    To examine the prevalence and clinical characteristics of REM sleep behavior disorder (RBD) and subclinical RBD in the Korean elderly population. A community-based Korean Longitudinal Study on Cognitive Aging and Dementia and time-synchronized video-polysomnography (vPSG) in a laboratory. Sleep laboratory in a university hospital. 348 individuals aged 60 years or older. N/A. Among 696 subjects who were invited to participate in a vPSG study, 348 completed the vPSG. RBD was diagnosed when subjects showed REM sleep without atonia (RSWA) in the vPSG, and had history of complex and vigorous behaviors during sleep or abnormal REM sleep behaviors in the vPSG. Subjects with RSWA but no abnormal REM sleep behaviors were diagnosed with subclinical RBD. Seven subjects (5 male, 2 female) had RBD, three of whom (1 male, 2 female) had Parkinson disease. Two subjects reported history of sleep-related injury. The crude prevalence of RBD and idiopathic RBD was 2.01% (95% confidence interval [CI] = 0.54% to 3.49%) and 1.15% (95% CI = 0.03% to 2.27%). An age and sex-adjusted prevalence estimate of RBD and idiopathic RBD in the Korean elderly was 2.01% and 1.34%. Eighteen subjects were diagnosed with subclinical RBD, and the prevalence of subclinical RBD was estimated to be 4.95%. RBD and subclinical RBD are not rare in the elderly in the community with abnormal REM sleep behaviors of RBD being mild to injurious and violent. The clinical significance and long-term progression of subclinical RBD needs to be further explored, given the prevalence and its possible relation to RBD.

  4. Physiological mechanisms of upper airway hypotonia during REM sleep.

    PubMed

    McSharry, David G; Saboisky, Julian P; Deyoung, Pam; Jordan, Amy S; Trinder, John; Smales, Erik; Hess, Lauren; Chamberlin, Nancy L; Malhotra, Atul

    2014-03-01

    Rapid eye movement (REM)-induced hypotonia of the major upper airway dilating muscle (genioglossus) potentially contributes to the worsening of obstructive sleep apnea that occurs during this stage. No prior human single motor unit (SMU) study of genioglossus has examined this possibility to our knowledge. We hypothesized that genioglossus SMUs would reduce their activity during stable breathing in both tonic and phasic REM compared to stage N2 sleep. Further, we hypothesized that hypopneas occurring in REM would be associated with coincident reductions in genioglossus SMU activity. The activity of genioglossus SMUs was studied in (1) neighboring epochs of stage N2, and tonic and phasic REM; and (2) during hypopneas occurring in REM. Sleep laboratory. 29 subjects (38 ± 13 y) (17 male). Natural sleep, including REM sleep and REM hypopneas. Subjects slept overnight with genioglossus fine-wire intramuscular electrodes and full polysomnography. Forty-two SMUs firing during one or more of stage N2, tonic REM, or phasic REM were sorted. Twenty inspiratory phasic (IP), 17 inspiratory tonic (IT), and five expiratory tonic (ET) SMUs were characterized. Fewer units were active during phasic REM (23) compared to tonic REM (30) and stage N2 (33). During phasic REM sleep, genioglossus IP and IT SMUs discharged at slower rates and for shorter durations than during stage N2. For example, the SMU peak frequency during phasic REM 5.7 ± 6.6 Hz (mean ± standard deviation) was less than both tonic REM 12.3 ± 9.7 Hz and stage N2 16.1 ± 10.0 Hz (P < 0.001). The peak firing frequencies of IP/IT SMUs decreased from the last breath before to the first breath of a REM hypopnea (11.8 ± 10.9 Hz versus 5.7 ± 9.4 Hz; P = 0.001). Genioglossus single motor unit activity is significantly reduced in REM sleep, particularly phasic REM. Single motor unit activity decreases abruptly at the onset of REM hypopneas.

  5. Visual short-term memory deficits in REM sleep behaviour disorder mirror those in Parkinson's disease.

    PubMed

    Rolinski, Michal; Zokaei, Nahid; Baig, Fahd; Giehl, Kathrin; Quinnell, Timothy; Zaiwalla, Zenobia; Mackay, Clare E; Husain, Masud; Hu, Michele T M

    2016-01-01

    Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson's disease. Here we examined visual short-term memory deficits--long associated with Parkinson's disease--in patients with REM sleep behaviour disorder without Parkinson's disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson's disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson's disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson's disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson's disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of 'prodromal' Parkinson's disease that might be useful in tracking disease progression and for disease-modifying intervention trials.

  6. Breathing during REM and non-REM sleep: correlated versus uncorrelated behaviour

    NASA Astrophysics Data System (ADS)

    Kantelhardt, Jan W.; Penzel, Thomas; Rostig, Sven; Becker, Heinrich F.; Havlin, Shlomo; Bunde, Armin

    2003-03-01

    Healthy sleep can be characterized by several stages: deep sleep, light sleep, and REM sleep. Here we show that these sleep stages lead to different autonomic regulation of breathing. Using the detrended fluctuation analysis up to the fourth order we find that breath-to-breath intervals and breath volumes separated by several breaths are long-range correlated during the REM stages and during wake states. In contrast, in the non-REM stages (deep sleep and light sleep), long-range correlations are absent. This behaviour is very similar to the correlation behaviour of the heart rate during the night and may be related to the phase synchronization between heartbeat and breathing found recently. We speculate that the differences are caused by different cortically influenced control of the autonomic nervous system.

  7. Functional Anatomy of Non-REM Sleep.

    PubMed

    de Andrés, Isabel; Garzón, Miguel; Reinoso-Suárez, Fernando

    2011-01-01

    The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3-4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior. An overview of the brain structures involved in NREM generation shows that the thalamus and the cerebral cortex are absolutely necessary for the most significant bioelectric and behavioral events of NREM to be expressed; other structures like the basal forebrain, anterior hypothalamus, cerebellum, caudal brain stem, spinal cord and peripheral nerves contribute to NREM regulation and modulation. In NREM stage 2, sustained hyperpolarized membrane potential levels resulting from interaction between thalamic reticular and projection neurons gives rise to spindle oscillations in the membrane potential; the initiation and termination of individual spindle sequences depends on corticothalamic activities. Cortical and thalamic mechanisms are also involved in the generation of EEG delta SWA that appears in deep stage 3-4 (N3) NREM; the cortex has classically been considered to be the structure that generates this activity, but delta oscillations can also be generated in thalamocortical neurons. NREM is probably necessary to normalize synapses to a sustainable basal condition that can ensure cellular homeostasis. Sleep homeostasis depends not only on the duration of prior wakefulness but also on its intensity, and sleep need increases when wakefulness is associated with learning. NREM seems to ensure cell homeostasis by reducing the number of synaptic connections to a basic level; based on simple energy demands, cerebral energy economizing during NREM sleep is one of the prevalent hypotheses to explain NREM homeostasis.

  8. Functional Anatomy of Non-REM Sleep

    PubMed Central

    de Andrés, Isabel; Garzón, Miguel; Reinoso-Suárez, Fernando

    2011-01-01

    The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3–4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior. An overview of the brain structures involved in NREM generation shows that the thalamus and the cerebral cortex are absolutely necessary for the most significant bioelectric and behavioral events of NREM to be expressed; other structures like the basal forebrain, anterior hypothalamus, cerebellum, caudal brain stem, spinal cord and peripheral nerves contribute to NREM regulation and modulation. In NREM stage 2, sustained hyperpolarized membrane potential levels resulting from interaction between thalamic reticular and projection neurons gives rise to spindle oscillations in the membrane potential; the initiation and termination of individual spindle sequences depends on corticothalamic activities. Cortical and thalamic mechanisms are also involved in the generation of EEG delta SWA that appears in deep stage 3–4 (N3) NREM; the cortex has classically been considered to be the structure that generates this activity, but delta oscillations can also be generated in thalamocortical neurons. NREM is probably necessary to normalize synapses to a sustainable basal condition that can ensure cellular homeostasis. Sleep homeostasis depends not only on the duration of prior wakefulness but also on its intensity, and sleep need increases when wakefulness is associated with learning. NREM seems to ensure cell homeostasis by reducing the number of synaptic connections to a basic level; based on simple energy demands, cerebral energy economizing during NREM sleep is one of the prevalent hypotheses to explain NREM homeostasis

  9. The role of REM sleep theta activity in emotional memory

    PubMed Central

    Hutchison, Isabel C.; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity—which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex—is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus. PMID:26483709

  10. The role of REM sleep theta activity in emotional memory.

    PubMed

    Hutchison, Isabel C; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

  11. Sleep continuity and the REM-nonREM cycle in the rat under baseline conditions and after sleep deprivation.

    PubMed

    Trachsel, L; Tobler, I; Achermann, P; Borbély, A A

    1991-03-01

    Wakefulness, nonrapid eye movement sleep (nonREMS) and REMS of rats were scored in 4-s epochs during the first 8 h of the 12-h light period of a baseline (BL) day and during recovery (REC) from 24-h sleep deprivation (SD). Vigilance state continuity was investigated by analyzing the distribution of state episodes. After SD, state continuity was enhanced. The reduced occurrence of short wake episodes resulted in a consolidation of sleep states. The distribution of the REM-nonREM cycle length showed a mode at 10-13 min for both BL and REC. The variability of the cycle length was reduced after SD. The mean cycle length was markedly influenced by the criteria of minimum REMS episode duration and maximal allowed REMS episode interruption.

  12. [Trazodone in REM sleep behavior disorder].

    PubMed

    Chica-Urzola, Heydy Luz

    2015-01-01

    This case concerns an elderly man with a REM sleep behavior disorder, who was initially offered a pharmacological treatment with clonazepam, recommended by other articles, but with poor adherence due to its adverse reactions and persistence of symptoms. He was then offered a treatment with Trazodone was offered, achieving a complete remission of symptoms, with no reported side effects. It is clear that Trazodone has no known indication for this type of disorder; nevertheless, it was considered in this case because of its pharmacological profile, obtaining satisfactory results. Further research is needed in order to document thoroughly the mechanisms of action, efficacy and utility of this molecule in cases such as the one presented. Copyright © 2015 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  13. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder.

    PubMed

    Valencia Garcia, Sara; Libourel, Paul-Antoine; Lazarus, Michael; Grassi, Daniela; Luppi, Pierre-Hervé; Fort, Patrice

    2017-02-01

    SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream

  14. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.

    PubMed

    Van Dort, Christa J; Zachs, Daniel P; Kenny, Jonathan D; Zheng, Shu; Goldblum, Rebecca R; Gelwan, Noah A; Ramos, Daniel M; Nolan, Michael A; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A; Brown, Emery N

    2015-01-13

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.

  15. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep

    PubMed Central

    Van Dort, Christa J.; Zachs, Daniel P.; Kenny, Jonathan D.; Zheng, Shu; Goldblum, Rebecca R.; Gelwan, Noah A.; Ramos, Daniel M.; Nolan, Michael A.; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A.; Brown, Emery N.

    2015-01-01

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep. PMID:25548191

  16. The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression

    PubMed Central

    Wang, Yi-Qun; Li, Rui; Zhang, Meng-Qi; Zhang, Ze; Qu, Wei-Min; Huang, Zhi-Li

    2015-01-01

    Most depressed patients suffer from sleep abnormalities, which are one of the critical symptoms of depression. They are robust risk factors for the initiation and development of depression. Studies about sleep electroencephalograms have shown characteristic changes in depression such as reductions in non-rapid eye movement sleep production, disruptions of sleep continuity and disinhibition of rapid eye movement (REM) sleep. REM sleep alterations include a decrease in REM sleep latency, an increase in REM sleep duration and REM sleep density with respect to depressive episodes. Emotional brain processing dependent on the normal sleep-wake regulation seems to be failed in depression, which also promotes the development of clinical depression. Also, REM sleep alterations have been considered as biomarkers of depression. The disturbances of norepinephrine and serotonin systems may contribute to REM sleep abnormalities in depression. Lastly, this review also discusses the effects of different antidepressants on REM sleep disturbances in depression. PMID:26412074

  17. The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression.

    PubMed

    Wang, Yi-Qun; Li, Rui; Zhang, Meng-Qi; Zhang, Ze; Qu, Wei-Min; Huang, Zhi-Li

    2015-01-01

    Most depressed patients suffer from sleep abnormalities, which are one of the critical symptoms of depression. They are robust risk factors for the initiation and development of depression. Studies about sleep electroencephalograms have shown characteristic changes in depression such as reductions in non-rapid eye movement sleep production, disruptions of sleep continuity and disinhibition of rapid eye movement (REM) sleep. REM sleep alterations include a decrease in REM sleep latency, an increase in REM sleep duration and REM sleep density with respect to depressive episodes. Emotional brain processing dependent on the normal sleep-wake regulation seems to be failed in depression, which also promotes the development of clinical depression. Also, REM sleep alterations have been considered as biomarkers of depression. The disturbances of norepinephrine and serotonin systems may contribute to REM sleep abnormalities in depression. Lastly, this review also discusses the effects of different antidepressants on REM sleep disturbances in depression.

  18. REM sleep behaviour disorder in older individuals: epidemiology, pathophysiology and management.

    PubMed

    Trotti, Lynn Marie

    2010-06-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is a sleep disorder in which patients appear to be enacting their dreams while in REM sleep. The behaviours are typically violent, in association with violent dream content, so serious harm can be done to the patient or the bed partner. The disorder predominantly affects older adults, and has an estimated prevalence in adults of 0.4-0.5%. However, the frequency is much higher in certain neurodegenerative diseases, especially Parkinson's disease, dementia with Lewy bodies and multiple systems atrophy. RBD can occur in the absence of diagnosed neurological diseases (the 'idiopathic' form), although patients with this form of RBD may have subtle neurological abnormalities and often ultimately develop a neurodegenerative disorder. Data from animal models and cases of RBD developing after brainstem (pontine tegmentum, medulla) lesions have led to the understanding that RBD is caused by a lack of normal REM muscle atonia and a lack of normal suppression of locomotor generators during REM sleep. Clonazepam is used as first-line therapy for RBD and melatonin as second-line therapy, although evidence for both of these interventions comes from uncontrolled case series. Because the risk of injury to the patient or the bed partner is high, interventions to improve the safety of the sleep environment are also often necessary. This review describes the epidemiology, pathophysiology and treatment of RBD.

  19. Slow waves, sharp waves, ripples, and REM in sleeping dragons.

    PubMed

    Shein-Idelson, Mark; Ondracek, Janie M; Liaw, Hua-Peng; Reiter, Sam; Laurent, Gilles

    2016-04-29

    Sleep has been described in animals ranging from worms to humans. Yet the electrophysiological characteristics of brain sleep, such as slow-wave (SW) and rapid eye movement (REM) activities, are thought to be restricted to mammals and birds. Recording from the brain of a lizard, the Australian dragon Pogona vitticeps, we identified SW and REM sleep patterns, thus pushing back the probable evolution of these dynamics at least to the emergence of amniotes. The SW and REM sleep patterns that we observed in lizards oscillated continuously for 6 to 10 hours with a period of ~80 seconds. The networks controlling SW-REM antagonism in amniotes may thus originate from a common, ancient oscillator circuit. Lizard SW dynamics closely resemble those observed in rodent hippocampal CA1, yet they originate from a brain area, the dorsal ventricular ridge, that has no obvious hodological similarity with the mammalian hippocampus.

  20. Development of REM sleep drive and clinical implications

    PubMed Central

    Kobayashi, T.; Good, C.; Mamiya, K.; Skinner, R.D.; Garcia-Rill, E.

    2015-01-01

    REM sleep in the human declines from about 50% of total sleep time (~8 hours) in the newborn to about 15% of total sleep time (~1 hour) in the adult, and this decrease takes place mainly between birth and the end of puberty. We hypothesize that, if this developmental decrease in REM drive does not occur, lifelong increases in REM sleep drive may ensue. In the rat, the developmental decrease in REM sleep occurs between 10 and 30 days after birth, declining from over 70% of total sleep time in the newborn to the adult level of about 15% of sleep time during this period. Rats aged 12–21 days were anaesthetized with Ketamine, decapitated and brainstem slices cut for intracellular recordings. We found that excitatory responses of pedunculopontine nucleus (PPN) neurons to NMDA decrease, while responses to kainic acid increase, over this critical period. Serotonergic type 1 agonists have increasing inhibitory responses, while serotonergic type 2 agonists do not change, during this developmental period. The results suggest that, as PPN neurons develop, they are increasingly activated by kainic acid and increasingly inhibited by serotonergic type 1 receptors. These processes may be related to the developmental decrease in REM sleep. Developmental disturbances in each of these systems could induce differential increases in REM sleep drive, accounting for the post-pubertal onset of a number of different disorders manifesting increases in REM sleep drive. Examination of modulation by PPN projections to ascending and descending targets revealed the presence of common signals modulating both ascending arousal-related functions and descending postural/locomotor-related functions. PMID:14527968

  1. REM sleep instability--a new pathway for insomnia?

    PubMed

    Riemann, D; Spiegelhalder, K; Nissen, C; Hirscher, V; Baglioni, C; Feige, B

    2012-07-01

    Chronic insomnia afflicts approximately 10% of the adult population and is associated with daytime impairments and an elevated risk for developing somatic and mental disorders. Current pathophysiological models propose a persistent hyperarousal on the cognitive, emotional and physiological levels. However, the marked discrepancy between minor objective alterations in standard parameters of sleep continuity and the profound subjective impairment in patients with insomnia is unresolved. We propose that "instability" of REM sleep contributes to the experience of disrupted and non-restorative sleep and to the explanation of this discrepancy. This concept is based on evidence showing increased micro- and macro-arousals during REM sleep in insomnia patients. As REM sleep represents the most highly aroused brain state during sleep it seems particularly prone to fragmentation in individuals with persistent hyperarousal. The continuity hypothesis of dream production suggests that pre-sleep concerns of patients with insomnia, i. e., worries about poor sleep and its consequences, dominate their dream content. Enhanced arousal during REM sleep may render these wake-like cognitions more accessible to conscious perception, memory storage and morning recall, resulting in the experience of disrupted and non-restorative sleep. Furthermore, chronic fragmentation of REM sleep might lead to dysfunction in a ventral emotional neural network, including limbic and paralimbic areas that are specifically activated during REM sleep. This dysfunction, along with attenuated functioning in a dorsal executive neural network, including frontal and prefrontal areas, might contribute to emotional and cognitive alterations and an elevated risk of developing depression. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Human REM sleep: influence on feeding behaviour, with clinical implications.

    PubMed

    Horne, James A

    2015-08-01

    Rapid eye movement (REM) sleep shares many underlying mechanisms with wakefulness, to a much greater extent than does non-REM, especially those relating to feeding behaviours, appetite, curiosity, exploratory (locomotor) activities, as well as aspects of emotions, particularly 'fear extinction'. REM is most evident in infancy, thereafter declining in what seems to be a dispensable manner that largely reciprocates increasing wakefulness. However, human adults retain more REM than do other mammals, where for us it is most abundant during our usual final REM period (fREMP) of the night, nearing wakefulness. The case is made that our REM is unusual, and that (i) fREMP retains this 'dispensability', acting as a proxy for wakefulness, able to be forfeited (without REM rebound) and substituted by physical activity (locomotion) when pressures of wakefulness increase; (ii) REM's atonia (inhibited motor output) may be a proxy for this locomotion; (iii) our nocturnal sleep typically develops into a physiological fast, especially during fREMP, which is also an appetite suppressant; (iv) REM may have 'anti-obesity' properties, and that the loss of fREMP may well enhance appetite and contribute to weight gain ('overeating') in habitually short sleepers; (v) as we also select foods for their hedonic (emotional) values, REM may be integral to developing food preferences and dislikes; and (vii) REM seems to have wider influences in regulating energy balance in terms of exercise 'substitution' and energy (body heat) retention. Avenues for further research are proposed, linking REM with feeding behaviours, including eating disorders, and effects of REM-suppressant medications.

  3. Assessing REM Sleep in Mice Using Video Data

    PubMed Central

    McShane, Blakeley B.; Galante, Raymond J.; Biber, Michael; Jensen, Shane T.; Wyner, Abraham J.; Pack, Allan I.

    2012-01-01

    Study Objectives: Assessment of sleep and its substages in mice currently requires implantation of chronic electrodes for measurement of electroencephalogram (EEG) and electromyogram (EMG). This is not ideal for high-throughput screening. To address this deficiency, we present a novel method based on digital video analysis. This methodology extends previous approaches that estimate sleep and wakefulness without EEG/EMG in order to now discriminate rapid eye movement (REM) from non-REM (NREM) sleep. Design: Studies were conducted in 8 male C57BL/6J mice. EEG/EMG were recorded for 24 hours and manually scored in 10-second epochs. Mouse behavior was continuously recorded by digital video at 10 frames/second. Six variables were extracted from the video for each 10-second epoch (i.e., intraepoch mean of velocity, aspect ratio, and area of the mouse and intraepoch standard deviation of the same variables) and used as inputs for our model. Measurements and Results: We focus on estimating features of REM (i.e., time spent in REM, number of bouts, and median bout length) as well as time spent in NREM and WAKE. We also consider the model's epoch-by-epoch scoring performance relative to several alternative approaches. Our model provides good estimates of these features across the day both when averaged across mice and in individual mice, but the epoch-by-epoch agreement is not as good. Conclusions: There are subtle changes in the area and shape (i.e., aspect ratio) of the mouse as it transitions from NREM to REM, likely due to the atonia of REM, thus allowing our methodology to discriminate these two states. Although REM is relatively rare, our methodology can detect it and assess the amount of REM sleep. Citation: McShane BB; Galante RJ; Biber M; Jensen ST; Wyner AJ; Pack AI. Assessing REM sleep in mice using video data. SLEEP 2012;35(3):433-442. PMID:22379250

  4. Overnight improvements in two REM sleep-sensitive tasks are associated with both REM and NREM sleep changes, sleep spindle features, and awakenings for dream recall.

    PubMed

    Nielsen, T; O'Reilly, C; Carr, M; Dumel, G; Godin, I; Solomonova, E; Lara-Carrasco, J; Blanchette-Carrière, C; Paquette, T

    2015-07-01

    Memory consolidation is associated with sleep physiology but the contribution of specific sleep stages remains controversial. To clarify the contribution of REM sleep, participants were administered two REM sleep-sensitive tasks to determine if associated changes occurred only in REM sleep. Twenty-two participants (7 men) were administered the Corsi Block Tapping and Tower of Hanoi tasks prior to and again after a night of sleep. Task improvers and non-improvers were compared for sleep structure, sleep spindles, and dream recall. Control participants (N = 15) completed the tasks twice during the day without intervening sleep. Overnight Corsi Block improvement was associated with more REM sleep whereas Tower of Hanoi improvement was associated with more N2 sleep. Corsi Block improvement correlated positively with %REM sleep and Tower of Hanoi improvement with %N2 sleep. Post-hoc analyses suggest Tower of Hanoi effects-but not Corsi Block effects-are due to trait differences. Sleep spindle density was associated with Tower of Hanoi improvement whereas spindle amplitude correlated with Corsi Block improvement. Number of REM awakenings for dream reporting (but not dream recall per se) was associated with Corsi Block, but not Tower of Hanoi, improvement but was confounded with REM sleep time. This non-replication of one of 2 REM-sensitive task effects challenges both 'dual-process' and 'sequential' or 'sleep organization' models of sleep-dependent learning and points rather to capacity limitations on REM sleep. Experimental awakenings for sampling dream mentation may not perturb sleep-dependent learning effects; they may even enhance them.

  5. Comparison Between Automatic and Visual Scorings of REM Sleep Without Atonia for the Diagnosis of REM Sleep Behavior Disorder in Parkinson Disease.

    PubMed

    Figorilli, Michela; Ferri, Raffaele; Zibetti, Maurizio; Beudin, Patricia; Puligheddu, Monica; Lopiano, Leonardo; Cicolin, Alessandro; Durif, Frank; Marques, Ana; Fantini, Maria Livia

    2017-02-01

    To compare three different methods, two visual and one automatic, for the quantification of rapid eye movement (REM) sleep without atonia (RSWA) in the diagnosis of REM sleep behavior disorder (RBD) in Parkinson's disease (PD) patients. Sixty-two consecutive patients with idiopathic PD underwent video-polysomnographic recording and showed more than 5 minutes of REM sleep. The electromyogram during REM sleep was analyzed by means of two visual methods (Montréal and SINBAR) and one automatic analysis (REM Atonia Index or RAI). RBD was diagnosed according to standard criteria and a series of diagnostic accuracy measures were calculated for each method, as well as the agreement between them. RBD was diagnosed in 59.7% of patients. The accuracy (85.5%), receiver operating characteristic (ROC) area (0.833) and Cohen's K coefficient (0.688) obtained with RAI were similar to those of the visual parameters. Visual tonic parameters, alone or in combination with phasic activity, showed high values of accuracy (93.5-95.2%), ROC area (0.92-0.94), and Cohen's K (0.862-0.933). Similarly, the agreement between the two visual methods was very high, and the agreement between each visual methods and RAI was substantial. Visual phasic measures alone performed worse than all the other measures. The diagnostic accuracy of RSWA obtained with both visual and automatic methods was high and there was a general agreement between methods. RAI may be used as the first line method to detect RSWA in the diagnosis of RBD in PD, together with the visual inspection of video-recorded behaviors, while the visual analysis of RSWA might be used in doubtful cases.

  6. Endothelial function and sleep: associations of flow-mediated dilation with perceived sleep quality and rapid eye movement (REM) sleep.

    PubMed

    Cooper, Denise C; Ziegler, Michael G; Milic, Milos S; Ancoli-Israel, Sonia; Mills, Paul J; Loredo, José S; Von Känel, Roland; Dimsdale, Joel E

    2014-02-01

    Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh Sleep Quality Index, along with a polysomnography assessment to obtain the following measures: slow wave sleep, percentage rapid eye movement (REM) sleep, REM sleep latency, total arousal index, total sleep time, wake after sleep onset, sleep efficiency and apnea-hypopnea index. Bivariate correlations and follow-up multiple regressions examined how FMD related to subjective (i.e., Pittsburgh Sleep Quality Index scores) and objective (i.e., polysomnography-derived) indicators of sleep quality. After FMD showed bivariate correlations with Pittsburgh Sleep Quality Index scores, percentage REM sleep and REM latency, further examination with separate regression models indicated that these associations remained significant after adjustments for sex, age, race, hypertension, body mass index, apnea-hypopnea index, smoking and income (Ps < 0.05). Specifically, as FMD decreased, scores on the Pittsburgh Sleep Quality Index increased (indicating decreased subjective sleep quality) and percentage REM sleep decreased, while REM sleep latency increased (Ps < 0.05). Poorer subjective sleep quality and adverse changes in REM sleep were associated with diminished vasodilation, which could link sleep disturbances to cardiovascular disease.

  7. Surface EMG activity during REM sleep in Parkinson's disease correlates with disease severity.

    PubMed

    Chahine, Lama M; Kauta, Shilpa R; Daley, Joseph T; Cantor, Charles R; Dahodwala, Nabila

    2014-07-01

    Over 40% of individuals with Parkinson's disease (PD) have rapid eye movement sleep behavior disorder (RBD). This is associated with excessive sustained (tonic) or intermittent (phasic) muscle activity instead of the muscle atonia normally seen during REM sleep. We examined characteristics of manually-quantitated surface EMG activity in PD to ascertain whether the extent of muscle activity during REM sleep is associated with specific clinical features and measures of disease severity. In a convenience sample of outpatients with idiopathic PD, REM sleep behavior disorder was diagnosed based on clinical history and polysomnogram, and severity was measured using the RBD sleep questionnaire. Surface EMG activity in the mentalis, extensor muscle group of the forearms, and anterior tibialis was manually quantitated. Percentage of REM time with excessive tonic or phasic muscle activity was calculated and compared across PD and RBD characteristics. Among 65 patients, 31 had confirmed RBD. In univariate analyses, higher amounts of surface EMG activity were associated with longer PD disease duration (srho = 0.34; p = 0.006) and greater disease severity (p < 0.001). In a multivariate regression model, surface EMG activity was significantly associated with RBD severity (p < 0.001) after adjustment for age, PD disease duration, PD severity and co-morbid sleep abnormalities. Surface EMG activity during REM sleep was associated with severity of both PD and RBD. This measure may be useful as a PD biomarker and, if confirmed, may aid in determining which PD patients warrant treatment for their dream enactment to reduce risk of injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The utility of respiratory inductance plethysmography in REM sleep scoring during multiple sleep latency testing.

    PubMed

    Drakatos, Panagis; Higgins, Sean; Duncan, Iain; Bridle, Kate; Briscoe, Sam; Leschziner, Guy D; Kent, Brian D; Williams, Adrian J

    2016-08-01

    Rapid eye movement sleep (REM) presents with a characteristic erratic breathing pattern. We investigated the feasibility of using respiration, derived from respiratory inductance plethysmography (RIP), in conjunction with chin electromyography, electrocardiography and pulse oximetry to facilitate the identification of REM sleep (RespREM) during nocturnal polysomnography (NPSG) and Multiple Sleep Latency Testing (MSLT). The Cohen's weighted kappa for the presence of REM and its duration in 20 consecutive NPSGs, using RespREM and compared to the current guidelines, ranged between 0.74-0.93 and 0.68-0.73 respectively for 5 scorers. The respective intraclass correlation coefficients were above 0.89. In 97.7% of the Sleep-Onset-REM-Periods (SOREMPs) during 41 consecutive MSLTs with preserved RIP, the RespREM was present and in 46.6% it coincided with the REM onset, while in the majority of the remainder RespREM preceded conventional REM onset. The erratic breathing pattern during REM, derived from RIP, is present and easily recognisable during SOREMPs in the MSLTs and may serve as a useful adjunctive measurement in identifying REM sleep. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Physostigmine alters onset but not duration of REM sleep in man.

    PubMed

    Gillin, J C; Sitaram, N; Mendelson, W B; Wyatt, R J

    1978-06-15

    Physostigmine (1.0mg) or placebo were administered intravenously over 1-h period to seven male normal volunteers beginning 35 min after sleep onset. The results indicate that physostigmine induced the onset of REM sleep but did not significantly alter the duration of individual REM sleep periods. Physostigmine significantly shortened the REM latency and the duration of the second nonREM period. After inducing the onset of the first REM period(s); physostigmine also appeared to advance succeeding REM-nonREM sleep cycles relative to sleep onset even when the duration of each cycle was unaffected.

  10. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during REM sleep

    PubMed Central

    Vanini, Giancarlo; Wathen, Bradley L.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REMNeo) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (−42%) and REMNeo (−63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared to NREM sleep, GABA levels decreased significantly during REM sleep (−27%) and REMNeo (−52%). Comparisons of REM sleep and REMNeo revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep. PMID:21325533

  11. Why does rem sleep occur? A wake-up hypothesis.

    PubMed

    Klemm, W R

    2011-01-01

    Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses rapid eye movement (REM) to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, (1) when first going to sleep, the brain plunges into Stage N3 (formerly called Stage IV), a deep abyss of sleep, and, as the night progresses, the sleep is punctuated by episodes of REM that become longer and more frequent toward morning, (2) conscious-like dreams are a reliable component of the REM state in which the dreamer is an active mental observer or agent in the dream, (3) the last awakening during a night's sleep usually occurs in a REM episode during or at the end of a dream, (4) both REM and awake consciousness seem to arise out of a similar brainstem ascending arousal system (5) N3 is a functionally perturbed state that eventually must be corrected so that embodied brain can direct adaptive behavior, and (6) cortico-fugal projections to brainstem arousal areas provide a way to trigger increased cortical activity in REM to progressively raise the sleeping brain to the threshold required for wakefulness. This paper shows how the hypothesis conforms to common experience and has substantial predictive and explanatory power regarding the phenomenology of sleep in terms of ontogeny, aging, phylogeny, abnormal/disease states, cognition, and behavioral physiology. That broad range of consistency is not matched by competing theories, which are summarized herein. Specific ways to test this wake-up hypothesis are suggested. Such research could lead to a better understanding of awake consciousness.

  12. Vocabulary learning benefits from REM after slow-wave sleep.

    PubMed

    Batterink, Laura J; Westerberg, Carmen E; Paller, Ken A

    2017-10-01

    Memory reactivation during slow-wave sleep (SWS) influences the consolidation of recently acquired knowledge. This reactivation occurs spontaneously during sleep but can also be triggered by presenting learning-related cues, a technique known as targeted memory reactivation (TMR). Here we examined whether TMR can improve vocabulary learning. Participants learned the meanings of 60 novel words. Auditory cues for half the words were subsequently presented during SWS in an afternoon nap. Memory performance for cued versus uncued words did not differ at the group level but was systematically influenced by REM sleep duration. Participants who obtained relatively greater amounts of REM showed a significant benefit for cued relative to uncued words, whereas participants who obtained little or no REM demonstrated a significant effect in the opposite direction. We propose that REM after SWS may be critical for the consolidation of highly integrative memories, such as new vocabulary. Reactivation during SWS may allow newly encoded memories to be associated with other information, but this association can include disruptive linkages with pre-existing memories. Subsequent REM sleep may then be particularly beneficial for integrating new memories into appropriate pre-existing memory networks. These findings support the general proposition that memory storage benefits optimally from a cyclic succession of SWS and REM. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation

    PubMed Central

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E.; McCarley, Robert W.; Choi, Jee Hyun

    2017-01-01

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation. PMID:28193862

  14. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

    PubMed

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

    2017-02-28

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

  15. Diagnosis, disease notification, and management of rapid eye movement (REM) sleep behavior disorder.

    PubMed

    Shimohata, Takayoshi; Inoue, Yuichi; Hirata, Koichi

    2017-02-25

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by dream enactment behavior during REM sleep. It has been demonstrated that patients with idiopathic RBD are at a significantly increased risk of developing one of the α-synucleinopathies later in life, and this is called "phenoconversion". Although some physicians argue against disclosing information that could cause patients psychological stress, the patients also have a "right to know" about their own disease. Therefore, determining when and how to disclose this information, in addition to appropriate follow-up, is important. Clonazepam is the first choice of treatment for RBD associated with α-synucleinopathies. Since RBD is one of the premotor symptoms of α-synucleinopathies, and enables its early diagnosis, a combination of RBD and other examinations may contribute to the realization of a disease-modifying therapy. It is hoped that the early establishment of biomarkers could help predict the phenoconversion from RBD to α-synucleinopathies.

  16. Assessing REM sleep in mice using video data.

    PubMed

    McShane, Blakeley B; Galante, Raymond J; Biber, Michael; Jensen, Shane T; Wyner, Abraham J; Pack, Allan I

    2012-03-01

    Assessment of sleep and its substages in mice currently requires implantation of chronic electrodes for measurement of electroencephalogram (EEG) and electromyogram (EMG). This is not ideal for high-throughput screening. To address this deficiency, we present a novel method based on digital video analysis. This methodology extends previous approaches that estimate sleep and wakefulness without EEG/EMG in order to now discriminate rapid eye movement (REM) from non-REM (NREM) sleep. Studies were conducted in 8 male C57BL/6J mice. EEG/EMG were recorded for 24 hours and manually scored in 10-second epochs. Mouse behavior was continuously recorded by digital video at 10 frames/second. Six variables were extracted from the video for each 10-second epoch (i.e., intraepoch mean of velocity, aspect ratio, and area of the mouse and intraepoch standard deviation of the same variables) and used as inputs for our model. We focus on estimating features of REM (i.e., time spent in REM, number of bouts, and median bout length) as well as time spent in NREM and WAKE. We also consider the model's epoch-by-epoch scoring performance relative to several alternative approaches. Our model provides good estimates of these features across the day both when averaged across mice and in individual mice, but the epoch-by-epoch agreement is not as good. There are subtle changes in the area and shape (i.e., aspect ratio) of the mouse as it transitions from NREM to REM, likely due to the atonia of REM, thus allowing our methodology to discriminate these two states. Although REM is relatively rare, our methodology can detect it and assess the amount of REM sleep.

  17. REM sleep behavior disorder and periodic leg movements during sleep in ALS.

    PubMed

    Lo Coco, D; Puligheddu, M; Mattaliano, P; Congiu, P; Borghero, G; Fantini, M L; La Bella, V; Ferri, R

    2017-02-01

    To assess sleep characteristics and the occurrence of abnormal muscle activity during sleep, such as REM sleep without atonia (RSWA), REM sleep behavior disorder (RBD), and periodic leg movements during sleep (PLMS), in patients with amyotrophic lateral sclerosis (ALS). A total of 41 patients with ALS and 26 healthy subjects were submitted to clinical interview and overnight video-polysomnography. A total of 22 patients with ALS (53.6%) reported poor sleep quality. Polysomnographic studies showed that patients with ALS had reduced total sleep time, increased wakefulness after sleep onset, shortened REM and slow-wave sleep, and decreased sleep efficiency, compared to controls. Polysomnographic abnormalities were not different in patients reporting good or poor sleep and were not correlated to clinical and demographic variables. The PLMS index was significantly higher in patients with ALS than in healthy subjects, and 22 patients (53.6%) showed a PLMS index > 15/h, vs 4 (15.4%) controls (P < 0.001). Finally, two patients with ALS (4.9%) had RBD, and two more patients presented RSWA (4.9%), whereas no controls showed abnormalities of REM sleep. Patients with ALS frequently present abnormalities of sleep that can be documented both at the clinical interview and at the polysomnographic evaluation, including insomnia, fragmented sleep, and increased PLMS. Moreover, abnormalities of REM sleep can be found in some of these patients. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. A review of mentation in REM and NREM sleep: "covert" REM sleep as a possible reconciliation of two opposing models.

    PubMed

    Nielsen, T A

    2000-12-01

    Numerous studies have replicated the finding of mentation in both rapid eye movement (REM) and nonrapid eye movement (NREM) sleep. However, two different theoretical models have been proposed to account for this finding: (1) a one-generator model, in which mentation is generated by a single set of processes regardless of physiological differences between REM and NREM sleep; and (2) a two-generator model, in which qualitatively different generators produce cognitive activity in the two states. First, research is reviewed demonstrating conclusively that mentation can occur in NREM sleep; global estimates show an average mentation recall rate of about 50% from NREM sleep--a value that has increased substantially over the years. Second, nine different types of research on REM and NREM cognitive activity are examined for evidence supporting or refuting the two models. The evidence largely, but not completely, favors the two-generator model. Finally, in a preliminary attempt to reconcile the two models, an alternative model is proposed that assumes the existence of covert REM sleep processes during NREM sleep. Such covert activity may be responsible for much of the dreamlike cognitive activity occurring in NREM sleep.

  19. Orexin and Epilepsy: Potential Role of REM Sleep.

    PubMed

    Ng, Marcus C

    2017-03-01

    Interest in orexin receptor antagonism as a novel mechanism of action against seizures and epilepsy has increased in recent years. Loss of orexinergic activity is associated with rapid eye movement (REM) sleep onset, and REM sleep is generally protective against seizures. This paper discusses the dynamic modulation of seizure threshold by orexin through a postulated "orexi-cortical" axis in which the specific type of orexinergic activity exquisitely regulates sleep-wake states to modify ascending subcortical influences on cortical synchronization with profound subsequent consequences on seizure threshold. This paper also explores the current state of research into experimental orexinergic modulation of seizure threshold and suggests possible future research directions to fully understand the promise and peril of orexinergic manipulation in seizures and epilepsy. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  20. Cerebral sympathetic nerve activity has a major regulatory role in the cerebral circulation in REM sleep.

    PubMed

    Cassaglia, Priscila A; Griffiths, Robert I; Walker, Adrian M

    2009-04-01

    Sympathetic nerve activity (SNA) in neurons projecting to skeletal muscle blood vessels increases during rapid-eye-movement (REM) sleep, substantially exceeding SNA of non-REM (NREM) sleep and quiet wakefulness (QW). Similar SNA increases to cerebral blood vessels may regulate the cerebral circulation in REM sleep, but this is unknown. We hypothesized that cerebral SNA increases during phasic REM sleep, constricting cerebral vessels as a protective mechanism against cerebral hyperperfusion during the large arterial pressure surges that characterize this sleep state. We tested this hypothesis using a newly developed model to continuously record SNA in the superior cervical ganglion (SCG) before, during, and after arterial pressure surges occurring during REM in spontaneously sleeping lambs. Arterial pressure (AP), intracranial pressure (ICP), cerebral blood flow (CBF), cerebral vascular resistance [CVR = (AP - ICP)/CBF], and SNA from the SCG were recorded in lambs (n = 5) undergoing spontaneous sleep-wake cycles. In REM sleep, CBF was greatest (REM > QW = NREM, P < 0.05) and CVR was least (REM < QW = NREM, P < 0.05). SNA in the SCG did not change from QW to NREM sleep but increased during tonic REM sleep, with a further increase during phasic REM sleep (phasic REM > tonic REM > QW = NREM, P < 0.05). Coherent averaging revealed that SNA increases preceded AP surges in phasic REM sleep by 12 s (P < 0.05). We report the first recordings of cerebral SNA during natural sleep-wake cycles. SNA increases markedly during tonic REM sleep, and further in phasic REM sleep. As SNA increases precede AP surges, they may serve to protect the brain against potentially damaging intravascular pressure changes or hyperperfusion in REM sleep.

  1. Cold Exposure and Sleep in the Rat: REM Sleep Homeostasis and Body Size

    PubMed Central

    Amici, Roberto; Cerri, Matteo; Ocampo-Garcés, Adrian; Baracchi, Francesca; Dentico, Daniela; Jones, Christine Ann; Luppi, Marco; Perez, Emanuele; Parmeggiani, Pier Luigi; Zamboni, Giovanni

    2008-01-01

    Study Objectives: Exposure to low ambient temperature (Ta) depresses REM sleep (REMS) occurrence. In this study, both short and long-term homeostatic aspects of REMS regulation were analyzed during cold exposure and during subsequent recovery at Ta 24°C. Design: EEG activity, hypothalamic temperature, and motor activity were studied during a 24-h exposure to Tas ranging from 10°C to −10°C and for 4 days during recovery. Setting: Laboratory of Physiological Regulation during the Wake-Sleep Cycle, Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna. Subjects: 24 male albino rats. Interventions: Animals were implanted with electrodes for EEG recording and a thermistor to measure hypothalamic temperature. Measurements and Results: REMS occurrence decreased proportionally with cold exposure, but a fast compensatory REMS rebound occurred during the first day of recovery when the previous loss went beyond a “fast rebound” threshold corresponding to 22% of the daily REMS need. A slow REMS rebound apparently allowed the animals to fully restore the previous REMS loss during the following 3 days of recovery. Conclusion: Comparing the present data on rats with data from earlier studies on cats and humans, it appears that small mammals have less tolerance for REMS loss than large ones. In small mammals, this low tolerance may be responsible on a short-term basis for the shorter wake-sleep cycle, and on long-term basis, for the higher percentage of REMS that is quickly recovered following REMS deprivation. Citation: Amici R; Cerri M; Ocampo-Garcés A; Baracchi F; Dentico D; Jones CA; Luppi M; Perez E; Parmeggiani PL; Zamboni G. Cold exposure and sleep in the rat: REM sleep homeostasis and body size. SLEEP 2008;31(5):708–715. PMID:18517040

  2. Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy.

    PubMed

    Herscovici, Sarah; Pe'er, Avivit; Papyan, Surik; Lavie, Peretz

    2007-02-01

    Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.

  3. The relationship between thermoregulation and REM sleep behaviour disorder in Parkinson's disease.

    PubMed

    Zhong, George; Bolitho, Samuel; Grunstein, Ronald; Naismith, Sharon Linda; Lewis, Simon John Geoffrey

    2013-01-01

    This study explored the relationship between symptoms of rapid eye movement sleep behaviour disorder, thermoregulation and sleep in Parkinson's Disease. The study group comprised 12 patients with Parkinson's Disease and 11 healthy age-matched controls. We investigated markers of thermoregulation (core-body temperature profile), circadian rhythm (locomotor actigraphy) and sleep (polysomnography). The mesor (the mean value around which the core temperature rhythm oscillates) of the core-body temperature in patients with Parkinson's Disease was significantly lower than that of controls. In addition, the nocturnal fall in CBT (the difference between the mesor and the nadir temperature) was also significantly reduced in PD patients relative to controls. Furthermore, in patients the reduction in the amplitude of their core-body temperature profile was strongly correlated with the severity of self-reported rapid eye movement sleep behaviour disorder symptom, reduction in the percentage of REM sleep and prolonged sleep latency. By contrast, these disturbances of thermoregulation and sleep architecture were not found in controls and were not related to other markers of circadian rhythm or times of sleep onset and offset. These findings suggest that the brainstem pathology associated with disruption of thermoregulation in Parkinson's disease may also contribute to rapid eye movement sleep behavioural disorder. It is possible that detailed analysis of the core-body temperature profile in at risk populations such as those patients with idiopathic rapid eye movement sleep behaviour disorder might help identify those who are at high risk of transitioning to Parkinson's Disease.

  4. Visual short-term memory deficits in REM sleep behaviour disorder mirror those in Parkinson’s disease

    PubMed Central

    Rolinski, Michal; Baig, Fahd; Giehl, Kathrin; Quinnell, Timothy; Zaiwalla, Zenobia; Mackay, Clare E.; Husain, Masud; Hu, Michele T. M.

    2016-01-01

    Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson’s disease. Here we examined visual short-term memory deficits—long associated with Parkinson’s disease—in patients with REM sleep behaviour disorder without Parkinson’s disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson’s disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson’s disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson’s disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson’s disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of ‘prodromal’ Parkinson’s disease that might be useful in tracking disease progression and for disease-modifying intervention trials. PMID:26582557

  5. Coupled Flip-Flop Model for REM Sleep Regulation in the Rat

    PubMed Central

    Dunmyre, Justin R.; Mashour, George A.; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that

  6. [Acoustic hallucinations as a symptom of a REM sleep-associated parasomnia].

    PubMed

    Sobanski, T; Sieb, J P; Laux, G; Möller, H J

    1997-11-01

    This 52-year-old man suffered from auditory hallucinations that occurred during brief episodes of sleep paralysis at the end of REM sleep periods. During these episodes the patient experienced a dissociated state of consciousness with REM sleep intrusions into wakefulness. The occurrence of this mixed state, and of excessive sleep-onset REM periods during daytime polysomnography (MSLT = Multiple Sleep Latency Test), point to a disorder of REM sleep generation. The existence of narcolepsy could be ruled out. The observation of REM sleep-associated hallucinations has been reported earlier. In the presented polysomnographic sleep studies the existence of a REM sleep associated parasomnia characterised by hallucinations and sleep paralysis could be confirmed.

  7. Video analysis of motor events in REM sleep behavior disorder.

    PubMed

    Frauscher, Birgit; Gschliesser, Viola; Brandauer, Elisabeth; Ulmer, Hanno; Peralta, Cecilia M; Müller, Jörg; Poewe, Werner; Högl, Birgit

    2007-07-30

    In REM sleep behavior disorder (RBD), several studies focused on electromyographic characterization of motor activity, whereas video analysis has remained more general. The aim of this study was to undertake a detailed and systematic video analysis. Nine polysomnographic records from 5 Parkinson patients with RBD were analyzed and compared with sex- and age-matched controls. Each motor event in the video during REM sleep was classified according to duration, type of movement, and topographical distribution. In RBD, a mean of 54 +/- 23.2 events/10 minutes of REM sleep (total 1392) were identified and visually analyzed. Seventy-five percent of all motor events lasted <2 seconds. Of these events, 1,155 (83.0%) were classified as elementary, 188 (13.5%) as complex behaviors, 50 (3.6%) as violent, and 146 (10.5%) as vocalizations. In the control group, 3.6 +/- 2.3 events/10 minutes (total 264) of predominantly elementary simple character (n = 240, 90.9%) were identified. Number and types of motor events differed significantly between patients and controls (P < 0.05). This study shows a very high number and great variety of motor events during REM sleep in symptomatic RBD. However, most motor events are minor, and violent episodes represent only a small fraction. Copyright 2007 Movement Disorder Society

  8. Differential diagnosis of sporadic adult-onset ataxia: The role of REM sleep behavior disorder.

    PubMed

    Teive, Hélio A G; Arruda, Walter O; Moro, Adriana; Moscovich, Mariana; Munhoz, Renato P

    2015-06-01

    Sporadic adult-onset ataxia encompasses a group of degenerative, non-hereditary disorders, including idiopathic adult-onset ataxia and the cerebellar form of multiple system atrophy. Our objective was to analyze the diagnosis at follow-up of 50 sporadic adult-onset ataxia patients. Clinical and laboratory findings of 50 adult patients with sporadic adult-onset ataxia were analyzed. Diagnosis of probable REM sleep behavior disorder was based predominantly on clinically accepted criteria. Multiple system atrophy was diagnosed in 48% of cases, the remaining 52% received a diagnosis of sporadic adult-onset ataxia. REM sleep behavior disorder was diagnosed in 46% of the patients. However, among patients with probable multiple system atrophy, the corresponding figure was 83.34% versus 11.53% among those with sporadic ataxia (p < 0.001). REM sleep behavior disorder is an important aid to the differentiation of multiple system atrophy from sporadic adult-onset ataxia and its use for this purpose should be encouraged. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. REM Sleep Behavior Disorder and Prodromal Neurodegeneration – Where Are We Headed?

    PubMed Central

    Postuma, Ronald B.; Gagnon, Jean-Francois; Montplaisir, Jacques Y.

    2013-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by loss of normal atonia during REM sleep, such that patients appear to act out their dreams. The most important implication of research into this area is that patients with idiopathic RBD are at very high risk of developing synuclein-mediated neurodegenerative disease (Parkinson's disease [PD], dementia with Lewy bodies [DLB], and multiple system atrophy), with risk estimates that approximate 40–65% at 10 years. Thus, RBD disorder is a very strong feature of prodromal synucleinopathy. This provides several opportunities for future research. First, patients with REM sleep behavior disorder can be studied to test other predictors of disease, which could potentially be applied to the general population. These studies have demonstrated that olfactory loss, decreased color vision, slowing on quantitative motor testing, and abnormal substantia nigra neuroimaging findings can predict clinical synucleinopathy. Second, prospectively studying patients with RBD allows a completely unprecedented opportunity to directly evaluate patients as they transition into clinical neurodegenerative disease. Studies assessing progression of markers of neurodegeneration in prodromal PD are beginning to appear. Third, RBD are very promising subjects for neuroprotective therapy trials because they have a high risk of disease conversion with a sufficiently long latency, which provides an opportunity for early intervention. As RBD research expands, collaboration between centers will become increasingly essential. PMID:23532774

  10. Morning REM Sleep Naps Facilitate Broad Access to Emotional Semantic Networks

    PubMed Central

    Carr, Michelle; Nielsen, Tore

    2015-01-01

    Study Objectives: The goals of the study were to assess semantic priming to emotion and nonemotion cue words using a novel measure of associational breadth for participants who either took rapid eye movement (REM) or nonrapid eye movement (NREM) naps or who remained awake, and to assess the relation of priming to REM sleep consolidation and REM sleep inertia effects. Design: The associational breadth task was applied in both a priming condition, where cue words were signaled to be memorized prior to sleep (primed), and a nonpriming condition, where cue words were not memorized (nonprimed). Cue words were either emotional (positive, negative) or nonemotional. Participants were randomly assigned to either an awake (WAKE) or a sleep condition, which was subsequently split into NREM or REM groups depending on stage at awakening. Setting: Hospital-based sleep laboratory. Participants: Fifty-eight healthy participants (22 male) ages 18 to 35 y (mean age = 23.3 ± 4.08 y). Measurements and Results: The REM group scored higher than the NREM or WAKE groups on primed, but not nonprimed emotional cue words; the effect was stronger for positive than for negative cue words. However, REM time and percent correlated negatively with degree of emotional priming. Priming occurred for REM awakenings but not for NREM awakenings, even when the latter sleep episodes contained some REM sleep. Conclusions: Associational breadth may be selectively consolidated during REM sleep for stimuli that have been tagged as important for future memory retrieval. That priming decreased with REM time and was higher only for REM sleep awakenings is consistent with two explanatory REM sleep processes: REM sleep consolidation serving emotional downregulation and REM sleep inertia. Citation: Carr M, Nielsen T. Morning REM sleep naps facilitate broad access to emotional semantic networks. SLEEP 2015;38(3):433–443. PMID:25409100

  11. Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation.

    PubMed

    Kátai, Zita; Adori, Csaba; Kitka, Tamás; Vas, Szilvia; Kalmár, Lajos; Kostyalik, Diána; Tóthfalusi, László; Palkovits, Miklós; Bagdy, György

    2013-08-01

    Selective rapid eye movement sleep (REMS) deprivation using the platform-on-water ("flower pot") method causes sleep rebound with increased REMS, decreased REMS latency, and activation of the melanin-concentrating hormone (MCH) expressing neurons in the hypothalamus. MCH is implicated in the pathomechanism of depression regarding its influence on mood, feeding behavior, and REMS. We investigated the effects of the most selective serotonin reuptake inhibitor escitalopram on sleep rebound following REMS deprivation and, in parallel, on the activation of MCH-containing neurons. Escitalopram or vehicle (10 mg/kg, intraperitoneally) was administered to REMS-deprived (72 h) or home cage male Wistar rats. During the 3-h-long "rebound sleep", electroencephalography was recorded, followed by an MCH/Fos double immunohistochemistry. During REMS rebound, the time spent in REMS and the number of MCH/Fos double-labeled neurons in the lateral hypothalamus increased markedly, and REMS latency showed a significant decrease. All these effects of REMS deprivation were significantly attenuated by escitalopram treatment. Besides the REMS-suppressing effects, escitalopram caused an increase in amount of and decrease in latency of slow wave sleep during the rebound. These results show that despite the high REMS pressure caused by REMS deprivation procedure, escitalopram has the ability to suppress REMS rebound, as well as to diminish the activation of MCH-containing neurons, in parallel. Escitalopram caused a shift from REMS to slow wave sleep during the rebound. Furthermore, these data point to the potential connection between the serotonergic system and MCH in sleep regulation, which can be relevant in depression and in other mood disorders.

  12. Schema-conformant memories are preferentially consolidated during REM sleep.

    PubMed

    Durrant, Simon J; Cairney, Scott A; McDermott, Cathal; Lewis, Penelope A

    2015-07-01

    Memory consolidation is most commonly described by the standard model, which proposes an initial binding role for the hippocampus which diminishes over time as intracortical connections are strengthened. Recent evidence suggests that slow wave sleep (SWS) plays an essential role in this process. Existing animal and human studies have suggested that memories which fit tightly into an existing knowledge framework or schema might use an alternative consolidation route in which the medial prefrontal cortex takes on the binding role. In this study we sought to investigate the role of sleep in this process using a novel melodic memory task. Participants were asked to remember 32 melodies, half of which conformed to a tonal schema present in all enculturated listeners, and half of which did not fit with this schema. After a 24-h consolidation interval, participants were asked to remember a further 32 melodies, before being given a recognition test in which melodies from both sessions were presented alongside some previously unheard foils. Participants remembered schema-conformant melodies better than non-conformant ones. This was much more strongly the case for consolidated melodies, suggesting that consolidation over a 24-h period preferentially consolidated schema-conformant items. Overnight sleep was monitored between the sessions, and the extent of the consolidation benefit for schema-conformant items was associated with both the amount of REM sleep obtained and EEG theta power in frontal and central regions during REM sleep. Overall our data suggest that REM sleep plays a crucial role in the rapid consolidation of schema-conformant items. This finding is consistent with previous results from animal studies and the SLIMM model of Van Kesteren, Ruiter, Fernández, and Henson (2012), and suggest that REM sleep, rather than SWS, may be involved in an alternative pathway of consolidation for schema-conformant memories.

  13. Pramipexole in the treatment of REM sleep behaviour disorder: A critical review.

    PubMed

    Tan, Shian Ming; Wan, Yi Min

    2016-09-30

    While widely accepted as a first-line treatment for rapid eye movement sleep (REM) behaviour disorder, clonazepam (CNZP) has side effects that limit its applicability. Pramipexole is a possible alternative, but limited literature on its effectiveness exists. This review aims to summarize the available data on the use of pramipexole in REM sleep behaviour disorder. A systematic search of major databases was conducted to look for published and on-going trials. This search yielded a total of five articles, all of which are observational in nature. Factors associated with effectiveness include low doses (less than 1.5mg/day) and idiopathic rapid eye movement sleep behaviour disorder/absence of neurodegenerative disease. Overall, the evidence is inconclusive. This is due to the lack of randomised controlled trials and the challenges in interpreting polysomgraphy findings in rapid eye movement sleep behaviour disorder. Suggestions are given on how future trials evaluating pramipexole treatment in rapid eye movement sleep behaviour disorder could overcome current methodological issues in extant literature.

  14. REM sleep selectively prunes and maintains new synapses in development and learning

    PubMed Central

    Li, Wei; Ma, Lei; Yang, Guang; Gan, Wenbiao

    2017-01-01

    The functions and underlying mechanisms of rapid eye movement (REM) sleep remain unclear. Here we show that REM sleep prunes newly-formed postsynaptic dendritic spines of layer 5 pyramidal neurons in the mouse motor cortex during development and motor learning. This REM sleep-dependent elimination of new spines facilitates subsequent spine formation in development and when a new motor task is learned, indicating a role of REM sleep in pruning to balance the number of new spines formed over time. In addition, REM sleep also strengthens and maintains some newly-formed spines that are critical for neuronal circuit development and behavioral improvement after learning. We further show that dendritic calcium spikes arising during REM sleep are important for pruning and strengthening of new spines. Together, these findings indicate that REM sleep has multifaceted functions in brain development, learning, and memory consolidation by selectively eliminating and maintaining newly-formed synapses via dendritic calcium spike-dependent mechanisms. PMID:28092659

  15. REM sleep selectively prunes and maintains new synapses in development and learning.

    PubMed

    Li, Wei; Ma, Lei; Yang, Guang; Gan, Wen-Biao

    2017-03-01

    The functions and underlying mechanisms of rapid eye movement (REM) sleep remain unclear. Here we show that REM sleep prunes newly formed postsynaptic dendritic spines of layer 5 pyramidal neurons in the mouse motor cortex during development and motor learning. This REM sleep-dependent elimination of new spines facilitates subsequent spine formation during development and when a new motor task is learned, indicating a role for REM sleep in pruning to balance the number of new spines formed over time. Moreover, REM sleep also strengthens and maintains newly formed spines, which are critical for neuronal circuit development and behavioral improvement after learning. We further show that dendritic calcium spikes arising during REM sleep are important for pruning and strengthening new spines. Together, these findings indicate that REM sleep has multifaceted functions in brain development, learning and memory consolidation by selectively eliminating and maintaining newly formed synapses via dendritic calcium spike-dependent mechanisms.

  16. Increases in cAMP, MAPK Activity and CREB Phosphorylation during REM Sleep: Implications for REM Sleep and Memory Consolidation

    PubMed Central

    Luo, Jie; Phan, Trongha X.; Yang, Yimei; Garelick, Michael G.; Storm, Daniel R.

    2013-01-01

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Since mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK and phospho-CREB are higher in rapid eye movement (REM) sleep compared to awake mice but are not elevated in non-rapid eye movement (NREM) sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844

  17. Emergence of sensory patterns during sleep highlights differential dynamics of REM and non-REM sleep stages.

    PubMed

    Ramot, Michal; Fisch, Lior; Davidesco, Ido; Harel, Michal; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Kramer, Uri; Fried, Itzhak; Malach, Rafael

    2013-09-11

    Despite the profound reduction in conscious awareness associated with sleep, sensory cortex remains highly active during the different sleep stages, exhibiting complex interactions between different cortical sites. The potential functional significance of such spatial patterns and how they change between different sleep stages is presently unknown. In this electrocorticography study of human patients, we examined this question by studying spatial patterns of activity (broadband gamma power) that emerge during sleep (sleep patterns) and comparing them to the functional organization of sensory cortex that is activated by naturalistic stimuli during the awake state. Our results show a high correlation (p < 10(-4), permutation test) between the sleep spatial patterns and the functional organization found during wakefulness. Examining how the sleep patterns changed through the night highlighted a stage-specific difference, whereby the repertoire of such patterns was significantly larger during rapid eye movement (REM) sleep compared with non-REM stages. These results reveal that intricate spatial patterns of sensory functional organization emerge in a stage-specific manner during sleep.

  18. Hyperkalemic periodic paralysis associated with multiple sleep onset REM periods.

    PubMed

    Iranzo, A; Santamaria, J

    1999-12-15

    A 24-year-old man with sporadic hyperkalemic periodic paralysis (HPP) presented with moderate excessive daytime sleepiness and transitory episodes of weakness which occurred during and after sleep. Multiple sleep latency test (MSLT) demonstrated the presence of five sleep onset REM periods (SOREMPs) and a sleep latency of five minutes. Treatment with a diuretic which decreases serum potassium resolved all the clinical symtomps and a new MSLT showed the absence of SOREMPs and a sleep latency of 13.5 minutes. To our knowledge, the patient herein reported is the first case that associates sleep abnormalities and multiple SOREMPs with HPP. Furthermore, the present case suggests that SOREMPs may be explained by an increased extracellular potassium conductance related to HPP.

  19. Relationship Between Rem Density, Duty Cycle, and Obstructive Sleep Apnea in Children

    PubMed Central

    Karamessinis, Laurie; Galster, Patricia; Schultz, Brian; Elliott, Joanne; Mason, Thornton A.; Brooks, Lee J.; Gallagher, Paul R.; Marcus, Carole L.

    2007-01-01

    Study Objectives: The pattern and distribution of rapid eye movement (REM) sleep changes during development, yet there have been few studies of REM density in children. Although children with obstructive apnea syndrome (OSAS) obstruct primarily during REM sleep, the relationship between REM density and obstructive apnea has not been established for this population. We hypothesized that (i) REM density and REM cycle duration increases over the course of the night in children, (ii) the duty cycle (inspiratory time divided by respiratory cycle time) increases over the course of the night in children with suspected OSAS, and (iii) the increase in REM density over the course of the night is associated with increased severity of obstructive apnea. Design: REM density and respiratory parameters were measured during polysomnography. Setting: Sleep laboratory Patients: 76 children with suspected OSAS. Interventions: NA Measurements and Results: REM density and the duration of REM cycles increased over the course of the night until the fifth REM cycle, and then stabilized. The duty cycle increased across the first 6 REM cycles. However, the apnea hypopnea index (AHI) did not increase across REM cycles, and was not affected by the changes in REM density or duty cycle. We speculate that the increase in the duty cycle is a compensatory response to increased upper airway loads during sleep, and that this may lead to ventilatory or upper airway muscle fatigue. Citation: Karamessinis L; Galster P; Schultz B et al. Relationship between rem density, duty cycle, and obstructive sleep apnea in children. PMID:17682653

  20. Electrophysiological Evidence for Alternative Motor Networks in REM Sleep Behavior Disorder.

    PubMed

    Hackius, Marc; Werth, Esther; Sürücü, Oguzkan; Baumann, Christian R; Imbach, Lukas L

    2016-11-16

    Patients with Parkinson's disease (PD) and REM sleep behavior disorder (RBD) show mostly unimpaired motor behavior during REM sleep, which contrasts strongly to coexistent nocturnal bradykinesia. The reason for this sudden amelioration of motor control in REM sleep is unknown, however. We set out to determine whether movements during REM sleep are processed by different motor networks than movements in the waking state. We recorded local field potentials in the subthalamic nucleus (STN) and scalp EEG (modified 10/20 montage) during sleep in humans with PD and RBD. Time-locked event-related β band oscillations were calculated during movements in REM sleep compared with movements in the waking state and during NREM sleep. Spectral analysis of STN local field potentials revealed elevated β power during REM sleep compared with NREM sleep and β power in REM sleep reached levels similar as in the waking state. Event-related analysis showed time-locked β desynchronization during WAKE movements. In contrast, we found significantly elevated β activity before and during movements in REM sleep and NREM sleep. Corticosubthalamic coherence was reduced during REM and NREM movements. We conclude that sleep-related movements are not processed by the same corticobasal ganglia network as movements in the waking state. Therefore, the well-known seemingly normal motor performance during RBD in PD patients might be generated by activating alternative motor networks for movement initiation. These findings support the hypothesis that pathological movement-inhibiting basal ganglia networks in PD patients are bypassed during sleep.

  1. Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.

    PubMed

    Casey, Sarah J; Solomons, Luke C; Steier, Joerg; Kabra, Neeraj; Burnside, Anna; Pengo, Martino F; Moxham, John; Goldstein, Laura H; Kopelman, Michael D

    2016-11-01

    It has been debated whether different stages in the human sleep cycle preferentially mediate the consolidation of explicit and implicit memories, or whether all of the stages in succession are necessary for optimal consolidation. Here we investigated whether the selective deprivation of slow wave sleep (SWS) or rapid eye movement (REM) sleep over an entire night would have a specific effect on consolidation in explicit and implicit memory tasks. Participants completed a set of explicit and implicit memory tasks at night, prior to sleep. They had 1 control night of undisturbed sleep and 2 experimental nights, during which either SWS or REM sleep was selectively deprived across the entire night (sleep conditions counterbalanced across participants). Polysomnography recordings quantified precisely the amount of SWS and REM sleep that occurred during each of the sleep conditions, and spindle counts were recorded. In the morning, participants completed the experimental tasks in the same sequence as the night before. SWS deprivation disrupted the consolidation of explicit memories for visuospatial information (ηp2 = .23), and both SWS (ηp2 = .53) and REM sleep (ηp2 = .52) deprivation adversely affected explicit verbal recall. Neither SWS nor REM sleep deprivation affected aspects of short-term or working memory, and did not affect measures of verbal implicit memory. Spindle counts did not correlate significantly with memory performance. These findings demonstrate the importance of measuring the sleep cycles throughout the entire night, and the contribution of both SWS and REM sleep to memory consolidation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation

    PubMed Central

    Grace, Kevin P.; Horner, Richard L.

    2015-01-01

    Rapid eye movement (REM) sleep – characterized by vivid dreaming, motor paralysis, and heightened neural activity – is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the “pontine REM sleep generator” by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832

  3. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation.

    PubMed

    Grace, Kevin P; Horner, Richard L

    2015-01-01

    Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  4. Loss of rapid eye movement sleep atonia in patients with REM sleep behavioral disorder, narcolepsy, and isolated loss of REM atonia.

    PubMed

    Khalil, Aytakin; Wright, Mary-Anne; Walker, Matthew C; Eriksson, Sofia H

    2013-10-15

    To compare the amounts of REM sleep without atonia (RSWA) between patients with REM sleep behavior disorder (RBD), "isolated loss of REM atonia," narcolepsy, and control subjects and determine if there were threshold values for the amount of RSWA that differentiate each group from controls. Retrospective analyses of polysomnography (PSG) records were used employing strict quantitative criteria for the measurement of phasic and tonic EMG activity during REM sleep. The PSG recordings of 47 individuals were analyzed (RBD 16, isolated loss of REM atonia 11, narcolepsy 10, control 10). Patients with the diagnosis of isolated loss of REM atonia had significantly lower levels of EMG activity during REM sleep than those with RBD but higher than control subjects. RSWA was higher in narcolepsy than in loss of REM atonia but lower than for RBD patients. Receiver operating characteristic (ROC) curves provided threshold values with high specificity and sensitivity in all patient groups with a cutoff value ≥ 1.22% (100% correctly classified) for phasic and ≥ 3.17% for tonic (92% correctly classified) EMG activity in RBD. Quantification of REM sleep EMG activity can successfully differentiate RBD and isolated loss of REM atonia patients from controls. The consistently increased amount of RSWA in patients with narcolepsy indicates that this can be an additional marker for a diagnosis of narcolepsy. Longitudinal studies of patients with isolated loss of REM atonia are needed to evaluate if these patients are at risk of developing RBD or neurodegenerative disorders.

  5. A Temporally Controlled Inhibitory Drive Coordinates Twitch Movements during REM Sleep.

    PubMed

    Brooks, Patricia L; Peever, John

    2016-05-09

    During REM sleep, skeletal muscles are paralyzed in one moment but twitch and jerk in the next. REM sleep twitches are traditionally considered random motor events that result from momentary lapses in REM sleep paralysis [1-3]. However, recent evidence indicates that twitches are not byproducts of REM sleep, but are in fact self-generated events that could function to promote motor learning and development [4-6]. If REM twitches are indeed purposefully generated, then they should be controlled by a coordinated and definable mechanism. Here, we used behavioral, electrophysiological, pharmacological, and neuroanatomical methods to demonstrate that an inhibitory drive onto skeletal motoneurons produces a temporally coordinated pattern of muscle twitches during REM sleep. First, we show that muscle twitches in adult rats are not uniformly distributed during REM sleep, but instead follow a well-defined temporal trajectory. They are largely absent during REM initiation but increase steadily thereafter, peaking toward REM termination. Next, we identify the transmitter mechanism that controls the temporal nature of twitch activity. Specifically, we show that a GABA and glycine drive onto motoneurons prevents twitch activity during REM initiation, but progressive weakening of this drive functions to promote twitch activity during REM termination. These results demonstrate that REM twitches are not random byproducts of REM sleep, but are instead rather coherently generated events controlled by a temporally variable inhibitory drive.

  6. Insufficient non-REM sleep intensity in narcolepsy-cataplexy.

    PubMed

    Khatami, Ramin; Landolt, Hans-Peter; Achermann, Peter; Rétey, Julia V; Werth, Esther; Mathis, Johannes; Bassetti, Claudio L

    2007-08-01

    To compare electroencephalogram (EEG) dynamics during nocturnal sleep in patients with narcolepsy-cataplexy and healthy controls. Fragmented nocturnal sleep is a prominent feature and contributes to excessive daytime sleepiness in narcolepsy-cataplexy. Only 3 studies have addressed changes in homeostatic sleep regulation as a possible mechanism underlying nocturnal sleep fragmentation in narcolepsy-cataplexy. Baseline sleep of 11 drug-naive patients with narcolepsy-cataplexy (19-37 years) and 11 matched controls (18-41 years) was polysomnographically recorded. The EEG was subjected to spectral analysis. None, baseline condition. All patients with narcolepsy-cataplexy but no control subjects showed a sleep-onset rapid eye movement (REM) episode. Non-REM (NREM)-REM sleep cycles were longer in patients with narcolepsy-cataplexy than in controls (P = 0.04). Mean slow-wave activity declined in both groups across the first 3 NREM sleep episodes (P<0.001). The rate of decline, however, appeared to be steeper in patients with narcolepsy-cataplexy (time constant: narcolepsy-cataplexy 51.1 +/- 23.8 minutes [mean +/- SEM], 95% confidence interval [CI]: 33.4-108.8 minutes) than in controls (169.4 +/- 81.5 minutes, 95% CI: 110.9-357.6 minutes) as concluded from nonoverlapping 95% confidence interval of the time constants. The steeper decline of SWA in narcolepsy-cataplexy compared to controls was related to an impaired build-up of slow-wave activity in the second cycle. Sleep in the second cycle was interrupted in patients with narcolepsy-cataplexy, when compared with controls, by an increased number (P = 0.01) and longer duration (P = 0.01) of short wake episodes. Insufficient NREM sleep intensity is associated with nonconsolidated nocturnal sleep in narcolepsy-cataplexy. The inability to consolidate sleep manifests itself when NREM sleep intensity has decayed below a certain level and is reflected in an altered time course of slow-wave activity across NREM sleep episodes.

  7. Sleep disturbances in Parkinson's disease: the contribution of dopamine in REM sleep regulation.

    PubMed

    Lima, Marcelo M S

    2013-10-01

    Nearly all patients with Parkinson's disease (PD) have sleep disturbances. While it has been suggested that these disturbances involve a dopaminergic component, the specific mechanisms that contribute to this behavior are far from being fully understood. In this article, we have reviewed the current understanding of the linkage between sleep and PD, focusing on the participation of the dopaminergic system in the regulation of rapid eye movement (REM) sleep. The presence of an REM sleep behavior disorder in patients with PD might reflect the early involvement of dopaminergic neurotransmission in REM sleep-related structures. Therefore, it has been suggested that these structures are affected by an imbalance of dopamine levels. Several studies have demonstrated that neurons in the substantia nigra pars compacta (SNpc) and in the ventral tegmental area (VTA) are active during REM sleep and that sleep-related disturbances may result when these neurons are targeted by neurotoxins. We discuss current evidence suggesting the presence of a putative reciprocal connectivity between the SNpc, VTA, the pedunculopontine tegmental nucleus and reticular formation, which may exert an important influence on the REM sleep mechanism. This review provides a comprehensive overview of the literature that addresses this challenging and unrecognized component of PD.

  8. Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory.

    PubMed

    Rasch, Björn; Pommer, Julian; Diekelmann, Susanne; Born, Jan

    2009-04-01

    Rapid eye movement (REM) sleep has been considered important for consolidation of memories, particularly of skills. Contrary to expectations, we found that REM sleep suppression by administration of selective serotonin or norepinephrine re-uptake inhibitors after training did not impair consolidation of skills or word-pairs in healthy men but rather enhanced gains in finger tapping accuracy together with sleep spindles. Our results indicate that REM sleep as a unitary phenomenon is not required for skill-memory consolidation.

  9. Prodromal Parkinson's disease--using REM sleep behavior disorder as a window.

    PubMed

    Postuma, Ronald B

    2014-01-01

    REM sleep behavior disorder (RBD) is characterized by loss of REM atonia of sleep, such that patients act out the contents of their dreams. Perhaps the most important facet of idiopathic RBD is that it is a powerful prodromal marker of Parkinson's disease (PD) and other synucleinopathies. Several prospective studies have now established that patients with idiopathic RBD have up to an 80% risk of developing a defined neurodegenerative synucleinopathy. This has profound implications for understanding and treating early disease. First, the extremely high risk and long latency/time to intervene make RBD patients the ideal candidates for neuroprotective therapy against synucleinopathy. Second, RBD patients can be used as a 'test lab' to assess other potential prodromal predictors of PD, which could be applied to the general population in future large-scale screening programs. Third, assessing epidemiology of RBD allows us to study the epidemiology of PD and dementia with Lewy bodies 10-15 years earlier, reducing bias and opening new hypotheses as to the mechanism of action of selected risk factors. Finally, by prospectively observing RBD patients as they transition to full neurodegenerative synucleinopathy, one has an unprecedented window in which to directly observe evolution of PD from its prodromal stages. The evidence for RBD as a marker of prodromal PD and all these implications will be discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effects of selective REM sleep deprivation on prefrontal gamma activity and executive functions.

    PubMed

    Corsi-Cabrera, M; Rosales-Lagarde, A; del Río-Portilla, Y; Sifuentes-Ortega, R; Alcántara-Quintero, B

    2015-05-01

    Given that the dorsolateral prefrontal cortex is involved in executive functions and is deactivated and decoupled from posterior associative regions during REM sleep, that Gamma temporal coupling involved in information processing is enhanced during REM sleep, and that adult humans spend about 90 min of every 24h in REM sleep, it might be expected that REM sleep deprivation would modify Gamma temporal coupling and have a deteriorating effect on executive functions. We analyzed EEG Gamma activity and temporal coupling during implementation of a rule-guided task before and after REM sleep deprivation and its effect on verbal fluency, flexible thinking and selective attention. After two nights in the laboratory for adaptation, on the third night subjects (n=18) were randomly assigned to either selective REM sleep deprivation effectuated by awakening them at each REM sleep onset or, the same number of NREM sleep awakenings as a control for unspecific effects of sleep interruptions. Implementation of abstract rules to guide behavior required greater activation and synchronization of Gamma activity in the frontopolar regions after REM sleep reduction from 20.6% at baseline to just 3.93% of total sleep time. However, contrary to our hypothesis, both groups showed an overall improvement in executive task performance and no effect on their capacity to sustain selective attention. These results suggest that after one night of selective REM sleep deprivation executive functions can be compensated by increasing frontal activation and they still require the participation of supervisory control by frontopolar regions.

  11. Periodic limb movements during REM sleep in multiple sclerosis: a previously undescribed entity.

    PubMed

    Veauthier, Christian; Gaede, Gunnar; Radbruch, Helena; Sieb, Joern-Peter; Wernecke, Klaus-Dieter; Paul, Friedemann

    2015-01-01

    There are few studies describing periodic limb movement syndrome (PLMS) in rapid eye movement (REM) sleep in patients with narcolepsy, restless legs syndrome, REM sleep behavior disorder, and spinal cord injury, and to a lesser extent, in insomnia patients and healthy controls, but no published cases in multiple sclerosis (MS). The aim of this study was to investigate PLMS in REM sleep in MS and to analyze whether it is associated with age, sex, disability, and laboratory findings. From a study of MS patients originally published in 2011, we retrospectively analyzed periodic limb movements (PLMs) during REM sleep by classifying patients into two subgroups: PLM during REM sleep greater than or equal to ten per hour of REM sleep (n=7) vs less than ten per hour of REM sleep (n=59). A univariate analysis between PLM and disability, age, sex, laboratory findings, and polysomnographic data was performed. MS patients with more than ten PLMs per hour of REM sleep showed a significantly higher disability measured by the Kurtzke expanded disability status scale (EDSS) (P=0.023). The presence of more than ten PLMs per hour of REM sleep was associated with a greater likelihood of disability (odds ratio 22.1; 95% confidence interval 3.5-139.7; P<0.0001), whereas there were no differences in laboratory and other polysomnographic findings. PLMs during REM sleep were not described in MS earlier, and they are associated with disability measured by the EDSS.

  12. Management of REM sleep behavior disorder: An evidence based review

    PubMed Central

    Devnani, Preeti; Fernandes, Racheal

    2015-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by dream enactment behavior resulting from a loss of REM skeletal muscle atonia. The neurobiology of REM sleep and the characteristic features of REM atonia have an important basis for understanding the aggravating etiologies the proposed pharmacological interventions in its management. This review outlines the evidence for behavioral and therapeutic measures along with evidence-based guidelines for their implementation, impact on falls, and effect on polysomnography (PSG) while highlighting the non-motor, autonomic, and cognitive impact of this entity. PubMed databases were reviewed upto May 2013 in peer-reviewed scientific literature regarding the pathophysiology and management of RBD in adults. The literature was graded according to the Oxford centre of evidence-based Medicine Levels. An early intervention that helps prevent consequences such as falls and provides a base for intervention with neuroprotective mechanisms and allocates a unique platform that RBD portrays with its high risk of disease conversion with a sufficiently long latency. RBD provides a unique platform with its high risk of disease conversion with a sufficiently long latency, providing an opportunity for early intervention both to prevent consequences such as falls and provide a base for intervention with neuroprotective mechanisms. PMID:25745301

  13. Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation.

    PubMed

    Kitka, Tamas; Adori, Csaba; Katai, Zita; Vas, Szilvia; Molnar, Eszter; Papp, Rege S; Toth, Zsuzsanna E; Bagdy, Gyorgy

    2011-10-01

    Rapid eye movement (REM) sleep rebound following REM deprivation using the platform-on-water method is characterized by increased time spent in REM sleep and activation of melanin-concentrating hormone (MCH) expressing neurons. Orexinergic neurons discharge reciprocally to MCH-ergic neurons across the sleep-wake cycle. However, the relation between REM architecture and the aforementioned neuropeptides remained unclear. MCH-ergic neurons can be divided into two subpopulations regarding their cocaine- and amphetamine-regulated transcript (CART) immunoreactivity, and among them the activation of CART-immunoreactive subpopulation is higher during the REM rebound. However, the possible role of stress in this association has not been elucidated. Our aims were to analyze the relationship between the architecture of REM rebound and the activation of hypothalamic MCH-ergic and orexinergic neurons. We also intended to separate the effect of stress and REM deprivation on the subsequent activation of subpopulations of MCH-ergic neurons. In order to detect neuronal activity, we performed MCH/cFos and orexin/cFos double immunohistochemistry on home cage, sleep deprived and sleep-rebound rats using the platform-on-water method with small and large (stress control) platforms. Furthermore, REM architecture was analyzed and a triple MCH/CART/cFos immunohistochemistry was also performed on the rebound groups in the same animals. We found that the activity of MCH- and orexin-immunoreactive neurons during REM rebound was positively and negatively correlated with the number of REM bouts, respectively. A negative reciprocal correlation was also found between the activation of MCH- and orexin-immunoreactive neurons during REM rebound. Furthermore, difference between the activation of CART-immunoreactive (CART-IR) and non-CART-immunoreactive MCH-ergic neuron subpopulations was found only after selective REM deprivation, it was absent in the large platform (stress control) rebound group

  14. REM sleep and dreaming: towards a theory of protoconsciousness.

    PubMed

    Hobson, J Allan

    2009-11-01

    Dreaming has fascinated and mystified humankind for ages: the bizarre and evanescent qualities of dreams have invited boundless speculation about their origin, meaning and purpose. For most of the twentieth century, scientific dream theories were mainly psychological. Since the discovery of rapid eye movement (REM) sleep, the neural underpinnings of dreaming have become increasingly well understood, and it is now possible to complement the details of these brain mechanisms with a theory of consciousness that is derived from the study of dreaming. The theory advanced here emphasizes data that suggest that REM sleep may constitute a protoconscious state, providing a virtual reality model of the world that is of functional use to the development and maintenance of waking consciousness.

  15. REM Sleep Behavior Disorder in Parkinson's Disease and Other Synucleinopathies.

    PubMed

    St Louis, Erik K; Boeve, Angelica R; Boeve, Bradley F

    2017-05-01

    Rapid eye movement sleep behavior disorder is characterized by dream enactment and complex motor behaviors during rapid eye movement sleep and rapid eye movement sleep atonia loss (rapid eye movement sleep without atonia) during polysomnography. Rapid eye movement sleep behavior disorder may be idiopathic or symptomatic and in both settings is highly associated with synucleinopathy neurodegeneration, especially Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure. Rapid eye movement sleep behavior disorder frequently manifests years to decades prior to overt motor, cognitive, or autonomic impairments as the presenting manifestation of synucleinopathy, along with other subtler prodromal "soft" signs of hyposmia, constipation, and orthostatic hypotension. Between 35% and 91.9% of patients initially diagnosed with idiopathic rapid eye movement sleep behavior disorder at a sleep center later develop a defined neurodegenerative disease. Less is known about the long-term prognosis of community-dwelling younger patients, especially women, and rapid eye movement sleep behavior disorder associated with antidepressant medications. Patients with rapid eye movement sleep behavior disorder are frequently prone to sleep-related injuries and should be treated to prevent injury with either melatonin 3-12 mg or clonazepam 0.5-2.0 mg to limit injury potential. Further evidence-based studies about rapid eye movement sleep behavior disorder are greatly needed, both to enable accurate prognostic prediction of end synucleinopathy phenotypes for individual patients and to support the application of symptomatic and neuroprotective therapies. Rapid eye movement sleep behavior disorder as a prodromal synucleinopathy represents a defined time point at which neuroprotective therapies could potentially be applied for the prevention of Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure. © 2017

  16. Mirtazapine induces REM sleep behavior disorder (RBD) in parkinsonism.

    PubMed

    Onofrj, M; Luciano, A L; Thomas, A; Iacono, D; D'Andreamatteo, G

    2003-01-14

    Shortly after initiation of mirtazapine (a noradrenergic and serotonergic antidepressant) treatment in four patients with parkinsonism, the authors observed the appearance of REM sleep behavior disorder (RBD). In the two patients with severe motor symptoms, RBD was accompanied by hallucinations and confusion. These disturbances resolved with drug discontinuation, and remained resolved by 12- to 24-month follow-up, suggesting that RBD can be triggered by a drug lacking anticholinergic activity.

  17. Frontal beta-theta network during REM sleep

    PubMed Central

    Vijayan, Sujith; Lepage, Kyle Q; Kopell, Nancy J; Cash, Sydney S

    2017-01-01

    We lack detailed knowledge about the spatio-temporal physiological signatures of REM sleep, especially in humans. By analyzing intracranial electrode data from humans, we demonstrate for the first time that there are prominent beta (15–35 Hz) and theta (4–8 Hz) oscillations in both the anterior cingulate cortex (ACC) and the DLPFC during REM sleep. We further show that these theta and beta activities in the ACC and the DLPFC, two relatively distant but reciprocally connected regions, are coherent. These findings suggest that, counter to current prevailing thought, the DLPFC is active during REM sleep and likely interacting with other areas. Since the DLPFC and the ACC are implicated in memory and emotional regulation, and the ACC has motor areas and is thought to be important for error detection, the dialogue between these two areas could play a role in the regulation of emotions and in procedural motor and emotional memory consolidation. DOI: http://dx.doi.org/10.7554/eLife.18894.001 PMID:28121613

  18. Lucid dreaming verified by volitional communication during REM sleep.

    PubMed

    La Berge, S P; Nagel, L E; Dement, W C; Zarcone, V P

    1981-06-01

    The occurrence of lucid dreaming (dreaming while being conscious that one is dreaming) has been verified for 5 selected subjects who signaled that they knew they were dreaming while continuing to dream during unequivocal REM sleep. The signals consisted of particular dream actions having observable concomitants and were performed in accordance with pre-sleep agreement. The ability of proficient lucid dreamers to signal in this manner makes possible a new approach to dream research--such subjects, while lucid, could carry out diverse dream experiments marking the exact time of particular dream events, allowing derivation of of precise psychophysiological correlations and methodical testing of hypotheses.

  19. Sleep deprivation and phasic activity of REM sleep: independence of middle-ear muscle activity from rapid eye movements.

    PubMed

    De Gennaro, L; Ferrara, M

    2000-02-01

    In the recovery nights after total and partial sleep deprivation there is a reduction of rapid eye movements during REM sleep as compared to baseline nights; recent evidence provided by a selective SWS deprivation study also shows that the highest percentage of variance of this reduction is explained by SWS rebound. The present study assesses whether the reduction of rapid eye movements (REMs) during the recovery night after total sleep deprivation is paralleled by a decrease of middle-ear muscle activity (MEMA), another phasic muscle activity of REM sleep. Standard polysomnography, MEMA and REMs of nine subjects were recorded for three nights (one adaptation, one baseline, one recovery); baseline and recovery night were separated by a period of 40 hours of continuous wake. Results show that, in the recovery night, sleep deprivation was effective in determining an increase of SWS amount and of the sleep efficiency index, and a decrease of stage 1, stage 2, intra-sleep wake, and NREM latencies, without affecting REM duration and latency. However, MEMA frequency during REM sleep did not diminish during these nights as compared to baseline ones, while there was a clear effect of REM frequency reduction. Results indicate an independence of phasic events of REM sleep, suggesting that the inverse relation between recovery sleep after sleep deprivation and REM frequency is not paralleled by a concomitant variation in MEMA frequency.

  20. REM sleep latency and neurocognitive dysfunction in schizophrenia

    PubMed Central

    Das, Mrinmay; Das, Ruchika; Khastgir, Udayan; Goswami, Utpal

    2005-01-01

    Background: Cognitive deficits—the hallmark of schizophrenic deterioration—still remain elusive as far as their pathophysiology is concerned. Various neurotransmitter systems have been implicated to explain these deficits. Abnormalities in cholinergic neurotransmission in the brain are one of the postulations; acetylcholine has also been postulated to regulate rapid eye movement (REM) sleep, especially REM latency. Thus, REM latency in patients with schizophrenia might provide a non-invasive window to look into the cholinergic functions of the brain. Aim: To study REM sleep measures and neurocognitive function in schizophrenia, and the changes occurring in these parameters following pharmacological treatment. Methods: Thirty subjects (15 with schizophrenia and 15 normal non-relative controls) were evaluated in this study. Most patients with schizophrenia had prominent negative symptoms and deficits in the performance in neurocognitive tests battery. They were treated with antipsychotics for a variable period of time and post-treatment evaluation was done using the same battery of neurocognitive tests and polysomnography. Patients were either drug-naïve or kept drug-free for at least two weeks both at baseline as well as at the post-treatment stage. Results: A positive correlation between the severity of negative symptoms and neurocognitive deficits (especially on the Wisconsin Card Sorting), and a negative correlation between these two parameters and REM latency was observed. Conclusion: It can be hypothesized that the acetylcholine deficit model of dementia cannot be applied to schizophrenic dementia, rather a hypercholinergic state results. This state warrants anticholinergic medication as a treatment option for negative symptoms of schizophrenia. PMID:20814454

  1. Association between Glucose Metabolism and Sleep-disordered Breathing during REM Sleep.

    PubMed

    Chami, Hassan A; Gottlieb, Daniel J; Redline, Susan; Punjabi, Naresh M

    2015-11-01

    Sleep-disordered breathing (SDB) has been associated with impaired glucose metabolism. It is possible that the association between SDB and glucose metabolism is distinct for non-REM versus REM sleep because of differences in sleep-state-dependent sympathetic activation and/or degree of hypoxemia. To characterize the association between REM-related SDB, glucose intolerance, and insulin resistance in a community-based sample. A cross-sectional analysis that included 3,310 participants from the Sleep Heart Health Study was undertaken (53% female; mean age, 66.1 yr). Full montage home-polysomnography and fasting glucose were available on all participants. SDB severity during REM and non-REM sleep was quantified using the apnea-hypopnea index in REM (AHIREM) and non-REM sleep (AHINREM), respectively. Fasting and 2-hour post-challenge glucose levels were assessed during a glucose tolerance test (n = 2,264). The homeostatic model assessment index for insulin resistance (HOMA-IR) was calculated (n = 1,543). Linear regression was used to assess the associations of AHIREM and AHINREM with fasting and post-prandial glucose levels and HOMA-IR. AHIREM and AHINREM were associated with fasting glycemia, post-prandial glucose levels, and HOMA-IR in models that adjusted for age, sex, race, and site. However, with additional adjustment for body mass index, waist circumference, and sleep duration, AHIREM was only associated with HOMA-IR (β = 0.04; 95% CI, 0.1-0.07; P = 0.01), whereas AHINREM was only associated with fasting (β = 0.93; 95% CI, 0.14-1.72; P = 0.02) and post-prandial glucose levels (β = 3.0; 95% CI, 0.5-5.5; P = 0.02). AHIREM is associated with insulin resistance but not with fasting glycemia or glucose intolerance.

  2. Emotional arousal modulates oscillatory correlates of targeted memory reactivation during NREM, but not REM sleep

    PubMed Central

    Lehmann, Mick; Schreiner, Thomas; Seifritz, Erich; Rasch, Björn

    2016-01-01

    Rapid eye movement (REM) sleep is considered to preferentially reprocess emotionally arousing memories. We tested this hypothesis by cueing emotional vs. neutral memories during REM and NREM sleep and wakefulness by presenting associated verbal memory cues after learning. Here we show that cueing during NREM sleep significantly improved memory for emotional pictures, while no cueing benefit was observed during REM sleep. On the oscillatory level, successful memory cueing during NREM sleep resulted in significant increases in theta and spindle oscillations with stronger responses for emotional than neutral memories. In contrast during REM sleep, solely cueing of neutral (but not emotional) memories was associated with increases in theta activity. Our results do not support a preferential role of REM sleep for emotional memories, but rather suggest that emotional arousal modulates memory replay and consolidation processes and their oscillatory correlates during NREM sleep. PMID:27982120

  3. Emotional arousal modulates oscillatory correlates of targeted memory reactivation during NREM, but not REM sleep.

    PubMed

    Lehmann, Mick; Schreiner, Thomas; Seifritz, Erich; Rasch, Björn

    2016-12-16

    Rapid eye movement (REM) sleep is considered to preferentially reprocess emotionally arousing memories. We tested this hypothesis by cueing emotional vs. neutral memories during REM and NREM sleep and wakefulness by presenting associated verbal memory cues after learning. Here we show that cueing during NREM sleep significantly improved memory for emotional pictures, while no cueing benefit was observed during REM sleep. On the oscillatory level, successful memory cueing during NREM sleep resulted in significant increases in theta and spindle oscillations with stronger responses for emotional than neutral memories. In contrast during REM sleep, solely cueing of neutral (but not emotional) memories was associated with increases in theta activity. Our results do not support a preferential role of REM sleep for emotional memories, but rather suggest that emotional arousal modulates memory replay and consolidation processes and their oscillatory correlates during NREM sleep.

  4. Parkinson's Disease and REM Sleep Behavior Disorder Result in Increased Non-Motor Symptoms

    PubMed Central

    Neikrug, Ariel B.; Avanzino, Julie A.; Liu, Lianqi; Maglione, Jeanne E.; Natarajan, Loki; Corey-Bloom, Jody; Palmer, Barton W.; Loredo, Jose S.; Ancoli-Israel, Sonia

    2014-01-01

    Objective Rapid Eye Movement (REM) sleep behavior disorder is often co-morbid with Parkinson's disease (PD). The current study aimed to provide a detailed understanding of the impact of having REM sleep behavior disorder on multiple NMS in patients with PD. Methods 86 participants were evaluated for REM-sleep behavior disorder and assessed for multiple non-motor symptoms of PD. Principal component analysis was utilized to model multiple measures of non-motor symptoms in PD and a multivariate analysis of variance was used to assess the relationship between REM-sleep behavior disorder and the multiple non-motor symptoms measures. Seven non-motor symptoms measures were assessed: cognition, quality of life, fatigue, sleepiness, overall sleep, mood, and overall non-motor symptoms of PD. Results 36 PD patients were classified as having REM-sleep behavior disorder (objective polysomnography and subjective findings), 26 as not having REM-sleep behavior disorder (neither objective nor subjective findings), and 24 as probable REM-sleep behavior disorder (either subjective or objective findings). REM-sleep behavior disorder was a significant predictor of increased non-motor symptoms in PD while controlling for dopaminergic therapy and age (p=0.01). The REM-sleep behavior disorder group reported more non-motor symptoms of depression (p=0.012), fatigue (p=0.036), overall sleep (p=0.018), and overall non-motor symptoms (p=0.002). Conclusion In PD, REM-sleep behavior disorder is associated with more non-motor symptoms, particularly increased depressive symptoms, sleep disturbances, and fatigue. More research is needed to assess whether PD patients with REM-sleep behavior disorder represent a subtype of PD with different disease progression and phenomenological presentation. PMID:24938585

  5. Arousal state feedback as a potential physiological generator of the ultradian REM/NREM sleep cycle

    PubMed Central

    Phillips, A. J. K.; Robinson, P. A.; Klerman, E. B.

    2013-01-01

    Human sleep episodes are characterized by an approximately 90-minute ultradian oscillation between rapid eye movement (REM) and non-REM (NREM) sleep stages. The source of this oscillation is not known. Pacemaker mechanisms for this rhythm have been proposed, such as a reciprocal interaction network, but these fail to account for documented homeostatic regulation of both sleep stages. Here, two candidate mechanisms are investigated using a simple model that has stable states corresponding to Wake, REM sleep, and NREM sleep. Unlike other models of the ultradian rhythm, this model of sleep dynamics does not include an ultradian pacemaker, nor does it invoke a hypothetical homeostatic process that exists purely to drive ultradian rhythms. Instead, only two inputs are included: the homeostatic drive for Sleep and the circadian drive for Wake. These two inputs have been the basis for the most influential Sleep/Wake models, but have not previously been identified as possible ultradian rhythm generators. Using the model, realistic ultradian rhythms are generated by arousal state feedback to either the homeostatic or circadian drive. For the proposed ‘homeostatic mechanism’, homeostatic pressure increases in Wake and REM sleep, and decreases in NREM sleep. For the proposed ‘circadian mechanism’, the circadian drive is up-regulated in Wake and REM sleep, and is down-regulated in NREM sleep. The two mechanisms are complementary in the features they capture. The homeostatic mechanism reproduces experimentally observed rebounds in NREM sleep duration and intensity following total sleep deprivation, and rebounds in both NREM sleep intensity and REM sleep duration following selective REM sleep deprivation. The circadian mechanism does not reproduce sleep state rebounds, but more accurately reproduces the temporal patterns observed in a normal night of sleep. These findings have important implications in terms of sleep physiology and they provide a parsimonious explanation

  6. EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans.

    PubMed

    Frauscher, Birgit; von Ellenrieder, Nicolás; Dubeau, François; Gotman, Jean

    2016-06-01

    Rapid eye movement (REM) sleep has a suppressing effect on epileptic activity. This effect might be directly related to neuronal desynchronization mediated by cholinergic neurotransmission. We investigated whether interictal epileptiform discharges (IEDs) and high frequency oscillations-a biomarker of the epileptogenic zone-are evenly distributed across phasic and tonic REM sleep. We hypothesized that IEDs are more suppressed during phasic REM sleep because of additional cholinergic drive. Twelve patients underwent polysomnography during long-term combined scalp-intracerebral electroencephalography (EEG) recording. After sleep staging in the scalp EEG, we identified segments of REM sleep with rapid eye movements (phasic REM) and segments of REM sleep without rapid eye movements (tonic REM). In the intracerebral EEG, we computed the power in frequencies <30 Hz and from 30 to 500 Hz, and marked IEDs, ripples (>80 Hz) and fast ripples (>250 Hz). We grouped the intracerebral channels into channels in the seizure-onset zone (SOZ), the exclusively irritative zone (EIZ), and the normal zone (NoZ). Power in frequencies <30 Hz was lower during phasic than tonic REM sleep (p < 0.001), most likely reflecting increased desynchronization. IEDs, ripples and fast ripples, were less frequent during phasic than tonic REM sleep (phasic REM sleep: 39% of spikes, 35% of ripples, 18% of fast ripples, tonic REM sleep: 61% of spikes, 65% of ripples, 82% of fast ripples; p < 0.001). In contrast to ripples in the epileptogenic zone, physiologic ripples were more abundant during phasic REM sleep (phasic REM sleep: 73% in NoZ, 30% in EIZ, 28% in SOZ, tonic REM sleep: 27% in NoZ, 70% in EIZ, 72% in SOZ; p < 0.001). Phasic REM sleep has an enhanced suppressive effect on IEDs, corroborating the role of EEG desynchronization in the suppression of interictal epileptic activity. In contrast, physiologic ripples were increased during phasic REM sleep, possibly reflecting REM-related memory

  7. Polysomnographic study of nocturnal sleep in idiopathic hypersomnia without long sleep time.

    PubMed

    Pizza, Fabio; Ferri, Raffaele; Poli, Francesca; Vandi, Stefano; Cosentino, Filomena I I; Plazzi, Giuseppe

    2013-04-01

    We investigated nocturnal sleep abnormalities in 19 patients with idiopathic hypersomnia without long sleep time (IH) in comparison with two age- and sex- matched control groups of 13 normal subjects (C) and of 17 patients with narcolepsy with cataplexy (NC), the latter considered as the extreme of excessive daytime sleepiness (EDS). Sleep macro- and micro- (i.e. cyclic alternating pattern, CAP) structure as well as quantitative analysis of EEG, of periodic leg movements during sleep (PLMS), and of muscle tone during REM sleep were compared across groups. IH and NC patients slept more than C subjects, but IH showed the highest levels of sleep fragmentation (e.g. awakenings), associated with a CAP rate higher than NC during lighter sleep stages and lower than C during slow wave sleep respectively, and with the highest relative amount of A3 and the lowest of A1 subtypes. IH showed a delta power in between C and NC groups, whereas muscle tone and PLMS had normal characteristics. A peculiar profile of microstructural sleep abnormalities may contribute to sleep fragmentation and, possibly, EDS in IH.

  8. Autonomic symptoms in idiopathic REM behavior disorder: a multicentre case-control study.

    PubMed

    Ferini-Strambi, Luigi; Oertel, Wolfgang; Dauvilliers, Yves; Postuma, Ronald B; Marelli, Sara; Iranzo, Alex; Arnulf, Isabelle; Högl, Birgit; Birgit, Högl; Manni, Raffaele; Miyamoto, Tomoyuki; Fantini, Maria-Livia; Puligheddu, Monica; Jennum, Poul; Sonka, Karel; Santamaria, Joan; Zucconi, Marco; Rancoita, Paola M V; Leu-Semenescu, Smeranda; Frauscher, Birgit; Terzaghi, Michele; Miyamoto, Masayuki; Unger, Marcus; Stiasny-Kolster, Karin; Desautels, Alex; Wolfson, Christina; Pelletier, Amélie; Montplaisir, Jacques

    2014-06-01

    Patients with idiopathic REM sleep behavior disorder (iRBD) are at very high risk of developing neurodegenerative synucleinopathies, which are disorders with prominent autonomic dysfunction. Several studies have documented autonomic dysfunction in iRBD, but large-scale assessment of autonomic symptoms has never been systematically performed. Patients with polysomnography-confirmed iRBD (318 cases) and controls (137 healthy volunteers and 181 sleep center controls with sleep diagnoses other than RBD) were recruited from 13 neurological centers in 10 countries from 2008 to 2011. A validated scale to study the disorders of the autonomic nervous system in Parkinson's disease (PD) patients, the SCOPA-AUT, was administered to all the patients and controls. The SCOPA-AUT consists of 25 items assessing the following domains: gastrointestinal, urinary, cardiovascular, thermoregulatory, pupillomotor, and sexual dysfunction. Our results show that compared to control subjects with a similar overall age and sex distribution, patients with iRBD experience significantly more problems with gastrointestinal, urinary, and cardiovascular functioning. The most prominent differences in severity of autonomic symptoms between our iRBD patients and controls emerged in the gastrointestinal domain. Interestingly, it has been reported that an altered gastrointestinal motility can predate the motor phase of PD. The cardiovascular domain SCOPA-AUT score in our study in iRBD patients was intermediate with respect to the scores reported in PD patients by other authors. Our findings underline the importance of collecting data on autonomic symptoms in iRBD. These data may be used in prospective studies for evaluating the risk of developing neurodegenerative disorders.

  9. Long-term Effect of Cued Fear Conditioning on REM Sleep Microarchitecture in Rats

    PubMed Central

    Madan, Vibha; Brennan, Francis X.; Mann, Graziella L.; Horbal, Apryle A.; Dunn, Gregory A.; Ross, Richard J.; Morrison, Adrian R.

    2008-01-01

    Study Objectives: To study long-term effects of conditioned fear on REM sleep (REMS) parameters in albino rats. Design: We have investigated disturbances in sleep architecture, including muscle twitch density as REMS phasic activity, and freezing behavior in wakefulness, upon reexposure to a conditioned stimulus (CS) on Day 1 and Day 14 postconditioning. Subjects: Male Sprague-Dawley rats prepared for polysomnographic recordings. Interventions: After baseline sleep recording, the animals in the experimental group received five pairings of a 5-sec tone, co-terminating with a 1-sec, 1 mA footshock. The control rats received similar numbers of tones and shocks, but explicitly unpaired. On postconditioning days, after reexposure to tones alone, sleep and freezing behavior were recorded. Measurements and Results: Conditioned fear significantly altered REMS microarchitecture (characterized as sequential-REMS [seq-REMS: <3 min episode separation] and single-REMS [sin-REMS: >3 min episode separation]) on Day 14. The total amount and number of seq-REMS episodes decreased, while the total amount and number of sin-REMS episodes increased. Further, the CS induced significant increases in freezing and REMS myoclonic twitch density in the experimental group. Reexposure to the CS produced no alterations in controls. Conclusions: The results suggest that conditioned fear causes REMS alterations, including difficulty in initiating a REMS episode as indicated by the diminution in the number of seq-REMS episodes. Another finding, the increase in phasic activity, agrees with the inference from clinical investigations that retrieval of fearful memories can be associated with the long-term REMS disturbances characteristic of posttraumatic stress disorder. Citation: Madan V; Brennan FX; Mann GL; Horbal AA; Dunn GA; Ross RJ; Morrison AR. Long-term effect of cued fear conditioning on REM sleep microarchitecture in rats. SLEEP 2008;31(4):497-503. PMID:18457237

  10. An Open-Labeled Trial of Ramelteon in Idiopathic Rapid Eye Movement Sleep Behavior Disorder

    PubMed Central

    Esaki, Yuichi; Kitajima, Tsuyoshi; Koike, Shigefumi; Fujishiro, Hiroshige; Iwata, Yasuyo; Tsuchiya, Akiko; Hirose, Marina; Iwata, Nakao

    2016-01-01

    Study Objectives: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by REM sleep without atonia and elaborate motor activity in association with dream mentation. The melatonin receptor agonist ramelteon has been documented as being effective in two patients with secondary RBD. However, there are no reports on ramelteon treatment for idiopathic RBD. Methods: In an open-labeled trial, we treated 12 consecutive patients with idiopathic RBD for at least 4 w with 8 mg ramelteon given within 30 min before bedtime. Results: Ramelteon treatment did not have a clear effect on REM sleep without atonia or an RBD severity scale measured by video-supported polysomnography. However, clinical assessment using a visual analog scale showed a trend toward significance and there were also definitely positive changes in some individual cases. Ramelteon was well tolerated in most patients, with minor side effects. Conclusions: Considering that ramelteon is associated with few side effects, further study may ascertain whether patients with RBD could be effectively treated by ramelteon, especially when clonazepam may not be suitable due to its side effects. Commentary: A commentary on this article appears in this issue on page 643. Citation: Esaki Y, Kitajima T, Koike S, Fujishiro H, Iwata Y, Tsuchiya A, Hirose M, Iwata N. An open-labeled trial of ramelteon in idiopathic rapid eye movement sleep behavior disorder. J Clin Sleep Med 2016;12(5):689–693. PMID:26857053

  11. Respiratory muscle activity during REM sleep in patients with diaphragm paralysis.

    PubMed

    Bennett, J R; Dunroy, H M A; Corfield, D R; Hart, N; Simonds, A K; Polkey, M I; Morrell, M J

    2004-01-13

    The diaphragm is the main inspiratory muscle during REM sleep. It was hypothesized that patients with isolated bilateral diaphragm paralysis (BDP) might not be able to sustain REM sleep. Polysomnography with EMG recordings was undertaken from accessory respiratory muscles in patients with BDP and normal subjects. Patients with BDP had a normal quantity of REM sleep (mean +/- SD, 18.6 +/- 7.5% of total sleep time) achieved by inspiratory recruitment of extradiaphragmatic muscles in both tonic and phasic REM, suggesting brainstem reorganization.

  12. REM Sleep and Endothermy: Potential Sites and Mechanism of a Reciprocal Interference.

    PubMed

    Cerri, Matteo; Luppi, Marco; Tupone, Domenico; Zamboni, Giovanni; Amici, Roberto

    2017-01-01

    Numerous data show a reciprocal interaction between REM sleep and thermoregulation. During REM sleep, the function of thermoregulation appears to be impaired; from the other hand, the tonic activation of thermogenesis, such as during cold exposure, suppresses REM sleep occurrence. Recently, both the central neural network controlling REM sleep and the central neural network controlling thermoregulation have been progressively unraveled. Thermoregulation was shown to be controlled by a central "core" circuit, responsible for the maintenance of body temperature, modulated by a set of accessory areas. REM sleep was suggested to be controlled by a group of hypothalamic neurons overlooking at the REM sleep generating circuits within the brainstem. The two networks overlap in a few areas, and in this review, we will suggest that in such overlap may reside the explanation of the reciprocal interaction between REM sleep and thermoregulation. Considering the peculiar modulation of thermoregulation by REM sleep the result of their coincidental evolution, REM sleep may therefore be seen as a period of transient heterothermy.

  13. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis.

    PubMed

    Brooks, Patricia L; Peever, John H

    2012-07-18

    During REM sleep the CNS is intensely active, but the skeletal motor system is paradoxically forced into a state of muscle paralysis. The mechanisms that trigger REM sleep paralysis are a matter of intense debate. Two competing theories argue that it is caused by either active inhibition or reduced excitation of somatic motoneuron activity. Here, we identify the transmitter and receptor mechanisms that function to silence skeletal muscles during REM sleep. We used behavioral, electrophysiological, receptor pharmacology and neuroanatomical approaches to determine how trigeminal motoneurons and masseter muscles are switched off during REM sleep in rats. We show that a powerful GABA and glycine drive triggers REM paralysis by switching off motoneuron activity. This drive inhibits motoneurons by targeting both metabotropic GABA(B) and ionotropic GABA(A)/glycine receptors. REM paralysis is only reversed when motoneurons are cut off from GABA(B), GABA(A) and glycine receptor-mediated inhibition. Neither metabotropic nor ionotropic receptor mechanisms alone are sufficient for generating REM paralysis. These results demonstrate that multiple receptor mechanisms trigger REM sleep paralysis. Breakdown in normal REM inhibition may underlie common sleep motor pathologies such as REM sleep behavior disorder.

  14. Effects of biperiden on sleep at baseline and after 72 h of REM sleep deprivation in the cat.

    PubMed

    Salin-Pascual, R J; Jimenez-Anguiano, A; Granados-Fuentes, D; Drucker-Colin, R

    1992-01-01

    We examined the effects of the muscarinic M1 antagonist biperiden in cats. In the first experiment a dose-response analysis was performed with intraventricular injection (IV ventricle) of biperiden. In the second experiment after REM sleep deprivation cats were injected with either biperiden (0.1 mg/kg) or saline. Biperiden produced a reduction in REM sleep percentage and an increase in REM sleep latency with these high doses. The 0.1 mg/kg biperiden dose, which did not suppress REM sleep at baseline, did reduce the REM sleep rebound. The present study suggests a modulatory role of biperiden on REM sleep regulatory processes. The fact that an effect of biperiden is noted only at the high doses suggests that at these doses the drug is influencing non-M1 receptors. Changes in the sensitivity of these receptors as a result of REM sleep deprivation might explain why a dose of biperiden will reduce REM sleep rebound, while being ineffective in suppressing REM sleep at baseline.

  15. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep

    PubMed Central

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-01-01

    Study Objectives: It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. Methods: We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. Results: We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. Conclusions: These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. Citation: Fraize N, Carponcy J, Joseph MA, Comte JC, Luppi PH, Libourel PA, Salin PA, Malleret G, Parmentier R. Levels of interference in long and short-term memory differentially modulate non-REM and REM sleep. SLEEP 2016;39(12):2173–2188. PMID:27748246

  16. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning.

    PubMed

    Watts, Alain; Gritton, Howard J; Sweigart, Jamie; Poe, Gina R

    2012-09-26

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.

  17. Psychological correlates of electrodermal activity during REM sleep.

    PubMed

    Kushniruk, A; Rustenburg, J; Ogilvie, R

    1985-01-01

    Eight subjects each spent 2 nights in the sleep laboratory during which electrodermal activity (EDA) was recorded in addition to standard sleep monitoring. On the experimental night, following an adaptation night, subjects were awakened four times from REM sleep: in the presence of phasic EDA and eye movements; in the presence of phasic EDA without eye movements; in the presence of eye movements without phasic EDA; and in the absence of both eye movements and phasic EDA. Detailed mentation reports were obtained, coded, and rated on scales of emotionality and bizarreness. EDA was found to be associated with bizarre mentation. Implications for the study of nocturnal phasic activity in general and for the study of EDA are discussed. An improved circuit for the long-term recording of EDA is described in sufficient detail to allow its duplication.

  18. Geranylgeranylacetone, an inducer of HSP 70, attenuates REM sleep rebound after sleep deprivation.

    PubMed

    Wada, Tadashi; Sei, Hiroyoshi; Kusumoto, Kenji; Kitaoka, Kazuyoshi; Chikahisa, Sachiko; Rokutan, Kazuhito; Morita, Yusuke

    2006-04-28

    The effect of pretreatment of geranylgeranylacetone (GGA), an inducer of heat shock protein (HSP) 70, on responses in sleep and core body temperature (Tcore) against sleep deprivation (SD) was examined in rats. After 3 days of GGA or vehicle injection, a 6-h period of SD was performed. During the recovery period, both rapid-eye movement (REM) and non-REM (NREM) sleep were increased in both GGA- and vehicle-injected rats. However, in GGA-injected rats, REM-sleep rebound was significantly suppressed, while NREM-sleep rebound remained unaffected. In addition, the increase of Tcore caused by SD was also attenuated in GGA-injected rats. In the hippocampus, both SD and the GGA pretreatment induced an increase in the expression of HSP70 mRNA, indicating that the SD functions as a stress for hippocampal neurons and that the GGA induces HSP70 expression. The findings suggest that pretreatment with GGA suppresses REM sleep rebound and the response of Tcore against SD.

  19. Daytime sleepiness and REM sleep characteristics in myotonic dystrophy: a case-control study.

    PubMed

    Yu, Huan; Laberge, Luc; Jaussent, Isabelle; Bayard, Sophie; Scholtz, Sabine; Raoul, Morales; Pages, Michel; Dauvilliers, Yves

    2011-02-01

    Excessive daytime sleepiness (EDS) and high daytime REM sleep pressure are important sleep features of myotonic dystrophy (DM1). Small and uncontrolled studies have focused on EDS phenotype; none have focused on nocturnal REM sleep characteristics in DM1. Our objectives were to compare polysomnographic and multiple sleep latency test (MSLT) parameters, and both tonic and phasic components of REM sleep between DM1 and controls. Forty consecutive DM1 patients and 40 sex- and age-matched controls were included. All subjects underwent overnight polysomnography followed by a MSLT. About 80% of DM1 patients complained of EDS through clinical interview: 31.4% had Epworth scores > 10, and 12.5% had objective sleepiness (latency < 8 min). Higher apnea and central apnea indexes, and a greater proportion of subjects with severe apnea/hypopnea syndrome were found in DM1. The number of SOREMP differed between DM1 and controls, one and two SOREMPs being present in 47.5% and 32.5%, and one control had one SOREMP. Higher percentages of slow wave sleep and REM sleep were found in DM1. DM1 patients had significantly more PLMW, PLMS in both NREM and REM sleep, and PLMS-associated microarousals. Higher REM density was found in DM1 with similar tendencies for either REM sleep without atonia or phasic EMG activity. This is the first case-control sleep study in DM1 to demonstrate higher frequency of daytime sleepiness and abnormalities in REM sleep regulation, with an increased daytime and nighttime REM sleep propensity, REM density, and PLMS. These data suggest a primary central sleep regulation dysfunction in DM1.

  20. Sleep architecture and REM sleep measures in prepubertal children with attention deficit disorder with hyperactivity.

    PubMed

    Greenhill, L; Puig-Antich, J; Goetz, R; Hanlon, C; Davies, M

    1983-01-01

    A 2-night polysomnographic study of 9 rigorously assessed prepubertal children who fit Diagnostic Statistical Manual-III criteria for attention deficit disorder with hyperactivity (ADDH) and a contrast group of 11 control children is reported. Despite the fact that 57% of the ADDH group were reported to experience restless sleep on structured parental rating forms, they did not show any sleep architecture abnormalities on polysomnographic recordings when compared with the normals at baseline other than decreased rapid eye movement (REM) activity. Seven of the ADDH boys were restudied after 6 months of continuous methylphenidate therapy (mean daily dose of 34.4 +/- 14.0 mg or 1.4 +/- 0.7 mg/kg). Across and within (pre-post) group comparisons showed that methylphenidate therapy was associated with delayed sleep onset, lengthened sleep, and changes in certain REM sleep variables.

  1. The effect of a REM sleep deprivation procedure on different aspects of memory function in humans.

    PubMed

    Saxvig, Ingvild West; Lundervold, Astri Johansen; Grønli, Janne; Ursin, Reidun; Bjorvatn, Bjørn; Portas, Chiara Maria

    2008-03-01

    Previous studies have suggested that memory is dependent on the occurrence of REM sleep. Research has mainly focused on two distinct types of memory function, declarative and procedural, and it seems that the latter may more directly depend on REM sleep. Memory consolidation has been more investigated than acquisition, maintenance, and recall, despite the fact that sleep may affect flow of information into/from storage. Moreover, tests have often been limited to stimuli within only one modality (usually visual or verbal). This study aimed to clarify the role of REM sleep in memory by investigating aspects of memory function, processing, and modality in the same experimental setting. Tests of acquisition and consolidation of multiple aspects of memory function within the visual and verbal modalities were administrated to subjects before and after REM sleep deprivation. Results show that test performance was not affected by REM sleep deprivation.

  2. Cortical activation patterns herald successful dream recall after NREM and REM sleep.

    PubMed

    Chellappa, Sarah Laxhmi; Frey, Sylvia; Knoblauch, Vera; Cajochen, Christian

    2011-05-01

    Dreaming pertains to both REM and NREM sleep. However, frequency and regional specific differences in EEG activity remains controversial. We investigated NREM and REM sleep EEG power density associated with and without dream recall in 17 young subjects during a 40-h multiple nap protocol under constant routine conditions. NREM sleep was associated with lower EEG power density for dream recall in the delta range, particularly in frontal derivations, and in the spindle range in centro-parietal derivations. REM sleep was associated with low frontal alpha activity and with high alpha and beta activity in occipital derivations. Our data indicate that specific EEG frequency- and topography changes underlie differences between dream recall and no recall after both NREM and REM sleep awakening. This dual NREM-REM sleep modulation holds strong implications for the mechanistic understanding of this complex ongoing cognitive process.

  3. [The direction of rapid eye movements as an indication of hemispheric asymmetry during REM sleep. II].

    PubMed

    De Gennaro, L; Violani, C; Capogna, M

    1984-08-31

    The hypothesis of right hemisphere predominance in REM sleep and of an increase in left activity throughout the night have been tested by analyzing the distribution of vertical and of horizontal rapid eye movements (REMs) to the right and to the left during the first and the last REM periods in 5 right-handed subjects. Neither the expected superiority of REMs to the left nor variations along the REM periods were found. For vertical eye movements our data suggest a superiority of upward movements during REM. In waking some empirical evidences suggest a relationship between upward eye movements and right hemisphere functioning although to date no hemispheric model can explain it.

  4. REM-sleep deprivation-induced increase in ethanol intake: role of brain monoaminergic neurons.

    PubMed

    Aalto, J; Kiianmaa, K

    1986-01-01

    The ethanol intake of Long-Evans male rats was recorded before, during and after deprivation of rapid eye movement (REM) sleep produced with the flowerpot technique modified by using a cuff pedestal and electrified grid floor instead of water. Ethanol intake increased significantly during REM-sleep deprivation. A rebound decrease in ethanol drinking was then observed during the REM-rebound phase immediately after the termination of REM-sleep deprivation. Because REM-sleep deprivation has been reported to impair the function of central monoamine neuronal systems and because some studies have implicated these systems in the control of voluntary ethanol intake, we studied whether different monoamine uptake blocking agents could antagonize the increase in ethanol intake caused by REM-sleep deprivation. After three days of REM-sleep deprivation, the rats were given uptake blocking agents for serotonin (citalopram, 5, 10 and 20 mg/kg/day, IP), dopamine (GBR 12909, 5 mg/kg/day, IP) and noradrenaline (talsupram, 1, 5 and 10 mg/kg/day, IP). Citalopram and GBR 12909 did not modify the increased level of ethanol intake, but talsupram decreased ethanol intake to the levels seen prior to deprivation, and during the REM-rebound phase amplified the decrease found. These effects of talsupram could be antagonized by blocking mg/kg/day, IP). Prazosin alone tended to increase ethanol consumption. These findings suggest that functional alterations in central noradrenergic neurons during REM-sleep deprivation may contribute to the concurrent increase in ethanol intake.

  5. Phasic Motor Activity of Respiratory and Non-Respiratory Muscles in REM Sleep

    PubMed Central

    Fraigne, Jimmy J.; Orem, John M.

    2011-01-01

    Objectives: In this study, we quantified the profiles of phasic activity in respiratory muscles (diaphragm, genioglossus and external intercostal) and non-respiratory muscles (neck and extensor digitorum) across REM sleep. We hypothesized that if there is a unique pontine structure that controls all REM sleep phasic events, the profiles of the phasic twitches of different muscle groups should be identical. Furthermore, we described how respiratory parameters (e.g., frequency, amplitude, and effort) vary across REM sleep to determine if phasic processes affect breathing. Methods: Electrodes were implanted in Wistar rats to record brain activity and muscle activity of neck, extensor digitorum, diaphragm, external intercostal, and genioglossal muscles. Ten rats were studied to obtain 313 REM periods over 73 recording days. Data were analyzed offline and REM sleep activity profiles were built for each muscle. In 6 animals, respiratory frequency, effort, amplitude, and inspiratory peak were also analyzed during 192 REM sleep periods. Results: Respiratory muscle phasic activity increased in the second part of the REM period. For example, genioglossal activity increased in the second part of the REM period by 63.8% compared to the average level during NREM sleep. This profile was consistent between animals and REM periods (η2 = 0.58). This increased activity seen in respiratory muscles appeared as irregular bursts and trains of activity that could affect rythmo-genesis. Indeed, the increased integrated activity seen in the second part of the REM period in the diaphragm was associated with an increase in the number (28.3%) and amplitude (30%) of breaths. Non-respiratory muscle phasic activity in REM sleep did not have a profile like the phasic activity of respiratory muscles. Time in REM sleep did not have an effect on nuchal activity (P = 0.59). Conclusion: We conclude that the concept of a common pontine center controlling all REM phasic events is not supported by our

  6. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    PubMed Central

    Dugovic, Christine; Shelton, Jonathan E.; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  7. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism.

    PubMed

    Dugovic, Christine; Shelton, Jonathan E; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T; Lovenberg, Timothy W

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic.

  8. Antidepressants and REM sleep in Wistar-Kyoto and Sprague-Dawley rats.

    PubMed

    Ivarsson, Magnus; Paterson, Louise M; Hutson, Peter H

    2005-10-17

    Compared to other rat strains, the Wistar-Kyoto rats show increased amount of REM sleep, one of the characteristic sleep changes observed in depressed patients. The aims of this study were firstly to validate a simple sleep stage discriminator and then compare the effect of antidepressants on suppression of rapid eye movement (REM) sleep in Wistar-Kyoto rats and an outbred rat strain (Sprague-Dawley). Rats were implanted with telemetry transmitters with electroencephalogram/electromyogram electrodes. Following recovery, the animals were orally dosed at light onset with either desipramine (20 mg/kg), fluoxetine (10 mg/kg), citalopram (10 or 40 mg/kg) or vehicle in a cross-over design. Every 12-s epoch was automatically scored as WAKE, NREM or REM sleep. Results confirm that Wistar-Kyoto rats show increased amount of REM sleep and decreased REM latency compared with Sprague-Dawley rats. All antidepressants significantly suppressed REM sleep in Sprague-Dawley rats, but only the high dose of citalopram suppressed REM sleep in Wistar-Kyoto rats. These findings suggest that the enhanced REM activity in Wistar-Kyoto rats is less sensitive to the effect of antidepressants and therefore does not provide any additional predictive validity for assessing antidepressant efficacy.

  9. The supramammillary nucleus and the claustrum activate the cortex during REM sleep.

    PubMed

    Renouard, Leslie; Billwiller, Francesca; Ogawa, Keiko; Clément, Olivier; Camargo, Nutabi; Abdelkarim, Mouaadh; Gay, Nadine; Scoté-Blachon, Céline; Touré, Rouguy; Libourel, Paul-Antoine; Ravassard, Pascal; Salvert, Denise; Peyron, Christelle; Claustrat, Bruno; Léger, Lucienne; Salin, Paul; Malleret, Gael; Fort, Patrice; Luppi, Pierre-Hervé

    2015-04-01

    Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats. We find in rats that, during REM sleep hypersomnia compared to control and REM sleep deprivation, the dentate gyrus, claustrum, cortical amygdaloid nucleus, and medial entorhinal and retrosplenial cortices are the only cortical structures containing neurons with an increased expression of Bdnf, FOS, and ARC, known markers of activation and/or synaptic plasticity. Further, the dentate gyrus is the only cortical structure containing more FOS-labeled neurons during REM sleep hypersomnia than during waking. Combining FOS staining, retrograde labeling, and neurochemical lesion, we then provide evidence that FOS overexpression occurring in the cortex during REM sleep hypersomnia is due to projections from the supramammillary nucleus and the claustrum. Our results strongly suggest that only a subset of cortical and hippocampal neurons are activated and display plasticity during REM sleep by means of ascending projections from the claustrum and the supramammillary nucleus. Our results pave the way for future studies to identify the function of REM sleep with regard to dreaming and emotional memory processing.

  10. The supramammillary nucleus and the claustrum activate the cortex during REM sleep

    PubMed Central

    Renouard, Leslie; Billwiller, Francesca; Ogawa, Keiko; Clément, Olivier; Camargo, Nutabi; Abdelkarim, Mouaadh; Gay, Nadine; Scoté-Blachon, Céline; Touré, Rouguy; Libourel, Paul-Antoine; Ravassard, Pascal; Salvert, Denise; Peyron, Christelle; Claustrat, Bruno; Léger, Lucienne; Salin, Paul; Malleret, Gael; Fort, Patrice; Luppi, Pierre-Hervé

    2015-01-01

    Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats. We find in rats that, during REM sleep hypersomnia compared to control and REM sleep deprivation, the dentate gyrus, claustrum, cortical amygdaloid nucleus, and medial entorhinal and retrosplenial cortices are the only cortical structures containing neurons with an increased expression of Bdnf, FOS, and ARC, known markers of activation and/or synaptic plasticity. Further, the dentate gyrus is the only cortical structure containing more FOS-labeled neurons during REM sleep hypersomnia than during waking. Combining FOS staining, retrograde labeling, and neurochemical lesion, we then provide evidence that FOS overexpression occurring in the cortex during REM sleep hypersomnia is due to projections from the supramammillary nucleus and the claustrum. Our results strongly suggest that only a subset of cortical and hippocampal neurons are activated and display plasticity during REM sleep by means of ascending projections from the claustrum and the supramammillary nucleus. Our results pave the way for future studies to identify the function of REM sleep with regard to dreaming and emotional memory processing. PMID:26601158

  11. Sleep-Related Declarative Memory Consolidation and Verbal Replay during Sleep Talking in Patients with REM Sleep Behavior Disorder

    PubMed Central

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Dodet, Pauline; Herlin, Bastien; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2013-01-01

    Objective To determine if sleep talkers with REM sleep behavior disorder (RBD) would utter during REM sleep sentences learned before sleep, and to evaluate their verbal memory consolidation during sleep. Methods Eighteen patients with RBD and 10 controls performed two verbal memory tasks (16 words from the Free and Cued Selective Reminding Test and a 220-263 word long modified Story Recall Test) in the evening, followed by nocturnal video-polysomnography and morning recall (night-time consolidation). In 9 patients with RBD, daytime consolidation (morning learning/recall, evening recall) was also evaluated with the modified Story Recall Test in a cross-over order. Two RBD patients with dementia were studied separately. Sleep talking was recorded using video-polysomnography, and the utterances were compared to the studied texts by two external judges. Results Sleep-related verbal memory consolidation was maintained in patients with RBD (+24±36% words) as in controls (+9±18%, p=0.3). The two demented patients with RBD also exhibited excellent nighttime consolidation. The post-sleep performance was unrelated to the sleep measures (including continuity, stages, fragmentation and apnea-hypopnea index). Daytime consolidation (-9±19%) was worse than night-time consolidation (+29±45%, p=0.03) in the subgroup of 9 patients with RBD. Eleven patients with RBD spoke during REM sleep and pronounced a median of 20 words, which represented 0.0003% of sleep with spoken language. A single patient uttered a sentence that was judged to be semantically (but not literally) related to the text learned before sleep. Conclusion Verbal declarative memory normally consolidates during sleep in patients with RBD. The incorporation of learned material within REM sleep-associated sleep talking in one patient (unbeknownst to himself) at the semantic level suggests a replay at a highly cognitive creative level. PMID:24349492

  12. Sleep-related declarative memory consolidation and verbal replay during sleep talking in patients with REM sleep behavior disorder.

    PubMed

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Dodet, Pauline; Herlin, Bastien; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2013-01-01

    To determine if sleep talkers with REM sleep behavior disorder (RBD) would utter during REM sleep sentences learned before sleep, and to evaluate their verbal memory consolidation during sleep. Eighteen patients with RBD and 10 controls performed two verbal memory tasks (16 words from the Free and Cued Selective Reminding Test and a 220-263 word long modified Story Recall Test) in the evening, followed by nocturnal video-polysomnography and morning recall (night-time consolidation). In 9 patients with RBD, daytime consolidation (morning learning/recall, evening recall) was also evaluated with the modified Story Recall Test in a cross-over order. Two RBD patients with dementia were studied separately. Sleep talking was recorded using video-polysomnography, and the utterances were compared to the studied texts by two external judges. Sleep-related verbal memory consolidation was maintained in patients with RBD (+24±36% words) as in controls (+9±18%, p=0.3). The two demented patients with RBD also exhibited excellent nighttime consolidation. The post-sleep performance was unrelated to the sleep measures (including continuity, stages, fragmentation and apnea-hypopnea index). Daytime consolidation (-9±19%) was worse than night-time consolidation (+29±45%, p=0.03) in the subgroup of 9 patients with RBD. Eleven patients with RBD spoke during REM sleep and pronounced a median of 20 words, which represented 0.0003% of sleep with spoken language. A single patient uttered a sentence that was judged to be semantically (but not literally) related to the text learned before sleep. Verbal declarative memory normally consolidates during sleep in patients with RBD. The incorporation of learned material within REM sleep-associated sleep talking in one patient (unbeknownst to himself) at the semantic level suggests a replay at a highly cognitive creative level.

  13. The spectrum of REM sleep-related episodes in children with type 1 narcolepsy.

    PubMed

    Antelmi, Elena; Pizza, Fabio; Vandi, Stefano; Neccia, Giulia; Ferri, Raffaele; Bruni, Oliviero; Filardi, Marco; Cantalupo, Gaetano; Liguori, Rocco; Plazzi, Giuseppe

    2017-06-01

    Type 1 narcolepsy is a central hypersomnia due to the loss of hypocretin-producing neurons and characterized by cataplexy, excessive daytime sleepiness, sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. In children, close to the disease onset, type 1 narcolepsy has peculiar clinical features with severe cataplexy and a complex admixture of movement disorders occurring while awake. Motor dyscontrol during sleep has never been systematically investigated. Suspecting that abnormal motor control might affect also sleep, we systematically analysed motor events recorded by means of video polysomnography in 40 children with type 1 narcolepsy (20 females; mean age 11.8 ± 2.6 years) and compared these data with those recorded in 22 age- and sex-matched healthy controls. Motor events were classified as elementary movements, if brief and non-purposeful and complex behaviours, if simulating purposeful behaviours. Complex behaviours occurring during REM sleep were further classified as 'classically-defined' and 'pantomime-like' REM sleep behaviour disorder episodes, based on their duration and on their pattern (i.e. brief and vivid-energetic in the first case, longer and with subcontinuous gesturing mimicking daily life activity in the second case). Elementary movements emerging either from non-REM or REM sleep were present in both groups, even if those emerging from REM sleep were more numerous in the group of patients. Conversely, complex behaviours could be detected only in children with type 1 narcolepsy and were observed in 13 patients, with six having 'classically-defined' REM sleep behaviour disorder episodes and seven having 'pantomime-like' REM sleep behaviour disorder episodes. Complex behaviours during REM sleep tended to recur in a stereotyped fashion for several times during the night, up to be almost continuous. Patients displaying a more severe motor dyscontrol during REM sleep had also more severe motor disorder during daytime (i

  14. Cold exposure impairs dark-pulse capacity to induce REM sleep in the albino rat.

    PubMed

    Baracchi, Francesca; Zamboni, Giovanni; Cerri, Matteo; Del Sindaco, Elide; Dentico, Daniela; Jones, Christine Ann; Luppi, Marco; Perez, Emanuele; Amici, Roberto

    2008-06-01

    In the albino rat, a REM sleep (REMS) onset can be induced with a high probability and a short latency when the light is suddenly turned off (dark pulse, DP) during non-REM sleep (NREMS). The aim of this study was to investigate to what extent DP delivery could overcome the integrative thermoregulatory mechanisms that depress REMS occurrence during exposure to low ambient temperature (Ta). To this aim, the efficiency of a non-rhythmical repetitive DP (3 min each) delivery during the first 6-h light period of a 12 h:12 h light-dark cycle in inducing REMS was studied in the rat, through the analysis of electroencephalogram, electrocardiogram, hypothalamic temperature and motor activity at different Tas. The results showed that DP delivery triggers a transition from NREMS to REMS comparable to that which occurs spontaneously. However, the efficiency of DP delivery in inducing REMS was reduced during cold exposure to an extent comparable with that observed in spontaneous REMS occurrence. Such impairment was associated with low Delta activity and high sympathetic tone when DPs were delivered. Repetitive DP administration increased REMS amount during the delivery period and a subsequent negative REMS rebound was observed. In conclusion, DP delivery did not overcome the integrative thermoregulatory mechanisms that depress REMS in the cold. These results underline the crucial physiological meaning of the mutual exclusion of thermoregulatory activation and REMS occurrence, and support the hypothesis that the suspension of the central control of body temperature is a prerequisite for REMS occurrence.

  15. A Moderate Increase of Physiological CO2 in a Critical Range during Stable NREM Sleep Episode: A Potential Gateway to REM Sleep

    PubMed Central

    Madan, Vibha; Jha, Sushil K.

    2012-01-01

    Sleep is characterized as rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. Studies suggest that wake-related neurons in the basal forebrain, posterior hypothalamus and brainstem, and NREM sleep-related neurons in the anterior-hypothalamic area inhibit each other, thus alternating sleep–wakefulness. Similarly, pontine REM-ON and REM-OFF neurons reciprocally inhibit each other for REM sleep modulation. It has been proposed that inhibition of locus coeruleus (LC) REM-OFF neurons is pre-requisite for REM sleep genesis, but it remains ambiguous how REM-OFF neurons are hyperpolarized at REM sleep onset. The frequency of breathing pattern remains high during wake, slows down during NREM sleep but further escalates during REM sleep. As a result, brain CO2 level increases during NREM sleep, which may alter REM sleep manifestation. It has been reported that hypocapnia decreases REM sleep while hypercapnia increases REM sleep periods. The groups of brainstem chemosensory neurons, including those present in LC, sense the alteration in CO2 level and respond accordingly. For example, one group of LC neurons depolarize while other hyperpolarize during hypercapnia. In another group, hypercapnia initially depolarizes but later hyperpolarizes LC neurons. Besides chemosensory functions, LC REM-OFF neurons are an integral part of REM sleep executive machinery. We reason that increased CO2 level during a stable NREM sleep period may hyperpolarize LC neurons including REM-OFF, which may help initiate REM sleep. We propose that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep. PMID:22363318

  16. REM sleep diversity following the pedunculopontine tegmental nucleus lesion in rat.

    PubMed

    Petrovic, Jelena; Lazic, Katarina; Kalauzi, Aleksandar; Saponjic, Jasna

    2014-09-01

    The aim of this study was to demonstrate that two REM clusters, which emerge following bilateral pedunculopontine tegmental nucleus (PPT) lesions in rats, are two functionally distinct REM states. We performed the experiments in Wistar rats, chronically instrumented for sleep recording. Bilateral PPT lesions were produced by the microinfusion of 100 nl of 0.1M ibotenic acid (IBO). Following a recovery period of 2 weeks, we recorded their sleep for 6h. Bilateral PPT lesions were identified by NADPH - diaphorase histochemistry. We applied Fourier analysis to the signals acquired throughout the 6h recordings, and each 10s epoch was differentiated as a Wake, NREM or REM state. We analyzed the topography of the sleep/wake states architecture and their transition structure, their all state-related EEG microstructures, and the sensorimotor (SMCx) and motor (MCx) cortex REM related cortico-muscular coherences (CMCs). Bilateral PPT lesion in rats increased the likelihood of the emergence of two distinct REM sleep states, specifically expressed within the MCx: REM1 and REM2. Bilateral PPT lesion did not change the sleep/wake states architecture of the SMCx, but pathologically increased the duration of REM1 within the MCx, alongside increasing Wake/REM1/Wake and NREM/REM2/NREM transitions within both cortices. In addition, the augmented total REM SMCx EEG beta amplitude and REM1 MCx EEG theta amplitude was the underlying EEG microstructure pathology. PPT lesion induced REM1 and REM2 are differential states with regard to total EMG power, topographically distinct EEG microstructures, and locomotor drives to nuchal musculature.

  17. The effect of REM sleep deprivation on motivation for food reward.

    PubMed

    Hanlon, Erin C; Andrzejewski, Matthew E; Harder, Bridgette K; Kelley, Ann E; Benca, Ruth M

    2005-08-30

    Prolonged sleep deprivation in rats produces a characteristic syndrome consisting of an increase in food intake yet a decrease in weight. Moreover, the increase in food intake generally precedes the weight loss, suggesting that sleep deprivation may affect appetitive behaviors. Using the multiple platform method to produce rapid eye movement (REM) sleep deprivation, we investigated the effect of REM sleep deprivation (REMSD) on motivation for food reward utilizing food-reinforced operant tasks. In acquisition or maintenance of an operant task, REM sleep-deprived rats, with or without simultaneous food restriction, decreased responding for sucrose pellet reward in comparison to controls, despite the fact that all REM sleep-deprived rats lost weight. Furthermore, the overall response deficit of the REM sleep-deprived rats was due to a within-session decline in responding. REM sleep-deprived rats showed evidence of understanding the contingency of the task comparable to controls throughout deprivation period, suggesting that the decrements in responding were not primarily related to deficits in learning or memory. Rather, REM sleep deprivation appears to alter systems involved in motivational processes, reward, and/or attention.

  18. Heart rate variability during carbachol-induced REM sleep and cataplexy.

    PubMed

    Torterolo, Pablo; Castro-Zaballa, Santiago; Cavelli, Matías; Velasquez, Noelia; Brando, Victoria; Falconi, Atilio; Chase, Michael H; Migliaro, Eduardo R

    2015-09-15

    The nucleus pontis oralis (NPO) exerts an executive control over REM sleep. Cholinergic input to the NPO is critical for REM sleep generation. In the cat, a single microinjection of carbachol (a cholinergic agonist) into the NPO produces either REM sleep (REMc) or wakefulness with muscle atonia (cataplexy, CA). In order to study the central control of the heart rate variability (HRV) during sleep, we conducted polysomnographic and electrocardiogram recordings from chronically prepared cats during REMc, CA as well as during sleep and wakefulness. Subsequently, we performed statistical and spectral analyses of the HRV. The heart rate was greater during CA compared to REMc, NREM or REM sleep. Spectral analysis revealed that the low frequency band (LF) power was significantly higher during REM sleep in comparison to REMc and CA. Furthermore, we found that during CA there was a decrease in coupling between the RR intervals plot (tachogram) and respiratory activity. In contrast, compared to natural behavioral states, during REMc and CA there were no significant differences in the HRV based upon the standard deviation of normal RR intervals (SDNN) and the mean squared difference of successive intervals (rMSSD). In conclusion, there were differences in the HRV during naturally-occurring REM sleep compared to REMc. In addition, in spite of the same muscle atonia, the HRV was different during REMc and CA. Therefore, the neuronal network that controls the HRV during REM sleep can be dissociated from the one that generates the muscle atonia during this state.

  19. Functional role of diverse changes in sympathetic nerve activity in regulating arterial pressure during REM sleep.

    PubMed

    Yoshimoto, Misa; Yoshida, Ikue; Miki, Kenju

    2011-08-01

    This study aimed to investigate whether REM sleep evoked diverse changes in sympathetic outflows and, if so, to elucidate why REM sleep evokes diverse changes in sympathetic outflows. Male Wistar rats were chronically implanted with electrodes to measure renal (RSNA) and lumbar sympathetic nerve activity (LSNA), electroencephalogram, electromyogram, and electrocardiogram, and catheters to measure systemic arterial and central venous pressure; these parameters were measured simultaneously and continuously during the sleep-awake cycle in the same rat. REM sleep resulted in a step reduction in RNSA by 36.1% ± 2.7% (P < 0.05), while LSNA increased in a step manner by 15.3% ± 2% (P < 0.05) relative to the NREM level. Systemic arterial pressure increased gradually (P < 0.05), while heart rate decreased in a step manner (P < 0.05) during REM sleep. In contrast to REM sleep, RSNA, LSNA, systemic arterial pressure, and heart rate increased in a unidirectional manner associated with increases in physical activity levels in the order from NREM sleep, quiet awake, moving, and grooming state. Thus, the relationship between RSNA vs. LSNA and systemic arterial pressure vs. heart rate observed during REM sleep was dissociated compared with that obtained during the other behavioral states. It is suggested that the diverse changes in sympathetic outflows during REM sleep may be needed to increase systemic arterial pressure by balancing vascular resistance between muscles and vegetative organs without depending on the heart.

  20. Effects of REM sleep awakenings and related wakening paradigms on the ultradian sleep cycle and the symptoms in depression.

    PubMed

    Grözinger, Michael; Kögel, Pia; Röschke, Joachim

    2002-01-01

    In 1975 Vogel and coworkers published their classical study where they compared selective rapid eye movement (REM) sleep deprivation by brief awakenings to a control intervention paradigm in depressed patients. The superior antidepressive impact of the first procedure was attributed to the REM pressure accumulating during the treatment period. The laborious procedure and the considerable effort necessary to evaluate the sleep profiles in real time have prevented similar experiments so far. Based on artificial neural networks we developed a software for the real time detection of REM sleep. In combination with an alarm system the algorithm allowed us to wake up subjects automatically and to reduce REM sleep by about 50%. The procedure was then compared to a modified nonREM intervention paradigm for a treatment period of ten consecutive nights in depressed patients (n(1)=14, n(2)=13). These simultaneously received moderate dosages of Trimipramine. We found a strong and robust but not significantly different reduction of the average Hamilton rating scores (33 and 41% of baseline levels). While the REM sleep awakenings shortened the sleep cycle duration considerably, our nonREM intervention paradigm lengthened the ultradian alternations. Both effects might be interpreted as a challenge imposed on the nonREM-REM alternating mechanism possibly responsible for the antidepressive impact. A different timing of the control interventions might have caused the discrepancy between our findings and those of Vogel and coworkers.

  1. Increased Reward-Related Behaviors during Sleep and Wakefulness in Sleepwalking and Idiopathic Nightmares

    PubMed Central

    Perogamvros, Lampros; Aberg, Kristoffer; Gex-Fabry, Marianne; Perrig, Stephen; Cloninger, C. Robert; Schwartz, Sophie

    2015-01-01

    Background We previously suggested that abnormal sleep behaviors, i.e., as found in parasomnias, may often be the expression of increased activity of the reward system during sleep. Because nightmares and sleepwalking predominate during REM and NREM sleep respectively, we tested here whether exploratory excitability, a waking personality trait reflecting high activity within the mesolimbic dopaminergic (ML-DA) system, may be associated with specific changes in REM and NREM sleep patterns in these two sleep disorders. Methods Twenty-four unmedicated patients with parasomnia (12 with chronic sleepwalking and 12 with idiopathic nightmares) and no psychiatric comorbidities were studied. Each patient spent one night of sleep monitored by polysomnography. The Temperament and Character Inventory (TCI) was administered to all patients and healthy controls from the Geneva population (n = 293). Results Sleepwalkers were more anxious than patients with idiopathic nightmares (Spielberger Trait anxiety/STAI-T), but the patient groups did not differ on any personality dimension as estimated by the TCI. Compared to controls, parasomnia patients (sleepwalkers together with patients with idiopathic nightmares) scored higher on the Novelty Seeking (NS) TCI scale and in particular on the exploratory excitability/curiosity (NS1) subscale, and lower on the Self-directedness (SD) TCI scale, suggesting a general increase in reward sensitivity and impulsivity. Furthermore, parasomnia patients tended to worry about social separation persistently, as indicated by greater anticipatory worry (HA1) and dependence on social attachment (RD3). Moreover, exploratory excitability (NS1) correlated positively with the severity of parasomnia (i.e., the frequency of self-reported occurrences of nightmares and sleepwalking), and with time spent in REM sleep in patients with nightmares. Conclusions These results suggest that patients with parasomnia might share common waking personality traits associated

  2. 5-HT1A receptor-responsive pedunculopontine tegmental neurons suppress REM sleep and respiratory motor activity.

    PubMed

    Grace, Kevin P; Liu, Hattie; Horner, Richard L

    2012-02-01

    Serotonin type 1A (5-HT(1A)) receptor-responsive neurons in the pedunculopontine tegmental nucleus (PPTn) become maximally active immediately before and during rapid eye movement (REM) sleep. A prevailing model of REM sleep generation indicates that activation of such neurons contributes significantly to the generation of REM sleep, and if correct then inactivation of such neurons ought to suppress REM sleep. We test this hypothesis using bilateral microperfusion of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 10 μm) into the PPTn; this tool has been shown to selectively silence REM sleep-active PPTn neurons while the activity of wake/REM sleep-active PPTn neurons is unaffected. Contrary to the prevailing model, bilateral microperfusion of 8-OH-DPAT into the PPTn (n = 23 rats) significantly increased REM sleep both as a percentage of the total recording time and sleep time, compared with both within-animal vehicle controls and between-animal time-controls. This increased REM sleep resulted from an increased frequency of REM sleep bouts but not their duration, indicating an effect on mechanisms of REM sleep initiation but not maintenance. Furthermore, an increased proportion of the REM sleep bouts stemmed from periods of low REM sleep drive quantified electrographically. Targeted suppression of 5-HT(1A) receptor-responsive PPTn neurons also increased respiratory rate and respiratory-related genioglossus activity, and increased the frequency and amplitude of the sporadic genioglossus activations occurring during REM sleep. These data indicate that 5-HT(1A) receptor-responsive PPTn neurons normally function to restrain REM sleep by elevating the drive threshold for REM sleep induction, and restrain the expression of respiratory rate and motor activities.

  3. Association between Glucose Metabolism and Sleep-disordered Breathing during REM Sleep

    PubMed Central

    Gottlieb, Daniel J.; Redline, Susan; Punjabi, Naresh M.

    2015-01-01

    Rationale: Sleep-disordered breathing (SDB) has been associated with impaired glucose metabolism. It is possible that the association between SDB and glucose metabolism is distinct for non-REM versus REM sleep because of differences in sleep-state–dependent sympathetic activation and/or degree of hypoxemia. Objectives: To characterize the association between REM-related SDB, glucose intolerance, and insulin resistance in a community-based sample. Methods: A cross-sectional analysis that included 3,310 participants from the Sleep Heart Health Study was undertaken (53% female; mean age, 66.1 yr). Full montage home-polysomnography and fasting glucose were available on all participants. SDB severity during REM and non-REM sleep was quantified using the apnea–hypopnea index in REM (AHIREM) and non-REM sleep (AHINREM), respectively. Fasting and 2-hour post-challenge glucose levels were assessed during a glucose tolerance test (n = 2,264). The homeostatic model assessment index for insulin resistance (HOMA-IR) was calculated (n = 1,543). Linear regression was used to assess the associations of AHIREM and AHINREM with fasting and post-prandial glucose levels and HOMA-IR. Measurements and Main Results: AHIREM and AHINREM were associated with fasting glycemia, post-prandial glucose levels, and HOMA-IR in models that adjusted for age, sex, race, and site. However, with additional adjustment for body mass index, waist circumference, and sleep duration, AHIREM was only associated with HOMA-IR (β = 0.04; 95% CI, 0.1–0.07; P = 0.01), whereas AHINREM was only associated with fasting (β = 0.93; 95% CI, 0.14–1.72; P = 0.02) and post-prandial glucose levels (β = 3.0; 95% CI, 0.5–5.5; P = 0.02). Conclusions: AHIREM is associated with insulin resistance but not with fasting glycemia or glucose intolerance. PMID:26200994

  4. Dream recall after night awakenings from tonic/phasic REM sleep.

    PubMed

    Hodoba, Danilo; Hrabrić, Kremimir; Krmpotić, Pavao; Brecić, Petra; Kujundzić-Tiljak, Mirjana; Majdaneić, Zeljko

    2008-01-01

    Eleven healthy subjects, 9 females and 2 males aged 21-23, were submitted to all night polygraphic recording and awaken in REM (Rapid Eye Movements) sleep, randomly upon tonic or phasic REM. Immediately upon awakening subjects were asked about possible dreaming according to the standardized questionnaire. Seventy-seven dreams, i.e. 79% of all 97 REM awakenings, were reported and analyzed. There were no significant differences in reported frequency of dreamings after awakening, mood and dream content due to phasic/tonic REM sleep. Dreams from phasic REM were a bit more colorful. Predictor of morning remembering of dreams was meaninglessness, not meaningfulness of dreams, and, in lesser extent, good mood, colorfulness, dreams with words and phasic REM sleep.

  5. The value of REM sleep parameters in differentiating Alzheimer's disease from old-age depression and normal aging.

    PubMed

    Dykierek, P; Stadtmüller, G; Schramm, P; Bahro, M; van Calker, D; Braus, D F; Steigleider, P; Löw, H; Hohagen, F; Gattaz, W F; Berger, M; Riemann, D

    1998-01-01

    Pseudodementia as a common trait in elderly depressives presents a major problem in gerontopsychiatry, especially for the differential diagnosis between Old-Age Depression (OAD) and Dementia of the Alzheimer Type (DAT). The present polysomnographic study examined parameters of sleep continuity, sleep architecture, and REM sleep to differentiate DAT from OAD. The investigation was based on the theoretical framework of the cholinergic-aminergic imbalance model of depression, the cholinergic deficit hypothesis of Alzheimer's disease and the reciprocal interaction model of Non-REM/REM sleep regulation, according to which REM sleep parameters should have high discriminative value to differentiate OAD and DAT. We investigated 35 DAT patients, 39 OAD patients and 42 healthy controls for two consecutive nights in the sleep laboratory. The DAT patients were in relatively early/mild stages of the disease, the severity of depression in the OAD group was moderate to severe. Depressed patients showed characteristic 'depression-like' EEG sleep alterations, i.e. a lower sleep efficiency, a higher amount of nocturnal awakenings and decreased sleep stage 2. Sleep continuity and architecture in DAT was less disturbed. Nearly all REM sleep measures differentiated significantly between the diagnostic groups. OAD patients showed a shortened REM latency, increased REM density and a high rate of Sleep Onset REM periods (SOREM), whereas in DAT REM density was decreased in comparison to control subjects. REM latency in DAT was not prolonged as expected. To assess the discriminative power of REM sleep variables a series of discriminant analyses were conducted. Overall, 86% of patients were correctly classified, using REM density and REM latency measures. Our findings suggest that REM density as an indicator of phasic activity appears to be more sensitive as a biological marker for the differential diagnosis of OAD and DAT than REM latency. The results support the role of central cholinergic

  6. Phasic motor activity of respiratory and non-respiratory muscles in REM sleep.

    PubMed

    Fraigne, Jimmy J; Orem, John M

    2011-04-01

    In this study, we quantified the profiles of phasic activity in respiratory muscles (diaphragm, genioglossus and external intercostal) and non-respiratory muscles (neck and extensor digitorum) across REM sleep. We hypothesized that if there is a unique pontine structure that controls all REM sleep phasic events, the profiles of the phasic twitches of different muscle groups should be identical. Furthermore, we described how respiratory parameters (e.g., frequency, amplitude, and effort) vary across REM sleep to determine if phasic processes affect breathing. Electrodes were implanted in Wistar rats to record brain activity and muscle activity of neck, extensor digitorum, diaphragm, external intercostal, and genioglossal muscles. Ten rats were studied to obtain 313 REM periods over 73 recording days. Data were analyzed offline and REM sleep activity profiles were built for each muscle. In 6 animals, respiratory frequency, effort, amplitude, and inspiratory peak were also analyzed during 192 REM sleep periods. Respiratory muscle phasic activity increased in the second part of the REM period. For example, genioglossal activity increased in the second part of the REM period by 63.8% compared to the average level during NREM sleep. This profile was consistent between animals and REM periods (η(2)=0.58). This increased activity seen in respiratory muscles appeared as irregular bursts and trains of activity that could affect rythmo-genesis. Indeed, the increased integrated activity seen in the second part of the REM period in the diaphragm was associated with an increase in the number (28.3%) and amplitude (30%) of breaths. Non-respiratory muscle phasic activity in REM sleep did not have a profile like the phasic activity of respiratory muscles. Time in REM sleep did not have an effect on nuchal activity (P=0.59). We conclude that the concept of a common pontine center controlling all REM phasic events is not supported by our data. There is a drive in REM sleep that

  7. Conditioning of amitriptyline-induced REM sleep suppression in healthy participants: A randomized controlled trial.

    PubMed

    Winkler, Alexander; Rheker, Julia; Doering, Bettina K; Rief, Winfried

    2016-10-01

    Clinical trials in sleep disorders report substantial improvement in symptoms in their placebo groups. Behavioral conditioning is one of the underlying mechanisms of the placebo response. However, we do not know whether, and if so, the extent to which sleep architecture is influenced by behavioral conditioning, similarly to other physiological responses (i.e., those in the immune system). We therefore applied a conditioning paradigm to 39 healthy adults pairing a novel-tasting drink (conditioned stimulus, CS) with the REM sleep suppressing tricyclic antidepressant amitriptyline as unconditioned stimulus during the acquisition phase. Subsequent sole presentation of the CS (together with a placebo pill) in an evocation night led to significantly more REM sleep in the amitriptyline group. Instead of the expected REM sleep suppression in the evocation night, we observed more REM sleep, indicating a rebound that interferes with the conditioned response. © 2016 Society for Psychophysiological Research.

  8. Sleep and Arousal Mechanisms in Experimental Epilepsy: Epileptic Components of NREM and Antiepileptic Components of REM Sleep

    ERIC Educational Resources Information Center

    Shouse, M. N.; Scordato, J. C.; Farber, P. R.

    2004-01-01

    Neural generators related to different sleep components have different effects on seizure discharge. These sleep-related systems can provoke seizure discharge propagation during nonrapid eye movement (NREM) sleep and can suppress propagation during REM sleep. Experimental manipulations of discrete physiological components were conducted in feline…

  9. Does more sleep matter? Differential effects of NREM- and REM-dominant sleep on sleepiness and vigilance.

    PubMed

    Neu, D; Mairesse, O; Newell, J; Verbanck, P; Peigneux, P; Deliens, G

    2015-05-01

    We investigated effects of NREM and REM predominant sleep periods on sleepiness and psychomotor performances measured with visual analog scales and the psychomotor vigilance task, respectively. After one week of stable sleep-wake rhythms, 18 healthy sleepers slept 3hours of early sleep and 3hours of late sleep, under polysomnographic control, spaced by two hours of sustained wakefulness between sleep periods in a within subjects split-night, sleep interruption protocol. Power spectra analysis was applied for sleep EEG recordings and sleep phase-relative power proportions were computed for six different frequency bands (delta, theta, alpha, sigma, beta and gamma). Both sleep periods presented with similar sleep duration and efficiency. As expected, phasic NREM and REM predominances were obtained for early and late sleep conditions, respectively. Albeit revealing additive effects of total sleep duration, our results showed a systematic discrepancy between psychomotor performances and sleepiness levels. In addition, sleepiness remained stable throughout sustained wakefulness during both conditions, whereas psychomotor performances even decreased after the second sleep period. Disregarding exchanges for frequency bands in NREM or stability in REM, correlations between outcome measures and EEG power proportions further evidenced directional divergence with respect to sleepiness and psychomotor performances, respectively. Showing that the functional correlation pattern changed with respect to early and late sleep condition, the relationships between EEG power and subjective or behavioral outcomes might however essentially be related to total sleep duration rather than to the phasic predominance of REM or NREM sleep.

  10. Sleep and Arousal Mechanisms in Experimental Epilepsy: Epileptic Components of NREM and Antiepileptic Components of REM Sleep

    ERIC Educational Resources Information Center

    Shouse, M. N.; Scordato, J. C.; Farber, P. R.

    2004-01-01

    Neural generators related to different sleep components have different effects on seizure discharge. These sleep-related systems can provoke seizure discharge propagation during nonrapid eye movement (NREM) sleep and can suppress propagation during REM sleep. Experimental manipulations of discrete physiological components were conducted in feline…

  11. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression

    PubMed Central

    Torterolo, Pablo; Scorza, Cecilia; Lagos, Patricia; Urbanavicius, Jessika; Benedetto, Luciana; Pascovich, Claudia; López-Hill, Ximena; Chase, Michael H.; Monti, Jaime M.

    2015-01-01

    The melanin-concentrating hormone (MCH) is a peptidergic neuromodulator synthesized by neurons of the lateral sector of the posterior hypothalamus and zona incerta. MCHergic neurons project throughout the central nervous system, including areas such as the dorsal (DR) and median (MR) raphe nuclei, which are involved in the control of sleep and mood. Major Depression (MD) is a prevalent psychiatric disease diagnosed on the basis of symptomatic criteria such as sadness or melancholia, guilt, irritability, and anhedonia. A short REM sleep latency (i.e., the interval between sleep onset and the first REM sleep period), as well as an increase in the duration of REM sleep and the density of rapid-eye movements during this state, are considered important biological markers of depression. The fact that the greatest firing rate of MCHergic neurons occurs during REM sleep and that optogenetic stimulation of these neurons induces sleep, tends to indicate that MCH plays a critical role in the generation and maintenance of sleep, especially REM sleep. In addition, the acute microinjection of MCH into the DR promotes REM sleep, while immunoneutralization of this peptide within the DR decreases the time spent in this state. Moreover, microinjections of MCH into either the DR or MR promote a depressive-like behavior. In the DR, this effect is prevented by the systemic administration of antidepressant drugs (either fluoxetine or nortriptyline) and blocked by the intra-DR microinjection of a specific MCH receptor antagonist. Using electrophysiological and microdialysis techniques we demonstrated also that MCH decreases the activity of serotonergic DR neurons. Therefore, there are substantive experimental data suggesting that the MCHergic system plays a role in the control of REM sleep and, in addition, in the pathophysiology of depression. Consequently, in the present report, we summarize and evaluate the current data and hypotheses related to the role of MCH in REM sleep and MD

  12. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression.

    PubMed

    Torterolo, Pablo; Scorza, Cecilia; Lagos, Patricia; Urbanavicius, Jessika; Benedetto, Luciana; Pascovich, Claudia; López-Hill, Ximena; Chase, Michael H; Monti, Jaime M

    2015-01-01

    The melanin-concentrating hormone (MCH) is a peptidergic neuromodulator synthesized by neurons of the lateral sector of the posterior hypothalamus and zona incerta. MCHergic neurons project throughout the central nervous system, including areas such as the dorsal (DR) and median (MR) raphe nuclei, which are involved in the control of sleep and mood. Major Depression (MD) is a prevalent psychiatric disease diagnosed on the basis of symptomatic criteria such as sadness or melancholia, guilt, irritability, and anhedonia. A short REM sleep latency (i.e., the interval between sleep onset and the first REM sleep period), as well as an increase in the duration of REM sleep and the density of rapid-eye movements during this state, are considered important biological markers of depression. The fact that the greatest firing rate of MCHergic neurons occurs during REM sleep and that optogenetic stimulation of these neurons induces sleep, tends to indicate that MCH plays a critical role in the generation and maintenance of sleep, especially REM sleep. In addition, the acute microinjection of MCH into the DR promotes REM sleep, while immunoneutralization of this peptide within the DR decreases the time spent in this state. Moreover, microinjections of MCH into either the DR or MR promote a depressive-like behavior. In the DR, this effect is prevented by the systemic administration of antidepressant drugs (either fluoxetine or nortriptyline) and blocked by the intra-DR microinjection of a specific MCH receptor antagonist. Using electrophysiological and microdialysis techniques we demonstrated also that MCH decreases the activity of serotonergic DR neurons. Therefore, there are substantive experimental data suggesting that the MCHergic system plays a role in the control of REM sleep and, in addition, in the pathophysiology of depression. Consequently, in the present report, we summarize and evaluate the current data and hypotheses related to the role of MCH in REM sleep and MD.

  13. Knockdown of orexin type 2 receptor in the lateral pontomesencephalic tegmentum of rats increases REM sleep

    PubMed Central

    Chen, Lichao; McKenna, James T.; Bolortuya, Yunren; Brown, Ritchie E.

    2012-01-01

    Dysfunction of the orexin/hypocretin neurotransmitter system causes the sleep disorder narcolepsy, characterized by intrusion of rapid-eye-movement (REM) sleep-like events into normal wakefulness. The sites where orexins act to suppress REM sleep are incompletely understood. Previous studies suggested that the lateral pontomesencephalic tegmentum (lPMT) contains an important REM sleep inhibitory area, and proposed that orexins inhibit REM sleep via orexin type 2 receptors (OxR2) in this region. However, this hypothesis has heretofore not been tested. We thus performed bilateral injection of small interfering RNAs (siRNAs) targeting Ox2R into the lPMT on two consecutive days. This led to a ~30 % increase of time spent in REM sleep in both the dark and light periods for the first two days after injection, with a return to baseline over the next two post-injection days. This increase was mainly due to more longer (>120 s) REM episodes. Cataplexy-like episodes were not observed. The percentage of time spent in wakefulness and NREM sleep, as well as the power spectral profile of NREM and REM sleep, were unaffected. Control animals injected with scrambled siRNA had no sleep changes post-injection. Quantification of the knockdown revealed that unilateral microinjection of siRNAs targeting OxR2 into the lPMT induced a ~40% reduction of OxR2 mRNA two days following the injections when compared to the contralateral side receiving control (scrambled) siRNA. Orexin type 1 receptor (OxR1) mRNA level was unaffected. Our results indicate that removal of OxR2 neurotransmission in the lPMT enhances REM sleep by increasing the duration of REM episodes. PMID:23282008

  14. Eye Movements and Abducens Motoneuron Behavior During Cholinergically Induced REM Sleep

    PubMed Central

    Marquez-Ruiz, Javier; Escudero, Miguel

    2009-01-01

    Study objectives: The injection of cholinergic drugs in the pons has been largely used to induce REM sleep as a useful model to study different processes during this period. In the present study, microinjections of carbachol in the nucleus reticularis pontis oralis (NRPO) were performed to test the hypothesis that eye movements and the behavior of extraocular motoneurons during induced REM sleep do not differ from those during spontaneous REM sleep. Methods: Six female adult cats were prepared for chronic recording of eye movements (by means of the search-coil technique) and electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves at the lateral geniculate nucleus, and identified abducens motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPO. Results: Unilateral microinjections (n = 13) of carbachol in the NRPO induced REM sleep-like periods in which the eyes performed a convergence and downward rotation interrupted by phasic complex rapid eye movements associated to PGO waves. During induced-REM sleep abducens motoneurons lost their tonic activity and eye position codification, but continued codifying eye velocity during the burst of eye movements. Conclusion: The present results show that eye movements and the underlying behavior of abducens motoneurons are very similar to those present during natural REM sleep. Thus, microinjection of carbachol seems to activate the structures responsible for the exclusive oculomotor behavior observed during REM sleep, validating this pharmacological model and enabling a more efficient exploration of phasic and tonic phenomena underlying eye movements during REM sleep. Citation: Marquez-Ruiz J; Escudero M. Eye movements and abducens motoneuron behavior during cholinergically induced REM sleep. SLEEP 2009;32(4):471–481. PMID:19413141

  15. Diagnostic Thresholds for Quantitative REM Sleep Phasic Burst Duration, Phasic and Tonic Muscle Activity, and REM Atonia Index in REM Sleep Behavior Disorder with and without Comorbid Obstructive Sleep Apnea

    PubMed Central

    McCarter, Stuart J.; St. Louis, Erik K.; Duwell, Ethan J.; Timm, Paul C.; Sandness, David J.; Boeve, Bradley F.; Silber, Michael H.

    2014-01-01

    Objectives: We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. Design: We visually analyzed RSWA phasic burst durations, phasic, “any,” and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. Setting: N/A. Participants: Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. Interventions: N/A. Measurements and Results: All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, “any”) cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. Conclusions: This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. Citation: McCarter SJ, St. Louis EK, Duwell EJ, Timm PC

  16. The effect of mood on sleep onset latency and REM sleep in interepisode bipolar disorder.

    PubMed

    Talbot, Lisa S; Hairston, Ilana S; Eidelman, Polina; Gruber, June; Harvey, Allison G

    2009-08-01

    The present study investigates whether interepisode mood regulation impairment contributes to disturbances in sleep onset latency (SOL) and rapid eye movement (REM) sleep. Individuals with interepisode bipolar disorder (n = 28) and healthy controls (n = 28) slept in the laboratory for 2 baseline nights, a happy mood induction night, and a sad mood induction night. There was a significant interaction whereby on the happy mood induction night the bipolar group exhibited significantly longer SOL than did the control group, while there was no difference on the baseline nights. In addition, control participants exhibited shorter SOL on the happy mood induction night compared to the baseline nights, a finding that was not observed in the bipolar group. On the sad mood induction night, participants in both groups had shorter SOL and increased REM density when compared to the baseline nights. Bipolar participants exhibited heightened REM density compared to control participants on both nights. These results raise the possibility that regulation of positive stimuli may be a contributor to difficulties with SOL, while hyperactivity may be characteristic of REM sleep.

  17. Impaired off-line consolidation of motor memories after combined blockade of cholinergic receptors during REM sleep-rich sleep.

    PubMed

    Rasch, Björn; Gais, Steffen; Born, Jan

    2009-06-01

    Rapid eye movement (REM) sleep has been considered important for the consolidation of memories, particularly of procedural skills. REM sleep, in contrast to slow-wave sleep (SWS), is hallmarked by the high, wake-like activity of the neurotransmitter acetylcholine (ACh), which promotes certain synaptic plastic processes underlying the formation of memories. Here, we show in healthy young men that off-line consolidation of a motor skill during a period of late sleep with high amounts of REM sleep depends essentially on high cholinergic activity. After a 3-h sleep period during the early night to satisfy the need for SWS, subjects learned a procedural finger sequence tapping task and a declarative word-pair learning task. After learning, they received either placebo or a combination of the muscarinic receptor antagonist scopolamine (4 microg/kg bodyweight, intravenously) and the nicotinic receptor antagonist mecamylamine (5 mg, orally), and then slept for another 3 h, ie, the late nocturnal sleep period, which is dominated by REM sleep. Retrieval was tested the following evening. Combined cholinergic receptor blockade significantly impaired motor skill consolidation, whereas word-pair memory remained unaffected. Additional data show that the impairing effect of cholinergic receptor blockade is specific to sleep-dependent consolidation of motor skill and does not occur during a wake-retention interval. Taken together, these results identify high cholinergic activity during late, REM sleep-rich sleep as an essential factor promoting sleep-dependent consolidation of motor skills.

  18. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP.

    PubMed

    Ravassard, Pascal; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Fraize, Nicolas; Libourel, Paul-Antoine; Lebarillier, Léa; Arthaud, Sébastien; Meissirel, Claire; Touret, Monique; Malleret, Gaël; Salin, Paul-Antoine

    2016-04-01

    Prolonged rapid-eye-movement (REM) sleep deprivation has long been used to study the role of REM sleep in learning and memory processes. However, this method potentially induces stress and fatigue that may directly affect cognitive functions. Here, by using a short-term and nonstressful REM sleep deprivation (RSD) method we assessed in rats the bidirectional influence of reduced and increased REM sleep amount on hippocampal-dependent emotional memory and plasticity. Our results indicate that 4 h RSD impaired consolidation of contextual fear conditioning (CFC) and induction of long-term potentiation (LTP), while decreasing density of Egr1/Zif268-expressing neurons in the CA1 region of the dorsal hippocampus. LTP and Egr1 expression were not affected in ventral CA1. Conversely, an increase in REM sleep restores and further facilitates CFC consolidation and LTP induction, and also increases Egr1 expression in dorsal CA1. Moreover, CFC consolidation, Egr1 neuron density, and LTP amplitude in dorsal CA1 show a positive correlation with REM sleep amount. Altogether, these results indicate that mild changes in REM sleep amount bidirectionally affect memory and synaptic plasticity mechanisms occurring in the CA1 area of the dorsal hippocampus.

  19. Timing of REM sleep is coupled to the circadian rhythm of body temperature in man.

    PubMed

    Czeisler, C A; Zimmerman, J C; Ronda, J M; Moore-Ede, M C; Weitzman, E D

    1980-01-01

    Ten male subjects were studied for a total of 306 days on self-selected schedules. Four of them developed bedrest-activity cycle period lengths very different from 24 hr (mean = 36.8 hr) despite the persistence of near-24-hr oscillations in other physiologic functions, including that of body temperature (mean = 24.6 hr). The percentage of sleep time spent in REM sleep varied significantly with the phase of that near-24-hr body temperature cycle. The peak in REM sleep propensity (RSP) occurred on the rising slope of the average body temperature curve, coincident with the phase of peak sleep tendency. This was associated with a significantly increased REM episode duration and shortened REM latency (including sleep-onset REM episodes), but without a significant change in the REM-NREM cycle length. We conclude that there is an endogenous circadian rhythm of REM sleep propensity which is closely coupled to the body temperature rhythm and is capable of free-running with a period different from both 24 hr and the average period of the sleep-wake cycle.

  20. Antidepressants and REM Sleep Behavior Disorder: Isolated Side Effect or Neurodegenerative Signal?

    PubMed Central

    Postuma, Ronald B.; Gagnon, Jean-Francois; Tuineaig, Maria; Bertrand, Josie-Anne; Latreille, Veronique; Desjardins, Catherine; Montplaisir, Jacques Y.

    2013-01-01

    Objectives: Antidepressants, among the most commonly prescribed medications, trigger symptoms of REM sleep behavior disorder (RBD) in up to 6% of users. Idiopathic RBD is a very strong prodromal marker of Parkinson disease and other synuclein-mediated neurodegenerative syndromes. It is therefore critically important to understand whether antidepressant-associated RBD is an independent pharmacologic syndrome or a sign of possible prodromal neurodegeneration. Design: Prospective cohort study. Setting: Tertiary sleep disorders center. Participants: 100 patients with idiopathic RBD, all with diagnosis confirmed on polysomnography, stratified to baseline antidepressant use, with 45 matched controls. Measurements/Results: Of 100 patients, 27 were taking antidepressants. Compared to matched controls, RBD patients taking antidepressants demonstrated significant abnormalities of 12/14 neurodegenerative markers tested, including olfaction (P = 0.007), color vision (P = 0.004), Unified Parkinson Disease Rating Scale II and III (P < 0.001 and 0.007), timed up-and-go (P = 0.003), alternate tap test (P = 0.002), Purdue Pegboard (P = 0.007), systolic blood pressure drop (P = 0.029), erectile dysfunction (P = 0.002), constipation (P = 0.003), depression indices (P < 0.001), and prevalence of mild cognitive impairment (13% vs. 60%, P < 0.001). All these abnormalities were indistinguishable in severity from RBD patients not taking antidepressants. However, on prospective follow-up, RBD patients taking antidepressants had a lower risk of developing neurodegenerative disease than those without antidepressant use (5-year risk = 22% vs. 59%, RR = 0.22, 95%CI = 0.06, 0.74). Conclusions: Although patients with antidepressant-associated RBD have a lower risk of neurodegeneration than patients with “purely-idiopathic” RBD, markers of prodromal neurodegeneration are still clearly present. Development of RBD with antidepressants can be an early signal of an underlying neurodegenerative

  1. Chemogenetic inhibition of the medial prefrontal cortex reverses the effects of REM sleep loss on sucrose consumption.

    PubMed

    McEown, Kristopher; Takata, Yohko; Cherasse, Yoan; Nagata, Nanae; Aritake, Kosuke; Lazarus, Michael

    2016-12-06

    Rapid eye movement (REM) sleep loss is associated with increased consumption of weight-promoting foods. The prefrontal cortex (PFC) is thought to mediate reward anticipation. However, the precise role of the PFC in mediating reward responses to highly palatable foods (HPF) after REM sleep deprivation is unclear. We selectively reduced REM sleep in mice over a 25-48 hr period and chemogenetically inhibited the medial PFC (mPFC) by using an altered glutamate-gated and ivermectin-gated chloride channel that facilitated neuronal inhibition through hyperpolarizing infected neurons. HPF consumption was measured while the mPFC was inactivated and REM sleep loss was induced. We found that REM sleep loss increased HPF consumption compared to control animals. However, mPFC inactivation reversed the effect of REM sleep loss on sucrose consumption without affecting fat consumption. Our findings provide, for the first time, a causal link between REM sleep, mPFC function and HPF consumption.

  2. The hypocretins (orexins) mediate the “phasic” components of REM sleep: A new hypothesis

    PubMed Central

    Torterolo, Pablo; Chase, Michael H.

    2014-01-01

    In 1998, a group of phenotypically distinct neurons were discovered in the postero-lateral hypothalamus which contained the neuropeptides hypocretin 1 and hypocretin 2 (also called orexin A and orexin B), which are excitatory neuromodulators. Hypocretinergic neurons project throughout the central nervous system and have been involved in the generation and maintenance of wakefulness. The sleep disorder narcolepsy, characterized by hypersomnia and cataplexy, is produced by degeneration of these neurons. The hypocretinergic neurons are active during wakefulness in conjunction with the presence of motor activity that occurs during survival-related behaviors. These neurons decrease their firing rate during non-REM sleep; however there is still controversy upon the activity and role of these neurons during REM sleep. Hence, in the present report we conducted a critical review of the literature of the hypocretinergic system during REM sleep, and hypothesize a possible role of this system in the generation of REM sleep. PMID:26483897

  3. REM sleep and emotional face memory in typically-developing children and children with autism.

    PubMed

    Tessier, Sophie; Lambert, Andréane; Scherzer, Peter; Jemel, Boutheina; Godbout, Roger

    2015-09-01

    Relationship between REM sleep and memory was assessed in 13 neurotypical and 13 children with Autistic Spectrum Disorder (ASD). A neutral/positive/negative face recognition task was administered the evening before (learning and immediate recognition) and the morning after (delayed recognition) sleep. The number of rapid eye movements (REMs), beta and theta EEG activity over the visual areas were measured during REM sleep. Compared to neurotypical children, children with ASD showed more theta activity and longer reaction time (RT) for correct responses in delayed recognition of neutral faces. Both groups showed a positive correlation between sleep and performance but different patterns emerged: in neurotypical children, accuracy for recalling neutral faces and overall RT improvement overnight was correlated with EEG activity and REMs; in children with ASD, overnight RT improvement for positive and negative faces correlated with theta and beta activity, respectively. These results suggest that neurotypical and children with ASD use different sleep-related brain networks to process faces.

  4. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    PubMed

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM.

  5. REM and NREM sleep as natural accompaniments of the evolution of warm-bloodedness.

    PubMed

    Lee Kavanau, J

    2002-12-01

    Divergence of primitive sleep into REM and NREM states is thought to have occurred in the nocturnal Triassic ancestors of mammals as a natural accompaniment of the evolution of warm-bloodedness. As ambient temperatures during twilight portions of primitive sleep traversed these evolving ancestors' core temperature, mechanisms of thermoregulatory control that employ muscle contractions became superfluous. The resulting loss of need for such contractions during twilight sleep led to muscle atonia. With muscle tone absent, selection favored the persistence of the fast waves of nocturnal activity during twilight sleep. Stimulations by these waves reinforce motor circuits at the increasing temperatures of evolving warm-bloodedness without leading to sleep-disturbing muscle contractions. By these and related interlinked adaptations, twilight sleep evolved into REM sleep. The daytime period of sleep became NREM sleep. The evolution of NREM and REM sleep following this scenario has implications for sleep's maintenance processes for long-term memories. During NREM sleep, there is an unsynchronized, uncoordinated stimulation and reinforcement of individual distributed component circuits of consolidated memories by slow wave potentials, a process termed 'uncoordinated reinforcement'. The corresponding process during REM sleep is the coordinated stimulation and reinforcement of these circuits by fast wave potentials. This action temporally binds the individual component circuit outputs into fully formed memories, a process termed 'coordinated reinforcement'. Sequential uncoordinated and coordinated reinforcement, that is, NREM followed by REM sleep, emerges as the most effective mechanism of long-term memory maintenance in vertebrates. With the evolution of this two-stage mechanism of long-term memory maintenance, it became adaptive to partition sleep into several NREM-REM cycles, thereby achieving a more lengthy application of the cooperative sequential actions.

  6. Non-REM sleep-disordered breathing affects performance on the psychomotor vigilance task.

    PubMed

    Kitamura, Takuro; Miyazaki, Soichiro; Kadotani, Hiroshi; Kanemura, Takashi; Sulaiman, Harun Bin; Takeuchi, Shoko; Tabata, Takahisa; Suzuki, Hideaki

    2017-08-14

    Although many studies have investigated the clinical importance of sleep apnea on rapid eye movement (REM) and non-REM (NREM) sleep, the relationship between behavioral performance and apneic events during different sleep phases remains unclear. In the present study, we sought to investigate the effect of sleep phase fragmentation due to sleep-disordered breathing (SDB) during REM and NREM on the vigilance and sustainability of attention based on psychomotor vigilance task (PVT) performance. From a pool of subjects who underwent consecutive diagnostic polysomnography (PSG) for obstructive sleep apnea, 163 adult subjects with both REM and NREM sleep ≥ 30 min were enrolled for our study and performed a standardized 10-min PVT. The main outcome variables of the PVT were mean reaction time (RT), PVT Lapse count, and the slope of the reciprocal RT. Subjective sleepiness was measured using the Epworth Sleepiness Scale (ESS). After multivariate linear regression analysis with adjustment for age, sex, body mass index, and the apnea-hypopnea index (AHI) of the counterpart sleep phase, we found that AHI during NREM (AHINREM) compared to AHI during REM (AHIREM) was significantly associated with PVT lapses. Our results suggest that SDB during NREM has a significant impact on vigilance lapses compared to that of REM.

  7. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    PubMed

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  8. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain

    PubMed Central

    RUKHADZE, I.; KAMANI, H.; KUBIN, L.

    2017-01-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N > GH > GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I > GH > N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70–120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes. PMID:22205596

  9. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation.

    PubMed

    Ota, Simone M; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M; Tiba, Paula A

    2013-11-01

    Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Wistar male rats weighing 300-400 g. Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.

  10. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study

    PubMed Central

    Rosales-Lagarde, Alejandra; Armony, Jorge L.; del Río-Portilla, Yolanda; Trejo-Martínez, David; Conde, Ruben; Corsi-Cabrera, Maria

    2012-01-01

    Converging evidence from animal and human studies suggest that rapid eye movement (REM) sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation (REM-D) on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM-D, by awakening them at each REM sleep onset, or non-rapid eye movement sleep interruptions (NREM-I) as control for potential non-specific effects of awakenings and lack of sleep. In a within-subject design, a visual emotional reactivity task was performed in the scanner before and 24 h after sleep manipulation. Behaviorally, emotional reactivity was enhanced relative to baseline (BL) in the REM deprived group only. In terms of fMRI signal, there was, as expected, an overall decrease in activity in the NREM-I group when subjects performed the task the second time, particularly in regions involved in emotional processing, such as occipital and temporal areas, as well as in the ventrolateral prefrontal cortex, involved in top-down emotion regulation. In contrast, activity in these areas remained the same level or even increased in the REM-D group, compared to their BL level. Taken together, these results suggest that lack of REM sleep in humans is associated with enhanced emotional reactivity, both at behavioral and neural levels, and thus highlight the specific role of REM sleep in regulating the neural substrates for emotional responsiveness. PMID:22719723

  11. REM sleep as a potential indicator of hyperarousal in psychophysiological and paradoxical insomnia sufferers.

    PubMed

    Pérusse, Alexandra D; Pedneault-Drolet, Maude; Rancourt, Christine; Turcotte, Isabelle; St-Jean, Geneviève; Bastien, Célyne H

    2015-03-01

    The objective was to study REM sleep macrostructure and microstructure as potential indicators of hyperarousal in insomnia by comparing good sleepers (GS) and insomnia sufferers (INS) (subdivided into psychophysiological "PSY-I" and paradoxical "PARA-I"). Cross-sectional comparisons of GS, PSY-I and PARA-I. Participants slept for 4 consecutive nights in the laboratory where PSG was recorded. Nights 2 and 3 were combined to compare REM sleep between groups. Thirty-nine PSY-I, 27 PARA-I and 47 GS completed the study, comprising home questionnaires, clinical interviews and night PSG recordings. All participants were aged between 25 and 55 and met inclusion criteria for either PSY-I, PARA-I or GS. Results showed no between group differences on REM sleep macrostructure. As for REM sleep microstructure, PSY-I had an increased number of wake intrusions compared to PARA-I (p=.03). Subjective SE, TST and TWT were significantly correlated with the duration of REM sleep (REMD; p≤.002) and with the proportion of REM sleep for PARA-I (p≤.06). REM sleep macrostructure does not seem to be an adequate indicator of hyperarousal in insomnia. However, the number of wake intrusions in REM could be used to differentiate PSY-I from PARA-I and could reflect the heightened arousal of the former group. Relationships between REM sleep duration and proportion could be linked to dream imagery activity, especially in PARA-I. Further investigations are needed to identify variables that could reflect hyperarousal and differentiate insomnia types. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study.

    PubMed

    Rosales-Lagarde, Alejandra; Armony, Jorge L; Del Río-Portilla, Yolanda; Trejo-Martínez, David; Conde, Ruben; Corsi-Cabrera, Maria

    2012-01-01

    Converging evidence from animal and human studies suggest that rapid eye movement (REM) sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation (REM-D) on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM-D, by awakening them at each REM sleep onset, or non-rapid eye movement sleep interruptions (NREM-I) as control for potential non-specific effects of awakenings and lack of sleep. In a within-subject design, a visual emotional reactivity task was performed in the scanner before and 24 h after sleep manipulation. Behaviorally, emotional reactivity was enhanced relative to baseline (BL) in the REM deprived group only. In terms of fMRI signal, there was, as expected, an overall decrease in activity in the NREM-I group when subjects performed the task the second time, particularly in regions involved in emotional processing, such as occipital and temporal areas, as well as in the ventrolateral prefrontal cortex, involved in top-down emotion regulation. In contrast, activity in these areas remained the same level or even increased in the REM-D group, compared to their BL level. Taken together, these results suggest that lack of REM sleep in humans is associated with enhanced emotional reactivity, both at behavioral and neural levels, and thus highlight the specific role of REM sleep in regulating the neural substrates for emotional responsiveness.

  13. Restoration of normal motor control in Parkinson's disease during REM sleep.

    PubMed

    De Cock, Valérie Cochen; Vidailhet, Marie; Leu, Smaranda; Texeira, Antonio; Apartis, Emmanuelle; Elbaz, Alexis; Roze, Emmanuel; Willer, Jean Claude; Derenne, Jean Philippe; Agid, Yves; Arnulf, Isabelle

    2007-02-01

    Although normal subjects do not move during REM sleep, patients with Parkinson's disease may experience REM sleep behaviour disorder (RBD). The characteristics of the abnormal REM sleep movements in RBD have, however, not been studied. We interviewed one hundred consecutive non-demented patients with Parkinson's disease and their bed partners using a structured questionnaire assessing the presence of RBD. They rated the quality of movements, voice and facial expression during RBD as being better, equal or worse than in awake ON levodopa condition. Night-time sleep and movements were video-monitored during polysomnography in 51 patients to evaluate the presence of bradykinesia, tremor and hypophonia during REM sleep. Fifty-nine patients had clinical RBD with 53/59 bed partners able to evaluate them. All 53 (100%) reported an improvement of at least one component of motor control during RBD. By history, movements were improved in 87% patients (faster, 87%; stronger, 87%; smoother, 51%), speech was better in 77% patients (more intelligible, 77%; louder, 38%; better articulated, 57%) and facial expression was normalized in 47% patients. Thirty-eight per cent of bed partners reported that movements were 'much better', even in the most disabled patients. The video-monitored purposeful movements in REM sleep were also surprisingly fast, ample, coordinated and symmetrical, without obvious sign of parkinsonism. The movements were, however, jerky, violent and often repetitive. While all patients had asymmetrical parkinsonism when awake, most of the time they used the more disabled arm, hand and leg during the RBD (P = 0.04). Movements involved six times as often the upper limbs and the face as the lower limbs (OR: 5.9, P = 0.004). The percentage of time containing tremor EMG activity decreased with sleep stages from 34.9 +/- 15.5% during wakefulness, to 3.6 +/- 5.7% during non-REM sleep stages 1-2, 1.4 +/- 3.0% during non-REM sleep stages 3-4, and 0.06 +/- 0.2% during REM

  14. The 'scanning hypothesis' of rapid eye movements during REM sleep: a review of the evidence.

    PubMed

    Arnulf, I

    2011-12-01

    Rapid eye movements (REMs) and visual dreams are salient features of REM sleep. However, it is unclear whether the eyes scan dream images. Several lines of evidence oppose the scanning hypothesis: REMs persist in animals and humans without sight (pontine cats, foetus, neonates, born-blinds), some binocular REMs are not conjugated (no focus point), REMs occur in parallel (not in series) with the stimulation of the visual cortex by ponto-geniculo-occipital spikes, and visual dreams can be obtained in non REM sleep. Studies that retrospectively compared the direction of REMs to dream recall recorded after having awakened the sleeper yielded inconsistent results, with a concordance varying from 9 to 80%. However, this method was subject to methodological flaws, including the bias of retrospection and neck atonia that does not allow the determination of the exact direction of gaze. Using the model of RBD (in which patients are able to enact their dreams due to the absence of muscle atonia) in 56 patients, we directly determined if the eyes moved in the same directions as the head and limbs. When REMs accompanied goal-oriented motor behaviour during RBD (e.g., framing something, greeting with the hand, climbing a ladder), 90% were directed towards the action of the patient (same plane and direction). REMs were however absent in 38% of goal-oriented behaviours. This directional coherence between limbs, head and eye movements during RBD suggests that, when present, REMs imitate the scanning of the dream scene. Because REMs index and complexity were similar in patients with RBD and controls, this concordance can be extended to normal REM sleep. These results are consistent with the model of a brainstem generator activating simultaneously images, sounds, limbs movements and REMs in a coordinated parallel manner, as in a virtual reality.

  15. The maturational trajectories of NREM and REM sleep durations differ across adolescence on both school-night and extended sleep.

    PubMed

    Feinberg, Irwin; Davis, Nicole M; de Bie, Evan; Grimm, Kevin J; Campbell, Ian G

    2012-03-01

    We recorded sleep electroencephalogram longitudinally across ages 9-18 yr in subjects sleeping at home. Recordings were made twice yearly on 4 consecutive nights: 2 nights with the subjects maintaining their ongoing school-night schedules, and 2 nights with time in bed extended to 12 h. As expected, school-night total sleep time declined with age. This decline was entirely produced by decreasing non-rapid eye movement (NREM) sleep. Rapid eye movement (REM) sleep durations increased slightly but significantly. NREM and REM sleep durations also exhibited different age trajectories when sleep was extended. Both durations exceeded those on school-night schedules. However, the elevated NREM duration did not change with age, whereas REM durations increased significantly. We interpret the adolescent decline in school-night NREM duration in relation to our hypothesis that NREM sleep reverses changes produced in plastic brain systems during waking. The "substrate" produced during waking declines across adolescence, because synaptic elimination decreases the intensity (metabolic rate) of waking brain activity. Declining substrate reduces both NREM intensity (i.e., delta power) and NREM duration. The absence of a decline in REM sleep duration on school-night sleep and its age-dependent increase in extended sleep pose new challenges to understanding its physiological role. Whatever their ultimate explanation, these robust findings demonstrate that the two physiological states of human sleep respond differently to the maturational brain changes of adolescence. Understanding these differences should shed new light on both brain development and the functions of sleep.

  16. EEG sleep in depression and in remission and the REM sleep response to the cholinergic agonist RS 86.

    PubMed

    Riemann, D; Berger, M

    1989-06-01

    A comparison of the sleep EEG patterns of patients with a major depressive disorder intraindividually between remitted and depressed state revealed an improvement of parameters of sleep continuity and a tendency for normalization of rapid eye movement (REM) latency and REM density in the former. Additional application of the cholinergic agonist RS 86 prior to sleep did not reveal a heightened sensitivity of the REM sleep system in the remitted sample. Whereas a group of presently ill depressives displayed a drastic reduction of REM latency, results of the remitted patients were comparable to healthy controls. Furthermore, RS 86 significantly reduced slow-wave sleep in all groups investigated and had a differential impact on the density of the first REM period and early morning awakening in actively ill patients as compared to remitted patients. The results do not favor the hypothesis of a trait specificity of REM sleep abnormalities for depressive disorders. Furthermore they support the model of a cholinergic supersensitivity, as measured by REM induction after RS 86, as a state but not a trait marker of affective illness. Generalization of the present study may, however, be limited by the fact that the remitted patients were free of symptomatology and psychoactive medication for a long period (mean 3 years), therefore constituting an untypical group of formerly depressed patients with a seemingly low risk of relapse.

  17. Senior Vipassana Meditation practitioners exhibit distinct REM sleep organization from that of novice meditators and healthy controls.

    PubMed

    Maruthai, Nirmala; Nagendra, Ravindra P; Sasidharan, Arun; Srikumar, Sulekha; Datta, Karuna; Uchida, Sunao; Kutty, Bindu M

    2016-06-01

    Abstract/Summary The present study is aimed to ascertain whether differences in meditation proficiency alter rapid eye movement sleep (REM sleep) as well as the overall sleep-organization. Whole-night polysomnography was carried out using 32-channel digital EEG system. 20 senior Vipassana meditators, 16 novice Vipassana meditators and 19 non-meditating control subjects participated in the study. The REM sleep characteristics were analyzed from the sleep-architecture of participants with a sleep efficiency index >85%. Senior meditators showed distinct changes in sleep-organization due to enhanced slow wave sleep and REM sleep, reduced number of intermittent awakenings and reduced duration of non-REM stage 2 sleep. The REM sleep-organization was significantly different in senior meditators with more number of REM episodes and increased duration of each episode, distinct changes in rapid eye movement activity (REMA) dynamics due to increased phasic and tonic activity and enhanced burst events (sharp and slow bursts) during the second and fourth REM episodes. No significant differences in REM sleep organization was observed between novice and control groups. Changes in REM sleep-organization among the senior practitioners of meditation could be attributed to the intense brain plasticity events associated with intense meditative practices on brain functions.

  18. Changes in Cardiac Variability after REM Sleep Deprivation in Recurrent Nightmares

    PubMed Central

    Nielsen, Tore; Paquette, Tyna; Solomonova, Elizaveta; Lara-Carrasco, Jessica; Colombo, Roberto; Lanfranchi, Paola

    2010-01-01

    Study Objectives: To assess whether dysfunctional autonomic regulation during REM sleep as indexed by heart rate variability (HRV) is a pathophysiological factor in frequent nightmares (NMs). Design: Monitoring with polysomnography (PSG) and electrocardiography (ECG) for 3 consecutive nights: Night 1 (N1), adaptation night; N2, administration of partial REM sleep deprivation; N3, recovery night. Differences between NM and control (CTL) groups assessed for ECG measures drawn from wakefulness, REM sleep, and Stage 2 sleep on both N1 and N3. Setting: Hospital-based sleep laboratory Participants: Sixteen subjects with frequent NMs ( ≥ 1 NM/week; mean age = 26.1 ± 8.7 years) but no other medical or psychiatric disorders and 11 healthy comparison subjects ( < 1 NM/month; mean age = 27.1±5.6 years). Results: NM and CTL groups differed on 2 REM sleep measures only on N1; the NM group had longer REM latencies and REM/NREM cycle durations than did the CTL group. No differences were found on time domain and absolute frequency domain ECG measures for either N1 or N3. However, altered HRV for the NM group was suggested by significantly higher LFnu, lower HFnu, and higher LF/HF ratio than for the CTL group. Conclusions: Results are consistent with a higher than normal sympathetic drive among NM subjects which is unmasked by high REM sleep propensity. Results also support a growing literature linking anxiety disorders of several types (panic disorder, posttraumatic stress disorder (PTSD), generalized anxiety disorder) to altered HR variability. Citation: Nielsen T; Paquette T; Solomonova E; Lara-Carrasco J; Colombo R; Lanfranchi P. Changes in cardiac variability after rem sleep deprivation in recurrent nightmares. SLEEP 2010;33(1):113-122. PMID:20120628

  19. Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Duwell, Ethan J; Timm, Paul C; Sandness, David J; Boeve, Bradley F; Silber, Michael H

    2014-10-01

    We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. We visually analyzed RSWA phasic burst durations, phasic, "any," and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. N/A. Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. N/A. All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, "any") cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. © 2014 Associated Professional Sleep Societies, LLC.

  20. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment.

    PubMed

    Aleisa, A M; Alzoubi, K H; Alkadhi, K A

    2011-07-15

    Rapid eye movement sleep deprivation (REM-SD) is associated with spatial learning and memory impairment. During REM-SD, an increase in nicotine consumption among habitual smokers and initiation of tobacco use by non-smokers have been reported. We have shown recently that nicotine treatment prevented learning and memory impairments associated with REM-SD. We now report the interactive effects of post-learning REM-SD and/or nicotine. The animals were first trained on the radial arm water maze (RAWM) task, then they were REM-sleep deprived using the modified multiple platform paradigm for 24h. During REM-SD period, the rats were injected with saline or nicotine (1mg/kg s.c. every 12h: a total of 3 injections). The animals were tested for long-term memory in the RAWM at the end of the REM-SD period. The 24h post-learning REM-SD significantly impaired long-term memory. However, nicotine treatment reversed the post-learning REM-SD-induced impairment of long-term memory. On the other hand, post-learning treatment of normal rats with nicotine for 24h enhanced long-term memory. These results indicate that post-learning acute nicotine treatment prevented the deleterious effect of REM-SD on cognitive abilities.

  1. REM sleep behavior disorder and neuropathology in Parkinson's disease.

    PubMed

    Postuma, Ronald B; Adler, Charles H; Dugger, Brittany N; Hentz, Joseph G; Shill, Holly A; Driver-Dunckley, Erika; Sabbagh, Marwan N; Jacobson, Sandra A; Belden, Christine M; Sue, Lucia I; Serrano, Geidy; Beach, Thomas G

    2015-09-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) in Parkinson's disease (PD) is associated with differences in clinical phenotype, including dementia, autonomic loss, and gait dysfunction. The pathological basis for this remains unclear. Parkinson's disease subjects in a longitudinal clinicopathologic study were screened for probable RBD with the Mayo Sleep Questionnaire. After death, semiquantitative analyses were conducted for synuclein, amyloid, neurofibrillary tangles, and cerebrovascular lesions. Forty cases had probable RBD (PD+RBD), and 41 did not (PD-RBD). Despite similar age at death (∼80 y) and disease duration (∼14.5 y), PD+RBD had increased synuclein deposition in all regions examined, with nine of 10 regions significantly different. The Lewy body 10-region total score (scale = 0-40) was 29.5 in PD+RBD versus 24.5 in PD-RBD (Cohen-d effect size = 0.79, P = 0.002). Cerebrovascular lesion burden was slightly higher in PD-RBD. Although overlap occurs between groups, PD patients with probable RBD may have greater density and range of synuclein pathology on autopsy. © 2015 International Parkinson and Movement Disorder Society.

  2. Loss of Gnas imprinting differentially affects REM/NREM sleep and cognition in mice.

    PubMed

    Lassi, Glenda; Ball, Simon T; Maggi, Silvia; Colonna, Giovanni; Nieus, Thierry; Cero, Cheryl; Bartolomucci, Alessandro; Peters, Jo; Tucci, Valter

    2012-01-01

    It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM-linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM-dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes.

  3. REM sleep de-potentiates amygdala activity to previous emotional experiences

    PubMed Central

    van der Helm, Els; Yao, Justin; Dutt, Shubir; Rao, Vikram; Saletin, Jared M.; Walker, Matthew P.

    2011-01-01

    Summary Clinical evidence suggests a potentially causal interaction between sleep and affective brain function; nearly all mood disorders display co-occurring sleep abnormalities, commonly involving rapid-eye movement (REM) sleep [1–4]. Building on this clinical evidence, recent neurobiological frameworks have hypothesized a benefit of REM sleep in palliatively decreasing next-day brain reactivity to recent waking emotional experiences [5, 6]. Specifically, the marked suppression of central adrenergic neurotransmitters during REM (commonly implicated in arousal and stress), coupled with activation in amygdala-hippocampal networks that encode salient events, is proposed to (re)process and de-potentiate previous affective experiences, decreasing their emotional intensity [3]. In contrast, the failure of such adrenergic reduction during REM sleep has been described in anxiety disorders, indexed by persistent high-frequency electroencephalographic (EEG) activity (>30Hz) [7–10]; a candidate factor contributing to hyper-arousal and exaggerated amygdala reactivity [3, 11–13]. Despite these neurobiological frameworks, and their predictions, the proposed benefit of REM sleep physiology in de-potentiating neural and behavioral responsivity to prior emotional events remains unknown. Here, we demonstrate that REM sleep physiology is associated with an overnight dissipation of amygdala activity in response to previous emotional experiences, altering functional-connectivity and reducing next-day subjective emotionality. PMID:22119526

  4. Altered Sleep Stage Transitions of REM Sleep: A Novel and Stable Biomarker of Narcolepsy

    PubMed Central

    Liu, Yaping; Zhang, Jihui; Lam, Venny; Ho, Crover Kwok Wah; Zhou, Junying; Li, Shirley Xin; Lam, Siu Ping; Yu, Mandy Wai Man; Tang, Xiangdong; Wing, Yun-Kwok

    2015-01-01

    Objectives: To determine the diagnostic values, longitudinal stability, and HLA association of the sleep stage transitions in narcolepsy. Methods: To compare the baseline differences in the sleep stage transition to REM sleep among 35 patients with type 1 narcolepsy, 39 patients with type 2 narcolepsy, 26 unaffected relatives, and 159 non-narcoleptic sleep patient controls, followed by a reassessment at a mean duration of 37.4 months. Results: The highest prevalence of altered transition from stage non-N2/N3 to stage R in multiple sleep latency test (MSLT) and nocturnal polysomnography (NPSG) was found in patients with type 1 narcolepsy (92.0% and 57.1%), followed by patients with type 2 narcolepsy (69.4% and 12.8%), unaffected relatives (46.2% and 0%), and controls (39.3% and 1.3%). Individual sleep variables had varied sensitivity and specificity in diagnosing narcolepsy. By incorporating a combination of sleep variables, the decision tree analysis improved the sensitivity to 94.3% and 82.1% and enhanced specificity to 82.4% and 83% for the diagnosis of type 1 and type 2 narcolepsy, respectively. There was a significant association of DBQ1*0602 with the altered sleep stage transition (OR = 16.0, 95% CI: 1.7–149.8, p = 0.015). The persistence of the altered sleep stage transition in both MSLT and NPSG was high for both type 1 (90.5% and 64.7%) and type 2 narcolepsy (92.3% and 100%), respectively. Conclusions: Altered sleep stage transition is a significant and stable marker of narcolepsy, which suggests a vulnerable wake-sleep dysregulation trait in narcolepsy. Altered sleep stage transition has a significant diagnostic value in the differential diagnosis of hypersomnias, especially when combined with other diagnostic sleep variables in decision tree analysis. Citation: Liu Y, Zhang J, Lam V, Ho CK, Zhou J, Li SX, Lam SP, Yu MW, Tang X, Wing YK. Altered sleep stage transitions of REM sleep: a novel and stable biomarker of narcolepsy. J Clin Sleep Med 2015

  5. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man

    PubMed Central

    Gotter, Anthony L.; Forman, Mark S.; Harrell, Charles M.; Stevens, Joanne; Svetnik, Vladimir; Yee, Ka Lai; Li, Xiaodong; Roecker, Anthony J.; Fox, Steven V.; Tannenbaum, Pamela L.; Garson, Susan L.; Lepeleire, Inge De; Calder, Nicole; Rosen, Laura; Struyk, Arie; Coleman, Paul J.; Herring, W. Joseph; Renger, John J.; Winrow, Christopher J.

    2016-01-01

    Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism. PMID:27256922

  6. Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep.

    PubMed

    Funk, Chadd M; Honjoh, Sakiko; Rodriguez, Alexander V; Cirelli, Chiara; Tononi, Giulio

    2016-02-08

    Sleep is traditionally constituted of two global behavioral states, non-rapid eye movement (NREM) and rapid eye movement (REM), characterized by quiescence and reduced responsiveness to sensory stimuli [1]. NREM sleep is distinguished by slow waves and spindles throughout the cerebral cortex and REM sleep by an "activated," low-voltage fast electroencephalogram (EEG) paradoxically similar to that of wake, accompanied by rapid eye movements and muscle atonia. However, recent evidence has shown that cortical activity patterns during wake and NREM sleep are not as global as previously thought. Local slow waves can appear in various cortical regions in both awake humans [2] and rodents [3-5]. Intracranial recordings in humans [6] and rodents [4, 7] have shown that NREM sleep slow waves most often involve only a subset of brain regions that varies from wave to wave rather than occurring near synchronously across all cortical areas. Moreover, some cortical areas can transiently "wake up" [8] in an otherwise sleeping brain. Yet until now, cortical activity during REM sleep was thought to be homogenously wake-like. We show here, using local laminar recordings in freely moving mice, that slow waves occur regularly during REM sleep, but only in primary sensory and motor areas and mostly in layer 4, the main target of relay thalamic inputs, and layer 3. This finding may help explain why, during REM sleep, we remain disconnected from the environment even though the bulk of the cortex shows wake-like, paradoxical activation.

  7. No effect of odor-induced memory reactivation during REM sleep on declarative memory stability

    PubMed Central

    Cordi, Maren J.; Diekelmann, Susanne; Born, Jan; Rasch, Björn

    2014-01-01

    Memory reactivations in hippocampal brain areas are critically involved in memory consolidation processes during sleep. In particular, specific firing patterns of hippocampal place cells observed during learning are replayed during subsequent sleep and rest in rodents. In humans, experimentally inducing hippocampal memory reactivations during slow-wave sleep (but not during wakefulness) benefits consolidation and immediately stabilizes declarative memories against future interference. Importantly, spontaneous hippocampal replay activity can also be observed during rapid eye movement (REM) sleep and some authors have suggested that replay during REM sleep is related to processes of memory consolidation. However, the functional role of reactivations during REM sleep for memory stability is still unclear. Here, we reactivated memories during REM sleep and examined its consequences for the stability of declarative memories. After 3 h of early, slow-wave sleep (SWS) rich sleep, 16 healthy young adults learned a 2-D object location task in the presence of a contextual odor. During subsequent REM sleep, participants were either re-exposed to the odor or to an odorless vehicle, in a counterbalanced within subject design. Reactivation was followed by an interference learning task to probe memory stability after awakening. We show that odor-induced memory reactivation during REM sleep does not stabilize memories against future interference. We propose that the beneficial effect of reactivation during sleep on memory stability might be critically linked to processes characterizing SWS including, e.g., slow oscillatory activity, sleep spindles, or low cholinergic tone, which are required for a successful redistribution of memories from medial temporal lobe regions to neocortical long-term stores. PMID:25225474

  8. Dissociable learning-dependent changes in REM and non-REM sleep in declarative and procedural memory systems.

    PubMed

    Fogel, Stuart M; Smith, Carlyle T; Cote, Kimberly A

    2007-06-04

    Sleep spindles and rapid eye movements have been found to increase following an intense period of learning on a combination of procedural memory tasks. It is not clear whether these changes are task specific, or the result of learning in general. The current study investigated changes in spindles, rapid eye movements, K-complexes and EEG spectral power following learning in good sleepers randomly assigned to one of four learning conditions: Pursuit Rotor (n=9), Mirror Tracing (n=9), Paired Associates (n=9), and non-learning controls (n=9). Following Pursuit Rotor learning, there was an increase in the duration of Stage 2 sleep, spindle density (number of spindles/min), average spindle duration, and an increase in low frequency sigma power (12-14Hz) at occipital regions during SWS and at frontal regions during Stage 2 sleep in the second half of the night. These findings are consistent with previous findings that Pursuit Rotor learning is consolidated during Stage 2 sleep, and provide additional data to suggest that spindles across all non-REM stages may be a mechanism for brain plasticity. Following Paired Associates learning, theta power increased significantly at central regions during REM sleep. This study provides the first evidence that REM sleep theta activity is involved in declarative memory consolidation. Together, these findings support the hypothesis that brain plasticity during sleep does not involve a unitary process; that is, different types of learning have unique sleep-related memory consolidation mechanisms that act in dissociable brain regions at different times throughout the night.

  9. Altered Sleep Stage Transitions of REM Sleep: A Novel and Stable Biomarker of Narcolepsy.

    PubMed

    Liu, Yaping; Zhang, Jihui; Lam, Venny; Ho, Crover Kwok Wah; Zhou, Junying; Li, Shirley Xin; Lam, Siu Ping; Yu, Mandy Wai Man; Tang, Xiangdong; Wing, Yun-Kwok

    2015-08-15

    To determine the diagnostic values, longitudinal stability, and HLA association of the sleep stage transitions in narcolepsy. To compare the baseline differences in the sleep stage transition to REM sleep among 35 patients with type 1 narcolepsy, 39 patients with type 2 narcolepsy, 26 unaffected relatives, and 159 non-narcoleptic sleep patient controls, followed by a reassessment at a mean duration of 37.4 months. The highest prevalence of altered transition from stage non-N2/N3 to stage R in multiple sleep latency test (MSLT) and nocturnal polysomnography (NPSG) was found in patients with type 1 narcolepsy (92.0% and 57.1%), followed by patients with type 2 narcolepsy (69.4% and 12.8%), unaffected relatives (46.2% and 0%), and controls (39.3% and 1.3%). Individual sleep variables had varied sensitivity and specificity in diagnosing narcolepsy. By incorporating a combination of sleep variables, the decision tree analysis improved the sensitivity to 94.3% and 82.1% and enhanced specificity to 82.4% and 83% for the diagnosis of type 1 and type 2 narcolepsy, respectively. There was a significant association of DBQ1*0602 with the altered sleep stage transition (OR = 16.0, 95% CI: 1.7-149.8, p = 0.015). The persistence of the altered sleep stage transition in both MSLT and NPSG was high for both type 1 (90.5% and 64.7%) and type 2 narcolepsy (92.3% and 100%), respectively. Altered sleep stage transition is a significant and stable marker of narcolepsy, which suggests a vulnerable wake-sleep dysregulation trait in narcolepsy. Altered sleep stage transition has a significant diagnostic value in the differential diagnosis of hypersomnias, especially when combined with other diagnostic sleep variables in decision tree analysis. © 2015 American Academy of Sleep Medicine.

  10. REM sleep modulation by perifornical orexinergic inputs to the pedunculo-pontine tegmental neurons in rats.

    PubMed

    Khanday, M A; Mallick, B N

    2015-11-12

    Rapid eye movement sleep (REMS) is regulated by the interaction of the REM-ON and REM-OFF neurons located in the pedunculo-pontine-tegmentum (PPT) and the locus coeruleus (LC), respectively. Many other brain areas, particularly those controlling non-REMS (NREMS) and waking, modulate REMS by modulating these REMS-related neurons. Perifornical (PeF) orexin (Ox)-ergic neurons are reported to increase waking and reduce NREMS as well as REMS; dysfunction of the PeF neurons are related to REMS loss-associated disorders. Hence, we were interested in understanding the neural mechanism of PeF-induced REMS modulation. As a first step we have recently reported that PeF Ox-ergic neurons modulate REMS by influencing the LC neurons (site for REM-OFF neurons). Thereafter, in this in vivo study we have explored the role of PeF inputs on the PPT neurons (site for REM-ON neurons) for the regulation of REMS. Chronic male rats were surgically prepared with implanted bilateral cannulae in PeF and PPT and electrodes for recording sleep-waking patterns. After post-surgical recovery sleep-waking-REMS were recorded when bilateral PeF neurons were stimulated by glutamate and simultaneously bilateral PPT neurons were infused with either saline or orexin receptor1 (OX1R) antagonist. It was observed that PeF stimulation increased waking and decreased NREMS as well as REMS, which were prevented by OX1R antagonist into the PPT. We conclude that the PeF stimulation-induced reduction in REMS was likely to be due to inhibition of REM-ON neurons in the PPT. As waking and NREMS are inversely related, subject to confirmation, the reduction in NREMS could be due to increased waking or vice versa. Based on our findings from this and earlier studies we have proposed a model showing connections between PeF- and PPT-neurons for REMS regulation.

  11. Brainstem and Spinal Cord Circuitry Regulating REM Sleep and Muscle Atonia

    PubMed Central

    Krenzer, Martina; Anaclet, Christelle; Vetrivelan, Ramalingam; Wang, Nishang; Vong, Linh; Lowell, Bradford B.; Fuller, Patrick M.; Lu, Jun

    2011-01-01

    Background Previous work has suggested, but not demonstrated directly, a critical role for both glutamatergic and GABAergic neurons of the pontine tegmentum in the regulation of rapid eye movement (REM) sleep. Methodology/Principal Findings To determine the in vivo roles of these fast-acting neurotransmitters in putative REM pontine circuits, we injected an adeno-associated viral vector expressing Cre recombinase (AAV-Cre) into mice harboring lox-P modified alleles of either the vesicular glutamate transporter 2 (VGLUT2) or vesicular GABA-glycine transporter (VGAT) genes. Our results show that glutamatergic neurons of the sublaterodorsal nucleus (SLD) and glycinergic/GABAergic interneurons of the spinal ventral horn contribute to REM atonia, whereas a separate population of glutamatergic neurons in the caudal laterodorsal tegmental nucleus (cLDT) and SLD are important for REM sleep generation. Our results further suggest that presynaptic GABA release in the cLDT-SLD, ventrolateral periaqueductal gray matter (vlPAG) and lateral pontine tegmentum (LPT) are not critically involved in REM sleep control. Conclusions/Significance These findings reveal the critical and divergent in vivo role of pontine glutamate and spinal cord GABA/glycine in the regulation of REM sleep and atonia and suggest a possible etiological basis for REM sleep behavior disorder (RBD). PMID:22043278

  12. Differential impact of REM sleep deprivation on cytoskeletal proteins of brain regions involved in sleep regulation.

    PubMed

    Rodríguez-Vázquez, Jennifer; Camacho-Arroyo, Ignacio; Velázquez-Moctezuma, Javier

    2012-01-01

    Rapid eye movement (REM) sleep is involved in memory consolidation, which implies synaptic plasticity. This process requires protein synthesis and the reorganization of the neural cytoskeleton. REM sleep deprivation (REMSD) has an impact on some neuronal proteins involved in synaptic plasticity, such as glutamate receptors and postsynaptic density protein 95, but its effects on cytoskeletal proteins is unknown. In this study, the effects of REMSD on the content of the cytoskeletal proteins MAP2 and TAU were analyzed. Adult female rats were submitted to selective REMSD by using the multiple platform technique. After 24, 48 or 72 h of REMSD, rats were decapitated and the following brain areas were dissected: pons, preoptic area, hippocampus and frontal cortex. Protein extraction and Western blot were performed. Results showed an increase in TAU content in the pons, preoptic area and hippocampus after 24 h of REMSD, while in the frontal cortex a significant increase in TAU content was observed after 72 h of REMSD. A TAU content decrease was observed in the hippocampus after 48 h of REMSD. Interestingly, a marked increase in TAU content was observed after 72 h of REMSD. MAP2 content only increased in the preoptic area at 24 h, and in the frontal cortex after 24 and 72 h of REMSD, without significant changes in the pons and hippocampus. These results support the idea that REM sleep plays an important role in the organization of neural cytoskeleton, and that this effect is tissue-specific.

  13. Attenuated heart rate response in REM sleep behavior disorder and Parkinson's disease.

    PubMed

    Sorensen, Gertrud Laura; Kempfner, Jacob; Zoetmulder, Marielle; Sorensen, Helge B D; Jennum, Poul

    2012-06-01

    The objective of this study was to determine whether patients with Parkinson's disease with and without rapid-eye-movement sleep behavior disorder and patients with idiopathic rapid-eye-movement sleep behavior disorder have an attenuated heart rate response to arousals or to leg movements during sleep compared with healthy controls. Fourteen and 16 Parkinson's patients with and without rapid-eye-movement sleep behavior disorder, respectively, 11 idiopathic rapid-eye-movement sleep behavior disorder patients, and 17 control subjects underwent 1 night of polysomnography. The heart rate response associated with arousal or leg movement from all sleep stages was analyzed from 10 heartbeats before the onset of the sleep event to 15 heartbeats following onset of the sleep event. The heart rate reponse to arousals was significantly lower in both parkinsonian groups compared with the control group and the idiopathic rapid-eye-movement sleep behavior disorder group. The heart rate response to leg movement was significantly lower in both Parkinson's groups and in the idiopathic rapid-eye-movement sleep behavior disorder group compared with the control group. The heart rate response for the idiopathic rapid-eye-movement sleep behavior disorder group was intermediate with respect to the control and the parkinsonian groups. The attenuated heart rate response may be a manifestation of the autonomic deficits experienced in Parkinson's disease. The idiopathic rapid-eye-movement sleep behavior disorder patients not only exhibited impaired motor symptoms but also incipient autonomic dysfunction, as revealed by the attenuated heart rate response.

  14. Anesthesia with abdominal surgery leads to intense REM sleep during the first postoperative week.

    PubMed

    Knill, R L; Moote, C A; Skinner, M I; Rose, E A

    1990-07-01

    Characteristics of nocturnal sleep were investigated in six patients after anesthesia and cholecystectomy and in another six after anesthesia and gastroplasty. All night polysomnographic recordings were obtained while each patient slept in a private surgical ward room through two nights before and five or six nights after operation. Anesthesia included thiopental, N2O, isoflurane, and fentanyl. Postoperative analgesia was provided with parenteral morphine. Other aspects of care were routine. Nocturnal sleep was markedly disturbed after both surgical procedures. Throughout the operative night and subsequent one or two nights, sleep was highly fragmented with the usual recurring cycles of sleep stages completely disrupted. Slow wave sleep was suppressed and rapid eye movement (REM) sleep virtually eliminated. During the following 2-4 nights, as other aspects of sleep recovered, REM sleep reappeared and then increased to greater than the preoperative amount. This increased REM sleep was marked by a heavy density of eye movement activity along with frequent patient reports of unusually distressing dreams or vivid nightmares. It is concluded that anesthesia with upper abdominal surgery leads to a severe disruption of nocturnal sleep followed by the release of highly intense REM sleep about the middle of the first postoperative week.

  15. Periodic leg movements and REM sleep without atonia in Parkinson's disease with camptocormia.

    PubMed

    Lavault, Sophie; Bloch, Frederic; Houeto, Jean-Luc; Konofal, Eric; Welter, Marie-Laure; Agid, Yves; Arnulf, Isabelle

    2009-12-15

    Camptocormia (a flexion of the trunk that only appears when standing or walking) affects a minority of patients with Parkinson's disease (PD). As it responds poorly to levodopa and is associated with reduced midbrain and pons volume, it may result from non-dopaminergic, brainstem lesions. As several sleep abnormalities in PD also result from non-dopaminergic brainstem lesions, we monitored sleep in 24 non-demented PD patients with (n = 12) and without (n = 12) camptocormia and in 12 controls. Nearly half (42%) patients with camptocormia had abnormal periodic leg movement indices (>15/h), versus 17% patients without camptocormia and 8% of controls (p = 0.02). In addition, the percentage of enhanced muscle activity during REM sleep (measured on the chin and on the limb muscles) tended to be higher in patients with than without camptocormia (51 +/- 39% vs. 20 +/- 25%, p = 0.06). The other sleep and REM sleep characteristics (sleep and REM sleep onset latencies, sleep time and sleep stage percentages, REMs density, arousal, and apnea-hypopnea indices) were not different between these two PD groups. Lesions causing this axial dystonia may spare the sleep systems but affect the control of movements during sleep. (c) 2009 Movement Disorder Society.

  16. GABA(A) receptors implicated in REM sleep control express a benzodiazepine binding site.

    PubMed

    Nguyen, Tin Quang; Liang, Chang-Lin; Marks, Gerald A

    2013-08-21

    It has been reported that non-subtype-selective GABAA receptor antagonists injected into the nucleus pontis oralis (PnO) of rats induced long-lasting increases in REM sleep. Characteristics of these REM sleep increases were identical to those resulting from injection of muscarinic cholinergic agonists. Both actions were blocked by the muscarinic antagonist, atropine. Microdialysis of GABAA receptor antagonists into the PnO resulted in increased acetylcholine levels. These findings were consistent with GABAA receptor antagonists disinhibiting acetylcholine release in the PnO to result in an acetylcholine-mediated REM sleep induction. Direct evidence has been lacking for localization in the PnO of the specific GABAA receptor-subtypes mediating the REM sleep effects. Here, we demonstrated a dose-related, long-lasting increase in REM sleep following injection (60 nl) in the PnO of the inverse benzodiazepine agonist, methyl-6,7-dimethoxy-4-ethyl-β-carboline (DMCM, 10(-2)M). REM sleep increases were greater and more consistently produced than with the non-selective antagonist gabazine, and both were blocked by atropine. Fluorescence immunohistochemistry and laser scanning confocal microscopy, colocalized in PnO vesicular acetylcholine transporter, a presynaptic marker of cholinergic boutons, with the γ2 subunit of the GABAA receptor. These data provide support for the direct action of GABA on mechanisms of acetylcholine release in the PnO. The presence of the γ2 subunit at this locus and the REM sleep induction by DMCM are consistent with binding of benzodiazepines by a GABAA receptor-subtype in control of REM sleep.

  17. The effects of gender and age on REM-related sleep-disordered breathing.

    PubMed

    Koo, Brian B; Dostal, Jesse; Ioachimescu, Octavian; Budur, Kumaraswamy

    2008-08-01

    Sleep disordered breathing occurring predominantly in rapid eye movement REM sleep (rapid-eye-movement-related sleep-disordered breathing, REM SDB) is present in 10 to 36% of patients undergoing polysomnography (PSG) for suspected obstructive sleep apnea (O'Connor et al. in Am J Respir Crit Care Med 161:1465-1472, 2000; Resta et al. in J Respir Medicine 99:91-96, 2005; Haba-Rubio et al. in Chest 128:3350-3357, 2005; Juvelekian and Golish, American Academy of Sleep Medicine, abstract, 2004). We hypothesize that REM SDB is an age-related condition in women and, additionally, more prevalent in women than in men. Subjects with REM SDB were identified retrospectively among 1,540 obstructive sleep apnea (OSA) patients with an apnea-hypopnea index (AHI) >or= 5. Inclusion criteria for REM SDB were age >18, AHI >or= 5, NREM AHI < 15, and REM AHI/NREM AHI > 2. PSG data included sleep latency, REM latency, total sleep time (TST), AHI, REM AHI, NREM AHI, and sleep stage percentages. Demographic data and medical and psychiatric histories were also obtained. Statistical comparisons were made between men and women and women older and younger than 55 years, a marker for menopausal status. Two hundred twenty-one subjects fulfilled the criteria for REM SDB, yielding a prevalence of 14.4%. Overall, female apneics had a significantly higher prevalence of REM SDB than did men (24.5 vs 7.9%; p < 0.001). Younger women had a significantly higher prevalence than did older women (27.2 vs 18.6%; p = 0.008); younger men had a significantly higher prevalence of REM SDB than did older men (9.9 vs 4.5%; p = 0.002). Women were significantly older and more obese than were men. Younger women were more likely to be depressed and were significantly more obese than were older women. REM SDB is more prevalent in women than in men and more prevalent in men and women younger than 55 than those older than 55. In this population, women are more obese and older than men, while younger women were more obese

  18. Sleep apnea and REM sleep behavior disorder in patients with Chiari malformations.

    PubMed

    Henriques-Filho, Paulo Sérgio A; Pratesi, Riccardo

    2008-06-01

    Chiari malformations (CM) may result in the appearance of REM sleep behavior disorder (RBD) and sleep apnea syndrome (SAS) that can be considered markers of brain stem dysfunction. To evaluate the frequency of RBD and SAS in patients with CM type I and II. Were evaluated 103 patients with CM by means of full night polysomnography. Were scoring different sleep stages, frequency of abnormal movements (through video monitoring) and abnormal respiratory events. Of the 103 patients, 36 showed CM type I and 67 CM type II. Episodes of RBD were observed in 23 patients. Abnormal apnea-hypopnea index (AHI) was observed in 65 patients. The high rate of RBD suggests that this parassomnia and the increased frequency of central sleep apnea episodes, may be considered as a marker of progressive brain stem dysfunction.

  19. REM Sleep Behavior Disorder and Narcoleptic Features in Anti–Ma2-associated Encephalitis

    PubMed Central

    Compta, Yaroslau; Iranzo, Alex; Santamaría, Joan; Casamitjana, Roser; Graus, Francesc

    2007-01-01

    A 69-year-old man with anti-Ma2 paraneoplastic encephalitis presented with subacute onset of severe hypersomnia, memory loss, parkinsonism, and gaze palsy. A brain magnetic resonance imaging study showed bilateral damage in the dorsolateral midbrain, amygdala, and paramedian thalami. Videopolysomnography disclosed rapid eye movement (REM) sleep behavior disorder, and a Multiple Sleep Latency Test showed a mean sleep latency of 7 minutes and 4 sleep-onset REM periods. The level of hypocretin-1 in the cerebrospinal fluid was low (49 pg/mL). This observation illustrates that REM sleep behavior disorder and narcoleptic features are 2 REM-sleep abnormalities that (1) may share the same autoimmune-mediated origin affecting the brainstem, limbic, and diencephalic structures and (2) may occur in the setting of the paraneoplastic anti–Ma2-associated encephalitis. Citation: Compta Y; Iranzo A; Santamaría J et al. REM Sleep Behavior Disorder and Narcoleptic Features in Anti–Ma2-associated Encephalitis. SLEEP 2007;30(6):767-769. PMID:17580598

  20. Validation of the cuff pedestal technique for rapid eye movement sleep (REMs) deprivation by electrophysiological recordings.

    PubMed

    Hilakivi, I; Peder, M; Elomaa, E; Johansson, G

    1984-06-01

    Twenty-four-hour recordings of electrophysiological correlates of the sleep-waking cycle in the rat were performed during different stages of cuff pedestal treatment. It was found that rats adapted to live on pedestals with the cuff raised displayed undisturbed patterns of sleep and wakefulness. Lowering the cuff for three days resulted in virtually total disappearance of rapid eye movement sleep (REMs), while slow wave sleep (SWs) was only slightly reduced. Raising the cuff induced a prominent rebound increase of REMs. These results accord with data obtained by means of the conventional flowerpot procedure and corroborate the validity of the cuff pedestal technique.

  1. H-reflex suppression and autonomic activation during lucid REM sleep: a case study.

    PubMed

    Brylowski, A; Levitan, L; LaBerge, S

    1989-08-01

    A single subject, a proficient lucid dreamer experienced with signaling the onset of lucidity (reflective consciousness of dreaming) by means of voluntary eye movements, spent 4 nonconsecutive nights in the sleep laboratory. The subject reported becoming lucid and signaling in 8 of the 18 rapid-eye movement (REM) periods recorded. Ten lucid dream reports were verified by polygraphic examination of signals, providing a total of 12.5 min of signal-verified lucid REM. H-Reflex amplitude was recorded every 5 s, along with continuous recording of electroencephalogram, electrooculogram, electromyogram, electrocardiogram, finger pulse, and respiration. Significant findings included greater mean H-reflex suppression during lucid REM sleep than during nonlucid REM and correlations of H-reflex suppression with increased eye movement density, heart rate, and respiration rate. These results support previous studies reporting that lucid REM is not, as might be supposed, a state closer to awakening than ordinary, or nonlucid, REM; rather, lucid dreaming occurs during unequivocal REM sleep and is characteristically associated with phasic REM activation.

  2. Faster REM sleep EEG and worse restedness in older insomniacs with HLA DQB1*0602

    PubMed Central

    Zeitzer, Jamie Marc; Fisicaro, Ryan Anthony; Grove, Megan Elizabeth; Mignot, Emmanuel; Yesavage, Jerome Albert; Friedman, Leah

    2011-01-01

    HLA DQB1*0602 is found in most individuals with hypocretin-deficient narcolepsy, a disorder characterized by a severe disruption of sleep and wake. Population studies indicate that DQB1*0602 may also be associated with normal phenotypic variation of rapid eye movement (REM) sleep. Disruption of REM sleep has been linked to specific symptoms of insomnia. We here examine the relationship of sleep and DQB1*0602 in older individuals (n=46) with primary insomnia, using objective (polysomnography, wrist actigraphy) and subjective (logs, scales) measures. DQB1*0602 positivity was similarly distributed in the older individuals with insomnia (24%) as in the general population (25%). Most sleep variables were statistically indistinguishable between DQB1*0602 positive and negative subjects except that those with the allele reported that they were significantly less well rested than those without it. When sleep efficiencies were lower than 70%, DQB1*0602 positive subjects reported being less well rested at the same sleep efficiency than those without the allele. Examination of EEG during REM sleep also revealed that DQB1*0602 positive subjects had EEG shifted towards faster frequencies compared with negative subjects. Thus, DQB1*0602 positivity is associated with both a shift in EEG power spectrum to faster frequencies during REM sleep and a diminution of restedness given the same sleep quantity. PMID:21292329

  3. Auditory Inhibition of Rapid Eye Movements and Dream Recall from REM Sleep

    PubMed Central

    Stuart, Katrina; Conduit, Russell

    2009-01-01

    Study Objectives: There is debate in dream research as to whether ponto-geniculo-occipital (PGO) waves or cortical arousal during sleep underlie the biological mechanisms of dreaming. This study comprised 2 experiments. As eye movements (EMs) are currently considered the best noninvasive indicator of PGO burst activity in humans, the aim of the first experiment was to investigate the effect of low-intensity repeated auditory stimulation on EMs (and inferred PGO burst activity) during REM sleep. It was predicted that such auditory stimuli during REM sleep would have a suppressive effect on EMs. The aim of the second experiment was to examine the effects of this auditory stimulation on subsequent dream reporting on awakening. Design: Repeated measures design with counterbalanced order of experimental and control conditions across participants. Setting: Sleep laboratory based polysomnography (PSG) Participants: Experiment 1: 5 males and 10 females aged 18-35 years (M = 20.8, SD = 5.4). Experiment 2: 7 males and 13 females aged 18-35 years (M = 23.3, SD = 5.5). Interventions: Below-waking threshold tone presentations during REM sleep compared to control REM sleep conditions without tone presentations. Measurements and Results: PSG records were manually scored for sleep stages, EEG arousals, and EMs. Auditory stimulation during REM sleep was related to: (a) an increase in EEG arousal, (b) a decrease in the amplitude and frequency of EMs, and (c) a decrease in the frequency of visual imagery reports on awakening. Conclusions: The results of this study provide phenomenological support for PGO-based theories of dream reporting on awakening from sleep in humans. Citation: Stuart K; Conduit R. Auditory inhibition of rapid eye movements and dream recall from REM sleep. SLEEP 2009;32(3):399–408. PMID:19294960

  4. The memory function of noradrenergic activity in non-REM sleep.

    PubMed

    Gais, Steffen; Rasch, Björn; Dahmen, Johannes C; Sara, Susan; Born, Jan

    2011-09-01

    There is a long-standing assumption that low noradrenergic activity during sleep reflects mainly the low arousal during this brain state. Nevertheless, recent research has demonstrated that the locus coeruleus, which is the main source of cortical noradrenaline, displays discrete periods of intense firing during non-REM sleep, without any signs of awakening. This transient locus coeruleus activation during sleep seems to occur in response to preceding learning-related episodes. In the present study, we manipulate noradrenergic activity during sleep in humans with either the α2-autoreceptor agonist clonidine or the noradrenaline reuptake inhibitor reboxetine. We show that reducing noradrenergic activity during sleep, but not during wakefulness, impairs subsequent memory performance in an odor recognition task. Increasing noradrenergic availability during sleep, in contrast, enhances memory retention. We conclude that noradrenergic activity during non-REM sleep interacts with other sleep-related mechanisms to functionally contribute to off-line memory consolidation.

  5. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation.

    PubMed

    Alzoubi, Karem H; Rababa'h, Abeer M; Owaisi, Amani; Khabour, Omar F

    2017-05-01

    Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (P<0.05), whereas L-carnitine treatment protected against this effect. Furthermore, L-carnitine normalized chronic REM-sleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Coherent neocortical gamma oscillations decrease during REM sleep in the rat.

    PubMed

    Cavelli, Matías; Castro, Santiago; Schwarzkopf, Natalia; Chase, Michael H; Falconi, Atilio; Torterolo, Pablo

    2015-03-15

    Higher cognitive functions require the integration and coordination of large populations of neurons in cortical and subcortical regions. Oscillations in the high frequency band (30-100 Hz) of the electroencephalogram (EEG), that have been postulated to be a product of this interaction, are involved in the binding of spatially separated but temporally correlated neural events, which results in a unified perceptual experience. The extent of this functional connectivity can be examined by means of the mathematical algorithm called "coherence", which is correlated with the "strength" of functional interactions between cortical areas. As a continuation of previous studies in the cat [6,7], the present study was conducted to analyze EEG coherence in the gamma band of the rat during wakefulness (W), non-REM (NREM) sleep and REM sleep. Rats were implanted with electrodes in different cortical areas to record EEG activity, and the magnitude squared coherence values within the gamma frequency band of EEG (30-48 and 52-100 Hz) were determined. Coherence between all cortical regions in the low and high gamma frequency bands was greater during W compared with sleep. Remarkably, EEG coherence in the low and high gamma bands was smallest during REM sleep. We conclude that high frequency interactions between cortical areas are radically different during sleep and wakefulness in the rat. Since this feature is conserved in other mammals, including humans, we suggest that the uncoupling of gamma frequency activity during REM sleep is a defining trait of REM sleep in mammals.

  7. Brain prolactin is involved in stress-induced REM sleep rebound.

    PubMed

    Machado, Ricardo Borges; Rocha, Murilo Ramos; Suchecki, Deborah

    2017-03-01

    REM sleep rebound is a common behavioural response to some stressors and represents an adaptive coping strategy. Animals submitted to multiple, intermittent, footshock stress (FS) sessions during 96h of REM sleep deprivation (REMSD) display increased REM sleep rebound (when compared to the only REMSD ones, without FS), which is correlated to high plasma prolactin levels. To investigate whether brain prolactin plays a role in stress-induced REM sleep rebound two experiments were carried out. In experiment 1, rats were either not sleep-deprived (NSD) or submitted to 96h of REMSD associated or not to FS and brains were evaluated for PRL immunoreactivity (PRL-ir) and determination of PRL concentrations in the lateral hypothalamus and dorsal raphe nucleus. In experiment 2, rats were implanted with cannulas in the dorsal raphe nucleus for prolactin infusion and were sleep-recorded. REMSD associated with FS increased PRL-ir and content in the lateral hypothalamus and all manipulations increased prolactin content in the dorsal raphe nucleus compared to the NSD group. Prolactin infusion in the dorsal raphe nucleus increased the time and length of REM sleep episodes 3h after the infusion until the end of the light phase of the day cycle. Based on these results we concluded that brain prolactin is a major mediator of stress-induced REMS. The effect of PRL infusion in the dorsal raphe nucleus is discussed in light of the existence of a bidirectional relationship between this hormone and serotonin as regulators of stress-induced REM sleep rebound.

  8. The role of REM sleep in the processing of emotional memories: evidence from behavior and event-related potentials.

    PubMed

    Groch, S; Wilhelm, I; Diekelmann, S; Born, J

    2013-01-01

    Emotional memories are vividly remembered for the long-term. Rapid eye movement (REM) sleep has been repeatedly proposed to support the superior retention of emotional memories. However, its exact contribution and, specifically, whether its effect is mainly on the consolidation of the contents or the processing of the affective component of emotional memories is not clear. Here, we investigated the effects of sleep rich in slow wave sleep (SWS) or REM sleep on the consolidation of emotional pictures and the accompanying changes in affective tone, using event-related potentials (ERPs) together with subjective ratings of valence and arousal. Sixteen healthy, young men learned 50 negative and 50 neutral pictures before 3-h retention sleep intervals that were filled with either SWS-rich early or REM sleep-rich late nocturnal sleep. In accordance with our hypothesis, recognition was better for emotional pictures than neutral pictures after REM compared to SWS-rich sleep. This emotional enhancement after REM-rich sleep expressed itself in an increased late positive potential of the ERP over the frontal cortex 300-500 ms after stimulus onset for correctly classified old emotional pictures compared with new emotional and neutral pictures. Valence and arousal ratings of emotional pictures were not differentially affected by REM or SWS-rich sleep after learning. Our results corroborate that REM sleep contributes to the consolidation of emotional contents in memory, but suggest that the affective tone is preserved rather than reduced by the processing of emotional memories during REM sleep.

  9. The homeostatic regulation of REM sleep: A role for localized expression of brain-derived neurotrophic factor in the brainstem.

    PubMed

    Datta, Subimal; Knapp, Clifford M; Koul-Tiwari, Richa; Barnes, Abigail

    2015-10-01

    Homeostatic regulation of REM sleep plays a key role in neural plasticity and deficits in this process are implicated in the development of many neuropsychiatric disorders. Little is known, however, about the molecular mechanisms that underlie this homeostatic regulation process. This study examined the hypothesis that, during selective REM sleep deprivation (RSD), increased brain-derived neurotrophic factor (BDNF) expression in REM sleep regulating areas is critical for the development of homeostatic drive for REM sleep, as measured by an increase in the number of REM sleep transitions. Rats were assigned to RSD, non-sleep deprived (BSL), or total sleep deprivation (TSD) groups. Physiological recordings were obtained from cortical, hippocampal, and pontine EEG electrodes over a 6h period, in which sleep deprivation occurred during the first 3h. In the RSD, but not the other conditions, homeostatic drive for REM sleep increased progressively. BDNF protein expression was significantly greater in the pedunculopontine tegmentum (PPT) and subcoeruleus nucleus (SubCD) in the RSD as compared to the TSD and BSL groups, areas that regulate REM sleep, but not in the medial preoptic area, which regulates non-REM sleep. There was a significant positive correlation between RSD-induced increases in number of REM sleep episodes and increased BDNF expression in the PPT and SubCD. These increases positively correlated with levels of homeostatic drive for REM sleep. These results, for the first time, suggest that selective RSD-induced increased expression of BDNF in the PPT and SubCD are determinant factors in the development of the homeostatic drive for REM sleep.

  10. The Homeostatic Regulation of REM Sleep: A role for Localized Expression of Brain-Derived Neurotrophic Factor in the Brainstem

    PubMed Central

    Datta, Subimal; Knapp, Clifford M.; Koul-Tiwari, Richa; Barnes, Abigail

    2015-01-01

    Homeostatic regulation of REM sleep plays a key role in neural plasticity and deficits in this process are implicated in the development of many neuropsychiatric disorders. Little is known, however, about the molecular mechanisms that underlie this homeostatic regulation process. This study examined the hypothesis that, during selective REM sleep deprivation (RSD), increased brain-derived neurotrophic factor (BDNF) expression in REM sleep regulating areas is critical for the development of homeostatic drive for REM sleep, as measured by an increase in the number of REM sleep transitions. Rats were assigned to RSD, non-sleep deprived (BSL), or total sleep deprivation (TSD) groups. Physiological recordings were obtained from cortical, hippocampal, and pontine EEG electrodes over a 6-hour period, in which sleep deprivation occurred during the first 3 hours. In the RSD, but not the other conditions, homeostatic drive for REM sleep increased progressively. BDNF protein expression was significantly greater in the pedunculopontine tegmentum (PPT) and subcoeruleus nucleus (SubCD) in the RSD as compared to the TSD and BSL groups, areas that regulate REM sleep, but not in the medial preoptic area, which regulates non-REM sleep. There was a significant positive correlation between RSD-induced increases in number of REM sleep episodes and increased BDNF expression in the PPT and SubCD. These increases positively correlated with levels of homeostatic drive for REM sleep. These results, for the first time, suggest that selective RSD-induced increased expression of BDNF in the PPT and SubCD are determinant factors in the development of the homeostatic drive for REM sleep. PMID:26146031

  11. Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep.

    PubMed

    Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Palmerston, Jeremiah B; Thomas, Alexia M; Morairty, Stephen R; Neylan, Thomas C; Kilduff, Thomas S

    2016-01-01

    Hypocretin 1 and 2 (Hcrts; also known as orexin A and B), excitatory neuropeptides synthesized in cells located in the tuberal hypothalamus, play a central role in the control of arousal. Hcrt inputs to the locus coeruleus norepinephrine (LC NE) system and the posterior hypothalamic histaminergic tuberomammillary nuclei (TMN HA) are important efferent pathways for Hcrt-induced wakefulness. The LC expresses Hcrt receptor 1 (HcrtR1), whereas HcrtR2 is found in the TMN. Although the dual Hcrt/orexin receptor antagonist almorexant (ALM) decreases wakefulness and increases NREM and REM sleep time, the neural circuitry that mediates these effects is currently unknown. To test the hypothesis that ALM induces sleep by selectively disfacilitating subcortical wake-promoting populations, we ablated LC NE neurons (LCx) or TMN HA neurons (TMNx) in rats using cell-type-specific saporin conjugates and evaluated sleep/wake following treatment with ALM and the GABAA receptor modulator zolpidem (ZOL). Both LCx and TMNx attenuated the promotion of REM sleep by ALM without affecting ALM-mediated increases in NREM sleep. Thus, eliminating either HcrtR1 signaling in the LC or HcrtR2 signaling in the TMN yields similar effects on ALM-induced REM sleep without affecting NREM sleep time. In contrast, neither lesion altered ZOL efficacy on any measure of sleep-wake regulation. These results contrast with those of a previous study in which ablation of basal forebrain cholinergic neurons attenuated ALM-induced increases in NREM sleep time without affecting REM sleep, indicating that Hcrt neurotransmission influences distinct aspects of NREM and REM sleep at different locations in the sleep-wake regulatory network.

  12. Identification of causal genes, networks, and transcriptional regulators of REM sleep and wake.

    PubMed

    Millstein, Joshua; Winrow, Christopher J; Kasarskis, Andrew; Owens, Joseph R; Zhou, Lili; Summa, Keith C; Fitzpatrick, Karrie; Zhang, Bin; Vitaterna, Martha H; Schadt, Eric E; Renger, John J; Turek, Fred W

    2011-11-01

    Sleep-wake traits are well-known to be under substantial genetic control, but the specific genes and gene networks underlying primary sleep-wake traits have largely eluded identification using conventional approaches, especially in mammals. Thus, the aim of this study was to use systems genetics and statistical approaches to uncover the genetic networks underlying 2 primary sleep traits in the mouse: 24-h duration of REM sleep and wake. Genome-wide RNA expression data from 3 tissues (anterior cortex, hypothalamus, thalamus/midbrain) were used in conjunction with high-density genotyping to identify candidate causal genes and networks mediating the effects of 2 QTL regulating the 24-h duration of REM sleep and one regulating the 24-h duration of wake. Basic sleep research laboratory. Male [C57BL/6J × (BALB/cByJ × C57BL/6J*) F1] N(2) mice (n = 283). None. The genetic variation of a mouse N2 mapping cross was leveraged against sleep-state phenotypic variation as well as quantitative gene expression measurement in key brain regions using integrative genomics approaches to uncover multiple causal sleep-state regulatory genes, including several surprising novel candidates, which interact as components of networks that modulate REM sleep and wake. In particular, it was discovered that a core network module, consisting of 20 genes, involved in the regulation of REM sleep duration is conserved across the cortex, hypothalamus, and thalamus. A novel application of a formal causal inference test was also used to identify those genes directly regulating sleep via control of expression. Systems genetics approaches reveal novel candidate genes, complex networks and specific transcriptional regulators of REM sleep and wake duration in mammals.

  13. Age-related increase in awakenings: impaired consolidation of nonREM sleep at all circadian phases.

    PubMed

    Dijk, D J; Duffy, J F; Czeisler, C A

    2001-08-01

    (1) To assess the circadian and sleep-dependent regulation of the frequency and duration of awakenings in young and older people; (2) to determine whether age-related deterioration of sleep consolidation is related to an increase in the frequency or duration of awakenings; (3) to determine whether pre-awakening sleep structure is preferentially enriched by REM sleep or nonREM sleep and (4) to determine whether sleep structure prior to awakenings is affected by age. Between age-group comparison of sleep consolidation and sleep structure preceding awakenings. Environmental Scheduling Facility, General Clinical Research Center. Eleven healthy young men (21-30 years) and 13 older healthy men (n=9) and women (n=4) (64-74 years). Forced desynchrony between the sleep-wake cycle and circadian rhythms by scheduling of the rest-activity cycle to 28-h for 21-25 cycles. Circadian and sleep-dependent regulation of the frequency and duration of awakenings and of sleep structure preceding awakenings were assessed in 482 sleep episodes (9h 20 min each). The circadian modulation of wakefulness within sleep episodes was primarily related to a variation in the duration of awakenings. In contrast, the age-related reduction of sleep consolidation was primarily related to an increase in the frequency of awakenings. Whereas in both young and older subjects pre-awakening sleep contained more REM sleep than overall sleep, this enrichment of REM sleep (i.e., the gating of wakefulness by REM sleep) was diminished in older people. In older people, preawakening sleep contained more nonREM sleep and stage two sleep in particular, than in young people. At all circadian phases, the age-related reduction of sleep consolidation is primarily related to a reduction in the consolidation of nonREM sleep.

  14. Quantitative assessment of isolated rapid eye movement (REM) sleep without atonia without clinical REM sleep behavior disorder: clinical and research implications.

    PubMed

    Sasai-Sakuma, Taeko; Frauscher, Birgit; Mitterling, Thomas; Ehrmann, Laura; Gabelia, David; Brandauer, Elisabeth; Inoue, Yuichi; Poewe, Werner; Högl, Birgit

    2014-09-01

    Rapid eye movement (REM) sleep without atonia (RWA) is observed in some patients without a clinical history of REM sleep behavior disorder (RBD). It remains unknown whether these patients meet the refined quantitative electromyographic (EMG) criteria supporting a clinical RBD diagnosis. We quantitatively evaluated EMG activity and investigated its overnight distribution in patients with isolated qualitative RWA. Fifty participants with an incidental polysomnographic finding of RWA (isolated qualitative RWA) were included. Tonic, phasic, and 'any' EMG activity during REM sleep on PSG were quantified retrospectively. Referring to the quantitative cut-off values for a polysomnographic diagnosis of RBD, 7/50 (14%) and 6/50 (12%) of the patients showed phasic and 'any' EMG activity in the mentalis muscle above the respective cut-off values. No patient was above the cut-off value for tonic EMG activity or phasic EMG activity in the anterior tibialis muscles. Patients with RWA above the cut-off value showed higher amounts of RWA during later REM sleep periods. This is the first study showing that some subjects with incidental RWA meet the refined quantitative EMG criteria for a diagnosis of RBD. Future longitudinal studies must investigate whether this subgroup with isolated qualitative RWA is at an increased risk of developing fully expressed RBD and/or neurodegenerative disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Replay of conditioned stimuli during late REM and stage N2 sleep influences affective tone rather than emotional memory strength.

    PubMed

    Rihm, Julia S; Rasch, Björn

    2015-07-01

    Emotional memories are reprocessed during sleep, and it is widely assumed that this reprocessing occurs mainly during rapid eye movement (REM) sleep. In support for this notion, vivid emotional dreams occur mainly during REM sleep, and several studies have reported emotional memory enhancement to be associated with REM sleep or REM sleep-related parameters. However, it is still unknown whether reactivation of emotional memories during REM sleep strengthens emotional memories. Here, we tested whether re-presentation of emotionally learned stimuli during REM sleep enhances emotional memory. In a split-night design, participants underwent Pavlovian conditioning after the first half of the night. Neutral sounds served as conditioned stimuli (CS) and were either paired with a negative odor (CS+) or an odorless vehicle (CS-). During sound replay in subsequent late REM or N2 sleep, half of the CS+ and half of the CS- were presented again. In contrast to our hypothesis, replay during sleep did not affect emotional memory as measured by the differentiation between CS+ and CS- in expectancy, arousal and valence ratings. However, replay unspecifically decreased subjective arousal ratings of both emotional and neutral sounds and increased positive valence ratings also for both CS+ and CS- sounds, respectively. These effects were slightly more pronounced for replay during REM sleep. Our results suggest that re-exposure to previously conditioned stimuli during late sleep does not affect emotional memory strength, but rather influences the affective tone of both emotional and neutral memories.

  16. Why Does Rem Sleep Occur? A Wake-Up Hypothesis1

    PubMed Central

    Klemm, W. R.

    2011-01-01

    Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses rapid eye movement (REM) to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, (1) when first going to sleep, the brain plunges into Stage N3 (formerly called Stage IV), a deep abyss of sleep, and, as the night progresses, the sleep is punctuated by episodes of REM that become longer and more frequent toward morning, (2) conscious-like dreams are a reliable component of the REM state in which the dreamer is an active mental observer or agent in the dream, (3) the last awakening during a night's sleep usually occurs in a REM episode during or at the end of a dream, (4) both REM and awake consciousness seem to arise out of a similar brainstem ascending arousal system (5) N3 is a functionally perturbed state that eventually must be corrected so that embodied brain can direct adaptive behavior, and (6) cortico-fugal projections to brainstem arousal areas provide a way to trigger increased cortical activity in REM to progressively raise the sleeping brain to the threshold required for wakefulness. This paper shows how the hypothesis conforms to common experience and has substantial predictive and explanatory power regarding the phenomenology of sleep in terms of ontogeny, aging, phylogeny, abnormal/disease states, cognition, and behavioral physiology. That broad range of consistency is not matched by competing theories, which are summarized herein. Specific ways to test this wake-up hypothesis are suggested. Such research could lead to a better understanding of awake consciousness. PMID:21922003

  17. REM Sleep, Prefrontal Theta, and the Consolidation of Human Emotional Memory

    PubMed Central

    Nishida, Masaki; Pearsall, Jori; Buckner, Randy L.

    2009-01-01

    Both emotion and sleep are independently known to modulate declarative memory. Memory can be facilitated by emotion, leading to enhanced consolidation across increasing time delays. Sleep also facilitates offline memory processing, resulting in superior recall the next day. Here we explore whether rapid eye movement (REM) sleep, and aspects of its unique neurophysiology, underlie these convergent influences on memory. Using a nap paradigm, we measured the consolidation of neutral and negative emotional memories, and the association with REM-sleep electrophysiology. Subjects that napped showed a consolidation benefit for emotional but not neutral memories. The No-Nap control group showed no evidence of a consolidation benefit for either memory type. Within the Nap group, the extent of emotional memory facilitation was significantly correlated with the amount of REM sleep and also with right-dominant prefrontal theta power during REM. Together, these data support the role of REM-sleep neurobiology in the consolidation of emotional human memories, findings that have direct translational implications for affective psychiatric and mood disorders. PMID:18832332

  18. Astrocytic IP3/Ca2+ Signaling Modulates Theta Rhythm and REM Sleep

    PubMed Central

    Foley, Jeannine; Blutstein, Tamara; Lee, SoYoung; Erneux, Christophe; Halassa, Michael M.; Haydon, Philip

    2017-01-01

    Rapid eye movement (REM) sleep onset is triggered by disinhibition of cholinergic neurons in the pons. During REM sleep, the brain exhibits prominent activity in the 5–8 Hz (theta) frequency range. How REM sleep onset and theta waves are regulated is poorly understood. Astrocytes, a non-neuronal cell type in the brain, respond to cholinergic signals by elevating their intracellular Ca2+ concentration. The goal of this study was to assess the sleep architecture of mice with attenuated IP3 mediated Ca2+ signaling in astrocytes. Vigilance states and cortical electroencephalograph power were measured in wild type mice and mice with attenuated IP3/Ca2+ signaling. Attenuating IP3/Ca2+ signaling specifically in astrocytes caused mice to spend more time in REM sleep and enter this state more frequently during their inactive phase. These mice also exhibited greater power in the theta frequency range. These data suggest a role for astrocytic IP3/Ca2+ signaling in modulating REM sleep and the associated physiological state of the cortex. PMID:28167901

  19. Astrocytic IP3/Ca(2+) Signaling Modulates Theta Rhythm and REM Sleep.

    PubMed

    Foley, Jeannine; Blutstein, Tamara; Lee, SoYoung; Erneux, Christophe; Halassa, Michael M; Haydon, Philip

    2017-01-01

    Rapid eye movement (REM) sleep onset is triggered by disinhibition of cholinergic neurons in the pons. During REM sleep, the brain exhibits prominent activity in the 5-8 Hz (theta) frequency range. How REM sleep onset and theta waves are regulated is poorly understood. Astrocytes, a non-neuronal cell type in the brain, respond to cholinergic signals by elevating their intracellular Ca(2+) concentration. The goal of this study was to assess the sleep architecture of mice with attenuated IP3 mediated Ca(2+) signaling in astrocytes. Vigilance states and cortical electroencephalograph power were measured in wild type mice and mice with attenuated IP3/Ca(2+) signaling. Attenuating IP3/Ca(2+) signaling specifically in astrocytes caused mice to spend more time in REM sleep and enter this state more frequently during their inactive phase. These mice also exhibited greater power in the theta frequency range. These data suggest a role for astrocytic IP3/Ca(2+) signaling in modulating REM sleep and the associated physiological state of the cortex.

  20. The Memory Function of Noradrenergic Activity in Non-REM Sleep

    ERIC Educational Resources Information Center

    Gais, Steffen; Rasch, Bjorn; Dahmen, Johannes C.; Sara, Susan; Born, Jan

    2011-01-01

    There is a long-standing assumption that low noradrenergic activity during sleep reflects mainly the low arousal during this brain state. Nevertheless, recent research has demonstrated that the locus coeruleus, which is the main source of cortical noradrenaline, displays discrete periods of intense firing during non-REM sleep, without any signs of…

  1. The Memory Function of Noradrenergic Activity in Non-REM Sleep

    ERIC Educational Resources Information Center

    Gais, Steffen; Rasch, Bjorn; Dahmen, Johannes C.; Sara, Susan; Born, Jan

    2011-01-01

    There is a long-standing assumption that low noradrenergic activity during sleep reflects mainly the low arousal during this brain state. Nevertheless, recent research has demonstrated that the locus coeruleus, which is the main source of cortical noradrenaline, displays discrete periods of intense firing during non-REM sleep, without any signs of…

  2. Is a purpose of REM sleep atonia to help regenerate intervertebral disc volumetric loss?

    PubMed Central

    Fryer, Jerome CJ

    2009-01-01

    The nature of atonia in sleep continues to be enigmatic. This article discusses a new hypothesis for complete core muscle relaxation in REM sleep, suggesting a bottom-up recuperative perspective. That is, does the atonia in REM sleep provide a utility to help restore the mechanobiology and respective diurnal intervertebral disc hydraulic loss? By combining the effects of gravity with current compressive concepts in spinal stability, this article looks at vertebral approximation as a deleterious experience with an intrinsic biological need to keep vertebrae separated. Methods using polysomnography and recumbent MRI are discussed. PMID:19123938

  3. REM sleep and memory reorganization: Potential relevance for psychiatry and psychotherapy.

    PubMed

    Landmann, Nina; Kuhn, Marion; Maier, Jonathan-Gabriel; Spiegelhalder, Kai; Baglioni, Chiara; Frase, Lukas; Riemann, Dieter; Sterr, Annette; Nissen, Christoph

    2015-07-01

    Sleep can foster the reorganization of memory, i.e. the emergence of new memory content that has not directly been encoded. Current neurophysiological and behavioral evidence can be integrated into a model positing that REM sleep particularly promotes the disintegration of existing schemas and their recombination in the form of associative thinking, creativity and the shaping of emotional memory. Particularly, REM sleep related dreaming might represent a mentation correlate for the reconfiguration of memory. In a final section, the potential relevance for psychiatry and psychotherapy is discussed.

  4. The predictive value of Muller maneuver in REM-dependent obstructive sleep apnea.

    PubMed

    Ozcan, Kursat Murat; Ozcan, Muge; Ozdogan, Fatih; Hizli, Omer; Dere, Huseyin; Unal, Adnan

    2013-09-01

    To our knowledge, no studies up to date have investigated the correlation of rapid eye movement (REM) dependent obstructive sleep apnea syndrome (OSAS) and Muller maneuver. The aim of this study is to investigate whether REM-dependent OSAS is predicted by the findings of the Muller maneuver. The study was conducted on 149 patients with witnessed apnea and daytime sleepiness. Muller maneuver was performed to all patients and the obstruction site was determined using a five-point scale. Then, polysomnography of the patient was obtained and the apnea-hypopnea indexes were determined in total sleep time, REM-dependent sleep and non-REM-dependent sleep. The correlations between the Muller maneuver findings and polysomnographic data were analyzed. The ages of the patients included in the study ranged between 25 and 73 years with a mean age of 49.3 ± 10.1 years. Their mean body mass index was 30.8 ± 5.1 kg/m(2) (range 21.9-55.4 kg/m(2)). The patients' mean apnea-hypopnea indexes in total sleep time was 28.1 and ranged between 5.4 and 124.3. REM-dependent OSAS was determined in 49 patients. When the data were analyzed, it was determined that there were no statistically significant correlations between tongue base or lateral pharyngeal band obstruction at the level of hypopharynx and the REM-dependent OSAS. At the level of the soft palate, the obstruction caused by the lateral pharyngeal bands or soft palate and REM dependency did not show any statistically significant correlation (p > 0.05). In conclusion, Muller maneuver does not provide useful data to predict REM dependency of OSAS.

  5. Oximetry Signal Processing Identifies REM Sleep-Related Vulnerability Trait in Asthmatic Children

    PubMed Central

    Perez, Geovanny F.; Gutierrez, Maria J.; Huseni, Shehlanoor; Pancham, Khrisna; Rodriguez-Martinez, Carlos E.; Nino, Cesar L.; Nino, Gustavo

    2013-01-01

    Rationale. The sleep-related factors that modulate the nocturnal worsening of asthma in children are poorly understood. This study addressed the hypothesis that asthmatic children have a REM sleep-related vulnerability trait that is independent of OSA. Methods. We conducted a retrospective cross-sectional analysis of pulse-oximetry signals obtained during REM and NREM sleep in control and asthmatic children (n = 134). Asthma classification was based on preestablished clinical criteria. Multivariate linear regression model was built to control for potential confounders (significance level P ≤ 0.05). Results. Our data demonstrated that (1) baseline nocturnal respiratory parameters were not significantly different in asthmatic versus control children, (2) the maximal % of SaO2 desaturation during REM, but not during NREM, was significantly higher in asthmatic children, and (3) multivariate analysis revealed that the association between asthma and REM-related maximal % SaO2 desaturation was independent of demographic variables. Conclusion. These results demonstrate that children with asthma have a REM-related vulnerability trait that impacts oxygenation independently of OSA. Further research is needed to delineate the REM sleep neurobiological mechanisms that modulate the phenotypical expression of nocturnal asthma in children. PMID:24288619

  6. REM Sleep Behavior Disorder: Updated Review of the Core Features, the RBD-Neurodegenerative Disease Association, Evolving Concepts, Controversies, and Future Directions

    PubMed Central

    Boeve, Bradley F.

    2010-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia manifested by vivid, often frightening dreams associated with simple or complex motor behavior during REM sleep. Patients appear to “act out their dreams,” in which the exhibited behaviors mirror the content of the dreams, and the dream content often involves a chasing or attacking theme. The polysomnographic features of RBD include increased electromyographic tone +/- dream enactment behavior during REM sleep. Management with counseling and pharmacologic measures is usually straight-forward and effective. In this review, the terminology, clinical and polysomnographic features, demographic and epidemiologic features, diagnostic criteria, differential diagnosis, and management strategies are discussed. Recent data on the suspected pathophysiologic mechanisms of RBD are also reviewed. The literature and our institutional experience on RBD are next discussed, with an emphasis on the RBD-neurodegenerative disease association and particularly the RBD-synucleinopathy association. Several issues relating to evolving concepts, controversies, and future directions are then reviewed, with an emphasis on idiopathic RBD representing an early feature of a neurodegenerative disease and particularly an evolving synucleinopathy. Planning for future therapies that impact patients with idiopathic RBD is reviewed in detail. PMID:20146689

  7. The H1 histamine receptor blocker, chlorpheniramine, completely prevents the increase in REM sleep induced by immobilization stress in rats.

    PubMed

    Rojas-Zamorano, J A; Esqueda-Leon, E; Jimenez-Anguiano, A; Cintra-McGlone, L; Mendoza Melendez, M A; Velazquez Moctezuma, J

    2009-01-01

    Chlorpheniramine is a selective antagonist of the H1 histaminergic receptor subtype and its effects in humans include somnolence. Chlorpheniramine affects sleep in rats, mainly by decreasing REM sleep. On the other hand, stress by immobilization induces an important increase in the percentage of REM sleep. In this study we analyzed the effects of blocking histaminergic receptors on REM sleep induced by immobilization stress. Adult male Wistar rats were chronically implanted for sleep recording. Immobilization stress was induced by placing the rat in a small cylinder for 2 h. Experimental conditions were: A. Control; B. Stress; C. Stress plus vehicle and D. Stress plus chlorpheniramine. Independent experiments were done both in the dark, as well as the light period. Results showed that the increase in REM sleep observed after immobilization stress was completely abolished by chlorpheniramine, both in the dark and in the light phase. Furthermore, the decrease in REM sleep was significant even when compared to the non-stressed control rats. REM sleep latency was also significantly longer during both light phases. The present results suggest that REM sleep is quite sensitive to histaminergic blockage. It is possible that chlorpheniramine is also blocking the cholinergic mechanisms generating REM sleep.

  8. The effect of selective REM-sleep deprivation on the consolidation and affective evaluation of emotional memories.

    PubMed

    Wiesner, Christian D; Pulst, Julika; Krause, Fanny; Elsner, Marike; Baving, Lioba; Pedersen, Anya; Prehn-Kristensen, Alexander; Göder, Robert

    2015-07-01

    Emotion boosts the consolidation of events in the declarative memory system. Rapid eye movement (REM) sleep is believed to foster the memory consolidation of emotional events. On the other hand, REM sleep is assumed to reduce the emotional tone of the memory. Here, we investigated the effect of selective REM-sleep deprivation, SWS deprivation, or wake on the affective evaluation and consolidation of emotional and neutral pictures. Prior to an 9-h retention interval, sixty-two healthy participants (23.5 ± 2.5 years, 32 female, 30 male) learned and rated their affect to 80 neutral and 80 emotionally negative pictures. Despite rigorous deprivation of REM sleep or SWS, the residual sleep fostered the consolidation of neutral and negative pictures. Furthermore, emotional arousal helped to memorize the pictures. The better consolidation of negative pictures compared to neutral ones was most pronounced in the SWS-deprived group where a normal amount of REM sleep was present. This emotional memory bias correlated with REM sleep only in the SWS-deprived group. Furthermore, emotional arousal to the pictures decreased over time, but neither sleep nor wake had any differential effect. Neither the comparison of the affective ratings (arousal, valence) during encoding and recognition, nor the affective ratings of the recognized targets and rejected distractors supported the hypothesis that REM sleep dampens the emotional reaction to remembered stimuli. The data suggest that REM sleep fosters the consolidation of emotional memories but has no effect on the affective evaluation of the remembered contents.

  9. From REM sleep behaviour disorder to status dissociatus: insights into the maze of states of being.

    PubMed

    Vetrugno, Roberto; Montagna, Pasquale

    2011-12-01

    Sleep is a coordinated process involving more or less simultaneous changes in sensory, motor, autonomic, hormonal, and cerebral processes. On the other hand, none of the changes occurring with sleep are invariably coupled to sleep. EEG synchrony, heat loss, sleep-related hormone secretion, and even REM-related motoneuron paralysis may occur independent of the parent state. In REM sleep behaviour disorder (RBD) the muscle tone of wakefulness intrudes into REM sleep, allowing the release of dream-enacting behaviours. Status dissociatus (SD) is a condition in which brain and mind are in disarray along the boundaries of sleep and wakefulness. The existence of such dissociated behaviours shows that they have separate neuronal control systems and indicates that the whole organization of sleep is an emergent property of the collective neuronal systems to synchronize. Insults to the brain can drastically alter the circuitries responsible for maintaining the integrity of wakefulness, NREM sleep, and REM sleep. As a consequence, the basic states of existence can become admixed and interchanged with striking disturbances of consciousness, brain electrophysiology, and the behavioural and polygraphic expression of sleep and wakefulness. The evolution of RBD into SD may result from a disarray of (brainstem) structures that orchestrate the whole brain wake-sleep conditions, but with preserved discrete systems and dissociable strategies to still place navigation in wake and sleep. Advances in the fields of genetics, neuroimaging, and behavioural neurology will expand the understanding of the mechanisms underlying the organization of the states of being along with their somatic/behavioural manifestations.

  10. The Evolution of REM Sleep Behavior Disorder in Early Parkinson Disease

    PubMed Central

    Sixel-Döring, Friederike; Zimmermann, Johannes; Wegener, Andrea; Mollenhauer, Brit; Trenkwalder, Claudia

    2016-01-01

    Study Objectives: To investigate the development of REM sleep behavior disorder (RBD) and REM sleep behavioral events (RBE) not yet fulfilling diagnostic criteria for RBD as markers for neurodegeneration in a cohort of Parkinson disease (PD) patients between their de novo baseline assessment and two-year follow-up in comparison to healthy controls (HC). Methods: Clinically confirmed PD patients and HC with video-supported polysomnography (vPSG) data at baseline were re-investigated after two years. Diagnostic scoring for RBE and RBD was performed in both groups and related to baseline findings. Results: One hundred thirteen PD patients and 102 healthy controls (HC) were included in the study. Within two years, the overall occurrence of behaviors during REM sleep in PD patients increased from 50% to 63% (P = 0.02). RBD increased from 25% to 43% (P < 0.001). Eleven of 29 (38%) RBE positive PD patients and 10/56 (18%) patients with normal REM sleep at baseline converted to RBD. In HC, the occurrence of any REM behavior increased from 17% to 20% (n.s.). RBD increased from 2% to 4% (n.s.). One of 15 (7%) RBE positive HC and 1/85 (1%) HC with normal REM at baseline converted to RBD. Conclusions: RBD increased significantly in PD patients from the de novo state to two-year follow-up. We propose RBE being named “prodromal RBD” as it may follow a continuous evolution in PD possibly similar to the spreading of Lewy bodies in PD patients. RBD itself was shown as a robust and stable marker of early PD. Citation: Sixel-Döring F, Zimmermann J, Wegener A, Mollenhauer B, Trenkwalder C. The evolution of REM sleep behavior disorder in early Parkinson disease. SLEEP 2016;39(9):1737–1742. PMID:27306265

  11. Tonic inhibition and ponto-geniculo-occipital-related activities shape abducens motoneuron discharge during REM sleep

    PubMed Central

    Escudero, Miguel; Márquez-Ruiz, Javier

    2008-01-01

    Eye movements, ponto-geniculo-occipital (PGO) waves, muscular atonia and desynchronized cortical activity are the main characteristics of rapid eye movement (REM) sleep. Although eye movements designate this phase, little is known about the activity of the oculomotor system during REM sleep. In this work, we recorded binocular eye movements by the scleral search-coil technique and the activity of identified abducens (ABD) motoneurons along the sleep–wake cycle in behaving cats. The activity of ABD motoneurons during REM sleep was characterized by a tonic decrease of their mean firing rate throughout this period, and short bursts and pauses coinciding with the occurrence of PGO waves. We demonstrate that the decrease in the mean firing discharge was due to an active inhibition of ABD motoneurons, and that the occurrence of primary and secondary PGO waves induced a pattern of simultaneous but opposed phasic activation and inhibition on each ABD nucleus. With regard to eye movements, during REM sleep ABD motoneurons failed to codify eye position as during alertness, but continued to codify eye velocity. The pattern of tonic inhibition and the phasic activations and inhibitions shown by ABD motoneurons coincide with those reported in other non-oculomotor motoneurons, indicating that the oculomotor system – contrary to what has been accepted until now – is not different from other motor systems during REM sleep, and that all motor systems are receiving similar command signals during this period. PMID:18499728

  12. Hallucinations and REM sleep behaviour disorder in Parkinson's disease: dream imagery intrusions and other hypotheses.

    PubMed

    Manni, Raffaele; Terzaghi, Michele; Ratti, Pietro-Luca; Repetto, Alessandra; Zangaglia, Roberta; Pacchetti, Claudio

    2011-12-01

    REM sleep behaviour disorder (RBD) is a REM sleep-related parasomnia which may be considered a "dissociated state of wakefulness and sleep", given that conflicting elements of REM sleep (dreaming) and of wakefulness (sustained muscle tone and movements) coexist during the episodes, leading to motor and behavioural manifestations reminiscent of an enacted dream. RBD has been reported in association with α-synucleinopathies: around a third of patients with Parkinson's disease (PD) have full-blown RBD. Recent data indicate that PD patients with RBD are more prone to hallucinations than PD patients without this parasomnia. However it is still not clear why RBD in PD is associated with an increased prevalence of VHs. Data exist which suggest that visual hallucinations in PD may be the result of untimely intrusions of REM visual imagery into wakefulness. RBD, which is characterised by a REM sleep dissociation pattern, might be a condition that particularly favours such intrusions. However, other hypotheses may be advanced. In fact, deficits in attentional, executive, visuoperceptual and visuospatial abilities have been documented in RBD and found to occur far more frequently in PD with RBD than in PD without RBD. Neuropsychological deficits involving visual perception and attentional processes are thought to play an important role in the pathophysiology of VHs. On this basis, RBD in PD could be viewed as a contributory risk factor for VHs.

  13. REM Sleep Enhancement of Probabilistic Classification Learning is Sensitive to Subsequent Interference

    PubMed Central

    Barsky, Murray M.; Tucker, Matthew A.; Stickgold, Robert

    2015-01-01

    During wakefulness the brain creates meaningful relationships between disparate stimuli in ways that escape conscious awareness. Processes active during sleep can strengthen these relationships, leading to more adaptive use of those stimuli when encountered during subsequent wake. Performance on the weather prediction task (WPT), a well-studied measure of implicit probabilistic learning, has been shown to improve significantly following a night of sleep, with stronger initial learning predicting more nocturnal REM sleep. We investigated this relationship further, studying the effect on WPT performance of a daytime nap containing REM sleep. We also added an interference condition after the nap/wake period as an additional probe of memory strength. Our results show that a nap significantly boosts WPT performance, and that this improvement is correlated with the amount of REM sleep obtained during the nap. When interference training is introduced following the nap, however, this REM-sleep benefit vanishes. In contrast, following an equal period of wake, performance is both unchanged from training and unaffected by interference training. Thus, while the true probabilistic relationships between WPT stimuli are strengthened by sleep, these changes are selectively susceptible to the destructive effects of retroactive interference, at least in the short term. PMID:25769506

  14. Loss of Gnas Imprinting Differentially Affects REM/NREM Sleep and Cognition in Mice

    PubMed Central

    Lassi, Glenda; Ball, Simon T.; Maggi, Silvia; Colonna, Giovanni; Nieus, Thierry; Cero, Cheryl; Bartolomucci, Alessandro; Peters, Jo; Tucci, Valter

    2012-01-01

    It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM–linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM–dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes. PMID:22589743

  15. REM sleep enhancement of probabilistic classification learning is sensitive to subsequent interference.

    PubMed

    Barsky, Murray M; Tucker, Matthew A; Stickgold, Robert

    2015-07-01

    During wakefulness the brain creates meaningful relationships between disparate stimuli in ways that escape conscious awareness. Processes active during sleep can strengthen these relationships, leading to more adaptive use of those stimuli when encountered during subsequent wake. Performance on the Weather Prediction Task (WPT), a well-studied measure of implicit probabilistic learning, has been shown to improve significantly following a night of sleep, with stronger initial learning predicting more nocturnal REM sleep. We investigated this relationship further, studying the effect on WPT performance of a daytime nap containing REM sleep. We also added an interference condition after the nap/wake period as an additional probe of memory strength. Our results show that a nap significantly boosts WPT performance, and that this improvement is correlated with the amount of REM sleep obtained during the nap. When interference training is introduced following the nap, however, this REM-sleep benefit vanishes. In contrast, following an equal period of wake, performance is both unchanged from training and unaffected by interference training. Thus, while the true probabilistic relationships between WPT stimuli are strengthened by sleep, these changes are selectively susceptible to the destructive effects of retroactive interference, at least in the short term.

  16. Coherent neocortical 40-Hz oscillations are not present during REM sleep.

    PubMed

    Castro, Santiago; Falconi, Atilio; Chase, Michael H; Torterolo, Pablo

    2013-04-01

    During cognitive processes there are extensive interactions between various regions of the cerebral cortex. Oscillations in the gamma frequency band (≈40 Hz) of the electroencephalogram (EEG) are involved in the binding of spatially separated but temporally correlated neural events, which results in a unified perceptual experience. The extent of these interactions can be examined by means of a mathematical algorithm called 'coherence', which reflects the 'strength' of functional interactions between cortical areas. The present study was conducted to analyse EEG coherence in the gamma frequency band of the cat during alert wakefulness (AW), quiet wakefulness (QW), non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Cats were implanted with electrodes in the frontal, parietal and occipital cortices to monitor EEG activity. Coherence values within the gamma frequency (30-100 Hz) from pairs of EEG recordings were analysed. A large increase in coherence occurred between all cortical regions in the 30-45 Hz frequency band during AW compared with the other behavioral states. As the animal transitioned from AW to QW and from QW to NREM sleep, coherence decreased to a moderate level. Remarkably, there was practically no EEG coherence in the entire gamma band spectrum (30-100 Hz) during REM sleep. We conclude that functional interactions between cortical areas are radically different during sleep compared with wakefulness. The virtual absence of gamma frequency coherence during REM sleep may underlie the unique cognitive processing that occurs during dreams, which is principally a REM sleep-related phenomenon.

  17. Ultrashort sleep-waking schedule. II. Relationship between ultradian rhythms in sleepability and the REM-non-REM cycles and effects of the circadian phase.

    PubMed

    Lavie, P; Zomer, J

    1984-01-01

    Eight subjects aged 20-30 years spent two 24 h periods in the sleep laboratory after having an adaptation night. At 16.00 h subjects began a strict 15 min waking-5 min sleeping schedule until 24.00 h. At 24.00 subjects retired for an uninterrupted monitored nocturnal sleep. Subjects were awakened after 6-7 h of sleep, either from REM sleep (in one experimental period) or 25 min after the end of a REM period (in the other experimental period) in a counterbalanced order, and a second 8 h 15 min waking-5 min sleeping schedule was initiated. There were no significant differences between the percentages of sleep stages 1 and 2 in the afternoon, evening and morning experiments. In each, stage 1 occurred in about 10 of the 24 'sleep attempts' and accounted for 15-19% of the total recording time; sleep stage 2 occurred in 2-5 sleep attempts and accounted for 3-8% of total recording time. Four of the 8 subjects showed REM sleep in 8 sleep 'attempts;' only one appeared during an evening period. Orthogonal spectral analysis revealed a dominant ultradian frequency of about 7.2 c/day during both experimental schedules. However, synchronizing the individual morning time series with the last nocturnal REM period resulted in the appearance of a single spectral peak at 14.4 c/day, which is the dominant ultradian frequency of the nocturnal REM-non-REM cycles.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. The maturational trajectories of NREM and REM sleep durations differ across adolescence on both school-night and extended sleep

    PubMed Central

    Feinberg, Irwin; Davis, Nicole M.; de Bie, Evan; Grimm, Kevin J.

    2012-01-01

    We recorded sleep electroencephalogram longitudinally across ages 9–18 yr in subjects sleeping at home. Recordings were made twice yearly on 4 consecutive nights: 2 nights with the subjects maintaining their ongoing school-night schedules, and 2 nights with time in bed extended to 12 h. As expected, school-night total sleep time declined with age. This decline was entirely produced by decreasing non-rapid eye movement (NREM) sleep. Rapid eye movement (REM) sleep durations increased slightly but significantly. NREM and REM sleep durations also exhibited different age trajectories when sleep was extended. Both durations exceeded those on school-night schedules. However, the elevated NREM duration did not change with age, whereas REM durations increased significantly. We interpret the adolescent decline in school-night NREM duration in relation to our hypothesis that NREM sleep reverses changes produced in plastic brain systems during waking. The “substrate” produced during waking declines across adolescence, because synaptic elimination decreases the intensity (metabolic rate) of waking brain activity. Declining substrate reduces both NREM intensity (i.e., delta power) and NREM duration. The absence of a decline in REM sleep duration on school-night sleep and its age-dependent increase in extended sleep pose new challenges to understanding its physiological role. Whatever their ultimate explanation, these robust findings demonstrate that the two physiological states of human sleep respond differently to the maturational brain changes of adolescence. Understanding these differences should shed new light on both brain development and the functions of sleep. PMID:22116514

  19. REM Sleep and Its Loss-associated Epigenetic Regulation with Reference to Noradrenaline in Particular

    PubMed Central

    Mehta, Rachna; Singh, Abhishek; Bókkon, István; Nath Mallick, Birendra

    2016-01-01

    Sleep is an essential physiological process, which has been divided into rapid eye movement sleep (REMS) and non-REMS (NREMS) in higher animals. REMS is a unique phenomenon that unlike other sleep-waking states is not under voluntary control. Directly or indirectly it influences or gets influenced by most of the physiological processes controlled by the brain. It has been proposed that REMS serves housekeeping function of the brain. Extensive research has shown that during REMS at least noradrenaline (NA) -ergic neurons must cease activity and upon REMS loss, there are increased levels of NA in the brain, which then induces many of the REMS loss associated acute and chronic effects. The NA level is controlled by many bio-molecules that are regulated at the molecular and transcriptional levels. Similarly, NA can also directly or indirectly modulate the synthesis and levels of many molecules, which in turn may affect physiological processes. The burgeoning field of behavioral neuroepigenetics has gained importance in recent years and explains the regulatory mechanisms underlying several behavioral phenomena. As REMS and its loss associated changes in NA modulate several pathophysiological processes, in this review we have attempted to explain on one hand how the epigenetic mechanisms regulating the gene expression of factors like tyrosine hydroxylase (TH), monoamine oxidase (MAO), noradrenaline transporter (NAT) control NA levels and on the other hand, how NA per se can affect other molecules in neural circuitry at the epigenetic level resulting in behavioral changes in health and diseases. An understanding of these events will expose the molecular basis of REMS and its loss-associated pathophysiological changes; which are presented as a testable hypothesis for confirmation. PMID:26813120

  20. Quantitative electroencephalography during rapid eye movement (REM) and non-REM sleep in combat-exposed veterans with and without post-traumatic stress disorder.

    PubMed

    Cohen, Daniel J; Begley, Amy; Alman, Jennie J; Cashmere, David J; Pietrone, Regina N; Seres, Robert J; Germain, Anne

    2013-02-01

    Sleep disturbances are a hallmark feature of post-traumatic stress disorder (PTSD), and associated with poor clinical outcomes. Few studies have examined sleep quantitative electroencephalography (qEEG), a technique able to detect subtle differences that polysomnography does not capture. We hypothesized that greater high-frequency qEEG would reflect 'hyperarousal' in combat veterans with PTSD (n = 16) compared to veterans without PTSD (n = 13). EEG power in traditional EEG frequency bands was computed for artifact-free sleep epochs across an entire night. Correlations were performed between qEEG and ratings of PTSD symptoms and combat exposure. The groups did not differ significantly in whole-night qEEG measures for either rapid eye movement (REM) or non-REM (NREM) sleep. Non-significant medium effect sizes suggest less REM beta (opposite to our hypothesis), less REM and NREM sigma and more NREM gamma in combat veterans with PTSD. Positive correlations were found between combat exposure and NREM beta (PTSD group only), and REM and NREM sigma (non-PTSD group only). Results did not support global hyperarousal in PTSD as indexed by increased beta qEEG activity. The correlation of sigma activity with combat exposure in those without PTSD and the non-significant trend towards less sigma activity during both REM and NREM sleep in combat veterans with PTSD suggests that differential information processing during sleep may characterize combat-exposed military veterans with and without PTSD.

  1. Medullary circuitry regulating rapid eye movement (REM) sleep and motor atonia

    PubMed Central

    Vetrivelan, Ramalingam; Fuller, Patrick M; Tong, Qingchun; Lu, Jun

    2009-01-01

    Considerable data support a role for glycinergic ventromedial medulla neurons in the mediation of the postsynaptic inhibition of spinal motoneurons necessary for the motor atonia of rapid-eye movement (REM) sleep in cats. These data are however difficult to reconcile with the fact that large lesions of the rostral ventral medulla do not result in loss of REM atonia in rats. In the present study, we sought to clarify which medullary networks in rodents are responsible for REM motor atonia by retrogradely tracing inputs to the spinal ventral horn from the medulla, ablating these medullary sources to determine their effects on REM atonia and using transgenic mice to identify the neurotransmitter(s) involved. Our results reveal a restricted region within the ventromedial medulla, termed here the ‘supraolivary medulla’ (SOM), which contains glutamatergic neurons that project to the spinal ventral horn. Cell-body specific lesions of the SOM resulted in an intermittent loss of muscle atonia, taking the form of exaggerated phasic muscle twitches, during REM sleep. A concomitant reduction in REM sleep time was observed in the SOM-lesioned animals. We next used mice with lox-P modified alleles of either the glutamate or GABA/glycine vesicular transporters to selectively eliminate glutamate or GABA/glycine neurotransmission from SOM neurons. Loss of SOM glutamate release, but not SOM GABA/glycine release, resulted in exaggerated muscle twitches during REM sleep that were similar to those observed following SOM lesions in rats. These findings, taken together, demonstrate that SOM glutamatergic neurons comprise key elements of the medullary circuitry mediating REM atonia. PMID:19625526

  2. The developmental decrease in REM sleep: the role of transmitters and electrical coupling.

    PubMed

    Garcia-Rill, Edgar; Charlesworth, Amanda; Heister, David; Ye, Meijun; Hayar, Abdallah

    2008-05-01

    This mini-review considers certain factors related to the developmental decrease in rapid eye movement (REM) sleep, which occurs in favor of additional waking time, and its relationship to developmental factors that may influence its potential role in brain development. Specifically, we discuss some of the theories proposed for the occurrence of REM sleep and agree with the classic notion that REM sleep is, at the least, a mechanism that may play a role in the maturation of thalamocortical pathways. The developmental decrease in REM sleep occurs gradually from birth until close to puberty in the human, and in other mammals it is brief and coincides with eye and ear opening and the beginning of massive exogenous activation. Therefore, the purported role for REM sleep may change to involve a number of other functions with age. We describe recent findings showing that morphologic and physiologic properties as well as cholinergic, gamma amino-butyric acid, kainic acid, n-methyl-d-aspartic acid, noradrenergic, and serotonergic synaptic inputs to mesopontine cholinergic neurons, as well as the degree of electrical coupling between mostly noncholinergic mesopontine neurons and levels of the neuronal gap-junction protein connexin 36, change dramatically during this critical period in development. A novel mechanism for sleep-wake control based on well-known transmitter interactions, as well as electrical coupling, is described. We hypothesize that a dysregulation of this process could result in life-long disturbances in arousal and REM sleep drive, leading to hypervigilance or hypovigilance such as that observed in a number of disorders that have a mostly postpubertal age of onset.

  3. Hypoventilation in REM sleep in a case of 17p11.2 deletion (Smith-Magenis syndrome).

    PubMed

    Leoni, Chiara; Cesarini, Laura; Dittoni, Serena; Battaglia, Domenica; Novelli, Antonio; Bernardini, Laura; Losurdo, Anna; Vollono, Catello; Testani, Elisa; Della Marca, Giacomo; Zampino, Giuseppe

    2010-03-01

    We describe a 2-year-old baby affected by Smith-Magenis syndrome (SMS), due to 17p11.2 deletion, who presented repeated episodes of hemoglobin desaturation during REM sleep. The boy, aged 14 months, presented a phenotype characterized by psychomotor delay, right posterior plagiocephaly, telecanthus, strabismus, upslanting palpebral fissures, broad hypoplastic nasal bridge, short philtrum, deep ring shaped skin creases around the limbs, proximal syndactyly, bilateral hypoacusia. Polysomnographic (PSG) recording showed episodes of REM-related hypoventilation (hemoglobin desaturations without apneas or hypopneas). Sleep disorders are present in almost all the cases of SMS, but very few reports describe the sleep-related respiratory patterns. The finding of REM hypoventilation in SMS does not allow an unequivocal interpretation. It could reflect a subclinical restrictive respiratory impairment or, alternatively, an impairment of central respiratory control during REM sleep. In SMS children, respiratory abnormalities during sleep, and in particular during REM sleep, may cause sleep disruption, reduction of time spent in REM sleep, and daytime sleepiness. We therefore suggest that some sleep abnormalities described in SMS could be consequent to Sleep Disordered Breathing, and in particular to REM hypoventilation. Sleep studies in SMS should include the recording of respiratory parameters.

  4. Auditory inhibition of rapid eye movements and dream recall from REM sleep.

    PubMed

    Stuart, Katrina; Conduit, Russell

    2009-03-01

    There is debate in dream research as to whether ponto-geniculo-occipital (PGO) waves or cortical arousal during sleep underlie the biological mechanisms of dreaming. This study comprised 2 experiments. As eye movements (EMs) are currently considered the best noninvasive indicator of PGO burst activity in humans, the aim of the first experiment was to investigate the effect of low-intensity repeated auditory stimulation on EMs (and inferred PGO burst activity) during REM sleep. It was predicted that such auditory stimuli during REM sleep would have a suppressive effect on EMs. The aim of the second experiment was to examine the effects of this auditory stimulation on subsequent dream reporting on awakening. Repeated measures design with counterbalanced order of experimental and control conditions across participants. Sleep laboratory based polysomnography (PSG) PARTICIPANTS: Experiment 1 : 5 males and 10 females aged 18-35 years (M = 20.8, SD = 5.4). Experiment 2 : 7 males and 13 females aged 18-35 years (M = 23.3, SD = 5.5). Below-waking threshold tone presentations during REM sleep compared to control REM sleep conditions without tone presentations. PSG records were manually scored for sleep stages, EEG arousals, and EMs. Auditory stimulation during REM sleep was related to: (a) an increase in EEG arousal, (b) a decrease in the amplitude and frequency of EMs, and (c) a decrease in the frequency of visual imagery reports on awakening. The results of this study provide phenomenological support for PGO-based theories of dream reporting on awakening from sleep in humans.

  5. Non-REM sleep EEG power distribution in fatigue and sleepiness.

    PubMed

    Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Linkowski, Paul; Le Bon, Olivier

    2014-04-01

    The aim of this study is to contribute to the sleep-related differentiation between daytime fatigue and sleepiness. 135 subjects presenting with sleep apnea-hypopnea syndrome (SAHS, n=58) or chronic fatigue syndrome (CFS, n=52) with respective sleepiness or fatigue complaints and a control group (n=25) underwent polysomnography and psychometric assessments for fatigue, sleepiness, affective symptoms and perceived sleep quality. Sleep EEG spectral analysis for ultra slow, delta, theta, alpha, sigma and beta power bands was performed on frontal, central and occipital derivations. Patient groups presented with impaired subjective sleep quality and higher affective symptom intensity. CFS patients presented with highest fatigue and SAHS patients with highest sleepiness levels. All groups showed similar total sleep time. Subject groups mainly differed in sleep efficiency, wake after sleep onset, duration of light sleep (N1, N2) and slow wave sleep, as well as in sleep fragmentation and respiratory disturbance. Relative non-REM sleep power spectra distributions suggest a pattern of power exchange in higher frequency bands at the expense of central ultra slow power in CFS patients during all non-REM stages. In SAHS patients, however, we found an opposite pattern at occipital sites during N1 and N2. Slow wave activity presents as a crossroad of fatigue and sleepiness with, however, different spectral power band distributions during non-REM sleep. The homeostatic function of sleep might be compromised in CFS patients and could explain why, in contrast to sleepiness, fatigue does not resolve with sleep in these patients. The present findings thus contribute to the differentiation of both phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Vivid dreams, hallucinations, psychosis and REM sleep in Guillain-Barré syndrome.

    PubMed

    Cochen, V; Arnulf, I; Demeret, S; Neulat, M L; Gourlet, V; Drouot, X; Moutereau, S; Derenne, J P; Similowski, T; Willer, J C; Pierrot-Deseiligny, C; Bolgert, F

    2005-11-01

    We conducted a prospective controlled study of the clinical and biological determinants of the mental status abnormalities in 139 patients with Guillain-Barré syndrome (GBS) and 55 patients without GBS placed in the intensive care unit (ICU controls). There were mental status changes in 31% of GBS patients and in 16% of controls (odds ratio = 2.3; P = 0.04). In GBS patients, they included vivid dreams (19%), illusions (30%, including an illusory body tilt), hallucinations (60%, mainly visual) and delusions (70%, mostly paranoid). They appeared a median 9 days after disease onset (range 1-40 days, during the progression or the plateau of the disease), and lasted a median 8 days. Seven (16%) patients experienced the symptoms before their admission to the ICU. Hallucinations were frequently hypnagogic, occurring as soon as the patients closed their eyes. Autonomic dysfunction, assisted ventilation and high CSF protein levels were significant risk factors for abnormal mental status in GBS patients. CSF hypocretin-1 (a hypothalamic neuropeptide deficient in narcolepsy) levels, measured in 20 patients, were lower in GBS patients with hallucinations (555 +/- 132 pg/ml) than in those without (664 +/- 71 pg/ml, P = 0.03). Since the mental status abnormalities had dream-like aspects, we examined their association with rapid eye movement sleep (REM sleep) using continuous sleep monitoring in 13 GBS patients with (n = 7) and without (n = 6) hallucinations and 6 tetraplegic ICU controls without hallucinations. Although sleep was short and fragmented in all groups, REM sleep latency was shorter in GBS patients with hallucinations (56 +/- 115 min) than in GBS patients without hallucinations (153 +/- 130 min) and in controls (207 +/- 179 min, P < 0.05). In addition, sleep structure was highly abnormal in hallucinators, with sleep onset in REM sleep periods (83%), abnormal eye movements during non-REM sleep (57%), high percentages of REM sleep without atonia (92 +/- 22%), REM

  7. REM sleep deprivation attenuates actin-binding protein cortactin: a link between sleep and hippocampal plasticity.

    PubMed

    Davis, Christopher J; Meighan, Peter C; Taishi, Ping; Krueger, James M; Harding, Joseph W; Wright, John W

    2006-06-12

    Rapid eye-movement sleep (REMS) is thought to affect synaptic plasticity. Cortactin is a cytoskeletal protein critically involved in the regulation of actin branching and stabilization including the actin backbone of dendritic spines. Hippocampal cortactin levels, phosphorylation, and processing appear to be altered during learning and long-term potentiation (LTP); consistent with a role for cortactin in the dendritic restructuring that accompanies synaptic plasticity. In this study juvenile male Sprague-Dawley rats were selectively REMS-deprived (RD) for 48 h by the flowerpot method. Cage control (CC) and large pedestal control (PC) animals were used for comparison. Animals were euthanized immediately, or 12 h, after removal from the pedestal. The hippocampus was dissected, flash-frozen, and stored for subsequent Western blot or quantitative RT-PCR analysis of cortactin. Cortactin mRNA/cDNA levels initially rose in PC and RD rats but returned to CC levels by 12 h after removal from the pedestal. Predictably cortactin protein levels were initially unchanged but were up-regulated after 12 h. The PC group had more total and tyrosine-phosphorylated cortactin protein expression than the RD and CC groups. This increase in cortactin was likely due to the exposure of the rats to the novel environment of the deprivation chambers thus triggering plasticity events. The lack of REMS, however, severely hampered cortactin protein up-regulation and phosphorylation observed in the PC group suggesting an attenuation of plasticity-related events. Thus, these data support a functional link between REMS and cytoskeletal reorganization in the hippocampus, a process that is essential for synaptic plasticity.

  8. Opposite Impact of REM Sleep on Neurobehavioral Functioning in Children with Common Psychiatric Disorders Compared to Typically Developing Children

    PubMed Central

    Kirov, Roumen; Brand, Serge; Banaschewski, Tobias; Rothenberger, Aribert

    2017-01-01

    Rapid eye movement (REM) sleep has been shown to be related to many adaptive cognitive and behavioral functions. However, its precise functions are still elusive, particularly in developmental psychiatric disorders. The present study aims at investigating associations between polysomnographic (PSG) REM sleep measurements and neurobehavioral functions in children with common developmental psychiatric conditions compared to typically developing children (TDC). Twenty-four children with attention-deficit/hyperactivity disorder (ADHD), 21 with Tourette syndrome/tic disorder (TD), 21 with ADHD/TD comorbidity, and 22 TDC, matched for age and gender, underwent a two-night PSG, and their psychopathological scores and intelligence quotient (IQ) were assessed. Major PSG findings showed more REM sleep and shorter REM latency in the children with psychiatric disorders than in the TDC. Multiple regression analyses revealed that in groups with developmental psychopathology, REM sleep proportion correlated positively with scores of inattention and negatively with performance IQ. In contrast, in the group of TDC, REM sleep proportion correlated negatively with scores of inattention and positively with performance IQ. Whilst shorter REM latency was associated with greater inattention scores in children with psychopathology, no such an association existed in the group of TDC. Altogether, these results indicate an opposite impact of REM sleep on neurobehavioral functioning, related to presence or absence of developmental psychiatric disorders. Our findings suggest that during development, REM sleep functions may interact dissimilarly with different pathways of brain maturation. PMID:28119653

  9. Opposite Impact of REM Sleep on Neurobehavioral Functioning in Children with Common Psychiatric Disorders Compared to Typically Developing Children.

    PubMed

    Kirov, Roumen; Brand, Serge; Banaschewski, Tobias; Rothenberger, Aribert

    2016-01-01

    Rapid eye movement (REM) sleep has been shown to be related to many adaptive cognitive and behavioral functions. However, its precise functions are still elusive, particularly in developmental psychiatric disorders. The present study aims at investigating associations between polysomnographic (PSG) REM sleep measurements and neurobehavioral functions in children with common developmental psychiatric conditions compared to typically developing children (TDC). Twenty-four children with attention-deficit/hyperactivity disorder (ADHD), 21 with Tourette syndrome/tic disorder (TD), 21 with ADHD/TD comorbidity, and 22 TDC, matched for age and gender, underwent a two-night PSG, and their psychopathological scores and intelligence quotient (IQ) were assessed. Major PSG findings showed more REM sleep and shorter REM latency in the children with psychiatric disorders than in the TDC. Multiple regression analyses revealed that in groups with developmental psychopathology, REM sleep proportion correlated positively with scores of inattention and negatively with performance IQ. In contrast, in the group of TDC, REM sleep proportion correlated negatively with scores of inattention and positively with performance IQ. Whilst shorter REM latency was associated with greater inattention scores in children with psychopathology, no such an association existed in the group of TDC. Altogether, these results indicate an opposite impact of REM sleep on neurobehavioral functioning, related to presence or absence of developmental psychiatric disorders. Our findings suggest that during development, REM sleep functions may interact dissimilarly with different pathways of brain maturation.

  10. Validation of the Mayo Sleep Questionnaire to Screen for REM Sleep Behavior Disorder in a Community-Based Sample

    PubMed Central

    Boeve, Bradley F.; Molano, Jennifer R.; Ferman, Tanis J.; Lin, Siong-Chi; Bieniek, Kevin; Tippmann-Peikert, Maja; Boot, Brendon; St. Louis, Erik K.; Knopman, David S.; Petersen, Ronald C.; Silber, Michael H.

    2013-01-01

    Objective: To validate a questionnaire focused on REM sleep behavior disorder (RBD) in a community-based sample. Background: RBD is a parasomnia manifested by recurrent dream enactment behavior during REM sleep. While confirmation of RBD requires the presence of REM sleep without atonia on polysomnography (PSG), a screening measure for RBD validated in older adults would be desirable for clinical and research purposes. Methods: We had previously developed the Mayo Sleep Questionnaire (MSQ) to screen for the presence of RBD and other sleep disorders. We assessed the validity of the MSQ by comparing the responses of subjects' bed partners with the findings on PSG. All subjects recruited from 10/04 to 12/08 in the Mayo Clinic Study of Aging—a population-based study of aging in Olmsted County, Minnesota—who had also undergone a previous PSG were the focus of this analysis. Results: The study sample included 128 subjects (104 male; median age 77 years [range 67-90]), with the following clinical diagnoses at baseline assessment: normal (n = 95), mild cognitive impairment (n = 30), and mild Alzheimer disease (n = 3). Nine (5%) subjects had RBD based on history and PSG evidence of REM sleep without atonia. The core question on recurrent dream enactment behavior yielded sensitivity (SN) of 100% and specificity (SP) of 95% for the diagnosis of RBD. The profile of responses on four additional subquestions on RBD improved specificity. Conclusions: These data suggest that the MSQ has adequate SN and SP for the diagnosis of RBD among elderly subjects in a community-based sample. Citation: Boeve BF; Molano JR; Ferman TJ; Lin Siong-Chi; Bieniek K; Tippmann-Peikert M; Boot B; St. Louis EK; Knopman DS; Petersen RC; Silber MH. Validation of the Mayo Sleep Questionnaire to screen for REM sleep behavior disorder in a community-based sample. J Clin Sleep Med 2013;9(5):475-480. PMID:23674939

  11. Rapid-Eye-Movement-Sleep (REM) Associated Enhancement of Working Memory Performance after a Daytime Nap.

    PubMed

    Lau, Esther Yuet Ying; Wong, Mark Lawrence; Lau, Kristy Nga Ting; Hui, Florence Wai Ying; Tseng, Chia-huei

    2015-01-01

    The main objective was to study the impact of a daytime sleep opportunity on working memory and the mechanism behind such impact. This study adopted an experimental design in a sleep research laboratory. Eighty healthy college students (Age:17-23, 36 males) were randomized to either have a polysomnography-monitored daytime sleep opportunity (Nap-group, n=40) or stay awake (Wake-group, n=40) between the two assessment sessions. All participants completed a sleep diary and wore an actigraph-watch for 5 days before and one day after the assessment sessions. They completed the state-measurement of sleepiness and affect, in addition to a psychomotor vigilance test and a working memory task before and after the nap/wake sessions. The two groups did not differ in their sleep characteristics prior to and after the lab visit. The Nap-group had higher accuracy on the working memory task, fewer lapses on the psychomotor vigilance test and lower state-sleepiness than the Wake-group. Within the Nap-group, working memory accuracy was positively correlated with duration of rapid eye movement sleep (REM) and total sleep time during the nap. Our findings suggested that "sleep gain" during a daytime sleep opportunity had significant positive impact on working memory performance, without affecting subsequent nighttime sleep in young adult, and such impact was associated with the duration of REM. While REM abnormality has long been noted in pathological conditions (e.g. depression), which are also presented with cognitive dysfunctions (e.g. working memory deficits), this was the first evidence showing working memory enhancement associated with REM in daytime napping in college students, who likely had habitual short sleep duration but were otherwise generally healthy.

  12. Features of REM-related Sleep Disordered Breathing in the Japanese Population.

    PubMed

    Sakao, Seiichiro; Sakurai, Takayuki; Yahaba, Misuzu; Sakurai, Yoriko; Terada, Jiro; Tanabe, Nobuhiro; Tatsumi, Koichiro

    2015-01-01

    Rapid eye movement (REM)-related sleep disordered breathing (SDB) is an entity in which the cessation or reduction of breathing occurs primarily during the REM period. Most studies have shown that REM-related SDB more frequently affects women, younger people and patients with mild or moderate SDB. The aim of this study was to prospectively investigate the prevalence and features of REM-related SDB in Japanese subjects compared with the findings of previous reports. A total of 468 patients were evaluated in this study. The diagnosis of SDB was established using polysomnographic monitoring. The patient variables included age, gender, body characteristics, comorbidities, etc. REM-related SDB was more prevalent in women than non-REM-related SDB (male ratio; 66.3% vs. 79.5%, p=0.03). Moreover, the patients with REM-related SDB had lower body mass indexes (25.9 ± 6.9 vs. 28.5 ± 7.7; p=0.003), arousal indexes (31.8 ± 10.7 vs. 61.0 ± 29.1; p<0.001), apnea hypopnea indexes (15.0 ± 8.0 vs. 54.9 ± 35.9) and glycosylated hemoglobin (HbA1c) levels (5.5 ± 0.9 vs. 5.9 ± 2.6; p=0.02) than the patients with non-REM-related SDB. However, the overall and female gender prevalence of REM-related SDB among the Japanese subjects was lower than that shown in previous reports. The finding that REM-related SDB was not prevalent in younger individuals or severely obese patients was not consistent with the results of previous studies. The present findings suggest that REM-related SDB may have different clinical characteristics in the Japanese population than that observed in previous reports.

  13. Declarative memory consolidation during the first night in a sleep lab: the role of REM sleep and cortisol.

    PubMed

    Goerke, Monique; Cohrs, Stefan; Rodenbeck, Andrea; Grittner, Ulrike; Sommer, Werner; Kunz, Dieter

    2013-07-01

    While the consolidation of declarative memory is supported by slow wave sleep (SWS) in healthy subjects, it has been shown to be associated with rapid eye movement (REM) sleep in patients with insomnia. Sleep during a subject's first night in an unfamiliar environment is often disturbed, and this so-called first-night effect (FNE) has often been used as a model of transient insomnia. Additionally, sleeping for the first time in an unfamiliar environment can lead to increased cortisol secretion, and declarative memory consolidation likely depends on low cortisol levels, especially during the early part of the night. Accounting for intersubject variability in the FNE, we examined the relationship between sleep stages, cortisol secretion and declarative memory performance in 27 healthy young men. Declarative memory performance improved significantly after sleep. Whereas memory performance during the learning session and retrieval testing was strongly associated with cortisol secretion, the overnight gain was not. Post hoc analyses indicated that the overnight gain appears to be modulated by the extent of the FNE: a significant overnight improvement in memory performance was found only in subjects with a weak FNE (n=12). In these subjects, no association was found between any sleep stage and the improvement observed in their memory performance. In subjects with a strong FNE (n=12), however, the overnight change in memory performance was associated with the proportion of REM sleep and the total number of REMs. Disturbed sleep in an unfamiliar environment therefore appears to affect the memory consolidation process.

  14. Melatonin therapy for REM sleep behavior disorder: a critical review of evidence.

    PubMed

    McGrane, Ian R; Leung, Jonathan G; St Louis, Erik K; Boeve, Bradley F

    2015-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia associated with dream enactment often involving violent or potentially injurious behaviors during REM sleep that is strongly associated with synucleinopathy neurodegeneration. Clonazepam has long been suggested as the first-line treatment option for RBD. However, evidence supporting melatonin therapy is expanding. Melatonin appears to be beneficial for the management of RBD with reductions in clinical behavioral outcomes and decrease in muscle tonicity during REM sleep. Melatonin also has a favorable safety and tolerability profile over clonazepam with limited potential for drug-drug interactions, an important consideration especially in elderly individuals with RBD receiving polypharmacy. Prospective clinical trials are necessary to establish the evidence basis for melatonin and clonazepam as RBD therapies.

  15. Melatonin Therapy for REM Sleep Behavior Disorder: A Critical Review of Evidence

    PubMed Central

    Leung, Jonathan G.; St Louis, Erik K.; Boeve, Bradley F.

    2014-01-01

    REM sleep behavior disorder (RBD) is a parasomnia associated with dream enactment often involving violent or potentially injurious behaviors during REM sleep that is strongly associated with synucleinopathy neurodegeneration. Clonazepam has long been suggested as the first-line treatment option for RBD. However, evidence supporting melatonin therapy is expanding. Melatonin appears to be beneficial for the management of RBD with reductions in clinical behavioral outcomes and decrease in muscle tonicity during REM sleep. Melatonin also has a favorable safety and tolerability profile over clonazepam with limited potential for drug-drug interactions, an important consideration especially in elderly individuals with RBD receiving polypharmacy. Prospective clinical trials are necessary to establish evidence-basis for melatonin and clonazepam as RBD therapies. PMID:25454845

  16. CIRCADIAN TIMING OF REM SLEEP IS COUPLED TO AN OSCILLATOR WITHIN THE DORSOMEDIAL SUPRACHIASMATIC NUCLEUS

    PubMed Central

    Lee, Michael L.; Swanson, Beryl E.; de la Iglesia, Horacio O.

    2009-01-01

    SUMMARY In near all animals, sleep is consistently concentrated to a specific time of the day. The timing and consolidation of sleep and wake bouts depend on the interplay between a homeostatic and a circadian processes of sleep regulation [1–3]. Sleep propensity rises as a homeostatic response to increasing wake time while a circadian clock determines the specific time when sleep will likely occur. This two-process regulation of sleep also determines which specific sleep stage will be manifested and specifically, the circadian process governs tightly the manifestation of rapid eye movement sleep (REMS) [1, 4]. The role of the hypothalamic suprachiasmatic nucleus (SCN) in the circadian gating of sleep and wakefulness has been unequivocally established by lesion studies [5] but its role in the timing of specific sleep stages has remained unknown. Using a forced desynchrony paradigm that induces the stable uncoupling of the ventrolateral (vl) and dorsomedial (dm) SCN, and a jetlag paradigm that induces a transient desynchronization between these SCN subregions we provide evidence that the SCN can time the occurrence of specific sleep stages. Specifically, the circadian regulation of REMS is associated with rhythmic clock gene expression within the dmSCN. Our results also provide the first neurophysiological model for the disruptions of sleep architecture that may result from temporal challenges such as rotational shift-work and transmeridional flights. PMID:19375313

  17. Impact of REM sleep on distortions of self-concept, mood and memory in depressed/anxious participants

    PubMed Central

    McNamara, Patrick; Auerbach, Sanford; Johnson, Patricia; Harris, Erica; Doros, Gheorghe

    2009-01-01

    Introduction: We tested the hypothesis that REM sleep contributes to core features of cognitive dysfunction of anxious depression including negative self-appraisals, biased memory processing and unpleasant dream content. Methods: After a habituation night in a sleep lab, a convenience sample of 35 healthy college students and 20 depressed/anxious students were awakened 10 minutes into a REM sleep episode and then 10 minutes into a NREM sleep episode. Awakenings were counterbalanced to control circadian effects. After each awakening participants reported a dream and then completed memory recall, mood and self-appraisal tasks. Results: Self-appraisals of depressed/anxious participants were significantly less positive and significantly more negative after awakenings from REM sleep vs NREM sleep. Appraisal of the REM sleep dream self was negative for depressed/anxious subjects only. Recall of negative memories was significantly more frequent after REM vs NREM sleep awakenings for both depress/anxious and healthy participants. REM sleep dreams were associated with greater frequencies of negative emotion, greater aggression and victimization rates than dreams in NREM sleep for depressed/anxious participants. Limitations: Depressed/anxious participants were classified as such on the basis of mood scales rather than clinical interview. All participants were drawn from a volunteer college student population and thus our results may not be applicable to some elderly clinical populations. Conclusions: REM appears to facilitate cognitive distortions of anxious depression. PMID:19631989

  18. Affect Intensity and Phasic REM Sleep in Depressed Men before and after Treatment with Cognitive-Behavioral Therapy.

    ERIC Educational Resources Information Center

    Nofzinger, Eric A.; And Others

    1994-01-01

    Explored relationship between daytime affect and REM (rapid eye movement) sleep in 45 depressed men before and after treatment with cognitive-behavioral therapy and in control group of 43 healthy subjects. For depressed subjects only, intensity of daytime affect correlated significantly and positively with phasic REM sleep measures at pre- and…

  19. Affect Intensity and Phasic REM Sleep in Depressed Men before and after Treatment with Cognitive-Behavioral Therapy.

    ERIC Educational Resources Information Center

    Nofzinger, Eric A.; And Others

    1994-01-01

    Explored relationship between daytime affect and REM (rapid eye movement) sleep in 45 depressed men before and after treatment with cognitive-behavioral therapy and in control group of 43 healthy subjects. For depressed subjects only, intensity of daytime affect correlated significantly and positively with phasic REM sleep measures at pre- and…

  20. Alpha reactivity to complex sounds differs during REM sleep and wakefulness.

    PubMed

    Ruby, Perrine; Blochet, Camille; Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Bidet-Caulet, Aurélie

    2013-01-01

    We aimed at better understanding the brain mechanisms involved in the processing of alerting meaningful sounds during sleep, investigating alpha activity. During EEG acquisition, subjects were presented with a passive auditory oddball paradigm including rare complex sounds called Novels (the own first name - OWN, and an unfamiliar first name - OTHER) while they were watching a silent movie in the evening or sleeping at night. During the experimental night, the subjects' quality of sleep was generally preserved. During wakefulness, the decrease in alpha power (8-12 Hz) induced by Novels was significantly larger for OWN than for OTHER at parietal electrodes, between 600 and 900 ms after stimulus onset. Conversely, during REM sleep, Novels induced an increase in alpha power (from 0 to 1200 ms at all electrodes), significantly larger for OWN than for OTHER at several parietal electrodes between 700 and 1200 ms after stimulus onset. These results show that complex sounds have a different effect on the alpha power during wakefulness (decrease) and during REM sleep (increase) and that OWN induce a specific effect in these two states. The increased alpha power induced by Novels during REM sleep may 1) correspond to a short and transient increase in arousal; in this case, our study provides an objective measure of the greater arousing power of OWN over OTHER, 2) indicate a cortical inhibition associated with sleep protection. These results suggest that alpha modulation could participate in the selection of stimuli to be further processed during sleep.

  1. Alpha Reactivity to Complex Sounds Differs during REM Sleep and Wakefulness

    PubMed Central

    Ruby, Perrine; Blochet, Camille; Eichenlaub, Jean-Baptiste; Bertrand, Olivier; Morlet, Dominique; Bidet-Caulet, Aurélie

    2013-01-01

    We aimed at better understanding the brain mechanisms involved in the processing of alerting meaningful sounds during sleep, investigating alpha activity. During EEG acquisition, subjects were presented with a passive auditory oddball paradigm including rare complex sounds called Novels (the own first name - OWN, and an unfamiliar first name - OTHER) while they were watching a silent movie in the evening or sleeping at night. During the experimental night, the subjects’ quality of sleep was generally preserved. During wakefulness, the decrease in alpha power (8–12 Hz) induced by Novels was significantly larger for OWN than for OTHER at parietal electrodes, between 600 and 900 ms after stimulus onset. Conversely, during REM sleep, Novels induced an increase in alpha power (from 0 to 1200 ms at all electrodes), significantly larger for OWN than for OTHER at several parietal electrodes between 700 and 1200 ms after stimulus onset. These results show that complex sounds have a different effect on the alpha power during wakefulness (decrease) and during REM sleep (increase) and that OWN induce a specific effect in these two states. The increased alpha power induced by Novels during REM sleep may 1) correspond to a short and transient increase in arousal; in this case, our study provides an objective measure of the greater arousing power of OWN over OTHER, 2) indicate a cortical inhibition associated with sleep protection. These results suggest that alpha modulation could participate in the selection of stimuli to be further processed during sleep. PMID:24260331

  2. Sleep in depression: the influence of age, gender and diagnostic subtype on baseline sleep and the cholinergic REM induction test with RS 86.

    PubMed

    Riemann, D; Hohagen, F; Bahro, M; Berger, M

    1994-01-01

    One hundred and eight healthy controls and 178 patients with a major depressive disorder according to DSM-III were investigated in the sleep laboratory after a 7-day drug wash-out period. Subsamples of 36 healthy controls and 56 patients additionally took part in the cholinergic rapid eye movement (REM) sleep induction test with RS 86. Data analysis revealed that age exerted powerful influences on sleep in control subjects and depressed patients. Sleep efficiency and amount of slow wave sleep (SWS) decreased with age, whereas the number of awakenings, early morning awakening, and amounts of wake time and stage 1 increased with age. REM latency was negatively correlated with age only in the group of patients with a major depression. Statistical analysis revealed group differences for almost all parameters of sleep continuity with disturbed indices in the depressed group. Differences in SWS were not detected. REM latency and REM density were altered in depression compared to healthy subjects. Sex differences existed for the amounts of stage 1 and SWS. The cholinergic REM induction test resulted in a significantly more pronounced induction of REM sleep in depressed patients compared with healthy controls, provoking sleep onset REM periods as well in those depressed patients showing baseline REM latencies in the normal range. Depressed patients with or without melancholia (according to DSM-III) did not differ from each other, either concerning baseline sleep or with respect to the results of the cholinergic REM induction test. The results stress the importance of age when comparing sleep patterns of healthy controls with those of depressed patients. Furthermore they underline the usefulness of the cholinergic REM induction test for differentiating depressed patients from healthy controls and support the reciprocal interaction model of nonREM-REM regulation and the cholinergic-aminergic imbalance hypothesis of affective disorders.

  3. Decrease in myocardial 123I-MIBG radioactivity in REM sleep behavior disorder: two patients with different clinical progression.

    PubMed

    Oguri, Takuya; Tachibana, Naoko; Mitake, Shigehisa; Kawanishi, Taketo; Fukuyama, Hidenao

    2008-07-01

    Although decrease in myocardial iodine-123 metaiodobenzylguanidine ((123)I-MIBG) radioactivity has been reported in patients with rapid eye movement (REM) sleep behavior disorder (RBD), its pathophysiology has not been thoroughly disclosed. We report two RBD patients with differing clinical progression, in whom myocardial (123)I-MIBG scintigraphy was performed. One 69-year-old patient had more than a 20-year history of idiopathic RBD and showed a decrease in myocardial (123)I-MIBG radioactivity. The other 69-year-old patient started to manifest nocturnal behaviors at age 62, then mild parkinsonism at age 68, and showed a similar decrease in myocardial (123)I-MIBG radioactivity both before and after the onset of parkinsonism. These cases suggest that RBD could develop in diverse patterns of clinical progression even if signs of underlying Lewy body pathology are uniformly indicated.

  4. Spatial and Reversal Learning in the Morris Water Maze Are Largely Resistant to Six Hours of REM Sleep Deprivation Following Training

    ERIC Educational Resources Information Center

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair…

  5. Spatial and Reversal Learning in the Morris Water Maze Are Largely Resistant to Six Hours of REM Sleep Deprivation Following Training

    ERIC Educational Resources Information Center

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair…

  6. Nightmare sufferers show atypical emotional semantic associations and prolonged REM sleep-dependent emotional priming.

    PubMed

    Carr, Michelle; Blanchette-Carrière, Cloé; Marquis, Louis-Philippe; Ting, Cher Tieng; Nielsen, Tore

    2016-04-01

    The objective of this study was to investigate whether nightmare (NM) sufferers exhibit an abnormal network of emotional semantic associations as measured by a recently developed, rapid eye movement (REM) sleep-sensitive, associational breadth (AB) task. NM sufferers were compared to healthy controls (CTL) for their performance on an emotional AB task containing positive and negative cue words both before and after a nap with REM sleep. AB was assessed in both a priming condition, where cue words were explicitly memorized before sleep, and a non-priming condition, where cue words were not memorized. Performance was assessed again 1 week later. The study was conducted in a sleep laboratory with polysomnographic recording at the Hôpital du Sacré-Coeur de Montréal Twenty-eight participants between the ages of 18 and 35 years (Mage = 23.3 ± 3.4) were included in the study. The NM group scored higher than the CTL group on both positive and negative AB, with group differences persisting at the 1-week retest. However, the two groups did not differ as expected in the AB priming effect following REM sleep. Both groups showed decreased REM sleep-related AB priming for negative cue words and increased AB priming for positive cue words. However, the NM group maintained these effects 1 week later, whereas the CTL group did not. NM sufferers may access broader than normal emotional semantic networks in the wake state, a difference that may lead to this group being perceived as more creative. The fact that the AB priming effect is maintained at the 1-week retest for NM sufferers suggests that the presence of frequent NMs may alter REM sleep-dependent emotional processes over time. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Brain spatial microstates of human spontaneous alpha activity in relaxed wakefulness, drowsiness period, and REM sleep.

    PubMed

    Cantero, J L; Atienza, M; Salas, R M; Gómez, C M

    1999-01-01

    Spontaneous alpha activity clearly present in relaxed wakefulness with closed eyes, drowsiness period at sleep onset, and REM sleep was studied with spatial segmentation methods in order to determine if the brain activation state would be modulating the alpha spatial microstates composition and duration. These methods of spatial segmentation show some advantages: i) they extract topographic descriptors independent of the chosen reference (reference-free methods), and ii) they achieve spatial data reduction that are more data-driven than dipole source analysis. The results obtained with this study revealed that alpha activity presented a different spatio-temporal pattern of brain electric fields in each arousal state used in this study. These differences were reflected in a) the mean duration of alpha microstates (longer in relaxed wakefulness than in drowsy period and REM sleep), b) the number of brain microstates contained in one second (drowsiness showed more different microstates than did relaxed wakefulness and REM state), and c) the number of different classes (more abundant in drowsiness than in the rest of brain states). If we assume that longer segments of stable brain activity imply a lesser amount of different information to process (as reflected by a higher stability of the brain generator), whereas shorter segments imply a higher number of brain microstates caused by more different steps of information processing, it is possible that the alpha activity appearing in the sleep onset period could be indexing the hypnagogic imagery self-generated by the sleeping brain, and a phasic event in the case of REM sleep. Probably, REM-alpha bursts are associated with a brain microstate change (such as sleep spindles), as demonstrated by its phasic intrusion in a desynchronized background of brain activity. On the other hand, alpha rhythm could be the "baseline" of brain activity when the sensory inputs are minimum and the state is relaxed wakefulness.

  8. The Evolution of REM Sleep Behavior Disorder in Early Parkinson Disease.

    PubMed

    Sixel-Döring, Friederike; Zimmermann, Johannes; Wegener, Andrea; Mollenhauer, Brit; Trenkwalder, Claudia

    2016-09-01

    To investigate the development of REM sleep behavior disorder (RBD) and REM sleep behavioral events (RBE) not yet fulfilling diagnostic criteria for RBD as markers for neurodegeneration in a cohort of Parkinson disease (PD) patients between their de novo baseline assessment and two-year follow-up in comparison to healthy controls (HC). Clinically confirmed PD patients and HC with video-supported polysomnography (vPSG) data at baseline were re-investigated after two years. Diagnostic scoring for RBE and RBD was performed in both groups and related to baseline findings. One hundred thirteen PD patients and 102 healthy controls (HC) were included in the study. Within two years, the overall occurrence of behaviors during REM sleep in PD patients increased from 50% to 63% (P = 0.02). RBD increased from 25% to 43% (P < 0.001). Eleven of 29 (38%) RBE positive PD patients and 10/56 (18%) patients with normal REM sleep at baseline converted to RBD. In HC, the occurrence of any REM behavior increased from 17% to 20% (n.s.). RBD increased from 2% to 4% (n.s.). One of 15 (7%) RBE positive HC and 1/85 (1%) HC with normal REM at baseline converted to RBD. RBD increased significantly in PD patients from the de novo state to two-year follow-up. We propose RBE being named "prodromal RBD" as it may follow a continuous evolution in PD possibly similar to the spreading of Lewy bodies in PD patients. RBD itself was shown as a robust and stable marker of early PD. © 2016 Associated Professional Sleep Societies, LLC.

  9. A Role for REM Sleep in Recalibrating the Sensitivity of the Human Brain to Specific Emotions

    PubMed Central

    Gujar, Ninad; McDonald, Steven Andrew; Nishida, Masaki

    2011-01-01

    Although the impact of sleep on cognitive function is increasingly well established, the role of sleep in modulating affective brain processes remains largely uncharacterized. Using a face recognition task, here we demonstrate an amplified reactivity to anger and fear emotions across the day, without sleep. However, an intervening nap blocked and even reversed this negative emotional reactivity to anger and fear while conversely enhancing ratings of positive (happy) expressions. Most interestingly, only those subjects who obtained rapid eye movement (REM) sleep displayed this remodulation of affective reactivity for the latter 2 emotion categories. Together, these results suggest that the evaluation of specific human emotions is not static across a daytime waking interval, showing a progressive reactivity toward threat-related negative expressions. However, an episode of sleep can reverse this predisposition, with REM sleep depotentiating negative reactivity toward fearful expressions while concomitantly facilitating recognition and ratings of reward-relevant positive expressions. These findings support the view that sleep, and specifically REM neurophysiology, may represent an important factor governing the optimal homeostasis of emotional brain regulation. PMID:20421251

  10. REM sleep deprivation induces changes of down regulatory antagonist modulator (DREAM) expression in the ventrobasal thalamic nuclei of sprague-dawley rats.

    PubMed

    Siran, Rosfaiizah; Ahmad, Asma Hayati; Abdul Aziz, Che Badariah; Ismail, Zalina

    2014-12-01

    REM sleep is a crucial component of sleep. Animal studies indicate that rapid eye movement (REM) sleep deprivation elicits changes in gene expression. Down regulatory antagonist modulator (DREAM) is a protein which downregulates other gene transcriptions by binding to the downstream response element site. The aim of this study is to examine the effect of REM sleep deprivation on DREAM expression in ventrobasal thalamic nuclei (VB) of rats. Seventy-two male Sprague-Dawley rats were divided into four major groups consisting of free-moving control rats (FMC) (n = 18), 72-h REM sleep-deprived rats (REMsd) (n = 18), 72-h REM sleep-deprived rats with 72-h sleep recovery (RG) (n = 18), and tank control rats (TC) (n = 18). REM sleep deprivation was elicited using the inverted flower pot technique. DREAM expression was examined in VB by immunohistochemical, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) studies. The DREAM-positive neuronal cells (DPN) were decreased bilaterally in the VB of rats deprived of REM sleep as well as after sleep recovery. The nuclear DREAM extractions were increased bilaterally in animals deprived of REM sleep. The DREAM messenger RNA (mRNA) levels were decreased after sleep recovery. The results demonstrated a link between DREAM expression and REM sleep deprivation as well as sleep recovery which may indicate potential involvement of DREAM in REM sleep-induced changes in gene expression, specifically in nociceptive processing.

  11. Lack of Effects of Pramipexole on REM Sleep Behavior Disorder in Parkinson Disease

    PubMed Central

    Kumru, Hatice; Iranzo, Alex; Carrasco, Eva; Valldeoriola, Francesc; Martí, Maria José; Santamaria, Joan; Tolosa, Eduard

    2008-01-01

    Study Objectives: REM sleep behavior disorder (RBD) is a common manifestation of Parkinson disease (PD) which is characterized by dream-enacting behaviors, unpleasant dreams, and loss of muscle atonia during REM sleep. Dopaminergic mechanisms are thought to play a role in RBD pathogenesis. To further asses such a role, we have evaluated the effect of pramipexole, a dopamine receptor agonist, on RBD features in PD patients. Setting: University hospital sleep disorder center. Participants: Eleven PD patients with untreated RBD. Interventions: Not applicable. Measurements and results: In a prospective study, 11 consecutive PD patients with untreated RBD on levodopa monotherapy were placed on pramipexole to further ameliorate their parkinsonism. The effects on RBD were evaluated before and 3 months after stable pramipexole therapy through patient and bed partner interviews and blind assessment of video-polysomnographic measures. Pramipexole improved parkinsonism in all patients. Patients and bed partners reported no significant changes in frequency and severity of the abnormal RBD related motor and vocal sleep behaviors or the frequency of unpleasant dreams. Video-polysomnography analyses showed no differences in RBD related sleep measures including tonic submental electromyographic activity, phasic submental electromyographic activity, percentage of REM sleep time spent with abnormal behaviors, and severity of the abnormal behaviors detected on the videotapes. Conclusion: In PD, pramipexole improved parkinsonism but did not modify RBD related symptoms and objective video-polysomnographic abnormalities. This observation suggests that in PD, dopamine mechanisms do not play a central role in the pathogenesis of RBD. Citation: Kumru H; Iranzo A; Carrasco E; Valldeoriola F; Martí MJ; Santamaria J; Tolosa E. Lack of effects of pramipexole on REM sleep behavior disorder in parkinson disease. SLEEP 2008;31(10):1418–1421. PMID:18853939

  12. Pharmacologically Induced/Exacerbated Restless Legs Syndrome, Periodic Limb Movements of Sleep, and REM Behavior Disorder/REM Sleep Without Atonia: Literature Review, Qualitative Scoring, and Comparative Analysis

    PubMed Central

    Hoque, Romy; Chesson, Andrew L.

    2010-01-01

    Background: Pharmacologically induced/exacerbated restless legs syndrome (RLS), periodic limb movements in sleep (PLMS), and REM behavior disorder/REM sleep without atonia (RSWA) are increasingly recognized in clinical sleep medicine. A scoring system to evaluate the literature was created and implemented. The aim was to identify the evidence with the least amount of confound, allowing for more reliable determinations of iatrogenic etiology. Methods: Points were provided for the following criteria: manuscript type (abstract, peer-reviewed paper); population size studied (large retrospective study, small case series, case report); explicitly stated dosage timing; identification of peak symptoms related to time of medication administration (i.e., medication was ingested in the evening or at bedtime); initiation of a treatment plan; symptoms subsided or ceased with decreased dosage or drug discontinuation (for RLS articles only); negative personal history for RLS prior to use of the medication; exclusion of tobacco/alcohol/excessive caffeine use; exclusion of sleep disordered breathing by polysomnography (PSG); and PSG documentation of presence or absence of PLMS. For RLS and PLMS articles were also given points for the following criteria: each 2003 National Institutes of Health (NIH) RLS criteria met; exclusion of low serum ferritin; and exclusion of peripheral neuropathy by neurological examination. Results: Thirty-two articles on drug-induced RLS, 6 articles on drug-induced PLMS, and 15 articles on drug-induced RBD/RSWA were analyzed. Conclusion: Based on scores ≥ 10 and trials of medication reduction/cessation, the strongest evidence available for drug induced RLS are for the following drugs: escitalopram; fluoxetine; L-dopa/carbidopa and pergolide; L-thyroxine; mianserin; mirtazapine; olanzapine; and tramadol. Since none of the PLMS articles assessed PLMI in trials of medication reduction/cessation, the strongest evidence based on scores ≥ 10 are for the

  13. Critical analysis of the theories advanced to explain short REM sleep latencies and other sleep anomalies in several psychiatric conditions.

    PubMed

    Le Bon, O; Staner, L; Murphy, J R; Hoffmann, G; Pull, C H; Pelc, I

    1997-01-01

    One of the most consistent and most studied sleep modifications in several psychiatric conditions is the shortening of the rapid eye movement (REM) sleep latency. While its clinical usefulness is still to be proven and its meaning relatively obscure, the appearance of a short REM latency continues to be a daily fact in sleep laboratories. Many theories compete to explain what is observed, the most important being the circadian rhythm hypotheses, the homeostatic model and the reciprocal interaction model. These three are summarised and their pros and cons are exposed in a systematic manner. Points of conflict, possible convergences and limitations are discussed in the light of recent developments on the general theories of sleep regulation.

  14. Sleep Loss Effects on Continuous Sustained Performance: Behavioral Analogs of the REM-nonREM Cycle.

    DTIC Science & Technology

    1981-10-20

    isolation experiments (2,7,17). and rather similar cycles have been described in primates both in isolation and in social-living models (18.19,20,21...Perhaps the similarity of frequency of the primate cycles is surprising, since the REM-nonREf cycle frequencies of monkeys are about twice those of...Delgadlo, J.M.R., Del Pozo, F., Montero, P., Nonteagudo, J.L., 0’Keeffe, T., and Kline, M.S. Behavioral rhythm of gibbons on Hall’s Island. J. Interdiac

  15. Revisiting the impact of REM sleep behavior disorder on motor progression in Parkinson's disease.

    PubMed

    Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Poryazova, Rositsa; Hauser, Sabrina; Baumann, Christian R

    2014-04-01

    Estimation of progression in Parkinson's disease (PD) is useful to guide clinical decisions and to enable patients to plan and manage their life with PD. Rapid eye movement (REM) sleep behavior disorder (RBD) and REM sleep without atonia (RWA) are recognized as early harbingers of neurodegeneration and may precede motor symptoms by years. However, their impact on motor progression remains elusive. We retrospectively analyzed polysomnographic and clinical data of 59 PD patients, grouping them into patients with RBD (n = 15), RWA (n = 22) and those with normal muscle atonia (n = 22). We compared the three groups with regard to motor progression, defined as changes in Unified Parkinson's Disease Rating Scale (UPDRS) III values per year, and selected PD specific characteristics. Motor disability at first visit and time interval between first and last visits were similar between groups. We observed a significantly faster motor progression in PD patients with RBD and RWA than in those with preserved REM sleep atonia. Our findings suggest that impaired muscle atonia during REM sleep might represent a marker of faster motor progression in PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A5 cells are silenced when REM sleep-like signs are elicited by pontine carbachol.

    PubMed

    Fenik, Victor; Marchenko, Vitaliy; Janssen, Patrick; Davies, Richard O; Kubin, Leszek

    2002-10-01

    The A5 noradrenergic neurons are considered important for cardiorespiratory regulation. We hypothesized that A5 cells are silenced during rapid eye movement (REM) sleep, thereby contributing to cardiorespiratory changes and suppression of hypoglossal (XII) motoneuronal activity. We used an anesthetized, paralyzed, and artificially ventilated rat in which pontine microinjections of carbachol trigger signs of REM sleep, including hippocampal theta rhythm, motor suppression, and silencing of locus coeruleus neurons. All 16 putative noradrenergic A5 cells recorded were strongly suppressed when the REM sleep-like episodes were elicited and also after intravenous clonidine. Antidromic mapping showed that none of six neurons tested projected to the XII nucleus, whereas three of five projected to the nucleus of the solitary tract and two of four to the rostral ventrolateral medulla. Bilateral microinjections of clonidine into the A5 regions did not alter XII nerve activity. These data suggest that A5 neurons are silenced during natural REM sleep. This will lead to decreased norepinephrine release and may alter synaptic transmission in the nucleus of the solitary tract and rostral ventrolateral medulla without, however, a detectable impact on XII motoneurons.

  17. REM Sleep Behaviour Disorder in Older Individuals: Epidemiology, Pathophysiology, and Management

    PubMed Central

    Trotti, Lynn Marie

    2010-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a sleep disorder that predominantly affects older adults, in which patients appear to be enacting their dreams while in REM sleep. The behaviors are typically violent, in association with violent dream content, so serious harm can be done to the patient or the bed-partner. The estimated prevalence in adults is 0.4–0.5%, but the frequency is much higher in certain neurodegenerative diseases, especially Parkinson's disease, Dementia with Lewy bodies, and multiple systems atrophy. RBD can occur in the absence of diagnosed neurologic diseases (the “idiopathic” form), although patients with this form of RBD may have subtle neurologic abnormalities and often ultimately develop a neurodegenerative disorder. Animal models and cases of RBD developing after brainstem lesions (pontine tegmentum, medulla) have led to the understanding that RBD is caused by a lack of normal REM muscle atonia and a lack of normal suppression of locomotor generators during REM. Clonazepam is used as first-line therapy for RBD and melatonin for second-line therapy, although evidence for both of these interventions comes from uncontrolled case series. Because the risk of injury to the patient or the bed-partner is high, interventions to improve the safety of the sleep environment are also often necessary. This review describes the epidemiology, pathophysiology, and treatment of RBD. PMID:20524706

  18. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia

    PubMed Central

    Pace, Marta; Adamantidis, Antoine; Facchin, Laura; Bassetti, Claudio

    2017-01-01

    Study Objectives Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. Methods Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. Results A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. Conclusions Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke. PMID:28061506

  19. Atypical Headbanging Presentation of Idiopathic Sleep Related Rhythmic Movement Disorder: Three Cases with Video-Polysomnographic Documentation

    PubMed Central

    Yeh, Shih-Bin; Schenck, Carlos H.

    2012-01-01

    Study Objectives: To describe three cases of sleep related, idiopathic rhythmic movement disorder (RMD) with atypical headbanging, consisting of head punching and head slapping. Methods: Three consecutive patients (2 males [11 and 13 years old) and one female [22 years old]) presented with atypical headbanging of 6 years, 7 years, and 17 years duration. In 2 cases, typical rhythmic headbanging (with use of the head) shifted after 3-4 years to atypical headbanging, with frontal head punching that was quasi-rhythmic. In one case, atypical headbanging (head-slapping) was the initial and only RMD. There was no injury from the headbanging. Prenatal, perinatal, developmental, behavioral-psychological, medical-neurological, and family histories were negative. Clinical evaluations and nocturnal video-polysomnography with seizure montage were performed on all patients. Results: Atypical headbanging was documented in all 3 cases; episodes always emerged late in the sleep cycle: from N2 sleep in 11 episodes, from REM sleep in 4 episodes, and from N1 sleep in 1 episode. Epileptiform activity was not detected. Clonazepam therapy was substantially effective in 1 case but not effective in 2 cases. Conclusions: These 3 cases of idiopathic atypical headbanging expand the literature on this RMD variant, as to our knowledge only one previously documented case has been reported. Citation: Yeh SB; Schenck CH. Atypical headbanging presentation of idiopathic sleep related rhythmic movement disorder: three cases with video-polysomnographic documentation. J Clin Sleep Med 2012;8(4):403-411. PMID:22893771

  20. Corticospinal excitability and sleep: a motor threshold assessment by transcranial magnetic stimulation after awakenings from REM and NREM sleep.

    PubMed

    Bertini, Mario; Ferrara, Michele; De Gennaro, Luigi; Curcio, Giuseppe; Fratello, Fabiana; Romei, Vincenzo; Pauri, Flavia; Rossini, Paolo Maria

    2004-03-01

    Transcranial magnetic stimulation (TMS) is a recently established technique in the neurosciences that allows the non-invasive assessment, among other parameters, of the excitability of motor cortex. Up to now, its application to sleep research has been very scarce and because of technical problems it provided contrasting results. In fact delivering one single suprathreshold magnetic stimulus easily awakes subjects, or lightens their sleep. For this reason, in the present study we assessed motor thresholds (MTs) upon rapid eye movement (REM) and non-rapid eye movement (NREM) sleep awakenings, both in the first and in the last part of the night. Taking into account that a full re-establishment of wake regional brain activity patterns upon awakening from sleep needs up to 20-30 min, it is possible to make inferences about the neurophysiological characteristics of the different sleep stages by analyzing the variables of interest immediately after provoked awakenings. Ten female volunteers slept in the lab for four consecutive nights. During the first night the MTs were collected, following a standardized procedure: 5 min before lights off, upon stage 2 awakening (second NREM period), upon REM sleep awakening (second REM period), upon the final morning awakening (always from stage 2). Results showed that MTs increased linearly from presleep wakefulness to REM sleep awakenings, and from the latter to stage 2 awakenings. There was also a time-of-night effect on MTs upon awakening from stage 2, indicating that MTs decreased from the first to the second part of the night. The increase in corticospinal excitability across the night, which parallels the fulfillment of sleep need, is consistent with the linear decrease of auditory arousal thresholds during the night. The maximal reduction of corticospinal excitability during early NREM sleep can be related to the hyperpolarization of thalamocortical neurons, and is in line with the decreased metabolic activity of motor

  1. Daytime Ayahuasca administration modulates REM and slow-wave sleep in healthy volunteers.

    PubMed

    Barbanoj, Manel J; Riba, Jordi; Clos, S; Giménez, S; Grasa, E; Romero, S

    2008-02-01

    Ayahuasca is a traditional South American psychoactive beverage and the central sacrament of Brazilian-based religious groups, with followers in Europe and the United States. The tea contains the psychedelic indole N,N-dimethyltryptamine (DMT) and beta-carboline alkaloids with monoamine oxidase-inhibiting properties that render DMT orally active. DMT interacts with serotonergic neurotransmission acting as a partial agonist at 5-HT(1A) and 5-HT(2A/2C) receptor sites. Given the role played by serotonin in the regulation of the sleep/wake cycle, we investigated the effects of daytime ayahuasca consumption in sleep parameters. Subjective sleep quality, polysomnography (PSG), and spectral analysis were assessed in a group of 22 healthy male volunteers after the administration of a placebo, an ayahuasca dose equivalent to 1 mg DMT kg(-1) body weight, and 20 mg d-amphetamine, a proaminergic drug, as a positive control. Results show that ayahuasca did not induce any subjectively perceived deterioration of sleep quality or PSG-measured disruptions of sleep initiation or maintenance, in contrast with d-amphetamine, which delayed sleep initiation, disrupted sleep maintenance, induced a predominance of 'light' vs 'deep' sleep and significantly impaired subjective sleep quality. PSG analysis also showed that similarly to d-amphetamine, ayahuasca inhibits rapid eye movement (REM) sleep, decreasing its duration, both in absolute values and as a percentage of total sleep time, and shows a trend increase in its onset latency. Spectral analysis showed that d-amphetamine and ayahuasca increased power in the high frequency range, mainly during stage 2. Remarkably, whereas slow-wave sleep (SWS) power in the first night cycle, an indicator of sleep pressure, was decreased by d-amphetamine, ayahuasca enhanced power in this frequency band. Results show that daytime serotonergic psychedelic drug administration leads to measurable changes in PSG and sleep power spectrum and suggest an

  2. Chemogenetic inhibition of the medial prefrontal cortex reverses the effects of REM sleep loss on sucrose consumption

    PubMed Central

    McEown, Kristopher; Takata, Yohko; Cherasse, Yoan; Nagata, Nanae; Aritake, Kosuke; Lazarus, Michael

    2016-01-01

    Rapid eye movement (REM) sleep loss is associated with increased consumption of weight-promoting foods. The prefrontal cortex (PFC) is thought to mediate reward anticipation. However, the precise role of the PFC in mediating reward responses to highly palatable foods (HPF) after REM sleep deprivation is unclear. We selectively reduced REM sleep in mice over a 25–48 hr period and chemogenetically inhibited the medial PFC (mPFC) by using an altered glutamate-gated and ivermectin-gated chloride channel that facilitated neuronal inhibition through hyperpolarizing infected neurons. HPF consumption was measured while the mPFC was inactivated and REM sleep loss was induced. We found that REM sleep loss increased HPF consumption compared to control animals. However, mPFC inactivation reversed the effect of REM sleep loss on sucrose consumption without affecting fat consumption. Our findings provide, for the first time, a causal link between REM sleep, mPFC function and HPF consumption. DOI: http://dx.doi.org/10.7554/eLife.20269.001 PMID:27919319

  3. Phasic bursts of the antagonistic jaw muscles during REM sleep mimic a coordinated motor pattern during mastication.

    PubMed

    Kato, T; Nakamura, N; Masuda, Y; Yoshida, A; Morimoto, T; Yamamura, K; Yamashita, S; Sato, F

    2013-02-01

    Sleep-related movement disorders are characterized by the specific phenotypes of muscle activities and movements during sleep. However, the state-specific characteristics of muscle bursts and movement during sleep are poorly understood. In this study, jaw-closing and -opening muscle electromyographic (EMG) activities and jaw movements were quantified to characterize phenotypes of motor patterns during sleep in freely moving and head-restrained guinea pigs. During non-rapid eye movement (NREM) sleep, both muscles were irregularly activated in terms of duration, activity, and intervals. During rapid eye movement (REM) sleep, clusters of phasic bursts occurred in the two muscles. Compared with NREM sleep, burst duration, activity, and intervals were less variable during REM sleep for both muscles. Although burst activity was lower during the two sleep states than during chewing, burst duration and intervals during REM sleep were distributed within a similar range to those during chewing. A trigger-averaged analysis of muscle bursts revealed that the temporal association between the bursts of the jaw-closing and -opening muscles during REM sleep was analogous to the temporal association during natural chewing. The burst characteristics of the two muscles reflected irregular patterns of jaw movements during NREM sleep and repetitive alternating bilateral movements during REM sleep. The distinct patterns of jaw muscle bursts and movements reflect state-specific regulations of the jaw motor system during sleep states. Phasic activations in the antagonistic jaw muscles during REM sleep are regulated, at least in part, by the neural networks involving masticatory pattern generation, demonstrating that waking jaw motor patterns are replayed during sleep periods.

  4. REM sleep deprivation impairs muscle regeneration in rats.

    PubMed

    Mônico-Neto, Marcos; Dáttilo, Murilo; Ribeiro, Daniel Araki; Lee, Kil Sun; de Mello, Marco Túlio; Tufik, Sergio; Antunes, Hanna Karen Moreira

    2017-02-01

    The aim was observe the influence of sleep deprivation (SD) and sleep recovery on muscle regeneration process in rats submitted to cryolesion. Thirty-two Wistar rats were randomly allocated in four groups: control (CTL), SD for 96 h (SD96), control plus sleep recovery period (CTL + R) and SD96h plus 96 h of sleep recovery (SD96 + R). The animals were submitted to muscle injury by cryolesioning, after to SD and sleep recovery. The major outcomes of this study were the reduction of muscular IGF-1 in both legs (injured and uninjured) and a delay in muscle regeneration process of animals submitted to SD compared to animals that slept, with increase connective tissue, inflammatory infiltrate and minor muscle fibers. SD impairs muscle regeneration in rats, moreover reduces muscular IGF-1 and sleep recovery was able to restore it to basal levels, but it was not enough to normalize the muscle regeneration.

  5. Effects of age on recovery of body weight following REM sleep deprivation of rats.

    PubMed

    Koban, Michael; Stewart, Craig V

    2006-01-30

    Chronically enforced rapid eye (paradoxical) movement sleep deprivation (REM-SD) of rats leads to a host of pathologies, of which hyperphagia and loss of body weight are among the most readily observed. In recent years, the etiology of many REM-SD-associated pathologies have been elucidated, but one unexplored area is whether age affects outcomes. In this study, male Sprague-Dawley rats at 2, 6, and 12 months of age were REM sleep-deprived with the platform (flowerpot) method for 10-12 days. Two-month-old rats resided on 7-cm platforms, while 10-cm platforms were used for 6- and 12-month-old rats; rats on 15-cm platforms served as tank controls (TCs). Daily changes in food consumption (g/kg(0.67)) and body weight (g) during baseline, REM-SD or TCs, and post-experiment recovery in home cages were determined. Compared to TCs, REM-SD resulted in higher food intake and decreases in body weight. When returned to home cages, food intake rapidly declined to baseline levels. Of primary interest was that rates of body weight gain during recovery differed between the age groups. Two-month-old rats rapidly restored body weight to pre-REM-SD mass within 5 days; 6-month-old rats were extrapolated by linear regression to have taken about 10 days, and for 12-month-old rats, the estimate was about 35 days. The observation that restoration of body weight following its loss during REM-SD may be age-dependent is in general agreement with the literature on aging effects on how mammals respond to stress.

  6. Fear extinction memory consolidation requires potentiation of pontine-wave activity during REM sleep.

    PubMed

    Datta, Subimal; O'Malley, Matthew W

    2013-03-06

    Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction.

  7. Unilateral hemidiaphragm weakness is associated with positional hypoxemia in REM sleep.

    PubMed

    Baltzan, Marcel A; Scott, Adrienne S; Wolkove, Norman

    2012-02-15

    Patients with unilateral diaphragmatic paralysis (UDP) have been reported to have varied respiratory symptoms and often reduced lung function. We sought to describe the polysomnographic respiratory characteristics in patients with UDP without obstructive sleep apnea. We prospectively collected 5 cases with clinical investigation regarding symptoms, lung function, and nocturnal polysomnography. The respiratory sleep characteristics were analyzed with standardized scoring of respiratory events in 30-sec epochs and comparison according to sleep-wake stages and body position with respect to oximetry. The cases were compared to 5 controls matched for age, gender, and body mass index. Three of 5 patients had significant awake lung restriction with a mean (range) forced vital capacity of 1.89 (1.48-2.24) liters, 72% (45% to 102%) predicted. All had REM sleep with few apneas and episodes of prolonged hypopneas characterized by important desaturation noted on oximetry. These desaturations were greatest during REM sleep when the patients slept supine with a mean (SD) saturation of 90.8% (4.5%) and minimum of 64% or on the side unaffected by UDP with a mean saturation of 87.8% (5.3%) and minimum of 67% (p < 0.0001 compared to same positions awake). Other sleep stages had few, if any significant desaturations and these events rarely occurred when the patient slept in the supine position. Saturation was lower in all sleep-wake stages and sleep positions compared to controls (p < 0.0001). Patients with UDP demonstrate position-dependent hypopneas in REM sleep with frequent desaturations.

  8. Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep

    PubMed Central

    Datta, Subimal; O'Malley, Matthew W .

    2013-01-01

    Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372

  9. Characterization of REM-sleep associated ponto-geniculo-occipital waves in the human pons.

    PubMed

    Lim, Andrew S; Lozano, Andres M; Moro, Elena; Hamani, Clement; Hutchison, William D; Dostrovsky, Jonathan O; Lang, Anthony E; Wennberg, Richard A; Murray, Brian J

    2007-07-01

    Ponto-geniculo-occipital (PGO) waves are phasic pontine, lateral geniculate, and cortical field potentials occurring during and before REM sleep that are proposed to mediate a wide variety of sleep related neural processes. We sought to identify and characterize human PGO waves. We recorded simultaneously from intrapontine depth electrodes and scalp electrodes in a human subject across sleep states. Tertiary care neurological and neurosurgical referral center. We studied a patient involved in a study of the clinical effects of unilateral pedunculopontine nucleus (PPN) stimulation on Parkinson disease (PD). No interventions. We recorded phasic potentials from the human pons occurring during and before REM sleep with a morphology, temporal distribution, and localization similar to those of PGO waves in other mammals. The source of these potentials was localized to a circumscribed region of the pontomesencephalic tegmentum. These potentials were only incompletely associated with eye movements. They were followed by characteristic cortical potentials with a latency of 20-140 msec. We conclude that PGO waves are a feature of human REM sleep, that they are generated or propagated in the pontomesencephalic tegmentum, that they are only partially associated with eye movements, and that they are associated with characteristic changes in cortical activity.

  10. Restricting Time in Bed in Early Adolescence Reduces Both NREM and REM Sleep but Does Not Increase Slow Wave EEG.

    PubMed

    Campbell, Ian G; Kraus, Amanda M; Burright, Christopher S; Feinberg, Irwin

    2016-09-01

    School night total sleep time decreases across adolescence (9-18 years) by 10 min/year. This decline is comprised entirely of a selective decrease in NREM sleep; REM sleep actually increases slightly. Decreasing sleep duration across adolescence is often attributed to insufficient time in bed. Here we tested whether sleep restriction in early adolescence produces the same sleep stage changes observed on school nights across adolescence. All-night sleep EEG was recorded in 76 children ranging in age from 9.9 to 14.0 years. Each participant kept 3 different sleep schedules that consisted of 3 nights of 8.5 h in bed followed by 4 nights of either 7, 8.5, or 10 h in bed. Sleep stage durations and NREM delta EEG activity were compared across the 3 time in bed conditions. Shortening time in bed from 10 to 7 hours reduced sleep duration by approximately 2 hours, roughly equal to the decrease in sleep duration we recorded longitudinally across adolescence. However, sleep restriction significantly reduced both NREM (by 83 min) and REM (by 47 min) sleep. Sleep restriction did not affect NREM delta EEG activity. Our findings suggest that the selective NREM reduction and the small increase in REM we observed longitudinally across 9-18 years are not produced by sleep restriction. We hypothesize that the selective NREM decline reflects adolescent brain maturation (synaptic elimination) that reduces the need for the restorative processes of NREM sleep. © 2016 Associated Professional Sleep Societies, LLC.

  11. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats

    PubMed Central

    Hoffman, Gloria E.; Koban, Michael

    2016-01-01

    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness. PMID:27997552

  12. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats.

    PubMed

    Hoffman, Gloria E; Koban, Michael

    2016-01-01

    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.

  13. Supine position and REM dependence in obstructive sleep apnea : Critical model considerations.

    PubMed

    Steffen, A; Maibücher, L; König, I R

    2017-01-01

    When considering supine position and REM dependence, many studies refer to the traditional definition in which obstructive sleep apnea (OSA) severity is at least doubled in the corresponding position/sleep stage (Cartwright index). The lack of consideration of the time spent in that particular sleep situation can lead to clinical bias. Two cohorts of patients with at least moderate OSA were analyzed retrospectively for anthropometric associations and correlations with OSA severity. One group consisted of 48 patients diagnosed using a polygraph, and the other group of 222 patients underwent polysomnography. First, the conventional Cartwright index was used, and a modified index was later applied to integrate the relative time component for REM sleep and the supine position. Less than a fifth of the patients fulfilled the classic conditions for supine position or REM sleep dependency. There were no definitive cut-offs in the classic or modified Cartwright index with regard to daytime sleepiness. Both indices show there was a correlation between OSA severity and being overweight. The modified Cartwright index allowed us to identify borderline cases that were characterized by a very low or high amount of time spent in the supine position or REM sleep situation. Therapy effects that could have been biased only by varying amounts of time spent in the supine position could be better controlled for. Future studies will possibly include various other ratios besides the previously accepted 2:1 ratio when different statistical parameters are considered, such as the reduction of OSA severity or therapy adherence.

  14. [Supine position and REM dependence in obstructive sleep apnea. Critical model considerations. German version].

    PubMed

    Steffen, A; Maibücher, L; König, I R

    2017-02-01

    When considering supine position and REM dependence, many previous studies have referred to the traditional definition in which obstructive sleep apnea (OSA) severity is at least doubled in the corresponding position/sleep stage (Cartwright index). The lack of consideration of the time spent in the particular sleep situation could cause clinical bias. Two cohorts of patients with at least moderate OSA were analyzed retrospectively for anthropometric associations with OSA severity. One group consisted of 48 patients diagnosed using a polygraph and the other group of 222 patients underwent polysomnography. First, the conventional Cartwright index was used, and a modified index was later applied to integrate the relative time component for REM sleep and the supine position. Less than a fifth of the patients fulfilled the classic conditions for supine position or REM sleep dependency. There were no definitive cutoffs in the classic or modified Cartwright index with regard to daytime sleepiness. Both indices show there was a correlation between OSA severity and being overweight. The modified Cartwright index allowed identification of borderline cases that were characterized by a very low or high amount of time spent in the supine position or REM sleep situation. Treatment effects that could have been caused only by other components, e.g., different times spent in the supine position, could be better controlled for. In future studies there will be various other ratios besides the previously accepted 2:1 ratio when different statistical parameters are considered, such as the reduction of OSA severity or adherence to treatment.

  15. Cholinergic Oculomotor Nucleus Activity Is Induced by REM Sleep Deprivation Negatively Impacting on Cognition.

    PubMed

    Santos, Patrícia Dos; Targa, Adriano D S; Noseda, Ana Carolina D; Rodrigues, Lais S; Fagotti, Juliane; Lima, Marcelo M S

    2016-09-22

    Several efforts have been made to understand the involvement of rapid eye movement (REM) sleep for cognitive processes. Consolidation or retention of recognition memories is severely disrupted by REM sleep deprivation (REMSD). In this regard, pedunculopontine tegmental nucleus (PPT) and other brainstem nuclei, such as pontine nucleus (Pn) and oculomotor nucleus (OCM), appear to be candidates to take part in this REM sleep circuitry with potential involvement in cognition. Therefore, the objective of this study was to investigate a possible association between the performance of Wistar rats in a declarative memory and PPT, Pn, and OCM activities after different periods of REMSD. We examined c-Fos and choline acetyltransferase (ChaT) expressions as indicators of neuronal activity as well as a familiarity-based memory test. The animals were distributed in groups: control, REMSD, and sleep rebound (REB). At the end of the different REMSD (24, 48, 72, and 96 h) and REB (24 h) time points, the rats were immediately tested in the object recognition test and then the brains were collected. Results indicated that OCM neurons presented an increased activity, due to ChaT-labeling associated with REMSD that negatively correlated (r = -0.32) with the cognitive performance. This suggests the existence of a cholinergic compensatory mechanism within the OCM during REMSD. We also showed that 24 h of REMSD impacted similarly in memory, compared to longer periods of REMSD. These data extend the notion that REM sleep is influenced by areas other than PPT, i.e., Pn and OCM, which could be key players in both sleep processes and cognition.

  16. REM Sleep Rebound as an Adaptive Response to Stressful Situations

    PubMed Central

    Suchecki, Deborah; Tiba, Paula Ayako; Machado, Ricardo Borges

    2011-01-01

    Stress and sleep are related to each other in a bidirectional way. If on one hand poor or inadequate sleep exacerbates emotional, behavioral, and stress-related responses, on the other hand acute stress induces sleep rebound, most likely as a way to cope with the adverse stimuli. Chronic, as opposed to acute, stress impairs sleep and has been claimed to be one of the triggering factors of emotional-related sleep disorders, such as insomnia, depressive- and anxiety-disorders. These outcomes are dependent on individual psychobiological characteristics, conferring even more complexity to the stress-sleep relationship. Its neurobiology has only recently begun to be explored, through animal models, which are also valuable for the development of potential therapeutic agents and preventive actions. This review seeks to present data on the effects of stress on sleep and the different approaches used to study this relationship as well as possible neurobiological underpinnings and mechanisms involved. The results of numerous studies in humans and animals indicate that increased sleep, especially the rapid eye movement phase, following a stressful situation is an important adaptive behavior for recovery. However, this endogenous advantage appears to be impaired in human beings and rodent strains that exhibit high levels of anxiety and anxiety-like behavior. PMID:22485105

  17. Evidence of subthalamic PGO-like waves during REM sleep in humans: a deep brain polysomnographic study.

    PubMed

    Fernández-Mendoza, Julio; Lozano, Beatriz; Seijo, Fernando; Santamarta-Liébana, Elena; Ramos-Platón, Maria José; Vela-Bueno, Antonio; Fernández-González, Fernando

    2009-09-01

    The aim of this study was to examine whether the subthalamic nucleus (STN) plays a role in the transmission of PGO-like waves during REM sleep in humans. Simultaneous recordings from deep brain electrodes to record local field potentials (LFPs), and standard polysomnography to ascertain sleep/wake states. Main Hospital, department of clinical neurophysiology sleep laboratory. 12 individuals with Parkinson's disease, with electrodes implanted in the STN; and, as a control for localization purposes, 4 cluster headache patients with electrodes implanted in the posterior hypothalamus. All subjects underwent functional neurosurgery for implantation of deep brain stimulation electrodes. Sharp, polarity-reversed LFPs were recorded within the STN during REM sleep in humans. These subthalamic PGO-like waves (2-3 Hz, 80-200 pV, and 300-500 msec) appeared during REM epochs as singlets or in clusters of 3-13 waves. During the pre-REM period, subthalamic PGO-like waves were temporally related to drops in the submental electromyogram and/or onset of muscular atonia. Clusters of PGO-like waves occurred typically before and during the bursts of rapid eye movements and were associated with an enhancement in fast (15-35 Hz) subthalamic oscillatory activity. Subthalamic PGO-like waves can be recorded during pre-REM and REM sleep in humans. Our data suggest that the STN may play an active role in an ascending activating network implicated in the transmission of PGO waves during REM sleep in humans.

  18. A restricted parabrachial pontine region is active during non-REM sleep

    PubMed Central

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H.

    2011-01-01

    The principal site that generates both REM sleep and wakefulness is located in the mesopontine reticular formation, whereas non-REM sleep (NREM) is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase or GABA. During NREM, only a few Fos immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral peribrachial region (CLPB). The number of the Fos+ neurons in the CLPB during NREM was significantly greater (67.9 ± 10.9, P < 0.0001) compared to QW (8.0 ± 6.7), AW (5.2 ± 4.2) or REM-carbachol (8.0 ± 4.7). In addition, there was a positive correlation (R = 0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of

  19. Influence of age on the interrelation between EEG frequency bands during NREM and REM sleep.

    PubMed

    Mann, Klaus; Röschke, Joachim

    2004-04-01

    The age-dependence of temporal interrelations between distinct frequency bands of sleep EEG was investigated in a group of 59 healthy young and middle-aged males via cross correlation analysis. Based on global evaluation throughout the entire night, a highly significant decline of the delta/theta correlation with increasing age was found. A separate analysis for non-rapid eye movement (NREM) and rapid eye movement (REM) sleep revealed different changes with aging. During NREM sleep, the correlation between the delta and theta frequency bands decreased with increasing age. In contrast, during REM sleep, a stronger correlation became obvious between the theta, alpha, and beta frequency bands with increasing age, whereas the lower frequency components were not affected. These findings indicate that aging processes seem to interact with sleep EEG rhythms in a complex manner, where most conspicuous is a disintegration of the activities in the lower frequency range, both concerning the successive sleep cycles across the night and the micro-structure of NREM sleep.

  20. Obstructive sleep apnoea during REM sleep and incident non-dipping of nocturnal blood pressure: a longitudinal analysis of the Wisconsin Sleep Cohort.

    PubMed

    Mokhlesi, Babak; Hagen, Erika W; Finn, Laurel A; Hla, Khin Mae; Carter, Jason R; Peppard, Paul E

    2015-11-01

    Non-dipping of nocturnal blood pressure (BP) is associated with target organ damage and cardiovascular disease. Obstructive sleep apnoea (OSA) is associated with incident non-dipping. However, the relationship between disordered breathing during rapid eye movement (REM) sleep and the risk of developing non-dipping has not been examined. This study investigates whether OSA during REM sleep is associated with incident non-dipping. Our sample included 269 adults enrolled in the Wisconsin Sleep Cohort Study who completed two or more 24 h ambulatory BP studies over an average of 6.6 years of follow-up. After excluding participants with prevalent non-dipping BP or antihypertensive use at baseline, there were 199 and 215 participants available for longitudinal analysis of systolic and diastolic non-dipping, respectively. OSA in REM and non-REM sleep were defined by apnoea hypopnoea index (AHI) from baseline in-laboratory polysomnograms. Systolic and diastolic non-dipping were defined by systolic and diastolic sleep/wake BP ratios >0.9. Modified Poisson regression models estimated the relative risks for the relationship between REM AHI and incident non-dipping, adjusting for non-REM AHI and other covariates. There was a dose-response greater risk of developing systolic and diastolic non-dipping BP with greater severity of OSA in REM sleep (p-trend=0.021 for systolic and 0.024 for diastolic non-dipping). Relative to those with REM AHI<1 event/h, those with REM AHI≥15 had higher relative risk of incident systolic non-dipping (2.84, 95% CI 1.10 to 7.29) and incident diastolic non-dipping (4.27, 95% CI 1.20 to 15.13). Our findings indicate that in a population-based sample, REM OSA is independently associated with incident non-dipping of BP. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Periodic Limb Movements During Sleep Mimicking REM Sleep Behavior Disorder: A New Form of Periodic Limb Movement Disorder.

    PubMed

    Gaig, Carles; Iranzo, Alex; Pujol, Montserrat; Perez, Hernando; Santamaria, Joan

    2017-03-01

    To describe a group of patients referred because of abnormal sleep behaviors that were suggestive of rapid eye movement (REM) sleep behavior disorder (RBD) in whom video-polysomnography ruled out RBD and showed the reported behaviors associated with vigorous periodic limb movements during sleep (PLMS). Clinical history and video-polysomnography review of patients identified during routine visits in a sleep center. Patients were 15 men and 2 women with a median age of 66 (range: 48-77) years. Reported sleep behaviors were kicking (n = 17), punching (n = 16), gesticulating (n = 8), falling out of bed (n = 5), assaulting the bed partner (n = 2), talking (n = 15), and shouting (n = 10). Behaviors resulted in injuries in 3 bed partners and 1 patient. Twelve (70.6%) patients were not aware of displaying abnormal sleep behaviors that were only noticed by their bed partners. Ten (58.8%) patients recalled unpleasant dreams such as being attacked or chased. Video-polysomnography showed (1) frequent and vigorous stereotyped PLMS involving the lower limbs, upper limbs, and trunk (median PLMS index 61.2; median PLMS index in NREM sleep 61.9; during REM sleep only 8 patients had PLMS and their median PLMS index in REM sleep was 39.5); (2) abnormal behaviors (e.g., punching, groaning) during some of the arousals that immediately followed PLMS in NREM sleep; and (3) ruled out RBD and other sleep disorders such as obstructive sleep apnea. Dopaminergic agents were prescribed in 14 out of the 17 patients and resulted in improvement of abnormal sleep behaviors and unpleasant dreams in all of them. After dopaminergic treatment, follow-up video-polysomnography in 7 patients showed a decrease in the median PLMS index from baseline (108.9 vs. 19.2, p = .002) and absence of abnormal behaviors during the arousals. Abnormal sleep behaviors and unpleasant dreams simulating RBD symptomatology may occur in patients with severe PLMS. In these cases, video-polysomnography ruled out RBD and

  2. Effects of a lifestyle intervention on REM sleep-related OSA severity in obese individuals with type 2 diabetes.

    PubMed

    Shechter, Ari; Foster, Gary D; Lang, Wei; Reboussin, David M; St-Onge, Marie-Pierre; Zammit, Gary; Newman, Anne B; Millman, Richard P; Wadden, Thomas A; Jakicic, John M; Strotmeyer, Elsa S; Wing, Rena R; Pi-Sunyer, F Xavier; Kuna, Samuel T

    2017-05-31

    The aim of this study was to determine if an intensive lifestyle intervention (ILI) reduces the severity of obstructive sleep apnea (OSA) in rapid-eye movement (REM) sleep, and to determine if longitudinal changes in glycaemic control are related to changes in OSA severity during REM sleep over a 4-year follow-up. This was a randomized controlled trial including 264 overweight/obese adults with type 2 diabetes (T2D) and OSA. Participants were randomized to an ILI targeted to weight loss or a diabetes support and education (DSE) control group. Measures included anthropometry, apnea-hypopnea index (AHI) during REM sleep (REM-AHI) and non-REM sleep (NREM-AHI) and glycated haemoglobin (HbA1c) at baseline and year 1, year 2 and year 4 follow-ups. Mean baseline values of REM-AHI were significantly higher than NREM-AHI in both groups. Both REM-AHI and NREM-AHI were reduced significantly more in ILI versus DSE, but these differences were attenuated slightly after adjustment for weight changes. Repeated-measure mixed-model analyses including data to year 4 demonstrated that changes in HbA1c were related significantly to changes in weight, but not to changes in REM-AHI and NREM-AHI. Compared to control, the ILI reduced REM-AHI and NREM-AHI during the 4-year follow-up. Weight, as opposed to REM-AHI and NREM-AHI, was related to changes in HbA1c. The findings imply that weight loss from a lifestyle intervention is more important than reductions in AHI for improving glycaemic control in T2D patients with OSA. © 2017 European Sleep Research Society.

  3. A Change of Possible Neurological and Psychological Significance Within the First Week of Neonate Life: Sleeping REM Rate.

    ERIC Educational Resources Information Center

    Minard, James; And Others

    The percentage of rapid eye movement (REM) during sleep is substantially greater in neonates (infants in first month after birth) than in other children or adults. It was hypothesized that REM rate may decline as rates of many response sequences do when repeatedly elicited. Electrical recordings of eye movements were obtained from a 3-day-old male…

  4. A Change of Possible Neurological and Psychological Significance Within the First Week of Neonate Life: Sleeping REM Rate.

    ERIC Educational Resources Information Center

    Minard, James; And Others

    The percentage of rapid eye movement (REM) during sleep is substantially greater in neonates (infants in first month after birth) than in other children or adults. It was hypothesized that REM rate may decline as rates of many response sequences do when repeatedly elicited. Electrical recordings of eye movements were obtained from a 3-day-old male…

  5. Neurophysiological insights into the pathophysiology of REM sleep behavior disorders: a review.

    PubMed

    Nardone, Raffaele; Golaszewski, Stefan; Höller, Yvonne; Christova, Monica; Trinka, Eugen; Brigo, Francesco

    2013-07-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a clinical condition characterized by an intermittent or complete loss of muscle atonia and an increase of phasic muscular activity during REM sleep (or Stage R), leading to complex nocturnal motor behaviors. Correct and early diagnosis is important because RBD may lead to serious injuries and is a well-treatable disorder. Since the characteristic electrophysiologic finding in patients with RBD is the increased electromyographic tone during REM sleep/Stage R, simultaneous video/polysomnography recording is essential for diagnosing this parasomnia. Moreover, several neurophysiological techniques have been used to improve our knowledge and understanding of this troubling sleep disorder. We reviewed the most important studies employing quantitative electroencephalography, event-related potentials, transcranial magnetic stimulation, brainstem reflexes and cortico-muscular coherence analysis. All these neurophysiological techniques have proven to provide a valuable tool to gain insight into the pathophysiological mechanisms underlying RBD. The review concludes with a brief discussion on the possible future implications for improving therapeutic approaches.

  6. Evidence that Neurons of the Sublaterodorsal Tegmental Nucleus Triggering Paradoxical (REM) Sleep Are Glutamatergic

    PubMed Central

    Clément, Olivier; Sapin, Emilie; Bérod, Anne; Fort, Patrice; Luppi, Pierre-Hervé

    2011-01-01

    Study Objectives: To determine whether sublaterodorsal tegmental nucleus (SLD) neurons triggering paradoxical (REM) sleep (PS) are glutamatergic. Design: Three groups of rats were used: controls, rats deprived of PS for 72 h, and rats allowed to recover for 3 h after deprivation. Brain sections were processed for double labeling combining Fos immunohistochemistry and vesicular glutamate transporter 2 (vGLUT2) in situ hybridization. Measurements and Results: The number of single Fos+ and Fos/vGLUT2+ double-labeled neurons was counted for each experimental condition. A very large number of Fos+ neurons expressing vGLUT2 mRNA specifically after PS hypersomnia was counted in the SLD. These double-labeled cells accounted for 84% of the total number of Fos+ cells. Conclusions: This finding adds further evidence to the concept that PS-on neurons of the SLD generating PS are of small size and glutamatergic in nature. By means of their descending projections to medullary and/or spinal glycinergic/GABAergic premotoneurons, they may be especially important for the induction of muscle atonia during PS, a disturbed phenomenon in narcolepsy and REM sleep behavior disorder. Citation: Clément O; Sapin E; Bérod A; Fort P; Luppi PH. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. SLEEP 2011;34(4):419-423. PMID:21461384

  7. Combat-related blast exposure and traumatic brain injury influence brain glucose metabolism during REM sleep in military veterans.

    PubMed

    Stocker, Ryan P J; Cieply, Marissa A; Paul, Benjamin; Khan, Hassen; Henry, Luke; Kontos, Anthony P; Germain, Anne

    2014-10-01

    Traumatic brain injury (TBI), a signature wound of Operations Enduring and Iraqi Freedom, can result from blunt head trauma or exposure to a blast/explosion. While TBI affects sleep, the neurobiological underpinnings between TBI and sleep are largely unknown. To examine the neurobiological underpinnings of this relationship in military veterans, [(18)F]-fluorodeoxyglucose positron emission tomography (FDG PET) was used to compare mTBI-related changes in relative cerebral metabolic rate of glucose (rCMRglc) during wakefulness, Rapid Eye Movement (REM) sleep, and non-REM (NREM) sleep, after adjusting for the effects of posttraumatic stress (PTS). Fourteen veterans with a history of blast exposure and/or mTBI (B/mTBI) (age 27.5±3.9) and eleven veterans with no history (No B/mTBI) (age 28.1±4.3) completed FDG PET studies during wakefulness, REM sleep, and NREM sleep. Whole-brain analyses were conducted using Statistical Parametric Mapping (SPM8). Between group comparisons revealed that B/mTBI was associated with significantly lower rCMRglc during wakefulness and REM sleep in the amygdala, hippocampus, parahippocampal gyrus, thalamus, insula, uncus, culmen, visual association cortices, and midline medial frontal cortices. These results suggest that alterations in neurobiological networks during wakefulness and REM sleep subsequent to B/mTBI exposure may contribute to chronic sleep disturbances and differ in individuals with acute symptoms.

  8. Muscarinic and PACAP receptor interactions at pontine level in the rat: significance for REM sleep regulation.

    PubMed

    Ahnaou, A; Laporte, A M; Ballet, S; Escourrou, P; Hamon, M; Adrien, J; Bourgin, P

    2000-12-01

    Cholinergic and PACAPergic systems within the oral pontine reticular nucleus (PnO) play a critical role in REM sleep generation in rats. In this present work, we have investigated whether REM sleep enhancement induced by carbachol (a cholinergic agonist) or PACAP, depends on an interaction between muscarinic and PACAP receptors. This hypothesis was tested by recording sleep-wake cycles in freely moving rats injected into the PnO with PACAP in combination with the muscarinic receptor antagonist atropine, or with carbachol in combination with the PACAP receptor antagonist PACAP6-27. When administered alone, PACAP (3 pmol) or carbachol (110 pmol) induced an enhancement of REM sleep during 8 h (+61%, n = 8; +70%, n = 5), which was totally prevented by infusion of atropine (290 pmol) for PACAP, or of PACAP6-27 (3 pmol) for carbachol. Quantitative autoradiographic studies indicated that (i) PACAP (10-9-10-7 M) induced in the PnO an increase (+35%) of the specific binding of the muscarinic antagonist [3H]quinuclidinyl benzylate, which could be completely prevented by PACAP6-27 (IC50 = 8 x 10-8 M) and (ii) both carbachol and PACAP enhanced [35S]GTP-gamma-S binding in a concentration-dependent manner in the PnO. The maximal increase due to carbachol was significantly higher in the presence (+126%) than in the absence (+102%) of PACAP (0.1 microM). These data showed that interactions between muscarinic and PACAP receptors do exist within the PnO and play a role in the local mechanisms of REM sleep control in the rat.

  9. Experience-dependent upregulation of multiple plasticity factors in the hippocampus during early REM sleep.

    PubMed

    Calais, Julien Braga; Ojopi, Elida Benquique; Morya, Edgard; Sameshima, Koichi; Ribeiro, Sidarta

    2015-07-01

    Sleep is beneficial to learning, but the underlying mechanisms remain controversial. The synaptic homeostasis hypothesis (SHY) proposes that the cognitive function of sleep is related to a generalized rescaling of synaptic weights to intermediate levels, due to a passive downregulation of plasticity mechanisms. A competing hypothesis proposes that the active upscaling and downscaling of synaptic weights during sleep embosses memories in circuits respectively activated or deactivated during prior waking experience, leading to memory changes beyond rescaling. Both theories have empirical support but the experimental designs underlying the conflicting studies are not congruent, therefore a consensus is yet to be reached. To advance this issue, we used real-time PCR and electrophysiological recordings to assess gene expression related to synaptic plasticity in the hippocampus and primary somatosensory cortex of rats exposed to novel objects, then kept awake (WK) for 60 min and finally killed after a 30 min period rich in WK, slow-wave sleep (SWS) or rapid-eye-movement sleep (REM). Animals similarly treated but not exposed to novel objects were used as controls. We found that the mRNA levels of Arc, Egr1, Fos, Ppp2ca and Ppp2r2d were significantly increased in the hippocampus of exposed animals allowed to enter REM, in comparison with control animals. Experience-dependent changes during sleep were not significant in the hippocampus for Bdnf, Camk4, Creb1, and Nr4a1, and no differences were detected between exposed and control SWS groups for any of the genes tested. No significant changes in gene expression were detected in the primary somatosensory cortex during sleep, in contrast with previous studies using longer post-stimulation intervals (>180 min). The experience-dependent induction of multiple plasticity-related genes in the hippocampus during early REM adds experimental support to the synaptic embossing theory. Copyright © 2015 The Authors. Published by Elsevier

  10. The sleeping brain in Parkinson's disease: A focus on REM sleep behaviour disorder and related parasomnias for practicing neurologists.

    PubMed

    Bhidayasiri, Roongroj; Sringean, Jirada; Rattanachaisit, Watchara; Truong, Daniel D

    2017-03-15

    Sleep disorders are identified as common non-motor symptoms of Parkinson's disease (PD) and recently this recognition has been expanded to include parasomnias, encompassing not only REM sleep behaviour disorder (RBD), but also other non-REM forms. RBD, a prototypical parasomnia in PD, exists even in the prodromal stage of the disease, and is characterized by the presence of dream enactment behaviours occurring alongside a loss of normal skeletal muscle atonia during REM sleep. In contrast, non-REM parasomnias are more frequently observed in the late stage PD. However, the development of these disorders often overlaps and it is not uncommon for PD patients to meet the criteria for more than one type of parasomnias, thus making a clinical distinction challenging for practicing neurologists who are not sleep specialists. Indeed, clinical recognition of the predominant form of parasomnia does not just depend on video-polysomnography, but also on an individual physician's clinical acumen in delineating pertinent clinical history to determine the most likely diagnosis and proceed accordingly. In this review article, we highlight the various forms of parasomnias that have been reported in PD, including, but not limited to, RBD, with a focus on clinical symptomatology and implications for clinical practice. In addition, we review the differences in PD-related parasomnias compared to those seen in general populations. With advances in sleep research and better technology for ambulatory home monitoring, it is likely that many unanswered questions on PD-related parasomnias will soon be resolved resulting in better management of this nocturnal challenge in PD.

  11. REM sleep loss associated changes in orexin-A levels in discrete brain areas in rats.

    PubMed

    Mehta, Rachna; Khanday, Mudasir Ahmad; Mallick, Birendra Nath

    2015-03-17

    Rapid eye movement sleep (REMS) serves house-keeping function of the brain and its loss affects several pathophysiological processes. Relative levels of neurotransmitters including orexin A (Orx-A) in various parts of the brain in health and diseases are among the key factors for modulation of behaviors, including REMS. The level of neurotransmitter in an area in the brain directly depends on number of projecting neurons and their firing rates. The locus coeruleus (LC), the site of REM-OFF neurons, receives densest, while the pedunculo-pontine area (PPT), the site of REM-ON neurons receives lesser projections from the Orx-ergic neurons. Further, the Orx-ergic neurons are active during waking and silent during REMS and NREMS. The